dc.contributor.author | Griffiths, Phillip![]() |
|
dc.contributor.author | Green, Mark![]() |
|
dc.contributor.author | Robles, Colleen![]() |
|
dc.date.accessioned | 2021-02-19T20:24:18Z | |
dc.date.available | 2021-02-19T20:24:18Z | |
dc.date.issued | 2021-02-11 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12111/7937 | |
dc.description.abstract | The motivation behind this work is to construct a "Hodge theoretically maximal" completion of a period map. This is done up to finite data (we work with the Stein factorization of the period map). The image of the extension is a Moishezon variety that compactifies a finite cover of the image of the period map. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hodge theory | en_US |
dc.subject | period mapping | en_US |
dc.title | Towards a maximal completion of a period map | en_US |
dc.type | Preprint | en_US |
dc.identifier.arxiv | arXiv:2010.06720 |