Hodge Theory and Moduli

Phillip Griffiths*

^{*}Talk at the Algebraic Geometry and Applications Conference, St. Petersburg, May 2018 based on joint work with Mark Green, Radu Laza, and Colleen Robles

Outline

- I. Introduction
- II. Moduli
- III. Hodge theory
- IV. The extended period map Theorems A and B
- V. Examples of Theorem C

I. Introduction

- talk will be at the interface of the two topics
 - moduli and singularities
 - Hodge theory and degenerations of Hodge structures
- ► KSBA moduli space M for varieties X of general type in this talk restrict to surfaces
 - local structure of X_{sing} is understood
 - global structure less so one exception is work of Fransciosi-Pardini-Rollenske [FPR][†]
- moduli space of polarized Hodge structures (PHS's) and their degenerations is better understood
 - classification of limiting mixed Hodge structures/Q (LMHS's) and the incidence relations among them (cf. work of Brosnan, Kerr, Pearlstein, Robles)[‡]

 $^{^{\}dagger}$ References at the end of section

[‡]References also at the end of this section.

- classical work on several variable degenerations of PHS's (Cattani-Kaplan-Schmid, also Kashiwara,...)
- \blacktriangleright needed: LMHS's $/\mathbb{Z}$ this will be discussed below
- ▶ goal of this talk is to relate the two topics specifically to discuss and illustrate how to use Hodge theory to study the boundary structure of M
- three main results definitions and notations to be explained
- we consider a period mapping

Theorem A Canonically constructed from the (*) there is an extension

$$(**) \qquad \Phi_e: \overline{B} \longrightarrow (\Gamma \setminus D)_{\Phi} \\ \cup \qquad \cup \\ B \longrightarrow \Gamma \setminus D$$

where $\overline{B} =$ smooth completion of B such that $\overline{B} \setminus B = Z$ is a normal crossing divisor. The image $\Phi_e(\overline{B})$ is a compact complex analytic variety over which the augmented Hodge bundle Λ_e is ample.

For weights n = 1 and 2, including the cases of algebraic curves and surfaces, Λ_e is the usual Hodge line bundle.

Remarks: (i) Set-theoretically $\Phi_e(\overline{B})$ is obtained by adding to $\Phi(B)$ the associated graded to the variations of polarized mixed Hodge structures associated to monodromy cones along the strata of Z. For this reason we will call (**) the *Satake-Baily-Borel* (SBB) completion of (*).

(ii) The construction is necessarily a $\mathit{relative}$ one — it depends on the Φ

(iii) In the non-classical case when D is not a Hermitiansymmetric domain (HSD), the construction of $\Phi_e(\overline{B})$ is by constructing local quasi-charts and using the full CKS theory to glue them together.[§]

 $^{{}^{\$}\}mbox{Even}$ in the classical case this construction is quite different from the usual one.

The projectivity of $\Phi_e(\overline{B})$ is proved by extending the classical Kodaira theorem to the case where the variety and, especially, the metric and curvature have singularities. Bigness and nefness are relatively easier — ampleness is more subtle.

(iii) To further illustrate the non-classical nature of things, $\mathbb{C}(\Gamma \setminus D) = \mathbb{C}$ and Γ may be a *thin* matrix group — then $\operatorname{vol}(\Gamma \setminus D) = \infty$ although $\operatorname{vol}(\Phi(B)) < \infty$.

For the next result we restrict to the case of general type algebraic surfaces and weight n = 2 PHS's.

- $\mathcal{M} = \mathsf{KSBA}$ moduli space with canonical completion $\overline{\mathcal{M}}$
- to apply the above result to period mappings

$$\Phi: \mathcal{M} \to \Gamma \backslash D$$

and their completions, one traditionally uses blowing up/branched coverings (base change) to arrive at

$$\begin{array}{cccc} B & \subset & \overline{B} \xrightarrow{\Phi_{e}} (\Gamma \backslash D)_{\Phi} \\ & & & & \\ & & & \\ & & & \\ \mathcal{M} & \subset & \overline{\mathcal{M}} \end{array}$$

For the study of moduli it is desirable to descend Φ_e to the dotted arrow above.

"Theorem B"

The mapping Φ_e factors by the dotted arrow above.

The "" is because there are issues of finite monodromy groups and relatedly LMHS's/ \mathbb{Z} that have yet to be properly formulated and understood. What is established is that at the set-theoretic level and for $\overline{\mathcal{M}}^{Gor}$ the dotted arrow mapping is defined. The proof is by a detailed analysis of Gorenstein KSBA degenerations. In the case at hand it contains an extension and refinement of classical results of Shah-Steenbrink and more recent work of Kollár-Kovács and others on the relation between semi-log-canonical (slc) and Du Bois singularities. With notations to be explained below, the result has as a consequence the isomorphism

$$I_{\rm lim}^{2,p} \cong I^{2-p,0}(X)(-p)$$

of Hermitian vector spaces.

Note: This is sometimes written as a non-canonical isomorphism $I_{\lim}^{p,0} \cong I^{p,0}(X)$.

Remark: In case Γ is arithmetic and assuming the existence of a fan, Kato-Usui have constructed toroidal-type completions $(\Gamma \setminus D)_{\rm KU}$, and in this situation it seems feasible that there will be a diagram

The dotted arrow means that the map is only defined on the image of $\Phi_{\rm KU}$. The K-U construction is absolute, not relative, and depends on Γ being arithmetic.

Remark: In the examples to be discussed, we will see that for normal Gorenstein degenerations we have

where here the dotted arrow means that the map Φ_e lifts up to finitely many choices — i.e., the extension data in the LMHS's is *discrete*; this is in contrast to the case of algebraic curves, and other classical cases.

- Examples Interested in non-classical phenomena so consider algebraic surfaces X with
 - q(X) = 0 (regular)
 - $p_g(X) = 2$
 - small K_X^2 ; specifically equal to 1,2.

Also will consider Noether extremal surfaces.

- ► Those with K²_X = 1 are classical, and the boundary structure of their moduli space M_I has been studied in the nice series of papers by [FPR].
- In both cases the period mapping

$$\Phi: \mathcal{M} \to \Gamma \backslash D$$

satisfies generic local Torelli (for *I*-surfaces also done independently by Carlson-Toledo and by Pearlstein-Zhang).

- For p_g = 2 the infinitesimal period relation is a contact system for *I* surfaces Φ(M) is a contact submanifold for *H*-surfaces it is of codimension 1 in a contact submanifold.
- In both cases the canonical model is a complete intersection in a weighted projective space and one may suspect that the result is general for such surfaces.

For Noether extremal surfaces local Torelli holds but the canonical model is far from being a complete intersection.

• The boundary structure for $p_g = 2$ has the picture

which represents different equivalence classes of LMHS's/ \mathbb{Q} — not a linear ordering as in the classical case, but it is transitive (not always the case in non-classical case).

- There is also a classification of diagrams as above where the full monodromy cone σ is used (cf. references below)
 — however, don't know of examples where dim ≥ 2.
- ► By LMHS/ℤ we will mean the data of LMHS/ℚ and semi-simple part T^s of monodromy. Consideration of these gives refinements of the above diagram.

Theorem C The extended period mapping

 $\Phi_{e}:\partial \mathcal{M}_{I,\mathrm{ref}}^{\mathrm{Gor}}\to \partial (\Gamma \backslash D)_{\Phi,\mathbb{Z}}$

is a map of stratified varieties that is
(i) 1-1 mapping components to components
(ii) surjective to Q-components of ∂(Γ\D)_Φ.

Thus in the Gorensetin *I* surface case as will be further explained below the extended period mapping may be said to capture the structure of the boundary moduli. Much of the result extends to *H*-surfaces but the complete story is work in progress.

In the following tables all the singular X's are normal and Gorenstein.

Stratum	HT bdry component	minimal resolution	$K(\widetilde{X})$	$p_g(\widetilde{X})$	$q(\widetilde{X})$
$\int \mathcal{N}_1 \supset \mathcal{N}_1^0$	I, II	blow up K3	0	1	0
$\mathcal{N}_2 \supset \mathcal{N}_2^0$	I, II	minimal elliptic	1	1	0
$\int \mathcal{N}_{2,2} \supset \cdots$	III, IV, V	rational	$-\infty$	0	0
$\mathcal{N}_{1,2} \supset \cdots$	III, IV, V	rational	$-\infty$	0	0
$\mathcal{N}_{1,1}^R \supset \cdots$	III, IV, V	rational	$-\infty$	0	0
$\left(\mathcal{N}_{1,1}^{E} \supset \cdots \right)$	III, IV, V	{ blow up } Enriques }	0	0	0
$\int \mathcal{N}_{1,1,2}$	V	ruled	$-\infty$	0	1
$\mathcal{N}_{1,1,1}$	V	ruled	$-\infty$	0	1

► elliptic singularities are hypersurface ones — by inspection of tables in Arnold the degree is determined by Coxeter element which is in T^s. In this sense the LMHS/ℤ captures the fine stratification of ∂M^{Gor}_I. ► *H*-surface cases have additionally

Stratum	HT	type	κ	$p_g(\widetilde{X})$	$q(\widetilde{X})$
$\mathcal{N}_{1,1,2}$	I	$T_1 \times T_2$	0	1	2
\mathcal{N}_4		$K_{\widetilde{X}}^2 = 1$	2	1	0

- most of the rest of the normal *H*-surface classification follows *I*-surface pattern
- non-normal case

•
$$K(\widetilde{X}) = -\infty, 0$$

• $\widetilde{X} \bigvee_{H}^{I} \begin{cases} \mathbb{P}^2, \text{ dP of degree 1} \\ \text{minimal ruled with } q(\widetilde{X}) = 1 \end{cases}$
• $\mathbb{P}^1 \times \mathbb{P}^1, \text{ dP of degree 2??}$

References

- [BPR] P. Brosnan, G. Pearlstein, and C. Robles, Nilpotent cones and their representation theory, Hodge theory and L2-analysis, https://arxiv.org/abs/1602.00249. ALM 39 (2017),
- [KPR1] M. Kerr, G. Pearlstein, and C. Robles, Polarized relations on horizontal SL(2)'s, https://arxiv.org/abs/1705.03117.
- [KPR2] _____, The Graduate Student Bootcamp for the 2015 Algebraic Geometry Summer Research Institute, Proc. Sympos. Pure Math. 95 (2017), 267–283, Amer. Math. Soc., Providence, RI, https://arxiv.org/abs/1607.00933.
- [FPR1] M. Franciosi, R. Pardini, and S. Rollenske, Computing invariants of semi-log-canonical surfaces, *Math. Z.* 280 no. 3-4 (2015), 1107–1123.

- [FPR2] _____, Log-canonical pairs and Gorenstein stable surfaces with $K_X^2 = 1$, Compos. Math. **151** no. 8 (2015), 1529–1542.
- $\begin{array}{l} [\mathsf{FPR3}] & _ & , \mbox{ Gorenstein stable surfaces with } \mathcal{K}_X^2 = 1 \mbox{ and } \\ p_g > 0, \mbox{ Math. Nachr. } \mathbf{290} \mbox{ no. } 5\text{-}6 \ (2017), \mbox{ 794-814.} \\ [\mathsf{Ro}] & \mathsf{C}. \mbox{ Robles, Classification of horizontal } \mathrm{SL}(2)'s, \\ & \mbox{ Compositio Math. } \mathbf{152} \ (2016), \mbox{ no. } 05, \mbox{ 918-954, } \\ & \mbox{ https://arxiv.org/abs/1405.3163.} \end{array}$

II. Moduli

Consider surfaces X such that

- X is of general type
- ► X is either smooth or has canonical singularities
- X has given numerical characters

$$K_X^2$$
, $q(X)$, $p_g(X)$.

Usually one says given $\chi(\mathcal{O}_X)$, but as we are interested in Hodge theory we use q(X), $p_g(X)$.

• Then it is known that there is a good moduli theory.

(General reference: Kollár, Moduli of varieties of general type, Handbook of Moduli, Vol. II)

- ► For such a moduli space M there is a canonical completion M
 ^{KSBA} due to Kollár, Shepherd-Barron, Alexeev.
- ► For a family

one wants to uniquely fill in the fibre X_0 over the origin — informally one does this by requiring

(a) X₀ has semi-log-canonical (slc) singularities (local)
(b) K_{X0} is ample (global).

For both of these K_{X_0} is assumed \mathbb{Q} -Cartier. Equivalently for $\mathfrak{X} \xrightarrow{\pi} \Delta$

(a') \mathcal{X} has canonical singularities (b') $\omega_{\mathcal{X}/\Delta}$ is relatively ample.

- The resulting $\overline{\mathcal{M}}$ exists, is unique and is projective.
- The following is a partial (4 exceptions) list of the possible singularities taken from Kollár (loc. cit.) — the ones marked with * are Gorenstein, which for Hodge-theoretic purposes to be explained below are particularly important.
- For the Gorenstein ones there are also natural and relatively simple semi-stable-reductions (SSR).
- The innocent looking class (3.3.4) contains a wealth of examples that may be constructed combinatorially by gluing — we will give one such below.

Kollár's list

3.2 (List of log canonical surface singularities).

- *(3.2.1) Terminal = smooth.
- *(3.2.2) Canonical = Du Val (= rational double point).
- (3.2.3) Log terminal = quotient of \mathbb{C}^2 by a finite group of $\operatorname{GL}(2,\mathbb{C})$ that acts freely outside the origin. A more detailed list is the following:

(a) (Cyclic quotient)

$$c_1-\cdots-c_n$$
.

(b) (Dihedral quotient) Here $n \ge 2$ with dual graph

$$c_1 - \cdots - c_n$$

(c) (Other quotients) The dual graph has one fork (with Γ_i) as in (a)) $\Gamma_1 - c_0 - \Gamma_2$ Гз with three cases for $(\det(\Gamma_1), \det(\Gamma_2), \det(\Gamma_3))$: (Tetrahedral) (2, 3, 3)(Octahedral) (2, 3, 4)(lcosahedral) (2, 3, 5). *(3.2.4) Log canonical

(a) (Simple elliptic) $\Gamma = \{E\}$ has a single vertex which is a smooth elliptic curve with self intersection ≤ -1 .

(b)* (Cusp) Γ is a circle of smooth rational curves, at least one of them with $c_i \ge 3$. (The cases n = 1, 2 are somewhat special.)

If X is a non-normal semi-log-canonical surface singularity, then we describe its normalization \widetilde{X} together with the preimage of the double curve $\widetilde{B} \subset \widetilde{X}$.

3.3 (List of semi-log-canonical surface singularities). There are three irreducible cases.

(3.3.1) (Cyclic quotient, one branch of \widetilde{B})

$$\bullet \stackrel{1-\frac{1}{\det \Gamma}}{\longrightarrow} c_1 - \cdots - c_n$$

*(3.3.4) (Possibly reducible cases) We can take several components as above and glue them together along two local branches of \widetilde{B} .

It is this last class that allows one to do combinatorial (or tropical) type constructions.

As mentioned one may describe a natural semi-stable (SSR) reduction prescription for the *-surfaces. They are of the general form

 $\widetilde{X} \cup Y \cup Z$

where $Y = \mathbb{P}^1$ -bundle over \widetilde{B} and Z = rational surface arising from \widetilde{B}_{sing} .

III. Hodge theory

Polarized Hodge structure (PHS)
 (V, Q, F•) with V = Q-vector space

• $Q: V \otimes V \rightarrow \mathbb{Q}$ non-degenerate

•
$$F^{p}V_{\mathbb{C}}$$
 with $F^{p}\oplus \overline{F^{n-p+1}} \xrightarrow{\sim} V_{\mathbb{C}}$

Hodge-Riemann I and II

•
$$V^{p,q} = F^p \cap \overline{F}^q$$
 and

• $V_{\mathbb{C}} = \bigoplus_{p+q=n} V^{p,q}, V^{p,q} = \overline{V}^{q,p}$ (Hodge decomposition)

$$\blacktriangleright F^p = \bigoplus_{p' \ge p} V^{p',q}$$

- ▶ dim V^{p,q} = h^{p,q} (Hodge numbers)
- ► Example: Hⁿ(X, Q)_{prim} where X is a smooth projective variety /C

Mixed Hodge Structure (MHS)
 (V, W_•, F[•]) where F[•] induces a Hodge structure of weight m on

$$\operatorname{Gr}_m^W V = W_m / W_{m-1}.$$

► $V_{\mathbb{C}} \cong \bigoplus_{p,q} I^{p,q}$ where $I^{p,q} \equiv \overline{I}^{q,p} \mod W_{p+q-2}$ (Deligne decomposition). Then

$$I^{p,q} \cong \left(\operatorname{Gr}_m^W V\right)^{p,q}.$$

Example: $V = H^n(X, \mathbb{Q})$ where X = complete variety $/\mathbb{C}$ and the weights satisfy $0 \leq m \leq n$

▶ $N \in \operatorname{End}_Q(V)$ nilpotent with $N^n \neq 0$, $N^{n+1} = 0$ gives $W_k(N)$ with

•
$$0 \leq k \leq 2n$$

$$N: W_k(N) \to W_{k-2}(N)$$

 $\blacktriangleright N^{\kappa} : \operatorname{Gr}_{n+k}^{\mathcal{W}(N)} V \xrightarrow{\sim} \operatorname{Gr}_{n-k}^{\mathcal{W}(N)} V$

- ► limiting mixed Hodge structure (LMHS) (V, W_•(N), F[•]_{lim})
 - ▶ will always have a "Q" in the background but will omit reference to it
- Example: smooth projective family

$$\mathfrak{X}^* \to \Delta^*$$

with unipotent monodromy $T = e^N$ $\rightsquigarrow H_{\lim}^n = (V, W_{\bullet}(N), F_{\lim}^{\bullet})$ $\blacktriangleright D = period \ domain \ of PHS's \ with given \ h^{p,q} = \dim V^{p,q}$ $\blacktriangleright D = G_{\mathbb{R}}/H, \ H \ compact$ $\blacktriangleright D = HSD \iff \begin{cases} n = 1 \\ n = 2 \ and \ h^{2,0} = 1 \end{cases}$ (classical case) $\blacktriangleright \text{ for } n = 2$

$$D = \mathrm{SO}(2a, b)/\mathrm{U}(a) \times \mathrm{SO}(b).$$

 in non-classical case with all h^{p,q} ≠ 0 there is a unique minimal, G_ℝ-invariant and bracket generating I ⊂ TD (infinitesimal period relation (IPR))

Example: n = 2 and $h^{2,0} = 2 \implies I = \text{contact system}$

- compact dual $\check{D} = \{F^{\bullet} : Q(F^p, F^{n-p+1}) = 0\}$
 - $\check{D} = G_{\mathbb{C}}/P$ = homogeneous rational projective variety
 - $D = \text{open } G_{\mathbb{R}} \text{-orbit in } \check{D}$
 - $G_{\mathbb{R}}$ -orbit structure of ∂D is very rich (Matsuki duality, etc.)
- period mapping is

$$\Phi: B \to \Gamma \backslash D$$

- ► locally liftable (\implies monodromy representation $\Phi_* : \pi_1(B) \rightarrow \Gamma$ is defined)
- holomorphic
- Φ_* : $TB \rightarrow I$.

- ► *Example*: $\Phi : \Delta^* \to \Gamma_{\text{loc}} \setminus D$ where $\Gamma_{\text{loc}} = \{T^m\}$ \rightsquigarrow LMHS $(V, W_{\bullet}(N), F^{\bullet}_{\text{lim}})$ where $F_{\text{lim}} \in \check{D}$.
- Example: nilpotent orbit is $F \to \exp(zN) \cdot F_0$, $z \in \mathcal{H}$ and $F_0 \in \check{D}$

•
$$N \cdot F_0^P \subseteq F_0^{p-1}$$

• $\exp(zN)F_0 \in D$ for $\operatorname{Im} z \gg 0$

$$\rightsquigarrow \Phi_{\nu} : \Delta^* \to \Gamma_{\mathrm{loc}} \backslash D.$$

Theorem (Schmid)

Any Φ strongly approximated by a nilpotent orbit Φ_{ν} .

- Classification of (equivalence classes of) nilpotent orbits (Brosnan, Kerr, Pearlstein, Robles)
- ► Conclusion: Given $\mathfrak{X}^* \to \Delta^*$ we know what the possible $\operatorname{Gr}^{W(N)}(\mathsf{LMHS's})/\mathbb{Q}$ are.

- Now consider the several parameter situation localizing
 Φ : B → Γ\D around a point of Z = B\B (= NCV)
 leads to the
- $\Phi: \Delta^{*k} \times \Delta^{\ell} \to \Gamma_{\text{loc}} \setminus D$ where Γ_{loc} arises from a monodromy cone $\sigma = \text{span}_{\mathbb{R}^+} \{N_1, \dots, N_k\}$ with $[N_i, N_j] = 0$
 - W(N) independent of $N \in \sigma$
 - relative weight filtration property (RWFP)
 - ▶ for $t = (t_1, ..., t_k) \in \Delta^{*k}$ and $w = (w_1, ..., w_\ell) \in \Delta^\ell$, setting $\ell(t_j) = \log t_j / 2\pi i$.

Theorem

 $\exp\left(\sum_{j} \ell(t_j) N_j\right) \cdot F_0(w)$ strongly approximates Φ .

Asymptotics of several variable families of PHS's are quite subtle (Cattani-Kaplan-Schmid) (for f(x₁, · · · , x_k) defined for x_j > 0, lim f(λ₁t, · · · , λ_kt) may exist for all λ but lim_{x→0} f(x) may not exist — need to analyze sectoral behavior).

IV. The extended period map: Theorems A and B

 Given a smooth quasi-projective variety B and a period mapping

$$\Phi: B \to \Gamma \backslash D$$

one seeks to define an extension $(\Gamma \setminus D)_{\Phi}$, depending on Φ , such that for any smooth completion \overline{B} with $\overline{B} \setminus B = Z = \bigcup Z_i$ a NCV we have

$$B \xrightarrow{\Phi} \Gamma \setminus D$$

$$\downarrow \qquad \cap$$

$$\overline{B} \xrightarrow{\Phi_e} (\Gamma \setminus D)_{\Phi}$$

This is work in progress — here we shall only deal with an extension M of the image M = Φ(B) to have

$$B \xrightarrow{\Phi} M \subset \Gamma \backslash D$$
$$\xrightarrow{\bigcap} \overline{B} \xrightarrow{\Phi_e} \overline{M}.$$

The main point here is that the global Lie theoretic methods used by Baily-Borel are not applicable; a different approach — which is even interesting in the classical case — is necessary.

¶For $D \neq \text{HSD}$, the quotient $\Gamma \setminus D$ has no non-constant meromorphic functions and we may have $\operatorname{vol}(\Gamma \setminus D) = \infty$.

The steps are

(i) analyze the structure of nilpotent orbits to define monomial maps

$$\mu:\Delta^k\longrightarrow\mathbb{C}^N$$

whose fibres are those of the set-theoretric map given on strata by

$$\Phi_I : \Delta_I^* \to \operatorname{Gr}(\operatorname{LMHS}_I);$$

(ii) extend (i) to arbitrary local period maps to give quasi-charts

$$\Delta^k imes \Delta^\ell o \Gamma_{
m loc} ackslash D;$$

(iii) show that the local quasi-charts patch together to give a global mapping

$$\overline{B} \xrightarrow{\Phi_e} \overline{M}$$

whose image is a compact, complex analytic variety;^{||}

^{||}We may think of \overline{M} as the quotient of \overline{B} by the relation to have equivalent Gr(LMHS)'s — operative word here is "equivalent."

- (iv) show that the augmented Hodge line bundle is defined as a holomorphic line bundle $\Lambda_e \to \overline{M}$ and that it is ample.
- Key local questions:
 - (a) What are the fibres of a nilpotent orbit?
 - (b) How do the closures of the fibres of nilpotent orbits on the strata Δ^{*}_I meet the faces of Δ^k?
- (a) When is a monomial $t^B = t_1^{b_1} \cdots t_k^{b_k}$, $b_j \in \mathbb{Z}^{\geq 0}$ constant on the fibres of a nilpotent orbit? Set

$$R = \left\{ A = (a_1, \ldots, a_k) : \sum_j a_j N_j = 0 \right\}.$$

Since the vector field given by a non-zero $\sum_{j} a_j N_j$ doesn't vanish on D, using

$$\Phi_*(t_j\partial/\partial t_j)=N_j$$

the condition is

$$0 = \left(\sum_{j} a_{j} t_{j} \partial / \partial t_{j}\right) t^{B} = (A, B) t^{B}$$
$$\implies B \in R^{\perp}.$$

 R = Q-vector space — from Farkas' lemma in linear programming

 $R^{\perp} \text{ spanned by vectors in first quadrant } \mathbb{Q}^{k+}$ $\implies \left\{ \begin{array}{l} \text{monomial mapping } \mu : \Delta^k \to \mathbb{C}^N \text{ has} \\ \text{same connected fibres as nilpotent orbit} \end{array} \right\}$

use coordinate change

$$t_j' = e^{t_j(t,w)} t_j$$

adapted to Φ to define

$$\mu:\Delta^k\times\Delta^\ell\to\mathbb{C}^N$$

with same connected fibres as Φ in $\Delta^{*k} \times \Delta^{\ell}$.

- μ(Δ^k × Δ^ℓ) fibres over the parameter space with toroidal-type fibres which are open sets in W \ V* where W ⊂ C^N is an algebraic variety, V* ⊂ V is a Zariski open in a proper subvariety V ⊂ W.
- relative weight filtration property (RWFP) now leads to for I ⊂ J closure of fibres of µ_J ⊆ fibres of µ_I

(compatibility across strata)

• the relation $\sum a_i N_i = 0$ above is replaced by

$$\sum_{j\in I^c}a_jN_j\in W^{(W(N_l)}_{-1}(V);$$

- construction does not fall in standard analytic or algebraic geometry frameworks; standard methods of quotienting by an equivalence relation don't apply — need to use special circumstances plus global results from VHS
- (b) from CKS with refinements by Kawamata, Kollár and others
 - Chern form of $\Lambda_e \to \overline{B}$ is represented by a closed (1,1) current (= differential form with distribution coefficients) not sufficient for what is needed here —
 - traditional problems with distributions are
 - cannot be multiplied
 - cannot be restricted to submanifolds

Theorem

Chern forms of Hodge bundles can be multiplied and restricted to Z_I^* to give Chern forms of Hodge bundles associated to $Gr(LMHS_I)$

Requires analysis of singularities of Chern forms in $T^*\overline{B}$ (refined wave-front-set analysis in sectors in $N^*_{Z^*_*/\overline{B}}$)

• for $\xi \in T\overline{B}$ the condition

$$\omega_e(\xi) = 0$$

can be defined (although in general the "value" $\omega_e(\xi)$ cannot be). Then

equation $\omega_e = 0$ in $T\overline{B}$ defines the fibres of $\overline{B} \xrightarrow{\Phi_e} \overline{M}$ \rightsquigarrow ampleness of $\Lambda_e \to \overline{M}$.

V. Examples of Theorem C

- Will illustrate the normal cases and one non-normal case of *I*-surfaces X — recall
 - $K_X^2 = 1$, $h^2(\mathcal{O}_X) = 2$
 - ► K_X ample
 - We shall restrict to the Gorenstein case since only these singularities can contribute non-trivially to the LMHS/Q.
 - The non-Gorenstein singularities contribute finite (including trivial) monodromy, and bounding these is interesting but we have nothing much to say here.

$$\blacktriangleright \ \mathfrak{N}_{d_1,\ldots,d_k} = \begin{cases} \text{normal } I\text{-surfaces with simple} \\ \text{elliptic singularities } p_1,\ldots,p_k \\ \text{of degrees } d_1,\ldots,d_k. \end{cases}$$

- k ≤ 3 in general Hodge theoretic argument gives k ≤ h²(O_X) + 1.
- For *I*-surfaces d_i ≤ 3 (for *H*-surfaces d_i ≤ 4 don't yet know a general result other than d_i ≤ 9).
- General philosophy: One can frequently use Hodge theory to bound the complexity of X_{sing}.

- \blacktriangleright Warm up: Picture for \mathcal{N}_2 suggested by LMHS/\mathbb{Z}
- General X has Hg¹(X̃, ℤ) containing ℤ² with intersection form (⁻²₂ ²₋₁) basis classes are effective
- ► LMHS has $\overset{\mathrm{Gr}_2 \cong H^2(X_{\min})_{\mathrm{prim}}}{\operatorname{Gr}_3 \cong H^1(\widetilde{C})(-1)} (\implies \mathrm{Gr}_1 \cong H^1(\widetilde{C}))$
- MHS $H^2(X)$ computed from

$$(\widetilde{X},\widetilde{C}) \to (X,p)$$

- $\blacktriangleright~\#$ of PHS with parameters $\mathrm{Gr}_3\oplus\mathrm{Gr}_2=19+1=20$
- Hodge theory suggests picture

• dim $\mathcal{M}_I = 28$

• dim
$$\tilde{N}_2 = 27 = 20 + (9 - 2)$$

from the picture obvious that

•
$$I_{\lim}^{2,0} \cong I^{2,0}(X) \cong H^{2,0}(X_{\min})$$

•
$$I_{\lim}^{2,1} \cong I^{1,0}(X)(-1) \cong H^{1,0}(\widetilde{C})(-1)$$

•
$$I_{\rm lim}^{2,2} = 0$$
 since $N^2 = 0$.

in general for X → ∆ on X = Bl_{p1···pk}X we have exceptional surfaces Y_i ≅ P² with C̃_i ∈ |O_{Yi}(3)| — Blow up 9 - d_i points on Y_i to get Del Pezzo of degree d_i — # moduli = 1 + (9 - d_i) - 1 = 9 - d_i ⇒ SSR's for X's has ∑_i 9 - d_i moduli

stratum	dimension	minimal resolution \tilde{x}	$\sum_{i=1}^k (9-d_i)$	k	$\operatorname{codim}_{in}\overline{\mathfrak{M}}_{l}$
${\mathfrak N}_{\emptyset}={\mathfrak M}_{1,3}$	28	general type			
\mathcal{N}_2	20	blow up of a K3-surface	7	1	8
\mathcal{N}_1	19	minimal elliptic surface with $\chi(\widetilde{X}){=}2$	8	1	9
$\mathcal{N}_{2,2}$	12	rational surface	14	2	16
$\mathcal{N}_{1,2}$	11	rational surface	15	2	17
$\mathbb{N}_{1,1}^R$	10	rational surface	16	2	18
$\mathfrak{N}_{1,1}^{E}$	10	blow up of an Enriques surface	16	2	18
$\mathcal{N}_{1,1,2}$	2	ruled surface with $\chi(\widetilde{X}){=}0$	23	3	26
$\mathcal{N}_{1,1,1}$	1	ruled surface with $\chi(\widetilde{X}){=}0$	24	3	27

- case k = 3 and rank N = 2 occurs when the p_i fail to impose independent conditions on lim_{t→0} H⁰(Ω²_{Xt}).
- N⁰_{d1,...,dk} refinements obtained by degenerating the elliptic curves to cusps; then N² ≠ 0 and all the possibilities with rank N² = 1, 2 can be achieved.

Conclusion:

$$\operatorname{codim} = \sum_{i=1}^{k} (9 - d_i) + k;$$

i.e.,

$$\begin{cases} SSR's \text{ for } X's \text{ with} \\ k \text{ elliptic singularities} \end{cases} \text{ has codim } k \end{cases}$$

Non-normal case have (X̃, C̃, E_i, τ) and (X, C) where C = C̃/τ and E_i give cycles that are contracted to singular points on C.

Will give two examples due to Liu-Rollenske

Example 1: $\widetilde{X} = \mathbb{P}^2$, $\widetilde{C} =$ smooth plane quartic and $\tau : \widetilde{C} \to \widetilde{C}$ elliptic involution, no E_i

$$\rightsquigarrow \begin{cases} I_{\rm lim}^{2,0} = (0) \\ I_{\rm lim}^{2,1} \cong H^0(\Omega^1_{\widetilde{C}})^- \\ I_{\rm lim}^{2,2} = (0). \end{cases}$$

degeneration picture in non-normal case

conjectural case of most degenerate *I*-surface

• for g = 2 curves have

rigid, monodromy cone σ maximal • replace (\mathbb{P}^1 , three points) by (\mathbb{P}^2 , four lines)

One choice of τ is drawn in. Dotted lines are exceptional divisors E_{ii}

for I surface

• identify
$$L_1$$
 and L_2 by
$$\begin{cases} 12 \leftrightarrow 21 \\ 13 \leftrightarrow 24 \\ 14 \leftrightarrow 23 \end{cases}$$
similarly for L_3 and L_4

Question: Is this X uniquely determined by its $(LMHS/\mathbb{Z}, \sigma)$?

Noether extremal surfaces

•
$$p_g \leq \frac{1}{2}K_X^2 + 2$$

 case of equality can be analyzed and canonical image is 2:1 branched covering

$$X \to S \subset \mathbb{P}^{p_g-1}$$

where S has minimal degree

- Iocal Torelli holds
- pluricanonical ring is complicated but geometry is relatively simple

Question: Can we use GIT for the analysis of branch curve $B \subset S$ (non-reductive group)?

- Conclusions
 - ► Given M there is a canonical minimal completion of the image of the period mapping.
 - ► The Hodge-theoretic boundary structure is understood, and in early examples this provides a guide to the structure of ∂M.

Thank you