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2,
First part

Iinear hyperbolic equations with constant coefficients
and symbolic caloulus with several variables,

troduction

Since Hadamard gave his Yale lectures in 1920 about the hyperbolic
dgifferential equations of second order, many important papers about the
equations of any order. have been published by Herglotz, ‘Schauder, Petrowsky,
Buresu, M, Riesz, and Grding, They used various but- interesting methods
and thélr results are important but incompletes

The first part of our lectures is related to the equations with constant
coefficients; it goes beyond Petrowsky!s and Ggrding' 8 results, and it
improves their methods, Hadamard and Bureau used the Green's formulag
by means of a duality it transforms a boundary value problem into the problem
of finding a particular soluticn with a gilven singularity; this transformed
problem 1s easy &nd this particular solution 4is handy and important when the
glven problem is very simple; but generally this method is a. difficult ones
Herglotz, Petrowsky and G?u-ding use another dualitys that between the inde-
pendent variables and the derivations, which gives rise to the Fourier and
Lzplace transformation, More precisely Herglotz and Petrowsky applied the
Heaviside calculus, that is to say the Laplace transformstion £o one vari-
able (as a matter of fact to the iime) and the Fourier transformation to
the others (as a matter of fact to the space); how shocking in a relativistio

]

L



R b e g

3

world) It is not astonishing that Garding obtained more complete results

by applying the Laplace transformation at once to all the variablegs. But

he did not express all the results this transformation gives; for instancef
he uses the diréctor cones | of the convex domains £\ ; without studying
these important convex domains A; he defines some operators 'by means of
the Laplace transformation and the others by means of the Riesz!s anslytiocal
prolongation, whereas it is convenient to define -and to study these -operators
all togéther by means of the Laplace transformation,

We do not transform any boundary problem; but by the Laplace transforme
ation Chapter I defines and studies -throughout the symbolie calculus of several
variables; this ecalculus enables us to solve the Cauchy's boundary value problem
for dftferential equations (and would also enable one to solve equations
containing both derivatives and finite differsnces): -see Chap, VII, -8k,
no, 107=108=109 and Chap, VIII, nos 113,

Chapter II gives in particular a new; ‘geheral -and coneiss expression

2 2 2
of the inverse of a—qz - _3___2 - qte ™ _8__2 and of its powers,
Bxl ax, ox
Chapter III studies the inverse of any polynomial of g--;, svep %5-:- .

X

Chspter IV, assuming that this polynomial is homogeneeus, achieves
Herglote~Petrowsky'!s ealculation of its elementary solution,
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CHAPTER I

THE SYMBOLIC CALCULUSI..”

§1, TFourier and Laplace trapnsforms

(This whole §1 is classical: see Bochner's books [13] and {4].)
1. Fourier transforma. (See the bibliography: [13], [15], [21], [22],

[23], [25].) Let X and = be two vector spaces of the same finite dimension

*Z over the fisld of real numhers. Supnose they are dual: there is given

a bilinear function "
x of x € X and e = LI
° 7 % 7 amasy | ”'::{‘ 5
. L S
the values of which are real and which satisfiestif x » n o= 0 for somé.- .~ .. .
~ . CaE
x end all %) , then x = 05 if x » %) = O for some % and all x, then ¥

3

7 = 0; (See: Bourbaki, Algebtre lineaire.) )
The coordinates Xy wvv X, of x and 7 1 *ee 7{; of ) are real
numbers and will be so chosen that

x.7 =X171+090+XA’7{: .

Let £(x), g(x) be functions with complex values, defined: on X; let #( » )s
P ( /) ) be functions with complex valuesy defined on =13 £(x)g(x) is the
product of £(x) and g(x); f£(xPpeg(x) =/ .}.{.ff(x-y)g(y)dyl..'.ctv ) is the con=

volution of f£(x) and g(x). We use the norms
1

Hf(x)Hq = [f-).{./lf(x)[qul»... dx o 19 forr q = 1 or q = 2

”f(x)u o = S;p. | £(x) .
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We then have

Qg ,/_(;tfl;2>2g.;;f|:1. el

N
Tt is easy to prove the following:’

If HfH1< + o0 and Hng< + 00, then Hf*g“lf_ ”f“lllglll< + 00} arid,.

12 Jiff <<+ 0 and |lgll, < * ®, then [lexglly, < 1€ gl 5 < + o0

Thus, by use of the éonvolution, the £(x) such that |/ £ Iy <+ o constitute
a ring and the f£(x) such that el p <t @ constitute a vector space over
this ring.

If |I£(x)} 114 < + co, then its Fourier transform F [f(x)] is tho continu-
ous and bounded function g( Y] ), whith is given by the formula [exps A

) e’\]:

1,2 £ = s feuofE o(=2MMi x vee AX 5, o
(12) FI£(x)] = 4(») fxf(X)exp( xen )dey )

Tt can be proved that, if | £/, and il /i) < # co, then 7 lg#£) = F gl &
F 1£], afterwards that Il £(x)1l, = [|4(» i 5 if 8 2°[£]: his ensbles
one to define ¥ [£] whenever Il £ ”2 < + e Plancherel proved the following
regarding this extension:

Z"[£] is an isometric linear mapping of the Hilbert space of all funce

tions f£(x) such that /£ ] p<* @ onto the Hilbert space of all functions

#( ” ) such that H,&ﬁylgﬁ + oo (thus it is a unitary mapping,) This mappin
is given by (1+2) whenever both | £l and ] f” < + o0 ; its inverse is

given g

-1
3) & [15(7 )] = £(x) = Seeo () expe(27i x o 7) )dy 5 e d{

¥ .

whenever both I/ 'S Ity and Y "2 < + Oq

i
My,
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We have also the following formulas:

(L) Flg*£] = FlelF[£] if Wglly < + o and HEll, or HfH2 < + 00}
likewise
(1.5) Flet]l = Flel *» F(£] if Jlgll, and £, < + oo;

further, if ¥([f] = g, then:
(1,6) F[f(sx)] = g( > r})lde‘b. 2 | (dets Z. = determinant of 2_)

for any couple S, 2 of contragredient linear mappings of X and = (that

is to say: x-r;=Sx-Zr)foranyxeXandr)e =)

(1.7) Fi(x + )] = f(y) exps (2Wiy + p) for any y € X;
(1.8) Fl£(x) exps (2Tix » )] = (g - ) for any & =5
i 28,
(1-9) B T[le(X)] = -2—7—7— —;—t}f,
of
(1.10) ’;['33‘-1] = 2Tiy 4(y).

Remark l.1. There is an easy extension of formula (1.5):
(1.11) If Flf(x, x')] = ﬁ(x}, r,'), where x and x' & X, n and r}' e =,
then ¥[f(x, )] = /o../ ;5(!} - ', r)')dlh'_ ers dnl .
= (perccin o~ Sonor firgd”)

Remark 1.2, The formula (1.10) shows that the Fourier transformation

reduces the solution of a differential equation with constant coefficients
to division by a polynomial ... if the solution of the differential equation
has a Fourier transform, which happens rarely; therefore it is necessary
to use the closely related Laplace transforms,.

2. Laplace transformations. The Laplace transform of f (x) is the
functionof(=§+il}(§e __“:-_‘_‘_,r}s =,1i-= J- 1; Z‘l=21+5g}1,
cee, Zl = ‘ée_L + iru’)

k
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(2.1) L£(x)] = #(&) = FI£(x) exps (= 2Tx « )],
If I1£(x) expe (-~ 2Tx » §)Hl< + oo for some &, then

(2.2) LIf£] = /'i'/ £(x) expe (= 2Tx » &) dxy vee dx, ;5

XL [f] is also defined if U £(x) exp. (= 2Tx ¢ ) n2 < + oo for sone &,
IF WA(E + ir})ll 5 < + o for some fixed ¥, then af'l[,é} exists [but

it could depend on ?f: see n°L]; if further W 4( &+ ir}) “1 < + o, then

(2.3) Z7HB = Jorof B + 1) expe [2Tx « (£ + 1n)]d) oo &40

The formulas of n°1 give the following ones upon application of (241):
(2.h) Xlg # £] = L[glX[£] if for some &£, |)g(x) exps (- 27x ¢ & )”l
<+ 00 and H £(x) exps (- 2Tx .{ M 5 o N £(x) expe (= 2Tx o 3)1(2 < + 03
(2.5) Xlgfl = X[g] * Ll£], if for some & and ¥ & =,

lg(x) expe [- 2Tx « (F = €)1, <+ 00, 11£(x) expa (- 2Tx « &)1, <+ o0

(&) # W(Z) means fuoof A(Z + g~ &' i) P2 + gH)ay] on Yy s

(2.6) X[£(5x)] = g(F Z )ldets £
for any couple S, Z of contragredient linear mappings of X and ="
(247) K [£(x +y)] = (Z) expe (2Wy + L) for any y & X;

(28) K[£(x) expe (2Tx + Z')] = (& = 2') if &' @ = +1 =3

(2.9) Klx£(x)] = - gﬁégizél_)
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Remark 2,1. The second part of these Jlectures will use the extension of
fobmula (2.5) which follows from (1.11):

(2:11) If Z[£(xx')] = g( 2, ¥ "), where x and x"' € X, & and 1.6 =+ 13,

then' Z[f(x,x)] = j‘_.é_./%( =& vy dryty wee dp e

-1
Note, n°l studies .2, , using the definitions giFeminsp®le
3¢ The ring of distributions E( A ) an% the subring of functions F{ 2\ ),

Proposition 3.1. :log 1| £(x) expe(=x o

1 q AS 2 convex function

g_i: E-: 3 therefore the set on which _i_‘b_ is finite _i_._g convex,

Proof Let ¥ and r) be two points of =~ ; let 4« and ¥ be two
positife numbers such that & + LV = ig the classical Holder's inequality
(see [13], ch. III, L,-spaces, §5)

(3.1 I f.elly= “f”% Il e HQ/y
gives

~

Hf(-X) exp‘.(-x./u.\(_)( - X o V?)Hq"

M et emetx o B l2t) ematex 4 5 ) 1] o

1260 oot x o M gy W H2w amatexe )7 Ty, -
[llgx) expat=x o ED I o 126 expel = x o n )l 7Y

Definition of A o Besides X and =~ a convex domain A\

————

of = 1is

givens [A domain is an oper and connected set].

Definition of F(A)s F(A) is the set of functions ‘£(x) defined:
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on X and such that Il £(x) expe(=- E . x)H2 < + o ‘for any Z e /\ .

_g_gnla_g}i 3ele The/ vroposition 3.1 proves that, if /\ had not been supposed
convex, then F(A ) would not change by replacing A by its convex closure.
Remark 3.2, This proposition 3.1 proves also that Il £(x) expe(- x o E )I'l2
is uniformly bounded in £\ (that means: on any compact subset of A ).

Lemna 3.1, If £(x) e F(A) and Z-e A, then 1£(x) expa(- x-0 E)II;
<+ oo (it isﬂ uniformly bounded in A ).

Proof. It is sufficient to prove that I £0) 1 1 is finite for0-e A

and £(x) = O outside the domain Xy > 0y Xp > 0y-00e Xy > Oe Let h(x)

be the funétion equal to 1 in this domain and O outside; (3.1) gives
(Hf(x)ull)2 < 1 £(x) expal € (%) + oen ¢ x4 M 5-e JIB(x) expal= & (x)+
SRSV )il o where & ie a positive number, so small that (=~ & ,.eee-= &)
« 7

This lerma and the formula (n"1) || txgll, < 121l {lgll, prove that

trge F(/\) i £ and g'e F( A ); thus

Proposition 3.2. F( A) is, by use g£ ‘convolution, a ring.

Now let us use the Schwartz!s theorie of distributions [21], which makes
it possible to derive any function: the derivatives so obtained are functions
or distributions.

Definition of E( A)s The functions £(x)-€ F( /\ ) have derivatives

of all orders; their convolutions are derivatives of functior;s of F(A),
since F(A ) is a'ring, Therefore the finite sums of derivatives of elements

of F(/\) constitute a ring E( /A); (the product t6 be used in this ring

is the convolution)s In other words: E(A ) is the smallest ring.which

contains F( A ) and is stable for the derivations

Le The ring of analytic functions 2 [E] and its ideal A, Now we look
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at the space = +'1 =': 1it-is a-vector ‘space on the ring of complex. .numbers;

b d

its points are the points

S N K

(6 = f+17 (e,-,nrealpartof?:,; f)a"j.maginarypartofi‘),,
where E & = . € ="+ The tube-with -basis A is -the set~of points

———

= E *+1 r) such that :::f,e 2\ (Bochner; see [1i], che V, § L, pe
90)e Let the -function a(C ) be apalytic in this tube; -we denote

1
NaCZ #1910, = L/..afla( S +i0)¥dn ) wadn, 1%

Ja( 2;"-!- i')\)”oo = Sup, la( E +ﬁ.9)l.
ne =

The Cauchy's formula
- 2T 27T
a(Z) =

J. ,g.../

(217)
a.[f;l‘* (1 exPp(iﬁl), sre z;_,/ + F{ exP!(iﬁ_é )]dﬁl... dﬁ_e__

enables us to express a( Z; ) by an integral on a neighborhood of C: s Which

proves this:

Lema lele If la( X +14 ) )H is bounded on any compact subset

L

of /\ , then !] a( E+i 7”)”00 has the same property.
The Plancherel's theorem (n°l) has the following consequence [see the
same proposition and a similar proof by [14], che VI, § 8, p. 128].

Proposition Lel. )\p maps F(A\) one-one on the set gf (- A )

2T
of the functions #( 7 ) which are analytic in the tube with basis —TT VA
Cad 32
1
and are such that || 4( X + 1 1r )|, is uniformly bounded in —=— /\ .
g g 28 =S

Moreover




1l

(’491) ”/f(x)exp.(-Z’ iTx o 2" )” = ”Z [f] ”20

Note, 2 A is the set of the - (S -9 ‘Where J JAPA
217 m
Proof If £(x) e F( ) and 4( C) s ,Zﬂ[f], then we have, since T

is an unitary mapping:
NACE 24011y = 126 apetez Tx o )l

Therefore (see remark 3.2) ¢ e qB (--1-7— ADR
Conversely lét g e c# (-—;-T- A ) and

,—s.)"l ’ . .
fe (x) = F [B(E*+1n)] eps(2T .0 L)

let us prove that £ X (x) does not ‘depend on the choice of . \f in e AW ;
because of the continuity of (}3 s it is sufficient to prove ‘l;hig ;'se'rtion _‘
after ‘replacing $(Z ) by $( 7 ) expe(s & ) (vhere & > 0), thit is :
(see lemma lel) when £ E .is given by (2.3)

(x) = 1"&;;;.:{:#(&) pe(2 T 4 ) Qg we & 2, 3

g
a Cauchy's theorem asserts that this integral is independent of 'Z's

Propositioh Le2. ,,f [E( A )1 is the ring whose elemerits are finite
sums of products of po]g'nomials of Z by elements of <E> (--7-:- A)s=
LA

Proof. 7" and therefore :é are defined on E( /A ) (see Schwartz);

we epply the definition of E(/\ ) (see n°3) and the formula (2.10).
Definitions, B(/\) is the ring of the functions b(.” ) which are
analytic and regular in ‘the tube with basis /\ and are such that
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16( £ + i9)1] , is wniformly bounded in A . And A( ) is the ring
of the functions a(<Z) which are finite sums of products of polynomials
of Z by elements of B(A).

The Lemma 4.1 and the Proposition L.l prove that SL[F(/\)] is an
ideal of B(-é}.r—r- N\ ); therefore, using Proposition La2:

Proposition b.3. &X[E( A)] is an ideal of Alz= A).

This is the proposition which gives rise to the symbolic calculus,

Notes If A\ had not been supposed convex, then @(—2}‘9‘. A) =
KLIF(A)] would not change by replacing /\ by its convex closure (obvious
by the remark 3.1).

Note. Let §(Z) € dlrm M)

log I} (£ + ir))“2 = log W £(x) exv. (- 27Tx » §)Hz

13; a convex funetion of Zf € 'é':'Lf? N (see Proposition 3.1); let q be an

integer > O; qu(Z) € q)('é}ﬁ' N\ ) (see Lemma L.1); therefore

Log 11 A( £ + 1)1l = 5 log 1 AA(E + il

is also a convex function of ¥ e-é-Jf(-T.A 3 but H;éllq-»\“s“oo. if q —> + 00}

thus log Il g( & + ix})!loo is also a convex function of £ e TIT—r N ..

These two notes are sufficient for the following; but they are particular

cases of two important convexity theorems, which deserve to be quoted
(seet [14], che IV, p. 6L, che V, § L, p. 92; [18]).
A Bochner's thecreme If a(J) is analytic in the tube with basis

A\ s it is analytic in the tube whose basis is the convex closure of A ;

_5:_13 assumes the same values }‘n_ both tubes,
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A Hardy's theorem. log lfa( +1in) |l is a convex function of
A 8 nillgis a of

g if a (Z) is analytic.

More generally see M, Riesz's convexity theorem, Thorin's thesis and

Lelong!s theory of subharmonic functions,

§2. Definition and main properties of the symbolic calculus

(The extension of the symbolic calculus, which Heaviside had only defined

for one variable [6].)

5, Definition of the symbolic calculus. Eet f, be a distribution

and a( ) an analytic function such that

£, & B(A), a(Z ) e A(A)s

the proposition L3 proves that

-1
(5.1)  alp) « £, = B (a2 T Z)B1,]]

is a distribution belonging to E(/\); this distribution is said to be the

symbolic product of f by a(p).

Note. It often happens that a(X]) € A(A,) and & A(A),), without
€ A(A.'i) for some A3 o) Al U A2; then a(p) « o depends on the choice

of Qa( ( 4 = 1,2) and it is necessary to be precise and say

(5.2) a(p) f forpe Al‘

6. Properties of the symbolic calculus.

Theorem 64le

(6.1) a(p) + £ is bilinear
J
(6.2) Py T 5 £

1



(6.3) a(p) » [£, * g = [alp) « £ ] # g = £ % [a(p)+ g]
(6s)  [a(p)B(p)] . £ =a(p) » [b(p) + £.] =b(p) « [alp) « £.]

Let S and > be contragredient isomorphisms of X and = ;- let ¥ be

a fixed point of X; if a(p) » £(x) = g(x) or more generally if a(p) - £, = &0

then
(6.5) a( 2 p) « £(5%) = g(sx) or a( 2 p) + fg, = gg.s
(6.6) a(p) *+ £lx +y) = glx +y) or alp) « £,,0 = g upe

_Iig'p._u_s_ give ge " ; then

—

(647) a(p+ F) ¢ £, = exps (=x .+ ) alp) » [£, ¢ expi (x ¢ L))

If Pys ves Dy and X,4 «ee Xy are the coordinates of p and x, then it

is allowed” _@_9 treat -

(6.8) a(p2, vos pL) ¢ f(xl, Xpy dos xg)

as }_f_ x:L were a constante

Proof of (6e1) ees (647)¢ See definition (5.1) and the propérties
of the Laplace transforms (n°2).
Proof of (6.8). The formula (242) shows that
£ = XX,
where. X. 1 is a Laplace transformation operating on the single variable
Xy and X o @ Laplace transformation operating on the cother variables -

x2 see XL; therefore
a(P2, vre p’e) . f(xl, see x‘z) = XEIXEI[a(Q]Tzz, o es QTI‘C_L)

oflxsz(xl, see x‘e)]] =${51[a(2T\'Z2, 'YK 2W:l)x2[f(xl, se e XL)]]I'
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Theorem 6.2. We have

(6.9) alp) » fx =k, * f_, where k= X-l[a(ZTTZ)].

If H"a(‘f + :L}'})U 1 is uniformly bounded in A , then the distribution

k, is the following function

(6,10) l;(x) = ——-—L—z-,/'...f___a(z;) exp. (x » Z)dc‘:l aee d(‘;l, where e A;

(2wi) +im,

this function satisfies

k(x) exp. (-xog)llq<+oofor2_<_q‘§+oo, feA.

Proof. [la( &+ ir})H o 18 uniformly bounded in A (see Lemnabh.::‘!.);. R

therefore Ila(& + 1l , < V/llall; llall _ is also bounded; we use (23). %
Theorem 6.3« If a(¢) € B(/\) and £(x) € F(/\ ), then a(p) - £(x)

e F(/\ );/rr;ore precisely

(6.11) lilap) * £ expe (= x » )l 5 < Nal(E +all |« 112(x) expo

-z« i,

for any Le [\ . In the Hilbert space, whose norm is |l £(x) exp. (= x - 5)”;2,

we have (6.llbis). Bound of a(p) « = Ha(Z + iz})H,oo;

(6.12) Adjoint of a(p) » = a(2& - p).

Proof of {6,11)., Formula (L.1).

Proof of (6.12). 'Fis unitary; therefore in the Hilbert space whose
norm is [/ £(x) expe (= 27 x * §)H2 the scalar product of f£(x) and g(x)
eF(A\) is

<2, &> = fore H(Z + 1) PTE FIPaY o0 ) p

L




15.

vhere g(Z) = X[£l, Y(&) = Xlegl, 2w fe A, 7 = conjugate complex
of z; therefore, if a(Z) e B( /),

<alp) « £, g>=/ooS2l2T(Z + ig))4( S + i) PIT + Ipldy, ... dg,

1]

/,:f B(Z + ir})b[21T(§ + il})]LP(g’ + ir;)dr)l ---.dl}p,

[}

<f, b(p) » g >,

if we take b[2W( S + iy)] = a[2T(& + iy)] = a[LT & - 2T(Z - ip)],
this is if b(2T ) = a[LTT £ - 2WE); the functicn b(2 W) is analytic

and bounded in the tube with basis % (2& = A); thus in this Hilbert

space the adjoint operator of a(p) . is

b(p) * = a(LTTE ~ p).

7+ The dependence domain. All this n°7 follows exclusively from
(647
Definitions. Let a(¥) € B(/\); let C be the complement of the

subsed of X each point x of which has such a neighborhood U that

(7.1) Inf, Sup. [u . + loglla(Z + ir})iloo] =« 00}
€ uel

let D be the subset of X each point of which satisfies

(7.2) Esz. [x + £ + loglla(Z + ix))lloo] > - 00,

Lerma Tel. Let K be a compact subset of X; the datum of the function

f(x) on K - C determines the function a(p) . £(x) on K.
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Note. These functions are defined almost everywhere.

Note, K - C is the set of points k - ¢, where k € K, ¢ € C3 K ~ C

is closed, because C is obviously closed.

Proof. Let x! and x* & X; let U? and UY be neighborhoods of xt and x%3
f(x) =0

f(x) = O outside Uv;
\ g=a.f

let g(x) be the restriction of a{p) o £(x) to Uij (6.7} and the mean value

suppose

theorem give

[ g(x) || pexpe (=ut o 25 ) < Ila( if +1n ) o HEG jeapo (-ut é{ )

for some u' € Ut and u" ¢ U"; that is

log ”g(x)H2 < (ut - u") . g + logl) a( é; +in )”oo + log“i‘(x)H,z;
suppose x" # x? - C: thus x! - x" has a neighborhood U for which (7.1)
holds; suppose U! and U" so small that U% - U"c Us by (7.1) the last ine-

quality gives

logllglx)ll, = - oo

it means: a(p) o £(x) is uero in a neighborhood of x! if £(x) is zero out-
side a neighborhood of x¥ ¢ x" = Co Thuss a(p) » £(x) is not modified
on some neighborhood of xf by setiing £(x) = 0 in some neighborhood of
xt ¢ x' = C. Therefore, move gensrally: a(p) o £(x) is not modified on the
compact sp.bset K of X by setting f(x) =0 in some neighborhood of x" £ K~ Cs
therefore, again more generally, by setting f£(x) = 0 outside the closed
set K - C.

Lemma 7..20 C is closed and conveXo

Proof. The complement of C is obviously open- Let




o1.

n(f)=lcg”a( 5"'17)”005

x @ C means that for any neighborhood U of x

(703) Inf. Sup,[u . (E + n(£ )] > = 0
f eA uel

Let x and xt € C§ let U and U! be neighborhoods of x and x': there is a

number )\ such that for any i € A two points u e U and u' & U! can

- orermerw

 mw T

be found such that

2 e 3: +n(CE)>)\,u'. £ +n(£)>)\;

therefore
o . 5 + n( i ) > A

y+U!

1 b}
for u* = u;u € U;U ; thus (7e3) holds when U is replaced by —5— , which
t

1
ijs an arbitrarily small neighborhood of x* = 3%—3{-—; therefore }&_?x_ € C.

Lemma 7e3s Dc C3 D is aconvex F_ (F ,- means: the union of

a denumberable system of closed subsets of X)e

Proofe D c C by definition. Let D )\ be the set of the points x such

that

X o Cf+n(£)3)\forany gsA;

D --> D when /\ > - 003

A

D /\ s being an intersection of closed half spaces, is convex and closed,

Lemma Te.h. Each point x £ D is on the boundary of a closed half space

containing C. [The boundary of a half space is a hyperplanes }

Proof. Because x ¢ D, there is a sequence a,tl, ese éq’ +se Of points

e /\ such that
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(Tels) x. & orn(EY > - w5

by leaving out elements of this sequence, we can achieve that

5 F£0 “g -> 8, where e ll =1,

Let U be a bounded domain such that
(u=%) o 8<0for ueT; (U= closure of U);

thus for q sufficiently large,
(u=x)o €q<0for any u & U
therefore, by (Tel)

.u?:pa[u . c‘,‘q+ n(.(fq)] <X . {q+ n( gq) ~> = 0}

thus U satisfies (7+1); therefore U is outside C: the points y of C satisfy
(y - X) s O _>_ O,
Lemma T+5s D = C, when D has an interior (D: closure of D)

Proof. Let D be the interior of D; let

yef),xec,x#ﬁ x &0 % y

On the segment joining x to y there is a point z ¢ D and # x3 the lemmas

7¢2 and 7.3 prove that z is on the boundary of a closed half space, which

containg both x and D; but this is impossible.

| Summing up these lemmas we obtain the following proposition, which

is to be completed in chapter III under more particular hypotheses:
Proposition 7ol. Let a( () & B(A); it means: lla( & + 3 n)ll o

is wniformly bounded in £\ + Let C and D be defined by (7.1) and (7.2).
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Let i‘x be a distribution € E( A ); let G be an open subset of X; the datum

of fx in the open subset G - C determines a(p) . fx in G, C is closed

and convex; D is a convex Fo- 3 Dec C; D = C when D has an interior.

T S — A Ay —— -

Remark 7.l. Thus in order to define a(p) - f, in G it is sufficient
to suppose that the restriction of fx to G - C belongs to E(A )

Proposition 7.2. Let a(p) be independent of P15 then C and D are both

in the hyperplane X!': Xy = 0; and in the definitions (7.1) and (7.2) of

C and D, X can be replaced by X'.

Proof. Let x be such that its first coordinate X > O; let U be a

compact neighborhood of x on which Xy > & > 0; then, for 3’1 -> = 0,
Zyy oee 2, fixed

Supe [u o & +n(%’2, ces ‘fl)]g_ & %el+Sup. [u22f2+ cee U, f‘&»f

uel uel

n( ‘{2, cee Ep)] > - 03
thus (7.1) holds; therefore C ¢ X!'; therefore D c X'. It is now obvious
that the definition (7.2) of D does not change by replacing X by X!,

Moreover, if x € X' in the definition (7.1) of C and if U is a parallelepiped

symetrical in respect to X', then

Sup. [u ° ) eee )] = €« 1E 1 + sup. * aee
Supe u e & e nlSyy eee )] 1) s [y ¢ ey &)

+ n( 52, coe ;_@)]3
(€ > 0); therefore the definition of C does not change by replacing X
by Xt,



8. The translation. lLet y & X; .

(842) expo(~y o p) o £(x) = f(x = y); C=D = y,
For in;tance:
-axpe(py) o £(xqy Xp5 oo x_&) = £(x) + 15 Xpy wee x4 )e .
Proofs By (5.1) and (2.7),

@pu(7 + D) o £(x) = L Hape (-2 My « &) ZLM2@N] = B ULt = 1))

» f(x = y).

Ilap.[-.vn(f+ip)ﬂ * expo(-y . cf),thusA-Z

Infs Supo [(u~y) & %]sOifyeU
e= UelU

- =~ £yl
thus C = yo D is the set of the points x such that

If. [x=-3) « £1>- oo

———

€ =
| thus D = y,
9. The Gauss operator. For “& = 1(p = Pys X = xl)

x2
— €xpo (= 'é'a')*f (x)
27 a
where %(a) > 0, 7@ (V3) >0 (%: real part).
? 10. Derivatives and primitives of complex orders, Let « be a complex

e e GEARASSEENy

(9:1) axpe(§ p°) o £(x) =

¥ wmber, We have ( ﬂ = - O + positive integer)

1/ B Q™ *61'“' Xoy 0o x-&’
T 2 Lo xl o+ A
[ (A) D>+

(10.1) pX . £(x) =

-



N )

5.

to be used for B

f_o£p1>o,%(6)>o;thebranches Pldﬂ(xl‘t)
have opposite arguments for Py >0, X - t > 0. Therefore

6_}‘60( ¢

f(t, 2, ees x.'b

of(x)” c)to(,‘,é

(10.2) (-pi)“

L7t -x)
TR

< 0, 7@ ( é) ) > 0; the branches to be used for

——  weqee——  ne—

A

for Py < (-pl)“ and (t - x;)

have mosite arguments for Py <0y X =t <0,

For instance:
plp f(xl: 2) =

X
2

S /S f(s,,t)dsdtforpl>o,p2>o,

=00 =00

+00 +00
=/ [ £(s, t) ds dt for P, <0, py < 0,

xlx
*) o

=/ / f(s, t) dsdtforp1>0,p2<0.
--OOX2

#0072
==/ [ f(s, t)dsdtforp1<0,p2>0.

X =00
Proof of (10.1). It is sufficient to prove (1.1) for % (ﬁ ) > 1, B - wX

and, according t6 (6.8), ¢ = 1. We have pX . £(x) = (% )2 (x)

where

I CHA :
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CHAPTER II

SYMBOLIC PRODUCT BY A FUNCTION OF * p12 * p22 Foeee * p_z .
§1, Preliminary
(81 proves that, if such a product is a bounded operator, then all ot
are the same with at most one exception.)

11, The cases in which this product is a bounded operator. Let a(: )

be an analytic function of C\; € = +1i =

- e
e

Definition 11.1, A\ (a) is the interior of the set of the Ee=

such that

Na(& + 1), <+ o

A(a) is also the interior of the set of all é; such that the symbolic

product by a(p) is a bounded operator for the norm

H2(x) expe(-x » Sl

[See formula (6.llbis) o]

Definition 11.2. O (a) is the interior of the set of the real munbers

é;l such that

Ha¢S 1 ED s 0 ean 0] <+ oo,

(S (2) is also the interior 'gg the set of all 5 1 Such that the symbolic

product by a(pl, Oy <eo 0) is a bounded operator for the norm

“f(.X) eXpo('ﬂxl gl)”2o

Proposition 11.1. Let a(p) be a function of + p12 * p22 Foees * pi .

trme w e

T e cmr—— e T
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If A (a) is non-void, then all the signs * are the same with at most one

exception,

Proofs Let
a(C;) = ﬁ(alz + & 2&'22 + soe f:j/ Ci), where 52 = :1, cee e’,& =-_|-.1°

. — . 2 2 2
The linear mappings of = leaving 3:631 + & 2(}.':2 + 4ee *+ 5"& £ y3
invariant obviously leave /\(a) invariant; therefore /) (a) contains points

of the coordinate axes, for instance the point

ailfos §2=0, coo é,(’,:O;

then

R . 2 2 2 2
a({l + 1919 192’ XX iO_L) = %(q\el - 91 - 6292 - sse -&L")_’&*?i%pl')f
remains defined and bounded when 19 °oo N} _p, Vary arbitrarily; thus,

if there are two different & A #(z) remains defined, analytic and bounded

for all complex numbers z; this can not happen.

§2. Symbolic product by a function of p]_2 + 6o * pj .
(An easy integration expresses such a product by means of the symbolie
product by a function of one variable: see theorem 15.1).

12. The relation between A (a) and S (a)e

Proposition 12,1. Let a(c) be a function of C;lg + ous * 2323

let II§H=\/§12 T oaee * i“éo Then

)Ia(&)€+ig)lloo= supe |2 S+ 1D g Oy wes O
gz 070

Thereforse A (a) is the sphere
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i ¥|\< conste,

whose intersection by the axis E 5 = oee = E 2 ° 0 is the connected

component of (S(a) containing 0,
Proof. The assumption is

a(il, z:2, ves a:"&) "é(clz * 0ee * Zi);

in particular

a(50+ipo, Oy eea 0) =;6(é’02- 9024-2:'.30 00)

A 410,10, 10g) =K 2= 07 -0 o fe a0

Let P( & o) be the parabola described by
2 2 e
z = €0 - Dy * 2ic\:o » o (50' fixed; 5 0vari.za.ble);
let I( 5 o) be the inside of this parabola; preceding formulae give

Ha(&Eg+10 5 0, e Ol = Swe | 4(a) |

zeP( <L)
Ha(%"l+ipl,i92, o..iQ%)llm*’ Sup. | A(2)\s
zel(fl)
but obviously P( SO) % plane

NSy = )i}:{f IP(C\:O)s IDA;Z >

therefore

Ha(fl'*ivls 5-92, soe i')_[/)“m’ SHP- ”a(éfo*ioo,o,-uO)Um

‘ éfo)f.’ E 1’
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this proves the proposition, since Ja( é‘; +in ) o is obviously a function

of”\c:”

13, Fourier transforms of radial functions. The functions £(x) and

( n ) are called radial and are denoted by f(r) and 4( P ) if they are func-

tions of
2 2 2 2 2 2
r=x1+...+xv&andf> =91+"'+'7,,L’

It is obvious by (1.6) that the Fourier transform of a radial function f£(r)

L

is a radial one g( ) Suppose momentarily that ./' l £(r)lr dr < + @3

the value of #( n ) = (}J[f(x)] at the point (p s Oy see 0) is

Y= Seee (=277 A%, eee s
#p ) fxff(r)exp(elixlp) ) dxz

+00 +00

= f e.xp.(-27Tx.lp) dJle...f f(r) dx sse dx.L

let

2 2 2
rl x2 +...+x$,

since the measure of the sphere with dimension £ -2 and radius ry is

£ -1
2m T ""2—' r 4'2, we have
I_(
L -1

+oo_+om 27-'-—2-—- +00 V@-Q 2 2 2.
{;;-{wf(r) dx2 see dx_‘g = I_ (,&2—1) _(/;f(r)r’l drl, where ¥ = Xq + rys
thus

+0 fT"""‘J{l 2 2‘!&% 2
fp)=lep(2Ming p)an gy /  #H0)05x) 465

~® r(—é"—-)lxll<r<+oo

replacing xq and r by r and t we obtain
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A =1 ".é:}.
*+oo ™= 2 2, 2 2
~® [« 2 )lrl<t<+oo

Let ?'* be the Fourier transformation of functions of r into functions of o

% +00 +00
? [g(®)] = / expe (=2 Trir P lelr)ir, if / g(r) dr < + »;
«00 -0

det Q run over the space dual to the one over which r2 runs:
Q ° = d2 .
d(r°)

Let g(r) be the even function equal to
L -1

(- -7_?_:) € . f(r) forr>0 (see n"10);

L =1
the branch of (—T-%-) 2 to be used is > 0 for Q < 0.
Formula (13.,1) becomes

F(p) =T *ami;

therefore, defining g( o ) = g(= o) for £ <0,

£ -1
(13,2) £(r) = ( ..l.,_%.) 2 T Mg p )] tor 1 > 0,

+00
Contimuity shows that (13+2) holds whenever / (1 + 0 - "1);52( P HO <+ o,
0

1. Digression about a Bochner formula. If ~£ is odd, (13.2) is a

Bochner formula: [13], ch. II, §7. If £ is even, Bochner gives an apparently

different formula using the Bessel function:

2T 1 .
Jo(x) . J exp.(ix cos s) ds = 1 S exp. (ixt) dt
2T o LU S A

A B e -




21T 1
= 2 [ cos(x cos 8) ds 5 —nm S .9.9.8.(."._":.'.)..%

2T 0 L SV Ay

1 x2V
(- =) 3
(pn?2 ¥

v 20
indeed (13.1) can be written for £ = 2

(=2 T ir ) dr

t2~r

+ t
¢(/>)=2Z°f(t)tdt[t P

or, replacing + and r by r and rt

+00 - TTirpt) +00
Bp) =2/ 2(r) v ar b ER(22 at = 271/ 3, (2T v p )rf(r)dr;
0 SR o °

therefore, since the relation between g( P ) and £(r) is symetrical,
+00
£(r) = 2);6.10(2;: rP)PA P L

comparing with (13.2), we obtain

% Tl o
(WD) |- )7 TP = 2T S a2 T r pY pACP ) Ap

15 Calculation of a(p) « £(x)s Let a(p) be a funetionm of p12 + 400 * pj

such that Z\(a) is non-void. The Theoren 6e2 can not be directly applied;

now let us use the convergence factor

2 2
€XPe [& (Z:l +* aee + Z/b)]

and define
3, (&) =al(Z) el & (Z 2+ aun + aj/n, where £ >0, & ->0.

On the one hand the assumtion | a( C: +in >Hco < + ® and the definition
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(5.1) of the symbolic calculus show that
lim a, (p) «» £(x) = a(p) » £(x)
£-—=>0
(15.1)
lim, as (pl, 0y eee)f(x) = a(pl, Oy ees 0) ¢ £(x)
g~= 0
at each point x, if p € /\ (a) and if f(x) is for instanée an infinitely
differentiable function with compact support.

On the other hand, Theorem 6.2 can be applied to a P (p) and gives

2, (p) » £(x) = /-}-{-f k(x - y)f(y)dyy «.. dy,

where
k(x) = X Ha, (2721 = F7Ha, (2Tip));

2

upon application of {13.2) k(x) is the following function of r< = xi + see xi

£-1
k(r) = () 2 .« L()

vwhere
+00
L(r) = [Sap(2Tip, 05 vuo 0) exps (2Tirp)de
=00
that is
1 +ico
(1502) _,Q(r) ='2“‘-‘T?‘ / aé(zl’ Oy oo O) €XP. (rd—l)dZ:L;
=100
thus
. £-1
(15.3) @ 2w = [T 7 LEemm
if
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R=1r’, gR) = Looes S £@) 0y, @)
R

w(y, dy) is an exterior differential form of Vs eves dyl’ such that

(see chapter IV, §1)
(15.4) dlyq = x1)2 et (y, - xib)zltu(y, dy) = dyy ... dy, 3

()R is the sphere

(25.5) (9 = %%+ e+ (7, =% )% =R>0;

with that orientation which makes (y, dy) > O. Let us define g(R) = 0
for R < 03 formulas (6.12) and (15.3) give, if f(x) is for instance an

infinitely differentiable function with compact support,

- i—l

+ —
ap @) * 2(x) = / L) 2
0 1

« g(R)JdR;

that is
L3

Snnse—

i +
CONENORE CRMEIOR T JE RIS

Now (15.2) shows that £(r) is even since 2, (Z:l, Oy o+« O) is even;
(15.2) and Theorem 6,2 prove that
+C0

J L(r - s)h(s)ds = a, (g, 0y +vv O) * h(r)
-0

where q and r run over dual spaces (q * = é%), (q, 0y «+. 0) € O(a);

thus

+00 .
(S 7 LGt = Tag (6 0 vor O+ B g,



where [...]'z,ﬂo is the value of eo for r = O, Formula (15.6) and (15.7)

3L,

prove that the following theorem is true if a is replaced by a 8 + Therefore,
upen spplication of (15.1), this theorem is true:

Theorem 15.1. If a(p) is a function ,32 p._l_2 + qee * pj » such that
AN (a) is non-vold, then

a(p) » £(x) = t-%— a(@y Oy +ee 0) o B(®)] 09

where

% (q, 0, soe O) & A(a),
’ h(r) = 0 for r < 0,
. -3 |
B h(r) = (—%—) 2, /f.i';iff(y) w (y,dy) for r > 0y Q > Oy

A -3
(-Q.—) > 03 q and Q are the dual variables of r and R = r2 n and
ar R ==

@ (7,4y) are defined by (15.L) and (15.5)3 £(x) is an infinitely differentiablé

R S -

function with compggt gmort.

v RN ., T BTRETE  TT  T

Note. This theorem expresses the operator of several variables

a(p) o = 6(p1, ees P l) by means of the operator of one variable

TR

a(pl, ; ses 0)e ¢t it is always easier to apply Theorem 6.2 to a(pl, 0, ees 0)

than to a(pl, eee D ./Z,) s moreover, it happens often that Theorem 6.2 can

be applied to a(pl, Oy eee 0) buk not to a(pl cee p2) More precisely:

if 1] £(x) expe(=x o ES Mg <+ oo fpr \ée A\ (2), then the function

a(p) « £(x) 1s defined, but onlyalmost everywhere; we suppose £(x) so regular

o

that this function a(p) « £(x) is continuous and defined everywhere; the
theorem expr;sses its value at each point by means of the operator
a(pl, Oy eee O)e

16, Bramplos.
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r=20

£ &= 3, then a(p) . £(x) = [-;%r— a(q, 0, 0) fo £(r) w (y59y)]

2

where (g, 0, 0) € /\ (a).

If a(p) = 5 5 L 3 5 and ¢ = const.,

pl +p2 +.-.+p’&-c

then using Theorem 6.2, the relation h(r) = O for r < 0 and Cauchy's theory

of residues, we obtain

1 Y%
[ 2(qy 0y «.a 0) . h(r)]r=o S - S expe(-cr)h(r)dr wherel q| < ¢
T 29T 0
For A=3 and a(p) = 5 _2} 5—% s We obtain in this way the
Py +P2 + P3 -C
2

classical integral, where r° = (x, - yl)2 + (x2 - :y2)2 + (x3 - y3)2;

a®) « £ = - E 1l EL) 2(y) ey oy

§3. Synbolic product by a function of =py° + p,° + ees * pj ‘o

(§3 proves that the formula, which expresses the symbolic prodﬁc'b by

2

a function of Py + p22 * eee * pj/ s expresses also the symbolic product

by a function of - p12

+ p22 + eee * pi. This formula is in particular
convenient to solve Cauchy's problem for classical wave equations: see
chapter V).

17. The relation between A(a) and S (a).

Proposition 17.1. Let a( ) be a function of = &1% + &7+ eue +

() is a domain

(17.1) \/& 22 + see ¥ ii ¢ conste < {1 (where conste > 0)
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or a domain

(17.2) fl < ~ Jfg +oeee + ?j + const, (const. > 0).

i

JE2 22 %2 50 then

Piugp. Ha(go + ir)o, 0y wes O)Hoo;
-0

Suppose (17.1) holds; let P

(17.3) Wa( g+ ag)ll

therefore the intersection of /\ (a) by the axis ?2 = 400 = \{& = 0

is 2 connected component of S(a).

Note. Conversely the half line [ Eel < + 00, 52 = 0y oue 5‘4 =0
belongs to a domain A\ (a) if and only if

(17.L) Sup. |!a( 5’0 +igg, 0, .vs O)“oo < + 00.
P=<o

Proof. A (a) is a convex domain invariant under the linear mappings
of = which leave invariant 5?_ - gg - ey = {z, therefore /\(a)
is necessarily of the type (17.1) or (17.2). Now the assumptions are

(17.1) and
Ay v G = KZE - 20— - 22

is particular

a(&o + im0y 0, vev 0) = A(F2 -2 4 21 ,)

a(Sy + iy, inyy en i, ) = 75(55 - t}i * I}S et QZ + 21 m).

Let P(g O) be the parabola described by

2 2 . . .
z=&¢ - no + 21 \gfono (&, fixed, B, variable);
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let 0(20) be the outside of this parabola; preceding formula give

“a(zo + if}o; 0y ¢en o)t o "ZEPS\(ll? )lﬁ(z)l
0

Naldy + iy, 295w 29))l) "zsg%Pg )M(Z)!;

1
but obviously
P )
og) = U »(€; 0—n)22 0
=%
therefore
Na(Zy + 391, 1955 e iy )Ml o, = Bupy  [1a(&, + dn, 0, oou OV
=¥, co

this proves the note and the proposition, since Il a( § + ig)ll oo 18 obviously
a function of P.
18, Properties of Z§ - 'Z'.'g - see = Z;j + (Purpose of n®18 is to

find a convergence factor having the-properties of the convergence factor

€XPe {£(Z§ * oo ¥ Zi )} used in n°15, but depending now on Zi?_ - Cg -
vee {2 «) The set of values taken by
(18.1) 2(Z) = Zoag2a -5

in the tube of basis 0 # &1, ¥, = ... = ¥, = 0 is the set of complex

numbers

i -nfende i wnf vaulyy (L F0)

I ey mR = T
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this set is Oi_)cf P( él) ; that is the set of the non-negative complex numbers;
now the linear lreal mappings of = + i =, leaving z(¢ ) invariant,

mep this tube onto the tube with basis Zg + e, + -fi < f.i, therefore

the set of values taken by 2(%) in the tube with basis €2 + ...+ €5 < &2

is the set of the non-negative complex numbers. Thus we have, in the tube

of basis
(18.2) O VER+ L+ 8 < ¥,
(18,3) - T < arge 2(&) < T,

This inequality proves that the following function is uniform in the tube
with basis A :
Definition 18.1.

1 )
ba(&‘)zexp. [-EzE(Z)], where & > 0, geA.

Lemma 18.1., b ¢ (2 ) and each derivative of b e (&) is bounded by
1
const. exps [= const, | }H] s

in any tube whose basis is a compact subset of A « In particular
“bé‘(;"'i'})”oofl’ Hb£(§+:'u})|!1<+oo;

more precisely, N]é’ifh Hba (& + inlil = O when & is fixed and
— O

& describes inside /\ a half line, whose origin is O.
Proof. (18.3) shows that

1

i

1
Jexpe [~ € 24]] < expy [- \/‘%',Z’H];
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thus the lemma follows from a convenient lowver bound of )z 3 the linear
real mappings of =+ i = leaving Z(Z ) invariant show that it is
sufficient to obtain this lower bound when X, = ... = &, = 0; in this

case

I = (42 o e g o 15

24 2832 +52 4 s + 55,

v

19. Laplace transform of a function of Zi - Zg - sse = Z,‘ﬁ .
Let 4(Z ) = #(p} be a function of o = /«Zz 2. cee = 2 with the
P r 17 %2 vy

following properties:

(L) is analytic in a tube with basis

(19.1) A: \/ég + eee * §i + conste < El (consts >‘O);

#(Z ) and each derivative of B(Z ) is bounded by

1
(19.2) . const. exps [~ conste ‘Clh—]
in any tube whose basis is a compact subset of /) ;

(19,3) E(E + iz})ll 1 == O vhen & deseribes the intersection of
A and any line coniaining O.
Let

(194h) £(x) = XA = Son/ BE + 19) expe [2Tx + (X + 19)ldny wve &y &

Let 1€ 1l w> co: according %o (19.3) and (1954), £(x) = 0, if there

is
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some Ci; e /\ such that x . E’ < 0; that is: £(x) = O outside the come

(1905) C: \/x22 * cee ¥ Xfé’ < xlo

On the other hand £(x) is invariant under the linear mappings of X contrae
gredient with those of = which leave #( () invariant; that is: f£(x)
is in C a function £(r) of

(19.6) r = /xlz - x22 - sne ™ x_i;
we denote
(19.7) r12 = x12 .= x22  0ee * xi‘.

Now let us asimplify the relation between the function g( o) and £(r)s the
value of d(Z;) = o [£(x)] at the point (0 4 Oy o0s O) is

B ) = Sorf £) @xpo(-2 TTxy ) 85y e a6

+00
=/ expe (-2 7T %) 0) %y Sooo/ £(r) ax, eee dx\l)
0 r, <
1%
since the measure of the sphere with dimension £ « 2 and radius ry is
-1
2”TT" £ -2
i |
Ly

we have

fooof f(r) dx2 ces dx

.,é xl
fol : = r _(/)'f(r)rl drl;

thus

L=l x A -
. 1 —;2 2
i‘(,O)=fe°<p.(—27Tx1,o)dxl————-T)-./f(r)(x1 - 1l a(r<);

replacing x and r respectively by r and t we obtain
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*+00 T 2 o™ 2
(19.8) 4(p) = / exp. (- 2Trp)dr S (@° - 1t%) £(t)a(t").
T "TTED e

Let a(* be the Laplace transformation of functions of r into functions

of &
* *+eo
L lel®)] = / expe (- 21 rp)g(r)dr;
-0
let R = = r2, T = w t2; (19.8) becomes
:"Li 0 2-3
(19.9) X MEE)) = TZm /(2 = R) 2 2(8)ar,
F'(—--z--*) R
Let us define
g(R) = 0 for R > O
(19,10) "
g(R) = X’f—l[ﬁ(g)] for R = = r2, v > 03

let Q run over the space dual %o the one over which R runs; (19.9) becomes

(see n°10)

L1
(19,11) £f(r) = (- -T%> 2’ e g(R) for R = = r2, r >0,

20, Calculation of a(p) « f(x). Let a(p) be a function of

- p]2_ * Pg + eee * p?Q such that /\(2) is non-void. Theorem 6.2 can not

be directly applied; now let us use the convergence factor b ¢ ( Z) (see

Definition 18.1] and define

ae(Z) = a(Z)be (L), vhere & >0, ¢ —> 0,

On the one hand the assumption lla{& + :‘Lr})\\(Jo < + o0, the properties

Wb, ( ¥+ in)l| <1 lima b (£ +1in) =1
6?11’} cn 3 £w>0<5§19

and the definition (5.1) of the symbolic caleulus show that

S —
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lime (p) « £(x) = a(p) « £(x)

a
(2001) a0 ©

el-ia"n; Oa ¢ (pl, Oy oe. 0)f(x) = a(pl, Oy ees 0) o £(x)

at each point x, if p € A (2) and if £(x) is for instance an infinitely
differentiable function with compact support.
On the other hand Theorem 6,2 can be applied to a p) (p) and gives

ap (p) « £(x) =f-}o{-f k(x = y)£(y) dyq oo dy-—L’

where

k(x) = L5Ha o (278D

moreover & o ( 2;) verifies all the conditions which n°19 imposes on g( e; )s
for instance, if &j desciribes the intersection of A (a) and any
line containing O, then

fla e (& +an)llys Na(E +3n)ll g (& +1n)lly e 0
since |la( & +4 )l is bounded according to (17»3) and
llbé, ( & +in )H1 -~ 0 according to Lemma 18,1. Thus, upon application

of n°19, k(x) is

. . 3 2
zero oubtside the domain \/x2 + gae +xj/ <.x1,

L
k(r) = (~ -’—%-) 2 . _L(R) inside,

where:
L (R) =0 forR > 03
1+ioo

AL@® =} w/ 2o (2 s Oy oee 0) expe(2Tr &)y,
1
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that is
. zfioo
1
(20.2) L®) = SR (&1s 0 vee O) emalr C)A L,

for R e —rz, r > o, (El, 0, seo 0) (= A(a);

thus

0 A
(2043) &, (@) .26 =/ (- 257, 4@)1sR)R
-0 M

if

R = v, g(R) = Joso/ £(y) W (Fydy)e
ﬂR
W (y,dy) is an exterior differential form of ¥y, eee ¥ g) such that

2

(20,1) Ale(yy = %)%+ = %)% #ened (7 ) =%, )T w (7585) = &5y eee & 43

ﬂR is the half hyperboloid
(2005) =y ~5)2 % Gy = 2)2 4 e 4 (v y=x y )P =R O ;) =3y >0

with that orientation which makes w (¥,dy) > O,
Suppose £(x) is for instance an infinitely differentiable function

with sompact support; (20.3) can be written
0 l"’l .
8, @)% £ =/ LEL) 7 L gRIR
=00 1]

o

—

0
(20.6) 2 p ()4 200) = /L) 'TlfFE% (L) 2 . e@ler

where R = =r2, ¥ < O (when r > O up to that time).
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Now the integral (20.2) is zero if r < O, for (see Lemma 18.1)

§llm. lia£(§1 Fin, Oy eee O, = 05

+Z° '2(" sz)h(r - S)dS'= a(q, O, ese 0) . h(!’)

4 0 '
(2047) S/ A@®)h(r)dr = [a(qy Oy eee 0) ¢ h(r)], , whereR = » r2, r < O,
w00 .

" Formmlas (20.6) and (20.7) prove that the following theorem is true if

&.is replaced by a g Therefore, upon application of (20,1), this theorem

is true:

Theorem 20,1, If a(p) is a function of = pi + pg * eee p:ze s such

that A\(a) is non-void, then

b a(p) « £(x) = [‘1%: a(gy 0y ¢o0 0) « h(r)]

1 =0
-‘i‘;: where
pé& A(a), (q 0, «.. 0) € A(a), Ala) being of the typs (17.1),

L -
h(r) = (-,%-) . fa./ £f(y) w(y, dy) for r < Oy R = = r2, Q> 0,

}' (%) > 0; q and Q are the dual variables of r and R = = 2 OR and

w(y, dy) are defined by (20.4) and (20,5); f£(x) is an infinitely differentiable

function with compact support.

21. Examples. Corollary 21,1. If ‘[Pg + see + p2 < Pys +then
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£ u

pl -pzu...--.phlé - 27T T R f‘

o
L=

‘ yhere Q > 0, (-—-) 2 > 0; Q and R are dual variables; ‘QR and W (y,dy)

- are defined by (20.h) and (20.5). For instance (vé L):

} 1 . - P
| (21.2) e e 200 = e feo] £) W) -
‘ pl - Par"' p32 - phz ) no ’ ‘

7

Proofe For q > 0

' 0
1 1.
[-‘1'- a(gy Oy oo 0) « B(r)] g = [T;T; N YC0) I e‘—-l--,efoh(r)dr =

Nli—'

1 = -—-. L]
i e h(r) dR [(17

2T o = 2 Rl R .
; History. (21.2) was given by Poisson in July, 1619; (21.1), for even,
was given by Tedone in 1898 and J. Hadamard in 190k - 1908: see [S], p. 336;
(21.1), for L even and odd, was given by M. Riesz in 19h9: see [20],

Pe 93, (A); [M. Riesz gives a concise expression of his formula (2) only for
A, even; however his formila, where o is to be replaced hy 2, does nob

differ from owr formula (21.1)].
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CHAPTER III

@(p'), WHERE a I8 A POLYNOMIAL AND (3 A COMPLEX NUMBER;

SYMBOLIC PRODUCT BY a
THE CASE ﬁ » -1
(Chap-ter III uses and completes Ggraing [L;le; 1ts results are expressed

in §5; -they are used in chapters VII and VIII to solve Cauchy's problem,)

§1. The real projection of the algebraiit; manifold a(§ ) = 0 and the

complement A (a) of the closure of this projection

(A(a) 1is the inside of the set where Haﬂ(?g + ir))“w <+ 00
if R( 2) < 0; therefore the connected components Aa(a) of Ala)
are convex domains; some Aa(a) , the A*(a), have a simpler definiticn,
Let us recall that the xsyn;bolic product by the restriction of a/s(p) to
each Aa(a) is defined and depends on a,)

22, The convex domains A_a(a).
Notation. a(% ) is a polynomial defined on the vector space
= (aims = < + )3 h(¥) is its principal part; W is the algebraie

manifold
a(t) = 0, where & = 5+ ir] e = +1=;
the real projection of the point & = % + ivl is (&) =% thus:

Tr(W) is the set of the ¥ & = such that a(§ + 1 vz) = 0 for some
ne=.

Definition 22,1. A(e2) is the complement of 7Tr(W). (Tr(W) denotes
the closure of Tr(W)).

Proposition 22,1, The connected components Al(a), ceey A_a(a), vee

of A (a) are convex domains.
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Proof. 4\ (a) is the basis of the greatest tube in which a"l( Z)
is regular; Bochner's theorem (see nl) is used.

Proposition 22,2, Let the polynomial a(& ) be real; T (W) is obviously

the set of the centers of the chords joining conjugate imaginary points of W

T (W) contains the real asymptotes of W (i.es the real lines tangent to W

at infinite points); thus 7 (W) is the union of 77 (W) and of the real

asm' totes of W, if W has not singular, real, infinite points.

Proof. Let the first axis be a real asymptote; Puiseux's theorem (E.
Picard, Traité d'analyse, t. II, ch. XIII, §1) shows that a branch of the
intersection of W by the plane containing the first end second axes is given by:

~C2=8.1 Ci-‘-az_z;zz),v ses C:B” cee ='Z;£ a ()

(C, ) hear o; Y rational and < 0); let Z”l be fixed, Ny—> ® and
C, be the point with coordinates -

(Ly= &1+t Coma 5F + e =0, Ly =0 mt,/e = 0);

T (Z, ) has the coordinates

(5,1’ C;2 —— 0, 0, eoe O)

thus T (W) contains the point (Cl, 0, +s» O) and therefore the first axis.
Let us now study uaB (& +*1iv Mo in & (a) for R(ﬁ)< 0.

(7{ eee : real part of ... ;sﬂ eee : imaginary part of e..)

Lerma 22,1, Let P( A\ ) be a polynomial of one variable )\ s let H( )\)
be ite principal part; 4f P( N\ ) # O for - 1L < A { \) < 1, then P(0) > H(1).

t
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Proote P(N) = B A = Ap e (A= A, | 76 AN 2 15 thus
| P(0)] = | H{1) )\1 cee \ o) 2 (H@) |

Lemma'22,2, If ? "and @ are two points of “= such that
a(Z+)x‘o+17);‘Ofor‘*-1< )\ <1 and all n ‘e = ¢y then -
la( & +11)|> {ne)] torall e T

Proof. According to the assumption,

a(§+>\9*117);‘0

for 11 n e = and all complex mumbers )\ sich that - 1 < 7{()\)<1;

Lemma 22,1 is applied to P()\) = af %’-l-)\ 0-'-'1')).
Lonma ‘22,3, Let 1’()\ ) be a polynomial of one variable >\ and of degree

mg if P()\) ¥0zforO< /\ < 1, then
Lﬁrg. P(1) - arge P(0)] < m %
Proofs P(\) is the product of m poiynomials of degie 1y Loi eash
of which this assertioch is obviouss
Lema 22l Let a (:) be a polynomial of degree m; in any convex
domain whers a( t ) # 0,
[os0s avgs a( )] <m T

Proof. Let ' and Z" be two points of such a domain; let
PIN) = a( &+ A" - ED)

lemma 2243 gives .
jarg. a( C') - arg, a( t;")l <nmTTe

Proposition 22.3. Let (3 be a complex number such that 1 ( /3) < 0}

then
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[}

1. loglla [b( 5-*1:7)”00 is a convex function of §;
2°e A (a) is the greatest open set where this function is

finites

3% if the segment ( E- 9, c\g + @) belongs to /\(a), then
one of the branches of a 2 ( 2;) (all its branches for @ real) satisfies

)lap’( 5"1'7)”00 < lh(e)l%(é ) eccp‘o[m'n‘rp(ﬂ)]

where m is the degree of a( Z:)o
Proof of 1°. Hardy's theorem (see n°L),

Proof of 3% According to the assumption
a((\s-n» >\Q-air7);£0for—1< >\<1, 7 € =3
Larmas 2242 and 22,l; are used,
Prcof of 2°¢ According to 3° |la A ( \é” + 1 N ) ”00 is finite when

EE A(a). 1£ E # A(a), then the definition of A (a) and 1T (W) :
ghow that. &f is a limit of points of T (W), at which Hag( Z, inMlg =

- v e

+ co,
. *
23, The domains A X (a). Now suppose the polynomialg‘(g) is real
and denote by V the real part of W, that is the set of %‘ such that
a( E) = Q.

Let 5 ( E +3 g) be the real line joining the non-real point c\: + 3 n,

( H #0) of W and its conjugate. In the space of the real lines of =
these lines constitute an open set { )3 the complement of {7 is the set :
of the lines cutting W only at real points; the boundary of [ ) is the set
of the tangents to V cutting W only at real points.
Let TT"(W) be the set of all points of all lines belonging to { 2;
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the definitions of 1T and 17" show that

(2341) T & W),

The properties of f). give the following onesg

(2342) 'TT*(W) is an open subset of = ;

(23,3) the boundary of TT°(W) iz the set of those points of the tangents
to V-which are not in T (W).

But- let E be & real point of a tangent to V other than the contact point;
E belongs obviously to real lines cutting W at none~real points (use Puiseux)s
cts 'IT*(W); therefore (23.3) can be improved as follows:

(23¢h) the boundary of TT (W) belongs %o V,

Let'us call A¥(a) the complement of v U T *(W); that is
Definition 23.1. /) *(a) if the set of points L& = and 4 V such
that each real line through E’ cuts W oply at real points,

) #*
Proposition 23.1, Eacg connected component of A is 2 comnectad

cgonent of /\ , whose boundary belongs to V¢
Proof, (23.1) and (23.L) give

TWecv U TTw;

the oomplements of these sets are

A\*e) ¢ A (a),

Acoording (23,4) A\¥(a) 1s open and its boundiry belongs to V, vhich is
putaide A(a); now proposition 23,1 is obvious,

Notation. The camponents JAY x (a) of A\(2) belonging :1_53 A* will
be denoted by A*;( (a)s
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24, Projective properties of A*(a). Now let us replace the vector

———

space = by the associated projective space; let A*(a) be now the set
of the points Z of this projective space satisfying definition 23.1; the
image of A*(a) under any projective mapping of = is obviously the A* -
domain associated to the image of V. Thus proposition 23,1 proves the
following proposition 2hele 1°.:

Proposition 2Ll 1°% To each Al*’ whose director cone has an interior,

is associated another A:"( s having the opposite director cone.

2°, A convenient projective mapping maps Al* or, if &1*

has an associated domain Az*, maps Al* u A 2* into a bounded convex

domain of the type.

(2ko1) =1 *B, (Bt bounded and convex domain of =,)

Where = and =_p &re subspaces of the vector space "=~ such that

—— ——

Syt =, = (direct sum),

Proof of 2% Suppoge =% first that Al* las an associated domain
Aa*; there is a hyperplane separating these two convex domains (see:
Seminar on convex sets, pe 73); let this hyperplane become the infinite
hyperplane: Al* U Az* becomes a domain /\ 1* without associated domain,
Therefore it is sufficient to treat the case where Al* is a non-bou'mied
demain without associated domadf.

If the director cone | 1 of Al* does not contain a line, there is
obviously a hyverplane whose intersection by Fl is the vertex of rl;
stme parallel hyperplane does not meet the closure of Al*; let this hypere
plane beoome the infinite hypepplane; Al* becomes a bounded and convex
domaine Therefore it is sufficient to treat the case where l"l contains a line,

.
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Then a(é) depends on less than ¢ linear functions (see Proposition
27.1): W and therefore A’; are cylinders; it is sufficient to prove
the proposition for thelr bases; thus an induction on L achieves the
proof,

Proposition 2L.2. Suppose that the dimension of the set of the singular

real points of V is < £ - 2, Then there are at most two domains A:Z,

and, if there are two such domains, they have opposite director cones,

Proof. Assume this last assertion false; Proposition 2L.1 enables

us to replace this assumption by the following: there exist a domain

A; of the type (2L,1) and a point g e A*, but ¢ 'ZX'-){ The cone with
vertex & circumscribing Ai has the dimension .4 -~ 1; but a line through

Z can not be tangent to the boundary of A;T, because this boundary belongs
toVand < e A*; thus this cone circumscribes A;’E along a (£ - 2)~
dimensional manifold, all of whose points are singular points of V; therefore
the assumption of Proposition 2L.2 is false.

25, Example. a(&) is a real polynomial with degree 2. Obviously:

all chords with center & of a quadric surface W are in the hyperplane
containing both z and the polar of the line joining .;‘e and the center
of W; the intersection of W and this hyperplane is an ellipsoid with real
points, if and only if & # T (W) (see Proposition 22.2).

Therefore: if a( Fg ) is a real polynomial of degree 2, then A(a)

is empty except in the following cases:

1% Vv is an ellipsoid conteining real points. (That ist

the image of 532_ + eee + 5.122, = 1 by some linear

% *
mapping of = ); V is the boundary of A=AT, gv A]_ o

///

—
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2°, v is an elliptical paraboloid; (the image of

2?l=§§+...+§2 by some linear / e
mapping of = ); V is the boundary of / A1

A« D, &z

3% v is a convex hyperboloid and .. > 2; the image of

§§_=§g+...+§2 + 1 by some

linear mapping of = );
JAYSRVA IS A;f u D the boundary

03
of A is V,

L. v is a no convex hyperboloid with convex director cone and

£ > 2; (that is: the image of

§2=§2+ sea +¥2 -COHSt., ;\ ..' /
1 2 A N\ >
where const. > 0); T2 -
> 0); ‘. 2>
A=A v the boundary = P V

5 .
t!:']fe 2 pd d
of A is, dsymptotic cone of V,

5°. V is a hyperbola and & = 2; A\ = A{ SEAEIAN v A

the boundary of Z\* is the hyperbola; , %

A

the boundary of A 3 v A L is the

union of the two asymptotes.

6° V is a cylinder whose basis if of the type 1%, 2%,
30., ho., 500, 9_1:- 60.

26, TFurther exampless

Proposition 26.1. A(alaz) = A(al) N A(az).

o

e S A AR

-



5L.

Proof. TT(Vl U V2) = TT(Vl) U ”ﬂ(Vé); definition 22,1.
This proposition and n°25 enable us to treat the case where V

is a union of quadric surfaces. For instance:

1°.
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3% V is the union of two hyperboles with parallel asymptotese
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§2. The director cone | (a) of A (a) and its dual C(a).

*
(§2 gives Gérding's relation between [ (a) and A(h) = A (h) and
e
Gerding's theorem asserting that the dependence domain of al’(p) for pe&ok(a)
is the cone C,(a) dual to I—‘d\(a).)

27. The director cone I—'&(a) of &Og(a). Let r’*(a) be the director

o

cone with vertex O of & non-bounded A&(a); rﬁ&(a) is closed; let P‘_A(a)

be its interior; let [ (a) be the union of the r‘d\(a). Obviously
(2741) A (a) + [—;L(a)CAok(a) .

Proposition 27.1. If l—;((a) contains a line, then a( E) depends on

less then /Z linear functions of E .

Proof. Assume % Xé F; and 86 Aok‘ then, according to (27.1)

5 + A X & Ad\ for all real number A\ ; i
therefore
a((g + )\X) # 0 for all complex numbers Nj

thus

a(d *AY) = a(8) for a11 6.

Proposition 27,24 Let h(z ) bs the primcipal part of a( §); let V(n)
be the come h( g) = 0; then

1°%  A) = A¥m);
2°s  [T(a)< A(h) UV(h)s thus ["(a)< A (b)s

8% (a) = (h) if V(h) has no real singular generator.

Remark. It can happen that

(™ (a) # A (n);
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[4]
indeed, if V(a) is a parabola, then r‘(a) is void, but A(h) = =

%
Proof of 1% Let §¢ /\ (h); then

“h( §+/\ VL) = 0 for some né& = and some non-real number A 3

therefors
h((}u +4iV) §+ivL) = 0, where)z+ iV = i)\'l, )1;(03
thus /  tan 6
(27.2) n($+ iy) = 0, where » = —2—to ¢ ="
thus E '1 ! /
§ £ A) ;
that is

An)c A'n) o
Proposition 23.1 achieves the proofe.
Proof of 2°, Let Eﬁ(&(h) U V(h); according to (27.2) there is an

M, € = such that

B(Esiy) =0, n§)Ao;
16t § € A&(a) andf —> + o j the equation with unknown A

a(5 +)\§+ if”l) = 0
has & root A\ = o-+ i T such that /\/,P —> 1 ; the equation

a(5 + crg +iﬂ§*ﬁﬁ=v

shows that O + 0‘§% A(a), where o~ ——> + ® ; thus, according to (27.1),

SAMOY

Proof of 3° Let A be the union of the real asymptotes of W(a), I be

the set of the infinite points of W(a), N be a neighborhood of I in W(a) and M

be the complement of N in W(a);

T(W) e T(M) U T(N)
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(M) is bounded; TI(N) ¢ TP (N); 7T (N) is arbitrarily near the closed

set A U rr*(I). Let }' be any infinite point outside this closed set:

—

§ has in the projective space = a neighborhood outside T(W); that is
o
g &€ r(a)o

But E is any infinite point of A (h); thus A¢(h) ¢ ro—(a).

Proposition 27.3. If the cone V(h) has no real singular generator
0
and £ > 2, then either all ro‘ (a) are void or there are two non-void

0
and opposite [_ (a).
Proof. Proposition 24.2 and 27.3°.

28, The cone dual to [ (a). Let us define the cone dual to the cone

ro‘\ (a); it is the set of x € X such that
(28,1) X o f > 0 for all Ee ‘-;(a);

this cone is convex and closeds Its interior is the set of the x € X such

that
(.28.2) X o f > 0 for all § € Q(a).

The cone (28.1) is the closure of its interior, if it has an interior
(because it is convex); it has an interior if and only if r o« (a) does
not contain any line,

Let A be a complex sumber such that K(4) < 0; let D, be the
set of the x € X such that

(28,3) §‘Igfl.l$ [x . g + logll a&( § + ir})\l 00] > - 3

that is the definition (7.2) where D, A and a( {) are replaced by ng s

AJ\ and ab( E’)o Let us likewise define C by replacing £ and a(g")

s
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w A, amdab(7) m (7.0,

Lerma 26.1. Da(ﬁ is contained in the cone (28,1) and contains the
cone (2842).

Proof that (28.3) implies (28.1)s Let x be a point of X such that
(28,1) does not hold: there is a Ye [ 4 ©uch that x . Y < 0. Let
be Ay ; there isabe = such that D+ 0 e Ao(’ h(6) # 0. Let

Abearealnumber-a + 00}
0+ Ay el ;8104 d7e AYY
Proposition £2.3, 3° shows that

s‘:\p,“aﬁ 6+ N v 1l <+ ey

therefore

xs O+ AY) -'-logllap’(5+ A Y +i1})ﬂm wd = 0}

thus (28,3) does not hold,

Proof that (26.2) implies (26,3)s Let x be a point of X such that
(28,2) holds: there is a eonstant & > O sueh that

x o g > ENEN ror £ @ Ao( ’ \\'§H sufficiently large.

But

log || aﬁ( ”§ + 511)" o > 1og|ap’(§)| > conste + const, log lt§ I
Thus

xe+ ¢ #logNaB(‘§+ir’)hm -3 + 00 for §e Ad, HEN b + 03

therefore (28.3) holds.
Lerma 28,2, If l:( (a) does not eontain any line, then
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Cipg =Dup =dualor T (a).

Proof., The open cone (28.2) is non-void; its closure is the cone

(28.,1); Lemmas 28.1 and 7.5 are used.

Proposition 28.1. G,z =Dz =dual of [ .
Proof. Lema 28,2 and Proposition 27.1 show that it is &ufficient

to treat the case where a(§ ) is independent of § 1° Then by replacing
X by its Pyperplane X, = 0 we do not change either Ca(f_z) i Dx g (zee

Proposition 7.2) or-the cone dual to l:(
(él’ Oy esey 0) @ [; (a)]e Therefore an induetion on L proves the

[see its definition (28.1) where

proposition,
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§3, The convex domain A 4("" /&, b) such that the operator

b(p) a/b(p) is bounded for p ¢ Aok(a., 3, b), where

b(p) is & polynomial.

(Tt is useful to complete Garding's results by the following: some
particular cases of which; for instance, have already been proved and used in

Chapter II to study the convergence factor of §3)e

29, Lower bounds of |a&( §+ i‘)z)l. Lemma 29,1, Let P(A) be the real

polynomial
, m
P()\) = a°+ 9.1)\"' see ¥+ am/\ N
where & # 01 P(A ) has m roots, always ¥ O, but allowed to be infinite.
When A is reel, then

lP(i)\)lz = (ao- &y )\2"' YY) )2 + (51/\' ey /\3 + eee )2

o inns

A+ oeee * 4 )\3}1*.0. +4 /\zm,
0 s m
where A (ao, 819 voes e.m) is a quadratio forms

2 2 2 2
AO- &,y Al- a.l - 2a oaz, veey “‘m-l' am-l" Zamam_a, Am- am .

1% a=a

e

2% If all roots of P(A\) are real, thent

=o..=amt'0 implies A = O . .

>
A (ao‘ a-l’ ogey am) = 0 3

A (aoo Bys seey am) = 0 implies a =& 41" see 2B 0.
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Proof of 1°s If a =a 41= *++ =& =0, then P(A ) has a degree <)1
and therefore IP(i/\)Iz has a degree < 2)1.

Proof of 2°s The roots of P(\) are m infinite or real numbers r' 0:

)\ 17 %0 )\mo The polynomial

2 Zm
At ees +a XT + .., +a X",
being lP(i)\)lz for A real, has the roots

t 1/\1. seey 1‘ i)\n 3
thus the polynomial of /\

A% ees + (-1)F A)i/\h oo *+ (<1)" A A"

has the roots /\12, coey )\mzs therefore

_S_ 1 = fﬂ where A = a 2 >0
/\2 )\2 Ao ’ o o 3
/51... /5

g

now the asgertion 2° is obviouse
Lomma 29,2, Let a( E) be a real polynomial of degree m; let h(S) be
its principal part; let us decompose |a(§ + 1 »L)lz into components homogeneous
in )lx
& e
‘&(5"'1"1)' A.o(§)"'ooo +A)1(§"L)+"'Am(’l)

where A}J( S, 'vl) is homogeneous and has the degree 2}1 in K

8,88)=a%(8) s A () =Hi(y),

1°¢ If the line }-l-/\*'L(-oo <A< 40 ) cuts V at infinity more than

(m ~ p)=tines, thon Ay(g’“) =0, eee & (7) =0,




20 Let Y& A7(a); then e O

A}),( E,W],) = 0 for all},\ :
if A (E,WL) = 0, then the infinite point in the direction of YL
is a point of V whose order is >m -):..

Proof of 1°, Let

P(A) = a(g-r)\ﬂz) =a_* al)\+ eoe + am)\m 3

if the line § -l-/\W/L(-OO < A\ < +m ) cuts V at infinity more than (m-),\)-timas,

then & = a == 0; Lemma 29,1.1° is used,

+1= YY)

Proof of 2°, Let j € Zl*(e.): all roots of P E +)\7z) are real;

Lemms, 29.142° givess A = 03 if A = O, then the line § + AN (=0 < A< +®)
outs V at infinity more than (m71)-times. But this line is not an asymptote
of V (see Proposition 22,2 and Definition 22,1),

Loemma 29.3. Assume that V(a) has no real, infinite point of order >)1

*
and that § belongs to some compact part of A\ (a); then

la( §+ i?L) | > conste (1 + ll"lll)m-')'1 (conste > 0)
Proof,s Lemma 29.,2.,2° gives
2> 2
Ia(§+ i”l)l - a (g) "'Am_)l(g"']’): a(g) 7(0’ A‘m.}l(gv"t) >0
forg € D *(a), ) # 0; A, is homogenecus end has the degree 2(m -)x) in vy .
Lomma 29,4, Assume that the cone V(h) has no real singular point except
its vertex, and that S belongs to some closed cone C I:\(a.); then for i SII

sufficiently largs,
|a(‘g+ i yL) ! Z oonst. HEH[”E Il + “ﬁl.“]m—l o

Proofe We have
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Jal § + 1n)l? = e %) + .. +A)l(E,Yl) + eas + B5( )
and similarly
Ih(§+ i')‘z-)lz = hz(g) + ase +H)-1(§‘\L) + see +h2(7L) 3

obviously H (E’ Vl) is the principal part of A (E, M); but the Proposition

27424 (1° and 2°) and the Lemma 29.2.2° show that

H(%l,w?)>o for )1;10, 1<);<m;

)1

therefore
A);(E"l) >0 for yz;!o, 1 <)1 <n, “SH > bound;
therefore, when HE“ > bound,
laCk + 1y )" Za®(8) +a, 1%, )
> consty [1§IF + 1§12 1120y

The following lemma completes the statement of Lemma 29.3%
Lemms, 29.6, Assume that V(h) is void and that E belongs to some

oompaot part of AN (a); then
la(§+ £9) | > oonsts [1 +l5™

Proof, af % +in) # 0 and its principal part is imh(vz') # 0 for ’VL/ Ce

30, The domains Ad\(a, (3, b)e Notation. a( E) and b(‘S) are two polye

nomials of degrees m and n,/3 is a complex mumber, whose real part is ‘,PL( A) <0,

Definition. L}ok(a,[;, b) is the set of the points ‘Se Ao((a) such that

(% +4m) ab(E+ i)l <+ ;

AJ\(e., (e b) is denoted by A:{(a, fss b) when Ad\(a) 1s denoted by A:‘k(g).

T ——————  GvANE—— WA —— —
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/ v
Proofs It is sufficient to show that, if S , E , and E € A(a) and
~ have the coordinates

(§1, 0, eee, 0), (§/19 0, eeey 0) and (glli' 0, eso, O)’ where Ell S§l SEZ’
then
eC§+ 1) a5+ 1)1,

is less then the larger of the numbers

/ /5 / " ’ (5 y _
Ib(§+ 29) &P(5* 1)l and in(E™ 13) aP('c sy
obviously it is sufficient to prove this when b( Z) and a(7) depend only on
% Zl’ but in this case, since ||a.-(5(3+ i_wL)H o < Yo for gé Aok(a), it follows
from the Phragmen=Lindelof principle (see: Ge Julia, Principes g,e’ométriquea
dlanalyse, te. II, I, n°11, pe14; Peris 1932),

P .
Proposition 30.2, Assume that a(g ) is real and that V(h) is yoid®i,

then
Ao\(e,,/s, b) = A(a) for n+ m‘/{(-/s) S o,

Proofe Lemmas 2244 and 29,5

Proposition 30,3. Assume that a(g) is real and that V(a) has no

- infinite point of order > )x; then

Ale,p, v) wA)8) i 4 (a - PR T o
Proofs Lemmasg 22,4, and 29¢3.

Proposition 30.4, JAssume that a(E ) is real, that V(h) has no real
]

singular point except its vertex, that r;(a) is non-void and that n+(m-l)(]{,( /3)

< . .
j - 03 the:x AJ\(a,/z.,, b) is non-void; its director cone is [';(a.); on sny closed

- osone c ["(a),

I(§ + 19) af(§ + 1)l g > 0 gor Il =+ &
Proof. Lemmas 22,4 and 29.4,
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§li. The elementary solution

(Theorem 6.2 asserted that the symbolic product by a 3 (p) is the con~
volution by a distribution; in important cases this distribution is a function
defined by an J=~tuple integral; if 3 = -~ 1, Cauchy's residue formula
replaces this integral by an (£ ~1)=tuple one; this result is classical
in Heaviside's case: { = 1; it is important in solving Cauchy's problems )

31, Definition, et us call the elementary solution of a(p) corres-

ponding to A _(a) the distribution

(31.1) k, = of»-l[a-l(2 ’!Té')], where ¢ e Aa(a);
obviously
(3142) . a(p) k, = Dirac's measure (see [21]);

according to theorem 6,2
(31,3) a-l(p) « £(x) = k, * £(x) forp ¢ Aa(a).

Notes (31.2) is Schwartz's definition of the elementary solution;
Hadamard and Bureau use another, not equivalent definition.

32, The (£ ~1)~tuple integral giving k(x). Let us suppoge

(32,1) Ha-l(§ + iy?)ll1 <+ for ¥ ¢ some open subset of Al(a);

(lemmas 2943, 29.L, and 29,5 give cases where this happens); then, according

to theorem 6,2, k. 1s the function

! -1
k(x) m@;:’if a ~(f) exp (x.g‘)dtl vee dtl,

Cauchyfs residue formula gives for xl >0
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é-!-ioo

: t expe (x o C)dC LS emexs &%
21T 4 Efl-ioo a(Z, ) 1 s all(é*) ’

wheres

e - da(Z 1 e & 4) ’ CEH

E
&t (55 E g e E RS E P

Hence

(3202) k(x) = “Z_l /‘Cﬁf exp.(x - C\; ) d:2 ese deL

a,'()

where { ) is the part of W whose real projection 7T (J)) belongs to a half

(2171)

line parallel to the first axis and ending in A l( a ); the orientation

of {) 1is such that drypeesdryy >0 r

-

if x, > 03 the integral is absolutely First a:’d.s

convergent after summing the terms
11 ()

corresponding to the same values of

52’ eoe 2;.113 this summing is to be

done at firsty if alt(é) = 0, then .(xc.; & has to be replaced by
. exp.(x 0 Z )
the residue of the function ) of & 1°

This result can be expressed as follows, the first coordinate axis being
replaced by a vector Z L

Proposition 32,1, Suppose (32.1) holds. Let cu (&7, d &) be an
differential form such that

(32.3) da(Z)e W, d&) =4 een d Z
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(s 4Z) is defined mods da, so that its restriction to W is defined
without ambiguity. ILet 5 * be some po- . of = such that

(32.k) xs Zt>0
Let N be 21;9_ part of W, whose real projection belongs to some half line

parallel to Z§ t and ending in Al(a) 3 the orienﬁatior{ of () to be uged
is such -that

2a(S) 4, , X' Q&) - o
(32.5)—-——3[51 Se é‘:& 5%, ng 4c) > 0

Then the elementary solution of a(p) corresponding to A\ l(a) is

(32.6) X(x) =

.é-lfﬁ/ expe (X o Zj)w(a;, a);

(2171)
the elements of this integral corresponding to the points of (7) belonging

Yoa conmlex line parallel to E have to be summed: the integral thus

becomes absolutely convergents Let us recall (theorem 6.2) that

(32.7) 1 %(x) expo(-x o (\.J‘)Hq< +c for 2<q< + oo,

A

33. The case where [ll(a) is non-void, Lemma 7.1 shows that k(x) = O

outside Cl(a) 3 suppose
X & Cl(a) = dual of rl(a) (see proposition 28.,1);
definition (28,1) enables us to choose

\gf'ﬂ' € rl(a.);

suppose that there is a A,z(a) with director cone opposite to rl(a) 3

the half line parallel to é’ ', containing At ((7)) and ending in Al(a)
starts from Ae(a); Thus ﬂ is the part of W whose real projection belongs
to & segment joining Az(a) to Al(a) ; but a Cauchy~Poincard theorem
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shows that integral (32.6) does not depend on the choice of such a segment.

Therefore:

Progosition 33.1. Suppose Al(a) has a non-void director cone and

Az(a) has the opposite director cone (see Proposition 27.3); then Theorem

S e et S——— oo

whoge real projection belongs to some

vector g’ joir?ing éz(a) to Al(a). f' Al

A2 ™ ()

3k The general case. Let e Al(a); there are polyncmials b(( )

sueh that
(3he1) la*l( ¥ + ir})b'l( g+l <+ oo,

On the one hand
2™ (p) + £(x) = b(p)a~t(p)b L (p) .+ £(x);

on the other hand a™ (p)b™ (p) « £(x) 1s given by the Proposition 32.1;
thus, for p e Al(a),
a’l(p) o f(x) = k, * £(x), where k, = -(-2?%13 b(p) f.h.f expe (x Q)TUZ, 4Z);
i
() is the part of W(a) U W(b) whose real projection belongs to the half
line parallel to 3 ' and ending in ¥; (&, d¥) is such that
ala( ()] - Ty, 4F) = 4Zy ... d&,.

Aecording to n°25 and Lemma 29.3 we can choose b Z) such that A (b) contains
the preceding half line; then [)c W(a); now, ) being the same as in the

Proposition 32.1, we have on W(a)
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(Z)W(L, 48) = w(xg, d%).

Therefore

Proposition 3he1. The elementary solution of a(p) corresponding to

E (y(a) 18
 (3s2) k= -(;—1—)1-1- b(e) /2:o/ BHZ) exp (x » §)al(Z, 4%) when x + 1 > 0;
Lv wand () aré the same as in the proposition 32,1; b(Z) is a polynomial satisfying.
 (3441) and such that the half line containing T({)) and ending in Al(a)

- belongs to A(b)
' This result can be completed, when W(a) has no singular point even at

. infinity, Let g(Z ) be a polynomial such that: |

. A) and its infinite boundary points are outside W(g); |

= | degree g(¢&) > 4. degree a(& ), - __

i Let us choose b(& ) satisfying these conditions, Then, since exp (x * & )

is bounded on () s the uniform convergences justifying the following derivations

hold:
B@DE) Jon/ HIWHL) @ (x + ¢ (2, 62)
= b(p) f-!-)-f b NZ) e (x » § )Ty 4Z)
~ g(p) f.{.)./ (L) exp (x o & w(Z, d2).
Therefore

Proposition 342, If W(a) has no singular points (finite or infini;t'e),

then the elementary solution of a(p) corresponding to &1(a) is

3h.3 = 1 oo gt . . s 3
(3k.3) k, Wg(p)/ﬂfg (Z)'ex‘p (x+ &Iw(Z, 4Z)
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g(7) is a polynomial with degree > / -degree a(Z ) such that () and its

infinite boundary points are outside W(g); w and () are the same as in

. 1
the Proposition 32,1 (then x . ¢ > 0) or 33.1 (then x ¢ 02).

§5 Conelusions

> B . 3 .
Properties of a “(p). Let us sum up preceding results:

Theorem 3L.1. Let a(¥) be a polynomial, m its degree and 4 s complex

number:
L ]

1°, The symbelic product by a B(p) is defined for p e Aaﬁ (a)

and depends on o ; (the properties of A o((a) are given by the propositions
of n°22, 23, 2L).
2°% Let G, (a) be the oone dual to the director cone |- (@)

o A (@) ifpe A (a) _g._n_gﬂi_i_‘ G is an open part of X, then the datum
of fx inGa«C, (2) determines a” (p) - f, in G; (the properties of
r d\(a) are given by the propositions of n°27),

3°, Let a(p) be real; let b(p) be a second polynomial and

n its degree; the symbolic product by b(p)aﬁ’ (p) is a bounded operator
for the norm || £(x) exps (= x » 5)\12 if e Ad(a, B , b); (the properties
o A\ < (ay A, b) are given by the propositions of n°30),

4°, a"l(p) ef =k #f forxe Al(a), k _ being the
elementary solution of a(p) corresponding to Al(a) s (the Propositions

32.1, 33.1, 3k.1, 3L4.2 give expressions of kx)'
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CHAPTER IV
SYMBOLIC PRODUCT BY arl(p), WHEN a(p) IS AN HOMOGENEOUS POLYNOMTAL

(A ealculation, which Herglotz began [7] and Petrowsky pursued [9],
expresses the elementary solution of a(p) by means of periods of abelian
integrals, We improve and achieve their calculation: as it was pointed out by
F1, Bureau, they have uncautiously permuted non-absolutely convergent integrals
(Herglotz, second paper, p. 290); their assumption that the cone a(f ) = 0
has no singular points is removed; an invariant expression is given to their
results; using Schwartz'!s distributions we define the elementary soiution

everywhere and not only there where it is a function,)

§1, The exterior differential calculus

35, The rules of the exterior differential calculus. (See the E.

Cartan and K¥hler papers and the de Rham - Kodaira Seminar,) The calculus

of the exterior differential forms

‘U(E: d‘fy = :E:

a (%)a ove d
Gl’coosaq al""’aq 7 gal §aq

(g = degree of w)
is defined by the product rules

Y= ‘=.. \ 2:
d‘fa.dg(5 dg(é.dfa, (dg )" =0

and by the differentiation rule

duwl(e, a%¥) = 2 d (E)AdE. ees d%_ ;
w E ’ E al,‘..,aq aa.l,...,aq ?al E

hence
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(35.1) We D= (=1)F w W (q = degree of w, r = degree of W)

(82) dws=0, W, D) = (dw)e 5 + (-1)%0. aTO.

APoincaré's theorem asserts that (0 is a differential if and only if dw = 0,

Note, More generally the exterior differential calculus can be defined
en a differentiable manifold and Poincaré's theorem is a special case of

the Poincaré = E. Cartan = de Rham definition of the cohomology ring: the

exterior forms which are zero outside compact subsets of a manifold constitute
a ringf:g 3 let f be the set of the elements of zq whose differentials

are 0; let {7 be the set of the differentials of elements of & : (°

is a subring ofﬁ 3 /‘7 is an ideal of (“:f H C/ e is the cohomology ring

(with real coefficients) of the manifold,
Note. Let V be an orientable manifold of dimension g; let /J’V be

its boundary; Stokes's formula can be written

A

(35.3) [ AT, aB) = faw(E, ak).

36s The hypersurface () a 2nd the differential form ¢u. Let a(\g )

be a differentiable function on the vector space = ; let us denote by

Da the hypersurface a( ¥ ) = 0 and by wa(? , d ‘g) the exterior differe

ential form such that
(3601) da( T ) v (€, d%) =d%, ...d%’/@}

W a( ?, d f) is defined mod. da; thus its restriction to Qa is defined
without ambiguity and fﬂ,;f u)a( ‘g s d £ ) has a meaning when Qa has
4

been oriented.

- Eoood dt‘;*...d
(%2)  w (§, %)= (1) 2L Eihg:%l £t

mod. daj



let us choose the axes such that 8‘2'(?) = ogape = a‘é')/ ( \Sp) = 0: (36.2)

shows that
>

grads a(g)H AN ?, dg )]

is the measure of the element of the hypersurface ‘O‘a’ if = has a euclidean
metric,
On the other hand, if f( g ) is a function, if w is a parameter and if

'Qa-w is so oriented that wa( %0, d\gp) > 0, then

(&) w (&, ady= 7 f((f)d%”l... df‘j/;

u<al(d )<v
dgzoood %_’Z/
3, (Z)

second member use w = a( ge )s %2, coo E"P«L as independent variables).

v
[ae [

u

na—w

and in the

(proof: replace in the first member £, a bY

The preceding formula gives
(36:3) ffl 2w (E,ady=tg s 2(EnuE .. JR

a a(r)<v
if wa(%",dzf)>00nf).a. _
37+ The manifold ‘O‘a b and the differential form () a.b* The definitions
’ :

of n°36 can easily be extended: let a( z) and b( z) be two functions;

let Qa,b be the manifold a( %?) = b( 5) = 03 let wa,b(g\‘a, d{) be
the differential exterior form such that

(3701) da o db wa’b(g, d5)=dzl .‘.dg‘lg;

) a,b( \5 s d ‘f) is defined mods (da, db); thus its restriction to “()a.,b
is defined without ambiguity;

(3742) db . wa,b( %p’ dg) = ma({, d?f) mod, da



(37.3) da . ma,b({,d%")a- wytd, ad) mods do

: -d eved & . od d
(37eLs) wa,b({, d ée) = (- 1)i*-L :{l 2;:l.--l i%;}b){j-ldzjﬂd

Ny & )

,grd al fgrd b”s:.n(grd a, grd b)| | La, b(ée d(lp)! is the measure of the
element of the manifold ‘Qa,b’ if = has a euclidean metric, Finally,

if n.b(a < v) is the part of ‘O'b where a(f) < v, then

(371.5) 4 2 &), (& d{)ﬂagff) 2 E ) wy (L a1,

a,b pla < v)

where &)a’-b(f,df)>00nﬂa’band a)a(z, dé)>00n_()a.

38s Use of differential exterior forms in a projective spaces The

following proposition, where = 1is an .,é-dimensional vector space, affords
differential forms of the ( .j ~1)-dimensioral projective spaces

Lemma 3841s Let af( C\f ) and h( g ) be homogeneous functions of degrees
mand n=n = ..@; let b( Ff) and c( \ge) be linear functions such that
b(0) = ¢(0) # 0; let o= run over Oa,b and T run over na,c in such
a way that o~ and L are proportional: thus |

————
-
—

-Qa,b is mapped onewone onto Q a,c® \ 0 blo- )=0

This mapping is such that

c(T) =0

(38.1) h(o- ) Q) b(o" do— ) = h( )&J ( )o

Proof. The definition (37.1) of ¢J a.p Shows that this assertion is
]

net modified by a linear mapping of ~= ; this enables us to assume that



('

.8
%

p(E) = & -, o= &, o

Thus
o~

(38.2) — = :;_.% 3., . .24
1 Ts ()
do— esedo—

(38.3) Wy, (s do=) = (- 1)l-l 2 - ;é-l.
/AN

AT 47T LeeedT

Wy c(’ts dT) = (- l)l X 3 ’&"1_
? ) (T)

But (38.2) gives
a (@) = T 0Va s (T)s doperntor g, - -Tl"('z'l)dfldig...d@z_l;

hence, according to (38.3),
wa,b(o—’ do-) = Tln wa,c( T,daT);
but, upon application of (38.2)
h(o-) = Tl"n h( T);

(38.1) follows from the two preceding formulas.

From lemma 38,1 follows the

Proposition 38,1, If a( Ef ) and h( Ef ) are homogeneous functions of
degrees mand n = m - ) and if of é) is a linear function such that c¢(0) = -1,

then the differential form 2;‘_

g2 ) g %, k)
ey eee ) ( ), ese d(
Z;]_ él 1 z1

which is defined on the cone na. and is equal to h( é{) Wy 0(5, d Eo)
- s




r N ‘ Ste - » T ’ ) 75'15

on _()_ does not depéﬁd on tue choice of cf gf Yo

Note. h( f ) Wa,b, c(é s d g) has the same property on the cone
ﬂ a,b if a(g )s B( g), h( 5) are homogeneous and if the degree of

a( (£ ) s Ao,
(g )

Note. Let h( 5) have the degree n = .& -m a.nd_(). (x R Ef} 0)
be the part of _ﬂ. where X e z > 03 then

(3Bl / S gy e o o e
ﬂa,x. é( »C

2 n&yw, (Zh ad
. 350, e

vhere wa’x.. Z ,c> 0 on Oa,x; <\:,c and “"a,c >0 on na,c' (Proof':
choose c(g) s 51 --1 and apply. (37.5))

§2. Herglotz's formula

39+ A first expression of the elementary solution k(x) of the homogeneous

polynomial a(p)e Let a( 3 ) be a real homogeneous polynomial such that

D () is non-void; proposition 27.1 shows that A(a) F =, if a(g ) # constes
proposition 2742,1° and 23,1 prove that the components of A(a) = A (a)

are convex cones, whose boundaries belong to a( g) = O Let Al(a) be

one of these convex cones and. A (a) be the opposite cone, which is also

a component of A(a) [see proposition 2L.1, 1°],

Assume

(39.1) . ”a-l( g +1 9 )” 1 <+ oo for 5{ € Al(a)i

lemma 2943 shows that this happens if any real point of the cone a(@a )=0
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(except its vertex) has anorder<n=me .,Z 3 We assume

(3942) n=n~_/ >0,

Assume that the first axis is contained in /) (a); let us apply propo-
sition 33.1, ég ! having the direction of this axis, but being reduced to
the origin: the elementary solution of a(p) corresponding to Al(a) is

1 oo +OO o(Xo Z)
% = o SPe\Xe 2 ) 3 ees d
&) (2T 1)# -1 -‘é.o ‘-{0% (&) C—Q C\;j/’

where Z; = (ii)l, ir)2, eeein g )s a(C:) =0, x & cl(a);
Nas D s ees 9_// are real, since ﬂ'(n) is the origin,
This result can be expressed thus:

1 1
(2 7)€ = 5™t

+ +
(39‘&) I aj‘c:"}ozexp.(ix. \ée) dé(Q eee d ?,é/;
o~ T a (&)

(3943) k(x) =

L

§€= ( 31’ 5 03 see f_j/) runs over the set of points satisfying

a(g) = 03 52, see g‘L given and realy

all this m points are real, since the infinite point of the first axis is
SWANOR

Note. (39.L) is an absolutely convergent integral, which becomes die

vergent by permutation of /.../ and 2 _.

l0e The expression of I after a projective mapping of the cone a( é( ) =0

into a cylinder t(T ) = O, Let us define:

é:é_@=m= g-ﬁ-lzgj/
T KC2 T«L-l 1

=/0,

.
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X o ([— =xllt—l+ eve 'l’x-’&-lfl-l"'x/L,
t(f) = a(T—l, T2, tee T/ﬁ «1? 1)0

We have:

D( E,.ez, ees %_@_1, gvé/) o P-«é-Q,
D( T_z"" Z—/&_lﬁﬂ)

x'.é =P(X.of),.

a1 (&) = ™l (T,

Hence, using the definition (3§.4),

+00 00
(hO.l) I "fouof J(T see 2— )dr XX d(E-
A 2 L2 L-1

where

+
(h0.2) J( fz, e e T;é—l) = ?Sgn(pl) Z exp.(i'/O (x. T_)) djo .
=Q0

. n+l’

T u'(1) ~
Truns over the set of the m points satisfying

—~—

t (L )=0; 7 0y ses f_j, are prescribed and réal:

all these points are real; (LO.1l) and (L0.2) are absolutely convergent integrals;

but in (L0.2) / and Z cannot be permuted.

Let us define

(hO.OB) b = """-l""—, C =X T
1 (T)

Since the sum of the residues of the function of Tl
q
Tl
W(T)




'l 6.

- s zero for 0<q<m=-1,

(4Ouls) - PRI E bl = Q"foz": 0 ﬁ g<m=-1,
. '-" v
© v " Let us express (10.2) and (ho.h) as followss

o
| :'..(h'O-S.:) fd =~.£°sgn(p ”Z) Zj,bo( expa (ic , 0 ) & n+1

L . n )
.(l&'O.6)’ L ;1130( cpz = 0 for 0 < q < n;

on and c o 3are real.

hl. Theaexplicit express:.on of Je« Let us calculate the absolutely

convergent integral
to I
L

Sobo expaic o) i‘%ﬂ'

Let £ be a positive number tending to zero:

(,-ll‘o 1) K=

o8

> 7
K= lim J b, expe(ic, s)
5 -0 o< (f V< OQ n+l,

sgn(coé_ )oo n 4
2 1im c o(is) —=5._.
& ~>0 % & c . ”< A TP sn+l’

+c0
but f expe(is) _g_s_j: 0 if s remains in the half plane .7(5) > 0; on the

other hand Z b(,( c.,( = 03 hence

Ecl .
cf b&caé
A

K= lm >

¢ 0 S expe(is) "g'-?-'i’ where f (s) > O,
> S

c
1

S by coz expe (1 £ s) —g—i-_[
Ca<.' 8

= J1im .-l-—-

E->0 &7

X[\/]
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1 n
= 1im Z b cn [ 1 4 + 400 * "':'l"" + £ ooo]ds
t-np A é; A "L ten ]l gn-1l.n * " nis
but
‘1 ds 1
n ds _1 n-q _ n o o-qy
g:c,’/;b,‘cd;a-q q(gb‘xc éz‘bxcdcl) Ofor 0<q<n
°1
2 fb«czg-g-=- 2. bdcf‘logc s
« ¢ o
R ¢
where, since J(s) > 0O,
(h1.2) J(10g ) = O for ¢, >0, = 71 for ¢ < O.
Hence
it 5 n '
(41,3) K=--ﬁ-!-§<—b°(ce<logoa(.
Therefore
0 dfa
L=-{o§bdexp.(ic“p)m
+00 d
- n+l f)
(« 1) ,(/; é:bt'( exp.(-ig(p)-—m
. n+l e it 5 n
(- 1) T{'-n—‘-%b%‘iog%(.
Hence
- i a -1 .
Jo K + (= 1)'%..%-;1— Eb“ov< {1ogg’<+(- 1) Togg:(],
that is .
’ m=l
(h1.h) 7o Bl b B leg el
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L2, Herglota's formula. (39.3), (40.1), (40.3) and (Ll.k) prove

that the elementary solution is the absolutely convergent integral

+oo
(42.1) Kk(x) = ~ 7 /

-® -oo (2n1)

(x-T)™ 1 —~
where T = (fl vee T ,2-1) runs over the set of the m points satisfying
t([) = 0; 7:2, cee ZJZ .1 given and real;

all these points are real;

(h2.2) Z(x- f)q?ﬁﬂ=0for0§qf_n.
L

§3. The case: .4 even, m - L > 1 (Herglotz)

43. The invariant expression of k(x). Formulas (42.1), (42.2)
and (41.2) give

k(x) = —}-r f.../' (x'L) sgn (x + T) ":dt (T: real)
2(203)%  £(T)=0 &7
1 {x.é)n dg2'..d€t—

= —— Seoof —— sgn (x* &) - (&: real)

2(2mi) a(2)=0,3,=1
n(gl,@
where the integral elements corresponding to the same PYIREL Z L and
different & ), bave first to be summed; that is

. n .
(Lh3.1) k(x) = m S '('XT;Q— Wb (g, a¥),
a,b

where b(Z) = 3"&_1; -D'a,b is the real part of the variety
a(£) =.b(<) = 0, with the orientation such that

(x + &) )" (3) @,y (&, 4&) > 0;
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thus this orientation changes along the intersection of Q ab with the
. "
hyperplane x » é = 03 since m-n =,Z is even, the preceding formula can

be written

1(¥)
—a—:-l'—-%-—)—ﬁ:To (x. g)nwa,b(g’ d§)>0;

(xo
this formula, (L3.1) and proposition 38.1 show that b( Z) can be replaced
by any linear function of < such that b(0) = - 1. On the other hand,

since the direction of a real tangent to a( \é ) = 0 can not belong to A*(a) s

gl*al:( ‘g”) $ ape * \giz av(';(\f) # 0 for a( 'se) = 0, §*€ Al(a);

therefore, since the first axis is in Al(a) ’ alf(é ) has the sign of

18 (&) +ave ¥ 735 (Z)s
thus the last inequality can be written
13:2) [Z M2 1( ) + e+ {Zu’)f”"‘ . £ wa’b(f, a€) >0,

Finally,
Theerem L3.1. Suppose L even. Let a(f ) be a homogeneous polynomial

of degree m such that any real point of the cone a( \é) = 0 (except its vertex)

has an order <n =m =~ L. Let b(Z) be an arbitrary linear function of
& such that B(0) = - 1; let ™ be an arbitrary point such that

o(Z*) =0, ¥ A\ (a)

Let wa’b( 5 s d \5) be the differential form such that

do{ &) e (L) wa,b(g,dg)r-d L. d S, ...dgjj;

W ap(Zs 4F) s gefined vithout amblguity on the yariety

a(EL) =pv( &) = 0;
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the real part of this variety is ndﬁ-orientable; let () a.p e this real
e e — , fm—tm— SR ———

part oriented outside the hyperplane x , 5 = 0 in such a way that

(1342) [ 51*31'( ;Df) + oee + fj/aj/(g Nix § ) L‘Ja,bt &, d %") > Ot

the boundary of -Oa b is twice the real part of the variety
L e L e , — L

a(\f)n'ﬁr(ép)ux. {=O.

Then the elementary solution of a(p) for p « Al(a) is the (j-?)-tugle

integral [x ¢ - C,(a)]

13.1)  x L G E)° ag)
(3 ) (x) 2(2.‘”_1)4& 2_(./)a’b nl ab(g é

A Line of the hyperplane b( &) = O running through é* cuts () at

:b""

m points; the corresponding elements of the integral (L3e.l) have first to

p_g summed: thus this integral becomes absolutely convergent,

L The (n+ 1)th derivatives of k(x) are periods of abelian integrals.

Let hq(p) be a homogeneous polynomial of degree q; (L3.1) gives

ey o 1. i
h (p) . k(x) = PP (/2a bhn(§ ) L‘)a,b( 5, d ip),
3

hence, upon applicat:.on of (38.4) and since the orientation of .O. changes

along ‘Qa,x \%e ‘b’ we have

hay (P) o klx} = (2 ’rri) L2 é x bhn-l-l( 5) g, §,b(§’ d é)
a,x. ’
where ‘O‘a % p has the orientation such that
xe L, - :

, :
[glalt(g)-!-...-» wL’&({)]w%xzb(&“_,f_,dz_g)>0.

To justify these derivations, it is sui‘i‘:.c:.ent to agsune that the last. integral

in uniformly convergent; hence

e
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Theorgm Lhe1, Let us preserve the assumptions of thegrem L3s1e Let

x be a point such that the hyperplane x . é = 0 does not touch the cone

a( 5 ) = 0, nor contain real singular Points of this cone, except its vertex.

Let () a,x, X ,p e the real part of the variety :

a(Z)=x ¢ =ab(E)=0

with the oriemtation such that
[T (Z) 4 v E5ay (30 Wax 2 p( £ 28>0,

the (n+l)th derivatives of k(x) are given by the (l-B)-tuple integral

1 ’ '
h o k(x) = h éf . (: d
(P) ( ) (2 ) s A . , ( ) wa’x’ g ,b( 3 C_g) ;

where h(p) is & homogeneous polynomial of degree n *+ 1 and x ¢ - Cl(a).

$4. The case: lgg_g, m- £ >1 (Petrowsky)

LS. A modification of Herglotz's formula. When 2 is even, Herglotz's

formula (L2.1) gives the expression for k(x) directly by meams of the integral
of a rational function (see n°L3) 3 when _l is odd, such an expression still

exists, though Hergldtz.’é_fgrmulé. gives the formula containing a logarithm:

. +CO0 00 ; . n
S L 2. (x-"f) 1 T . fru
) (2 mi)* -1 ~.Q.:{o§ ni Toglx « T .1(T) G L geend P AL

1
indeed Pet;@_t»rsky" succ‘;ae.aded. in suppressing this logarithm.
Let ﬁé,éuppose that 'all the axes of =, except the first one, are
orthogonal o the give;'x %re'ctor. X3

(k541) L % >0, X, %0y eee x4y =0

a=

thus x T =xl’1._—land,"since {;———-}——-—:O,
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5 x" +}o +00 -
().l502) k(X) S o nte/ log' 't ldf see dL
(emiyeLl B 5t T FT'yl 1= *te -1
where ’L-l runs over the set of the rcots of t..e polynomial t(Tl) = {( Tl’ ZQ’ tee
Tl-l); all these roots are real.
S oI '
Let us replace o W—l—y .og Ll by an integral in the plane of the

complex variable Tl; let us cut this fl-plane along the line (-~ i w, 0),

the two edges of the cut being called Ll and L2 5 let us use the branch of

log Tl which is uniform in this cut plane and is real for Tl > 03 let

L3 be the half line (0, + i o ); according to the residue formula

n

2Z log | 1.} =
T, " 17 1

-_n -~ n
Eq — L
L . 1
- 2 —ﬁl + 2 =
ZT.T L1 ¢ T * 2f<0 b 7'-1
1 1
- Ty log T aT. + / Iy 4T, =
T L1+L t Z’tli 1" "1 L1+L3 titls 1
Cn ‘[n —-n ¢
l ~~
1
whereL=L1+L3.
M1 T.-pl
3 1~plane
#: roots of ¢
% 3% L 0 3 » * -
I. A
L1y L,
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Consequently (L5.h) and (45.5) give
. - ~ - +C0 (x‘[)n dfz
M(LB’ Ll-l) =.£'sgn J( Ll)d Ll -{.0 e Tank eyl
L ey _ . 4t
i/ 3 e 10T T(T,) ity |
hence, upon application of (45.3)
+00 +00 Ty
(S KCx) = W Jooo ATy e aTy ) [ T &) e [Jx - T)I(L,]
i 3
dfl
t2'(Z) ‘

where fZ;runs over the seét of those points for which t( ¥) = 0, Zl’ E3’ oo Z,ﬂ-l
being prescribed; L is a line from - i  to i o through 0; (L5,1) is assumed,

W6. The invariant expression of k(x), The preceding formula can be

written as follows

(46.,1) k(x) = --—7—— = W, (&5 4&)
. 2(2 111) sP

where b(Z) = ;,8-15 na,b is the part of the variety

a(g) =b(g) =
whose real projection belongs to “he hyperplane x « { = 0 and whose imaginary
projection belongs to the 2-dimensional plane containing two vectors i 5*

and 1 EW chosen such that

B(E) = b(E7) = -1, e d(a), x & =0

(£ # €™ since x & dual of A (a));

it $el)_ ., let us write
a,b
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(46.2) C: §+ 5_9’ Dzo.lz*.’_o_?z-:e*

o, # 0 for o, # 0, since 7{% is outside the real projection of a(g) = 0)
and define

(46.3) €(g) = sgn (rq0,) = sgn o, * sgn J(x » &)

the orientation of ﬂ a.b is such that
3

(16.1) 12T 1(Z) + ew + THYZIT E(Z) w, (&, 48) >0,

The function & (&;) is not defined if x « & = 0, but is continuous at each

real point of Qa’b for which x « G = 0 (if a,'(g) # 0): thus the orientation
of () a,b changes a:!.ong the imaginary part of its intersection by the hyperplane
x+ & = 0. Hence, acﬂording to proposition 38.1:

Theorem 46,1, Suppose £ odd. Let a(&) be a homogeneous polynomial of degree

m, such that any real point of %ab cone a( f) = 0 (except its vertex) has an order °

<n=m-~.4. Let é and E_: o Lo arbitrary real vectors such that

#* 2%
u E Aj A ), .#. (p = O,

o p— s fo ot

let b( ) be an arbitrary lines» rexl function of & such that

b(0) = 5L &) = b X =~ 1.

Let AN ( d &) be the differouiial Loy such that
b 2 ZolInn o e i ey

da(Z) « (&) = @, (&, eC) = dZ1dG, oo A& ;5

a0

wa’b( L, 4%) is defined witlou’ cmbiguity on the variety
a(Z) = () = 0.

Let [) be the par art of this varichy wiose real projection belongs to the
- "‘a,b 1o

]

hyperplane x « € = O and whosec imaginary projection belongs to the 2-dimensional

(YAY)
W

plane. containing the vectors i & and i &

5 N is non-orientable; let
a,b ==




88.

us oriente it outside the hyperplane x ¢+ & = 0 in such a way that (L6.4)

holds: the boundary of 0 ab is twice the closure of the imaginary part of
3 — ——

its intersection by this hyperplane. Then the elementary solution of a(p)

forpe Al(a) is the (.£-2)-tuple integral [x ¢ - l(a)]

. n
(46.3) k(x) = -2-(?%7[:5 (/) '('}i?f:r)“ Wa,p{ &5 4C)-
a,b

outside - Cl(a) 3 k(x) = 0on - Cl(a). The elements of this integral corresponding

m to points on a parallel to < have first to be summed; then Z has first
%o run parallel to i E*.

L7. The (n + 1)th derivatives of k(x) are periods of abelian integrals.

The preceding theorem is similar to the theorem L3.1; theorem Ll.1 follows

from theorem L3.1; in the same way, and using in addition Stokes's formula

and the obvious fact that d[x * & )qwa b(c, d&)] = 0 on the variety a(&) =
’ b

b(&) = 0, we obtain the following

Theorem 47.1. Let us preserve the assumptions of theorem L6.1. Let

X p_g a point such that the hyperplane x . C = 0 does not touch the cone .

a(g) = 0, and does not contain non-real, singular points of this cone.

Let na,x- Z,b be the closure of the part of the variety

a(g) =x+ & =b(g) =0

where

L= Z+ip, 9'—‘0‘{“ (oo : real nurber # 0);

Qa %+ Z.,b is orientable; let it have the orientation such that
) 3

WD) o 13778 1(5) + wee + Ea(2)) - .“Ja,x.c;b(c’ dz) > o

The {n + 1)th derivatives of k(x) are given by the (.£-3)-tuple integral
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(17.2)  h(p) * k(x) = ——tme h(Z ) w (&, ag)
d (2wiy’2 Qg % 2,0 S Cae o

vhere x & - Cl(a).

L8. A complement of the theorems 46.1 and L7.1. The proposition

38,1 enables us to replace in these theorems b(Z) by any real linear function

¢(&) such that ¢(0) = - 1; the definition of 01, , and its orientationare not easy;

- 3
we define explicitly only [} and its orientation.,

a,x* &,c
Let us multiply fé* by a real number such that
38
c(¥&") = 0;
8,x % ,c? being the projection of Oa,x- z ,bjrom Ointox « & = 0, is

the closure of the set of the non real points & of the variety
a(g) =x+ & =c¢(g)=0

#3t >’
such that the line joining & and & is real.

Now let us define the orientation of ‘Qa,x- % ,c}

~J

G = % (L1 +71) n (L: real number; n e =); the corresponding

point of ﬂa,x- Z,b is
~3
¢ = F)Z::
£ being the complex number such that
b(Z) = 0;

sinee. () + 1 is homogeneous and b(‘g"**) +1 =0,

= 1 .
(e41)[b(5)+1]

that is

~ ]
L=o(i-T)Z, ')=0"§H' (o0 : real number);

therefore, upon application of the proposition 38.1,

.
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h(5)E 1 8 (§) + welio, pop (55 AL) = BEIE TR (E) + wunla, T
(t, ab)
vhere h({ ) is homogeneous of degree 2 - L3 thus (L7.1) becomes, since
£ is odd,
1 -T) [f;_*a]‘_(k:) + ...]wa o g,c(%,, dg) > 0,
Hence:

%
Theorem LB,1. The theorem L7.1 remains true when b(¢), and

Q

a’x'c ’b are defined _6_._§_ fOllO‘\TS:

b(& ) is a linear real function such that b(0) = =~ 1;

’g‘** is a real vector of = such that x E** @ b(EH) * 03

T G SrET—— ———————— y——

Q 1s the closure of the set of the points
a,x' c,b wom— — —
Cw §H+(i +?)n  (T°: real number; VZGE;’?;IO)

bel%ing Lo the variety
a(&) =xe+& =b(g) =0,

The erientation of ’Qa,x-g,b is such that
(1 +z‘)2 I[E*;* '(t) + ees * g/@“aé(;)]wa’x,c,b(t, d%) « 0,

§5. The general case
(For n = m =~ { < 0, the elementary solutions k, of a(p) are distributions,
which Petrowsky determines only outside the variety dual of W(a) , that 1is
" where these distributions are functions., We give their general expression,
Our method differs essentially from Petrowsky's not explicit derivations
of integrals: [9] p. 322-323,)
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48. Preliminary. Let al(C )s a2(Z:), aes ar(g‘) be homogeneous polynomials
of degrees m, 2, ... 2, such that the varieties Wj = W(aj) are without singular
point and without contact and such that there is a domain A belonging to
all A(aj). Let k and kj be the elementary solutions of al(p) cos af‘(p)

and of aj(p) for p € A; they are distributions such that

(L8,1) ky = a2(p) ces ar(p)k,

sinee

231(6) = ay(0) v 2 (P)a)(p) .oe 2 ()17

Qe . and w, = w are defined as in theorem 43.1 if - is even,
a b J a.,b .

J
as in theorem 46,1 if £ is odd; these theoremsand (L8.1) give, r being such that

r<n=ml+2(r-1)—l,

.2 (x- &), (5 ,d5,) (- 2)"up(Z s08)
2(2 M) "%k, = 2,(p)+sea,(p)l x{ln‘ag(‘é)mar(@ +f{2 D E PN COFEN D) +eo0l;

let us suppose D:L outside WJ. for i # j, the integrals are absolutely convergent and

) (:20p(85080) ; ae(z>(x-c:>n'2u2<;,dg> .
4 , ntal(C)aB(g)...ar(&;) 02 (n-2)xal(c)a3(¢)...ar(<)

since 02 c Wz; therefore

) ‘6—2 (X':)nwl(é.’dz)
(L8s3) 2(2T3)" "k, = ay(p) ... a (p) ({l 18, (& ). .a (&)

This formula gives the elementary solutions kl of any homogeneous polynomial

al(p) 3 indeed
Lemma L48.1. The polynomial al((: ), the integer r and the two points

2* e 4 (al), x € X being given such that x . E* >0, we can find r - 1
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homogeneous polynomialé aQ(C )y e0e 8 r(Z ) of degree 2 with the following properties:
\cf* € A(aj);V\T‘j has no singular points (j = 2, ... T); Wj does neither touch
W, nor cut Qi(i A3 dy =i, eee 1)
By induction upon r, lemma 48,1 follows immediately from
Lemma L8.2. The polynomial al( L) and the two points Ef* € A(al),
x & X being given such that x - ﬁ* > 0, we can find a polynomial a2( )
of degree 2 with the following properties: ‘(:* € A(az) 3 W2 has no singular
polnts and does not touch Wy; W, is outside 2, and W, is outside e

Proof for - even. Let the first axis contain ‘tf* and

2 2 2
a2(5)=- £ Cy +C:2 S C—C‘:
£ is small and > O Qi is the real part V, of W, (theorem L43.1); v, is

near the first axis and therefore outside Vl.

Proof for ¥, odd. Let the firxt axis contain ‘q“*, the others be orthogonal

te x, the second be outside wl and

32(5)=- 512+ 52;22+ Z32+...+ Zz;

£ is small and > 0. 1In the theorem L6.1, let us choose Z** on the second

axis: Qj is the set of the points & e Wy such that

Zy=iny &= & +iny, Q3" '\53’ gl: g“ﬁ

(nys Zos 9o Eys oee {ee =)
Therefore
N, n w2=02 n .
n 0y,

£C,0+ % 532 LR “g'j,f 03
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thus Q2 is near the second axis and ()2 N W, is void.

L9. A particular expression of the elementary solutions.

Proposition 49.1. Let a(¢ ) be a homogeneous polynomial of degree m,

such that W(a) has no singular points; let n =m - -£; let A, (a) be one

of the components of A(a); let ‘Oa,b and ST be defined as in the theorem

13.1 for € even, as in the theorem L6.1 for & odd; let x ¢ - Cl(a). There

are homogeneous polynomials g(& ) of degreeq > - n such that, for this point
X, O‘a b and its infinite points are outside W(g); in the neighborhood of X,

3

the elementary solution a(p), for p € Al(a), is

(19.2) kx=Wg(p) [ gt T a,p( &5 4D
a,b

Note. The following n°50 shows how kx is given by an integration on
any cycle homologous with O’a,b or na,x- z b
Proof. According to n°L8, the formula (49.1) holds when g( ) is some

product h( ) of polynomials of degree 2. Now, if s is the degree of WZ),

(19.2) (p) {f)a ) i) ©a,p(s 4Z) = @) £ €O

sb a,b
. rAtats - .y \n¥g
Ll ©ap(6s 48 = e0) £ &) B g b8 42)-
a,b

50. The general expression of the elementary solutions. Let a(Z)

be a homogeneous polynomial of degree m, such that the cone W(a) is without
singularity; let b(& ) a linear function of ¢ such that b(0) = - 1; let
W(a, b) and W(a, x * &, b) be the projective algebraic varieties

a(Z) =b(g) =0,a(Z)=x+& =b(Z) = 0;
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let [ (x) be a (<£-2)-dimensional chaint of W(a, b) depending continuously

onx € X, in such a way that its boundary A r is independent of x outside

the neighborhood of W(a, x + &, b). Letn=m - < and () be a homogeneous

polynomial of degree q > - n such that [ 0 W(f) is void for a point xj then,

in a neighborhood of this point,

f%;CTqCT%(ZT wa’b(C, d‘:)

is a continuous function of x; it does not change when we replace b(Z’ ) by
another linear function ¢(& ) such that ¢(0) = - 1 and [ by its projection
from O into W(a, ¢) (proposition 38.1); we have for any homogeneous polynomial

g(&) of degreer <n + q

. >0+ , > \n+Q=r
(50.1) (o) - / b ey W b(%s 42) rfiig Bl W (85 a0);

thus formula (L49.2) holds when ‘Qa b is replaced by I's Therefore the distribution
3

. (xe g )"0
(50-2) kx( r) = f(P) * { n+q 33 Z; Lda’b( Z, d()
(T N W(f) void; degree £ = q > - n)
depends neither on f nor on b and satisfies [choose g = a in (50.1)]

(50.3) a(p) * k() =

kx( [) is defined for small . If k(T ) is defined and if

M= Ty 4w+ T

is a subdivision of { (support of ri c support of '), then obviously
kx(l‘) = kx( l'l) + oa.. + kx( I's);

therefore, if

1In the meaning of the algebraic topology.
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Il ETR Y Pl Tt e Ty
are two subdivisions of any [ and if they are so fine that kx( rl), s kx( rt)
are defined, then the use of a2 common subdivision gives

R (M) e ek (T =k (T )+ aus s k (T,):
this allows us to define
kx(} ) = kx( Fl) + oo.. * kx( TS).

Let us sum up:

Definition 50.1. kx( )| is a homomorphism of the group of the chains

(x) into the group of the distributions kx which are homogeneous of degree

nand annul a(p); k,(I) is defined by (50.2) for small T .

If T belongs to éome.aigebraic subvariety of W(a, b),: in particular
to W(a, x + &, b), then '
(50.L) k (T) =0,
for the differential form ”a,b('c » 4C) is O on any algebraic variety of
complex dimension < £ - 2,

If T'= BA, we can find a subdivision of A\

A= A+ ... +.As

so'fine that we are allowed to write

— +q
k(M= 5k A =3 °f. S (x:%)7 , d
X 3 x(ﬁ J) 3 J(P) /54'.\.3. (n+q)2fj(§) wa’b(g ;)

.z )Pt
=2 ogye) JoaESL o, a0

J A, (n+q)!fj(§)

hence
(50.5) k () =0,

for a differential form of C, aZ is 0 on W(a, b) if its degree > <4 - 2.



(50.4) and (50.5) give

& (50.6) k(F)=01f T Omod W(a, x » &, b)

; (n: homologous in the meaning of thé algebraic topology).

Let h be the homology class of the cycle { of W(a, b) mod Wia, x ¢ &, b);
’f let Ah be the homology class of the cycle BT of Wa, x « &, b); (50.6)

' allowed us to define

 (50.7) ke(h) = k().

(50,2) proves that k. ( M) is a polynomial when [ is.independent of xj-therefore
;kx(h) is 2 polynomial homogeheous of degree n (is 0 if n < 0) when h belongs

E to the image of the homology group of W(a, b), that .is contains cycles I

of W(a, b).

Now }.’:/h determines h mod. this image; thus fAh determines k x(h) mod.

the polynomials of degree n. In fact, if g(Z ) is any homogeneous polynomial

of degree n + 1 > 0, (50.2) gives

 60.6) 8(e) + k() = £ 68D oy g, ¢ (L5 43), whore B & By

t if n + 1 < 0, suppose there are a cycle B(x) € ﬁh and a homogeneous polynomial
g({) of degree =(n+l), such that W(g) n B(x) is void for a point xj then
b in the neighborhood of this point '

E (50.9) k(1) = g(p) LD 0, 0y 025 40

2o
- Let us sum up:

Definition 50.2. Let h(x) be a (£ -2)-dimensional homology class of

W(a, b) mod W(a, x *+ &, b); suppose that h(x) depends continuously on x and

b define

kx(h) - kx( ), where T € h;
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kx(h) is a homomorphism of the group of the h(x) into the group of the distributions

k, homogeneous of degree n annuling a(p). Let Ah the homology class of

W(a, x « L , b) whose elements are the AT (T € h); Ah defines kg(h) mod.

the homogeneous polynomials of degree n: let e(Z) bg a polynomial of degree

t(n+1) and Be Bh;

50.8) g(p) * keh) = / 8(B)w, oy (T 48) formr1zo;

(50.9) ky(b) = &(p) / § () Wy gy p(L5 A7) forn+lgo

in the neighborhood of x if W(g) n B(x) is void.

The definition of kx(h) allows us to expressasg follows the proposition
b9.1, that is all the results obtained in this chapter when W(a) has no singularity:

Theorem 50.1. If the cone W(a) has no singularity, then, outside - Cl(a),

the elementary solution of a(p) for p & Al(a) is

1
(21i)

22 kx(h)

where h is the homology class of W(a, b) mod. W(a, x + & , b) which contains

the cycle % ‘Qa,b defined by Theorem L3.1 for £ even and by Theorem L6,1 for

£ 0dd; Ah contains the cycles ()

a,xe 7, b defined by Theorem Lhel for £
even and by Theorem L47.1, L8.1 for £ odd.
Note. n is arbitrary; k= O outside Cl(a).

51. Petrowsky's paper [9] contains results which we now sum up. It would

be impoftant to clarify their proof. He assumes x outside the dual of W(a):
W(x « &) does not touch W(a); W(a, x * Z , b) is an algebraic variety without
singularity; he asserts (p..320) that the (£ -3)th homology group of a_suc'h
variety of complex dimension -£ - 3 is the direct sum of two subgroups,

the subgroup of the <<algebraic>> homology classes and the subgroup of the
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<<finite>> classes: a class is << algebraic>> when it contains <<algebraic>>

cycles, which are algebraic subvarieties; a class is <<finite>> when itsintersection
by the homology class of the hyperplane sections of the variety is 0; a <<finite>>
class contains <<finite>> cycles, which do not meet an arbitrarily chosen

hyperplane, the <<infinite>> hyperplane. Therefore the intersection of

An by the class of the hyperplane sections contains an algebraic cycle;

like Ah, this cycle is a boundary in W(a, b); but O is the only boundary

which is an algebraic cycle (Lefschetz); thus

Ah(x) is a finite class, for x ¢ dual of W(a).

Thus, for these points x, (50.9) can be used, B being a <<finite>> cycle,

W(g) being the <<infinite>> hyperplane: this is Petrowsky's expressioh of

kx(h); it holds on the complement of the dual of W(a).
Petrowsky shows that kx(h) is an analytic function of x in each connected
component of this complement; he calls lacunas the components where kx(h) = Q3

by a stable lacuna he understands a lacuna which is not destroyed by any

sufficiently small variation of the coefficients of a( ); his conclusion
can be expressed as follows:

x € stable lacuna

e d—— Ao————  m—anett

of W(a, b), if n > O,
Note. This statement differs from Petrowsky's statement: he uses only
ﬁh, without remarking that /?)h is finite and that /5h is a boundary in W(a, b);

he defines h(x) indirectly and only when Ah = 0,
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§6. Example: the waves equation

(To show how the theorem 501 can be actually used, we deduce formula
(21,1) from this theorem)

Let us find the elementary solution kx of

2

2 2
a(p)=pl 'p22--.--p_bf0rp1> p22+..0+pd£/

52. A first expression of k.. We choose

b(g) = &y -1, (&) = T3 B(x) =0 oy

and apply (50.9); the condition
W(g) n B(x) is void
becomes

N

a,%+ Z 5b is bounded;

it will be satisfieds Thus (Theorem 50.1)

(52.1 K o= —= -3 g w , d
) * (2"715£"2pl Oa,x. Z,b sxe b8 48)

for

2 2
Xl>-l‘1=-—\/x2 +o-o +x‘£~
Wa, x + T, b) is the sphere

= 2 2 - A
4, =1, Pk P ZJ&"I’ x252+...+ua+x1_o,

let EH be its center (for £ odd; Theorem 8.1): the preceding integral

is a function of X, and rys this allows us to choose

X, = Ty, X

3 T L., = JE—L:'. O;
hence. W(a, x + 7, , b) is the sphere .

2



X x2

.. (52’2) ,‘ Cl = 1, (2 = - ;-i-’ 432 + eee *+ Z 22 = 1 - cx.—lén ;
1
] dZ,...d8%
52'3) 2
(82.3) Wa,xe g ,b on, L,

The case: ~& even. {) . is the real part of_the sphere (52.2)
— — ——irn a’x I .b - T x d Z dg
.. . l l u se .,&-
} with the oriéntation w > 0 (Theorem Lh.1); ; 7
3

a,xs Z ,b
is the elementary measure of this sphere; hence, for Xy > =1y,
£l
2 2y 2 2
(52.0) ¥ = e i3 e el
* X ,{_2 __:2 1
2 m 2

rdel3 T

where Y(t) is Heavidise's function:

-
Ve

Y(t) = 0 for t <0, = 1 for t > O.

*1

The case: £ odd. ?f** is the point (1, - 7= 05 one 0); according
1
to Theorem 48.1, ¢ e ‘Qa,x- z,b if
5 2 X 2
- EE - 2 1 .
l \g +i‘p, 9 (0, O, '73, o.-pL)’ '73 + ses + 3')‘&‘ ;—72"'1,
X
{2_2 d'?h cse d?)l.
3

"1 73

dvh oo d'?‘e/> o
73

: finally (52.4)

the orientation of () p 15 such that
s J

ayX* g
8t11l holds.

53. A second expression of k.. Let

8(t) = Dirac's measure = g% ;

o x 2 -2 .
X:J—XJ,Pj :)Yg,



according to (10.1), (52.L4) expresses that

A=2 3-€

-&——-—

1 4-3
k, = o 23N h Tx, 260 - Xy~ aen - Xp);
g e’y '
hence, upon application of (53.2),
£-1
(53'1) b kﬁ = """"" (T)TS(X "'X ® eee = X~L)

Proposition 53.1. ;ﬂ x be a real number and

d d
X"xzoP’E,P"&xi

then, for X > 0 and any integer « > 0O,

al  wi
do _ oXp 2 _&p 2
(53.2)- Py =2"P° P f.
Pro/of. (10.1) easily gives
6 -
(53.3) Pxe, = X, + P,
Hence
-5 oh 5 T
1. 2 -t - 2. 2 =
5 p°P X"ty = xPxP ° X2, = 3P xfxﬂ-% f(x)-
By e ey L o B
ity Dmct T A 2y 2=k oo 1,
P“x fx - =5 P x fX [Px X - =X ] Pfx.
1-x
Replacing f by PT X’ we obtain
1 2 =&, 2, __ 1 w=2 2e i
—zk PP x P fx -2-;‘-:3 P P ™ x P fx,

in other words the operator
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does not change when & is replaced by &« = 23 but it is obviously the identity 1
for X = 0 or 1; thus it is the identity for any integer « > O,

She The invariant expression of kx' The change of variables in the

distributions theory is very easy, but has not yet been described:

Definition. Let ¢, be a distribution of one varieble s and u(x) be

& numerical, infinitely‘derivable function on X; ?’u(x) denotes the distribution

defined on X by the following extension ¢f (36.3):

+00

(5k.1) .}{q)u(x)f(x) dxy weo dxy= S opds S £(x) o (x, dx);
, -0

u(x)=s

"’u j._g_ a differential form such that

du(x) . I.Ju(x, dx) = dx; ... dx_L;

7

the manifold u(x) = s has the orientation such that wu(x, dx) > O.

" From (544+1) follows

+00
(54.2) Pux) *EE®) =/ pds S £y wylx - 7, dy),
-00

u(x-y)=s
where
wu(x -y, dy) >0 on u(x - y) = s.
Likewise, let ¢é’ 4 be a distributibn of two variables and utx), v(r) be two

numerical functions:

+c0 +00 T
{ Pia(x),v(x)T(x) &y eee dax) = -{o _ﬁo P st dsdtu(_:/c')'sf(x) Wy, v(%s %)

v(x)=t

vhere
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du(x) * dv(x) wu,v(x’ dx) = dxq .o de

+(¥s dx) > 0 on the manifold u(x) - s = v(x) - t = O,
+00 +00
Pu(x), v(x) ¥ f(x) = -{o _{O ?s, ,Gdsdtu(x{y)asf(y) "u,v(x -y, dy)
v(x~y)=t

where wuv(x-y, dy) >0onu(x~y) =s=v(x-~y)~t=0.
, .

Two successive changes of variables are equivalent with the composed change.
This enables us to apply the Theorem 6.1 to (53.1): P; can be replaced

by the derivationwith respef";‘. to X

o X2 mlose XJ;; finally we obtain the

following expression of kx, which is invariant under the linear mappings of

L

X leaving xl2 - x22 “ se0 = X 2 invariant:

vy

Theorem 54.1l. The elementzry solution of

is, when Xy > - \/:r.22 * ooes T X

(51e3) K,

Note.

=2 (8

2 2
p12 - p22 - oo = p'L.i.'E pl> \/p22 * ese +p_L

j/ﬁ

2 :
Q)' P

(21.1) immediately follows from (5L.3), (54.2) and (6.12).

°5(".);f‘£1j_Q>O, Q2>O;Q=3%,R=x12-x22-...-x

2
Ll




Second Part

Linear Hyperbolic Equations with Variable Coefficients

Introduction

Let
(1) a(x, plu(x) = v(x)
be a linear equation of order m:

x = (xl, ceey X ) € X, real vector space;

[ ) —

p = (&:l-, saey E’-c}.) € = , vector space dual to X;

v(x)\ is a given function on X; _

a(x, p) is a polynomial in p; its coefficients are functions defined
on X; its degree is m;

-u(x) is the unknown function,

Cauchy's problem consists of finding u(x) when u(x) and its derivatives
of order < m are given on the boundary of a domain of X3 the solution is
said to be global when it is defined on the whole domain and local when it
is defined on a neighborhood of the boundary,

I. History., For the analytic case Cauchy and Kowalewski proved the
existence of local solutions of Cauchy's problem [32]; in his well known
book [33], J. Hadamard emphasized the uselessness for physics of the local
solutions and proved the existence of global solutions for the hyperbolic
equation of second ordér; he used Riemann's geometry and Green's formula,
which transforms the search for regular solutions into the search for a solution
. having a convenient singularity; at first he had to-deal with the analyticcase.

In 1935 J. Schauder [36] gave an easier method; the classic energy relation
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enables him to extend the local Cauchy-Kowalewski's solution into a global
one for the analytic and finally non analytic equations of second order.
Two years later I. Petrowsky [3L] defined the hyperbolic equations of order :
n(m>2) and,'ﬁsing Schauder's process, proved the existence of the global
solutions of Cauchy's problem. Recently M. Riesz [35] published a'deep study .
of the equation of second order; and Y. Fourés-Bruhat [31] gave tmplicit
solutions for systems of second order equations.

I. Pet£owsky's paper needs to be completed; its main part is the a
priori limitation of the solution of Cauchy's problem; this limitation consists
in seventeen pages of inequalities without comments; Petrowsky!s first step
is surprising: he defines a tfansformation involving both the Fourier trans-

formation and the use in the (.£-1)-dimensional space of a variable frame
1

depend%gg only on its first vector; he assumes™ that this frame depends
continuously on its firSst vector; this assumption does not differ from the
assumption that the (_{-2)-sphere is parallelisable, that is: there exists

on this sphere a frame depending continuously on its origin, He uses this
assumption in order to extend to the case gﬂ > 2 the important particularities

[39) which occur for £ = 2 and which are closely related to the properties

of the camplex numbers and the analytic func@ions. Now obviously a continuous
vector field cannot be drawn on the 2-sphere, which therefore is not parallelisable;. g
the same holds [LO] for any even dimensional sphere; recently N. E. Steenrod
and J. Hs C. Whitehead [41] gave a deep theorem assertiné that a sphere whose i

dimension is not 2k - 1 is not parallelisable; as for the (2k - l)pspheres,

1 Bp. 821-822- << die Functionen %;j besitzen...stetige partielle Abteilungen
>

beliebig hoher Ordnung nacket more explicitly, p. 861: << Die Axen

Oié, oo Ox} ahlen wir dergrt dass ihre Richtungtskosinusen in bezug :
die alten oordinatenachsen Qxéil... Ox -1 Functionen von den Riche

1 b

tungskosinusen «{, ..o ! .von seiend, die stetige Abteilungen erster
Ordnung 'ﬁes:.tgen.;> £-1 : -
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we know {L2] only what happens for k = 1, 2, and 3: the complex numbers,
the quaternions and the Cayley's numbers define easily parallelisms on the
1, 3 and 7 spheres. Thus we can use Petrowsky's proof only for .J = 3,
5 and 9 moreover, Hadamard's descent method immediately extends Petrowsky's
statement to all 4 <9

Our first purpose is a complete proof of Petrowsky'!'s assertion that
Cauchy's problem.has global solutions when the equation is hyperbolics our
proof has no connection either with the parallelism of the sphere or with .
the Cayley's numbers.

But, however interesting may local Cauchy's problem be (see: E, Cartan,
Les systémes diffe?entiels exterieurs et leurs applications géamé%riques,
Hermann, 1945), the global Cauchy problem is a secondary problem: let T, ¢ T
be two gpmains of X3 let ul(x) be the global solution in T, of Cauchy's
problem; let u(x) be any function such that u(x) = ul(x) in T,; obviously
u(x) is the global solution in T of a Cauchy problem: if the global Cauchy
problem is solved in T, then it is solved in Tl. A more compiete study shows
that the fundamental problem is the problem which could be called <<the
Cauchy problem with Cauchy's date zero at infinitp>>; its solution is given

by the inverse operator of a(x, p), which was denoted a"l(p) when a(x, p)

was independent of x (First Part). The definition and the study of this

inverse operator is our essential purpose.

II. Summary. Chapter V states inequalities applicable to the local
Cauchy-Kowalewski solution of (1), and, using these inequalities, extends
these solutions to the whole space: Petrowsky's assertion is proved. Now
these first inequalities give an imprecise information about the global
behaviour of the solutions defined on the whole space; Ghapter VI gives for

14
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such solutions new and simpler inequalities; moreover, it weakens extremely
the assumptions about the coefficients of (1), wRich are finally assumed’
to be bounded and lipschitzan. Chapter VII extends these results to a mani=
fold, defines the elementary solutions and solves Cauchy's problem, Chapter

VIII studies similarly hyperbolic systems,
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CHAPTER V

THE EXISTENCE OF GLOBAL SOLUTIONS ON A

VECTOR SPACE "

Introduction to Chapter V
(The precise work begins in §1; the Introduction is a motivating discussion,)
I, ILet us consider the linear differential equation of order m (see
pe 10L):
(1) a(z, plu(z) = v(x),
Denote % by t; suppose Cauchy's data given for t = O and the equation to
be analytic: Cauchy-Kowalewski’s theorem gives a local solution, defined
for 0 £t < T. A convenient a priori limitation of the local solutions
of (1) can allow us to extend this local resolution to non analytic Cauchy!'s
data, to non analytic v(x) and then successively to the intervals O <ts<2T,

0<t <37, and so on: we obtain global solutions. Summing up: the existence

of global solutions of Cauchy's problem can result from an a priori bound

of its local solutions,

II. In order to obtain a relation similar to the classic energy equality

of the mechanics (see (L)) let us replace (1) by the equivalent system »

(2) W = 4« us) + vew)

where U(t)'is the unknown vector (u u 9?:}2 )s
ST

V(t) is the given vector (0y Oy oosy 0, v);

A is the matrix
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0 1 0 . 0 0
0 0 1 . 0 0
0 0 0 . 0 0
(3) A= .
0 0 o) . 0 1
“Ag "KL Ky v~ dpeo= Kpal

whose element -~ axp(xl, cos x;e; Ppy «os pl&) is a differential operator
independent of 12 and of order m - pe Let us consider that, for any value
of t, U(t) and V(1) are real points of some Hilbertt!s space, whose norm and

scalar product are denoted by U}, (U, V)5 A has an adjoint operator A"

(2) gives
(4) 3£ 0112 = (4 + M0, 0()) + 2(u(t), T(v)).
Since

1 s 1 *
A=5(A+A") +3(4-27),
%(A + A*) and 5%(A - A%) being obviously hermitian operators,

%(A *+ A*) shall be called the hermitian part of A, Suppose this hermitian

part has a finite upper bound /5 (see [37] Defin. 2,13, 2,14, p. 56); (L)

gives

(5) FLION exp (- F8)] < W) exp (- ).

An a priori limitation is obtained.

Now A is a non bounded operator, whose hermitian part will be bounded
only if the Hilbert's norm is judiciously chosen; and the.Hilbert’s norm
used for U will be a trivial one. Thus we have $o0 find some hermitian positive

operator B such that the hermitian part of A is bounded for the norm V(BU, u),
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whose scalar product is (BU, V) = (U, BV) (U, V¢ real). For this norm
the adjoint of A is not its trivial adjoint A* but the operator C such that

(BCU, V) = (BU, AV);

that is such that: BC = A*B; thus for the norm defined by B the hermitian

part of A is %[A + B1a¥B): the assumption that the hermitian part of A

is bounded for the norm defined by B is the assumption that

BA + (BA)* < const. B.

If such an operator B exists, then the local solutions of (1) can be a priori ,

bounded. .
ITI. Now, since A is a matrix whose element a)\ (xl, XL; p2 eee pﬁ)

is a differential operator of order A\ = P + 1, let us choose for B a matrix

vhose element b/\}l(xl, sre X p3 Pos oeo pl)/) is a differential operator of

order 2n - A - Ps 1 being a fixed integer. Thus the difference of the orders ,

of the corresponding elements of BA and B is at most one. Therefore, when

the bounded operators are neglected, we can deal with the x A and p A as if

they were commutative variables; and the search for an operator B, such that

the hermitian part of the operator A is bounded for the norm defined by B,

is reduced fo the purely algebraic problem stated in n%iv, i

IV. Let A and B now be matrices of rank m, whose elements are real

numbers; let us say that A is symmetric for the norm defined by B when B is

symmetric positive and BA symmetric, which fact requires that the characteristic

roots of A are real.

An algebraic problem. Let Xyy e0e X g 52, fl be real commutative
variables; let A(x, &) be the matrix (3), where o()l(xl, ves X 3 Dy oo py)

is replaced by the principal part of ac)l(xl, see Xy 52’ .es ‘fﬁ/): thus
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the element a)‘}l(x, ¢) of Alx, ‘3‘) is a polynomial in (52, cee EL) homo-
geneous of degree )\ - B * 15 we ask for a matrix B(x, & ) such that A(x, Z)
is symmetric for the norm defined by B(x,'g) and such that the element
b>\}1(x1, ooy X 3 52, .es fl) of B(x, f) is a polynomial in (;2, e §’L)
homogeneous of degree 2n - A\ = Peo

This algebraic problem is possible only if all characteristic roots
of A(x, ?f) are real; when they are real and distinct, this problem has solutions,
even if A(x, 2) does not belong to the type (3). But it has a much simpler
solution if it belongs to this type (3): we shall consider only this simpler
solution.

Obviously a complete proof of these assertions must follow the reverse
order of the preceding rough sketche

The condition that the characteristic roots are real and distinct is

the condition that the differential equation (1) is hyperbolic.

§1. The matrices B defining norms for which a given matrix A is hermitian
— — — o s m——

6l. Notations.

a b b

11 12

a. .
and B = b b .

11 12

A= a a

21

22 21 22

are matrices with m rows and m columns; their elements are real or complex

numbers., The identity matrix is

F

v

-
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The elements of A « B are Z a).)’ Pu
det A means the determnant of A, The characteristic polynomial of
A is
det (rI - A);
its roots Tys eeey T, are the characteristic roots; A and C-l * A o C have

the same characteristic roots,

The transpose tA of A is the matrix whose elements are

t, tg, b

YA p) = A

YRRY

tA = A; A is symmetric positive and we write

A is symmetric when
A >0,

; 2 2
g LA N eoee L ]
when ZPa /LJ)\E/A>Ofor El’ ’{L real, §1 + + Eiﬂo If
A is symmetric, then 15(’3 « & ¢ C is also symmetric. If A>Q, C real and

det C ¥ 0, then tC * 4« C>0; in particular A-l > 0,
#*
The adjoint A" of A is the matrix such that
* %
ay /u. Ml (that is: a, /‘and a,,) are conjugate complex numbers);
3 *

(A« B)* = B" 4 A%,

3
A is hermitian when A" = A; A is hermitian positive and we write

A>0
when Z/..Lak ‘; ‘C > 0 for Cl, ...,Z‘ complex, I{‘1|2 ces + l‘g ]2 # 04
If A is hermitlan, then A" is also hermitian, If A >0 and det C ¥ 0, then

3#
C * A« C>0; in particular A -1 > 0. A real symmetric matrix is hermitian;

it is hermitian positive if and only if it is symmetric positive.
N° IV of Introduction to Chapter V gave the reason of the following

terminology: A is said to be hermitian for the norm defined by B when B
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is hermitian positive and B + A hermitian; when A and B are moreover real, N

A is said to be symmetric for the norm defined by B.

62. The characteristic roots of A have to be reall

Proposition 62.1. If A is hermitian for the norm defined by B, then

the characteristic roots of A are real.

—

>~

Proof. There is g matrix C such that both C* « B » C and G~ » B o A + C

are real diagonal matrices (see for instance [7], §113, Hermitesche Formen).

Thus

C—l

cheC=(C* By NC" . B A C)
is a real diagonal matrix, Its diagonal elements are the characteristic roots
of A,

63. 4 matrix B such that A is symmetric for the norm defined by B.

(Suppose the roots of A nedl and moreover distinct; then there are matrices

B defining norms for which A is hermitian; these matrices constitute a convex
m~dimensional set. And, when A is real, thdb set contains a matrix B, whose
elements are polynomials in the elements of A. But we shall neither use

nor prove that general assertions: we have to consider the following special
case, )

Let us suppose

0] 1 0] . 0 0]
0 0 1 . 0 0
0O - © 0 : 0] 0]
(6301) A= . ¢
* . . [] . . . . . 3 . s . . ) [}
0 0 0 . 0 1
"Ry ey oy e e oty
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Its characteristic polynomial is

= m-1 m
P(r) = 040 + a(lr + ee0 * o(m_lr +r,
Let Tys eee T be the characteristic roots; let
1 1 1 . 1
ry r, r3 . r m \
R = 2 2 2 * 2 ’ 8, = LT’y

ry T, Ty . r A )1 P

m-1 m-1 _m-1 ° m-1

rqy r, r3 . rm
So Sl 32 [ Sm_l \

S=R - Jc’R = Sy s3 sb . Spel 3

*m-1 Sm Sme1 Szm-zj

hence, if the r are real, S > 0. We have (Van der Monde's determinant)

det. R = E}J(r)\ - r)l); hence: det. S = )TI;P(I‘}‘ - I‘P)zo
The s N are polynomials in o(}l defined by Newton's formulas

By =M

51 % Apey T O

Sp * Apa® ¥ 2HKpp = O

Spay * o(m__lsm_2 + leo + o{zsl + (m -~ l)0<1 =0

Sn +0<m-lsm-1 * oees + o(lsl + oxoso =0

L] L] ® * L [ * [ ] L ] ° L ] . . L ] L L L) - . L4 ] . L] *

Smah * Hme1Sme1ed *ouen P\ FAE L =0 (AzO).
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hence
8y 8, s . s,
8 S3 B * Sme1
[ ]
AeS= 83 8y, Sg e Speo

” @ % & @ & @ 9 @ 0 0 0 0

8

m+2

. %n Sm+l

im

is symmetric; and, since S is symmetric,

STe(aes)sstagl,.y
is also symmetric, Finally define
(63.2) Be §t . got S,

B is a matrix whose elements are real polynomials of the elements of Aj B
and B « A are symmetric; if the characteristic roots of A are real and distinct,
then B > Q0 (for 8 > 0, det S > 0) and thus A is symmetric for the norm defined
by Be

Note 63, B > 0 means: strictly positive; that is (BF, F) > 0 for
FooO,

6le A real matrix B(Y) such that A(4'¢) is hermitian for the norm

defined by B(1¥)s Now, using the matrix B defined by (63.2), we can define
the matrix that §2 requires.

Definitions Iet § = (¥p, oesp § ) be A real varisbles. Suppose
“ﬂ is a real homogeneous polynomial in g of degree m = He Then A and
the matrix B defined by (63,2) are denoted A(Y) and C(¥),

Properties of A(E e The element a N ,u.( ‘E) of A(E) is a real homogensous
polynomial of degree A = M+ 1.

Properties of C(£ ).
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1°. -The element ¢ /\}1( €) of ¢(£) is a real homogeneous polynomial of degree

ana- A Ps vhere
2n = m(m - 1) + 2,

2%, o €) and C(‘f) . A(f) are symmetric; C(‘f) > O vhen the characteristic

roots of A(¢) are real and distinct, and ¥ is real.
. Proof of 1°%: Ty (#) is a homogenecus function of degree 1; 8 ) (%)

is a homogeneous polynomial of degree A .

Proof of 2°: See n%3.

Let d be a real ar complex number and d its conjuggte; let

™o . o o &t o . 0 o
o &2 . o o o T2, o o
D= ......:...... 3 D" = ......:...... ;.
0 0 . 4 0 0 0 : & 0
o o . o 1 o o . o 1

the degrees of the homogeneous a A )1( f) and b )\)l(f) show that

(6l.1) A(d¥) = a0 - a(E) D

(6L.2) c(at) = 2 m=mly c(¥) . n;

hence

(64e3) 0(a¥) + a(a¥) = a?@ My L og) L ag) -,
Define

(6l k) | ola, ¢) = @@mp* L gl | o).

Properties of C(d, ¥).
1° The element ¢ A }"(d, g ) of c(d, f) is a homogeneous polynomial

in ‘fofdegree2n- A - P
2%  o(d, €) is real if id and & are real.
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3. o(d, ad) and d'c(a, 4 &) - AAE) are hermitian if & is real;
if moreover the characteristic roots of A( f) are real and distinct, then
c(d, 4 &) > o,
Proof of 2°. If id and ¢ are real, a?(m 1) ana 5* . 5L are real.
Proof of 3° (6L.2) and (6L.L) give
c(d, 4¥) = 0%+ ¢() + D,
which is obviously hermitian or hermitian > 0, according as B( €) is hermitian

or hermitian > 0. On the other hand (6L.3) and (6L.L) give

alc(a, 42) - @) =%« o(¢) - A(E) - D,
which is hermitian because C(f) o A( f) is hermitian.

Now let
(6h.5) n>B-D  ( ineger);
define
(64.6) B(Z) = (- £2 - ... - gy lmmd)/2q 2y,

the properties of ¢(d, &) give the following conclusion:

Proposition 6h.1. Let A(¥) be a given real matrix belonging to the

type (63.1), where 04}1 is a homogeneous polynomial in ~S€ = (‘fl, cer 'Se_L)

of degree m - s thus the element a )\)1 of A(‘f) is a homogeneous polynomial

in ¢ of degree A - J + 1; suppose ‘the characteristic roots of E(g ) to be

real and distinct. To such a matrix A(‘f) and any integer n > -’-"—(1"-'2'—-]-'-)-

is associated another real matrix B(f) with the following properties:

its element b,  is a homogeneous polynomial in £ of degree 2n -~ )\ - P

iA(i £) is hermitian for the norm defined by B(i ¥).

Note. This last assertion means

(6L.7) B(i%¥) and iB(i &) - A(1¢) are hermitian matrices;
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(6L.8) B(1§) > o.
(6L447) is equivalent to
(6he9) B(1%) =B'1%), B ra@d) + (3% - 40D =0
or, since B(¥) is real, to
(6h.10) B(X) = ®B(- €),  B(E) - A(L) + ¥(B(- €) « a(- €)1 = 0,
Note. The coefficients of the polynomials b /\}1( £) are themselves poly-
nomials in the coefficients of the polynomials o (¥).
65. Example. Let m = 2, 4
/0 1
L WS o<1<§>)
where o (( €) and o, () are homogeneous of degrees 2 and 1 and such that
bt o(8) < A5(E);5 16t n = 2

1

2o ((4) = h2(%)
AK4(%) 2

for ¢ real: B(§) = ( oﬁi(f)) is real,

RN
of'\
e
N
+
Q
H
e
~
]

is hermitian > O,

iof4 ( é’))

ix41( %) 2

iB(1 €)A(1 &) = - (40(3')"(1(@ - 28X ( )

) is hermitian,
21 o(€) o1 (E)

§2. The operators B defining norms for which the hermitian part of a given

operator A is bounded.

The n°6 and 67 extend an inequality which L. Gg.rding [L43] used for
solving Dirichlet's problem; ViZik had just [LL] announced its solution but

did not indicate his method,
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66, Preliminaries, X and =Zare dual vector spaces of dimension .4 ;

p= (pl, coey p.;e) = (3% s semy -52- ) has to be considered as a point of =
all the functions of x to be used are infinitely derivable, F(x) w (fl(x) s seey
fm(x)) is a mapping of X into an m~dimensional vector space Y; A(x, p) is a

matrix with m rows and m columns whose element ay (x, p) is a polynomial in p;
M

Z 3 8 "'cco"‘nbo‘
a, (x,p) = e /M (x) ;
)/"' nl,-..,nj/ nl, ’ni, axlnl ves szl

A(x, p)F(x) is also a mapping of X into Y,
We use the Hilbert norm

v 2 1/2
“f” e .i. f%lfl(x)l dxl P de]

and the corresponding scalar product (F, G); the adjoint of the cperatoer
A(x, p) is the cperater B(p, x) whese element b)u_l(p, x) has the following
definition:

)"1+"'m,c 3“1’""’",0.

b (Ps x)£.(x) = (=1 [erF %)z, (x)1;
/“')" » X lx “1"§’n,0. ax1n1 o I_Q cnlsoounlf) )\(x

that is (the components X, eee X, § 1 eee E,Z’ Ty eee Ry of x ¢ X,
¥ ¢ = and qe = being commutative variables):

by (55 %) = TE =

bl/u.(t’” x) = aﬂ‘)‘(x, ~%) for t=f+i¥l,?° - irl,"gand v]s =3

or

bAP(iE , X) = m for €& =;
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this means that the matrices A(x, i &) and B(i £, x), whose elements are complex
numbers, are adjoint; hence:

Lemma 66.1. The éperators A(x, p) and B(p, x) are adjoint if and only
if the matrices A(x, i §) and B(i &, x) are adjoint.

A hermitian operator A(x, p) is said to be > 0 when (A(x, p)F(x), F(x)) >0
(F and its derivatives square integrable). This definition gives an ordering
relation for the hermitian operators A(x, p); similarly an ordering relation
exists for the hermitian matrices. Obviously

Lemma 6642, If A and B are hermitian and if

A< B,
then
¢*+a.C<C* B c for any C.

Lemma 6643. If C has the bound X, if A and A are positive numbers

such that 52 < o(/@, then

A+C+B+(aeC.B) sxa. 4"+ A5 B,
Proof.

(A-CeB+(aec-B) I, F)=2f(h-C+B-F, F)<21C- B.F, A")

S2XNBFU e ux e Pl < A1+ B0Er12 = ([4a - 4%+ 45" - BIF, F).
According to Lemma 66.1, A(p) is hermitian if and only if A(1¥¢) is hermitian;

an easy application of Fourier's transformation gives (see Theorem 643, (6.1lbis) Yo
Lemma 66.4. A(p) is hermitian > 0 if and only if A(i§) is hermitian > 0,
In order to extend this lemma to the operators A(x, p) we have to consider

the highest orders terms of A(x, p); with this view define two vector spaces

and a homomorphism:
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Definition 66.1. A is the vector space of the operators A(x, p) such
that: a)‘}l(x, P) has an order < 2n - A = Ps where n > m is given; the coef-
fieients of a A P(x, p) and their derivatives are bounded,

M is the vector space of the matrices H(x, iZ) such that: h /\P(x, 1 § y
is homogeneous of degree 2n - \ - s the coefficients of the polynomials
h )‘P(x’ 1<) and their derivatives are bounded,

$ is the homomorphism

$: Alx, p) —> H(x, 1 ¥) ,
of A onte J sueh that hAP(x, i ‘g) is the sum of the terms of a/\)l(x, 1{)
whieh are homogeneous of degree 2n = A - Pe

According to Lemmas 66.1 and 66.):

& maps the subspacg A of the hermitian A(x, p) onto the subspace

H ' of the hermitian H(x, i Z); & maps the subspace of the A(p) hermitian

> 0 onto the subspace of the H(4 €) hermitian > 0,

We need an extension of this last assertion to the A(x; p) and H(x, i IR
67. Grding's lenma, Define

XH=v 8- 228

0

x3)

(@

0 0o o
x(g)
0 o

o

0

(o]

3 oo

Q1(§)° ’ Q2(§)°

0

o

0

® 0 & & & s 0 9 ® 6 @ & o o o 3 o

Q%) = Qi) + ¢ baee s QL ).
According to Lemma 66,1: @ ) (p) is hermitian;
(6741) 0=<Q )\ (p)

(67.2) er'l(p) <(r-1) ¢ Qf\(p) v e17T g
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(r+ integer > 1; £ : any number > 0; I: identity matrix),
alp) o0 O

0 0 0 r r
. . "% .
(67.3) '+ o o < ({(p) if a(p) Py ess P, and rf".ﬂ:l 2r,

¢ & o & & ¢ o

e

Lemma 67¢1e If u = a(p)e(x)b(p),

" e et o
3(p) » pl (11 plo b(p), = Pl eee pj_ Iy 1'1 + aee * r‘i' r, 81 + o0 ¢ Sl" 8

Sup Je(x)] = ¥, then for any positive numbers o« and (> such that 72 S afds

u+u* 0 0 .
(674 ° o (») (
Tok) o o o | @ «pdm
0 u 0 )
u* 0 0 :
$67,5) o o o | To4®) s REe.

Proof of (67.h)s Lemma 66,2 is applied with
APt ——

alp) o . b(p) O . e(x) O .
[ [ L]
A b O 0 PY 9 B = 0 0 ® » C - 0 0 'y 3
[ ] [ ] [ ]
® ¢ & & & o0 0 [ ] [ ] [ ] * & o @ e & &5 o & ¢

(67.3) is used,

Proof of (67.5)e Lemma 66,2 is applied with

a(p) o ’ 0 0 R 0 cofx) .
Aw o 0 . s Ba 0 b(p) . s Cw 0 ) : .

3 o

AR

T R



—:@
' 125,

Notation, A(x, p) €., (see Definition 66.1); the coefficlents of the

polynomials a>\ (x, €) and all their derivatives are bounded;
u

H(x, ig) =C§A;

the ¢ p(x) are the coefficients of the polynomials h_ (x, € ). We ask for

AU .
two numbers )’ and 7" such that ,
- (6746) A(x, p) £ 7Q() + 7'L.
Lerma 67+2¢ (6746) holds for any L
(67.7) 7 > 2 Sup le (=)
Y xeX

Proofs (67.L) and (67.5) show that

Az 2y 2 7 7" T s
05 praw

(67,2) aghieves the proefs !
Definition, o is the smallest number such that
PRS- nreny
H(x, 1¢) < @Q(1 ¥) for all xeX,
Justification, If p and A(x, p) are replaced by i% and H(x, i<%)

in the proofs of Lemmas 67,1 end 6742, it appears that
Bx, 1) £ YQUi§) for any 7 satlsfying (6747);

thewefore & oxistu,
Let us improve Lemma 67,2:
Lemma 67,3, (67.6) holds for
)’ >0 +

where W= Z Oscill, ¢ ),(x) -
Y xeX

Proof: Let H(£ ) be the value of H(x, &) at some point x of X; aceording
to Lemmas 66.4 and 67.2:
H(p) < oQ(p); A(x, p) - H(p) < @ Qp) + 7', 1 w'yw,
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Leyma 67.L. (67.6) holds for ¥ > o,
Proof. Let 5 be a number > O and z any point of X whose coordinates

are multiples of Y let k(x) be a real function such that

i

bl K2 (x + z) = 1, k(x) = 0 outside the cube C: }x/\l < 2.
z

Lemma 67.3 and 66,2 give:

(67.8) k(x + z)A(x, p)k(x + z) < Yk(x + z)Q(p)k(x + 2) + ¥ K°(x + 2)I
for any z and ¥ > 0 + wW; now the first member of (67.8) depends only
on the restriction of A(x, p) to the cube z + C; thus w can be replaced

by the number

W = Y Oscill. cVIx),
v 2 +C

which is small when n is sma11.: (67.8) holds for any z and

(67.9) V>0

vhen n is sufficiently small. Now (see Definition 66.1 of £)

2[A(x, p) - Zz k(x + 2)a(x, p)k(x + z)] = 0, B[Q(p) = gk(x + z)Q(p)k(x +2)] = 05

shus, according to Lemma 67.2,

(67.10) Alx, p) < 2 k(x # 2)A(x, p)k(x + 2) + £Q+ ¥'I
Z

(67111) T k(x + 2)Q()k(x + 2) < (L + £)Q(p) + ¥'''1,
b4

where & is arbitrarily small. The lemma results from (67.8), (67.9), (67.1))
and (67.11). ‘

Lemma 67.5. Suppose H(x, i %) < 0 and lim. H(x, id) < 0 (see Note
63+1); (67.6) holds for some ¥ < O. e ‘

Proof, o < O. .

Replacing in Lemma 67.5 A(x, p) by - B(x, p) and using Lemma 67,2, we
obtain the following variant of G8rding's lemma [L3]:
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Proposition 67.1. Let K(x, 1<) be 2 hermitian matrix € 4; suppose

K(x, 1) > 0 and lim, K(x, 1€) > O (see: Note 63.1, Definition 66.1).
11X] ) —>c0 — —_—
There is a hermitian operator B(x, p) € ,/Q such that

there is a2 number )@ such that any C(x, p) € )Q- is dominated by some multiple
of B(x, p) + AI:

(67.12) c(x, p) < JI[B(x, p) + A1) for some number 7 .

68. An operator B defining a norm for which the hermitian part of A is

bounded.

Proposition 68.1. Let A(x, p) be an operator with the following properties:

it belongs to the type (63.1);

its element a )\}l(x, p) is a differential operator of order A - R+ 1;

the coefficients of a )\P(x, p) and all their derivatives are bounded;

if H(x, g) is the matrix whose element h )\}l(x, §) is the homogeneous

part of degree )\ ~pt+lofay (x, ‘é) » then the characteristic roots of

the matrix H(x, <) (and of its limits for {Ix|l —> + ) are resl and

distinct.

To such an operator A(x, p) and any integer n > 1“—(1“—'2'—2- can be associated

a real hermitian operator B(x, p) € JE (Definition 66.1) with the following

properties:
the hermitian part of A(x, p) is bounded for the norm defined by B(x, p);

any hermitian C(x, p) e A is dominated by some multiple of B(x, p).

Note. These assertions mean that

(68.1) - AB(x, p) < B(x, p)Alx, p) *+ [B(x, p)Alx, p)1¥ < AB(x, p)

for some number /@ 3

(68.2) C(x, p) < ¥Bfx, p) for some number .
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Proof, Proposition 6.1 (see (6L.8) and (6L.9)) gives a real matrix
K(x, %) such that K(x, i%¥) is hermitian > 0, ¢ J{ and satisfies
(68.3) K(x, 1€) * H(x, 1%) + [K(x, 1§)  B(x, 1¥)]" = o,

Proposition 67.1 gives a real hermitian > O operator B(x, p) e 7{ such

that

(680h) @B = K(x, if)
and (68,2) holds.
Now (68.3), (68.L) and Lemma 66.1 show that

B(x, p) * A(x, p) + [B(x, p) * A(x, p)]* e fls

hence (68,1) results from (68,2).

§3¢ A priori bound for the local solutions of the hyperbolic equation.

69. Definition of a regularly hyperbolic equation on a vector spacee

Let

(69.1) a(x, plu(x) = v(x)

be a differential equation of order m; u(x) is the unknown function; v(x) is

a given function; a(x, } ) is a given real polynomial in F of degree m. Let
h(x, ¢ ) be the sum of its homogeneous terms of degree m; let Vx(h) be the cone

defined in = by h(x, ¥ ) = 0; a(x, p) is said to be hyperbolic at the point x

if = contains points f ¢ = such that any real line through ¥ cuts the cone
Vx(h) at m real and distinct points; these points ¥ constitute the interior
of two opposite convex and closed half cones r‘x(a) and = rx(a), whose
boundaries belong to ¥ x(h). (Proposition 27,3, For { = 2 these points

%t constitute several such pairs of half cones; rx(a) is any of these half

cones)e Vx(h) has no singular generators. The cones with vertex x dual to

T .
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rx(a) and -rx(a) are denoted by Cx(a) and = Cx(a).

Assume that: a(x, p) is hyperbolic at each point x of X;

0
Fx = () 1. has a not void interior FX;
xeXx * -

no 1limit of h(x, €) for ||x||—c0 is 0; no limit of the cones v, (h) for

|| x ||—>%0 has singular generator: then a(x, p) is said to be regularly

h_zgerbolic on Xeo

70. A priori bound of a local solution.

Notation, We denote by
1

+00 o, 3
(7001) Iiul It = [ ,/ e f u (X)dx2 oo dxi] ’ where x
-0 -

1° %

the norm of the restriction of u(x) to the hyperplane X, = t; (u, v)t is the
corresponding scalar product; u(x) is said to be uniformly square integrable

on the hyperplanes x; = t when ||i]| ¢ 1s bounded on any finite interval

T
lftg’Cz.

Proposition 70.1, Assumption about a(x, p): a(x, p) is regularly hyper-

0
bolic on X; the first axis of = belongs to f‘x; the derivativest of a(x, p) are

bounded. Assumptions about v(x): The derivatives of v(x) are uniformly square

integrable (and therefore uniformly bounded) functions on the hyperplanes x1 = ¢,

Assumption about u(x): u(x) is defined for 0 < X, S T; the derivativesl

of u(x) are uniformly square integrable functions on the hyperplanes X = t

(0 <t <z); ulx) is a solution of the Cauchy problem defined by the equation

(69.1) and the Cauchy data;

(70.2) U(x) = eee = pg_l-lu(x) =0 for X, = 0.

Statement: There are positive numbers [3 s ﬂ', /5",(5"' » 77 depending

only on a(x, p) and n and such that:

4 By the derivatives of a function is meant the function itself and its deri~-
vatives of any order.
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(0.3) Hlally + o™ ully 5 plIvlly + 17 1,) + artlivll + o™l

exp (7t) + B {)‘ [||v||s + ||pn-1v||s] exp 7 (t - s)ds

n(m - 1)
L

i (for n > y 0SSt < 7T);

t

(10 [ul + Ip Tal g p v, + Hp“’lvll ]+
B vl + o™ Mol dg o (rt) + A" / vl + 1™ vl 1 ) exp (6 = s)ds

(for any r; n depends on r);
by Hprullt and [p*u| are meant
r r r r
L L
Ipfally = Z  Heyt oo pgfullyy %l = 2 oyt i p)tute
rl+o . +€Q,-r rl"’o oe +&=r
Note. /5, @B's A" BA™ and 7 remain bounded when a(x, p) varies
so that the assumptions about a(x, p) are uniformly satisfied.
Notes Chapter IX, §1 improves this proposition,

Proof. lLet
(70.5) a(x, p) = p’lrl + am_l(x, p)p’f‘l + oo + ao(x, p)

where cn/a(x, p) is independent of Py let A(x, p) be the matrix (63.1) and

U and V be the vectors

. -1
U= (u, Py ooy Pr{ u), V = (0y Oy eoey 0, v);
(69.1) becomes

(70,6) P U = A(x, p)U + V, where A(x, p) is irddependent of p..
1 1

Let H(x, £ ) be the matrix whose element h /U(_x, ¥ ) is the homogeneous part
of degree )\ = L+ 1 of the element ay (x, §) of A(x, ¥ ); according to

n 63 the characteristic roots of the matrlx H(x, f) are the numbers f
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such that h(x, § ) = 0; by assumption they are real and distinct; for any
> g_njx_n;_l_)_ Proposition 68.1 gives some real hermitian B(x, p) independent

of Pys satisfying (68,1) and (6812) for any value of x,+ Now, applying the

process by which the energy relation is obtained in the mechanics, let us

calculate
d . L] . *
B U, 0, =({B AaA+[B-Al"}y, ), + (BIU, U), + 2(BU, V),

(Bt", is the derivative of B with respect to X = t); hence, according to (68.1)

and (6842) and using Schwarz's inequality

%E% (BU, U), < O'(BU, V) + V(su, Uy V(Bv, V)3
that is
5 [ B0, 0), exp. (- )] < mt exp. (- ¥'t);
hence

: t
(70.7) (BU, U),c <£ J(BV, V), exp. Bt - s)ds + V(BU, U), exp. a’t.

According to (68.2) and Lemma 67.2, V(BU, U)t is a norm equivalent to

' m
> \\leth . 2 \\pr;]' p"e’u\lt;
O_Q_Tl1<m m1+o. -+m¢e‘=n"'l .,Q/
0< my <m
nl nl/
now (69.1) and (70.5) show that Py e+e Py u, for Ny 2Mm 0+ .o tn, =n-1,
My T2 % 51 5L
is a linear function of the Py Py see p_L u and Py" e PV such that
M <mym +I,+ .+, < 8y * eeo * 5, <m;
M1 T2
moreover Fourier!s transforma.t:.on shows that le p2 eos p D u\] & is dominated

™"

by a linear function of l\pl ull, and \ Py p2 ceo p‘a ull , when
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thus

(70.8) Hullt + “pn_lu”t < const. V(BU, U>t + conste [NV “t + an-lv I t]°

Similarly, il p:lv lls is dominated by a linear function of “pg'lv \ o and

\\V\ls for m, < n; thus

(70.9) VBv, V) < const. [vil + wp™ el ]
And
(70.10) V(BU, 1), < conste [vilg + W™ Hv il ],

(7003) follows from (70.7), (70.8), (7009) and 70010)0
Now ﬁ‘ourier's transformation shows that the first memher of (70.L) is

dominated by a sum of first members of (70.3): <the proof.is complete.

71. Example. m = 2, n > 2; a(x, p) = pi + a(l(x, p)pl + o(o(x, P)3

(B(x, pP)U, U)y = 2(KA(x, p)q* 2y, u)y = (K (x, p)ef(x, p)qn'zu: u)y

-2 -2
- 2(cky (x, P)Q"pyu, w)y + 2(d" pyu, ppuly + Alw, w), + Blpgu, pyuly,

where q == pg - see = Ii, A = large number,

84, Existence theorems.

72. Local Cauchy's problem for analytic data. (Cauchy-Kowalewski's

theorem: see [32]; Schauder'!s complement: [36],p. 229; [34], p. 8L0O3)

Lemma 72.1. Assumption about a(x, p): The coefficients of

a(x, p) = py + A (%, p)p’{'l *eeo v K (X, P)
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are holomorphic and their modulus have a bound M < + o for
X = x! + ix", x! and x" € X, Hxel) < &
€ is a given positive number.

Assumption about v(x): v(x) is an entire function;

“o

Sup | v(x + x*)l s Where x eX + iX, is a bounded square integrable function
3#*
Nx"11< &

of x € X on the hyperplane X, = 0.

Cauchy's data:

(72.1) u(x) = ... = pg_l-lu(x) = 0 for x, = O,

1
Statement: The Cauchy problem defined by (69.1) and (72.1) has a unique
holomorphic solution u(x) defined for \xl\ < T; the positive number T is
a function of € and M; U is independént of v(x); the derivagtives of u(x)
are uniformly square integrable and bounded functions on the hyperplanes
=t (0=<tsT). ‘
Proof. We can suppose & = .Q. Taylor's expansion of u(x) at the point
x = 0 can be immediately deduced from (69.1) and (72.1); its coefficients
are polynomials in the coefficients of the Taylor's expansions of the given
functions:

v(x), = Ap(x, E)y eeey = A (x, €

these polynomials have possitive coefficients. Thus u(x) exists and has the

majorant (see [2]) w(x) if w(x) has the following properties;

(72.2) at x = 0, w(x) has a Taylor expansion with positive coefficients;

(72.3) w(x) is the solution of a problem whose data are majorants of the
given data.

Now any function with modulus < M for Ix_ll <1, ... |x LI < 1 has the majorant
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M , . M
1= xl) S Xﬂ and therefore the majorant T /ox]_ Txy = e %g

for o > 1, p| x|+ e+ li/l < 1; thus (72.3) can be replaced by

(72.4) plw(x) -

1
1"‘ /m:l-'xzﬁooo"x‘/&

where'b(él, voe § ,L) is a homogeneous polynomial of degree m such that

[b(Pla Posy eee Py w(x) + C(Pl ses P/Q‘)W(x) + d]

b(1, 0y +.s 0) = O, c(él, -+» Z,) is a polynomial of degree m - 1 and
d is a constant; © > 1; b and ¢ depend on a(x, p) and d on v(x).

We choose w(x) = w(s), where s = Xy Ryt oeee * X3 (72.2) and
(72.4) become

(72.5) w(s) has a positive expansion at s = 0;
(r2,6) - Lulz) L el S e ) + a]

as™ /Jm-b(/o) -SSP
where b({o) =b(p, 1, 1, .. 1) has the degree m ~ 1 and ¢ the order m ~ 1,

We gohoose © so large that b( /o) < ,Om and w(s) sueh that

(72.7) w(0) = () = vev = (é‘f"-;—“i)o = 0:
s

(7246) and (72.7) define a funetion w(s) satisfying (72.5); its Taylor's
expansion converges for | sl < 1 - b(/;)),o"m (see [2], Ch, XIX, Systeémes d!
dquations J.ine'aires); w(s) is proportional to d.

Hence, replacing the origin by any point x suek that *y = 0 the given
Cauchy problem has a unique holomorphic solution u(x) inside a sphere whose
center is on X = 0 and whose radius is T3 T is independent of x and v{x);

inside this sphere we have

lpl;_l eee pi%u(x” < A Sup. lv(x + x*)!

ix n<e
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vhere x* e X + iX; A is independent of x and v(x).

73. Global Cauchy's problem for analytic a(x, p).

Lemma 73.1l. Assumption about a(x, p): the assumptions of Proposition

70-1 a-nd. Len'mla 72.1

Assumption about v(x): the assumptions of Proposition 70.1.

= O3 these

Cauchy'!s data: u(x), ... pril—lu(x) are given functions for Xy
functions and their derivatives are square integrable.

Statement. The Cauchy problem defined by (69.1) and these data has
a unique solution u(x) defined for X; > 0 and such that u(x) and any derivative

of u(x) is bounded and uniformly square integrable on the hyperplanes %y = te

Proof for a v(x) with compact support, Cauchy's data zero and O <% = Te.

Let 1 be a positive number tending to zero and

£

(73.1) v({x) = (27p) expe (- %g)-w(x) (see n°9);

v(x) satisfies the assumption of Lemma 72.1; therefore, if v(x) is replaced
by v(x), Cauchy's problem has a solution ul}(x) for 0 < x; < T3 T is the
number independent of 1y and v(x) used in Lemma 72.1. Now ¥(x) - v(x) and
NT&E) - vix) |l 4, tend uniformly to O. Thus according o Proposition 70.1
'u_(x) tends to a limit u(x); u(x) satisfies the assertion of Lemma 73.1 for

0<x,< T,

Proof for Cauchy's data 0 and 0 < x < T. Let v(x) be a function
satisfying the assumptions of Lemma 73.1; there is a sequence of v*(x) such
that their supports are compact, these assumptions are satisfied and
Nv™(x) - v(x) 1] . tends uniformly to O. According to Proposition 70.1 the
solutions u*(x) of the corresponding Cauchy problem have a limit satisfying

the Lemma 73.1 for 0 < Xy < T.

- ——
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Proof for 0 < x; < T. Any Cauchy's problem is equivalent to a Cauchy's
problem with data O: replace u(x) by u(x) - w(x), w(x) satisfying Cauchy!'s
data.

Proof for 0 < %y The preceding result enables us to solve the given
global Cauchyvproblem by solving successively local problems for 0 < X = 7:,
T<x <2T, 2T < x < 3T, ete.

The uniqueness of the solution follows from Proposition 70.1.

Th. Global Cauchy's problem for an infinitely differentiable a(x, p)e.

Proposition 7h.1l. Consider a Cauchy problem such that a(x, p) and v(x)

satisfy the assumptions of Proposition 70.1l. This problem has a unique

g;obal solution u(x) satisfying the assumptions of Proposition 70.1.

Note. This Proposition 70.1 gives some information about the behaviour
of u(x).
Proof. Define a(x, p) by means of (73.1); when 1) is small, a(x, p)

satisfies the assumptions of Lemma 73.1. Then the equation
- 3
a(x, p)u (x) = v(x)

has a solution u*(x) satisfying the Cauchy data and the assumption about
u(x) of Proposition 70.1l. This proposition shows that u*(x) and any of its
derivatives is equicontinjious for n —> 0; therefore (see Ascoli's theorem:

Bourbaki, Topologie generale, Ch. X, Expaces fonctionnels; or easier: Courant

Hilbert, Methoden der Math. Phys. I, Ch. II, §2, Haufungsprinzip fir Funktionen)

we can find a sequence of numbers 5 — O such that u*(x) (and its derivatives)
tend to a limit u(x) (and its derivatives); u(x) is a solution of the given
Cauchy problem; u(x) satisfies the assumptions of Proposition 70.1 about

u(x). Proposition 70.1 shows the uniqueness of the solutipn of this problen.
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75. The inverse operators of a(x, p). The Proposition 75.1 completes

the Chap. III as follows:

Proposition 75.1. Assumptions about a(x, p): a(x, p) is regularly

hyperbolic on X; the coefficients of a(x, p) and their derivatives of any

order are bounded functions of x. When |/x || is large, a(x, p) is indepefident

9£Xo

Notation: When x is large a(x, p) and rx are denoted a(o, p) and

roo‘ The components of the complement of the closure of the real projection

of the algebraic variety a(oo s @' ) = 0 are convex domains; one of them has

the director cone [ (Propositions 21,2 and 27.2.3°) and is denoted by

4 .

®
Assumption about v(x)s v(x) exp. (-~ x « &) and its derivatives of

any order are square integrable on X for L e Aoo‘

Statement: There is a solution u(x) 8£ the equation

(75.1) a(x, plufx) = v(x)

such that u(x) exp. (- x - é) and its derivatives of any order are square

integrable on X when Z e A ; this solution is unique.

Proof. Suppose the first axis of = in TQX. According to Theorem
6.3 and Proposition 22.3.2° the équation
(75.2) a(oo, plw(x) = v(x)
has a solution w(x) such that w(x) expe (- x é) and its derivatives are
square integrable on X when §e Aoo' Therefore w(x) expe (= x o g),
v(x) expe (= x g ) and their derivatives of any order are bounded and

uniformly square integrable on the hyperplanes X, = te Suppose
a(x; p) = alw, p) for x; < T;

define:
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for x; < T, w(x) = w(x);
for T < X1, u(x) - w(x) is the solution of the equation
(7543) a(x, pMu(x) - w(x)] = v(x) - alx, plw(x)

with Cauchyfs data O for X, = T (see Proposition 7hel). This function u(x)
is the only cne which can satisfy the statement,

In fact this function u(x) satisfies (75.1) and according to Proposition
70.1 u(x) exps (- x + &) and its derivatives of order < m are square integrable

when Z) belongs to the first axis of = and is sufficiently large. MNow

(75.4) a{oo, plulx) = £(x)
where
(75.5) £(x) = v(x) + [a(o, p) = alx, p)lulx);

since a(x, p) = a(w, p) when Mx \| is large, f(x) expe (~ x « &) and its
derivatives of any order are square integrable for any ép & Aoo; thus,

since u(x) is a solution of (75.4) and since u(x) expe (~ x - g) is square
integrable for some % € Aoo the Theorem 6.1 shows that u(x) expe (= x o E’)
and its derivatives are square integrable for any & & AOO: the proof is

complete,
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CHAPTER VI

THE INVERSES OF A HYPERBOLIC OPERATOR ON A VECTOR SPACE

- Introduction to Chapter VI

The results of Chapter V followed from the a priori bound (70.3) of
the local solutione of the hyperbolic equation
a{x, plu(x) = v(x);

from this bound can be deduced an a priori bound of the norm

Hulx) expe (= x o E)HQ (e N s NN 1arge)
xeX

of a global solution of this equation; but the so obtained bound is much
less precise that the bound obtained in Chapter III when a(x, p) is inde-
pendent of x; now the study of its explicit calculatioﬁlshows that this
way is not the most direct way leading to bounds of global solutions and
suggests the use of an essentially different process. This process is
used in the present chapter; it works only for global solutions and thus
can not be used in the proof of the first existence theorem (Chapter v,
§4); it uses symmetrically all the coordinates, whereas X = t played a
special role in Chapter V; it needs only a weak assumptions about the
datay its results aré as precise as the results obtained in Chapter III
when a(x, p) is independent of x; these results enable us to define inverse
operators of a(x, p) and to state their main properties (Theorems 89, 23,

97)s Chapter VII extends these properties,

)
5710 1s explicitly calculated, when U = (1, 7, cees T1); S denotes the

matrix of n%3,
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§1, The cones whose sheets separate the sheets of a given cone,

76, Polynomial whose roots separate the roots of another polynomial,

Definition. Let P( A) and Q( )\) be two polynomials of degree m and
m - 1 in one variable )\; we say that the roots of Q( \) separate the roots

of P(\) when P( A\) and Q( A) have real distinct roots
' t '

A< Ap< e < Apand Aj < >\2 < eie < )\m-l

such that
] ! 1
Ap<Ap< g < dp <o < Ay < A < A
Example 76, If P()\) has real and distinct roots, they are separated

by the roots of its derivative P'( \).

Lemma 76.1. Let P( )\) and Q( \) be two real polynomials in the complex

variable A\ 3

19, =gy —J LML s o o g, T [OCDP(AN)]
F A (L + 1] 2)m-lj()\) A (1 + l)\\2)m-lj(/\)
are continuous functions of the coefficients of P( ) and Q(A);

29, When the roots of Q()\) separate the roots of P( A)s then

PO >0
Notes This last assertion is essentially the classic statement:
Q'l()\)P( A) maps the half-plane J()\) > O into itself or into its complement
(see: G, Julia, Principes geométriques d'analyse, Vol 1, Chap. 3, §1, n°3, e 127).

Preof of 1°, j[Q(—X)P(/\)]j'l(,\) is a polynomial in ‘)@(/\) and

J(\) whose principal part is consta. | A | 2(m—1); thus the function

J[QCA)P( )]

1+ 1 AD™ 3(N)
not only for A finite but also for M infinitel

of )\ and of the coei‘ficier_;ts of P and Q is continuous



1.

0 Q()\),__, A ) l ..
Proof of 2, -13-(7-\7 gwﬁm:
hence }1 al \ ) A
QTP(A) = 12( 1) ZP.{,\) 2 i
poIA - /\}ll
and
16.1) Jlcme) . s YA ’|_1_°_LA_2__2
y NSy ) A=A t

Now, since the roots of Q( )\) and also the roots of P'( )\) separate the
roots of P(A),
o ;\}I)Q(A}M) <0 PUANPY ) < 05
thus
ign Q( A )P!?
sign Q(\ );) (/\P)

is independent of p and according to (76.1)
pPo > 0.

77. The cones whose sheets separate the sheets of a given cone,

e

The notations of Chapter III are used: “=- is a vector space; § € =3
h( {) is a real homogeneous polynomial of degree my; V(h) is the cone h( E) = 0O
['(h) is the set of the points & such that any line through E cuts V(h)
at real points; the connected components rl(h), rz(h), ese of [ (h) are
cl;ased convex half~cones, whose boundaries belong to V(h),
Definition 77.1. Assume that V(h) has no singular generator and that
the interior fg(h) of I (h) is not void; (for dims = > 2 the cone | (h)
has two connected components, rl(h) and rz(h) ; they are opposite half
cones: see Proposition 27.3). We say that the sheets of a cone V(k) of
degree m - 1 separate the sheets of the cone V(h) when any line parallel

o
to any § € 1'(h) cuts V(k) at m - 1 real points separating the m real
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distinet points where this line cuts V(h). This happens when it happens

for any line parallel to some < e rl(h). Obviously:

[i(n) c [ (x);

K(E)R(E) #0n [y(h); -
V(k) has no real singular generator.
For dime = = 2, the meaning of Definition 77.1 can depend on the choice
of [ (n)s
Proposition 77.1. Assumption: V(h) has no singular generator; rg(h)

is 5_1_91 void.

Definition:

]

~k(E) = E;-jaéil + eee ¥+ E‘L-;%-j?’ where &‘ € rgl(h).

Statement: The sheets of V(k) separate the sheets of V(h); k(e;')h(g) >0

0

Proof. Example 76.

Proposition 77.2. Assumption: h( ¥) and k( &) are two real homogeneous
polynomials in X of degrees m and m - 1,

Definition:

' RIK(EIn(Z)] »?(xgz)hg%n
(2) = Inf, - o(X) = Sup.
pes nex= 1T 2 g 951;.; | )12

where & = {-i-:ix),'fs §-ix}.
Statemeﬁt:

o

1%  p(E) and o ({ ) are positively homogeneous functions of degree 1

in X; [o(z ) and d"(g ) are continuous functions of & and of the coefficients
of n(X) and K(Z),
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2°, If the sheets of V(k) separate the sheets of V(h) and if k(%’)h(f) >0

in 09, then

0

p(&) >04n [, (n).
Proof. Assume & = (§1, 0, O, sss 0); then
R(E)n(z)] _ R Ey = dngs = inyy ey - 89 ) I0(Fy + 1y, dnoy «es 1y )]
g 1122 (2% + 52+ )™
- j[k(l}l + 3‘-51, 1)2, see l}l)h(:)l -~ igl’ 1)2, se0 I}-‘L)]
(g1 + 9y +

that is
(77.1) Re(E)n(Z)] _ J [QER)P(M)]
Ny 1122 NN NTEY)
where
2 2 p - 1%
8 = 1}2"'-.."'7}—&, )\"_"""“""Q )
PO) =n(h, 2, 2 e =k, 2, L, s

according to Lemma 76.1.1°.

(11.2) g, —ZLLOODPON oy g, JLQOPON)]
A @+ IADTRIN) A @+ AT 200)
are continuous functions of the coefficients of h( &) and k(%‘ ) and of
the point (?—g-, ceey ?-é‘gi) » Which runs on a sphere; therefore o(Z ) and
o () are continuous functions of & and of the coefficients of h(<&)
0

When & € l(h)’ then the roots of Q( X) separate the roots of P()\);

the Lemma 76.1.20., the formula (77.1) and the continuity of the functions

(77+2) show that
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P(E) + o (&) >0
Now o~ (Z) > O since k( X) » h( &) > 0, Hence (o(‘q’)>0.
78, A first example. m = 1; h(¥) = ¥ ; we take ri(h) as

zl > O,
According to Proposition 77.1 choose

k(&) = 1.
Then

p(E) =&, >0in [,(n),
as Proposition 77.2 asserts.

(&) = Sy

A second example. m = 2; h(E) = Ei - zg - 52; we take rl(h) as

VES’* §§< gl'

According to Proposition 77.1 choose

k(Z) = 3.
Then:
(78,1) P(E) = 2 - VE2+ 22501 Ty

as Proposition 77.2 asserts,

(7842) o (2) = &+ VEi+ €l

§2, The hyperbolic operators of order m - 1 whose product by a given hyperbolic

operator of order m has a positive hermitian part

[We give an extension of G8rding's lemma: see n°.66 and 67].
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79« Preliminaries. X and =~ are dual spaces of dimension l; x e X;

z and p ( 9 o "—""—') € = . e use for the functions f(X) defined
2 T W
.,Q,

e

on X the Hilbert norm depending on £e& =

(193) N2l = Uerof 166017 exe (= 20+ oy oo iy 15

(f, g) is the corresponding scalar product; a* is the adjoint operator
3

of a for this norm;
(7942) p3=2?)\-p/\-

Let a( 2%, x, ¥) be a real polynomial in & € = and e = ;

let n* and n be its degrees in 3* and in &. We study the operator of

order (n*, n):
a(p’y x, p) = a(2 § = p, x, p);
its meaning is clear: for instance
pre(x)py2x) = (22 - -;%;Nc(x) s
(pye(x)p, £(x), g(x)) =

(c(x)';gx-i,-gaxf)=£fe(x)-aaé—a—gexp (- 2x » ?)d.x__L cos d.xl

More generally (a(p*, %, p)f(x), g(x)) is defined when f, g and their
derivatives of orders n and n’ have finite norms, if the coefficients of
the polynomial a( T;"*, X, &) are bounded functions of x.

Lemma 79,1. Let us denote a(g*, Xy €) by (&, x, §*); then for

the norm (79.,1) the adjoint of the operator a(p*, X, p) of order (n*, n) is
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[a(p", x, p)1* = b(p*, Xy P)s
whose order is (n, nY.

An operator a}(p*, X, p) hermitian for any & is said to be > 0 when
(a(p*, Xy P)E(x)y £(x)) > O for any £ and any £(x), The three following
lemmas are similar to the Lemmas 66.2, 6643 and 66k,

Lemma 79,2, If a and b are hermitian and if

a <b,
then
c*ac < c'be
for any c.

Lemma 79+3. If J = Sup. le(x)l, if 2'25 4416, & > 0, A > 0, then
X

a(p )e(x)b(p) + [alp )ex)b(@)]* < < a(p®)alp) + B bp™Iblp).

Lemma 79eL. a(p*, p) is hermitian > 0 if and only if e.('f, Z ) is real > 0,

Lemma 79.5. If a(p*, X, p) has the order (m - 2, m), then
£ M %
= b + bt{n~
a /\§1 5/\ /\(p 5 X5 D) (®*, %, p)

vhere b/\ and b' have respectively the orders (m - 2, m ~ 1) and (m - 1,
m = l)e The coefficients of b ) (of b') belong to the vector space generated
by the coefficients of a (by these coefficients and their first derivatives),

Proof. We can supposeé
as= g(p*)c(x)p/\ h(p); g of order m -~ 2, h homogeneous of order m « 13
according to (79;2)
2= 23, g6De(In() - el )pyol)n) - &(e")e] (xInlp)

where c1(x) = '25(:?(;2(‘)“
A
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Lerma 79,6, If a(p*, x, p) has the order (m = 1, m), then
a.+a = Z §>‘ A(P,X,P) +b'(p,JC, p)

vhere b ) and bt are hermitian and have the order (m = 1, m - 1), The
coefficients of b A (of b') belong to the vector space generated by the
coefficients of a (by these coefficients and their first derivatives).

Proof. Let B be the vector space whose elements are the operators
Z b, (p + bi(p"
Msx 5 (P's X, P) +b'(", x, p)

such that b A and b* have the order (m - 1, m - 1) and have coefficients

in these vector spaces; according to Lemma 79,5 we have to prove that

* L 3*
a+a a BWhQnB“p ese D C(x)p see Do
AT A M TR

Now, mod. B,

2= =D eee D Do o(X)D. eee D
A1 A

mel Py P2 Pn

(x)pA p eee D B ee0

p)‘2 " p}‘m-l }11 1 P2 Pan

¥
% e D

P e(x)p p, =ea
M Pn ’\1' ’\m

80, An extension of Ggrdingl_s_ lemma, Define

#*
(8041) Q= PPy * ees *DyPy;
according to Lemma (79.L)

(80,2) H?ﬁllarqs < e (r, st positive integers)
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(80.3) pjl Xy p:\:p/\l see pA‘ _<_ qr
r

(80,4) rqr-l <(r=-1) & g + gLr (r: integer > 1; -£: any positive mumber).

Notation. a(p*, X, p) has the order (m - 1, m); we ask for a positively

homogeneous function 5) of degree 1 and for two numbers s 7" such that

(80.5) a+a < 7(§)qm'1 + FPta B,

We denote by c;l(x) the coefficients of the polynomial a( §*, xy &), by
e, (x) the coefficients of its principal part h(Z *, x, &), which is

homogeneous of degree m -~ 1 in &* and m in S,
Lemma 80,1, If a(p*, X, p) has the order (m - 1, m = 1) and if its
coefficients are bounded, then (80.5) holds for 2'= 0, 7 "an. Sup. |ot(x)},
. JsX
where n is a function of £ and m,
Proof, Lemma 79.3 and (80.3) give

a+ a*_<_n sip (et @) (L + d™2 « ,,. + q + 1);

Pox
(80.4) achieves the proof.

Lemma 80.2, If a(p*, X, p) has the order (m = 2, m = 1) and if its
coefficients are bounded, then (80.5) holds for 2 = 0 and any ¥ 'S 0.
Proof, Lemma 79.3 and (80.3) give

a + a.*f_ const, (& qm"':L + (71 1)<:1m"2 + qm"3 + oo + 1);

(80.4) achieves the proof.

Henceforward the coefficients of a(p ', X, p) and their first derivatives

are assumed to be bounded, .
Lemma 80, 3. If a(p*, X, p) has the order (m - 2, m), then (80,5)
holds for 0 (2) = &I &l if & > O,

——
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Proof. Lemmas 79.5, 8001 and 80.20
Lemma 80.L. (80.5) holds for
7(g)=1In.Sup.le (@)l +&111EN
VX

if € >0; n is a function of £ and m,
3 " #* *
Proof. a(p”, x, p) = h(p", x, p) + al(p s X, P) + az(p s X, D) where
h is the principal part of a, a, has the order (m « 2, m) and a, the order
(m - 1, m « 1); the coefficients of h, a; and a, are coefficients of a;
Lemmas 79.6 and 80.1 are applied to h, Lemma 80,3 to a, and Lemma 80.1
to a,.

4
Definition.

fh(?: Xy C )
=8up .
T2 X NZIP2

o- (&) is positively homogeneous; || .3l "lo-( ‘é) is bounded (see: Propo~

s where J = & + in;

sition 77.2,1%).
Lerma 8045, (8045) holds for
7(Z) = 20(F) +nllE N,
if n is a function of (4L, m) and , > 2 0Oseill. c, (x).
Proof. h(Z", x, ¥) denotesthe pri:cipzlep}a{rt of (€, %, 2 );
let n(Z*, ¥) be its value at some point of X. According to Lemmas 79l

*

and 80.’4
h(p", p) + [r(p"s P)1* < 20- (¥ )g"2

a(p"y %, p) = h(p", p) *+ [a(0", x, p) - n(", PIT* s NPT+ F'PL 4 ",
Lemma 80,6, (8045) holds for
T(Z) =20(8) + eNEN ir ¢>0,
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Proofs Let O be a number > O and z eny point of X whose coordinates
are miltiples of 0; let k(x) be a real infinitely differentiable function
such that

(80.6) T (x4 2) =1,
7
k(x) = O outside the cube C: |x )\l < 20,
Lemmas 80,5 and 79,2 give

(80.7) k(x +z) [a+a ] kix+3z)<[T(Z)+ T Ikix + 2)d k(x + z) +7'Rx+2)"
12

(80,8) V(&) =20(€) + nw 1l
(80.9) w > 2 Oscill, ¢, (x);
v xeX

SR
now the first member of (80,7) depends only on the restriction of a(g*, Xy Z)
to the cube z + C; therefore we can replace (80.9) by

w > 2 Oseill. ¢ (x);
v z+C v

thus ¢ can be chosen small when § is chosen smalls if é 1s any positive‘
number, then (80,7) holds for any z and
(80.410) T(E)=20(F) » M,
1f b is sufficiently small.
Now (80,6) shows that

alp'y %, p) ~ 3 kix + z)a(p'y x, p)k(x + @)
Z

is the sum of an ope:c_-ator of order (m - 2, m) and an operator of order

(m - 1, m - 1); thus, according to Lemmas 80,1 and 80,3

(80:11) a+a.< Zk(x+z) [a+alk(xez)+ B TP+ Tl s y",
Z

et
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Similarly
qm-l - 2 k(x + z)qm"lk(x + z)
7

1s the sum of two operators of orders (m - 2, m = 1) and (m - 1, n = 2);
thus, according to Lemma 80,2
(80.12) S ok(x + 2)d" k(x +2) < (1+ &)P L4 T,

2

The lemma results from (80.6), {80.7), (80,10), (80,11) and (80.12)._

Proposition 80.1. Assumption: a(p%, X, p) has the order (m - 1, m};

its coefficients and their first derivatives are bounded functions g_i'_ Xe

Definition: The hermitian part of a(p*, x, p) is
#
(80,13) c(p’y x, p) = %(a +a");

A(Z) and 3(Z) are the largest and smallest numbers such that

(6041L4)  ( E)CQ + 1™ < e(p”, %, p) < B2 )q + 1)L

h(Z, x, &) is the principal part of a(Z, x, &); ¥ = E+in, T e & iy

fh(?) X Z) "eh(ZQ X Z_)
(80.15) ( ) = Inf, s = Sup, 4
res x,1 g2’ 7S xllrI; ny | 22

are pogitively homogeneous functions of & of degree 1; we know that

”gﬂ'lp(é) and H§\\'lo‘(§) are bounded.
Assertion: of( &) and B(g) are finite; for (1 £ || =~> oo

(80,16) 0 < Lim. 28 = p(¥),  gm AZ) -o(%) _,
= = = =

Proof, Lemma 80,6 asserts that

(80.17) 2c < [20(Z) + £ NEN + T)g™l 4 »"

| { n
vhere & is any positive number; U and ¥ are functions of € 3 therefore
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BA(Z) is finite. Now (80.2) and (80.17) give

2 < [20(X) + &NEN + 7'+ 7" )% 1) -1,

(80,2) gives moreover

(80.18) | —-—J-L‘Jf\sm-l(q + 1)L < ™ c(g © )T
Wil ey S

hence:
2A(&) < 20-(F) + ENEN 4+ 7' 4 a’"“§”l-m

when the second member is positive; when it is negative

2R(2) < [20(2) + izl + 7' + F"Nzn1m “lez'} m-l;
2+ IsH

thus the second inequality (80.16) is proved; replacing a by = a it becomes
the first one,
81. A hyperbolic operator of order m - 1 whose product by a given

hyperbolic operator of order m has a positive hermitian part.

We use the notations of n° 69,

Proposition 81.,1. _Assumption: a(x, p) is regularly hyperbolie on

X; the coefficients of a(x, ¥) and their first derivatives are bounded

functions of x.

Definition:

(8L1) blx, &) = 2, -2-5%13;2 teat &) -‘-9—3—9(-’-‘3;-)-, where X' @ 'gx(a)s

the hermitian part of [b(x, p)]*a(x, p) is

(81.2)  o(o”, x, p) = F[blx, p)I*alx, p) + 3lalx, p))*blx, p);

A(E) and A(Z) are the largest and smallest numbers such that

(81.3)  SA(F)(a + 1) L<elpy %, p) < B(ENq + 1)L
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)
Assertion: a(Z-‘) and /5( %) are finite; on any closed cone C F"X(a'),

(BLL) a(¥) =o(]1E|]) and p(%) = o(llEl]) for HE|— oo
Note 8l.1s a(t) = 0(]| & |]) means that there are positive constants

such that
conste || % || s a(¥) < consts [|L|] for [ 1] > constais

These constants can be chosen independent of a(x, p) when a(x, p) varies

and satisfies uniformly the assumptions,

Note 8142 (81l.3) means
¥* m~1 24
clp’y % p) = O([I5lla" ) for |[¥fl~— o, §e [ yla)
Note 8.3 Ty(a) ¢ [(b),
Note 81.l. Choices of b(x, &) other than (81,1) are possible; in
particular there are choices of b(x, t) such that the coeffieients of
b(x, T) are infinitely differentiable functions of x,

Proofs Propositions 80.1, 77.1 and 7702, where

R = ()2 T (a)

82, A first examples m = 1, a(x, p) = pye Then rx(a) 1s either

r51:1"0 or ’5150; we take f_x (a) as

£, 20
Then
b(x, p) = 1,

c(P*: X, p) = gl
3 . 0
a(t) = /5(§)=T=0(li§||)mside Y—x(a).

A second example, m = 2, a(x, p) = pl2 - p22 - p32. We take r;((a) as

V ’ég + Egs £
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Then
b(x, p) = py;

the Laplace transform of (78.1) and (78,2) is

(8201) (2, = VZ2+ ‘532)q_<_ e(p"s %, p) 5 (&, + V2 + §§)q;

the statement of the Proposition 81.1 is an obvious consequence of (82.1)
and (80,18).

Notes For §2 = Z3 = 0 (82.1) becomes

: #*
(82.2) e(p s Xy p) = §1q

which means that

TURT 2u2h 2% 2% ool (oo 2 acarar
nd =00 =00 2% 9x2 2x22 9x32 =P 2y 514 %

YO0 T RO w2 L, D2 . D a2
Zl _.(/J'o _.é -{o[(rx:) + (-55;3-;) + (-55-{-;-1) ] exp. (- 2xlfl)dx1d12dx;

this relation is the Laplace transform of the following one
’ +00 +00 +00 +0O
1 2 2 U 2 u\2 W2 2u
(82.3) 2 AL )3=28)? & (Lax ax, = / LBt ey
2 §x1 - xl 5::2 x3 2 -00 axl
where

2 2
(82.h) 9 121 - 2 u 2 121
Qxl 2x 2x3

B Ve

Now (82,L4) is the waves equation; (82.,3) is the classic energy relation
for this equation: (82,3) follows easily from (82.L). Schauder's process

(see the Introduction, p. 104) is based on this energy relation.
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Note, The fundamental inequalities (68,1) and (81.3) of the Chapters
V and VI are essentially different for m > 2; but they are closely related

form= 2,
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§3. The inverses of a regularly hyperbolic operator

83, The norm ||r°£||. We use the same norm as in n°79:
1

[1e1] @ Usges 126017 omp(-20 %) ey eue ax P, where t & =3

(£, g) is the correspcnding scalar product; &* is the adjoint operator of a; for

instance

* o= 2 - .
BT
As in n%80

2= PPy * ser *PYP)

let r be the positive and self-adjoint operator
r=VvI+4q;
we use also the norm
|| =/(£, (1+Q)%8) ,
where 8 1s a positive or negative integer: for s < 0 the definition ofthis norm

requires the symbolic calculus (Che I); for s > O this norm has an eleme

entary definition and is equivalent to

8
8 8
2 e, el
sl+...+§ﬂf0
Coviously
(®3.0) 1512 = 11217+ Z 1% el 2

Hence

et
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S R T T N TP T
Y 1
(83.2) .
8 S
o212 = a2+ 2 llpyheesp 22112

81+¢o.+3 =0
Besides, when ¥ is given and when v(x) is any function such that ||r °v|| < o0,
then

(83,3) |[z%u]] = up #’—-‘-’-h»

Proofs (u, v) = (r®u, r %v); Schwarz's inequality is applied to (*5u, r 3v),
Lemma 83.1s If a and &* are adjoint operators and if there is a constant 7
sueh that
||x%au]| < yl]r],
.t.hen

- ~t
155 | < 5 |1=""] L
Proofs According to (83.3)

”r a*uH=Supm.ll _ﬁg_éé_‘lﬂll H ‘b” Hfb_:ﬁl.

Let us denote for a moment (u, v) and |[ru|| by (u, v)_ and HrSqu .
Lemma 83,2, Hrsu(x)Hz{E and ||r%[u(x)exp(~x. ¥)]| |, are equivalent norms:
s
il
[ [r%[u(x) exp(~x. E)]H
the epposite inequalities hold for s < 0O,

(8341) 1 Z E )i for 0 < s;

Proofs Acoording to (6.7)

[ 17 [u(x) exp(=x. £)1 Ii -
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(u(x) exp(=xe §), (1 - 2\: pf)s[u(x)exp(-x. ¥)), =

(a(x) oxp(~2xe §)y (1= X (o= §)1%u(x)), =
T X T4
(vy 1 +q-~- %gf)su)§5

thus the inequalities to be proved are:

1 8 2,8 s
1+ s(Q1+q= ZZ 59 <(1+q° forsz0
(1+Z)§§§)8 A A

and the opposite inequalities for s < 0; that is (Lemma 79.L):

1 . 238 . (1 .4 218 < (1 4 248
T (a %‘iéll s @ nPisa Zilfal )
foz; §>\ A

= §1+ iql’ 8 2 0; which is obviouss
Lemma 8343, If I[rsqu,< w0, |[|r | ]E,, <® and 2% = §'+ ¥'y then .
(u’ V)g < 00. ‘

Proofe The preceding Lemma shows that the assumptions

llrsull,s_,<°°s =50l < o0

5

mean

| x°Tu(x) exp(=xe¥)1[], < @, ||77°[v(x) exp(=xs 51| lo < @3

hense, according to (83.3),

(u(x) exp(~xe ), v(x) exp(=xe§)) < o,
that is

(\1, V)‘E < 0o,

Lemma 83¢le There is a constant 7(..0 ) such that
1

(83.5) [e()ulx)|]| < Z[f.i.j 32(x)dx1 oes O ]2' . [[er,uH,

! V)
where ' is the smallest integer > e




Note. Obviously

g ©.0 llen@| < sw Je] « 1luil,
| Proofs Se Sobolev [LB] improved as follows a Lemma of Schauder ([36],
| ' Hilfsat® I): there is a constant 2’ (ll) such that
' !
(83.7) sw ()] <1r"uil

. hence, according to (83.L),

5 [3(s) el )] < const. |14 Ta () ez

< const, Hr‘aul l§ .

Now
1l

HO(X)u(x)H < [fbiof 02(x)dx1 Y va]-é . S;P |u(x) exp(.xQ E)‘Q

Lemm4 83,5, Let b(p) be an operator of order t and a(x, p) or a(p, x) be
another operator of order m = s-t+], Its coefficients are bounded; either they
have bounded derivatives of order < M for some M satisfying 1 < M < N4 ’3 or they
have bounded derivatives of order < L' and square intefrable derivatives of

order > A ’ and < M for some M > J’. There are constants 7 such that:
(83,8) |{lalx, p)b(p) = blplalx, p)lu}| < 7[|r8u|| iIf0o<t<N;
(8349) ||2¥™a(p, x)b(p) = bp)alp, x)Juf| < 7Hrt’ul| 1f 0 <t < M;

(83,10) =%l | < 2|1 |

if {t| <M, a = a(x, p) and if [s + 1] <M, a = a(p, x)s

that a is hyperbolic is useless.
Proof of (83.8), T

a(x, p)bl(p) - blplalx, p) = ¢, (x, p) + cy(x, p)

i
T NMNCE - paentr i sllt-ay et

Note. 7 depends on a; b, s, t, but is independent of u, & ; the assumption

% PR -

-

Aot et
L M R R L Tir e Do

T e

X E  am aeaEE. e v

5 re
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where the coefficients of e, [or ¢,] are derivatives of order g LTor > L] of
the coefficients of a(x, p): they are bounded [or square integrable]; the order
of ¢y [or 02] is s [or s = 0/1; (83,6) and (83.5) give respectively

ey (s p)ul] < yllr%ull,  ley(x, pluf] < ;Ilrsull-
Proof of (83.9)s

a(py x)b(p) = b(plalp, x) = c,(py x, ) + c,(py x, Py

where: cl(E, Xy EI) and c2(§, X, E') are polynomials in ¥t and ¥y whose
degree in '§ is m - 1; the coefficients of ¢y [or 02] are derivatives of order

< ,ﬁl[or > ,4/] of the coefficients of a(p, x): they are bounded [or square
integrable]; the degree in {’of ¢y [or ¢,] is ¢ for ¢ - 4'1; (83.1), (83.6) and
(83.5) give

122, (o, %, D)l < 7%l [1r e, x, puf| <2'Hrtu||.

Proof of (83.,10) for 0 = 4 = M, a(x, p) and for 0 = s < M, a(p, X)e

b(p)a = cl(x, p) + c2(x, p)

/
vhere the coefficients of ¢y [or 02] are derivatives of order < l'[or > J ]
of the coefficients of a: they are bounded or square integrable; the order of
¢ for c,] is 5 + 1 [or 5 = L5 (83.6) or (83.5) give

oy @y o)l < y11e*al L, [oy(xs 21 < 71155 ][

Proof of (83,10) for =M St < 0, a(x, p) and for =M = 1 Sg< 0, a(p, X)e

Assume: 0 <t <M, a=a(x,p)y or 0<s <M, a=a(p, x); (83.10) holds;
hence, according to Lemma 83.1,

IR TR S IR

which is the assertion to be proved.
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8Ls Notations. _]_;2 The definitions of n°69 are used: a(x, p) or a(p, x)

denotes a regularly hyperbolic operator of ordsr m.

_2_?_ Its coefficients are bounded; either they have bounded derivatives of
order $ M, for some M satisfying 1 <M < L'y or they have bounded derivatives of
erder < 4 and square integrable derivatives of order > _{’and < M, for some
u>A 3 L' is the smallest integer >“-§- o 8 and t are integers (> 0 or < 0) such
that

(8}4.1) me s=1%t+ 1,
}f_ [\ denotes any domain of = whose director cone is
Mf(a = N [ (a)s
xX
/;,(\g) denates any positive function defined on _/_\_ and such that on any closed
eone interior to r;(a)
-1
w8 = o1 [1™) for ||| — 0.

1° p°a Di (or DF) denotes the vector space whose elements are the distribe

utions £ X such that

(84e2) [1z°¢]| < 0 for any % & A (or ¥ € -A)s
(0° was denoted by F(A) in n°3),
D® ¢ D% if t < s, MNoreover D® is demse in D¥: 1f £ c DY and if T is defineg

by (73.1), where Yl-——v 0, then T ¢ p° and Hrt(? - £)||—>0 for any g e /\ [see
n°9 and (6411)],

Lenma 8Ly ¢ If u <D’ and v c D_°, then (u, v) is defined for any § € =,

Proofs Lemma (83,3), where t’is chosen in /) and Ellin - /\ such that
§leyi= 2k,

85, The mapping T is helpful in n°87, 88 and 89,

Definition, Tu(x) = u(~x) exp(2x. £
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Propertiess (85,1) ™ o1
(8502) T = T*®
(85,3) Ta(p)u(x) = a(p¥*)Tu(x)
(85.L) Hrul] = [fulls [e®Tu}| = |]ru)]
(85,5) Ta(p, x)u(x) = a(p¥*, =-x)Tu(x); Ta(x, plu(x) = a(=x, p*)Tu(x).

Proof, (85.1) is obvious,

(Tu, v) = ffiqf u(-x)v(x)dxlo..dxl‘ = foiof u(x)v(-x)dxl ree dxﬂ = (uy, Tv)

Agsording to (6.5) and (6.7)

= (T*u) v)e

Ta(p)u(x) = exp (2xy §)a(=p)u(=x) = a(2% =p)[u(~x) exp(2x, )] = a(p¥)Tu(x)e

|Tu}|? « (Te, Tu) = (1%, w) = |[|u]|2
[[2PTu|| = [{7r%]| = ||=5u]].

(85,5) fellows from (8%,3),

86, Existence theorem for the equation

(86.1) a(x, plu(x) = v(x).

Lemms 86.,1¢ There are a domain /\ and a function /,L( ¥) independent of v

sueh that, 1f { e /) and

(8642) [Ir™]]| < o0,
then |
(86,3) ") < ()9l

Proof, Assuming at first that

(864Ls) llrzmull < 00,
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apply Proposition 81,1:

(bu, v) = (u, b¥au) = (a¥bu, u) = (u, cu) > a(¥)||r™ *u||%
now according to (83,2) and Schwarz's inequality
(bu, v) £ consta | |2 Tul|o]|v]}s

thus (86.3) holds if u satisfies (86.L). Now the functions satisfying (86.L)
are dense on the space of the functions satisfying (86,2); and on this space
both members of (86.3) are continuous functions of ua

Lemma 8602, There are a domain /) and a function /-b( £) independent of v
such that, if

25| <@, e A, 05t <,

then
(86.5) IETEACIIIETR
" Proofs If c(p) has the order t, then according to (83.8)

[lalx; ple(plu = clp)v|]| < ;yllrsu][

hence
[1a(x, p)e@)ul| < [[e@)v]| + |||
and, upon application of the preceding Lemma,
2™ Ye(p)u]| < ALE) [ elp)v]] + 7[[1‘8‘1!“5
hence [see (83,2)]
(8646) Hx%ul| < w0 eb]] + 7 |]x% |2

since ,&.('E) = O(HEH"J‘) inside /\, the subset of /) where 2’/4.(§) <1 is
another domain /) s where (86,6) means that (86,5) holds,

lomma 86,3 There are a domain /) and a function /(%) such that, if for
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any or some £ € /\ |[r%]|| < and if 0 < t < ¥, then (86,1) has at least one
solution u(x) satisfying _

(8645) Hz®al] < O 2%l )

Notee A and /L(%;) are independent of v; they depend on a(x, p), s and t,
whieh satisfy (8lel)e

Notes If t =0, s=m=1: the first member of (86,1) is not a function,
but a distribution,

Proof. Let n be a positive number —»>0; define ¥(x) and a(x, p) by means
of (73,1); according to n°9 and (6,11) ¥(x) and the ecefficients of a(x, p) are
infinitely differentiable functions of x and are arbitrarily near v(x) and a(x, p);
define

aq(x, p) = '5(({)(»? Hx|])x, p)
where ¢ (T) is some infinitely differentiable function of 7~ sueh shat
L((’L”)-lfox'OStfl, P(T) =0 for 2 <7,
6bviously a.,f is regularly hyperbolic:

t_x(z) < !_i(a»?)o

Acgording to Proposition 75.1 the equation
. a,)(x, p)m,z -V

has a unique solution u, such that

1

[lr'uqH < Ofor any 0> 0 and any § @ Aooi

moreover Lemma 86,2 and Nobe 81l.1 give a domain A and a function /-L(E) having
the following properties:
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A\ and ,u(*;) are independent of s
Acin A_(a 703
(8645) holds for uq, “»wEel, N small.
Since || rsu,,) || has a bound independent of n when k& A, there is a

sequence of ¥) —» 0 such that u (x) and its derivatives of orders < s converge

"

weakly to a function u(x) and its derivatives (F. Riesz, Math. Ann., 1910, vol, 69);
u(x) satisfies (86.1) and (86.5).

87. Existence theorem for the equation

(87.1) alp, x)u(x) = v(x).

Notes An operator a(p, x) is not necessarily equal to some operator a(x, p)
when M < m; moreover n°87 extends the preceding assumptions about s and t: the
foregoing condition O < t is more strict than the condition here that O < 8

Lemma 87.1s There are a domain A\ and a function /.L(‘g:) indppendent of
v such that, if & € /\ and

(87.1) {lru|] < co,
then
(87.2) Hull < 20 =1 ™.

Proofs Assume at first llrm+lu|| <, The mapping T (see n®85) transforms
the assertion to be proved into the following one:
if
[a(x, p)Pru(x) = v(x), |[r™hu|| <o,
then

Ll < 08 1=

Define b(x, p) by means of Proposition 81,1 and ' Note 81l.l; according to the

existence theorem of n°86 (Lemma 864,3) there is a function w(x) such that

b(x, pw(x) = u(x), Hrzm"lwll < co3

1

e
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we have
He™ Yl o[ 1e2 ™| > (w, v) = (w, a%bw) = (braw, w) = (w, cw) 2 a( §)|]2™ 5] |3

hence (87.2)e Thus (87.2) holds when Hrm"luH <@, Now the functions u(x)
satisfying this condition are dense in the space of the functions u(x) satisfying
(8741); and in this space both members of (8742) are continuous functions of u
(see (83.1)),

Lemma 872+ There are a domain A and a function ,a_( &) independent of v

such that, if

||rS+luH <m®, ¢ & A, 0O<s<M
then
(87.L) [x%a}] < wCe)|Ir%]].

Proofs If c(p) has the order s, then according to (83.9)
=" ™2, x)e@)utx) - c@lvE]] < 7 ||r%]|;

hence, upon application of (83,1)

|75 aey o] < yllstvl] + 5] |s%u]]

and, upon application of the preceding Lerma,

He@atal] < 4 (e 7llrbl| + 7l|r]]]

hence (see (83.2))

(67.5) el < 20y 1=+ g%l
Since Lt(¥) = o(}] Ellnl) inside /\, the subset of /\ where 7//(‘?) <1 is
another domain /) s where (87.5) means that (87.L) holds.
Lemma 87.3, There are a domain /\and a function 4 ('f) such that, if for
any or for some t € A\
=] < oo

and if O < s <M, then (87.,1) has at least one solution u(x) satisfying
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(875L) %] < () |]rb] s
Notes If s <m both members of (87,1) are distributions,

Proof: Similar to the proof of Lemma 86e3,

88§ Uniqueness theorems. The preceding existence theorem for a(p, x)

gives by duality a uniqueness theorem for a(x, p):
Lemma 88,1, Consider anew the equation
(8641) a(x, plu(x) = v(x)s

There are a domain /) and a function y) (%) independent of v such that, if

1:5*N)| <o, Ted, u<t g0,
then
(8801) “rsull < #(E)Ilrtv“.

Proof¢ Choose A and /,L(lg) such that Lemma 87,3 holds for a#*; transform
this Lema by T (n°85) and replace in this Lemma s and by ~t and -sp this does
not alter (8Le1l): its assumption becomes =M < t < 0; its assertion shows that,
for a given T e/

the set of the functions a%w such that

™| < 4017 ™5 < o

is the space of the functions v' such that ||r °v!|| <, Hence, according
to (8303))

-t
[|x®a]] = Sup W 2W)_ g (W) | ebv|] sup Mz wll

W el w |7 Cw]| w ||e e

< w0 %],
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The use of the formula (u, a*w) = (v, w) needs the assumption Hrsﬂu[l < M,
Similarly Lemma 86,3 gives:
Lemma 88,24 Consider the equation (87,1). There are a domain /\ and a

function L (%) independent of v such that, if

)| <0, £ e N, Mss 50,
then

[=%u]] < wCE)Ir%] ]

Summing up:
Proposition 88, Let X be an _{ ~dimensional vector spaces Let .£’be

the smallest integer > —24; let a be a regularly hyperbolic operator on X (n°69) H

its order is m; its coefficients are bounded; either they have bounded deriva-

tives of order M (1L < M < Y or they have bounded derivatives of order < £ ’

and square integrable derivatives of order > VA and < M (L'< M) Let s and

t P_e_ two positive or negative integers such that:

m=s~-t+1l; -M<t<Mif a = a(x, p); =M <s<Mif a = a(p, X).

There are a domain A and a function /U.( £) dependent on a, s, t, but independent

of v, with the following properties:

1) The equation au = v has at most one solution u(x) such that

|2 )] <@ for any xe A.

2) The equation au = v has at least one solution u(x) such that

(8841) [=%l] < #CE)Ir*l] zor any k€ A, 12 |Ie%]] < 0.
Notee There is a constant 2’ dependent on a, s, ¥+ such that
(8842) el < o 2% %)l [E ] <y 1%l for any £ e =

Notes There is another domain A_with the same properties for T € A_
and with the director cone =~ r;{(a).
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Proof of 1) Lemma 88,1 or 88,2,
Proof of (8842)% (83.10),
Proof of 2). Assume a = a(x, p). Lemmas 86,3 and 88,1 show that the equa-
tion au = v defines a mapping

a..l: v —> U,

which maps continuously DY into DS, when 0 <t < M; (88,1) enables
us to extend this mapping to the case: =M < t < 0, We have

a.a-1= 1l

on Dt for 0 £t <M, hence on D°, that is on a dense subset of Dt when M <t <0
(n°8Lok); now (88,1) and (8842) show that aat is a continuous mapping of pv

into Dt"-:L 3 hence

thus u = a"lv satisfies au = v, if v € Dt.

For a = a(p, x) the proof is the same, Lemmas 87,3 and 88,2 replacing
Lemmas 86.3 and 88.1.

89. The inverses of a regularly hyperbolic operator and of its adjoint.

Proposition 88, where s and t are replaced by =t and -s when a = a(p, x),

gives immediately the first and second part of

Theorem 89. On an J -dimensional vector space X let a(x, p) be a regu~

larly hyperbolic operator (n°69); its order is m; its adjoint is a%(p, x); its

coefficients are bounded; either they have bounded derivatives of order < M

(1 <M< j,/) or they have bounded derivatives of order < ,@ ‘and gquare integrable

derivatives of order >/’ and < M (£/< M), (_{’is the smallest integer > £/2),

Then

a(x, p) has two inverses a:l - gl and a_l;

a*(p, x) has two inverses afl = axt and a¥ T,
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1) Let s and ¢ be two integers such that

mes=t+1l; -M<t<M,

t

There are functional spaces (see n°8L) p°, DY, D-s, oY such that

a-]': Dt 4 Ds; a*.l: D°— D-'t.
Ho have
as °— Dt-l; a¥s D-t’ ——>D-S-l;
a: DS+1———> Dt; i D“t"'l —-—>D-S;
aat=1onD%  ataxl=1onD g
a-la = 1 on D8+1; a*-la* = 1 on D-tﬂ'.
1

2) The same statement holds when a -, a*-l, D are replaced by a:l, a”_".l, Do

3) The adjoint of a.':L is af-l; that is

(a'-lv, u) = (v, af-lu) for v eDt, u eD:s.

Notes (8841) and (88.2) give bounds of a and a¥, and arbitrarily small

bounds of their inverses, which is essential in the theory of systems (n°116) and

in the theory of the non~linear equations and systems (n®123).

t+1 s+l

ifl1-M<t:

Proof of 3)e Assume either v & D~ if t <M, or u € D_
thus eilther a-lv € DSH', a"'_f-lu € D-t, or aglv € DS, af-lu = D:tﬂ; hence, since

1

m=g =t +1, (a"lv, u) = (a-lv, a*aﬁ“lu) = (aa v, a*j.lu) = (v, aﬁ-lu). Now

Dt+1 t =S+l

is dense in D', D_ is dense in D:s (n°8L), (a-lv, u) and (v, aff'.lu) are

continuous for v € Dt, u € D:s 3 hence

(a"lv, u) = (v, aﬁ‘nlu) for v € Dt, u € D:s.
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§L. Emission and dependence domain

90, The emission,

Let us now introduce a notion that S. C. Zaremba [L7] and A, Marchaud [46]
studied independently.

Definition 90.1, A path is said to be timelike when its positive semi~tangents
at x belong to Cx; the emission of a subset Y of X is the union of the timelike
paths originating from Y; it is denoted by & (Y) or E +(Y) ; E_(Y) denotes the
union of the timelike paths ending on Y: E (Y) becomes K _(Y¥) when C, is re=
placed by -Cx.

E (Y) can be constructed by solving ordinary differential equations: see §5,

Properties of the emission. 1) When K is compact, then ¥ (X) ias closed

and depends continuously on K and Cy (Marchaud, Zaremba),
2) When D is a domain, then (& (D) is a domain (assunption 9k.1 is made).
3) Let 8, T, K be a closed and two compact subsets of X such that:

SCCX+K;

at any point y of S exterior to T, S has at least a semi=-tangent belonging to -cy;

then (Marchaud):

sc &M

Proof of 2)s Let z € §,(D): there is a timelike path j2 such that Y €D;
according to Lemma 97.L, since y is not on the boundary of ¢,(D), z eannot be
on this boundary,

91, The functional spaces ,O3(K).

(%]

Definition 91¢1. For O < s, ,88 is the vector spase whose elements are

the functions u(x) with locally square integrable derivatives of order < s: u(x)

1s defined on X; u(x) and its derivatives of order < 8 are square integrable on
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(7
any compact subset of Xe The topology of & ° is defined by the following funda=

mantal system of neighborhoods VK of 0: K is a compamt subset of X§ € 1s a
4

€

>0 ev if
number 3 u(x) K,c

fo;{oflu(x)lzdxlooodxhé < E, YY) j.;(.flpll...plsu(x)lzul...dxv@ < E,

[7d
Fer 2 <0, O % 1s the vector space whose elements are sums of derivgtives of

order € =8 of locally square integrable functions. The topology of ;9,. ® is de-

fined by the following fundamental system of neighborhoods Vg of 0 (K compast,
’

=
€ >0)1u_€v, if u, 1s the sum of derivatives of order < =s of funotions
p.4 K’E had

u a(x) such that
2
%f.;{o/ lua(x)l dxl."de <Eo
Definition 9142, Let K be a subset of X; £ °(K) -,&i(K) and 963(1() are

subsets of ,583

we &%K) 1f u e £° and S(u) € E(x);
ue D2(K) 12 u € 8% and S(u) ¢ £_(K),

S(u) denotes the support of the distribution u., that is ,the smallest elesed sube
set of X outside which u, = Qe

92, The dependence domain., The notations of n°69 are used, a denotes

either a(x, p) or a(p, x)s Wo assume that S(v) is compast and that u 4s a solye

tion, given by Proposition 88 of the equation
au = v

Lemma 92,1e S(u) c Cy + S(v) ) j

vhere ('.%)c denotes the cone with vertex 0 dual to F;.

4

TR T Aot
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Proof. Let x!' and x" be two points of X such that

(9241) xb = x" § Cpj

we have to show that, if S(v) is
near x", then

u(x) = 0 near x!,

The assumption (92,1) means that
there 1s a point § € [—X such that

(92.2) (x! = x")e ¥ < 0;

ri being convex and having an interior .is the closure of its interior; there=

fore (92,2) holds for some
0
e [
Let U! and U" be meighborhoods of x! and x" such that
(9243) (ut = u")* € < 0 for ut c Yt and u" c Uv,

Suppose $(v) € U" and denote by w(x) the restriction of u(x) to Uty (88e1)
(where we choose either s > 0, t = 0 or s = 0, t < 0), (83,1) and the mean value

theorem glve

(9241) Hwlly s pCE)Ivll, e (ur = um)e ¥,

where u! and u" are the points of S(w) and S(v) where ue& 1is maximum and mini-
mum respectively. Let ¥ run on a half-line belonging to I_o-xg (9243) and (92,4)
show that w = 0,

Lemma 92,2, S(uw), at its points exterior to S(v), has at least a gsemi=
tangent belonging to -Cx.

Proof. Assume this assertion to be

false: there are a point y and a number ¢ > 0

with the folléwing properties: |

i
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y € 8(u); ¥ ¢ S(v);

any x such that

(9245) xe5(u), y=-x €0y x ¥y
satisfies
(9246) [ly = x|| > 2e.

Let. (P(x) be an infinitely differentiable function such that

(9247) Px) = 1 for dlx =7yl e, P (x) = 0 for Hx =yl > 2e.

On the first hand
(9248) y € s(q> u).
On the second hand we have

at{)u = 0 near y because cP = 1, au = O near y;
. au = O near any x satisfying y = x C Cyy X ¥ vy, because
¢u = 0 near x according to (92.5), (92.6), (92.7);

thus

(9249) S(acf)u) is outside y = Cye

Hence, according to (92,8)

S((}) u) ¢ Cy + S(acPu)
which is contradictory to Lemma 52,1,
Lemma 9243, S(u), at a point y exterior to S(v), has at least a semi-tangent
belonging to -Cy. =
Proofs let y be a point of S(u) exterior to S(v); let us apply the preceding
lemma to u(x) and the hyperbolic differential operator

a(y + ?(e"ll [x =y D(x=¥y), p)y
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vhere & is a positive number — 0 and cP(t) a function such that
0< cP(t)sl; <}7(t) =1 for 0<t <1/2; qD(t) = 0 for 1 < t3

the lemma asserts that S(u) has at the point y at least a semi-tangent belonging

to the cone dual to -I pll l_;:; therefore S(u) has at the point y at least
x=y| | <e

a gemi~tangent belonging to the limit of this cone for & —»0; this limit is
the cone =C_ dual to =~ .
y 'y

Proposition 92, 1) IF S(v) is compact, then
Sav) ¢ E(sv), s(a tv) ¢ E(sv).

(a.l, a*-l, E, can be replaced by a:l, a"j-l, ¥ e

2) The restriction of anlv to a domain D of X depends only on the restric-

tions of a and v to the domain ¥,_(D)s, (Assumption 9L.1 is made.)
Proof of 1)t Property 3) of the emission (n°90); Lemmas 92.1 and 9243
Proof of 2): Obvious consequence of 1) and of the properties 1) and 2) of

the emission (n°90).

93« The inverses of a hyperbolic operatore If S(v) is compact, then the

(Y

conditions v @ D° and v € ,O° are obviously equivalent, Thus Theorem 89,1 de=

fines a-lv when

ve ,Gt(K), S(v) is compact;
Proposition 92 shows that

3-1" e 4 S(K),

1v to a domain D depends only on the restriction of

and that the restriction of a
v to & _(D). Now this restriction of v to £ _(D) is the restriction of a

function whose support is compact when
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ve ,ét'(K), D € X!, K and K! being compact,

1y for any v € ,&t(K).

Hemce the definition of a
Similarly 2% "L can be defined on O 53(K).

Hence the following Theorem, under the assumptions of Theorem 89; K and K!

denote compact subsets of X.

Theorem 93, The hyperbolic operator a(x, p) has two inverses a:]‘ B a"l and

1

a:l; its adjoint a*(p, x) has also two inverses a’f'l a% and af-lu

1) Let s and t be two integers such that

s~t+1l=m ~M<talN
For any X

2l O — 05K &t BT — b (K);
a: B%0) — 7K et B7HEK) 07 NK);
a: 8% —0%); e &M —87%K).

These mappings are continuous,

aa L s 1 on /@’t'(K); a*a* ™ = 1 on A73(x);

a.la = 1 on ,55+1(K); a*-la.* = 1 on ,@’-t+l(K).

2) The same statement holds when a"l, a*-l, R are replaced by a:l, aﬁ']',

Der

3) The adjoint of a © is a¥ '; that is
=1 -1 t -8
(a~vy, u) = (v, a* u) forve D)), ue H_°(XKN,

Note 93+1s Chapter VII shows that this theorem holds on a manifold for
any hyperbolic operator and any K - "compact toward the pastn»
In particular Proposition 92,2 shows immediateiy that:
Note 93.2, Theorem 93, holds when we replace the vector space X by & _(D),

D being a domain of X (assumption S4.1 is made),.
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§5¢ The emission front is a locus of trajectories

Using more precise assumptions than S, Cs Zaremba and A. Marchaud, we prove

what A, Marchaud proved partially: the emission front is a characteristic; in

other words: the emission front is a locus of trajectories defined by Jacobi'!s,

Lagrange's or Hamilton's equations or by the extremal principle of the particle

mechanics (about these notions see E, Cartan'!s fundamental treatise:
<(Invariants intégraux)) [L51)s Our proof of Theorem 97 follows a way indicated
by Es Cartan [L5], chapter XIX, in particular n®195-196; unfortunately his n°196
is wrong from p. 198 4<On voit immédiatement que ...>> .

9lie Bmission front, characteristics and bicharacteristics. (Notation: see

n°69)o

Definition 9hels The emission front “¢(Y) is the part of the boundary

é(Y) of &(Y) exterior to Y.

Definition 94e2. The characteristics of a(p, x) [or a(p, x)] are the hyper=-

surfaces w(x) = O satisfying the condition
L] . r‘
pw € F*¥ (Fj; = boundary of x);

they satisfy the homogeneous first order eguation

(9kel) h(x, pw) = 0 (Jacobi's equation),

Assumption 9L.1e We assume that h(x, §) has continuous first order derivatives
and that the total curvature of r~x is > 0,

We introduce the equation g(x, x') of C, » that is the tangential equation

®

of f_gg
Definition 9Le3. We denote by g(x, x') the function obtained by eliminating
¥ from

(9a2) xt = BEET), gl -3k, BB E ony, §) - (rnts ¥)
A A A

g(x, x') is defined at least when x' is near C, » since the functions
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[
gh(x are independent on the hypersurface [ . whose curvature is > O,

Sa 13
We have

(9he3) = -%L&-,E-l b Bx §) = 3w, Qﬂgg(-,fl - g(x, x1) = Ly g(x, x*)
(9kek) ._lsz.i). .Bﬁl‘;._’_‘_'l

g{x, x') is homogeneous of degree ng with respect to x!,

Proofs (SL.2) gives

%=1k dxi-iah(x ;) a3
hence (SLe3) and (9Lel).

Definition 9lslie The bicharacteristics of a(x, p) [or a(p, x)] have the
four following definitions, whose equivalence results obviously from (9Le2),
(9Le3), (Slal):

1) they are the characteristics of the Jacobi equation (Sk.1)

2) they are the solutions of the Hamilton equations

i SO/
dh(x, &) 3h(x, &)
3) they are the solutions of the lLagrange equations

(9&06) d 'ail(-:gjzc“z'—‘ g&%}__x_'_l , %— xl = x} 9 g(X, x’) = O;

L) they are the extremag of f g(x, dx)en 1)/m satisfying g(x, dx) = O,

(9Le5)

h(x, £) =0 (X:ﬂ-“ 1, 2, seey A)

]
!

95. A choice of the coordinates. We choose the first axis of = interior

|
to [ x° A rx: any line parallel to this axis cuts l—’_ « 8% real distinct points;
xeX ’

wpon application of. (28,1)
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.5 >0 on 0x except at its vertex,

This choice was the choice of the hyperplanes x ® constes We choose now for
the other coordinates oy seey xﬂ such functions of x that the direction

dx1>o,' dx2= aee O dx«a -=0belongs'b00x;

hence
3 1 >0 on rx except at its vertex,
Assuming
(95.1) hix, £) >0 for € € r;
we obtain thus
Q@
(95+2) h(x, §)=0, 5, >0, BFloosr te [, 570
hence, upon application of (94.2) and (9L.3)
L 4
(9543) g(x,x')ﬂo,xi>0, 951"%{’-‘—'L>01£x'ccx,x';‘0;
therefore
(950k) . g(x, x') > 0 means that x! € C_,

g(x, x') has been defined when x' is near Cx 3 we extend its definition to
any x! in such a way that:
(95.4) holds;

g(x, x!') is positively homogeneous of degree 51%]'. with respect to x?.

(95.5) ‘M%-ngﬂ>01fx'ccx,x'¥0.

96, Timelike paths neighboring a given path,

Lemma 96,1, Along a timelike path ¥y a parameter & can be used such that
the first Lagrange equation holds:
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(96:2) %-@ﬁ%;-:ii‘-'l-?ﬂ%ﬂao

and moreover

(96;2) O<Inf~ag—]£l, SUP(--X ‘(OD’

(96.3) X(O) =Y x(l) =

Proof: x increases along the path, which can be defined by the obviously
lipschitzian functions:

xz(xl), ceny x.l (x1)5

thus the derivatives :r:*1 gx 1 exist almost everywhere and are bounded, Accord-

ing to (95.5), Inf 9g(x, x¥) 0; thus the differential equation

5 o) *
S ¢ EBh g BB o

has solutions (f (xl) such that
0<Infy < Swy < o,
Now g(x, x¥) is homogensous of degree 'm:n'TI in x%*; thus if we introduce the para=

meter s such that

ds = (f)l-m dx.l
and if we define x:,"1 = %S- Xy then the relations (96.1) and (5642) holds They re=
main true when we replace s by any linear function of s: (96.3) can be satisfiede
Lemma 96,2, Let x(s) be the previous parametric representation of the time=

1ike path y3; x(s) + $x(s) is also timelike if

(96 pClI8xl] + usxsn)fa?&%ﬁﬁl aﬁ+§ési%f_'z BN

where
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[15x|)2 = i (5"1)25 8 xt =-°-1-§-’53

p(e) is an increasing function of ¢ > O such that
s-lﬁ(e)———>0 when e —>0;

(b(c) depgnds only on x(s).

Proofs g(x, x') > 0; therefore

glx +8x, x! +5x1) > 2 é.. (x + 85x, x* + 68 x1)5 x +£T (x +08x, x' + 98x')Sx
38. (x, x)5x, +3§T (e 21 8 = A1 xl) + (132D,

'
whers p(e) has the above-said properties, since —ﬂ%‘.ﬂl "E'gﬁr—” e X

continuous,
Lemma 9643, Let ¥z be a timelike path; let $y and O3 be vectors of Xs
l) 1¢f ﬁ is a bicharacteristic, there is a timelike path fromy ¢+ Sy to
£ + § 2 when

(9645) Alissll +usm><z%—laz ~-B$§-;,¥-lsy;

@(a) is a function of ¢ such that
et (3 (e)—>0 when g —>0;

(3(e) depends only on the path 7%,

2) If y& is not a bicharacteristic, then thers is a timelike path frem
y+8ytor+ Sz vwhen || dz]] + ||Sy|] is small.

Proof. ~ Notation. Let x(s) be the parametric representation of ﬁ defined

by Lemma 96.1; dsfine f;\(s) as follows:

1 :
(9646) S oy - EEE) s Srets) - Qﬂig-f-‘-llas - 0;
7S

in particular, accordiz;g to (96.1) and (95.55
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(9647) £(s) = lax) 5 g,
1
Let x(s) + $x(s) be a path fromy + Sy to z + Sz defined by the data

(96.8) sz(s), cens Sx_ﬁ(s), such that le(o) = Syl, le(l) = §g
(1“ 2y evey .,Q,)

A

and by the condition

i.ﬁ.ﬂ&.’i’lsx +§5.(3§4—x—_ 6x' (P = conste);
R

thus, upon application of (96.6) , O x, 1s given by the relation

]
- M - ™ ®
2l [f;\(S) ) % fl(o) 63&] + {;/\51 [ ax'l f1(8)15 :c'A ds = P s;

the condition le(O) = 5y1 is satisfied; but we have to satisfy the condition

6:{1(1) = 621,
that is: P has to be chosen as follows
X Og(x, x!
64 b - - P
(9649) p=2 (£, 3z, - 2.0 83,1+ / R 2y £,()18x) oo

This definition of the path x(s) + § x(s) transforms (96.L) into

A3+ 13l < p s

therefore Lemma 96,2 shows that there is a timelike path fromy + §y toz+ 82

if the date (96.8) and the number p defined by (96.9) satisfy

(96410) (3 (const, IPI + const. AZ |§ xAI + |8 x'll) < P.

>1
Proof of 1) 1If x(s) is a bicharacteristic, then, upon application of (9Le6),

(9646) becomes

/

og(x, x!
f.\a_agﬁa__l;

hence (96.9) becomes
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o 5 (dg(z, z! - %g(y. y1) .

let us choose for A > 1
6xl(s) = (1~ s)Syk+ s'a"z;{ 5
thus

|| < consta([|§ ¥l + |16 2]]);
therefore, if

(3 (consto | [§ y|| + consta|| 83]]) 52 (-—%?—'-)-SZ)‘-Q%FSYAH

then (96,10) is satisfied and there is a timelike path fromy + 8y to z + $us
Bg(xn xi) 2.
Proof of 2) when _/’ i[ A tn f)\(s)] ds > 0,
0

Choose for A > 1

]
bxy= (= 9) By v 8, Ll Bal] + 118311/ [28%-5’5'-1- 2, (6)]s;
')/ = conste.; according to (96,9) we can choose 2/ 50 large that
0 < constol]|5y]] + [183]]] < P< constul]| 71| + |8 5|1

then, if [|3y|| + || 62| is small, (96.10) is satisfied and there is a timelike

path fromy + §y to z + § 2,

dg(x, x')
Proof of 2) when g At = fl(s) almost everywhere.

From this assumption follows that the functions x 2.(s) have bounded sesond
derivatives, since the functions f)\( s) have bounded first derivatives; thus

x(8) satisfies

a X, x') _ 3 ,'
'&Eg(ax g(x, x')

1 5
hence
d = d .g.m. + ag = .g_ 3 = -.nl.. [l
das g(x, x') i(x’ o a::'}\ ')l'a'xf ) .ds letl-&%_; m=1 gg ’

hence
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‘}5 g(x, x') = 0,

Now x(s) is assumed to be timelike and not to be a bicharacteristie; thus
g(x, x') = const, > O3

therefore x(s) + dx(s) is timelike if §x and O x' are small,

97. [The properties of the emission front. Notation: Y is a subset of X;

[
E(Y) 1s the boundary of &(¥); © E(Y) is the complement of & (Y¥); x!, y', z!
are the tangents of the path y3 at x, y, z.

Lemma 97. Let y% be a timelike path such that

"
ye E(X), zc &(1);
let X be a point of ¥y different from y and z. Then

1) F% is a bicharacteristic;
2) the semi=tangents 9z of & & (Y) at 3 sebtisfy

Z-B-E-(-g)z—'ﬂ)- 32 < 0;
A A

3) the semi-tangents 3y of &£ (Y) at y satisfy
Oy, ¥*)
) -ﬁ-b-;l—-é > 0;
: ayl yl - 14

®
L) B ison ¥ (¥)
5) E (Y) has at x the tangent hyperplane
5 2g(x, x! 5%, = 0,

oxT \

Proof of 1), Assume y € E,(Y), y2 timelike and not bicharacteristics Lemma 96;3’2,

shows that z is interior to ¥ (Y¥).
Proof of 2)s Choose Dy = O in Lemma 96,3.1; we see that

2+ §ze EY) when (3(||63]]) f,zég%%fﬂ Szl.
- - A

Proof of 3)o Assume this assertion to be false: there is a & y sueh that
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dg(y, y') - .
vy+8ye &, ﬁi%;if—Syl< AUIsylDs
thus (96.5) holds when O z is small: z is ipterior to E.(Y)e
Proof of ). According to 3), y camnnot be interior to E(Y):
ye £ 1.

We can replace y by any point of ¥z
Proof of 5)s x is both the origin and the end of arcs of a bicharacteristic
belonging to £, (Y) and to & (Y); thus according to 2)

dg(x, x!
i_ﬁé.}ztrlsx)\f 0

and aseording to 3)

z 98(x; x!) 5x
ox!
) N
Hence, any semi=tangent of € (1) at x satisfies

> 0a
l—

e

og(x, x!) o N
i__g...g)a:.r__gxl 03

A
v
the converse is true since in X any line parallel to the first axis cuts £, (Y)e

Theorem 97o K is a compact subset of X, Assumption Sk.1 is made,
1) (&) is generated by arcs of bicharacteristics satisfying (9Le5)s the

origin of such an arc is a point x of K where the inequality

dx°% >0

holds for any dx & C, and also for any semi~tangent & x of Ke

2) Along such an arc, # (X) has a tangent hyperplane

$x 2% =0 [$x: semi~tangent of 7 (K) at x]

and thus g'._g a characteristic.

3) At the end of such an arc the inequality
§xe X <0

holds for any semi-tangent &x of F(K) at x

g s e
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Proofs Since K is compact, &(K) is closed (n°90): any point z of % (K)

is the end of a timelike path yr% such that y € Ko We apply Lemma 97.
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Chapter VII
The Inverses of a Hyperbolic Operator on a Manifold
Chapter VII states the main theorems about the linear hyperbolic differential
equaiion (n®99, 100, 103, 106, 108, 109). §1 defines a hyperbolic operator on a

manifold X; for instance the operator S"E has inverses and is hyperbolic on a line,
but has no inverses and is not hyperbolic on a circle: we assume that a timelike

path is never closed and, more generally. that the set of the timelike paths from

X to y is compact or void for any x and y € X, §2 extends Theorem 93 to manifolds

(such an extension of the preliminary Theorem 89 is obviously impossible), §3

defines the elementary solution; §4 deals with Cauchy's problem, which has now less

interest than it had for the local solutions of analytic equations (n°72).

§1. Hyperbolic operators and emission

98, Definition of a hyperbolic operator on a manifold. Let X be an f =
dimensional (m+M)=smooth manifold; X is not necessarily complete., We use the def=-

inition given in n®9 of an operator a(x, p) or a(p, x) hyperbolie at the point x;

Cx is now a convex half cone belonging to the tangent hyperplane of X at x; its
dual half cone [ x 1s in the dual hyperplane =

h(x, £) =0 on l'; (8 e =),

h(x, %) being the principal part of a(x, €)s m denotes the order of a(x, p) or
a(py x)3 m> 1,

A path is said to be timelike when its semi-tangents at x belong to Cx‘
Definition 90,1 of the emission 8 and Definition 91.2 of the functional spaces

DE(X) and ,83(1{) are used (dxlmbodiié being now the measure of an element of X);
they are also denotéd by ,98(){, K) and ,5‘3()(, K)o
X and thus (Fréchet ) the set of its paths are metric spaces,

T T S —— .
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Now a(x, p) [or a(p, x)] is said to be hyperbolic on X when the following
conditions hold:

1) a(x, p) is hyperbolic at any point x of X,

2) the set of the timelike paths from y to z is compact or void for any y

ﬂZEX.

3) either the coefficients of a(x, p) have locally bounded (that is: bounded

on any compact subset of X) derivatives of order M (1 <M < “Ql) or they have

locally bounded derivatives of order < £ and locally square integrable

derivatives of order > 4’ and < M (4 < M), (.£'1is the smallest integer

>4

L) the total curvature of [ ¢ 18 > 0; if M = 1, then the first derivatives

of the coefficients of h(x, E) are continuous,

Note 98.1, 1If X is complete and if the lengths of the paths from y to z are
bounded, then Condition 3) holds.
Note 98,2, Condition L) is requiredby Lemma 97, Theorem 97 and Theorem $9,1.1),

which is used in §2, Now §2 holds when Condition L) is not satisfied, provided that

Theorem 99¢1.,1) holds.

Note 98.3. Let D be a domain of X3 & (D), E_ (D), EO® NE _(D) are mani-
folds (Theorem 99,1,1)) on which a(x, p) is still hyperbolic.

99+ The properties of the emission.

Lemma 99.1s Let y and z be two points of X; they have compact neighborhoods
V(y) and V(z) such that the set of the timelike paths from V(y) to V(z) is compact
or void,

Proof: The cone F; cannot be a cylinder, since it has no singular generators
and is not a hyperplane; thus its dual cone Cx has an interior. Hence: there are y*

near y and 2% near z such that E:(y*) and E_(z*) are respectively neighborhoods
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of y and g» Now amy path from £ (y%) to & _(z%) 1s an are of a path from y* to z%y
the set of the paths from y* to z# is assumed to be compact, The Lemma is now ob=~
viouss Hence

Lemma 992, Let Y and Z be two compact subsets of X The set of the timelike
paths from Y to Z is compact or void.

Lemma 97 holds on a manifold.

Proof: The proof given by n°97 holds en a manifold, when v'% is small: there=
fore if y € 6 (Y) and 2 & é(Y), then ¥% is on é(Y) near z. Now this involves
that the whole path ¥z is on é (Y) and satisfies Lemma 97.

Theorem 99.1¢ (Emission of cpen and compact subsets)e 1) I£ D is a domain
o %, then £ (0) 1s a donatn,

2) I£ Y and Z are compact subsets of X, then &(Y) and E_(2) are closeds
£@) NE _(2) 15 compact,

Proof of 1)t let z & £ (D): there is a timelike path J2 sueh that Yy e D;
hence y & E.Z(D) and 3 ¢ é (D), aceording to Lemma 974k,

Proof of 2): lemma 99,2 (and an easy precess used by Zawemba and Marehaud)

show that £,(¥) N & _(2) is compact. Therefore E(Y) and E _(2) are necess-
arily closed,

Theorem 99,2y (Semi-continuity of the emission), Assume that Y and ¢, are

_tll_e_ 1limits of Yc and Cx a when a —>»0 and that
Lo W L] ’ i SRR GRSty

YCYa, c.c¢C

x < Ox, a0 (x, ‘Ya compact);

et &£ o De the emission defined by Cx’ag then
E(Y) 1s the Lmit of ¥ (¥ )s

Proof: The same as by Marchaud and Zaremba, Lemma 99,2 being used,

Theorem 97 (The emission front is a characteristis, that is a locus of tra~

Jectories) holds on a manifold.
Its proof holds, since lemma 97 holds and E(K) is closed,
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100. Compactness toward the past,

Definition 100, A subset K of X is said to be compact toward the past when

K NnE_(x) is compact or void for any x € X.

Theorem 100,1, Any compact subset of X is compact Soward the past,
Proof: &, (x) is closeds

Theorem 100.2, If K is compact towards the past, then

1) K is closed;

2) any closed subset of K is compact toward the past;

3) E(¥) is also compact towards the past.

Ly K NE_(K!) and E(K) N & _(X) are compact when K' is eompacts,

Proof of 1)s Any z € X is interior to some & _(2*),
2) is obvious.

Proof of 3)s The union of the timelike paths from K to x is

E® nE_x)= E®Y AE_(x

where K' = K NE _(x) is compact; now & (K) NE (x) Ls compast aecsrding
to Theorem 99,1.2.
Proof of h)s There is 2% near z C X such that & [(2%) is a neighborhood of z.

Let us cover K! by a finite number of 6_(2'&"):

KtclJE (z#);

. -~ a

hence

€ &M c UE_(2)

a
kNG &) UK nE (),
a

which 1s compact. Moreover K and &_(K!) are closeds Thus K E_(K') is com=

pact. E(K) N E_(K') is also compact, since E(K) is compaet toward the past,
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Theorem 100,3. Assume that: S is compact toward the past; Tc S; T is closeds

at any point x of S exterior to T, S has at least a gsemi-tangent belonging to -Cx.
Then 8§ € &, (T).

We do not use thig Theorem, which follows easily from the property 3) of the
emission (n°90), We need the easier

Theorem 100.4. Let S be compact toward the past; let T be the set of the

points x such that

SNE_(x) =x

Then: S c & (T),
Proof: Let y € S; consider the timelike paths x’} such that x € S; sueh a
path is maximal (that is: does not belong to another such path) if x € T3 there

are maximal paths, since S /\5_()') is compact; hence y € & (1),
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§2. The inverses of a hyperbolic operator i
§2 extends Theorem 93 to manifolds,

101, The open subsets of X where a“:L exists, Notation. X is a manifold;

a{x, p) is hyperbolic on X (n°98); K is a subset of X compact towards the past;
D is an open subset of X such that D = & _(D)e
Thus: a(x, p) is hyperbolic on D3 DN K is compact towards the past on D,
We denote @S(D, D NK) (see n%98) by ,88(D, K); we say that al exists

for (D, K) if there is a mapping a L such that, for any (s, t) satisfying

g8=t+1=m, =M <t <M, we have:

a™ly ﬁt(D, K)—85%(D, K) (continuously);
sa =1 &%D, K); ata=1on &%, K);
statv) ¢ £5(v).

Henee: the restriction of a"lv to a domain D! C D depends ohly on the restrietion
of v te the domain & _(D'),

Let us give some easy consequences of this definition of a-]':

Lemma 101,1, If & © exists for (D, K), then a L is uniques

Prooft Let b be a mapping such that

b

(L4

,@t(n, K) _.}'&S(D, K) (continuouSIY):
ab = 1 on /&t(D, K)O ‘

If1=M<t <M thenb = atab = at on 20, 1.

Now 2 13(13, X) is dense on ﬁt—l(D, K), where b and at are eontinuous; hence
b=alon 9t-1(D, K)e

Lemma 101,2, If a L exists for (D, X), then 2™t oxists for (D', X?!), where

p* = £_(D!) ¢ D, K! € K,
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Proofs Let v! be the restriction to D! of a function v defined on Dj we de=
fine

1V' = (a-l'V)'n

a_
Lemma 1013, am1 exists for (D, K) when D is the complement of £, (K).
Proof: D is open, D= & (D); ,&t(D, K) contains only the function v = O; -

a-.lv = 0,

1 exists for

Lemma 101.4. K being given, there is a maximal D such that a
(D, K) (that is: if a=l exists for (D!, K), then D' € D).
Proof: Let D be the union of the D! such that a © exists for (D!, K); ob-

viously D = 8_(D); if v e ,9“t(D9 K), define aalv as follows?

(a-lv)' = a byt (v': restriction of v to D!),

This definition is coherent: indeed aplv' and a-lv" have the same restriction to
D' N D" (Lemmas 101,1 and 101.2),

Lemma 101.,5., If the function 93 is defined on D and has loeally bounded deriva=-
tives of order m + M, if S(1 - (P) is compact towards the past, if 2L exists for
(D, S(1 = 9)) and for (D', K) where D3 D! = & _(D!) 5(9), then st exists for
(D, K)o

Proof: let v € ,@'t(D, K); let v! be its restriction to D!; a Ly C/&S(D', K);

define a mapping b as follows:

by = @a Ty on D'; bv = O on D outside S(P).
T

This mapping has the following properties:
t
(1) b: (D, K)—> Z%(D, K);

(2) bau = (Pu ifue /&.s+l

abv = (Pv = c(x, p)a.lv'

(D, K)3

c(x, p) having the order s - t; its coefficients have derivatives

of order M and are = 0 outside S(1 - (P); hence
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(3) 1~ abs ,5-*’(1), K) -—%,&’t(D, K!) where K! = S(1 - Cf)) N E(K).

Now a T exists for (D, K'); let it be denoted by c:
(L) c: &5, k1Y — &5, KN);

(5) ca =1 on ,&'S+1(D, Kt);

(6) ac = 1 on ﬁf'(D, Kt).

Let us show that a-l exists for (D, K) and is the continuous mapping defined

by
(7) a L = c(1 - ab) + b. 90
(1), (3) and (L) show that
D

a-lz ﬁt(D’ K) \7/0‘3(]), K); C})u 0
obviously pt |

s(a™tv) ¢ E(sv) 2T
{2) and (5) show that /

Past

a-la = ¢(a - aba) + ba = ca(l - (})) + (f = (1 = C?) +<§J = 1 on ,88+1(D, K);

finally (3) and (6) show that

ag L = ac(l - ab) + ab = (1L - ab) + ab=1 on ﬁt(D, KX)o

102, The existence of at on X, Note 93.2 shows that a~L exists for (D, X),
when X is a vector space, a(x, p) is regularly hyperbolic and D = E_(D). Now any
function u ¢ B ¥(D, K) is defined on D and = O outside & (K); thus a™t sti11
exists when we change X, D, K, a(x, p) outside D N & (K). Hence:

Lemma: Let x be a point of the manifold X; let a(x, p) be hyperbolic on Xj

if D= £ _(D) and if D N E(K) belongs to some neighborhood of x, then al exists
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for (D, K).

Now £ _ and & are semi-continuous (Theorem 99.2)3 & _(x) M E(x) = x3
hence £ _(V) ~n & (K) belongs to a given neighborhood of x when V and K are suf-
ficiently near x. Remember that €& _(V) is open when V is open (Theorem 99.1s1).
Hences

Lemma 102.1s Let x be a point of the manifold X; if the open subset V and
the compact subset K of X are sufficiently near x, then a~* exists for (8 _(V)y K)o

Lemmd 102,2, If a L exists for (Dy X) and D # X, there is an open subset D!
of X such that:

D! ¢ D; at exists for (D!, K)o

Proof: The Lemma is obvious, if D does not contain the complement of E (K)s
see Lemma 101.3., Assume that D contains this complement and apply Theorem 100,4
to the complement S of D (S being a closed subset of & (K) is compact towards the
past: sea Theorem 100,2,2): there is a point x such that

£ _(x) €DU x, x €D,

Now E_ is semi=continuous; hence: if W is a given neighborhood of x, there is a
neighborhood V of x such that .

£ (Mcpuw,

Therefore, according to Lemma 102,1, there are two open neighborhoods V, W of x
and a (mM)~times differentiable function jo defined on X such that:

s(1 - CP) is a compact neighborhood of x; £_(v)
(1) a™t exists for & _(), s(x - P )); | 9= 0
(2) £E_(McDUW P=0cnw. x

Since a~l exists for (D, K), Lemma 101,2 shows that:

(3) a™t exists for (D NE _(V), K);
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moreover (2) shows that:
(4) D ~ E_(V) contains the support of the restriction of (P to & _(V)
Now (1), (3), (L) mean that the assumptions of Lemma 101,5 are satisfied, if in this
Lemma D and D! are replaced by & _(V) and D M & _(V); hence: 2"t oxdsts for
(€, (V) K)o Now & (V) #Dsincex €V, x ¢ D,

Proposition 102, a-l exists for (X, K), if K is compact towards the past.

Proof, The preceding Lemma shows that the maximal D defined by Lemma 10l.4
is the manifold X itself,

103, Theorem 93 holds when X is a manifold, a(x, p) is hyperbolic on X (n°98)

;ag_d K is compact towards the paste

The scalar product to be used on K is

» ) = Jeoe dXq eeedX
(uy v fxfu(x)v(X)/a(x) pesedx,

/L(x)dxln.dx’e being the measure of the element of Xt Theorem 100.2 shows that
(u, v) 1s defined when

we £9K), ve B7P(xy),

K 1s compact towards the past and K! is compact (or K is compact and XK' is compact
towards the future).
The adjoint of a(x, p) is

w(p, x) = gy bley X))

where

b(=E, x) = a(x, €) when x_ and ;-;U commute,

A

Proof of Theorem 93.,1: Proposition 102 gives the existence of a-l. A similar

Proposition holds when a, s, t, are replaced by a¥%, =t, =g,
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Proof of Theorem 93,2, Replace E s a-l, a*:l by E_, a:1, af-l,in the preceding
proof,

Proof of Theorem 93,3~ Assume either v € /@'t+1(K) ift<Moruec /(9:3+1(K’)

if 1 - M < t; thus either

atve ), a Ty e &7k
or

alv e £5(x), sty e 275 (),

hence, since s = t + 1 = order of a and T (K) N € _(K') is compact?

(a-lv, u) = (a_lv, a*ai’g‘lu) = (aa-lv, a*r_{'-lu) = (v, ajf_lu),

Now O%L(K) is dense in BY(K) and FTSL(kt) tn FT5(xn); (a7lv, w) and
(v, af_{"lu) are continuous for v & ﬁt(K), u € ,&:S(K'); hence (a-lv, u) =

(v, aﬁ'-lu) for v & ,@t(K), ue ,&:S(Kx).

=,
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§3. The elementary solutions

(In the first part, Ch. III, §ki, p. 66, the elementary solution and Dirac's
measure were distributions kx and 8 % OB X; now they are distributions k Xy¥ and

b x,3 °° the product X » X of the manifold by itselfs if X is a vector space, and
t ]

a(x, p) = alp), then

k =k S .= §

X,y xy’ XY

)

x-y*

104, Distributions on X X Xo Let us complete Che IV of Schwartz' treatise

[21], We use Y. Fourés-Bruhat's definitions; the manifold X and the functions u(x),

v(x), u(x, y) are (m#M)-time differentiable; these functions have compact supports;

dx denotes the measure of the element of X,

Let kx v be a distribution on X X X; there is a distribution w, on X such
3
that

S wxu(x)dx = f kx u(x)v(y)dx dy for any u(x);
X Ixx *Y
we write

(10Le1) w, © _}{ kx’yv(y)dy;

thus the formula of the repeated integration holds:

(104.2) ,}/{'u(x)dx {{' kx’yv(y)dy s x{(x kx,yu(x)v(y)dx dy = {v(y)dy ‘}/(' kx’yu(x)dx.

Assums now LA to be a continuous function w(x) of x for any (m#M)-times dif-

ferentiable v(y): x being given, there is on X a distribution hy such that

w(x) = / h v(y)dy
x 7Y

hy is said to be the restriction of k ¥ to x x X3 practically it is also denoted
—_— s )

by k
v Xy¥"
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105, Dirac's distribution S‘X . is defined on X x X by the formula
3

S Sx u(x,y) dx dy = / u(x, x)dx, Tts support is the diagonal of X » X,
Xrx oY X

u(x) =)/{' sz’y wy)dy = [ &§_ _u(y)dy;

x Te¥
thus Sx v has restrictions to x =X and X X Xo
9
If a*(p, x) is the adjoint of a(x, p) and if q = (g-f_ s oous %;'y- } then
10 a(x = git o
(105) (,p)Sx’y a*(q, y)Sx,y

Proof of (105).

S ulx)v(y)la(x, p)§__Jax dy = f v(¥) S, _[a*(p, x)ulx)]dx dy
XxX Xy XxX XY

= )/(' v(x)[a*(p, x)u(x)]dx = {(’ u(x) [a(x, p)v(x)]ldx

= [ ux)d y[a(y, Qv(y)lax dy =/ u(x)v(y)[a*(q, ¥) o, Jax dye
XxX ’ XXX )4

106s The two elementary solutions g_f_ the adjoint hyperbolic operators

a(x, p) and a*(p, x).

Theorem 106, To &£ is associated an & elementary solution))y k, o of @ and &%

kx ¥ is a distribution on X X X having the following properties:
Sy = = °n

1) If (x, 3) € S(kx y)’ then there is a timelike path from y to X,
,y/* 2080 Zhere 1S a Lo

2) Let X be compact towards the past and K! be compact towards the future:

a Ly(x) = {kx’yv(y)dy if ve LMy
af-lu(y) = f kx _yu(x)dx i_.?_ u € /éf_]:-nl-M(K')O
X 3
3) alx ple, o= 5, 5@ Nk =8, o (9= 5= 5 )

X,y X, y X, ¥ ayl yoaee 3:&
[hence another proof of (105)].

b) If £ -m<M, then k, y has the following restriction to x »X:
3
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k = a*.l 8

Xo¥ - X,y

where af-l is the inverse of a*(q, y), q = (-g-i-, ceey g—-—-)o
1

5) If £ <M, then k v has the following restriction to X x y:
s

& a-l 6
Xy ¥ Xy
whera a is the inverse of a(x, p)e . ° -

Proof of 2). According to Theorem 93.3
{u(x)a v(x)ax = [ v(y)a® “uly)dy
X

is a linear and continuous function of

ve O°%K!) andv e ,Ot(K),
that is of
w(x, y) = u(x)v(y)
(s=t+1l=m =M<t <M K or K! compact).
Obviously the definition of this linear function of w can be extended to any
(m#M)=times differentiable w whose support is compact: there is a distribution kx

9

on X x X such that
(106)  / k__ux)v(y)ax dy = [ u(x)a w(x)dx = / v(y)at Tuly)dy,
Xxx XY X X

Hence 2). .

Proof of 1)s Assume S(u) and S(v) to be compact; (106) and Theorem 93,1 show
that

S k_ _u(x)v(y)ax dy = 0
XxXx %Y

when S(u) is outside &£ 5(v).

Proof of 3). Replace in (106) v by av or u by a*u; apply Theorem 93,

Proof of k)e If v e ,«?M(K), then a-:.l'v € /,‘Tm+M-1(K) e ﬁ%K)
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and therefore w(x) = a-lv(x) is continuous; thus kx. ¥ has a restriction to x x X,

9
Let

u e @:L(K'), K! compact;
then

éu@WWMy=£ﬂwﬁﬂMw&.

Now Sx,y € ,@:“Q(K-) if x € K'; let u(y) tend to éx’y in ,é‘_'_‘a(m),

J u(y)w(y)dy tends to w(x) and the preceding equation becomes
X

-15 ;

wix) = / h v(y)dy, where h = a¥
() = £ byviv)a, R N .

that shows that a% L1 §  is the restriction of k. to X x Xe
- Xy XY

Proof of 5)s Similar to the proof of L).
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§he Cauchy's problem

(a"1 er_xables us to solve Cauchy!s problem and to generalize its the hyper~
surface carrying the data can be characteristic,)

107, Solution of a(x, p)u(x) = O with a given singularity. Notation.

A hyperbolic operator a(x, p) is given on the manifold X3 m € M. A subset K of

X is given; meas. XK = 0; K is compact towards the pasts A function w(x) is given
on a neighborhood of K; w(x) is locally square integrable; its derivatives of order
< m are locally square integrable outside K. We denote by [aw] the almost every=
where defined function such that

(107.1) [aw] = a(x, p)w(x) outside K;

we denote by {aw} the distribution

(107,2) . {aw} = aw =~ [aw],

vhose support belongs to K. We agsume that [aw] and its first derivatives are lo~
cally square integrable on a neighborhood of K.
The problem of finding a solution of au = O with the same sin ity as w

on K is the following.

Problem 107, We ask for a function u(x) such that
u(x) is defined on X;
S(u) ¢ E(B);
outside K, u(x) and its derivatives of order < m are loecally square integrable and
satisfy
a(x, p)u(x) = 0;
in the neighborhood of K, u(x) = w(x) and its derivatives of order < m are locally

square integrables
Proposition 107, The preceding problem has the unique solution
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(107.3) u(x) = a-lfaw} .
Proofs Let V be a neighborhood of K. We can assume that:
V is compact towards the past; S(w) ¢ V3 w(x) is defined on X,
The function
v(x) = u(x) ~ w(x)

and its derivatives of order < m are locally square integrable' on X3
av = ~[aw], S(v) ¢ £(V).

Hence (theorem 93)
| v = =2 lawl;

that means: the problem has no other solution than
u=w- a-l[aw] = a"l {aw]. .

Now this function u satisfies 3(u) € £ (K) and is actually a solution of the

problem,

108, Generalized Cauchy!s problem, Note 108, If u(x) and its first deriva=

tives are locally square integrable, then u(x) has a locally square integrable
restriction to any lipschitzian hypersurface Ka
Proofs let x = £(xy, snoy X JQ) be the equation of K;

Bu(xX, yXns000sX, )
. u(xl, x2, reéy xve) - f L % s dxl

f(xz’ nopxﬂ)

is a locally square integrable function of (x2, eney X ,%) s which is the restriction
of u(x) to K,

Notation, A hyperbolic operator a(x, p) is given on the manifold X; m < Me
A subset K of X is given; K is compact towards the past; X is the boundary of & (K)o
Hence, K is a lipschitzian hypersurface. [The boundary of any E, (K!), K! being

compact towards the past, is such a subset K,] A function w(x) is given on £ (X)3
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w(x) and its derivatives of order < m are locally square integrable; the first
derivatives of a(x, p)w(x) are also square integrable;
a(x, p)w(x) = 0 on K,

Generalized Cauchy's problem is the following

Problem 108, We ask for a function u(x) defined on € (K) and such that:

u(x) and its derivatives of order < m are locally square integrable;
a(x, pu(x) = 0;

u(x) - w(x) and its derivatives of order < m are = O on K,

Theorem 108, The preceding problem has the unigque solution

a-l { aw}

u(x)

i

{aw} and [aw] being a function and a distribution defined on X by (107.1), (107.2),

where
w(x) = 0 outside ¢ (K).

Proofs Define u(x) = 0, w(x) = O outside E(K): Problem 108 beeomes equi=
valent to problem 107,

109, Cauchy's problem is the problem of finding on & (K) a solution u(x)

of the equation

a(x, p)u(x) = 0,

with given values and derivatives of order < m on the given hypersurfaece X, which
satisfies the preceding conditions (n®108) and moreover the following onet
(109.1) X verifies nowhere the equation of the characteristics.

Theorem 109, Cauchy!s problem has always a unique solution, if the data are

so regular that (109.2) defines a function w(x) whose derivatives of order < m+l

are locally square integrable,

¥
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Proof, Let f(x) = O be the equation of K; the assumption (109,1) is

h(x, pf) # 0~

Tet v(x) be a function with the given values and derivatives on K, According to
Theorem 108 we have to find w(x) such that:
w(x) = v(x) and its derivatives of order < m are = 0 on X}
a(x, p)w(x) = 0 on K,
We choose
£"(x)
Xy P

(109.2) w(x) = v(x) = = a(x, p)v(x).
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Chapter VIII
Hyperbolic systems
Chapter VIII explains briefly how the preceding properties of a hyperbolic

equation can be extended to a hyperbolic system.

§1. Notation and results

110. Definition of a hyperbolic matrix. X is a manifold; x € Xj (x,l, seey :E@)

3] o)
are local coordinates of x; p = (-a—xl— s ooy -5-}?6-); U(x) = (ul(x), coey un(x)) and
V(x) = (vl(x), ceos vn(x)) are vectors whose components are functions or distrib=

utions defined on X; A(x, p) is a matrix whose element

az,c(x, p) (1<o<n, 1<7<n)

is a linear differential operator of order

s(o) = t(T) + 13
s(o) and t(T) are positive or negative integers depending on o and ¢°3 of course

s(0) and t(7) can be replaced by s(o) + const. and t(T) + const.;
a,to(x, p) = O when s(o) - t(T) + 1 <O,

hzc(x, £ ) is the principal part of a,c,o(x, §: ); the matrix whose element is

h - c,(x., f) is denoted by

Q

Hy (x5 §) 0
(110) H(x, £) = 0 H,(x, §)

a

e
“-s

a » ¢« 06 & O O ® o Nao

h >\(x, ;) = det Hk(x, ?) (x and ? commute);
h(x, ';;) = det H(x, g) = hl(x, ’s‘)hz(x, %)... .
The matrix A(x, p) is said to be hyperbolic at the point x when:

1) b (x P)y hy(x, p)y oee are hyperbolic at x;
2) the convex half cone F;(A) = Q rx(hl) has an interiors
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Of course h(x, ¥ ) = O on the boundaries of the cones |_(A) and [—;(hl’).
Cx denotes the cone dual to r;(A): Cx belongs to the vector space tangent
to X at x.

A path is said to be timelike when its positive semi~tangents at x belong to

C o
x

The matrix A(x, p) is said to be hyperbolic on the manifold X when:

1) A(x, p) is hyperbolic at any point x € X;

2) the set of the timelike paths from y to z is compact or void for any y
and z € X;

3) the total curvature of the boundary of f‘;(A) is > O,

The definition 90,1 of the emigsion is used; its properties (n°99, 100) holde

Let s(o) be a function which is defined for o = 1, ¢es, m and whose value is
an integer (positive or negative); we denote by B 2(K) the vector space whose ele=

ments are the vectors
v(x) = (Vl(x)) tany Vm(x))
such that (see Definition 91,2)
s(o)
v, € Vil (K)o

Note. The coefficients of A(x, p) are assumed to be locally bounded and to
have locally square integrable derivatives of order < Ms M has to be sufficiently
large (in n®111 so large that the inequalities (115.1), (115.2), (115.3) hold).

111, The inverses of a hyperbolic matrix. Theorem 93 can be extended as

follows:

A matrix A(x, p), which is hyperbolic on a manifold X, has two inverses A_l

and A:1, For any K compact towards the past
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L ) — 28 m;

2L 2 —,8 0.
Let A*(p, x) be the adjoint.of A(x, p): when x and '§= commute

a*a,c'(g’ X) = a,z_o_(x, "?)o
The inverse A¥™L of A" is the adjoint of the inverse A"~ of A.

112, The two elementary solutions. Let us denote by Ax ¥ Diract!s matrix
- 1]

of order m

-]

0 .
Sx:y

o o

where Sx v i3 Dirac's distribution (n®105). Theorem 106 can be extended as follows:
|

To (—j’ is afs’sociated an elementary solution Kx y of A(x, p) and A%(p, x)3 Kx'y is

a matrix; its rank is m; its elements are distributions defined on X x X,
X (x, y) € s(Kx y),, there is a timelike path from y to X
¢

l(x) = L Ky V)Y

. Af-lu(y) = f t'Kx U(x)dx (tK = transpose of X)
X I

t
= kg ©
A(x, ?)Kx,y .Ax’yj A%(q, ) Kx,y Ax,y’ where

) o)

1= G oo &)

LY A R (VAN

Xy Koy

A.l and Af.l being the inverses of A(x, p) and A¥%(q, y)

113, Cauchy!s problems Assume that:

+(7T) > 0;

4
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K is compact towards the past; K is the boundary of £ (K).

Generalized Cauchy's problem. A vector

W(x) = (wl(x), 0oy Wn(x))

is given on §, (K); wc(x) and its derivatives of order < s(c) + 1 are locally square

integrable; Z a o.(}«:, p)wc has locally square integrable derivatives of order

T

c
<t(C) +132a

(x, p)wc and its derivatives of order < t(Z) are = 0 on K¢ We
o

To
ask for a vector

U(X) = (ul(X), evey un(x))

defined on e(K) and such that: uo(x) and its derivatives of order < s(o) + 1 are

locally square integrable;
A(x, p)U(x) = 0 on  E(K);

u o_(x) - wc(x) and its derivatives of order < s(o) are = 0 on K,

Theorem 108 can be extended as follows: The preceding problem has the unique

solution

U(x) = A—l{ AW}

whare {Aw} has the following definition:

W(x) = 0 outside & (K); [AW] is a vector, whose components are almost every-
where defined functions such that
[AW] = A(x, p)W(x) outside K;

{Aw} = AW - [AW] is a vector whose components are distributions

and whose support belongs to K.

Cauchy's problem is the problem of finding on & (K) a solution

U(x) = (ul(x), soey um(x)) of the system
A(x, p)U(x) = O

such that uc(x) and its derivatives of order < s(o) have given values on K; K

verifies nowhere the equation of the characteristicj moreover the system belongs
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to Cauchy~Kowalewski's type:

t(’Z) = 0,

Theoi'em 109 can be extended as follows:

Cauchy's problem has always a unique solution, given by the preceding theorem,

if the data are sufficiently regular.
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§2. The proof of the preceding statements

The process (n°89-109) by means of which Theorems 93, 106, 108 and 109 were
deduced from Proposition 88 shows obviously that the preceding extensions of these
Theorems result from the extension of Proposition 88 to a hyperbolic system. Let
us state this extension (Propositions 115) and give its proof (n®116-119).

11h. Definition of a regularly hyperbolic system on a vector spaces X is-a

vector space; A(x, p) is said to be regularly hyperbolic when

h A(x, p) is regularly tmaerbolic (see n°69);
r}(A) - :Qx Fx(A) “ Qr;(h A) has an interior,
We study the system
A(xy p)U(x) = V(x)

where U(x) = (nl(x), ovey un(x)) is unknown

V(x) = (vl(x), sney vn(x)) is given.
Notation. 1) As in n°8l, /\ denotes a domain of = whose director cone is rx(A) ;
/,L( '?) denotes a positive function defined on /\ and such that on any closed cone

interior to rx(A)-

MEY = ol TEN™) tor |1¥ || —> 0

2) The norm ||rPU|| is defined as follows:
#0112 = 3 11:°)u | |2
~3) If the element h,t_c(x, f ) of the matrix H(x, %‘ ) belongs to H), (x, “g) (see
(110)), then the degree of h >\(x, }7:) is denoted by
m(e) = m(T),

Obviously:
m(o) = )Z) [s(P) = (V) + 1] (» such that hy,,¢ Hl)’
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o being given, there are elements h,. <,(x, %) of Hk such that
s(o) = () + 1 s mo);
hence

(11K) 8(0) = m(o) +1 < S\’;p t(Z)e

115. The agsertion to be proved is the following extension of Proposition 88:

Proposition 115, 1) There are a domain A\ and a function /u_(?) dependent

on A, 8(0), t(z°), but independent of V(x), with the following properties:

The equation A(x, p)U(x) = V(x) has at most one solution such that aatll

< © (for any f e A3 if Hrtvll < 0o this equation has at least ome solution

such that

[H=%0l] < () 1%l

2) The assumptions about M are that for any o and T

(1154) t(T) <M
(115.2) t(T) - 2[s(0) = m(o) +1] <M
(115, 3) t(T) = [8(c) = m(e) + L] + 24" 2 M,
Notes (11L) shows that (115.3) involves
(115.1) 24'< M,

Note. When the system reduces to an equation, the assumptions (115.1), (115,2)
(115.3) become =M < t < M, 2v€,'_<_ M; this last one is then superfluous,

At first we prove Proposition 115,1 when M is sufficiently large (n°116~117) 3

then we prove Proposition 115.2 (n°119).

116, Special cases. Proof of Proposition 115.1 when A(x, p) is a dlagonal

matrix, Proposition 115 does not differ from Proposition 88,

Proof of Proposition 115,1 when a, c,,(x, p)_has an order < s(o) = t(7) for

o ¥ 7« Let A(x, p) be a regularly hyperbolic diagonal matrix; let K(x, p) be a

matrix whose element k_ (x, p) has an order < s(0) = (7). The assertions to be

proved are:
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1) Alx, p)U(x) = K(x, p)U(x), ||2°v]] < co for E e [\ involve U(x) = O,
2) The equation ‘
A(x, p)U(x) = K(x, p)U(x) + V(x),
where ||r¥v]] < @ for £ e [}, has a solution U(x) such that

[%u]] < s CE) el

Proof of 1)s Proposition 115.1 can be applied to the diagonal matrix A(x, p)3

(83.10) can be applied to K(x, p)U(x); hence

[%ul] < wCE)|r®(x, PIU|| < comsts 4 (E)][%0] 1.
Now ? can be chosen such that consta /4 (?) < 1; hence U = 0,

Proof of 2). Applying Proposition 115 to the diagonal matrix A(x, p) and
(83410) to K(x, p)Ua(x), we define Uy(X); see, Ua(x), ¢se Such that

AGxy DUy = T, 12U | < w8 e,
A(x, p)U 1 = K(x, P)U_, [[rsUa+l|| <p (*g)llrsuall.
since M (%) = o(||<?: H"l)’ we can assume fL(f) <% on A U(x) = Ul(x) + oo

+ Ua(x) + +o» converges and satisfies

Az, DIU(x) = K(x, D)UGD) + V(x),  |[2%0]] < 20(E)[[x"v] s

117, Proof of Proposition 115.1, Notation, Assume that x and ?5-‘ commute
and defins
B(x, ¥) = H T(x, §)edot H(xy ¥ ):

B 0 o
[

B=| O B2 a
[}

]

9 ¢ © 6 0 0o o ©

where B./\(x, ‘g) a H';'(x, ‘g)ede'b H)Sx, ‘g). The element baT_(x, *g) of Bl(x, "‘;)
is a polynomial in §: , whose degree is

m(o) = [s(o) = t(z) +1] = m(?) = [s(0) = £(7T) + 1),
Define '




21k,

B(x, p)A(x, p) = C(x, p), A(x, p)B(x, p) = D(x, p)s
The element c, o(x, p) of C(x, p) has the order
s(o) ~s(z) +m(7)=~1forof T , m(co) for o= T,
The element d’co(x’ p) of D(x, p) has the order
m(o) + t(o) = t(7) - 1 for o ¥ -, m(a) for o = T,

c(x, p) and D(x, p) are regularly hyperbolic; according to n®116, Proposition

115.1 holds for C(x, p) and for D(x, p).

Proof of Proposition 115,1., There is a domain [\ such that
c(x, p) U(x) = 0 and ||r°U]| = O for 5 e AN
imply U(x) = O; hence:
A(x, p)U(x) = 0 and ||r®U]| = 0 for E e/\ imly U=0,
There are a domain /\ and a function o (’g) such that the equation
D(x, p)W(x) = V(x),
where ||r¥|| < for a A\, has a solution W satisfying

™5l | < wO)| et

Hence, upon application of (83.10),

U(x) = B(x, p)W(x)
satisfies
Az, DU = V), |]5°0]] < O]l

118, Schauder's functional ring is msed in the proof of Proposition 115,.2

(n®119) and 4in the study of the non-linear hyperbolic equations (Third Part),
Remember that £’ denotes the smallest integer > é .
Definition. Let M be an integer sueh that

(118.1) M> 24
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that 43t M>L + 1 (or M> 7 when £ is odd). The elements of Schauder's ring
Sch(M) are the functions c(x) defined over X and such thets

c(x) is bounded;

its derivatives of order > 0 and < M are square integrable.

Sch(M) has the following properties:

Lemma 118.1. An elemsnt of Sch(M) has bounded derivatives of order < M -2
(in particular of order < 2.

Proof. Sobolev's inequality (83.7).

Lemma 118,2, 1) Sch(M) is a ring.

2) The functions u(x) such that ||r™u|] < co for € e D\ constitute a vector
gpace over Sch(ﬁ) s if0e A\, they constitute an ideal of Sch(M).

Proof of 1). Let v, and u, € Sch(M); the derivatives of ul(x)ua(x) of order

< M are sums of products

Fd

v, (x)v,(x),
where va(x) is a derivative of ua(x) of order s ;

sl+sszn

Assume s, < 83 hence

25, <M< 2M - 2.2/

2
that is
82 < M "42’5

thus according to the preceding Lemma v

5 is bounded; now vy is square integrables

hence vl(x)vz(x) is squars integrable.

Proof of 2). let u, € Sch(M), ||r'u,|| < co. We have to show thst
llvl(x)vz(x)]l < Co 1f v,(x) and v,(x) are derivatives of order s, and s, of u,
gnd u, such that 8, *+ 8, < M. We have Just shown that:
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then
either 8, <M = J’,aSup |v;| < 0O and a bound of [|v,v,|]| 1is given by (83,6);
ors, <M -A'< 8, and a bound of HV]_VQH is given by (83.5),
The Third Part uses the

Lemma 118.3. Assume that

u, (%), uy(x), coey @ Sch(M);

and that for any constant 2/ :

Sup | F(x, Wys W eee)] < @,
xex,]wi|<2
atB e g0
3 1'°2 F(x, Wys Vs eer)
Sup o is square integrable
lwil<? Bxaawllaw aooo

over X when a + 4, + f’o * soe <M, Then

- F(x, ul(x), uz(X), ooo) € SCh(M)o

Proof. A derivative of order < M of F(x, ul(x) s ses) 13 2 sum of terms

(1"‘/31"'0 oe

° F 9 9 veeo
(118.2) e &, .-

axabwﬂlo oo VI(X) o VQ(X)

where vl(x), voey v/&(x) are derivatives of ul(x), ees Whose Orders 8y, es9y 8 P

are such that

(11803) /el + ﬂz + 00 =ﬂ

(118.L4) @48, S, + e +s < M,

3B =

We can assume

(118,5) lfsﬂ S e S8, S8

Hence, according to (118.5), (118.L) and (118.1),

/
292531+s2§AM§2M-2.ﬂ.;

that is
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/
S, <M -0
hence upon application of Lemma 118.1, v ﬁ(x)...vz(x) are bounded functions. If

then
8, SM - -2, vy (x) is also bounded and (118,2) is obviously square integrable.

Assume now

M~-L'< sq3

hence, replacing in (118.L) 8y M=-£'+1 and Spy seey S

I

by 1
o+ BN -,L’f M3

hence, according to (118,1)
a+psu=- L 'S

and using Sobolev's inequality (83.7)

ath teeo
o] /31 F(x, Wl, ooo)
Sup < o

XGX, |wi' < ] Bxcbwpl. '

-e

hence, since vl(x) is square integrable, (118.2) is square integrable,

119, Proof of Proposition 115.,2, N°116 and 117 showed that Proposition

115.1 holds when M is sufficiently large; we have to show that the assumptions
(115.1), (115.2), (:1.1503) are sufficient.

Lemma 119.1, If A(x, p)U(x) = V(x) and ||r5+lU[| < o, then

(119.1) 20| < p(ED] |2l
Proof. A(x, p)U(x) = V(x)
gives
C(x, P)U(x) = B(x, p)V(x)
that is
(119.2) °f’f(x’ p)up(x) = Wf(x)

(119.3) WF(X) = %bﬁf(x, p)v, (x) = O;IP °Pc(x’ p)uo(x).
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The coefficients of A(x, p) belong to Sch(M) (see (115.4)); hence, since
Sch(M) is a ring, the coefficients of B(x, p) belong also to Sch(M); and, since

cPU(x, p) =,§,b)o7_—(x, Plary(x, p),

P

Sch(M+s(5>) - m(f)) +1 - Stug (7))

the coefficlents of ¢ O(x; p) belong to the ring (see (115.3))

which contains Sch(M) (see (11L)); the .elements of this ring have bounded derive=
tives of order < L/ (Lerma 118,1), Hence:

(119.2) and Proposition 88 give

(119.1) [1=%0]] < ). (e 2™ |5

(119.3) and (83,10) give

(119.5) 1125 ™| | < const. ||r®v]| + const. ||r®u|;

we have tq,assume that the assumptions =M < t < M of Proposition 88 and of formula
(83,10) are satisfied:
M and t have to be replaced by

M+ s(p) -m(p) +1- S‘,;? t(z) and s(p) = m(p) + 1
we obtain the assumptions (115.1) and (115.2).
Now (119.1) follows from (119.k) and (119.5),
Proof of Proposition 115.2, The preceding Lemma shows that the solution of

A(x, p)U(x) = V(x)

is unique if ||r®*U|| < ©, et us show that it exists if ||r'v|| < o,

A(x, p) is the limit of a sequence of A*¥(x, p) such that: the coefficients of the
matrices A¥(x, p) are bounded; their derivatives of any order are square integrable,
this condition being uniformly satisfied by the derivatives of order < M.

According to‘Proposition 115,1 and to the precediné Lemma

At(xy p)U*(x) = V(x)
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has a solution U¥(x) such that
t
[#%04] < (1111,
,u,(g) being the same for all the functions U¥*; thus these functions U¥ have at

least one limit U, which satisfies

=%0l] < p (o) =]l



Third Part
Non=linear Equations and Systems
Introduction

A merely local existence théorem (n°127) can be proveds It ghows that for
hyperbolic equations the existence in the large of solutions depends upon the
obtaining of a priori bounds for their derivatives of order m + L+3m+Ae+2

which arc
if  is odd); except for equations / linear outside a small domain, thers are

no examples where such a priori bounds are known, (For ordinary differential
equations on the contrary this order is m and there are many types of equations
whose solutions exist in the large: see for instance the mechanics of material
systems depending on a finite number of parameters.)

Petrowsky [3L] proved this local e;istence theorem by a very complicated
process; thanks to the weakness of the assumptions about the coefficients in the
Second Part (t < M), we can simply use the method of successive spproximations,
that J. Schauder [36] applied to *  equations of second ordere. We state the

actual assumptions to be made. We prove furthermore a uniqueness theorem in

the large (n°127),

We do not solve the " mixed boundary value problem it 3 this problem has
been solved for the second order by Je. Schauder and M. Krzy;aﬁski (Studia
mathematica, vol. 6, 1936, p, 162-189, p. 190-198),

§1, Preliminary: Quasi~linear equations and systems

120, Notation. Let X be a vector space; let (xl, easy X —K) be the coordinates

of x € X3 let Y be the strip
0< x1 < o,
Let u(x) be a function defined on Y3 we define

[uf|? = /'i'f lu(x)|? exp(~2xe SLPRT Y

3
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2 2
Hrall® = % > 2 1o ull®5 1% Fal|® = [1r%]]% + 2 1]:%0.u]1? (s > 0).
A M A X
Waen £ =0, then ||u|| and [ 1x5u!! are denoted by I]ullo and llrsullo. Thus
= — . !
Hall = e (~x0 Blu(x)
|!ru]|2 = ||exp(-=x € hu(x)! % + 3 | |exp(~xa. ) u”2 etc.;
"// l‘o N P (‘E px o ©)
hence, when §= (€52 05 cray 0}y §1> 0

(120) 2%y ep(-08) 5 11eall, 5 115l

¢

Sobolev!s inequality (63-7} and its consequences (83,5), (83.8) hold.

Note 120.1. Assume that Z»n (83,7) and (83,5)

/
W= ane = pf "1y = 0 for x = 0; that in (83.8)
- o St -
U = wse le u"‘OfOI‘Xl— 0o

Defining u(x) = O for x, = O anc applying Sobolev!s inequality to the half
1

space X; < 0, we see that the constants ¥ used in (83.7), (83.5) and (83.8) are

;nde'oendent g_f_ Ce

1
-

The elements of the ring ScaM) are the functions c¢(x) such that:
c(x) is cefined on I;

c(x) is bounded;

its derivatives of order > 0 and < M are square integrable,
Lemmas 118,11, 118.2 and 118.3 nold-

Note 120,2, Ia Lerma 118,3 assume that

HrMuiHo <, u, = Piw = aes = prfmlui = 0 for x; = 0;

thon F(x, ul(x), onc) and its derivatives of order < M ~ @' and the integrals
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over Y of its derivatives of order > O and < M are bounded by functions of HrMuil l,

which are independent of o,

121, Llinear hyperbolic equations on a strip. Notation. a(x, p) is a linear

hyperbolic operator defined on the strip ¥Y; it is regularly hyperbolic (n%9); it

satisfies the assumptions 2° of n°8h; the first axis of = is inside r-x(a). The

order of a(x, p) is mj s and t are two integers such that
m=g=t+1; 0O<t<M .

Proposition 121. Let v(x) be a function defined on Y and such that:

v(x) and its first derivatives are locally square integrable; v(x) = O for .

xl=0.

1) The eguation

a(x, plu(x) = v(x) .g

has a unique solution u(x) defined on Y and such that: its derivatives of order <m

are locally square integrable;

u(x) = plu(x) 2 qae = pI]'_rlu(x) = 0 for x; = O.

2) Assume that ||r’v|| <co and, if t > 1, that

v(x) = pyv(x) = e00 = pf’lv(x) =0 onx, =0;

1

then there are a domain A and a function /L(‘g) (which depend continuously on a(x, p)

and t but are independent of v(x) and o) such that

(121.1) 1®al] < W ©Ie™]] gx & < A,
u(x) = pl"l(X) B eee ® pi-l\l(X) =0 .?_9_2 xl = 0,

Hence there is a function )’(o) (which depends only on a(x, p), t, o) such that:

—————— ——— —




(121.2) Heulf < Y (@I,

(123.3) y (o) = 0(0) (That is: 3’ (o) < const. o for g—> 0),

Proof of l. Extend a(x, p) and v(x) as follows to X:

a(x,, Xos seey xﬁs p) = a(x—l: Xpy eeey X5y p) for 0 X, 505
a(x1 + 20, x2,~ coey }fe’ P) = a(xl.') x2’ ereoy xﬂ.’ p);
v(x)s-Oforx1<0 and o < Xy»

Choose u(x) = O for X < 0., Apply Theorem 93 to the half space x < o, according
to n°103.

Proof of (121,1) when t = O, u(x)-is the restriction ¢o ¥ of the functioh u(x)
défined on X by Proposition 88; (121.1) follows from (88.1).

Proof of (121.1) in a spgclal case (1 <t) o Define u(x) = v(x) = 0 for xy < 0;

agsume that a(x, p) and v(x) have extensions to X satisfying the assumptions of Pro-
position 88, Then u(x) is-the restriction to Y of the function u(x) defined on X by
this Proposition. However (88.1) does no more show’ that (121.1) holds; indeed the
domain /\ and the function /u,( g) used by (88,1) depend oh the bounds of the ex-
tensions of a(x, p), v(x); now these bounds d¢ no more depend only on the given

bounds of a(x, p), v(x) on ¥Y; thus (88.1) shows only that
%]l < @ .

But the proof of (88,1), that is of Lemma 86,2, can be used on Y, Lemma 86,1 being
replaced by the inequality (121.1) where t = O, Hence (121.,1) holds for 1 £ ¢ <M.
The note 120,1 shows that A R /u..(?) can be chosen independent of o

Prgof of (121.1)s We approach a(x, p) and v(x) by approximations satisfying the
preceding assumption, where M is replaced by M + 1; we obtain approximations of u(x),

all of them satisfying the same inequality (121,1) where 0 <t <M, Hence u(x) also
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satisfies this inequality., These approximations and thereford u(x) also satisfy !

u(x) = Plu(x) S ses = pi-lu(x) = 0 on x.l = 0,
Proof of (121.2). According to (120) the inequality (121.1) shows that
t
[|x%ul], < () exm(agy) |rll,

where g = (?1’ 0, eoey 0), \é , being so large that ? € /\, When o is sufficientl;
small we choose o = g 11; hence

/A(E) exp(o El) = 0(0) for o—> 0,

122, A non-linear mapping defined by a linear hyperbolic equation. Notation.

Let
(122,1) a(x, v, p)u = b(x, v)

be g linear hyperbolic equation of order m, defined on the strip Y; u(x) is the un-
known function; b(x, v) and the coefficients c(x, v) of a(x, v, u) are functions of
x, of a given function v(x) and of its derivatives of order < m, Denote by b(x, W)
and c(x, W) the functions obtained by replacing in b(x, v) and c(x, v) the function
v and its derivatives of order < m by the components LA of a vector Wi we assume
that, when W is sufficiently small:

b(x, W) and c(x, W) are defined;

a(x, W, p) is regularly hyperbolic;

e

the first axis of the space = 1is inside rx(a) 3

a +ﬂl+..° '
9 b(x, W) )
Sup is square integrable over Y for OSat(3;+e..SM;
W ° 6 1
ax an L X N J
!
(122.2) Sup c(x, W) is bounded on Y;
CI'*‘@l""-oo
s 9 c(x, W) .
up e is square integrable over Y for 05a+g 1+...5Mo
W 1

Bx'bwl ece
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M> 20t (that s M> £+ 2 or > £ + 1 when £ 1s oad);

8 and t are integers such that
m=s=t+1, 2fr <t <M,
Wee assume moreover that:
b(x, 0) = plb(X, 0) = see = p.f'lb(x, 0) = 0 for x = 03
v | o 1s sufficiently small;

v(x) = plv(X) T o8 = pi-lv(x) = 0 for x; = 0,

Lemma 122, 7’ 12 72, eses denote positive numbers dependent on the functions
b(x, W), c(x, W), on Hrfv] |, and |{z°*|| ., but independent of o (assumed to be
bounded) .

1) The equation (122,1) has a unique solution u(x) defined on Y and such that

||rmu||° < @0, u(x) = pyu(x) = . = p;'_l-lu(x) = 0 for x, = 03
it satisfies the conditions
(122,3) “rsul Io < aflcr, u(x) = plu(x) = gee E pi-lu(x) = 0 for x, = O.
2) Replace v by v¥*: u becomes u¥*; we have
g=1 1 ,
(122.1) 2572 = w) | < 7,0l 2% (v = v)]] .

Proof of 1°, Lemma 118.3 shows that b(x, v) and c(x, v) belong to Sch(t);
b(x, v) is obviously square integrable; thus the assumptions 2° of n°8l, where M
is replaced by t, are satisfied; hence Proposition 121 can be applied: (122,3)
follows from (121,2); Note 120,2 shows that 71 can be chosen independent of oo

Proof of 2°, Obviously

(122,5)- - a(x, v¥, p)(uw* - u) = b(x, v*) ~ b(x, v) +a(x, v, p)u ~ a(x, v¥, plus
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An easy extension of Lemma 118.3 gives
e 2 bt v) = blx, I, < 25l1e5 e = 0
|12 e, v, p)n = alx e, phulll, < 7l Ir" e - 9]

where 77) depends on the functions e(x, W), on lIrSu||°, Ilrs-lvllo and llrs‘lv*llo;

according to (122.3) we can choose a coefficient 71 depending on b(x, W), c(x, W),

Itrsvllo, ]lrs-lv*llon If now we 2pply Proposition 121 (where t and s are replaced
by t~1 and s=1) to (122,5), we obtain (122.}4); Note 120.2 shows that ), can

de chosen independent of o,

123, The quasi-linear equations on a strip. We preserve the preceding notation;

in Lemma 122 we assume now that

Hedvilg < 7 1 < 2y (Fo> 02
We lessen the width ¢ of the strip Y so that (122,3) and (122.k) becoms
(123.1) HrSuHo < 7o u(x) = pyu(x) = «0o = pinlu(x) = 0 for x, = 0;

-1, 2 -1
(123,2)  ||z%7 i - w)l| <5 2" (v - V)| e

©

The total curvature of [—% is 29zumed to be > O,

Successive approximations give the following existence theorem:

Lemma 123.1, The quasi-linear equation
(123.3) a(x, w, p)u = bx, u)

has a wnique solution u(x) ¢sfined on the strip Y and satisfying (123.1)e

Proof. Uniquencss of u(x): Let u(x) and u¥(x) be two solutions of (123.3)

satisfying (123-1); (123.2) gives

rs-l(u - u¥) < % lrsﬁl(u - u*)||, that is u = u¥,
o 2

o



227,

Existence of u(x): Let ul(x) be a function satisfying (123,1); Lemma 122

gives a sequence of functions u.(x) (A =1, 2, ...) satisfying (123.1) and

A

a(x, Uy P 4 = bx, u’.L)s

moreover, according to (123.2)

1w 4 = w )l <7 270

hence uk(x) has a limit u(x) satisfying (123.1) and (123.3).

Let us state a uniqueness theorem:

Lemma 123,2, Assume that (123.3) has the solution u(x) = 0 en Y.
w*(x) =0onD

if the following assumptions hold:
w#(x) is defined on the domain D-of Y;
w*(x) has locally square integrable derivatives of order < 8 + 1;
(%) = eee piu*(x) = 0 on D for %, = 0;
a(x, uw¥, p)u* = b(x, u*) on D;
De Ef(D), vhere Ef is the emission defined by a(x, u¥, p)e

Proof, Assuming that w#(x) is defined on Y and that

wH(x) = oo p:SL-lu*(x) =0onY for Xy = 0,
a(x, w*, p)ut = b(x, u*) on D,

let us prove successively the following assertions:
o )
1° 1f $riut|| < y, then u*(x) = O on D;

2° 1 ||r%w*|| < @ , there exists o' > O such that

u*(x)=Ooanor0<x1<0";

Then



. S

228,
~3° 12 Hrsuu*]lo < @ and w(x) = 0 on D for 0 < x, < o', there exists

o' > ¢! such that

w#(x) = 0 on D for 0 < xy <o
1° 1 {|r*ue||_ < 0, then w#(x) = 0 on D.

The Lemma is an obvious consequence of 4°: in order to prove that w*(y) =0
if y ¢ D when w*(x) satisfies the assumptions of the Lemma, we replace u*(x) by
cp(x)u*(x) » where @ (x) = 1 near € f(‘Y): ¢ (x) = O near the boundary of D; we
define wt(x) = O outside D and we replace D by a neighborhood of & f(y) where
CP(x) = 1: the assumptions of L° are now satisfied,

Proof of 1°, In the proof of Lemma 123.1 (Existence), ehoose uy (x) = w(x)3
acecording to Proposition 92,2, ul(x) = wt(x) on D; now uA(x) tends to u(x) = 03
hence u#*(x) = O on D,

?;r_’ﬂ of 2°, Apply 1° t;a the strip 0 < x < o!, o! being so small that on this
strip Ilrsu*ll.o < Yo

Proof of 3%, et u'(x) be a function such that: u'(x) is defined on ¥; u'(x)
= wit(x) for _o;_ <x <q% uf(x) = 0 on D; “1‘5“'“0 <,

Replacing in 2° wt(x) by uw*(x) - u'(x), O by o', o' by e" we cbtain the con=

clusion to be proved:
w*(x) = 0 on D for o! < X, < o'

Such a function u'(x) can be obtained as follows: let b(x, p) be a regularly
hyperbolic operator of order s + 1 such that
¢ (b) c 0, (a(x, u¥, p)):
for instance:
b(x, § ) = bl(x, g)ba(x, € )eces .
bc(x, E) > 0 being a convex cone of order 2 (or 1 if a = 1, 8 even) containing

-

R aabaremre o M L

- me a
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batl(x’ g) > 0 and rx(a). (Choose for u!(x) the solution of
b(x, plut(x) = v'(x)
such that ut(x) = w*(x) for %1 <x <o, v1(x) being:

vi(x) = b(x, p)ut(x) for %:- <x <o

vi(x) = 0 for ot <x, <o.
Proof of 4% Let o be the largest number < o such that
m*(x)nOoanor0<x1<o*y

2° and 3° show that o* = o,

124, Local properties of special quasi-linear systems on a manifold. Notatiofi.

Let'X be a manifold. Let

(12h.1) A(x, U, p)U = B(x, U)

be a quasi~linear system;
al(x’ U, p) . 0
A(x,U,p)= © 0 6 2 0 06 @ @ 0 6 2 6 2 0 6 ®

0 o an(x, U, p)
is a dlagonal matrix whose element aT(x, U, p) is a differential operator defined
on S; its order is m(?);
B(x, U) = (bl(x’ U)’ seey bn(x, U)) olo), U(X) = (ul(x)’ eney un(x))

are vectors whose components are functions defined on X; bt(x, U) and the coefficients
of a t,(x, U, p) are functions of the functions uc(x) and of their derivatives of
order < 8(o) - t(T);



{

m(o) = s(a) = t(o) + 1;

i

of course s(c) and +(T) can be replaced by s’(c) + const., t(2) + const, If we
replace indb (x, U) or in a coofficient of %,(x, , p) the functions u (x) and théir
derdvatives of order < s(a) - (7)) by the components W, of a vector w we obtain
functions gz,(x, W) satisfying the following assumption @

s (x, w)
(12L.2) S&p is a locally square integrable function of x.

6x 3W(3‘oon

We assume t(7°) such that
(124 3) 24t < (1) s M),
We assume X to be
3\:% [n(z) + M(T), s(o) = t(T) + M(£7)] - smooths

let K be a hypersurface of X as smooth as X itself. Let
7{(x) = (v}_(x), nvos vn(x))

be a vector whose elements are frnctiong defined near K and such that
va(x) has locally square integrable derivatives of order < s(o) + 1;
a,r(x, v, p)v,t,~ b,z_(}:, T7) and ita derivatives of order < t(Z°) are = O on K;
A(x, V, p) is hyperbolic (n°110);
K is space like (i.e.¢ its tangents are outside C»)

Céuchy's problem asks for a solution U{x) of (124,1) such that:

uo,(x) has locally square integrsble derivatives of order < 8(o);
u '(aé) -v (x) and its derivatives of order < s(o) are = 0 on K}

oﬁpgéition 12L, 1) Let k € K; Cauchy's problem has at least one solution near k

2) m sdlitions U and U* of Cauchy's problem are equal near K if u .and ¥ have
M M ih‘hégz‘able derivatives of order < s(¢) + 1.

3’ ﬁ Hms solutions U and U* are defined near the point y and if U, and uk* x have
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locally square integrable derivatives of ordér < s(a) + 1, then y cannot be an
isolated point of & [(y) NS - W),

[8_ denotes i:he:emission of A(x, U, p)s 'S thé support,]

gg_o_ggg_f_lo_vgh;ggn= 1. U = u, is denoted by u, Abira, B by b Replacing u
by u = v we reduce the proof to the case v = O, We ‘Ho not change the lotal property
to be proved if we chahge %, alkx, u, p), b(x; u), X dutside a neighborhbéd 6f k so
that X becomes a strip; K a hyperplane, a(x, W; p) a regularly hyperbolic operators
Hence the property to be proved follows from Lemma 123.1.

Proof of 2° and 3¢ when n = 1, A similar change of the data transforms X inte
a strip, K into a hyperplane, u into 0, u¥ into a function satisfying

a(x, u*, plu¥ = b(x, u*), w*(x) = ees = powt(x) = 0 on Ky

inside g-domsin D such that D = £ (D), & . being the emission of a(x, uw¥, p)s Then
Lemma 123.2 is appliede.

The proof in the general case is similar: indeed n°123 can be easily extended
to the quasi~linear systems which we are studying,
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, §2. Non=linear equations

126, Notation. X is an £ -dimehsional (m + M)=~smooth manifold; wu(x) is an
unknown function; a(x, u) is a given funcbion of x, of u(x) and of its derivatives
of order <m, If we replace 0 and thes¢ derivatives by the components LA of a vector
W, we obtain a fﬁnction a(x, W) satisfying the following assumptions:
a(x, W) is defined on an openh sét;

oM
Sup mﬁL is a locally square integrable funhétion of x.
W axaaw YY)

¥We define

da(x, u)

1< Af:z_—;,xn;‘a, 3(pll..: ’\mu) P;\I"-le,

h(x, u, P) =

K is a given open orientated (m + M)~smooth hypersurface of X; v(x) is a given
function defined near K; h(x, v, p) is hyperbolic on K, which is space~like: the
cone Cx defined by h(x, v, p) at x € K does not contain any direction tangent to K;
we choose C_ directed towards the positive side of K. w(x) has locally square in-

tegrable derivatives of order < s + 1; a(x, v) and its derivatives of order <s - m *
are = 0 on K; 3 satisfies i

(125;1) m+£+2<s<m+M (ooo f3<ooo ifiiSOdd);
thus
\i"‘ 3 <M (o-o f cee if j is Odd).

Cauchy's problefn asks for a domain D and a function u(x) such that:

D ¢ X; K belongs to the boundary of D; D is on the positive side of Kj u(x) is
defined on Dj u(x) has locally square integrable derivgtives of order < s; u(x) = v(x)

and its derivatives of order < s are = 0 on K,

a(x, u) = 0 on D,
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126, Local properties. Lefma 126.'1. (Existence) Any point k of K has a

neighborhood where Cauchy's problem has at least oné solution.
Proofs Let b(p) be a linear operator of order 2 such that at k the opérator
h(x, V, p)b(p) is hyperbolic and the manifold K is space-like: its tangent hyperplane

is exterior to the cone C x(b)’ which containsg Cx(h). The condition:
w(x) = 0 near k
is equivalent to the conditions:

b(p)w(x) = O near k,
w(x) and its first derivatives are = O on X near k.

Thus Cauchy!s problem does not change when we replacé the non~linear equation

a(x, u) = 0

by the quasi-linear equation

b(p)a(x, u) = O.

Hence our assertion follows from Proposition 12L.le In its assumptions (12l,3) we

have to replace m(7 ), M(?"), s(o) bym+ 2, M = 2, s
t(o) =s(0) +1-m(o) =8 - m=1; 20/ =40+2 ord+ 1

hence (12h.3) becomes (125.1).

Note. The proof of the following Lemma could not use the preceding quasi=~linear
equation b(p)a(x, u) = O: its emission is the emission of h(x, u, p)b(p), which
differs from the emission of h(x, u, p).

Lemma 126.2. (Uniqueness) 1) Two solutions of Cauchy'!s problem are equal
near K.

2) If u and u¥ are solutions of Cauchy's problem defined near y é X, then y
cammot be an isolated point of 8 ,_(Y) N -S(u - ii*); 6 .. denotes the emissién of

gty e SR




%
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b(x, u, p) or h(x, uw¥, p).

Proof. The vector U(x) = (plu, 0sey pzu) satisfies the quasi~linear .system

pla.(;c, ) = 0y esey gea(x, u) = 0,

which belongs to the type studied in n°l2h; that ‘system céntains derivatives of
order < m of the components of U(x) and also u(x), which has to be considered as a
derivative of order =1 of one of the components of U. Its emission is the emission
defined by h(x, u, p)e Thus our assertion follows from Proposition 121, 2°, 3%

In its assurption (12L.3) and in its assertion we have to replace m(Z-), M ),
s(o) +1bymy M=1, 8 ~13

t(o) = s8(o) +1=mlo) = s ~m- 1;/ 2ft =4+ 2o0r £+ 1

thus (12L.3) becomes

m+,[+2<s§m+M (eee S8 < aee if,é is odd).

127, Properties in the large.

Theorem 127.1ls (Existence) Cauchy's problem has solutions.

‘ Proof, According to Lemma 126.1 there are closed subsets Ka of X such that
1) Cauchy's problem has a solution ua(x) near Ka;
2) K= U Ka; a point of K belongs to a finite number of Ka'
Let Na beaa neighborhood of ch in X so small that:
1) na(x) is defined on the part of N, belonging to the positive side of Kj

7"

2) ua(x) = uﬁ(x) T 400 = uy(x) on N_N Nﬂ N eee NN

(Lerma 126.2.1 proves the existence of such Na.)
Define u(x) = ua(x) on N ; a(x) is defined on the part of [} N, belonging to
(1
the positive side of K;j u(x) is a solution of Cauchy's problem,

Theorem 127.2, (Uniqueness) Ilet u, D be a solution of Cauchy!s problem. We
== S — - — - ——
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% 1

cgn obviouslx lessen D so thatzy

_‘ h(x, 4, p) é._’_s_ hyperbolic on D U K (sée n°98)
(437:3) g
én D any ma:‘:ingal(l) ti,mca;l.ike@) path originates from K.

Then u is the only solution of Saychirfs groblem defined on Ds

Proof. Let u*(x) be another solution of Cauchy's problem defined on D, Assume
S(u = u*) non void; choose x € S(u - uw*); let ¥% be a maximal timelike(z) path orig-
inating from y @ S(u = w*), According to Lemma 126.2,1 y # K3 thus u and u* are
defined near the point y, which is an isolated point of £ (y) N S(u = u*); that
s impossible, according to Lemma 126.2.2,

Notation. Let l,‘\ 2" (W\ [ (B(x, W, p)); let 6; be the cone dual to f"\x;
(when lﬁ\; is void, then 8:: is the whole hyperplane tangent to X at x)s We shall
consider domains D such that

on D any path whose length is finite and whose semi=tangents at x belong

(127.2) R
to C % originates from D U K,

Corollary 127.1s Let u, D and u%, D¥* be two golutions of Cauchy!s problem

such that:

u, D satisfies (127.1); D* satisfies (127.2).
Then
u = u* on DN D¥
Proofs u, D n D* satisfy (127.1) since C_ € Cye
Hence:

, A
Corollary 127.2. Assume that the tingents of K at x are outsids C.e There

AN
is a unique solution u, D of Cauchy'!s problem such that:

(1) Not belonging to another such path,
(2) with respect to h(x, u, p).
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AN v A A .
u, D satisfies (127{1); D satisfies (127.2); D ig maxifiale
Obviously, if u, D is any solution such that (127.1) hélds and that D is raximal,

i

A
then/ﬁc D,Q'fuonD.
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§3. Nén“linsar systems

' 128, Notation and :ieqjxitgg The notation is similar to the notation defined
by n °125;

U(x) = (w(x)5 seoy w (x))

is ‘an unknown vector whose components u G(x) are functions defined on D;
A(x’ U) = (al(x) U), ecoy an(x, U))

is a vector whose component aT(x, U) is a function of x, of uo(x) and of its

derivatives of order < s(o) - t(2) + 1; Sw ——5— | is a locally square
w aj{ awl cdo
integrable function of x, H(x, U, p) is a matrix whose elements are
%a.(x, U)

h, (% Uyp) = 2 C Py asepy  (pr= 5(a) = £(7) + 1);

L2 o 9 %57\25000 3(pAlooopA/Lu°_) ll )\‘/,_ /LL
we define m(o) as in n®11l; we assume an inequality more strict than (11L):
(128,1) s(o) = t(T) + 1 < m(o) when: h o€ H)k’ order H)L > 1,

V(X) = (Vl(X), coocy Vn(x))
is a given vector defined near K; H(x, V, p) is hyperbolic on K, which is space-like;
va(x) has locally square integrable derivativeg of order < s(o) +1; gt_(x, V) and

its derivatives of order < t(7") = 1 are = O on K;

-~

(128,2) : m(o) + L +2< s(o), () <M+ 1,

Cauchy's problem asks for D (K © D) and U(x) such that: uo,(x) has locally square
Integrable derivatives of order < s(o); u (x) - vc(x) and its derivatives of order
< 8(0) are = O on K3 A(x, U) = O on D,
Theorems 127.1 and 127.2, Corollaries 127,1, 127.2 hold (a, u, -h being replaced
T —re —
by A, U, H).
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Proof when H(x, W, p) is a diagonal matrix. .The system A(x, U) = O can be

studied by the method applied to the equation a(x, u) = O in §2, Then:

_I\_I_Qﬁg 127 In the assumptioi} {12842) M ¢an be replaced by M(Z" ).

_P_z_’_g__o_;:; Defihe B(xy U, p) 4s in noll?; upon application of (128.1), bP'L" (x, Uy p)
contains derivatives of u_ of order < s(o) =~ t(2') +1 < s(o) - s(fJ) + m( )o); thus
b?T(x, U, p)a,c_(x, U) contains derivatives of u_ of

order<s(o)-s(f) +m(f>) if P £ o
= m(? ) if? = 0

Thus the matrix H related to the equation(:

(128.3) B(x, U, p)A(x, U) =0

is diagonal: existence and uniqueness theorem hold for this equation, Hence the
uniqueness thecrerf::}iqor the equation A(x, U) = O under assumptions which turn out to
be (128,2)s Hence also the existence theore?n?*}lg's the uniqueness theorem holds for
the hyperbolic matrix H(x, U, p)B(x, U, p) (U given)$ that is; if U is sufficiently
regulary that is: under assumptions stronger than (128,2). If we weaken these as-
sumptions, then this existence theorem remains true so long as a priori bounds
exist for the solution of (128,3) (as in n°119, Proof of Proposition 115.,2), Hence

finally, using Note 127, the existence theorem under the assumptions (118.2).

(1) This equation is not necewsarily quasi=-linear if some of the H X have the order 1

Pre
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