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I. Introduction

I talk will be at the interface of the two topics
I moduli and singularities
I Hodge theory and degenerations of Hodge structures

I KSBA moduli space M for varieties X of general type —
in this talk restrict to surfaces

I local structure of Xsing is understood
I global structure less so — one exception is work of

Fransciosi-Pardini-Rollenske [FPR]†

I moduli space of polarized Hodge structures (PHS’s) and
their degenerations is better understood

I classification of limiting mixed Hodge structures/Q
(LMHS’s) and the incidence relations among them (cf.
work of Brosnan, Kerr, Pearlstein, Robles)‡

†References at the end of section
‡References also at the end of this section.
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I classical work on several variable degenerations of PHS’s
(Cattani-Kaplan-Schmid, also Kashiwara, . . . )

I needed: LMHS’s /Z — this will be discussed below

I goal of this talk is to relate the two topics — specifically
to discuss and illustrate how to use Hodge theory to
study the boundary structure of M

I three main results — definitions and notations to be
explained

I we consider a period mapping

(∗) Φ : B −→ Γ\D
��� ︷ ︸︸ ︷

quotient of a period
domain by a discrete
group containing the
monodromy group

@
@I︷ ︸︸ ︷

smooth
quasi-projective

variety
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Theorem A
Canonically constructed from the (∗) there is an extension

(∗∗) Φe : B // (Γ\D)Φ

∪ ∪
B // Γ\D

where B = smooth completion of B such that B\B = Z is a
normal crossing divisor. The image Φe(B) is a compact
complex analytic variety over which the augmented Hodge
bundle Λe is ample.

For weights n = 1 and 2, including the cases of algebraic
curves and surfaces, Λe is the usual Hodge line bundle.
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Remarks: (i) Set-theoretically Φe(B) is obtained by adding
to Φ(B) the associated graded to the variations of polarized
mixed Hodge structures associated to monodromy cones along
the strata of Z . For this reason we will call (∗∗) the
Satake-Baily-Borel (SBB) completion of (∗).

(ii) The construction is necessarily a relative one — it depends
on the Φ

(iii) In the non-classical case when D is not a Hermitian-
symmetric domain (HSD), the construction of Φe(B) is by
constructing local quasi-charts and using the full CKS theory
to glue them together.§

§Even in the classical case this construction is quite different from the
usual one.
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The projectivity of Φe(B) is proved by extending the classical
Kodaira theorem to the case where the variety and, especially,
the metric and curvature have singularities. Bigness and
nefness are relatively easier — ampleness is more subtle.

(iii) To further illustrate the non-classical nature of things,
C(Γ\D) = C and Γ may be a thin matrix group — then
vol(Γ\D) =∞ although vol(Φ(B)) <∞.

<◦>
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For the next result we restrict to the case of general type
algebraic surfaces and weight n = 2 PHS’s.

I M =KSBA moduli space with canonical completion M

I to apply the above result to period mappings

Φ : M→ Γ\D

and their completions, one traditionally uses blowing
up/branched coverings (base change) to arrive at

B

��

⊂ B

��

Φe // (Γ\D)Φ

M ⊂ M

<<y
y

y
y

y

For the study of moduli it is desirable to descend Φe to
the dotted arrow above.
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“Theorem B”
The mapping Φe factors by the dotted arrow above.

The “ ” is because there are issues of finite monodromy
groups and relatedly LMHS’s/Z that have yet to be properly
formulated and understood. What is established is that at the
set-theoretic level and for M

Gor
the dotted arrow mapping is

defined. The proof is by a detailed analysis of Gorenstein
KSBA degenerations. In the case at hand it contains an
extension and refinement of classical results of
Shah-Steenbrink and more recent work of Kollár-Kovács and
others on the relation between semi-log-canonical (slc) and Du
Bois singularities. With notations to be explained below, the
result has as a consequence the isomorphism

I 2,p
lim
∼= I 2−p,0(X )(−p)

of Hermitian vector spaces.
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Note: This is sometimes written as a non-canonical
isomorphism I p,0lim

∼= I p,0(X ).

Remark: In case Γ is arithmetic and assuming the existence
of a fan, Kato-Usui have constructed toroidal-type completions
(Γ\D)KU, and in this situation it seems feasible that there will
be a diagram

B
ΦKU //

Φe ##GGGGGGGGGG (Γ\D)KU

���
�
�

(Γ\D)Φ.

The dotted arrow means that the map is only defined on the
image of ΦKU. The K-U construction is absolute, not relative,
and depends on Γ being arithmetic.

10 / 53



Remark: In the examples to be discussed, we will see that for
normal Gorenstein degenerations we have

(Γ\D)KU

��
N

99ttttt Φe // (Γ\D)Φ

where here the dotted arrow means that the map Φe lifts up
to finitely many choices — i.e., the extension data in the
LMHS’s is discrete; this is in contrast to the case of algebraic
curves, and other classical cases.

<◦>
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I Examples — Interested in non-classical phenomena so
consider algebraic surfaces X with

I q(X ) = 0 (regular)
I pg (X ) = 2
I small K 2

X ; specifically equal to 1,2.

Also will consider Noether extremal surfaces.

I Those with K 2
X = 1 are classical, and the boundary

structure of their moduli space MI has been studied in
the nice series of papers by [FPR].

I In both cases the period mapping

Φ : M→ Γ\D

satisfies generic local Torelli (for I -surfaces also done
independently by Carlson-Toledo and by
Pearlstein-Zhang).
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I For pg = 2 the infinitesimal period relation is a contact
system — for I surfaces Φ(M) is a contact submanifold
— for H-surfaces it is of codimension 1 in a contact
submanifold.

I In both cases the canonical model is a complete
intersection in a weighted projective space and one may
suspect that the result is general for such surfaces.

For Noether extremal surfaces local Torelli holds but the
canonical model is far from being a complete intersection.
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I The boundary structure for pg = 2 has the picture

II
LLLLLLL

0 I

uuuuuuu

IIIIII IV V

III

rrrrrr

which represents different equivalence classes of
LMHS’s/Q — not a linear ordering as in the classical
case, but it is transitive (not always the case in
non-classical case).

I There is also a classification of diagrams as above where
the full monodromy cone σ is used (cf. references below)
— however, don’t know of examples where dim = 2.

I By LMHS/Z we will mean the data of LMHS/Q and
semi-simple part T s of monodromy. Consideration of
these gives refinements of the above diagram.
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Theorem C
The extended period mapping

Φe : ∂MGor
I ,ref → ∂(Γ\D)Φ,Z

is a map of stratified varieties that is

(i) 1-1 mapping components to components

(ii) surjective to Q-components of ∂(Γ\D)Φ.

Thus in the Gorensetin I surface case as will be further
explained below the extended period mapping may be said to
capture the structure of the boundary moduli. Much of the
result extends to H-surfaces but the complete story is work in
progress.

I In the following tables all the singular X ’s are normal and
Gorenstein.
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Stratum HT bdry minimal K (X̃ ) pg (X̃ ) q(X̃ )
component resolution{

N1 ⊃ N0
1

N2 ⊃ N0
2

I, II

I, II

blow up K3

minimal elliptic

0

1

1

1

0

0
N2,2 ⊃ · · ·
N1,2 ⊃ · · ·
NR

1,1 ⊃ · · ·
NE

1,1 ⊃ · · ·

III, IV, V

III, IV, V

III, IV, V

III, IV, V

rational

rational

rational{
blow up
Enriques

}
−∞
−∞
−∞

0

0

0

0

0

0

0

0

0{
N1,1,2

N1,1,1

V

V

ruled

ruled

−∞
−∞

0

0

1

1

I elliptic singularities are hypersurface ones — by inspection
of tables in Arnold the degree is determined by Coxeter
element which is in T s . In this sense the LMHS/Z
captures the fine stratification of ∂MGor

I .
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I H-surface cases have additionally

Stratum HT type κ pg (X̃ ) q(X̃ )

N1,1,2 I T1 × T2 0 1 2

N4 I K 2
X̃

= 1 2 1 0

I most of the rest of the normal H-surface classification
follows I -surface pattern

I non-normal case
I K (X̃ ) = −∞, 0

I
��

I

H

{
P2, dP of degree 1
minimal ruled with q(X̃ ) = 1

HH P1 × P1, dP of degree 2??

X̃
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II. Moduli

I Consider surfaces X such that
I X is of general type
I X is either smooth or has canonical singularities
I X has given numerical characters

K 2
X , q(X ), pg (X ).

Usually one says given χ(OX ), but as we are interested in
Hodge theory we use q(X ), pg (X ).

I Then it is known that there is a good moduli theory.

(General reference: Kollár, Moduli of varieties of general type,
Handbook of Moduli, Vol. II)
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I For such a moduli space M there is a canonical

completion M
KSBA

due to Kollár, Shepherd-Barron,
Alexeev.

I For a family
X∗

��
∆∗ //M

one wants to uniquely fill in the fibre X0 over the origin
— informally one does this by requiring

(a) X0 has semi-log-canonical (slc) singularities (local)
(b) KX0 is ample (global).

For both of these KX0 is assumed Q-Cartier.

Equivalently for X
π−→ ∆

(a′) X has canonical singularities
(b′) ωX/∆ is relatively ample.
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I The resulting M exists, is unique and is projective.

I The following is a partial (4 exceptions) list of the possible
singularities taken from Kollár (loc. cit.) — the ones
marked with ∗ are Gorenstein, which for Hodge-theoretic
purposes to be explained below are particularly important.

I For the Gorenstein ones there are also natural and
relatively simple semi-stable-reductions (SSR).

I The innocent looking class (3.3.4) contains a wealth of
examples that may be constructed combinatorially by
gluing — we will give one such below.
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Kollár’s list

3.2 (List of log canonical surface singularities).

∗(3.2.1) Terminal = smooth.

∗(3.2.2) Canonical = Du Val (= rational double point).

(3.2.3) Log terminal = quotient of C2 by a finite group of
GL(2,C) that acts freely outside the origin. A more
detailed list is the following:

(a) (Cyclic quotient)

c1 − · · · − cn.

(b) (Dihedral quotient) Here n = 2 with dual graph

c1 − · · · − cn

2

2@

�
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(c) (Other quotients) The dual graph has one fork (with Γi

as in (a))
Γ1 c0 Γ2

Γ3

with three cases for (det(Γ1), det(Γ2), det(Γ3)):

(Tetrahedral) (2, 3, 3)
(Octahedral) (2, 3, 4)
(Icosahedral) (2, 3, 5).

∗(3.2.4) Log canonical

(a) (Simple elliptic) Γ = {E} has a single vertex which is a
smooth elliptic curve with self intersection 5 −1.
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(b)∗ (Cusp) Γ is a circle of smooth rational curves, at least
one of them with ci = 3. (The cases n = 1, 2 are
somewhat special.)

c1

cn − · · · − cn+1

c2 − · · · − cr−1

@ �

@
cr

�

If X is a non-normal semi-log-canonical surface
singularity, then we describe its normalization X̃ together
with the preimage of the double curve B̃ ⊂ X̃ .

3.3 (List of semi-log-canonical surface singularities).
There are three irreducible cases.

(3.3.1) (Cyclic quotient, one branch of B̃)

•
1− 1

det Γ c1 − · · · − cn
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∗(3.3.4) (Possibly reducible cases) We can take several
components as above and glue them together along two
local branches of B̃.

It is this last class that allows one to do combinatorial (or
tropical) type constructions.

As mentioned one may describe a natural semi-stable (SSR)
reduction prescription for the ∗-surfaces. They are of the
general form

X̃ ∪ Y ∪ Z

where Y = P1-bundle over B̃ and Z = rational surface arising
from B̃sing.
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III. Hodge theory

I Polarized Hodge structure (PHS)
(V ,Q,F •) with V = Q-vector space

I Q : V ⊗ V → Q non-degenerate
I F pVC with F p ⊕ F n−p+1 ∼−→ VC
I Hodge-Riemann I and II

I V p,q = F p ∩ F
q

and
I VC = ⊕

p+q=n
V p,q, V p,q = V

q,p
(Hodge decomposition)

I F p = ⊕
p′≥p

V p′,q

I dimV p,q = hp,q (Hodge numbers)

I Example: Hn(X ,Q)prim where X is a smooth projective
variety /C
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I Mixed Hodge Structure (MHS)
(V ,W•,F

•) where F • induces a Hodge structure of
weight m on

GrWm V = Wm/Wm−1.

I VC ∼= ⊕
p,q

I p,q where I p,q ≡ I
q,p

modWp+q−2

(Deligne decomposition). Then

I p,q ∼=
(
GrWm V

)p,q
.

Example: V = Hn(X ,Q) where X = complete variety /C
and the weights satisfy 0 5 m 5 n

I N ∈ EndQ(V ) nilpotent with Nn 6= 0, Nn+1 = 0 gives
Wk(N) with

I 0 5 k 5 2n
I N : Wk(N)→Wk−2(N)

I Nk : Gr
W (N)
n+k V

∼−→ Gr
W (N)
n−k V
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I limiting mixed Hodge structure (LMHS)
(V ,W•(N),F •lim)

I will always have a “Q” in the background but will omit
reference to it

I Example: smooth projective family

X∗ → ∆∗

with unipotent monodromy T = eN

 Hn
lim = (V ,W•(N),F •lim)

I D = period domain of PHS’s with given hp,q = dimV p,q

I D = GR/H, H compact

I D = HSD ⇐⇒

{
n = 1

n = 2 and h2,0 = 1
(classical case)

I for n = 2

D = SO(2a, b)/U(a)× SO(b).
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I in non-classical case with all hp,q 6= 0 there is a unique
minimal, GR-invariant and bracket generating I ⊂ TD
(infinitesimal period relation (IPR))

Example: n = 2 and h2,0 = 2 =⇒ I = contact system
I compact dual Ď = {F • : Q(F p,F n−p+1) = 0}

I Ď = GC/P = homogeneous rational projective variety
I D = open GR-orbit in Ď
I GR-orbit structure of ∂D is very rich (Matsuki duality,

etc.)

I period mapping is

Φ : B → Γ\D

I locally liftable ( =⇒ monodromy representation
Φ∗ : π1(B)→ Γ is defined)

I holomorphic
I Φ∗ : TB → I .
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I Example: Φ : ∆∗ → Γloc\D where Γloc = {Tm}
 LMHS (V ,W•(N),F •lim) where Flim ∈ Ď.

I Example: nilpotent orbit is F → exp(zN) · F0, z ∈ H and
F0 ∈ Ď

I N · FP
0 ⊆ F p−1

0
I exp(zN)F0 ∈ D for Im z � 0
 Φν : ∆∗ → Γloc\D.

Theorem (Schmid)
Any Φ strongly approximated by a nilpotent orbit Φν .

I Classification of (equivalence classes of) nilpotent orbits
(Brosnan, Kerr, Pearlstein, Robles)

I Conclusion: Given X∗ → ∆∗ we know what the possible
GrW (N) (LMHS’s)/Q are.

31 / 53



I Now consider the several parameter situation — localizing
Φ : B → Γ\D around a point of Z = B\B (= NCV)
leads to the

I Φ : ∆∗k ×∆` → Γloc\D where Γloc arises from a
monodromy cone σ = spanR+{N1, . . . ,Nk} with
[Ni ,Nj ] = 0

I W (N) independent of N ∈ σ
I relative weight filtration property (RWFP)
I for t = (t1, . . . , tk) ∈ ∆∗k and w = (w1, . . . ,w`) ∈ ∆`,

setting `(tj) = log tj/2πi .

Theorem
exp
(∑

j `(tj)Nj

)
· F0(w) strongly approximates Φ.

I Asymptotics of several variable families of PHS’s are quite
subtle (Cattani-Kaplan-Schmid) (for f (x1, · · · , xk) defined
for xj > 0, lim f (λ1t, · · · , λkt) may exist for all λ but
limx→0 f (x) may not exist — need to analyze sectoral
behavior).
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IV. The extended period map: Theorems A and B

I Given a smooth quasi-projective variety B and a period
mapping

Φ : B → Γ\D

one seeks to define an extension (Γ\D)Φ, depending on
Φ, such that for any smooth completion B with
B\B = Z = ∪Zi a NCV we have

B Φ // Γ\D
↓ ∩

B
Φe // (Γ\D)Φ
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I This is work in progress — here we shall only deal with an
extension M of the image M = Φ(B) to have

B Φ //M ⊂ Γ\D
∩ ∩
B

Φe //M .

I The main point here is that the global Lie theoretic
methods used by Baily-Borel are not applicable; a
different approach — which is even interesting in the
classical case — is necessary.¶

¶For D 6= HSD, the quotient Γ\D has no non-constant meromorphic
functions and we may have vol(Γ\D) =∞.
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I The steps are

(i) analyze the structure of nilpotent orbits to define
monomial maps

µ : ∆k −→ CN

whose fibres are those of the set-theoretric map given on
strata by

ΦI : ∆∗I → Gr(LMHSI);

(ii) extend (i) to arbitrary local period maps to give
quasi-charts

∆k ×∆` → Γloc\D;

(iii) show that the local quasi-charts patch together to give a
global mapping

B
Φe−→ M

whose image is a compact, complex analytic variety;‖

‖We may think of M as the quotient of B by the relation to have
equivalent Gr(LMHS)’s — operative word here is “equivalent.”
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(iv) show that the augmented Hodge line bundle is defined as
a holomorphic line bundle Λe → M and that it is ample.

I Key local questions:

(a) What are the fibres of a nilpotent orbit?
(b) How do the closures of the fibres of nilpotent orbits on

the strata ∆∗I meet the faces of ∆k?

(a) When is a monomial tB = tb1
1 · · · t

bk
k , bj ∈ Z=0 constant

on the fibres of a nilpotent orbit? Set

R =

{
A = (a1, . . . , ak) :

∑
j

ajNj = 0

}
.
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Since the vector field given by a non-zero
∑

j ajNj doesn’t
vanish on D, using

Φ∗(tj∂/∂tj) = Nj

the condition is

0 =

(∑
j

ajtj∂/∂tj

)
tB = (A,B)tB

=⇒ B ∈ R⊥.

I R = Q-vector space — from Farkas’ lemma in linear
programming

R⊥ spanned by vectors in first quadrant Qk+

=⇒

{
monomial mapping µ : ∆k → CN has

same connected fibres as nilpotent orbit

}
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I use coordinate change

t ′j = etj (t,w)tj

adapted to Φ to define

µ : ∆k ×∆` → CN

with same connected fibres as Φ in ∆∗k ×∆`.

I µ(∆k ×∆`) fibres over the parameter space with
toroidal-type fibres which are open sets in W \V ∗ where
W ⊂ CN is an algebraic variety, V ∗ ⊂ V is a Zariski open
in a proper subvariety V ⊂ W .

I relative weight filtration property (RWFP) now leads to

for I ⊂ J closure of fibres of µJ ⊆ fibres of µI

(compatibility across strata)
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I the relation
∑

aiNi = 0 above is replaced by∑
j∈I c

ajNj ∈ W
(W (NI )
−1 (V );

I construction does not fall in standard analytic or algebraic
geometry frameworks; standard methods of quotienting
by an equivalence relation don’t apply — need to use
special circumstances plus global results from VHS

(b) from CKS with refinements by Kawamata, Kollár and
others

I Chern form of Λe → B is represented by a closed (1,1)
current (= differential form with distribution
coefficients) — not sufficient for what is needed here —

I traditional problems with distributions are
I cannot be multiplied
I cannot be restricted to submanifolds
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Theorem
Chern forms of Hodge bundles can be multiplied and restricted
to Z ∗I to give Chern forms of Hodge bundles associated to
Gr(LMHSI)

Requires analysis of singularities of Chern forms in T ∗B
(refined wave-front-set analysis in sectors in N∗

Z∗I /B
)

I for ξ ∈ TB the condition

ωe(ξ) = 0

can be defined (although in general the “value” ωe(ξ)
cannot be). Then

equation ωe = 0 in TB defines the fibres of B
Φe−→ M

 ampleness of Λe → M .
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V. Examples of Theorem C

I Will illustrate the normal cases and one non-normal case
of I -surfaces X — recall

I K 2
X = 1, h2(OX ) = 2

I KX ample
I We shall restrict to the Gorenstein case since only these

singularities can contribute non-trivially to the LMHS/Q.
I The non-Gorenstein singularities contribute finite

(including trivial) monodromy, and bounding these is
interesting but we have nothing much to say here.
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I Nd1,...,dk =

{normal I -surfaces with simple
elliptic singularities p1, . . . , pk
of degrees d1, . . . , dk .

I k 5 3 — in general Hodge theoretic argument gives
k 5 h2(OX ) + 1.

I For I -surfaces di 5 3 (for H-surfaces di 5 4 — don’t yet
know a general result other than di 5 9).

I General philosophy: One can frequently use Hodge theory
to bound the complexity of Xsing.
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I Warm up: Picture for N2 suggested by LMHS/Z
I General X has Hg1(X̃ ,Z) containing Z2 with intersection

form
( −2 2

2 −1

)
— basis classes are effective

I LMHS has �
�

HH Gr3
∼= H1(C̃ )(−1) ( =⇒ Gr1

∼= H1(C̃ ))

Gr2
∼= H2(Xmin)prim

I MHS H2(X ) computed from

(X̃ , C̃ )→ (X , p)

I # of PHS with parameters Gr3⊕Gr2 = 19 + 1 = 20

I Hodge theory suggests picture
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C̃

X̃ C̃ 2 = −2

C

E

X

p

{
Xmin = K3

C 2 = 2
=⇒ Xmin

2:1−→ P2

branched over D

D
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I dimMI = 28

I dim Ñ2 = 27 = 20 + (9− 2)

I from the picture obvious that
I I 2,0

lim
∼= I 2,0(X ) ∼= H2,0(Xmin)

I I 2,1
lim
∼= I 1,0(X )(−1) ∼= H1,0(C̃ )(−1)

I I 2,2
lim = 0 since N2 = 0.

I in general for X→ ∆ on X̃ = Blp1···pkX we have

exceptional surfaces Yi
∼= P2 with C̃i ∈ |OYi

(3)| — Blow
up 9− di points on Yi to get Del Pezzo of degree di —
# moduli = 1 + (9− di)− 1 = 9− di
=⇒ SSR’s for X ’s has

∑
i 9− di moduli
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stratum dimension minimal
resolution X̃

k∑
i=1

(9− di ) k codim

in MI

N∅ = M1,3 28 general type

N2 20 blow up of
a K3-surface

7 1 8

N1 19
minimal elliptic surface

with χ(X̃ )=2
8 1 9

N2,2 12 rational surface 14 2 16

N1,2 11 rational surface 15 2 17

NR
1,1 10 rational surface 16 2 18

NE
1,1 10 blow up of an

Enriques surface 16 2 18

N1,1,2 2
ruled surface with

χ(X̃ )=0 23 3 26

N1,1,1 1
ruled surface with

χ(X̃ )=0 24 3 27
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I case k = 3 and rank N = 2 occurs when the pi fail to
impose independent conditions on limt→0 H

0(Ω2
Xt

).

I N0
d1,...,dk

refinements obtained by degenerating the elliptic
curves to cusps; then N2 6= 0 and all the possibilities with
rank N2 = 1, 2 can be achieved.

Conclusion:

codim =
k∑

i=1

(9− di) + k ;

i.e., {
SSR’s for X ’s with

k elliptic singularities

}
has codim k
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I Non-normal case have (X̃ , C̃ ,Ei , τ) and (X ,C ) where

C = C̃/τ and Ei give cycles that are contracted to
singular points on C .

I Will give two examples due to Liu-Rollenske

Example 1: X̃ = P2, C̃ = smooth plane quartic and

τ : C̃ → C̃ elliptic involution, no Ei

 


I 2,0
lim = (0)

I 2,1
lim
∼= H0(Ω1

C̃
)−

I 2,2
lim = (0).
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I degeneration picture in non-normal case

A
H
HHj ���

-

s
s

i
B

C Di
i is ss s

I A←→ smooth

I B ←→ C̃ smooth

I C ←→

{
C̃ + E

C̃1 + C̃2 + E1 + E2

}

I D ←→


LMHS is Hodge-Tate; will

need to analyze monodromy

cone to classify — yet to be done
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I conjectural case of most degenerate I -surface
I for g = 2 curves have

$

rigid, monodromy cone σ maximal
I replace (P1, three points) by (P2, four lines)

τ
τ

τ

τ

τ

τ

L1 L2

L3 L4

P

One choice of τ is drawn in. Dotted lines are exceptional divisors Eij
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I for I surface

L1

L2 L3

L4

P2

I identify L1 and L2 by

12←→ 21
13←→ 24
14←→ 23


similarly for L3 and L4

Question: Is this X uniquely determined by its
(LMHS/Z, σ)?
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I Noether extremal surfaces
I pg 5 1

2K
2
X + 2

I case of equality can be analyzed and canonical image is
2:1 branched covering

X → S ⊂ Ppg−1

where S has minimal degree
I local Torelli holds
I pluricanonical ring is complicated but geometry is

relatively simple

52 / 53



Question: Can we use GIT for the analysis of branch curve
B ⊂ S (non-reductive group)?

I Conclusions
I Given M there is a canonical minimal completion of the

image of the period mapping.
I The Hodge-theoretic boundary structure is understood,

and in early examples this provides a guide to the
structure of ∂M.

<◦>

Thank you
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