A ~ //
‘V 0?{*4{/&\ 87O Alairineta, o

’

L """ f‘ 7 A de :—\%'{t:o‘u? « ,_,/',f-‘ ,,/

Pt P //’A{{'/,:S.' .
S

CODING FOR A.R.C.
by

Andrew DeBooth
and

Xathleen H,V. Britten,.

Institute for Advanced Study,
Princeton,

Septe 1947,

THE JIETORICAL STUIDING Lm iy
e RIS Y S
THE 1010 Y

PropioeTon, Nl JUo Ly enA0

ERRATA.

P 11, line 3. For Harelerread "is",
P 1l, paraoAzaoz, 1line 4, Tor "2PW yead “239".
P 14, Memory position 42 should read : a3bp .+ aghy 4+ (23by)p - co
P 17, para, 2,05, line 4. Tor"sin" read Vsin{x)",
line 10.

For "immediatly" read Yimmediateoly",
line 10, For "adopted! read "adaptedl,
P 19, Orders 28 and 33, read L(8) and R(1) respectively,
Orders 42 and 44, for)" read "M{n)",
P20 . 4 lines from bottom, for "sins" read "sinesh,
P 21. Orders 8, 13, and 19, for S3(6) rcad L(6),
Orier 29, for 149 read + 140,
P 27; Tor "S;" read LM,

P 28, TFor "Sg" real "L,

PREFACE.

Al though this report deals spccifically with the coding of
problems for A.R.C. (Automatic relay computer) it can be considored as
the successor to our previous work on the design of olectronie computers,
This is becausc we have made thec code of A.R.Co identical. with that
projccted for the clectronic machino,

The advantage of this arrangement is obvious, wo shall bo ablo
to transfer any problem which has bcen coded for A«R.C. dircetly to tho
clectronic machine when this bocomes availablee, In addition, the
experience which we galn in using the simpler machine may form a valuable
guide to possibly advantageous mocdifications of the code for the faster
computers

We again wish to thank the Rockefeller Foundation and the
British Rubber Producers? Research Association for valued encouragement
and supporte

A.D .‘B.
KOH .VOB.

Sept. 1st, 1947,

SECTION

1.0
1.1
1.2
1.3
2,0
2,01
2.02
2.03
2,031
2,032
2,04
2,05
2,06

2,07

. 2.08

2.09
2,091

2,092

TABLE OF CONTENTS,

General introductione
The nature of a codes
The code of A«R.Co

The technique of coding,
Ccded problems,

A general gxample;

Extraction of the square root.

Double length arithmetic.

Mdition and subtraction,
Multiplications

Tabulation of sin(x),

Use of tables and interpolation,
Three diménsional Fourier summation,
Matrix mltiplication,

Solution of a differential equation,
Conversion to and fromybinary 8calo,
Decimal~binary conversion,

Binary~decimal conversion,

Table of orders.

PAGE NUMBER

1l
1

10
11
12
12
13
14
17
20
22
25
27
27
28

30

" CODING FOR A.R.Cs

" Ll.0 General introduction.

The present report deals specifically with the coding of
problems for. A.R.C. (Antomatic relay calculabor), bub, despite this,
may be considered to form a continuation of our previous report on
the design of electronic computers. The reason for this universality
lies in the fac$ that, as will becoms evident from 1.1, the number
of logically complete codes which do not use bizarre operations is
limiteds 1In addition, it is our aim to-have a standard procedure
so that, when our electronic machine becomes available, only limited

replanning will be necessary.

l.1 The nature of a code,

_ It was explained, in the first roport, that although logically
simple apithmetic operations of the type 4 ,-, shift, were sufficient to
programme more complox operations such as multiplication and division,
it was nevertheless desirable to includo unit operations of this more
complicated type in ordor to save time. We shall now takc up the dosign
of a code in somowhat greater dotail,

, In the first place, to bo satisfactory, a code must be
arithmetically complete, By this is moant that it must include sufficicnt
basic oporations to make possible the generation of any function defined
by the ordinary ruleos of arithmetic. Lot us oxamine this in moro dotail,
and supposc that wo take as our-basic sct only the opcrations + , =y L
and R shift and control shifte. The most obvious operation upon which to
test the code is that of multiplication,

Consider two purcly binal numbors a and b of n and m digits
respectivelys Then to form tho product we must do ono of two things -

if ay, & 0 .
L1 Md b into partial product alroady formed in adding dovice A.
1.2 Shift b one placc to right.

- or if a; = O
2.1 Shift b one placoc to right,

ap being the oxtremo left hand digit of a,

The question now arisos :~ can the decision as to which of tho
alternative procedurcs is appropriate be dccidod on tho basis of tho
postulated order sct? We shall show that the answer is in tho affirmativo,
Assume first that the left shifting operation transfers the L.H. digit of
any number in the accumulator to the extreme right hand position of the
register, ILet the first set of orders (1.1 above) be stored at memory
location 2Pl and the second set (2.1) at O, Consider the following
process -

1,0 0 to CR‘
1.1 M(a) to A
1.2 Left shift,
“ 1.3 Ato M(a.)‘
104 R tO"cAo

- 1—

104 R to CA.

1.5 n « py left sh1fts.

1.5 + M(l 8) to A.

1.6 A to M(1.9).

1.8 ¢ to U(0 + contents of A after 1.4)
Contents of A zero, Contents of A2 pl

2,1 M(b) to g4 1.9 M(ab) to cA.
2.2 Right shift, 1.10 + M(b) to- A,
2.3 Ato M(b)e 1:11 A to M(ab)s
2.4 C to M(1.0). 1:12 M(b) to oAl
1.13 Right shift,
1.14 A to M(b).
1.15 1(1.8) to A
1.16 ~27Pl to 4;
1:17 A to M(18),-
1.18 C to M(1.0).

The notation used is that of our first report, but one or two
points require explanations Order 1,0 is needed since no facilities exist
for clearing the register Rs iM(x) represents the memory location of the
quantity (x), The essence of the process is to separate out the digit
of a which is to multiply b and then to decide whether it is zero or

unity by substituting it in a control shifting order,
Of course, it is not suggested that the above procedure forms

a practical means of performing a multiplication; it is included mearly
to show that the code is complete as far as arithmetic operations are
concerned, Division can be freated in a similar fashion and likewise the
extraction of square roots, or alternatively these operations can be

_programmed as iterations.
A precisely similar method can be used to establish tho zero

(or otherwise) character of a number of morc than one digit, and then,
if the operation | M | to oA s available, sign can be tested by finding

whether :-
(M} 4 M)0,

This argument cstablishes the sufficiency of a code containing
only the orders ¢

+9=43 Ly Ryl 1, C toMx)
together with a sufficient numbe® of puroly transfer orders to mako each
arithmetic unit accessibdle to numbers from the memorye

A very simple code of this type would be justified only in a
machine of enormously high speed in which the technical difficulties of
increasing the number of orders might be prohibitive, This speed rwuge
is not, however, reached in any machine at present under discussior.

So long as a code is complete and includes the above basic
operations it matters little what extra operations are inserted, and the
nature of these will be governed by the saving of time which they effoert
and from their simplicity from the standpoint of enginecering,

‘ Evidently, from the point of view of speed, a multiplication
order will be advisable, and , if feasible, one for division also: if
the memory capacity of the machine is limited, the inclusion of dasic
operations of this nature is even more justified, since the large number

e

SRR R St
ik wmw*uwﬁ'@mm
>

Py AN
ot &-WNM"
e it memwmm X
> o e S e, st s et N waly
Lo ey
e —— ot S

5

134416

|
needed to replace them would fill a significant §
of the available memoIrye J
itional transfer order is also well
w, the exact specification of its

Certainly an order which selected

ation would be of limited use in a machine
a4 dividing facilities. Possible alternatives

of simpler orders

' proportion
The inclusion of a cond

Justified from the above points of vie
nature is, however, more speculatives

only one aigit for discrimin
with automabic multiplying an

a 1)
- X7 0 (1)
' x o
\Xi> 0 (2) |
1Xyad } ‘ !

and a choice between them, on purely logical grounds, is more difficult
since either can be derived from the othere Thus, given (1) nullity can ;
be. detected by examiningdX |afid/8F, a process wvhich requires B orders; |
whilst from (2), (1) can be derived by considoring \Xi + X in a process j
requiring 3 orderse Trom the engineering point of view, (1) is the
simplest to apply 3n & machine which represonts negatlve anumbers by
complements, whoreas (2) is the easier in a machine involving direct
subtraction. The decision thus lies in a study of the relative frequency
with which it is desired to sense sign rather than nullity, and since it

ady coded, that the fpPmer operation is if

appears, from the examples alre
the present to have (10) in our order sete In

more usual, we propose for
the relay machine which represents negative nunbers by their complements |
this decision is 8lso in accord with the desire for engineering simplicitys :

AP IR BRI R S A O R BRI MU s R H G

s

PTG

35

13

le2 The code of A'R-Co

o 1.1, the type of order set needed to securo

We have seen, 1
those further orders which will be -

gufficiency, and it remains to discuss
available to A.R.C.. ‘ .
between A«R.C., and the electronic ﬁj

The fundamental difference
computer, envisaged in our first report, is one of spoeds In gencral, the
extra operations which we havo inscrted are mearly de¥ices to limit tho]

ers of data which have to be made during a calculation. |

number of transf 4
this oliminatos the nocessity of tho ordors: .

. 3

|

Ak sH N A B BRI ARG eEx ‘
AR IR Al S g R g £ 44 A0 L MR R RLO VT RAYE

Lt Ry an

For example: R Yo My}

R to A
A to ﬁ

which would be needed under our previouﬁ codes Again: A to R is . _ ¢
particularly usoful in that it makes R available as temporary storage, o
for example when polynomials if the type: r

n nel,

aro to be calculated, the patticularly ologant itoration:

ap to R By ' j
M. R to cA anx
+ap.] 80 A ep¥t+ Bpud ;

4.
. ¢ i
d t - 1
A by
1~
J

AtoR anX & an.1
Mx R to cA anxg.;. an.1x
+ a0 to A anxz.f an 1X ~ 8,0 ete,

is available, in which x stays in M, and no transient storage is roquired
for the partial answers,

Another modification of the original code is the generalisation
of the shifting orders L and Re These are modified to: IL{n) and R(n) and
read, shift contents of A (n) places to left or right respectively, In
L(n) the loft hand non-sign digits of A are shifted into the right hand
end of the register R whose contonts are likewise shifted to the left.

In R, however, the right hand digits of A are lost, These extensions are
particularly advantageous in conversions to and from the binary scale,
and, as it is proposed that A.R.C. shall perform its . own conversions,
a considerabloc saving of time will result from this modification. A&n

additional wvirtue of the new orders lies in the saving in time which thoy

produce in interpolation processes,
The absoluto control transfer order C to M(x) also comes in for

modification. It has been found that s much more flexible form of this
order is : C to M{x+ k) which rcads :

"Advance control k orders,!
Thoe advantage of this vorsion lios in the fact that k dopends only upon
the particular sequence in which the control finds itsolf, whercas in
C to M(x) the position (x) depends not only on tho basic scquence being
exccutod but also on the position of this scquence in the whole schemo of
computation, Thus a partial substitution will be required every time the
sequenceo is usedj; the new variant climinates this neccossity.

Sinco A.R.C. has only 21 binal accuracy, orders cannot bo
gtored two at a time in M; this moans that tho partial substitution
order Ap to M is no longer nceded, although Ap to M is, of course,
retained,
In view of the limited high speed memory capacity of A.R.C.
(256 numbers) a most important feature will be its ability to record and
drawv on information punched on tele~type tape; this function of the
control we now proceed to discuss.

There are four possible situations in which the machine makes

use of itd4 low speed memory:

1) Decimal and order input to machine,
Input of binary data such as tables calculated by the

machine and stored for future reference,
3) Output of the machine in binary form for its own

subsequent use.
4) Decimal output of the machine required for communication

with the human operator,

Since the basic construction of the digital (as distinct from abstract)
code depends largely on:

2) Available tele-~type equipment.
b) Coding adopted for decimal data.

we will now consider these two factors rather more fully,

llee

Normal teletype equipment operates ‘on a five hole code and a
natural choice of punching would be to represent our 20 binal by four
groups of five punchings so that, for example,11011,00110,11010, 00001

would appear as @

00
0
000
RO
e Ui O. 0 .

00001 7 Tiol
11010 00110

the best possible use of the availablo tape
space, it would be very wasteful when storing decimal nunbers, Cur
the following: suppose the number 9864 is to be

procedure then would be
recorded, we write dovwn the binary representation of each digit, viz:

Although this scheme makes

1001
= 1000
= 0110
= 01C0

1 number by its totrad of binary digits :

)]

\

o O mw

and then represent the decima.

9864 = 1001, 1000,0110,0100.
w be punched on the tape using the five holec

This represenbation could no
ad by a zero, 1.e.

code and prefixing each tetr

0864 = 01001,01000,00110,00100.

which would exactly £311 our 20 digit memory Space. It is evident, howover,
that this process 1s wasteful and that, by adopting the four hole, or
rt a fivo place decimal number in our

octal,coding of (1) we could inse
o the accuracy is already rather low, WO

availablo spacc. In A.R.C., wher
arc certainly unablo to sacrifice this cxtra decimal digit and conscquently

are forccd to adopt a four holo coding of fivc rows,

A word is appropriate horec on tho menner in which we proposc to
storc the gign digit of coded decimal numberss The actual punching on tho
. tapo will consist of 6 rows of four holc groups, The first group wili bo
cithor (0000) or (0001) according as tho numbor is positivo or negatives
The remaining five groups will then contain tho coded decimals as described
above. In roading out tnis array into tho machino, all of tho first (sign)
group of digits will vo ignored cxcept the units component, so that tho
number reaching the machinc will be a single sign digit plus 5 groups of

4 digits, cxactly £31ling tho 21 memory spaces available, A4S an oxample

of tho appearance of our tapo, Wo &ivo polow the punchings for the two

numbers 9864 and ~9864.

00 00
o0 00
o o)
00 ~9864

9864 o

RN

MM

L

4641
T

This grouping of the digital input is not without effect on the disposition
of- orders, Inspection of the code %table of p(30) shows that the total n
number of orders is 26 i.e, ¢ 32 (=25) and they are thus representable

by a single five hole punching. Again, since this is beyond the range of

a four hole code it follows that we shall require two groups of four holes
to represent our orders, This arrangement leaves 12 positions to bo used
for number locations in the memory and will beaperfectly adequate for our
high speed momory which contains only 256 (=2°) positions, but quite

insufficient for the slower tape memory which should have a capacity of
at least 10° words,

In view of this, our tape reference order will be of
the following form$ '

Uprocced to the word on the tapc whose position is given by the
numbor contained in high spoed memory location (X)."

Although this is slightly slower than the direct order:

"Proceed to the word on the tape whose position is given by (X)."

1t mokee available a tape memory of 220 or about 10° words,

In view of the slow speed of the tape memory (.25 sec/word) the
hunting out of a number from an aggregabe of 106, on a single tape, could
take up Yo 70 hours. To reduce this time we propose having at least 8
separate tape feeds and, of course, only tapes holding data rolevant to the
probler in hand will be inserted into these feecds., Each tape will hold
about 1000 words, so that the maXimum hunting time will be 4-5 mins, ‘To
avoid any wait, a hunting order will start the tape moving towards the
desired set of data, and thon direet the control to proceed with the main
sequence of operation, Whilst the machine is performing thesc the tapne
vill be moving towards the required position and on arrival will stop.

We assume that the machine is by now ready to use the tape data, an order
then appears which says:

"Read data from tape into memory positions (X3) to (Xi ke
°t

of course, thils arrangement will break down occasionally when the required
position on the tape cannot be predicted in advance; so that, if the

tapc has not reached the required position, an interlock stops the machine
until the tape is ready and then procoeds with the last ordere To avoid
dolays of this kind the following procedure can be adopted. Suppose that
sin(x) is required in the course of a calculation, but that (x) is
initially unknown. The first tape order states:

"Move tape to position (sin /7 [4)."

and, since the sin table will contain only 128 entries, the hunting tiue
for the latter will be only 8 to 10 seconds vhich is much more reasonchie,

Enough has been sald to make clear the goneral properties of our
code; its application will bocome evident from the specific probloms
contained in the body of this report, :

To conclude, wo give tho oxact make up of a coded ordors
Digit Lewome- 8 e 15 e 20
MEMORY SEQUENCE "ORDER
LOCATION CODE

wBom

The position marked SEQUENCE is used only in the orders transfering data

from tape to memory positions X, to X, .\ and contains the number k. The
partial substitution order A, t0 M(X) replaces digits 1-8 of the order by
those contained in the first eight places of the accumuletor, Table I

is a complete list of orders with code numbers,

1.3 The technigque of coding,

We shall now give an outline of the form in which a coded
example will appear, and discuss a particularly elegant method (due to
Goldstine and von Neumann) of treating iterative processes,

The coding of a problem will be in three parts:

1) Mathematical formulations
2) Schematic code.
3) Detailed code,

Of the first part, all that need be said is that thc methods used must
involve only arithmetic operations, so that, for example, a differential
coofficient must be replaced by its finite difference approximation. Vo
obsocrve also, that all quantitics in the calculation must be so adjusted
that they remain less than unity.

The schematic codo is much more complex, In a calculation
which involves no iteration or docision on the part of the machine, the
procoss is trivial since the code mearly duplicates those operations which
a human computer would follows We may ropresent the coding procoss, in
+this case, by a linet ‘

--------------- SN ..
' OPERATIONS
FIG I

This simple Errangement bocomos untrue as sooh as any iterative process
is attemptody for examploy suppose that wo wish to calculate the oxprossion:

Y. ax°, b ,c/ax, 0, e-—e(1)

then if only onc valuc of x is in question Figl reprosents tho coding -
process, In Figll wo give, in groator detail, the soquonce which would
bo followed:

IN eoceamnaa e et wmmmmm QUT
medX 4 0--ax2¢ bx. c—--ax2+ bX4 Com
dx e« e
FIG 11

Next lot us suppose that wo wish to perform tho division, not by using
our divide ordor, but by tho itorative evaluation of l/dx + 0 , followed
by multiplications Furthermorc assumc that n iterations are necossary.
The schematic code now becomos:

AN~ -- ——emmem—m———— =g =mmmr=_OUT
dx+ QumwnXZ+ BXA eIl ylowIt,B-~=It,nw--ax"+ bx+ c-
‘ dx +o

FIG III

wherc we have inserted a scparate set of orders for each itcration; a
much more clegant method is, howover, to use our conditional transfor
order, programme one iteration and then arrange for the control to return
to the start of this c¢yclo n times; this can bo simply arranged by placing
the number n at tho start of each cycle and subtracting unity from it
beforo each iteration, ¥For the first n subtractions this gives a rcsult
7,0, so that tho conditional transfer Cc causes tho control to ropeat
the cycle; after tho nth. iteration, however, tho rosult becomos negative
and tho conditional transfor ordor is inoperative so that the machine
procceds with the main soquencce This 1s shown in PFig IV

.
iad ..
N

. N
. ITERATION FOR 1
/ 1/ax +0 { 40

\ /
L i S
P IN }————-—-—-—...-:3-_..-. L ek b R -4 OUr
dx + 0"“’:".}:“'* DX +C0= = e ax® 4D +tC mmme

{‘C) dx +e

The portion of the diagram reopresented by n~k is called by Goldstine
and von Neumann an "altcrnative box" and the looped portion of the disgram,
a "simple induction loop". Weo noxt complicate tho problem slightly by
assuming that we wish to computo the value of (1) for X = X, to

X, % + (¥-1)X,, here wo wish to add X, to X at cach stage and ropoat I
timos, The same iteration technique is available and the flow diagram

now becomes: T
."/' -

X1 to X; +%o \
) £ 0

o - S
riEF}—~_~J Nel2 b E n—k‘--n--v\i
¢ ‘9} \ 1fax+o A 1O

S g e

FiG ¥

. Fig V is a simple cxample of a "multiple induction loop". HMore complicated
patterns are, of course, encountered, but enough has been said to show
how the method is useful in planning the programmes For minute details
on flow dlagramming reference can be made to the Goldstine~von Jeumann.
report on "Planning and coding of problems for an electronic couputing
instrument,"

When the flow diagram 1s complete the next stage is to write
_out the detailed code which will contain:

1) A full list of all control orders.

2) Detailed memory locations for orders.

3) Detailed memory locations for numbers and for any transient
storage required during the computation,

-8-;

Ve do not propose to lay down any inviolable rules of procedure
in this mattor, Our own technique will become apparont from the specific
problems dealt with in the following sections, bat we do not consider this
permanant and are prapared to vary it in accord with the prdb]em in hand

and with increasing experionce.

-9-

)

2.0 Coded problamse.

2.01 A genoral cxamples

The first problem to be coded is that of calculating (axz.pbx +C)
for values of x varying from O to n/. in stops of », The fixed parameters
a,b and ¢ and the variable x will bo stored in given memory locations.
The,_value of x must be altered by , after the calculatlon of each torm
(ax® +dx +c¢), and it will also be necessary to decide at each stage whether
x has reached a value beyond the range of calculation. When this cccurs
the operation is,o0f course, complete, In the example chosen these two
processes can be combined, with a conscquent saving of orders in the code,
if x is given the initial value n A and is decroased by 4 at cach stage.
The conditional transfer order Cc cnableos us to deteet whon x bocomes
nogativo and this determines the ond of the oporation,

It will not generally be possible to perform this trick, as it is
only applicable when one of tho bounding values of the variable is O, The
procoss for tho morc general casc will become apparent in para.(R.04).

Suppose that n =64, and that tho calculated valugs arc to be
stored in the momory; it will bo nccossary to modify the order which
dirccts this operation at each stage so that they are sent to 64 consequetivs
memory positions, This 1s done quite simply by adding 2~8 to the order.
this advances the memory location indicated by the order by 1.

The constants 278 and 4 will therefore also be stored in fixed
locations in the memory. The orders governing the calculation will be
placed in the memory before parameters, constants and caleulated valuec: €ic,.
and the latter can ge given prov1uiona1 locations only at first, Sunpoce
that a,b,cyx, &\ ,2"° are stored in locations M(k) to M(ki—S), and that the
table of results is at M(k +6) to M(k+ 69).

The coding is thén as follows:e

Memory location, - QOrder. Romarks.
(1) M(k) to R a
(2) M(k+3)xR to cA ax (x= n) at first
' : stage,)
(3) - M(k+1) to A ax +b
(4) AtoR
(5) M(k+ 3) o2 to cA ax® + bx
(8) M(k+2) to & ax® + bx + ¢
(?) A to M(k+ 6)
(8) M(k+ 3) to cA %
(9) ~M(k+4) to A X - N
(10) Cc C to M(+2) .
<0 >0
(11) Operation complete. (12) A to M(k +3)

(13) M(8) to cA order é\ to Mk +6)
(14) M(k+5) to A

(15) A to M(8)

(16) C to M(+ 241)

Since it is now apparent that 16 orders are needed, k takes tacr
value 17, and tho momory locations of a,b, etcs are given accordingly.

, The allocation of memory locations to orders was simple in this
example, sincc only one conditional transfer occured. In calculations
where there are more than one the process will not be co easy, and it may
be necessary to draw up a separate table of order numbers and memory
locations, This process will be illustrated in suceeding examples,

2,02 Extraction of the square root.

As A,R.C. is not equlpped with a square rooting unit this
operation will be performed using the iteration formule for 'b:

Xn‘+'.!.=: (xn +b/xn)/2 ----- (1)

If necessary b must first be brought within the range of the machine by
dividing by £P where p is the smallest integer such that b,2°< 1, The
value of the first approximation x; must now be decided, It might appear
that the simplest value to use is 1, bul a much better approximation is
(l+b')/2, and as this value is easily formed it will be talen as a
starting point, ,

‘ Some re~arrangement of the formula is necessary as it is imporsant
that none of the quantities formed while calculating it should be > 1,
It can he scen, that the term b/ <1 since, if 4 is tl,;xe error in ths nta
approximation, the error in the ndxt approximation is d°/2 [b, It follcws
that xp+1 > Jb >b, since b<1 , and the term b/x, therefore Llies in
the rango of the machine, The first term b/xl is no excepiion to this
rule since x3= (1+b)/2 > 'b, The term (x, +b/x)) may, however, be> 1
but this difficulty can be overcome by calculating (xp - b/x,)/2 + xne
This form is chosen rather than x./2 +b/2x,, since the rounding off erzurs
are less, Morcover, the value of(x; - b/x,)/2 can be used to decide wheszer
the calculation has proceeded far onough since it is equal to x,,7 = Xyo
As can be seen from (2), x> X,, 1, and the expression will therefore be
negative as long as d lies within the range of the machine, When d
becomes < 2-2Y | however, this oxpression will be zero, and the Cc will
indicate tho completion of the iberation,

The only constants which have to be stored are b and 1/2, and
these will be placed in memory locations M(k) and M(k+ 1) respectivoly.
The code is thon as follows:

(1) M(k) to cA b

(2) R(1) b/2

(3) M(k+ 1) to A (b+1)/2= x;
(4) A to M(x+1)

(5) M(k) to cA b

(6) L= Mk+ 1) to R b/x;

(7) R to cA

(8) ~M(k+1) to A %y
(9) RK1) (b/xy - x1)/2

(10) Cc C to M(+ 2)

| >0 %0

(11) Operation comp. (12) M(k+1) to A (v/xy +x)/B=xg

(13) A to M(k+ 1)
(14) ¢ to M(+ 248)

14 orders arc therefore required, and b and 1/2 will be stored in M(1E)
and M(16), the final result appearing in M(16)

=]

The number of iterations required deponds ontirely on the size
of b, inecroasing as b docroascs. In the worst possible case, when b = 0,
20 oporations aro nceded; on the othor hand when b is large (= .9 say),
3 iterations will give the result corrcet to 6 decimal (20 binary) placos.
It would be possible to scale b up, if small, to bring it into a more
favourable range; usually, however, b will have been produced by a

previous calculation of the machine, and the programming of this calculation

should have been arranged to retain as many digits as pogsible, It seems,
then, that the chancos of aur number being loss than 2-10 are small, and
tho inclusion of oxira orders in the code %o modify tho valuc in thoso
cases is not Jjustified.

2,03 Double length arithmetic,

It mny be nccessary, on occasions, to perform calculations to
a greate® accuracy than 20 binary places; for most purposes, however, 40
places will probably be sufficient; and we shall now give the coding of
double loangth addition, subtraction and multiplication. It is, of course,
possible to programme A.R.Ce to cnlculate to any desired degree of
accuracye

Onc obvious uso of double length arithmetic is in the calculation
by the machine of tables for its own use, since these must be known
correct to 20 binary places,

2,051 Addition and subtracticn,

We can store these processes as one routine, the alternative
sign being determined by substitution; it should be remarked here, that
double length numbers will be stored with the sign attached only to the

first half,
Suppose, now, that we wish to form the expression :

+
(a3 + ag) ~ (by 4 Bp)

where a; and ap are respectively digits 1-20 and 21-40 of the double length
number a and similarly for b, We have, therefore, to form the two
factors (ay * by) and (ag £ by), The only difference from ordinary
arithmetic occurs vhen formipg (ag 2 bp)s Here a carry into the sign digit
may occur indicating that 220 st be added into (al & bl). In this case
it is also necessary to restore the sign digit of (32 X bg) 0 zZeroe

The code is then as follows:

(1) M{14) tocA an
(2) %M(16) to A b2
(3) Cc ©C to M(+8)
<0 20
(4) -M(17) to A -1 (11) A to M(20)
(5) A to M(20) (12) C to M(+252)
(6) M(18) to cA 2-<0
(7) M(13) to A ey
(8) Zm(15) to A by

(9) A to M(19)
(10) 0p. cOompe

~

12 orders nre required and storage for al'aZ'bl'bZ’ 1,2'20 and the result
of the calculations ' ‘
1he allocation of memory positions is then as follows:

Memc ry Position. Contents,
- l - 12 orders
13 al
14 an
15 bl
16 by
17
18 2-20
19 a4y X by = ¢y
20 as £ b2 = e2

2,032 Maliiplicaticno

. | (ay+ ag)(by +bp) = aybyse agbye agbp = 0y 40p
We have to form the three partial pralucts (alb1zb(alb2)t(a2bl)o It is

not necessary to form (azbg) since this is 2=V, and therefoure lios
outside the range of calculation, (albl) will be entirely within tho
limits of accuracy required, anc &agbl)’and (a1bs) will have their first

20 digits in the range 27°Y to 240, “Yhen multiplying aj and by, therefore,
the full 40 digits must be retained with no round off,

Next it should be noted, that we must correct the sign of (aghy)
and (albg) if necessary since if either a or b were negative one of these
would appear with a negative sign, When all the multiplications have boeen
performed, we must add a;bs, asby and the second half of(ayb,), (ie (a3bi)a)
and decide whether two, one or no carries have occured beyon& the binary
point; the operation is then completed by adding the necessary carry (2-19,
2-20 or 0) to {a by 10 T

The codo™is then as followss

élg M(a 2 tg R

2 Re M(Do) to cA b

(3) oo 8o u(w8y L2
<0

(4) ~M(1) to A

(5) A to M(40)

EG; M(bl)(to)Rt A .

7 R . Ma oc¢ a

(8) Ce Czto M(+2) &7
<0)

(9) ~M{1) to A

(10) A to 2(41)

(11) M(ay) to R

(12) R ¢ M{by) to cA (no round off)
(13) A to M(42) (alblgl

(14) R to cd ajby)s
(15) M(41) to A o (agby)p + (a5by) ot

aal3ne

(16) Cc C to M(+14)

a7 (a0) 1) to 4

17 M(40) to A (a;bp)p+ (agby)+ (agbs) (30) M(40) to A

(18) Cc 0 to M(+ 7) 171787 12 (31) Ce)c zo M(+248)
<0 >0 <0

(19) ~M(1) to A (25) A toM(42) (32) C to M(+ 243)

(20) A to 1(42) (26) M(alb%)l to cA

(21) M(41) to cA (apby)y (27) M(2519)7to 4

(22) M(2-<0) to A (28) A to M(4%L)

(23) A to M(4L) (29) Op. comp.

(24) Cpe. coOmp.

32 orders are required and storage spece for al.ag,bl,bg, 1,2"19,2‘20,

(a.lbg) .(a2b1> and (al'bl)l.
The memory allocations are then:

Memory position, Contents,
1~ 32 orders
33 aj
34 ap
35 b1
36 b
37 1
38 2-19
39 2-20
40 (21b5)
41 (albl)l and (a;by)y +corry = Cy
42 (agby) and (a3by +aghy +(aybydy= cp

2,04 Tabulation of sin(x),

One useful function for which our machine is well suited is the
calculation of tables, This will probably form a "spare time" occupation
when the machine is not required for more urgent problems,

One obvious application is to programme A.R,C., to calculate the
basic tables required for its own use, As mentioned before, this provides
an example of the use of double length arithmetic as we shall have to
work to 40 binary places in order to obtain tables correct to 20 places.

As an example we give the code for the calculation of sin(x)
from 0 to /2 at intervals of d. Sin(x) is chosen for tabulation rather
than cos(x) since interpolation is thereby made slightly easier.

We shall use the formulae:

sin(x +d) = sin(x)cos(d) + cos(x)sin(d)
cos(x +d) = cos(x)cos(d) - sin(x)sin(d)
to give sin(x) and cos(x) from O to i /4, this beﬁng, of course, equivalont

to sin(x) from O to n’/z. The routines for double length multiplication
and addition must be placed in the memory for reference, and we shall
assume that these are stored at the end of tho programme, occupying 42 and

20 memory placos respectively.

s

The initial data which must be inserted is the values of sin{0), cos(0),
sin(d) and cos(d) and the constants 2=+ and 2-90, Suffices indicate the
first and second halves of the number under consideration; thus sin(d)
means digits 21-40 of sin(d), The memory positions (. al) and (+ ay Yete,
refer to locations in the double length arithmetic routlnes.

After rounding off to 20 digits the values of sin and cos are
punched on two separate tapes, Finally the cos values are added to the end
of the sin table in reversed order, thus giving all values from o to |V /2.

The code is as follows:

(1) 73 to Ty +g2 to M(88) toM(149) Transfer of double length
routines to memory.

(2) cos dq to cA

(3) A to %fl(x\al)

(4) cos dy to CA ,

(5) A to M(4 ag) Pransfer of cos(d)and sin(xi to D.L. routines,

(8) sin =, %o cA

(7) Ato F(x1,)

(8) 81D;;)t0 cA

(9) A to M\)\,bg)

(10) M (13) toTcA This directs the control to the appropriabe
(11) AL 70 M{120) order (13) at the end of the D.L.M, roubines
(12) C7'to M +76) Control to D.L.M. routine,

DOUBLE LENGT MULTIPLICATION ROUTINE GIVING SIN(X)C0S(d)

(13) M(Acqy) to cd

(14) A to M(+ay) Transfer of products to D.L.Addition routine for
(18) M(xcg) to cA the formation of sin(x+4d), .
(16) A to M(+ag) '

(17) M(cosx,) to cA

(18) A to N%’<bl) sin(x)is replaced by cou(x)in D,L.M«Re

(19) M(cos x5) to cA

(20) A to M(Xbp)

(21) M(24) to cA

(22) Ap TO M(120)

(23) c to M(+65)

R Gt e e S G S s S et P Gt O S s A B b S S0m e B0t P B e P B Db D e B G Bk Y0 Ot R B e B S et G B B 0) P B e B0l i e S B

(24) M\“c])tocA

(25) to M(160) Transfer of cos(x)cos(d)to temporary storage.
(26) M >\Cp) to cA

(27) A to M(161)

(28) M(51n dy) to cA

(29) & to M(xay) cos(d) is replaced by sin(d) in D.LoMeRe
(30) M(sin dp) to cA

(31) A to M, xap)

(32) M(35) to cA

(33) Ay to M(120)

(34) ¢ to M(+83)

DOUBLE LENGTH MULTIPLICATION ROUTIWE GIVING COS(X)uIN(d)

.t B ey

LT 008 a0 e

(35) M()<c1: to cA

(36) A to I +1b,) Transfer of cos(x)sin(d) to D.L.AcRe
(37) M(Xes) tolea

(38) A to il +g)

(39) M(42) to ca Direction of control at end of D.L.A.Re
(40) to M(141) '
(41) C to M(+ &9)

" DOUBLE LEITG'"H IDDITION GIVING SIN(X)C0S(d) + cos(X)sim(d)e.
(42) M(+ cq) to cA

(43) A to 1:\l7l(.a1n x1) sin(x + d) is stored ready for use in the
(44) M(+ cp) to cd calculation of the next term.

(45) A to M(sin x2)

(46) M(27™*) to A

(47) Cc € to (+ 4) Rounding off to 20 binary places of
<0 sin(x +d).

(48) 1(220) to cA

(49) M(sin m) to A

(B0) A to W+ cl)

(61) m{ =+ bl‘ to Storage on tape.

(52) 1isin) to ci.

(53 A 2 M. X dy) cos(x) replaced by sin(x) in D.L.M:R.

(54) M(sin x('.ﬁ) to cA

(55) A £0 Mo X o)

(56). W59 toc

(57) 4, vo W{10)

(83) C to M" +30)

DOUBLE L"‘NGTH '/IUL'I‘IPLICATIOT\T GIVIIG SIN(X)SIN(d)

(89) —M(xcq) to cA esin(x)sin(d)yto D.L.A.R.

(60 & toN(

(61) —M(Xx c?)a%o cA ~sin(x)sin(d), to D.Ls.A«Re with sign erased.

(62) M(-1) %0 A The sign must be removed as no sign is

(63) A to M+ ap) attached to the second half of D,L. numbers.

(64) M(160) to cA

(65) A to M(+by) cos(x)cos(d) placed in D,L.A.Re

(66) M(1el) to cA
(67) A to M + ‘
(68) ui71) to ci
(69) Jp to M{141;
(70) Cto M(+60)

DOUBLE LuNGTH ADDITION ROUTINE GIVING COS(X)CO0S{8) ~ sIN(X)sin(d)

(71) M +c;) to cA

. (72) A to m(co* X-) cos{x + d) stored for use in calculation

(?3) M +cn) to ch of next term.

(74) A to M(CO Xz)

(75) M{2~Ll) to A

(76) Cc C to (+4)
<C Rourd off of cos(x + d) to 20 places,

(77) 1(2"%0) o cA

(78) Mlicos :u) to A -

e9) A to M{ * cq)

(80) M(+ cl) to Storage on tape,

] Gom

(81) M(IM) to cA
(82) «M(2"P) to A Record of number of terms calculated.

(83) Cc> 0,0 to (+174)

<0
(84) cT5 4 31 to 5

8 k to k+ N-l | X
ésg; 3é. cgm;o ST Ly 1o g Lo

86 orders are therefore needed for progremming, A further 59 are required
for the dauble length routines and memory positions are nceded for sin(x),
cos(x) ginitially used for sin(O) and cos(o)) ain(d), cos(d),cos(x)cos(d),
N, 8P
U Py .
The allocation of memory positiona is then as follows:

to M(k to k+ N-1) Transfer of cos table to
end of sin table,

Memory position. Contents,
1 to 86 Code for tabulation of sin(x),
87 to 128 Code of D.L.M,

129 to 148 Code of D.L.A,
149, 150 sin Xq9 sin x5
151, 152 COS Xy, COS Xg
153, 154 gin 4
155, 156 cos 4
157 2-1
158 220
159, 160 cos(x)cos(d)
161 N
162 2-p

2,05 Use of tables and interpolation.

One of the most important features of a computer is its ability
to extract data from tables, and to interpolate if necessary, A.R.C., will
be prov1ded with a library of tapes containing such useful tables as .
sin, e~, log(x) etcs, and we shall now give the coding for a typical
interpclation, taking as the function, sin(y}

Our table here will consist of sin(y\ tabulated from O to 71 /2,
or of sin(y) and cos(r) tabulated frem O to ™ /4. It has been found
that the coding is simplified if a sin table from O to (¥ /2 is used since
the determinabtion of the sign is wmale easier, The code can, of course,
immedisily we adopted for cosines since cos(y) - sin 1 /2 - ¥ 1, We shall
asgsume that this table is stored irn the high speed memory; interpolation
directly from the tape is almost idonfical.

Snomrs preliminary adjustreat is necessary to bring y within the
range 0 to 7V /2 and to determine the correct sign of the final result,
First, it ic obviovs that the addition of 2 7 makes no difference to tho
value of tho sin, while the addition of ! changos the sign. It is
probable that y will have boen calcuiated by the machino, and if we arranse
this colculation 8o that whon y rcashes the value i1 , a 1 is carried ovor
into the sign digit, tho sign of cur rosult will be given corrcctly. -

‘Larger vailucs of y will also be given correcily, since multiples of 2\

will cause a carry past the sign digit which will be lost. Thus, suppose
27 < y< 377 , two digits will have carried past the binary point
leaving O in the sign digit; this is correct, since sin(y) > 0 in this
ranges On the other hand, if 71 <y < 277 , one digit will have
carried over indicating that sin(y) is negative.

Having decided the sign of our result, it is next necessary to
determine whether y (or y - 7 if y> 1v) lies within the first or
second quadrant, This is done by adding T /2 (= .1 in binary scale) to
y and observing wvhether a carry into the sign digit occurs. We can thus
decido whether we require sin(y) or sin(7 =y).

The coding for the discrimination is as follows:

(1) ¥y) to cA

(2) e C to (+ 8) >0

(3) M(1.0) tc 4 giving (y - 77) (10) M(.1) to A giving (y.772)
(4) 2 to M(y) (11) Cc C to (+ 8) conke

(5) 0o{) v¢ eA Change order which with interpolation
(6) M) to A determines sign of

(7)- "4 o 1(0) sin y. This will (12) M(1.0) to cA

(8) M{y) ©to cA occur in a subsequont (13) ~M(y) to A (7 ~y)

(9) ¢ to (+ 1) code normallya (14) ¢ to (+ 5) Contimue

with interpolation

14 orders are nccded for this discrimination, and we must also store the
constants 1.0, Onl, k and the variable y. 18 memory positions will bo
occupicd in all.

We can now consider tho actual process of interpolation.
Suppose that y = x + nd, where = is the necarest smallor tabulated valuo to
¥, and d is the interval of tabulatione

Then, using contral differences -

sin(x + nd) = sin(x) + nDy + n2D2/2’ + n(n® - 1)D3/3! O —

whore: Dl = sin(x - d) - sin(x + 4)
2

Dy = sin{x - &) - 2zin(x) + sin(x + d) otc.

We require to calculate sin(y) corroct to 6 docimal places, and the numbor
of torme of (1) which must be included depends, of coursc, on the valuo
of d, wfermmce to the table wiil bc simplificd if the interval is [t /3 Ty
and it ¢aan t> shown, that,if m = 8, sccond differcnces will givo
sin(x - nl) %0 the required accurasy,

Wo therefore have to evaruate the function :
sin(x) + nfsia(x - a) = sin(x + d; » gg(sin(x =~ 4) - 2sin(x) + sin(xz +2) }

By
b

2 et -

It is first neccocsawy to locate tihn gcoction of the table from +hich we

havo to interhol.te~ This is done by dirccuing the conterld to the rmomol)
position givou by the first 8 digits Y y» The sin tablc will kave boon
stored s¢ thas the momory loceation of erny tcrm is the samo as tho fimt .
8 digits of the avmver whosec sin is sterced thero (plus a possible constanb i

~18-

We can thereby pick out the location and value of sin(x)§ sin(x + d) and
sin(x -~ d) are then obtained by instructing the control to advance and go
back one position in the memory, The proportionate part, n, must algo be
calculated, but as this is equal to the remaining 12 digits of y ¥ 28,
this is simpleec

The coding is then as follows:

(19) T, to Ti+ 128 to M(k) to M(k+ 128) Transfer of sin table to
memorye

(20) M(y) to cA

(21) M(k) to A

(22) A7 to 1(40)

(23) J‘I we M(A6) Insertion of the location of sin(x), sin(x+.d)
" and sin(x - d@) in the appropriate orders,

(24) M27™Y) te A

(25) 31 0 0(3C)

(26) ~(277) tn A
(27) A bo M(3R)

(28) Sy, (8) Giving n.

(29) A to M{51)
(30) SM(sin(z+ d)) to cA

(33) A to MIL3). sin(xz +d) must be stored for use againe
(32) M{sin(x ~ &)) to A)
(33) 5,(1) (sin(x - d) ~ sin(zx+ 4)}/2,

(34) Lto M 54)

(35) AtoR

(36) R , Mn) tocA n(sin(x - d@) - sin(x+ 4))/2,

(37) A to M{52) :

(38) M(54) to cA

(39) sin(x +d) to A

(40) ~sin(x) to A (sin(x -) - 2sin(x) + sin(x + d))/2,
(41) AtoR

(42) (n) - R tocA

(43) AtoR

(44) (n) o Rtoch n2(sin(x = d) - 2sin(x) + sin(x * d))/2»
(45) if£32) to A
(46) sin{x) to A . giving sin(y)q

(a7 Op. compe
8 " 30 orders are therefore needed, and, in addition, storage for
27°, 2%, n, sin(x +), (sin(z - d) - sin(x + d4))/2, n(sin(x-d) ~ sin(x +a)}
2

k and sin(y), but some of these quantities can be stored in the same

position,
The whole process of discrimination and interpolation therefoxre

occupies 54 memory positions as follows:

)0

Memory location, Contents,

1. 14 Discriminations
15 Yy
16 * 1.0
i7 Constant for ordor 6 in discrim.
18 0,1
19 - 47 Interpolation,
48 .2-8
49 F-atd
50 ' k
51 n
52 n(sin(x - 4) - sin(x ,d)), =
53 ~sin(x 4+ 4)
54 (sin(x = d) ~ sin(z+ d))/
55 -~ 183 sin table,

2,06 Three dimensional Fourlier summation,

fmong the computatione for which A.R.C. is likely to be used,
are those arising in X-ray crystallography, In particular, thcre is the
problem of effecting Fourier summations of the type:
H X L :
2% 3 Peos(2 iTlhx+ ky+ 1z) + K)
~H ~X ~L ;
where x,y,z are fixed, h,k,1 vary between the limits showm, and F and o
are given for any particular (h,k,1).
Thz programme of such a summation is also of interest as it
provides an example of the use of the interpolation routine given above.
A typical problem of this sort might involve 1,000 terms, and
it is obviously impossible to store all the initial data in the high speed
memory. Wo shall assume, thon, that the values of (h,k,1), F and £ arc
stored on teme; (x,y,z) can be placed in the high speed memory, sinco
they are corsiant throughout tho calculatione A4s will bo scen later, tho
most convoniont disposal of tape data is as follows:
o .

/_f\' '2
hl,kl’ 11,Flgh2,k2, 12,?23 seeesClCe)
I "

It may be vemarked here, that tape storage is particularly ccnveniont in
problems whcre a large amount of da*a is uscd in soquonce, since, when a
number hes beon read off, the control automatically moves to the next
position on the tapes It follows that. by disposing data oa the tapc
carcfully, tho machine can r-oad off values in sequence, thus saving time
and memary spaco in the codeo

‘ storage space will be renuired in the high specd nmemnry forr
(x,y,2)- for the partial sum of the series, for the constent I giving the
number »7 terms in the series, and the constant 2"P which will Ve subiracteil
from ¥ at each stage to keep track c¢f ‘he number of terms computede We
shall, in addition, reguire 129 pcsitiors for the table of sins and 54
for the interpolation routinee

A word here is needcd on the subject &f scale factcrs, It will

be necessary to reduce (h,k,l) by suitable factors to bring them within tkre

20~

range of the machine, Usually, (h,k,1) will not exceed 32, and it will
be sufficient to divide all values by 2° before forming hx, ky etec,. Ve
mus$, of course, correct for this scale factor before taking the cosine}
it in convoniont, %00, to offcct tho maltiplication by 2-m at this
stagc, nincc thdad: gonglats meoarly of one Loib_shifh,

Tha co&o ig then as follows* . S -

(1) T3 to Ty, 10g to M(k) to M(k + 128) Transfer of sin table.

to M(169) to M(222)

(2 T, to T, Transfer of intcrpolation
') J J + 58 , . routlgz,
(3) k to cA Insortion of k in intorpolation
(4) A to Wi) 5 routine,
(5) T3 to M(223) h, 2"

(6) Mz) ’fo n

(7) R 1223) to cA .

(8) S-tu 2 vihx

(2) £'to W(223) 5

(10) to 1\1(224) k o 2"

(11) M%) to

(12) R 14(224) to cA

(13) 5.(6) 2 Mky

(14) M(223) to A 2 T (nx *+ ky)

(158) A tc M(22%)

(18) T3 + 2 to M(224) 1620

(17) M(z) 50 R

(18) R o 1i(224) to ca)

(19) s.(6) 2 iz

(20) 1M{223) to A 2 77 (hxt ky +1z)

(21) T4

1 + 5 bo M(224)

(22) M(224) to A
(23) -M{0>1) to A

(24) A to M(183)
(25) W70} to cA
(26) &, *o 14(173)

(27) 1{3C) to cA
(28) "L‘L to M(222)

(29) © to (+ 149)

0 4t ot oo e

INTERPOLATION.

(80) AtoR
(31), T3y , 4 to M(224)

2 17 (hxe kys 1z) + 4 = O

giving & - 1 /2, This is ncccssary sinco

wo 7oquire cos & and sin €2 is tabulateds
& is insorted in intorpoletlon routine,
Tocasion of order disposing of cos{ &) after

interpolaticn is inserted in intoerp. codo

Last ocrdar of interpolation onde is modified

‘to continue with the summatiou coldo,

Contrsl to firat order of intormnlation.

(32) R, M(224) to c4 F cos{2).

(33) M(225) to A : Previously calculated terms added ina
(34) A to 1(225)

(353) M(W) to cA

(36) -M(2-P) to A Record of no. of terms calculated,
(37) 4 to M(N)
(38) Cc ., C to{+ 219)

<0

(39) Ope comp.

The allocation of memory positions is as follows:

Memory position. Contents,
1 - 39 ' Code for summation.
40 -~ 168 : Sin %ablo,
“169 ~ 222 Interpolation routinec.

223 '
224 Storage positions,
225

226 - 228 (%47, 2)
229 N
230 2P
231 . 0.l
232 k =4l

2.07 Matrix multiplication.

‘ An operation of common occurence in numerical mathematics is
that of matrix multiplication, We shall consider two methods of
performing this using A.R.C.. In the first, the whole of each matrix and
of the product is stored in the high speed memory; naturally, this
restricts each to a size less than 25b/3 terms, and, since the programme
has also to be included, this moans in practice 8, 8 element mutriced,
The second method stores one row at a time of the first mabrix in the
high speed memory, and takes the elements of the second, in order, from
the tape., Tho advantage of this arraangement lios in the fact that matrices
of sizo up o abogt 200 « A00 ¢wid Do -readily operated uponmi -

L. Tho diagrine show ik #aw olomonds.of the tvy radiciges are -
stomed i» l.2donr scquoneo In #he muncor, and *ho simple, triply itorative,
process is clear frOm the following coles,

P

: 8
i
JUUS. N, o I I T T T WO
—————— D Snintet -~ /jr N \{/ RS ety
Ty S
I A %.
A storages B sturcge. C storage.

n @

1) Both matrices in high speed memory.

(1) M7) to cA

(2) +2°P to A Advance of a to a.,
(3) Ao M(7) Yol 2l 1
(4) M{8) to cA and by g to Dy, 1,8

(5) +2°P to A
(6) A to M(8)
(7) Map i) to R

(8) 1\1'(b:L a) ¢+ R to cA Formation of single term ar 3bj g and
(9) + N(ub) to A :
(10) A %o ¥{ab) partial sums of these,

(11) M(n) to cA
(12) =2P %0 4
(13) A to wln)

(14) Ce C to (+ 243)
<0
E:Ls; M(ubd) to cA) -
16 L to MOTT 1 a., b = C
(17) (16} *o cA 1 it e
(18) + 2P to A Mvance of disposal position from Ti 4 tol7;, q
(19) A to M{16)
(20) M(¥W) to cA Restoration of iteration index in (11).
(21) Ly, to M(a)
(22) M(nt'y to cA Formation of iteration indox for completion
(23) ~2P tc A of rth. row of cpge
(24) A to Mn¥)
(25) Cc € to (+10)
<0 | >0
(26) Moy) to cA Return of B (35) M(7) to cA Restoratiun
(27) iy, 1 75”1 8) to by, 4 (36) -I(N) to & of a, 4 to
(28) - U, to cA Restuissios of (37) A to M(7) " ap,1.
(29) A %o M(nt) iteration iidex (28) C to (+ 222)
in (22).
(30) M(n'') to cA Formation of
(31) =2 to A iterntion index
(32) Atz M(n'!) for vows of a
(100 &)
(32) S C to (+224) (ep g aGvancen ©9 apy 3,3 after (3).)
<

(34) Cp. comp.

Memory location. Contents,
1l -~ 38 code,
39 2=P
40 M(ab)
41) M{n)
42 M)
43 M(nt)
' cont,

Memory location.’

44

B 44 + n®
45+ n4 w 44 4202
45+ 212 w 44 + 3n°

Contents,

' M(nt?)
M(ari)
M(big)
M)

2) Using tape as secondary mediums

Read one row of A into M and one term of B.

(1) .03 345 t0 M(J) to (§+n)

(2) pTyt o M(bi’s)

(3) M(6) to cA

(4) 2P to A

(5) A to M(6)

(6) M(ari) to R

(7) M(bsg) ¢ R to cA
(8) +-M%ab) to A

(9) A to M(ab)

(10) M(n) to cA

(11) =2"P to A

(12) A to M(n)
(13) Ce © to (+245)

<0
(14) H(ab) to Ty
(15) M(N) to ch
(16) to M(n)
M%n“) to cA
(18) 2P to A
(19) A to M(n')

index,

(20) Cc Cto(+9) >0
<0

21 T to . T(b

Eza% P(N\otg cAll)

(23) Ay, 0 (n?)

(24) M(n“) to cA

(25) -272 to A

(26) A to M(ntY)

(27) Gc C to (+ 230)
(28) Op. compe

Memory locationss

1 - 32
33
34
35
36

One row of A,

One element of B,

Formation of partial sum %

Restbration of

Iteration for
row enda

(29) M(6) to cA
(30) =M(N) to A
(31) A to M(6)
(32) © to (+227)

Contents,

Cod e,
H(by)
2-p
M(ab)
M(n)

ribls’

o e e e e o

Memnry location, Contentse

37 : M()

33 “(nt)

39 M{"n] 1)
40 «(33 + n) Miaps)

2,08 Solution of a differential equatibn.

To show the power and flexibility of our machine we shall now
code the solution of the memslinear differential equation:

'9..2-%; s f(x)edy 4, FB(x) o O e (1)

ax® ax

This is really a very simple eqiation from the point of view of the
machine, aud we propose to use only the crudest method for its soluticn:
it should be emphaslzed that, in practice, more sophisticated difference

techniques would be used.
We assume that the boundary conditions are :

X = O. Y Fa, dy/dx =Pe “-—-—(2)

[3

and that we may represent the differentinl cooffsa:by the d.ii'ference' equnso &
(dy/ax), = n+l " Yn-1 fen

2 2 . .2

(a%9/ax")y = ¥n,1 = B9+ Vpq /o

where a is the interval of diffarencing,.
Ucing (3), (1) may be writtea :

Yn+1 — 9q* Yp1+
or.:

%(Yn,ull— Yp.)f(na) + 2?M(na)= 0 comemm (4
’ D
Yne1= ¢ on +(%f(na) - %)yn-l ~ 2"%(na))/ (% * Z_f(na))

with the boundary conditions:
Yo© Qo V1 = V.1 = 23D
Now, from «), with n=0:

y-i2 + 0 £(0)) =2y, +v.q(s£0) ~1) - oF Fo),
L 2 3
or, using (5) :

y; = a+ ap + 1PCFO0) - 22(0)) eeeen (6)
2
From this pcint, a straightforwavi aprlication of (4) with n =1,2 etc.
will give the values of y at all prlints rx.
' Ve now give the simnle :taovrasive code required t¢ obtain all

values of yp up ton =N, 1% is assumed that tables of values of f(na)

e e o

and F(na) have already been caleulated and are stored in the memory; and
that y,,y; and various constants such as -a2/2, , af4¢ have been obtained
in the preliminary mathematical discussion of the problem., Another
assumption is that the calculations have been so arranged that | y,j« 13
if this is not true suitable scale factors would have to be inserted,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(xa)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

(34)

M(17) to caA
+27D to0 A
A to M(17)
11(18) to cA
+2"P to A
A to 1(18)
M(21) to cA
+27P to A
A to M(21)
M(26) to cA
+27P to A
A to M(26)
M(29) to cA
+2=P %o A

- A to M(29)

~a?[2 to R
F(na) R to cA 5
¥n to A ‘ Yy = & ¥(na)f2
A to M(40)
+af4 to R
f(na) R to cd
+1/2 to A 1/2+ a f(na)f4
A to M{41)
«l to A - 1/2+ a f(na)f4
A to R
¥Y.qi e R toch ‘ ,
.ﬁ(}zo) to A In+ la £(na)/4 - 1/2)y, 4 = a%F(na)/2s
A4 M(41) to R Yn+1
R to M())
M(42)to cA N, 2P
-2"P to A
A to M(42)
Cc C to (+ 224)
<0 ‘
Op. COIMpe

The memory positions for constants are as follows:

Memory position, . Contents,
1l - 34 .codee
35 ~al/2
36 a4
37 1/2
38 -1
39 2-p

40 Storage for (19).

2B

Memory position, Contents,

41 : . Storage for (22),
42 Stowage tor iteration index (30).
4% +5 434 N Storage fur £.0) to £(Na),
44+ ¥ to 444 2N Storage for ¥{0) to F(Wa)e
454+ 2N to 454+ 3N Storage for yy to y .

2,09 Conversions to and from binary scale,

A3 mentioned earlier, A.R.C-will perform its own conversions
from decinal to binury scale, and vice~versa; these are the last problems
to be coansidersd, .

2.091 Decimal-binary conversion,

The normal arithmetic process of decimal-binary conversion of
a decimal pucbor is as follows: the number is sucessively muliiplied by
2y, 1 or zcro is recorded in the corresponding binary number aszcovding as
there is or is not a carry past the decimal point, Unfortunabtely tais
method is rni wvory suitablo for a binary machine, since decimai numbors
cannot be inserted as such, but have to bo represented by a binary code.
Thus, the dd~imal number 9 would bo inserted in the machine as 10U,
The conversinn process outlined above bocomes very complicated if we have
to operate cn a decimal nurber represcented by vinaries, as carries between
tho digits have to beo adjusted at cach multiplication.

We chall, accordingly, adopt tho less direct methed to be
doscribed nowe It is best illustrated by an example; thus, supposc wo
havo to convert 341 to binary scalo, Thid can be written:

1073 (3,10 -+ 4)010 + 1)

Wo thorefore isolato the first diglt of tho number and multiply by 10
(1010 in binary scale)s Thc noxt Gigit is now added in, and tho sum again
multiplicd by 10s This process is reveated until all tho digjiic heve
boen uscd. We now have to multiply by a scaling factor 2P/107 to produce
the ccrryezt result; as nurbors will bo added in to the cnd of the
accumalator, p will have tho valuo 20. Jn practicc wo shall e dosling
with 5 dig’t docimal numbors ard tho scale factor will. be 230/;050

The only question reomaining is that of the sizn of the numbere
Wo havs montioned proviously, tuat data will be inserted cn puncied
tele~type tanc, using binary code fer fecimal numbers. A%wt. is rostricted
to 5 docimal numbers and the imput will Lo in tho form of & eyjhers
representing the doecimal digits ani a sixth giving the sign as doscribed
in para.(i-5). Wo require to omerate with the modulus of %ac number in
both convorsions, and if our decimal number is nogative 1% is thoroforo
nocoscsary o adjust tho corrosponiing bianary number obtaired by
complementing and affixing a nogativo signe

Dotails of the code arc as followss

(1) M(D) to cA Docimal numbore

(2) Sp(4) This shifis tho first digit of tho numbor
into tho zcgister,

(8) A toM(Ty)

(4) =R toeca

M(B) to A . Result of previous digits added ine

A to I(E)
S-1.2) Maltinlicaticn ty 20.

re e Y
Mo, to A

HOoo~I0WOM

T A O~ rrnrses
wm
=
l—-)

Nt s e Nt N

£'t0 MUB
N\.ﬂ\?) tc cA .
~2°CC te A ‘ Record of number of digits converteda

L be HOEO
Jo U to M -+ 243)

~ O

(152 M(3) to R

[S S R]
H

(183 2°3/105 . B to cA Scale factor,
(27) &L se M(B)
(19) e 0 to (+ 5)
<o
(20) ~M{B) to ci
(P1) 1.0 to A B complemernted and givon correc’ Signa
(£2) 1.0 %o &
(23) A tu M(B)
(24) Ops c¢oupe
Memory positions, Contents,
l-24 Code.
25 Ty .
26 o
27 D -
28 2-;'5
29 : 27
30 2901105
31 1.0

2.092 Binary-decimal conversionla

Binary~decimal conversion #s slightly easier than the reverse
process as the straightforward arithmetic method cam be uced. The process
is to multorly the binary numbor sucessively by 1010 (ie-10), The
correspondirg decimal digits are given in their codei binury form by the
carry past the binary point. The modulus of tho binary number must be
used during conversion, and a negative sign attachod to the result if
appropriatc.

The coding 35 as follows:

(1) (M(B)| to R

(2) R+ 0.1010 to ci
(3} M(T,) to R

(4) s5y(4)

(8) R to M(Ty)
(6) A to ITy)
{(7) M(19) tocA

Portion of number alrcady coavertedo
Carry past binary point which would have
occurcd on mult. by 1010 shifted to Re

w28

-2"20 to A

A to 14(2.9)
Cc G to (-247)
< n

MH) to chA
¢ 0 to (4 &)

<o
MT_) tocA
1.0 A

A. to 1\"(.El)
T 4o T
Ov‘o C(;m’po'

Momoey positions,

1. 17
1.8
19
e}

21

-29—- :

Sign adjusted.

Conbents,

Cado
0..1010
2-17 (for order (7))
220
1,0

Table I

o, Code Symbol Description
1 0,2000 T to M Pill aigh spoed memory from
inpub tape,
2 0,0001 T to Ty tart tape moving to position
T3 and proceed with next ordor,
3 0,0010 nTi 10 143 to My to 1+j Read nmaterial on nih tapo
betweon 1 and i § inbo M.
4 0,0011 Ml to 14j to T Punch material frcm nmemory
n location 1 to 1. § onto nth tapce
5 0,0100 C to M Shift control to order locabed
at 1(x)o
6 0,0101 Cc to M If A O shift control as in 56
7 0,0110 (W) Shift contonts of Aand R, N
places to lefte So tant og.
AM08-=2{R20);R(0V-(2 0
A0}, 402)=A(20),0;3(L)~=Y 224,
8 0,011l R(X) Shift contents of A, N niccorn
to right so that og.))
A(0), A(1)~A(20) to A{0),0,AlZ}~
9 0,1000 M to cl
10 00,1001 IM{ to cA
11 0,1010 -l to cA
12 0,1011 ~iM) to cA
13 0,1100 M to A
14 0,110l My to A
15 0,1110 «M to A
16 0,131 - e A
17 1,02C0 M. 2 toca Clear do ifalhipiy M by R,pince
lst 20 digite aad sign in &
after adding unity %o 2lst digl®.
’ Leave last 20 digits in R.
18 1.2001 Me3R tc cA(N:Ro) Porform mult, without round oif.
19 1,0010 A%+l tocR Divido A by M, place quotion®
in R with last digit unity.
Leave rcemainder in A
20 1,0011 M to cX
21 1,0100 R to cA

30w

[‘
A b

e i{19) 2

-
Y.

22
23
24
25
26

1,0101
1,0110
1,0111
1,1000

1,1001

R to M
Ato M
AL to M

A to cR

-3l

Substitute digits 1-8 of A in
order located at M(x)s

Signal completion of operation,

