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I. Introduction
The global study of variations of polarized, pure Hodge
structures is an extensively studied and in many ways fairly
well-developed subject (cf. [CM-SP]). Thus for a period
mapping

Φ : B → Γ\D
where B is a smooth quasi-projective variety, if we assume that
the differential Φ∗ is generically injective, then it is known that
both KB(log Z ) and T ∗

B
(log Z ) are nef and big (cf. [Z]). Here

B is any completion of B with boundary Z = B\B a normal
crossing divisor. It is also known that B is hyperbolic modulo
a proper subvariety (cf. [LSZ]). With no assumption on Φ∗ it
has been recently proved that for Γ arithmetic the image
Φ(B) ⊂ Γ\D is a quasi-projective algebraic variety over which
the augmented Hodge bundle L→ P is ample ([BBT]).∗
∗For background and the terminology from Hodge theory used in

these notes we refer to [GGLR] and [GG].
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On the other hand, assuming unipotent monodromies around
the irreducible branches Zi of Z , it is well known that the VHS
over B extends canonically to B and on the boundary Z one
has a variation of limiting mixed Hodge structures whose local
structure has been extensively studied through the work of
Cattani-Kaplan- Schmid and others (cf. [CKS]). From multiple
perspectives it has recently become clear that what is now
needed is a global study of the variation of limiting mixed
Hodge structures along Z .† That is what will be undertaken in
these notes.

†There is a global study of variations of regular mixed Hodge
structures (cf. [PS] and the references there). As we will see the global
study for limiting mixed Hodge structures is a somewhat different story.
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We denote by ZI =
⋂

i∈I Zi the closed strata in Z with
Z ∗I ⊂ ZI being the Zariski open smooth part of ZI . Then
taking the associated graded pure Hodge structures of the
limiting mixed Hodge structures along Z ∗I gives period
mappings

(I.1) ΦI : Z ∗I → ΓI\DI

in the usual sense.
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Thus the new information concerns the question

What happens globally along the fibres Y ∗ of (I.1)?

What is varying along these fibres is the extension data
associated to the family of limiting mixed Hodge structures
along Y ∗. Here it is important to keep in mind is that these
limiting mixed Hodge structures have locally constant
associated graded pure Hodge structures. There will be global
monodromy arising from the action of π1(Y ∗) but it will
preserve the weight filtration along each connected component
of Y ∗, and will act by a finite group on the graded quotients.
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As a first step this invites the study of the geometry of the set
E of all extension data associated to the set of mixed Hodge
structures with a fixed associated graded pure Hodge
structures. This is discussed in Section II, and there it is
observed that the set Ek of at most k-fold extensions of pure
Hodge structures, which we shall refer to as extensions of level
at most k , fibres over Ek−1 with typical fibre an
Ext1

MHS(Hm+k ,Hm) where H i is a pure Hodge structure of
weight i . We shall refer to these fibres as extensions of level k.
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From [C] we have

Ext1
MHS(Hm+k ,Hm) is the quotient of a complex Eu-

clidean space by a discrete abelian subgroup.

In fact, this Ext-group is an extension of a compact complex
torus by a product of C∗’s and C’s, which with a somewhat
abuse of language we shall call a semi-abelian-torus. In general
other than this structure result there doesn’t seem to be a lot
more that one can say about the set E of extensions of mixed
Hodge structures having a fixed associated graded.

However when we come to limiting mixed Hodge structures
the story is richer. For such a LMHS (V ,Q,W (N),F ) where
N lies in the interior of a monodromy cone σ with dual open
cone σ̌, elements A in σ̌ ⊗ Z canonically define line bundles
LA → J over the level 1 extension data J .
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Now J is a compact complex torus that looks like an
intermediate Jacobian of the type H2m−1

C /FmH2m−1
C + H2m−1

Z ,
and one may define the abelian part Jab ⊂ J of J to be the
largest sub-torus lying under Hm,m−1 ⊕ Hm−1,m. Then for
A ∈ σ̌ the restriction

LA → Jab

is positive. The construction of LA → J involves the level 2
extension data and the structure of the LMHS. The point here
is that the extension data for limiting mixed Hodge structures
has an associated geometry not present for general mixed
Hodge structures.
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We now turn to the Abel-Jacobi type maps that arise on a
subvariety Y ∗ ⊂ Z ∗I along which the associated graded to the
limiting mixed Hodge structures are locally constant. There
are inductively defined maps, the first of which is‡

Φ1 : Y ∗ → { level 1 extension data}.

Concerning Φ1 there are three main results:

I Φ1 extends to the closure Y ⊂ ZI ;

I Φ1 : Y → Jab maps to the abelian part of J ;

‡Actually the first should probably be though of as the map

Φe : B → P

where P is the canonical set-theoretic completion of the image
P = Φ(B) ⊂ Γ\D of the original period mapping. On the boundary Z
the map Φe := Φ0 associates to a limiting mixed Hodge structure the
associated graded pure Hodge structure. Thus it is a minimal
Satake-Baily-Borel (SSB) type completion of P (cf. [GGLR] and [GG]).
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and we have the equation of the line bundles over Y

I (I.2) Φ∗1LA = −
∑
i∈I

〈A,Ni〉 [Zi ]
∣∣
Y
.

In (I.2) the pairing is between σ and the dual cone σ̌; the
Ni ∈ σ are the logarithms of monodromy around the branches
Zi of Z . We note that the formula holds when we sum over all
the indices where we set [Zj ]Y = 0 if Y ∩ Zj = ∅. This basic
formula relates the variation of the extension data along
Y ⊂ Z to the normal bundle to Z in B which points out of Y
into B .
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For example
If Y is contained in one Zi and doesn’t meet the other
Zj ’s, then

Φ∗1LA = 〈A,Ni〉N∗Zi/B

∣∣
Y
.

In particular, if 〈A,Ni〉 > 0 and the differential Φ1,∗ is
injective, then N∗

Z/B

∣∣
Y

is ample.

We note that the proof of the above results are Hodge
theoretic. The first uses mixed Hodge theory, the second the
infinitesimal period relation (IPR), and the third the detailed
structure equations of a family of degenerating Hodge
structures.
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The next map

Φ2 : Φ−1
1 (point)→ {level 2 extension data}

is defined on Zariski open sets S∗ in the fibres S of Φ1 of the
fibration E2 → E1. This mapping turns out to have some
surprising features, properties that are of both a local and
global nature. For the first, the level 2 extension data is an
extension of a Cm/Λ where Λ is a partial lattice by a quotient
M of a product of C∗’s. Then as a result of the IPR we have

(1) Φ2 : S∗ → M .

The second is a global result which informally state is

(2) Φ2 is determined up to a constant by discrete data.
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This discrete data involves the monodromy arising from the
minimal stratum Z ∗I that contains S∗, the monodromies Zj

where j 6∈ I but Zj intersects S , and the line bundle

N∗
Zi/B

∣∣
S
.

The third is in response to the question

(3) What object does all of S map to?

The answer is that there is a toroidal variety MJ that is a
partial completion of M and whose construction involves the
j ’s where j 6∈ I but Zj ∩ S 6= ∅.
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A fourth feature is that if we think of attaching to P the
Hodge-theoretically constructed objects P1 and P2 given by
the image of Φ1 and Φ2, then one may think of all of the data
as given a toroidal object lying over the minimal SBB
completion P of the image of a period mapping. As will be
illustrated by example, this construction suggests how one may
at least partially desingularize moduli spaces of some general
type surfaces.

For the next step we will state it informally and refer to
Section IV(A) below for explanations of the terminology and a
proof. The result is

the Abel-Jacobi maps Φk , k = 3, are determined up
to constants by Φ1 and Φ2.
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In particular,
If Φ1 and Φ2 are constant, then the map to the ex-
tension data is constant.

This is again a Hodge theoretic result whose proof uses the
IPR.

In Section VI we will discuss what seem to be rather natural
conditions for local Torelli to hold, including along the
boundary. The main result is that if local Torelli holds, then
there is a natural completion of the image P of a period
mapping that captures the complete information in the
limiting mixed Hodge structures along the boundary of P .

In Section VII we will give a fairly complete analysis of the
global structure of variations of Hodge structure over complete
algebraic surfaces.
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Using the notations from [GGLR] in summary the results will
include

(i) the image Φe(B) of the extended period mapping is
either an algebraic curve or an algebraic surface;

(ii) the augmented Hodge line bundle Λe → B is free and

Φe(B) = Proj(Λe);

(iii) in case Φ∗ is everywhere injective, the are integers ai = 0
and there is an m0 such that for m = m0 the line bundle

mΛe −
∑

ai [Zi ]

is ample on B ; and

(iv) in general, if dim Φe(B) = 2, there is a structure result
that will be explained in Section VII.
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In the result (iii) among the Zi there will be a subset Zα such
that

dim Φe(Zα) = 1.

For these Zα we have aα = 0 in (iii).
As will be further discussed in Section VII, assuming for
simplicity of explanation that all Φe(Zi) = point, one may
consider the two conditions:

(a) the intersection matrix ‖Zi · Zj‖ < 0 is negative definite;

(b) for some positive integers ai the line bundle
∑

i ai [Zi ]
restricted to Z is negative.

These will be seen to be equivalent. The first condition will be
established using Hodge theory. This is what relates to (ii)
above. We note that (b) is not equivalent to the statement
that

∑
i [Zi ]

∣∣
Z

is negative.
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We may summarize the above as saying that when dim B = 2
there is a fairly complete qualitative global description of a
variation of Hodge structure, including its behavior along the
boundary.
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Notations and terminology
I Φ : B → Γ\D denotes a period mapping from a smooth,

quasi-projective variety B to the quotient of a period
domain D = GR/H ;

I this period mapping corresponds to a variation of weight
n polarized Hodge structures over B ; we denote by
F p → B the corresponding Hodge bundles;

I the augmented Hodge line bundle is defined to be

Λ =
[(n−1)/2]

⊗
p=0

det(Grn−p F )np =
[(n−1)/2]

⊗
p=0

det F n−p

where [np = (n − p + 1)/2]; it has a canonical Hodge
metric with Chern form ω, and for ξ ∈ TbB we have

(I.3) ‖φ∗(ξ)‖2 = ω(ξ)

where the left-hand side is given by the GR-invariant
metric on TD;
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I the image P = Φ(B) ⊂ Γ\D is a locally closed analytic
subvariety that has a canonical algebraic structure over
which L→ P is ample (cf. [BBT]);

I we assume that B has a smooth projective completion B
such that the divisor at infinity Z := B\B is a reduced
normal crossing divisor

∑
i Zi where the smooth

irreducible branches locally look like a set of hyperplanes
in general position in Cd (d = dim B);

I we assume that the local monodromies around the Zi are
unipotent with logarithm Ni , and we denote by F p

e → B ,
Le → B etc. the canonical Deligne extensions of the
bundles F p,Λe ;
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I there is a canonical completion P as a compact Hausdorff
space to which the period mapping extends to a proper
continuous mapping

Φe : B → P ;

P is stratified by complex analytic subvarieties and Φe is
holomorphic on the inverse images of these strata (cf.
[GGLR]);

I it is conjectured that Le → B is free§ and that
P = Proj(Le); in Section VII we will prove that when
dim B = 2, Le is free and that at the set-theoretic level
P = Proj(Le);

§By the results of Satake-Baily-Borel this is true in the classical case
when D is a Hermitian symmetric domain. In the non-classical case it
holds when dimB = 2, when −KB is nef, and in a few other special cases.
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I we will introduce inductively defined maps Φ0,Φ1,Φ2, . . .
where
I Φ0 = Φe ,
I Φ1 is defined on the fibres of Φ0 and maps to level one

extension data;
I Φ2 is defined on the fibres of Φ0 and Φ1 and maps to

level two extension data of level 5 2.
...

We will see that the Φk for k = 3 are determined up to
constants by Φ0,Φ1, and Φ2.
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II. Extension data for a mixed Hodge structure
In these notes we assume the existence of a lattice VZ in the
Q-vector space V . In this section we will consider extension
data for mixed Hodge structures (V ,W ,F •). The weight
filtration is

{0} ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wn = V

whose graded quotients are weight k pure Hodge structures

Hk = GrWk (V ).

We will consider only those extensions for which the Hk are
fixed Hodge structures, and E will denote the set of all such.
There is a filtration

E1 ⊂ E2 ⊂ · · · ⊂ En = E

where Em denotes the set of at most m-fold extensions in E,
which we will refer to as extension of level 5 m.
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For example, E1 is the set of extensions

0→ Hk → Wk+1/Wk−1 → Hk+1 → 0,

E2 is the set of these extensions plus the extensions

0→ Hk−2 → Wk/Wk−3 → Wk/Wk−2 → 0.

Equivalently, the filtration of E by levels is the one induced on
the sets of extensions by the filtration W• End(V ). Thus the
level 1 information is in GrW−1 End(V ), the level 2 information
is in the level 1 information together with
W−2 End(V )/W0 End(V ), and so forth. One might say that
the level 2 information reflects extensions of extensions from
level 1.
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We note that the level 1 extension data is equivalently given by

(II.1)
n
⊕
k=1

Ext1
MHS(Hk ,Hk−1).¶

The main points concerning the structure of E are

(i) E is a complex manifold that is an iterated fibration

(II.2) Ek+1 → Ek ;

(ii) the fibres of (II.2) are connected, abelian complex Lie
groups that are extensions of a compact complex torus by
a product of C ∗’s and C’s; we will refer to these are
semi-abelian-tori;

¶In contrast, one has for any mixed Hodge structures that

ExtiMHS(A,B) = 0, i = 2.

For reference a proof of this well-known fact will be given in the appendix
to this section.
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(iii) E1 given by (II.1) is a sum of compact, complex tori

Jk := Ext1
MHS(Hk ,Hk−1)

∼=
HomC(Hk ,Hk−1)

F 0 HomC(Hk ,Hk−1) + HomZ(Hk ,Hk−1)
.

Here HomZ(Hk ,Hk−1) := Hom(Hk
Z ,H

k−1
Z ) where we use

the integral structures induced by VZ.

(iv) In Jk there is a compact sub-torus

Jk,ab ⊂ Jk

given by intersecting HomZ(Hk ,Hk−1) with the
(0,−1)⊕ (−1, 0) part of the weight −1 Hodge structure
on HomC(Hk ,Hk−1). We set{

J =
k
⊕ Jk

Jab = ⊕Jk,ab;
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(v) the fibration E2 → E1 is given by

k
⊕HomC(Hk ,Hk−2)
F 0 HomC +HomZ

// E2

��
k
⊕HomC(Hk ,Hk−1)
F 0 HomC +HomZ

,

or equivalently by
(II.3)

GrW−2 EndC(V )

F 0 GrW−2 EndC(V )+GrW−2 EndZ(V )
// E2

��
GrW−1 End(V )

F 0 GrW−1 EndC(V )+GrW−1 EndZ(V )
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where the F 0’s in the denominator are induced by the
Hodge filtration on the numerator.

(vi) the topological line bundles over J are uniquely specified
by their Chern classes. Noting that GrW−1 EndZ(V ) is the
lattice that defines J as a quotient of a complex vector
space we have{

topological line

bundles over J

}
∼= ∧2 GrW−1 EndZ(V )∗.

Using the mapping

GrW−1 End(V )⊗GrW−1 End(V )→ GrW−2 End(V )

given by composition, by dualizing we obtain

(II.4) GrW−2 EndZ(V )∗ // ∧2 GrW−1 EndZ(V )∗

∼ =
H2(J ,Z).
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The elements in GrW−2 EndZ(V )∗ that map to (1,1) classes in
H2(J ,Z) give rise to holomorphic line bundles on J ; they are
well defined up to translation.
We next observe that GrW−2 EndZ(V )∗ is naturally isomorphic
to H1(fibres of (II.3), Z).The mapping (II.4) may be identified
with the transgression mapping

H0(H1(fibre))
d2−→ H2(base)

in the Leray spectral sequence of the fibration (II.3).
Summarizing in words: For a set of mixed Hodge structures
with fixed associated graded Hodge structure, the level 1
extension data is a (direct sum of) compact complex tori. The
level 2 extension data is a complex manifold that fibres
holomorphically over the level 1 extension data with fibres
consisting of semi-abelian-tori.
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Appendix to Section II
We will give a proof that for mixed Hodge structures A,B

(A.1) Ext2
MHS(B ,A) = 0.

The idea behind the argument can be used to show that for
k = 2 all of the ExtkMHS(B ,A) = 0.

Recall that ExtkMHS(B ,A) is generated by exact sequences
of mixed Hodge structures

0 // A // E1
// · · · // Ek

// B // 0

modulo equivalences generated by commutative diagrams

0 // A // E ′1 // · · · // E ′k
// B // 0

=

y y =

0 // A // E1
// · · · // Ek

// B // 0
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where the maps are morphisms of MHS’s. The zero element is
the class of

0 // A = // A // 0 · · · 0 // B = // B // 0.

To establish (A.1) we will proceed in two steps.

Step one: Given

0 // A i // E1
f // E2

π // B // 0

then for C = im f we have the solid arrows in

0 0

B
c
OO�
�

B

OO

0 //___ A a //___ G

OO�
�

b //___ E2

π
OO

//___ 0

0 // A i // E1

d

OO�
�

h // C

g
OO

// 0

0

OO�
�

0

OO�
�

(A.2)
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We claim that if we can find a mixed Hodge structure G so
that the dotted arrows can be filled in to give a commutative
diagram, then we will have (A.1).
Given (A.2) we have

0 // A i // E1

d ��

g◦h // E2

id⊕π ��

π // B // 0

0 // A a
// G

b⊕c
// E2 ⊕ B

π⊕id
// B // 0.

One checks commutativity so that this diagram gives an
equivalence of extensions.
Next we have the commutative diagram

0 // A = // A
a��

0 // B
0⊕id��

= // B // 0

0 // A a
// G

b⊕c
// E2 ⊕ B

π⊕id
// B // 0

which also gives an equivalence of extensions. Combining
these gives (A.1).
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Step two: We note that the desired G has a filtration

A ⊂ E1 ⊂ G

with graded pieces A,C ,B . To construct it we need

e1 ∈ Ext1
MHS(B ,E1);

i.e.,

e1 ∈
HomC(B ,E1)

F 0 HomC(B ,E1) + HomZ(B ,E1)

h−−−−→ HomC(B ,C )

F 0 HomC(B ,C ) + HomZ(B ,C )

gives the extension class of E2. But

h : Hom(B ,E1)→ Hom(B ,C )

is surjective since both E � C and B ⊕ E1 � B ⊕ C are
surjective.
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If G is the extension defined by e1, then we have

0 0 0

B

OO

B

OO

0 // A

OO

// G

OO

// E2

OO

// 0

0 // A // E1

OO

// C

OO

// 0

0

OO

0

OO

0

OO

and we are done.

The key is given A,B ,C where 0→ A→ E1 → C → 0 to be
able to construct G with these graded pieces. This is possible
because there are a lot of mixed Hodge structures.
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III. Extension data for limiting mixed Hodge

structures

We assume given a limiting mixed Hodge structure
(V ,Q,W (N),F •). With the standard notations ([GGLR]) we
have

I N : Wk(N)→ Wk−2(N) and

Nk : Gr
W (N)
n+k (V )

∼−→ Gr
W (N)
n−k (V );

I Q : V ⊗ V → Q and N ∈ W−2(N) End(V ) preserves Q.

The Q will always be present but we shall omit it in the
notation; thus, e.g., it is understood that

End(V ) = End(V ,Q);
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I From an equivalent but alternative perspective, there is a
non-degenerate pairing

Gr
W (N)
n+k V ⊗Gr

W (N)
n−k → Q

given by
u ⊗ v → Q(u, v).

This gives an isomorphism

H i(−(n − i))∗ ∼= H i

and then

Nn−i ∈ H i(−(n − i))∗ ⊗ H i ∼= H i ⊗ H i .

In fact, Nn−i lies in the symmetric part

Nn−i ∈ S2H i ∼= S2H i(−(n − i))∗.

We shall use these identifications without further
comment.
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I N can uniquely be completed to an sl2{N ,H ,N+} acting
on GrW (N)

• (V ) and preserving Q;

I we decompose GrW (N)
• (V ) into a direct sum of irreducible

sl2-modules; the resulting summands will be called
N-strings;

I under this decomposition the Gr
W (N)
k (V )’s are direct

sums of polarizable Hodge structures; by abuse of
language we shall simply refer to Gr

W (N)
k (V ) as a

polarized Hodge structure.
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Now we come to the main point:

(III.1) Over the level one extension data there is a canonical
line bundle LN → J such that

LN → Jab

is positive (ample).

Proof: This is a consequence of the following diagram in
which it is to be understood that we are restricting to the
lattices VZ ⊂ V and that N : VZ → VZ (we may have to
replace N by a multiple to achieve this), and where the top
horizontal arrow is defined by commutativity of the diagram:
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Gr
W (N)
−1 EndZ(V )⊗Gr

W (N)
−1 EndZ(V ) //

��

Z

Gr
W (N)
−2 EndZ(V )

N+

��

Gr
W (N)
0 EndZ(V );

Tr

;;vvvvvvvvvvvvvvvvvvvvvvvvvv

(III.2)

here the top vertical arrow is composition of endomorphisms
and Tr is the trace. Referring to (II.4) one may check that

I the element of H2(J ,Z) defined by (II.4) via (III.2) is of
Hodge type (1,1);

I as a consequence of the 2nd Hodge-Riemann bilinear
relation for polarized Hodge structures this class is
represented by a positive (1,1) form.
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I In general the Hodge classes in Gr
W (N)
−2 EndZ(V ) are dual

to the Hodge classes in Gr
W (N)
+2 EndZ(V ), which in

particular are (1, 1) classes. This is the reason that N+

appears, here using that

Q(N ,N+) is a positive integer.

In general if we have a several variable limiting mixed Hodge
structure that defines a monodromy cone

σ ⊂ Gr
W (N)
−2 EndZ(V )

consisting of Hodge classes, there is a dual cone

σ̌ ⊂ Gr
W (N)
−2 EndZ(V )∗ ∼= Gr

W (N)
2 EndZ(V )

∼= H2(J ,Z).
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Here we are using that any N ∈ σ defines the same weight
filtration. Although W (σ) would probably be better notation,
we will continue to use W (N), keeping in mind that the sl2
and resulting polarizations on the Gr

W (N)
k (V ) depend on the

particular N .
For any A ∈ σ̌ ⊗ Z the above identification defines a line
bundle LA → J with the property that

LA → Jab is positive if A ∈ σ̌.

In words,
The integral elements A ∈ σ̌ ⊗ Z define line bundles
LA → J over the level 1 extension data. For A ∈ σ̌
the line bundle LA → Jab is ample over the Hodge
part Jab of J.

We note that to define LA with the above properties we must
have the structure of level 2 extension data plus the properties
of LMHS’s.
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The above raises two natural questions. The first is that for a
limiting mixed Hodge structure the level 1 extension data is a
direct sum of compact tori that using

H i(−(n − i))∗ ∼= H i

occur in dual pairs, with the understanding that when n is
even the middle term is self dual. One may ask if the Poincaré
line bundle is a part of the picture, and the answer is that it
doesn’t seem to be.
More interesting is the following question: There is a bijection{

equivalence classes of
limiting mixed Hodge
structures

}
↔
{

equivalence classes
of nilpotent orbits

}
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What, if any, is the relation between the natural line bundles
over the level 1 extension data on the left and the 1st order
“smoothing” variation of LMHS’s that arise on the right?‖

The interesting and somewhat subtle answer to this question
will be taken up in the next section.

‖In the geometric case where we have a family of smooth varieties Xb

parametrized by B and singular varieties lying over Z , then for each point
b0 ∈ Z there is a limiting mixed Hodge structure limb→b0 H

n(Xb). Thus
in general taking the limiting mixed Hodge structure at b0 and moving it
out into B in a normal direction to Z may be thought of as “smoothing”
the LMHS at b0.
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IV. Period mappings to extension data (A)

With the setup and notation explained in Section I, we denote
by Bp a connected component of a fibre of the extended
period mapping Φe . We recall the following general facts:

I Bp is complete and is contained in the closure of Z I of a
unique minimal stratum ZI =

⋂
i∈I Zi ;

I B∗p := Bp\(the union of Bp intersect the strata ZI∪{j} for
j 6∈ I ) is a Zariski open Bp ∩ Z ∗I in Bp;

I along B∗p we have a variation of limiting mixed Hodge
structures with locally constant associated graded pure
Hodge structures; the behavior of the variation of limiting
mixed Hodge structures along Z ∗I at the intersection with
other strata is developed in [CKS];
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I we denote by E the set of extension data, as described in
sections II and III above, for the locally constant
associated graded to the LMHS’s along B∗p ;

I ΓI will denote the action of the monodromy on E induced
by the monodromy action of π1(B∗p) on the family of
limiting mixed Hodge structures along B∗p .
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We will see that this monodromy action is at most a finite
group, one that we shall at least initially ignore, acting on the
complex torus J given by the level 1 extension data. Thus in
the obvious way we may define an Abel-Jacobi type mapping

(IV.1) Φ1 : B∗p → J

by assigning to each point b ∈ B∗p the level 1 extension data in
the limiting mixed Hodge structure Φe(b). The main result is
the

Theorem (IV.2): The mapping (IV.1) extends to a
mapping on all of Bp. There it maps to a translate of the
abelian subvariety Jab of the complex torus J and we have

(IV.3) Φ∗1LA = −
∑
i

〈A,Ni〉 [Zi ]
∣∣
Bp
.
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Here LA → J is the line bundle defined for A ∈ σ̌Y ⊗ Z in
Section III above. The sum is over all the line bundles [Zi ]

∣∣
Bp

,

noting that this bundle is trivial if Zi ∩ Bp = ∅ is empty.

Corollary (IV.4): If Bp ⊂ Zi does not meet other strata and
〈A,Ni〉 > 0, then Φ∗1LA → Bp is a positive line bundle.

Proof of (IV.3): We begin by explaining the central idea
behind the first two assertions with some of the details given
below and the rest to be provided elsewhere. For the first
statement the mapping (IV.1) induces the top row in

H1(B∗p ,Z)
Φ1,∗ //

&&NNNNNNNNNN
H1(J ,Z)

H1(Bp,Z)

88qqqqqq

48 / 125



49/125

This top row is a morphism of mixed Hodge structures. By a
weight argument the kernel of the slanted solid arrow is of
strictly lower weight than the weight of the pure Hodge
structure on H1(J ,Z). Therefore the mapping Φ1,∗ factors in
the way indicated by the dotted arrow in the diagram. Thus
there is an induced morphism of Hodge structures

(IV.5) H1(Alb Bp,Z)→ H1(J ,Z)

where Alb Bp is the Albanese variety of (any desingularization
of) the complete variety Bp. From this it follows that Φ1 in
(IV.1) extends to give the composed mapping in

Bp → Alb Bp → J

where the second arrow is induced by the mapping in (IV.5).

49 / 125



50/125

For the second part of the theorem, Gr
W (N)
−1 End(E ) is a pure

Hodge structure of weight −1. The Hodge decomposition of
this pure Hodge structure looks like

(m − 1,−m) + · · ·+ (0,−1) + (−1, 0)︸ ︷︷ ︸+ · · ·+ (−m,m − 1).

The induced morphism of Hodge structures

H1(Alb Bp)→ H1(J)

has image in a Tate twist of the term over the brackets in the
above direct sum. It also lands in a subgroup of
H1(Gr

W (N)
−1 End(E ),Z), which implies that Φ1(Bp) lands in a

translate of Jab.
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In somewhat more detail and from a slightly different
perspective, suppose we inductively define maps Φ1,Φ2, . . . by

I Φ1 maps Bp to level 1 extension data;

I Φ2 maps the fibres of Φ1 to level 2 extension data

and so forth. Let C ⊂ Bp be an irreducible curve that is a
fibre of Φ1, . . . ,Φk−1. Then there is a Zariski open set C\D in
C and a map

Φk : C\D −→
Gr

W (N)
−k EndC(V )

F 0 Gr
W (N)
−k EndC(V ) + Gr

W (N)
−k EndZ(V )

when the RHS is a semi-abelian-torus. This maps factors
through

C\D −→ H1(C ,D;C)

F 1H1(C ,D;C) + H1(C ,D;Z)
.
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The numerator is the mixed Hodge structure H1(C ,D) with
associated graded described by (here using Q-coefficients)

0 −→ H0(D)

H0(C )
−→ H1(C ,D) −→ H1(C ) −→ 0.

We then have

C\D

**UUUUUUUUUUUUUUUUUUU

��
H1(C ,D;C)

F 1H1(C ,D;C)+H1(C ,D;Z)
// Gr

W (N)
−k EndC(V )

F 0 Gr
W (N)
−k EndC(V )+Gr

W (N)
−k EndZ(V )

.
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Then Φk,∗ lands in F−1 Gr
W (N)
−k EndC(V ), which has Hodge

type

(−1,−(k − 1)) + (0,−k) + · · ·+ (−(k − 1),−1).

It follows that (with the hopefully obvious notation)

H1(C ,D;Z)→ F−1 Grk ∩F−1 Grk .

For

k = 1 this is (−1, 0) + (0,−1)

k = 2 this is (−1,−1)

k = 2 this is empty.

As a consequence

(IV.6) For k = 3 the maps Φk are determined up to
constants by Φ1,Φ2.

53 / 125



54/125

This is a rather remarkable geometric fact. It says that if in the
fibres of Φe we consider the successive maps to extension data
of increasingly higher levels, then up to constants these maps
are already determined by what happens at the first two levels.

In the classical case this is perhaps not so surprising. For
n = 1 there are only two levels. Any Hermitian symmetric
domain may be equivariantly embedded in the period domain
for polarized Hodge structures of weight n = 1.

In the non-classical case it is consistent with the general
philosophy that even when the period domain is not Hermitian
symmetric, period mappings behave in much the same way as
in the classical case.

54 / 125



55/125

We now turn to a discussion of the main formula (IV.3). A
formal proof of this will be given elsewhere. Here we will
present some special cases that illustrate why the result should
be true. We begin with the simplest non-trivial case:
I n = 1 and g = 2 (here g is h1,0 for a weight 1 PHS

(V ,Q,F ));
I dim B = 2 and there are local coordinates (t,w) where Z

is given by t = 0;
I the normalized period matrix is

1 0

0 1

α λ

β α


where α(t,w), λ(w) with Imλ > 0 are holomorphic and

β(t,w) = `(t) + b(t,w)

where `(t) = log t/2πi and b(t,w) is holomorphic.
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The fibres of Φe are given by λ = constant. In this case the
Q,N and weight filtration are given by

Q =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , N =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



∗
∗
∗
∗


}W0

}
W1

W2 = V
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The level 1 extension data is given by α(t,w) and the level 2
extension data by β(t,w). An element A in the dual cone σ̌ is
given by a positive integer a, and the pairing that defines the
line bundle LA works out to give that

exp(2nd level extension data)

= exp(2πiaβ(t,w)) = ta exp(2πib(t,w))

is a nowhere vanishing section of L−A. On the other hand, the
LHS gives the transition functions for the line bundle L−A.
From this the result follows.
In more detail, the points in the argument are as follows:
I For a compact complex torus T = Cm/Λ there is the

identification
H2(T ,Z) ∼= ∧2(Λ∗);

I For a (1, 1) class A in ∧2(Λ∗) there is a holomorphic line
bundle LA → T , defined up to translation and whose
Chern class is A;
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I The pullback to Cm of this bundle is trivial, and it is
defined by “transition functions” that are exponentials of
linear functions on Cm whose coefficients are linear in the
entries of A;

I Thus the sections of LA → T are given by holomorphic
functions θ(z) satisfying θ(z +λ) = exp 〈`(A, λ), z〉 where
`(A, λ) is linear in A and satisfies a cocycle rule in λ ∈ Λ.
In the above special case the period matrix has been
normalized to be of the form

(
I
Ω

)
. The quotient of C4 by

I -part of the lattice gives transition functions that are
trivial; i.e., the line bundle LA descends to C∗ × C∗. The
transition functions for the second part of the lattice are
given by exponentials of the Ω-part of the period matrix.
If we cover Z by the open sets Uk where Z is defined by
tk = 0, then in Uk ∩ U` we have tk = fk`t` where fk`

∣∣
Z

give the transition functions for N∗
Z/B

. This then identifies

the transition functions for N∗
Z/B

with those of Φ∗1L−A.
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I In Section III above we have explained how level 2
extension data gives (1, 1) classes on the compact,
complex torus J given by level 1 extension data.

The above calculation carries out this general procedure in the
special case described there. The normal bundle to Z appears
because the level 2 extension data has an `(t)N term in the
matrix representing it and exponentiating
`(t)N + (holomorphic term) produces a “t” that is a local
section of N∗

Z/B
. For n = 2 the period matrix will generally

contain (`(t)N)m terms where m = 2. The general rule is

I the fibres of the level k extension data over the level
k − 1 extension data are contained in

(IV.7) Ext2
MHS(Hm+k ,Hm)’s;
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I only for k = 2m, m = 1 do we get (`(t)N)m-terms
appearing in the W−k End(V )’s;

I thus no matter what the weight n of the original polarized
Hodge structure is, for level 2 extensions corresponding to
W−2 End(V ) (thus m = 1, k = 2) we get only `(t)N ’s in
the group (IV.7)

A consequence of (IV.6) is

(IV.8) Let Bp be a connected fibre of Φe and

Φ : Bp → ΓI\E

the map to the extension data of the limiting
mixed Hodge structures along Bp. Then this
map is constant if, and only if, the maps Φ1

and Φ2 to extension data of levels 1 and 2
are constant.
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We conclude this section with a result that although the
hypotheses are quite restrictive is a harbinger of what one
would like to prove and also indicates that the analysis given
above will have interesting consequences.

Suppose that we have a variation of Hodge structure over B
with an extension to B as described in Section I. The general
question/conjecture is to show that under local Torelli type
assumptions there are non-negative integers ai and an m0 such
that the line bundle

(IV.9) Lm = mL−
∑

ai [Zi ]

is ample for m = m0.
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We shall show that this result holds under the following
assumptions:

(i) the differential of Φe is 1-1 except along the fibres Bp;

(ii) along the fibres Bp the differential of Φ1 is 1-1;

(iii) Z has one component; and

(iv) the cone Eff1(B) of effective 1-cycles on B is finitely
generated.

Then under these assumptions there is an m0 such that

mL− [Z ] is ample for m = m0.

Proof: Given an irreducible curve C ⊂ B we have to show
that

(IV.10) (mL− [Z ]) · C := deg
(
(mL− [Z ])

∣∣
C

)
> 0

for m� 0.
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If C is not a fibre Bp of Φe , then using assumption (i) this is a
consequence of

L · C = deg(L
∣∣
C

) > 0.

If C ⊂ Bp, then by the basic formula (IV.3) using assumption
(ii) we have

(IV.3) = deg
(

N∗
Z/B

∣∣
C

)
> 0.

Assumption (iii) is used in that C does not meet any other
strata of Z , and (iv) is used for it to be sufficient to show
(IV.10) for any fixed curve C .

In general, from the construction proposed in [GGLR] for the
Satake-Baily-Borel completion P of the image
P = Φ(B) = Γ\D of a period mapping, it is expected that for
fibres Bp = Φ−1

e (p), p ∈ P we will have positivity of the
bundles

(IV.11) N∗
Z/B

∣∣
Bp
→ Bp.
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Modulo issues of the finite generation of the effective cone of
curves on a variety (which will be taken up elsewhere), for
smooth Bp’s the ampleness of the line bundle (IV.11) is
equivalent to

(IV.12) deg
(

N∗
Z/B

∣∣
C

)
> 0

for text curves C ⊂ Bp. (IV.9) above is a result in this
direction and we shall now give another one extending that
result.
Given C there will be a smallest stratum ZI with

C ⊂ ZI

(thus I is a maximal index set with C ⊂ Zi , i ∈ I ).
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We will show

(IV.13) If Φ1

∣∣
C

is non-constant and the Ni , i ∈ I , are
linearly independent, then (IV.12) holds.

Proof: The cone σI is a face of σI∪J , and for A ∈ σ̌I we have{
〈A,Ni〉 > 0, i ∈ I

〈A,Nj〉 ≥ 0, j ∈ I .

For such A from (IV.3) and setting di = deg
(

N∗
Zi/B

∣∣
C

)
we

have

0 < deg
(
Φ∗1LA

∣∣
C

)
=
∑
i∈I

〈A,Ni〉 di −
∑
j∈J

〈A,Nj〉 (Zj · C ).
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This gives

0 ≤
∑
j∈J

〈A,Nj〉 (Zj ·) <
∑
i∈I

〈A,Ni〉 di .

Using the assumed linear independence of the Ni , i ∈ I and
letting A vary over σ̌I we may conclude (IV.12).
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Discussion of the proof of (IV.3)

We will give two arguments for (IV.3). The first will be an
elaboration and extension of the above period matrix one.
This is included because period matrix collaborations were how
many aspects of Hodge theory were first understood. The
second will be the Lie theoretic, a method that (the very
general cohomological/D-module techniques not withstanding)
remains an extremely powerful approach to Hodge theory.

What do we man by a period matrix associated to a
limiting mixed Hodge structure?
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We will illustrate this when n = 2 and N2 6= 0. Then the
associated graded to the LMHS is a direct sum

H0 ⊕ H1 ⊕ H0(−1)⊕ H2︸ ︷︷ ︸⊕H1(−1)⊕ H0(−2)

where H i is a Hodge structure of weight i and the arrows are
the action of N (N-strings). We choose a basis for VC
adapted to W (N) and shall use H to stand for a generic
holomorphic term in (t,w). The period matrix is then
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(IV.14)

H0(−2)

H1(−1)

H0(−1)⊕ H3

H1

H0



H0 F 1H1 F 2H2

I 0 0

H
I
Λ

0

`(t)N + H H I

H `(t)N + H H

(`(t)N)2 + `(t)N + H `(t)N + H H


The way to read this is to imagine a family of surfaces Xt

degenerating to a surface X = ∪Xi that has normal crossings
with smooth components Xi , a double curve D =

⋃
i<j Xi ∩ Xj

and triple points T =
⋃

i<j<k Xi ∩ Xj ∩ Xk .
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We denote by Ω2
X (log D) the sheaf of meromorphic 2-forms on

X having log poles on D and with appropriate residues on a
component Xi ∩ Xj of D, and by Ω1

D(log T ) the meromorphic
1-forms on D with log poles at the triple point p with a
relation among the three residues from the branches of D
through p. Then

lim
t→0

H0
(
Ω2

Xt

)
= H0

(
Ω2

X (log D)
)

where the RHS here is filtered by

(
double and single

residues vanish

)
⊂

(
double residues

vanish

)
⊂ H0

(
Ω2

X (log T )
)

= = kernel of the map

of H0 (Ω2
X (log D)) to

H0(T ) and H0 (Ω1
D(log t))

( kernel of the

map to H0(T )

)

(IV.15)
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The entries in the matrix (IV.14) are obtained by taking the
rows to correspond to the associated graded to the weight
filtration and the columns to the associated graded to the
filtration (IV.15). The entries in the matrix (IV.14) represent
EndC(V ) with the zero blocks in the upper right
corresponding to the modding out by F 0 EndC(V ).
Now we come to the punch line.

I the terms in the boxes represent Gr−1 EndC(V );

I the terms in the circles represent Gr−2 EndC(V );

I the terms in squiggles represent

Gr−4 EndC(V ).

This is consistent with the observation that in a period matrix
only the terms in Gr−2m EndC(V ) have logarithmic entries
and there the leading term is `(t)m.
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Recalling that the compact torus J is a quotient of its tangent
space J̃ := GrW−1 EndC(V )/F 0 GrW−1 EndC(V ) by a lattice Γ,

and that line bundles on J = J̃/Γ arise from Hodge classes in
GrW−2 EndC(V ) and they are constructed by taking quotients

of the trivial bundle on J̃ by cocycles of the form
exp(2πi × linear function on Ṽ , γ) where γ ∈ Γ, we see why
only exp `(t)’s and not exp(`(t)m)’s for m = 2 enter. Now
exp `(t) = t is a local section of N∗

Z/B
, and this is what is

behind the mechanism that relates information along a fibre
Bp to information normal to fibres in B .
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Discussion of the proof of (IV.6)
We will illustrate by a period matrix calculation in the case
n = 2 where the limiting mixed Hodge structure is
Hodge-Tate. Then the period matrix is

N
��

H0(−2)

N
��

H0(−1)

H0


I

A = `(t)I + A0

B = `(t)2

2
I + `(t)B1 + B0


where A0,B1,B0 are holomorphic. We may take

Q =

0 0 I

0 I 0

I 0 0

 .

Then the 1st Hodge-Riemann bilinear relation is

B + tB = tAA.
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The symmetric part of B

Bs =
1

2
tAA

is determined by A.
The IPR is

(IV.16) dB = tA dA.

The level 2 extension data is given by A and the level 4
extension data by B . From (IV.16) we see quite explicitly how
in this case the extension data of higher level is determined up
to constants by the extension data of levels 1,2.
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V. Period mappings to extension data (B)
Reviewing briefly, for the complete varieties

Bp = Φ−1
e (p), p ∈ P

we have defined a complex torus Jab, holomorphic line bundles
LA → Jab and an Abel-Jacobi mapping Φ1 : B∗p → Jab where
B∗p is the Zariski open obtained by removing from Bp the lower
dimensional intersections with other strata. We then showed
that the above mapping extends to

Φ1 : Bp → Jab,

and from (IV.3) we have

Φ∗1LA = −
∑
i

〈A,Ni〉N∗
Zi/B

∣∣
Bp
.
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On the fibres of Φ1 there is a mapping
(V.1)
Φ2 : {Zariski open in Φ−1

1 points} → {level 2 extension data}.

The purpose of this section is to analyze this mapping. We
denote by S a typical fibre of (V.1) and assume for simplicity
that S is irreducible. Then there will be a maximal index set I
such that

S ⊂ ZI .

There will be another index set J = {j 6∈ I : S ∩ Zj 6= ∅}. We
let

S∗ = S\

(⋃
j∈J

S ∩ Zj

)
be the Zariski open obtained by removing from S the lower
dimensional intersections with the other strata of Z .
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In general the level 2 extension data is a direct sum of

(V.2) Ext1
MHS

(
Hk+2,Hk

)
’s.

These are quotients of Hodge structures of weight −2. The
integral classes of type (−1,−1) then project to a subgroup,
denoted by Hg⊗C∗, of the direct sum of the terms (V.2). We
thus have

(V.3) 0→ Hg ⊗ C∗ →

(
extension data

of level 2

)
→ T → 0

where T is a quotient of a Cm by a discrete group, which in
general is not a full lattice. The notation is chosen because
Hg ⊗ C∗ is constructed from a product of C∗’s.
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In (V.2) the Hp’s are graded quotients of a filtration on the
fixed vector space V . When we vary along S∗ we have to take
into account the monodromy action. We will denote by M , to
be described explicitly later, the resulting quotient.

Proposition V.4: The set-theoretic mapping (V.1) induces
a holomorphic mapping

Φ2 : S∗ → M .

Proof: The point here is that the differential of Φ2 maps to
zero in the quotient T in (V.3). This is essentially the
argument just above (IV.6) in the case k = 2 there. We will
give the details here since contrary to the case of Φ1

monodromy along S∗ enters the picture. The map (V.1) is
induced by passing to a quotient of locally defined mapping

(V.5) S∗ →
Gr

W (σ)
−2 EndC(V )

F 0 Gr
W (σ)
−2 EndC(V ) + EndZ(V )

.
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Now

Gr
W (σ)
−2 EndC(V ) = ⊕

p+q=−2
Gr

W (σ)
−2 EndC(V )p,q

Gr
W (σ)
−2 EndC(V )

F 0 Gr
W (σ)
−2 EndC(V )

∼= (−1,−1)⊕ (−2, 0)⊕ (−3, 1)⊕ · · · .

We let

Hg
(

Gr
W (σ)
−2 EndZ(V )

)
:=
(

(−1,−1) summand ∩Gr
W (σ)
−2 EndZ(V )

)
.
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Then

Hg
(

Gr
W (σ)
−2 EndZ(V )

)
⊗ C

Hg
(

Gr
W (σ)
−2 EndZ(V )

) ↪→
Gr

W (σ)
−2 EndC(V )

F 0 Gr
W (σ)
−2 EndC(V ) + EndZ(V )

.

This gives

Hg
(

Gr
W (σ)
−2 EndZ(V )

)
⊗ C∗

↪→
Gr

W (σ)
−2 EndC(V )

F 0 Gr
W (σ)
−2 EndC(V ) + EndZ(V )

.

As noted above, the quotient is generally a non-compact
Cm/Λ.
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By the argument just above (V.6) the derivative of the map
(V.5) lands in the (−1,−1) part of the Hodge decomposition
of the tangent space. On the other hand, the derivative is the
complex linear map induced by

H1(S∗,Z)→ Gr
W (σ)
−2 EndZ(V )/σZ

where the σZ = spanZ{Ni : i ∈ I} reflects the action of
monodromy. It follows that (V.5) is a map

(V.6) S∗ → Hg
(

Gr
W (σ)
−2 EndZ(V )/σZ

)
⊗ C∗

where the RHS defines the M in the statement of Proposition
V.4.
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Remark: We have an exact sequence of mixed Hodge
structures

0→ H0(S\S∗,Z)(−1)→ H1(S∗,Z)→ H1(S ,Z)

and by a weight argument any map of mixed Hodge structures

H1(S ,Z)→ Gr
W (σ)
−2 EndZ(V )

is zero. This suggests that the mapping (V.6) should in some
sense be determined by the H0(S\S∗,Z) part of H1(S∗,Z). As
will now be explained, this is indeed the case.
For simplicity we assume that S is an irreducible curve.
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Proposition V.7: The mapping Φ2 in (V.6) is determined
up to a constant by the discrete data

Nk for k ∈ I ∪ J ; deg N∗
Z−/B

∣∣
S

for i ∈ I , Zj · S for j ∈ J .

Proof: A formal proof will be given later. Here we will give a
period matrix argument as in the proof of (IV.3). The period
matrix is 

I 0

0 I

α λ

β tα


where the entries are now block matrices. Using coordinates
ti , i ∈ I and tj , j ∈ J we have

β =
∑
i∈I

`(ti)Ni +
∑
j∈J

`(tj)Nj + H

where H is holomorphic.
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Moreover β is a coordinate representation of the level 2
extension information. For a symmetric matrix A we have

e2πi〈A,β〉 =
∏
i∈I

t
〈A,Ni 〉
i

∏
j∈j

t
〈A,Nj〉
j e2πiH .

Now we use that S lies in a fibre of Φ2. The line bundle
Φ∗1L−A is then a trivial bundle on S . As in the argument for
(IV.3), e2πi〈A,β〉 is the local coordinate representation of a
global holomorphic section of this trivial bundle. Thus

e2πi〈A,β〉 = constant

(this is the constant in the statement of V.7). Continuing to
follow as in the argument for (IV.3), e−2πiH is a section over S

of the line bundle
∏

i∈I N
∗⊗〈A,Ni 〉
Zi/B

that vanishes to order

〈A,Nj〉 (Zj · S) at the points of S ∩ Zj , j ∈ J .
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Appendix to Sections IV and V: Examples
We shall present some examples that illustrate the
constructions in these notes.

Example 1: This is M2, the Deligne-Mumford
compactification of genus 2 curves. Although it is the simplest
example it illustrates many of the basic constructions. The
stratification of M2 may be pictured as

1 2

3 4

5 6
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The solid lines represent degenerations with infinite oder
monodromy (N 6= 0). The dotted ones are degenerations with
trivial monodromy (N = 0). Although M2 is not smooth the
singularities are simple rational quotient ones and we shall
ignore them. For (B ,Z ) we shall use the successive blow ups
of M2 along the strata pictured above, beginning with the
most singular one. This is just a convenience to fit the
following discussion into the general framework of these notes.

The stratum Z3 whose general member is a curve of type 2

We begin with this one as it is the simplest and also illustrates
a general principal we shall use repeatedly without further
comment. Since the monodromy is trivial we can extend the
original period mapping (here D = H2 and Γ = Sp(4,Z))

M2
Φ−→ Γ\D

across it. Thus in the (B ,Z ) setting we need not include it
in Z .
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The stratum Z1 whose general member is a curve of type 1

The image P of the extended period mapping Φe is smooth on
P = Φ(B) and everywhere singular along the boundary; i.e.,

P |sing = P\P .

The image Φe(Z1) := P1 is a curve that in an open set in P
near a curve of type 1 we have a 1-parameter family of simple
elliptic surface singularities. A general fibre Bp of the map

Φe : Z1 → P1

consists of curves C whose normalization C̃ is a fixed elliptic
curve

C C̃

� q′

q′′
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The abelian variety Jab is just the Jacobian J(C̃ ) and the
mapping

Φ1 : Bp → J(C̃ )

is AJC̃ (q′ − q′′) (we are being sloppy about double coverings
here). The line bundle LN+ turns out to be 2Θ, twice the
theta line bundle on an elliptic curve.
In general we shall let Zk denote the component of Z obtained
by blowing up the stratum in M2 consisting of curves
corresponding to k in the diagram. The general fibre of Φe/Z1

meets the stratum Z4 in points corresponding to a curve

C0 =

C̃
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The vanishing cycle as C → C0 is homologically trivial and Φ1

obviously extends. The intersection Z1 ∩ Z4 occurs when
q′ = q′′ in the above picture.
In this case Φ1 is locally 1-1 and there is no need to
consider Φ2.

The stratum Z2 whose general member is a curve of type 3

A general point on this stratum is on the blow up of curves of
type 3 in the above picture. The picture of the corresponding
curve is

p′ q′

p′′ q′′
�

C C̃ = P1
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Since the limiting mixed Hodge structure is of Hodge-Tate
type,

Φe(Z2) = point and Φ1 is trivial.

Thus the interesting map is

Φ2 : Z ∗2 → C∗

given by the cross-ratio of (p′, p′′; q′, q′′).
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Here we should quotient C∗ by the action of monodromy but
we shall ignore this. There are two degenerations of the above
curve C . One is to a curve of type 6. For the same reason as
when a curve of type 1 degenerates to one of type 4, the
mapping Φ2 extends across this locus and continues to map
to C∗.

However when C degenerate to a curve of type 5, i.e., when
there is a non-trivial vanishing cycle and the monodromy cone
goes from dimension 2 to dimension 3, we must add to point
to C∗ to receive the image of Φ2. This is a partial toroidal
completion of the type to be discussed in a continuation of
these notes.
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Example: This example illustrates how lifting the mapping

Φ0 : B → PSBB
∗∗

to the (set-theoretic) mapping

Φ2 : B → PT

may be used to suggest how one may at least partially
desingularize completed moduli spaces for general type
surfaces. This is in contrast to the case of curves where Mg is
essentially smooth and maps to a suitable toroidal completion
(Γ\D)tor where Γ = Sp(2g ,Z) and D = Hg . References to
the background and details of the following discussion may be
found in [G1] and [G2].

∗∗PSBB denotes P as used elsewhere in these notes.
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In summary form the basic points needed for this example are
the following (here stated informally):

I For a given type of smooth general type surface X ,
Kollár-Shepherd-Barron-Alexeev have defined a moduli
space M with a canonical projective completion M;

I the surfaces X0 that are added to compactify the moduli
space have Q-Gorenstein canonical divisor class KX0 and
semi-log-canonical (slc) singularities;

I for surfaces there is a classification of slc singularities; in
the case when X0 is normal with a singular point p

(i) if X0 is Gorenstein, then p is either simple elliptic or a
cusp;

(ii) if X0 is non-Gorenstein, then p is a rational singularity;
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I still in the case of surfaces the period mapping
Φ : M→ Γ\D extends to

(A.V.1) Φ0 : M→ PSBB

Remark: The period mapping Φ extends across the locus in
M of normal surfaces X0 of type (ii) (the monodromy around
X0 is finite); for type (i) surfaces in general there is a
non-trivial limiting mixed Hodge structure associated to a
degeneration X → X0; it is this case that we shall be
concerned with here.
I In contrast to the case of curves, M is singular along the

boundary ∂M = M\M; moreover, the mapping (A.V.1)
does not lift to give the dotted arrow in

PT

��
Φe : M

66llll

((RRRRRR

PSBB
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This suggests that, at least in cases where one has a local
Torelli property, one might blow up M to make the
dotted arrow well defined and use this to partially
desingularize M. This turns out to be the case for a very
interesting class of surfaces. Referring to [FPR], [G1],
[G2], [G3] for more details the example is the following:

I An I -surface is a smooth,†† minimal general type surface
X with
I K 2

X = 1;
I pg (X ) = 2 and q(X ) = 0.

It is known that the moduli space MI of I -surfaces is
essentially smooth of dimension 28:

h1(TX ) = 28 and h0(TX ) = h2(TX ) = 0.

††Everything that follows works if we assume X has canonical (ADE or
DuVal) singularities.
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I The period domain D is of dimension 57, the IPR is a
contact structure and the Torelli (or period) mapping

Φ : MI → Γ\D

is locally 1-1;‡‡ the image Φ(MI ) = P ⊂ Γ\D is a contact
manifold;

I There is a 20-dimensional boundary component N2 ⊂MI

whose general point corresponds to a singular I -surface
X0 with the property
X0 is normal and Gorenstein with a simple elliptic sin-
gularity of degree 2.

‡‡It is known that the monodromy group Γ is of finite index in the full
arithmetic group GZ. Since K 2

X = 1, the intersection form is unimodular
on the primitive cohomology H2(X ,Z)prim = c1(KX )⊥. The ideal
situation would be that Γ = GZ and that global Torelli (i.e., Φ is 1-1)
holds, but this is not known.
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The resolution of this singularity is (X̃ ,C )→ (X0, p)

where X̃ is a smooth surface whose minimal model Xmin

is a K3 surface and C̃ ⊂ X̃ is an elliptic curve with
C̃ 2 = −2. The map X̃ → X is given by contradicting a
−1 curve E with E · C̃ = 2; it follows that the image
C ⊂ X of C̃ is a curve C with C 2 = 2 and one node.
From this it follows that Xmin is a 2:1 cover of P2

branched over a sextic curve B and that C is a double
cover of a tangent line ` to B ;

I the limiting mixed Hodge structure corresponding to X0

has associated graded

Φe(X0) = H2(Xmin)prim ⊕ H1(C̃ );

it depends on 20 parameters and up to finite data
determines the pair (Xmin,C ). In other words we have
local Torelli for the boundary component.
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What about the extension data in the limiting mixed
Hodge structure?

To desingularize MI along N2 we need to blow up at a general
point corresponding to a surface X0 as described above. This
means that we consider a 1-parameter degeneration Xt → X0

and do a semi-stable reduction to have a smooth total space
with a normal crossing divisor X̃0 over the origin. From the
Clemens-Schmid exact sequence one may guess that X̃0 has a
double curve isomorphic to C̃ ; i.e.,

X̃0 = X̃
⋃
C̃

Y

where Y is a smooth surface containing the curve C̃ . If X̃0 is
the central fibre in a smooth family, then

N∗
C̃/X̃
∼= NC̃/Y .
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The line bundle on the left has degree 2, and if we think of Y
as obtained from a smooth cubic in P2 by blowing up points
qi , then there must be 7 qi ’s in order to have deg NC̃/Y = 2.

Now the 1st order extension data for the limiting mixed
Hodge structure is J = J(C̃ ) and the 7-parameters in the

extension data corresponds to the points in J(C̃ ) given by the
to the qi ’s. Of course there are important details required to
make this precise, but this at least illustrates the point that
the extension data in the limiting mixed Hodge structure may
serve as a guide on how to desingularize some moduli spaces
of surfaces.
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VI. Local Torelli conditions

Given a variation of Hodge structure over a smooth
quasi-projective variety B there is a corresponding period
mapping

(VI.1) Φ : B → Γ\D.

There are two equivalent conditions that the local Torelli (LT)
property should hold. One is that the differential of the
mapping Φ should be injective.
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Recall that by definition Φ should be locally liftable and this
means that the differential of one, and hence any, local lifting
should be injective.†

The other condition is given by considering the Higgs data
(E , θ) given by the VHS. Here

I E = ⊕E p where E p = F p/F p+1;

I θ = ⊕θp where θp : E p → E p−1 ⊗ Ω1
B is induced by the

Gauss-Manin connection.

†There is a subtlety here. In moduli problems where the period
mapping of a moduli space M maps a subvariety of M to a singular
points of Γ\D corresponding to fixed points of Γ acting on D, the
differential in the above sense may not be injective whereas in framework
of moduli spaces or stacks it should be considered as being injective. The
classical example here is the hyperelliptic locus in the moduli space Mg

of smooth curves of genus g = 3.
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This gives a map

(VI.2) θ : TB → End(E )⊗ Ω1
B

and in the Higgs setting local Torelli the condition is that this
mapping should be an injective mapping of vector bundles.
The observation then is that

These two local Torelli conditions are equivalent.

This is not entirely trivial. The usual expression for the
differential of Φ is given by

Φ∗ : TB → ⊕Hom(F p,VC/F p).

By the IPR this mapping is induced by

Φ∗ : TB // ⊕Hom(F p,F p−1/F p)
=

⊕Hom(F p,E p−1).
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Again by the IPR we have a factorization

TB
Φ∗ //

θ

&&MMMMMMMMMMMM Hom(F p,E p−1)

Hom(E p,E p−1)

j

55llllllllllllll

where j is an inclusion of vector bundles. Thus

ker Φ∗ = ker θ,

which implies the equivalence of the two LT conditions.
Assuming unipotent local monodromies across the irreducible
components Zi of Z , the canonical extension F p

e → B of the
Hodge bundles and the extension of the Gauss-Manin
connection induces

(VI.3) θe : TB(− log Z )→ End(Ee).
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Definition (VI.4): The local Torelli (LT) condition is
satisfied on B if the map (VI.3) of vector bundles is injective.

One may ask what the geometric meaning of this condition
is? Let ωe be the Chern form of the canonically extended
augmented Hodge line bundle Λe . On B from the relation (I.3)

ω(ξ) = ‖Φ∗(ξ)‖2, ξ ∈ TbB

we see that local Torelli is equivalent to the positivity ω > 0 of
the Chern form. On B the Chern form extends to a closed
(1,1) current ωe whose coefficients are in L1

loc and which
defines the Chern class of Λe → B . Moreover, along the
divisor Z = B\B even though ωe is not smooth the condition

(VI.5) ωe(ξ) = 0, ξ ∈ TbB

is well defined.
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Moreover, the fibres of Φe are defined by the exterior
differential system ωe = 0. Since in general the limiting mixed
Hodge structure is varying non-trivially along the Bp,
ωe(ξ) 6= 0 does not give the right local Torelli condition to
capture the full VLMHS.

This raises the question What is the geometric meaning of
(VI.4)?

Theorem (IV.6) : The local Torelli condition (VI.4) is
equivalent to

I ωe(ξ) 6= 0 for ξ not tangent to a fibre Bp;

I Φ1,∗(ξ) 6= 0 and if Φ1,∗(ξ) = 0, then Φ2,∗(ξ) 6= 0 for
ξ ∈ TBp.
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Geometrically, we have the set-theoretic maps

(VI.7)


Φe : B → P

Φ1 : (fibres Bp of Φe)→ E1

Φ2 : (fibres of Φe and Φ1)→ E2.

For each of these maps the kernel of the differential can be
defined analytically, and the condition (VI.4) is equivalent to
the kernels of all these maps should be zero. In words

Local Torelli means geometrically that the limiting
mixed Hodge structures together with their extension
data should to 1st order be faithfully captured by the
family of Hodge structures and limiting mixed Hodge
structures parametrized by B.
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One can imagine that there should be complete algebraic
varieties P = P0,PI ,P2 and maps

(VI.8)


Φ0 : B // P0 (equal to Φe : B → P)

Φ1 : B //___ P1

Φ2 : B //___ P2.

where outside of the fibres Bp of Φ0 the map Φ1 is equal to Φ0

and along the Bp it gives the 1st order extension data, and Φ2

is similarly defined using Φ1 in place of Φ0 and it maps to level
2 extension data. One may imagine that there is a blowing up
P∞ of P along ∂P = P\P that has the full set of extension
data for the LMHS’s over ∂P . The maps Φk are then
quotients of the map to P∞.
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An interesting point here is that no matter what the weight n
of the original family of Hodge structures over B is, we need
only go to level 2 to capture the full limiting mixed Hodge
structure along the boundary Z . Put differently, if we go
ahead and inductively define Φ3, . . . ,Φn as above, then

fibres of Φn = fibres of Φ2.

This suggests the

Possible definition: P = P0 is the Satake-Baily-Borel
completion of the image P ⊂ Γ\D of the original period
mapping, and P2 is the minimal toroidal completion of P.

A Lie theoretic proof of (VI.6) is given in [R].
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VII. The case when dimB = 2
We consider the case where dim B = 2 and make the following
assumptions:

The differential of Φ is everywhere injective;(VII.1)

The group Eff 1(B) of effective 1-cycles on B
is finitely generated;

(VII.2)

Theorem (VII.3): Under these assumptions there are ai ≥ 0
such that for c � 0 the line bundle

L = cΛe −
∑
i

ai [Zi ]

is ample.

The assumption (VII.1) is a local Torelli one on B ; it is a
reasonable one to have the result. If one weakens it to the
assumption that Φ∗ is just generically 1-1, i.e., the image
Φ(B) = P ⊂ Γ\D is a surface, and there is still a result that
will be discussed elsewhere.
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The assumption (VII.2) is not necessary and the proof that
this is so will be also given elsewhere. The objective here is to
give a simple clear statement whose proof illustrates the
essential ideas behind a more general result.

Proof: Using (VII.2) there will be a finite set of irreducible
“test curves” C that generate Eff 1(B). We have to show that
there exists c and the ai such that for L in the statement of
the theorem

L · C = deg L
∣∣
C
> 0

for all such test curves. For this we separate the Zi into

(1) the Zi where Φe(Zi) is a curve; call these Zα’s;

(2) the Zi where Φe(Zi) is a point; we continue to call these
Zi ’s.

Part of the reason for the notation is that for a Zα in the first
group we will have aα = 0.
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Let C be a test curve. There are three possibilities:

(a) C ∩ B is a Zariski open set in C (i.e., C ∩ Z is a finite set
of points on C );

(b) C is a curve Zα from group (1) above;

(c) C is a curve Zi from group (2) above.

For C in either group (a) or group (b) we have

Λe · C > 0.

We will see below that the ai are determined by the
intersection matrix ‖Zi · Zj‖. Then for large enough c we will
have (

cΛe −
∑
i

aiZi

)
· C > 0.
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For C in group (c) we have Λe · C = 0. By the Hodge index
theorem the intersection matrix M =: ‖Zi · Zj‖ is negative
definite. There is then a linear algebra result whose proof will
be given below.

Lemma: Let M be an integral negative definite symmetric
matrix where all the off-diagonal entries are = 0. Then M has
an eigenvector a = t(a1, . . . , am) with all ai > 0.

If µ is the eigenvalue, then

Ma = µa

where µ < 0 since M is negative definite.

112 / 125



113/125

Applying this to the case at hand gives∑
j

(ajZj) · Zi < 0

for each Zi . Thus(
cΛe −

∑
j

aj [Zj ]

)
· Zi > 0

and we are done.
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Note on Grauert’s contactability theorem in the

surface case (cf. [BS]):

Theorem
Let X be a normal complex analytic variety, Z ⊂ X , a
compact local complete extension subvariety and assume that
the normal bundle

N∗Z/X → Z

is ample. Then there exist a complex variety Y , a proper
holomorphic mapping f : X → Y and p ∈ Y such that{

f (Z ) = p and

f : X\Z ∼−→ Y \{p} is biholomorphic.
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Suppose now that dim X = 2 and Z = Z1 ∪ · · · ∪ Zm are
smooth curves forming a normal crossing divisor. Then

[Z ] =
m∑
i=1

[Zi ],

and

NZ/X = [Z ]
∣∣
Z
.

The condition that N∗Z/X → Z be ample is(
m∑
i=1

Zi

)
· Zj < 0 for all j .
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We will show this implies that the intersection matrix

M := ‖Zi · Zj‖ < 0

is negative definite.‡

For the proof using the above lemma we assume that M has
an eigenvector a with maximal eigenvalue µ. Then all ai > 0.
We want to show that µ < 0. Now(∑

i

aiZi

)
· Zj = µaj for all j .

Suppose that µ ≥ 0 and renumber so that we have a1 = ai for
all i .

‡The converse is not true. The matrix
(
a b
b c

)
satisfies the first

condition ⇐⇒ a + b < 0 and b + c < 0, while the second condition is
a < 0, c < 0 and ac − b2 < 0. These are not equivalent conditions
(e.g., take

(−5 2
2 −1

)
).
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Then

a1Z1 + · · ·+ amZm = a1(Z1 + · · ·+ Zm)−
∑
i>1

(a1 − ai)Zi(∑
i

aiZi

)
· Z1 = a1

(∑
i

Zi

)
· Z1 −

(∑
i>1

(a1 − ai)Zi

)
· Z1.

By the ampleness assumption the first term is negative, and
since Zi · Z1 = 0 for i 6= 1,

−
∑

(a1 − ai)Zi · Zi 5 0.

The point here is that the argument applies to our
Hodge-theoretic situation if we take X to be a tubular
neighborhood of Z in B . If we know that N∗Z/X is ample, then
we don’t have to use the global Hodge index theorem to
conclude that ‖Zi · Zj‖ < 0.
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This gives the

Conclusion (VII.4): If Φ1 is non-constant on each
component Zi of Z , then N∗Z/X is ample and ‖Zi · Zj‖ < 0.

This is a purely Hodge theoretic argument using only the
behavior of Φe in a neighborhood of Z . This conclusion raises
the question

Without assuming N∗
Z/B

is ample, can we have Φ1 =

constant on Z ?

To give a partial answer to this we will show

(VII.5)
Assuming that Φ(B) is a surface, Φ1 is non-constant
on some component Zi of Z .

The proof is in two steps. We recall our notation λ ∈ H2(B)
for the Chern class of the canonically extended augmented
Hodge line bundle Λe → B .
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Step one: In this argument we denote by [Zi ] ∈ H2(B) the
Chern class of the line bundle [Zi ]. If λ2 > 0 and λ · Zi = 0 for
all i , then we claim that [Z1], . . . , [Zm] are linearly independent.

Proof: If
∑

i ai [Zi ] is a primitive relation, let

K+ = {i : ai > 0}, K− = {i : ai < 0}.

Assume K+ 6= ∅ and K− 6= ∅. We have∑
i∈K+

ai [Zi ] =
∑
j∈K−

(−aj)[Zj ].

By primitivity of the relation
∑

i∈K+
ai [Zi ] = 0 so(∑

i∈K+

ai [Zi ]

)2

< 0.
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But since Zi · Zj = 0 for i ∈ K+, j ∈ K−,(∑
i∈K+

ai [Zi ]

)2

=

(∑
i∈K+

ai [Zi ]

)∑
j∈K−

(−aj)[Zj ]

 = 0,

which is a contradiction. Thus either K+ or K− is empty; say
K− = ∅. Then we have a relation among the [Zi ] with positive
coefficients that cannot happen on a Kähler manifold.
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Step two: Using the basic formula

Φ∗1LA = −
∑
i

〈A,Ni〉 [Zi ],

if Φ1 is constant on each Zi , we have∑
i

〈A,Ni〉Zi · Zj = 0

for all j . Then∑
〈A,Ni〉 [Zi ] ∈ span ([Z1], . . . , [Zm])∩span ([Z1], . . . [Zm])⊥ ,

which is zero by the Hodge index theorem. Varying A over σ̌
we may conclude that all Ni = 0.
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