Extended Period Mappings*

Phillip Griffiths

Abstract

This lecture will discuss the global structure of period mappings (variation of Hodge structure) defined over complete, 2-dimensional algebraic varieties. Some applications to moduli of general type algebraic surfaces will also be presented.

^{*}Clay Lecture at the INI, June 2022. The lecture is based on joint work with Mark Green and Colleen Robles

- I. Introduction
- II. Construction and properties of extended period mappings
- III. Geometry of extension data
- IV. Basic formula
- V. Applications to moduli of general type algebraic surfaces †
 - A. Infinite monodromy
 - B. Finite monodromy

 $^{^\}dagger This$ section is based in part on joint work with Radu Laza and on the work of and discussion with Marco Franciosi, Rita Pardini and Sönke Rollenske. 2/3

I. Introduction

- Given $(\overline{B}, Z; \Phi)$ where
 - \overline{B} is a smooth projective variety, $Z = \bigcup Z_i$ is a normal crossing divisor and $B = \overline{B} \setminus Z$;
 - $\ \, \ \, \Phi: B \to \Gamma \backslash D \text{ is a period mapping where } D = G_{\mathbb{R}}/H, \\ \rho: \pi_1(B) \to \Gamma \subset G_{\mathbb{Z}} \text{ is monodromy.}$

In the extensive literature there are

- global results on *B* (theorem of the fixed part, image $P \subset \Gamma \setminus D$ is an algebraic variety over which the Hodge line bundle $\overset{p}{\otimes} \det F^{p} := L \to P$ is ample, algebraicity of Hodge loci)
- local results on neighborhoods Δ^{*k} × Δ^ℓ in B of points in Z (nilpotent and sl₂-orbit theorems, existence and properties of several variable limiting mixed Hodge structures, Chern forms of the extended Hodge bundles).
 This talk will be concerned with global results on B

- extensions of Φ

- properties of $\overline{P}_T, \overline{P}_S$ (e.g., ample line bundles)
- geometry of the fibres of *f* is of particular interest (variational properties of extension data)
- mostly restrict to the case dim B = 2 and will then assume dim $\Phi(B) = 2.$ [‡]

Will also discuss some applications to moduli of general type algebraic surfaces, emphasizing one particular surface. Main emphasis will be on extending Φ across subvarieties in Z with infinite monodromy; will also briefly discuss extensions across subvarieties in B in the finite monodromy case.

[‡]A fundamental invariant of any VHS is monodromy that lives on a general 2-dimensional section of the parameter space.

II. Construction and properties of extended period mappings \S

- Given V, Q
 - polarized Hodge structure (PHS) is $(V, F), F = \{F^p\}$
 - mixed Hodge structure (MHS) is $(V, W, F), W = \{W_k\}$
 - limiting mixed Hodge structure (LMHS) is (V, W(N), F) where $N \in \text{End}_Q(V)$ is a nilpotent operator with $N : F^p \to F^{p-1}$

$$\begin{cases} N: W_k(N) \to W_{k-2}(N) \\ N^k: W_{n+k}(N) \xrightarrow{\sim} W_{n-k}(N). \end{cases}$$

 $^{^{\$}\}text{A}$ general reference for Hodge theory is [CM-SP]. For limits of Hodge structures see [CK] and the references cited therein. 5/33

The *Q* will be understood for MHS's and LMHS's. Will also have $(V, W(\sigma), F)$ where $\sigma = \operatorname{span}_{\mathbb{Q}^+} \{N_1, \ldots, N_k\}$ is a monodromy cone. When dim B = 2 we have

$$Z_i \bigvee_{N_j} Z_j \qquad \sigma = \begin{cases} \sigma_i \\ \sigma_{ij} \end{cases}$$

— equivalence class $[V, W(\sigma), F] := \mathcal{L}$ where

 $F \sim \exp(\lambda N)F$, $\lambda \in \mathbb{C}$ and $N \in \sigma$

6/33

— assuming T_i unipotent[¶] there are canonical extensions $F_e^p \to \overline{B}$.

[¶]This assumption is not essential.

Definition: \overline{P}_{T} = quotient by Γ of $\{(\gamma, [V, W(\sigma), F_{b})]\}$ = $\{\gamma, \mathcal{L}_{b}\}$ where $\gamma = \overline{b_{o}b}$

Given a MHS (V, W, F) the associated graded is a direct sum of PHS's. For L = [V, W(σ), F], Gr(L) is well-defined.

Definition: \overline{P}_{S} = quotient by Γ of $\{\gamma, Gr(\mathcal{L}_{b})\}$.

In the following we assume dim $B = 2 = \dim \Phi(B) = 2$. Theorem([GGLR]): (i) \overline{P}_{S} is a compact analytic surface. (ii) The Hodge line bundle descends to an ample line bundle on \overline{P}_{S} .

7/33 7/33 — Regarding (i) essential case is $Z = \bigcup Z_i$ where $L \cdot Z_i = 0$. Then

dim $B = 2 \implies ||Z_i \cdot Z_j|| \leq 0$ (Hodge index theorem) $\implies Z$ contracts to a normal singular point (Grauert).

- Regarding (ii), even if we know that $L|_Z \cong \mathcal{O}_Z$ there are generally non-trivial obstructions to trivialize L in a neighborhood of Z. Proof involves
 - new ingredient in Hodge theory (semi-global representations of Φ by period matrices)
 - observation that L = pullback of O(1) under the Plücker embedding

$$D\subset \prod^p \mathbb{P}(\wedge^{h_p}F^p), \quad h_p= ext{rank}\ F_p,$$

8/33

this applied to the maps $\operatorname{Gr}(\mathcal{L}) \to \{\operatorname{\mathsf{Mumford-Tate domain}}\}.$

Theorem: (i) \overline{P}_T is a compact analytic variety. (ii) Assuming $\Phi : B \to P$ does not contract any curve,^{\parallel} there exists m_0 and $a_i > 0$ such that

$$L_m := mL - \sum_i a_i Z_i$$

is ample for $m > m_0$.

Regarding the proof of (ii), the a_i are chosen so that for each j

$$Z_j \cdot \sum_i a_i Z_i > 0.$$

That this is possible is a property of negative definite symmetric matrices. The a_i reflect the nature of the singularity to which Z contracts.

In summary

•
$$\overline{P}_{S} = \operatorname{Proj}(L)$$

•
$$\overline{P}_T = \operatorname{Proj}(L_m)$$

 $^{\|}\mathsf{This}$ assumption can be removed with a slightly more elaborate statement of the result.

III. Geometry of extension data

Still assuming that dim $B = \dim \Phi(B) = 2$, in the diagram

 Z_i not a fibre of $\Phi_S \implies \Phi_T |_{Z_i^*}$ is like a usual period mapping

 Z_i is a fibre of $\Phi_S \iff \mathcal{L}|_{Z_i}$ has locally constant $\operatorname{Gr}(\mathcal{L})$. Assume along Z_i^* have VLMHS \mathcal{L} where $\operatorname{Gr}(\mathcal{L}) = \{H^0, \dots, H^m\}$ is constant.

• (V, F), (V', F) Hodge structures of weights k > k'

$$\operatorname{Ext}^{1}_{\operatorname{MHS}}(V, V') = \frac{\operatorname{Hom}_{\mathbb{C}}(V, V')}{F^{0} \operatorname{Hom}_{\mathbb{C}}(V, V') + \operatorname{Hom}_{\mathbb{Z}}(V, V')}$$

$$\stackrel{\parallel}{E} \cong \mathbb{C}^{m} / \Lambda, \quad \Lambda \text{ discrete} \qquad 10/33$$
10/33

•
$$k' = k - 1$$
 gives

$$\underbrace{(k - 1, -k) \oplus \cdots \oplus (0, -1)}_{F^0} \oplus \underbrace{(-1, 0)}_{T_e E} \oplus \cdots \oplus (-k, k - 1)}_{T_e E}$$

$$E = \text{compact complex torus with } E \supset E_{ab} \text{ where } T_e E_{ab} \subset (-1, 0)$$
• $k' = k - 2$ gives

$$\underbrace{(k-2,-k)\oplus\cdots\oplus(0,-2)}_{F^0}\oplus\underbrace{(-1,-1)}_{\oplus}\oplus(-2,0)\oplus\cdots\oplus(-k,k-2)}_{T_eE}$$

connected analytic subgroup S where T_eS over \smile is a \mathbb{C}^{*k} . 11/33

•
$$k' = k - 3$$
 gives

$$\underbrace{(k - 3, -k) \oplus \cdots \oplus}_{F^0}$$

$$\underbrace{(-1, -2) \otimes (-2, -1) \otimes \cdots \otimes (-k, k - 3)}_{T_e E}$$

no non-trivial connected complex analytic subgroup with

tangent space over \checkmark . Need only consider $\operatorname{Ext}^1_{\operatorname{MHS}}$'s as the higher $\operatorname{Ext}^q_{\operatorname{MHS}}$'s = 0 for $q \ge 2$.

Remark: For a VMHS of Hodge-Tate type (the $H^{2p} = \bigoplus \mathbb{O}(-p)$'s) the

- level 1 extension data is trivial
- level 2 extension data given by $\log t_i$'s
- level 3 extension data given by $li_2 t_{\alpha}$'s
- d (level 3) ∈ level 2 ⇒ ODE expressing*li*₂*t*_α in terms of log*t*_i's, etc. 12/3

• Along Z_i^* level 1 extension data gives

- Φ_1 (locally) constant $\rightsquigarrow \Phi_2 : Z_i^* \to \mathbb{C}^{*k}$.
- Then we have (up to a translation) the level 2 extension data mapping

$$\Phi_2: Z_i^* \to \mathbb{C}^{*m_i}.$$

- If Φ_1, Φ_2 are both constant along Z_i^* , then $\Phi_3 = \Phi_4 = \cdots = \text{constant along } Z_i^*$.
- At a point of Z_i ∩ Z_j if N_i, N_j are linearly independent, then Φ₂ extends by filling in the origin to some of the C*'s; essentially Δ* × Δ* completes to Δ × Δ.

13/33 13/33

- If N_i, N_j are linearly dependent, then Δ* × Δ* fills in to Δ × Δ with the axes contracted to points.**
- The Albanese $Alb(Z_i^*)$ is a semi-abelian variety S_i with

$$0 o \mathbb{C}^{*m_i} o S_i o A_i o 0$$

and Φ_1, Φ_2 combined give

**The general version of this case involves a somewhat subtle analysis of the relations among the N_i in a nilpotent orbit

$$\exp\left(\sum_{i}\left(\frac{\log t_{i}}{2\pi\sqrt{-1}}\right)\right)\cdot F.$$

Theorem: dim $\Phi(B) = 2 \implies$ the map to extension data is non-constant.

Corollary: In general, dim $\Phi(B) = 2 \implies \Phi_T$ contracts no curves in Z.

IV. Basic formula

• Relates the geometry *along* Z_i to geometry *normal* to it

- Assume $\Phi_S(Z_0^*) = \text{point}$, thus \mathcal{L} locally constant along $Z_0^* \implies \pi_1(U^*)$ acts as finite group on $Gr(\mathcal{L})$; assume this group is trivial; then
 - $W(N_0) = W(N_i)$, $Gr^W(V)$ is a fixed vector space;
 - $N_0, N_i \in \operatorname{Gr}_{-2}^{W} \operatorname{End}(V), \text{ gives a cone } \sigma \subset \operatorname{Gr}_{-2}^{W} \operatorname{End}(V);$
 - $-\operatorname{Gr}_{+2}^{W}\operatorname{End}(V) \cong \operatorname{Gr}_{-2}^{W}\operatorname{End}(V)^{*} \text{ (uses } Q);$
 - $M \in \operatorname{Gr}_{+2}^{W} \operatorname{End}(V)$ gives $L_M \to E$ and $M \subset X \to L_M \to E$ and
 - $M \in \check{\sigma} \implies L_m \to E_{ab}$ ample.

Theorem (basic formula): $\Phi_1 : Z_i \to E_{ab}$ and in $\operatorname{Pic}(Z_0)$ we have

(*)
$$-\Phi_1^*(L_M) = \left\{ \sum_{i=0}^m \langle M, N_0 \rangle [Z_i] \right\} \bigg|_{Z_0}$$

Corollary: $-\deg \Phi_1^*(L_M) = \langle M, N_0 \rangle Z_0^2 + \sum_{i=1}^m \langle M, N_i \rangle.$

- RHS is \$\langle M\$, in the intersection matrix \$\langle\$. (*) tells us how negative that row is in terms of the variation of the level 1 extension data.
- Special case: Z is a cycle

 $(M, Z_i) Z_i^2 = \langle M, Z_{i-1} \rangle + \langle M, Z_{i+1} \rangle, \text{ plus terms from going around the cycle.}$

- monodromy () gives a *circuit* then
 - γ acting on N_1, \ldots, N_m spans a 2-plane in $\operatorname{Gr}_{-2}^W \operatorname{End}(V)$, and in this plane there is a sector such that the $\gamma^k N_i$ give in the sector a convex figure where $\gamma = \text{translation by } m$

- from the basic formula (*) we infer that

$$\begin{cases} \text{straight line at } Z_i \leftrightarrow Z_i^2 = -2 \\ \text{bend at } Z_i \leftrightarrow Z_i^2 \leqq -3. \end{cases}$$

Hilbert modular surface picture is general.

18/33 18/33

V. Application to moduli of general type surfaces

A. Infinite monodromy

We begin with the question

• What are the singularities of \overline{P}_T and \overline{P}_S ?

— the singularities of $P = \Phi(B)$ arbitrary

— with our non-degeneracy assumption dim $\Phi(B) = 2$ along a Z_i we cannot have $\Phi_1 = \text{constant}$ and $\Phi_2 = \text{constant}$ so that Φ_1 is finite-to-one; we will illustrate the general principle that the LMHS along Z helps determine the singularity type.

Example 1: Weight n = 2m

- $Z = \text{smooth curve and } \Phi_S(Z) = p \in \overline{P}_S;$

$$- N^2 = 0$$
, rank $N = 2$;

$$- \text{ Gr } \mathcal{L} = \{ H^{2m-1}, H^{2m}, H^{2m-1}(-1) \}, \text{ with} \\ N : H^{2m-1}(-1) \xrightarrow{\sim} H^{2m-1}, H^{2m-1} = H^1(C)(-(m-1)) \\ \text{ for an elliptic curve } C; \qquad 19/33$$

- for simplicity assume rank $\operatorname{Hg}^m = 1$ and *C* is general; $\implies E_{ab} = \operatorname{Ext}^1_{\operatorname{MHS}}(\operatorname{Hg}^m, H^{2m-1}) \cong H^1(C);$ - $\Phi_1 : Z \to C$ is a finite morphism; - if Φ_1 is non-constant, then for U = neighborhood of *Z* in \overline{B}

gives a resolution of an elliptic singularity.^{††}

Example 2: n = 2m— Z = cycle;— $N^2 \neq 0, N^3 = 0$ and rank N = 1. Then by a similar analysis to the elliptic singularity case we find that $\Phi_S(Z) = \text{cusp singularity.}$

^{††}In general $\Phi_1 : Z_a \to E_{ab}$ and the associated Gauss mapping enters 20/33 into the geometry of the extension data.

- M = KSBA moduli space whose general point corresponds to a smooth general type surface.^{‡‡}
- $\overline{\mathcal{M}}$ = canonical completion whose boundary points correspond to surfaces X_0 having slc-singularities.

Even if \mathcal{M} is almost smooth,[†] in contrast to $\overline{\mathcal{M}}_g$ the boundary may be quite singular. There are geometric and Hodge theoretic reasons why this should be so.

Question: How can Hodge theory help understand the geometry of \mathcal{M} near $\partial \mathcal{M}$?

^{‡‡}[K] is a general reference for moduli.

 $^{^\}dagger This$ means that locally ${\mathcal M}$ looks like the parameter space of a general smoothing of an ADE singularity.

- if a point of ∂M corresponds to a normal surface X₀ having a singular point p and where N ≠ 0 for a general smoothing of X₀, then from the list in [K] p is either a simple elliptic singularity or a cusp.[‡]
- a general result, here stated informally, is that for a singular surface X₀ corresponding to a point x₀ of ∂M, the associated graded to the LMHS= L for any smoothing X_t of X₀ the Gr(L) is the same.[§]
- above examples suggest that using the map

$$\overline{\mathcal{M}} \dashrightarrow \overline{P}_T$$

may help resolve the singularities of $\overline{\mathcal{M}}$.

[‡]Interestingly if p is non-Gorenstein, then it is a rational singularity and consequently N = 0.

[§]More precisely the smoothings of X_0 may have several components and the $\operatorname{Gr}(\mathcal{L})$ depends only on the particular component. This result suggests why $\partial \mathcal{M}$ should be singular along components where $N \neq 0$. We will see below that we can obtain divisors in $\partial \mathcal{M} \subset \overline{\mathcal{M}}$ along certain components where N = 0.

Example ([FPR]): The "first" non-classical general type surface with $p_g \neq 0$ is an *I*-surface X

$$p_g(X) = 2, \; q(X) = 0, \; K_X^2 = 1;$$

- well known classically, on the Noether line $p_g = [K_X^2/2 + 2];$
- \mathcal{M}_I is almost smooth, dim $\mathcal{M}_I = 28$;
- $D = SO(4, 28)/U(2) \times SO(28)$, dim D = 57;
- IPR is a contact system and Φ(M_I) is a contact subvariety;

23/33 ^{23/33}

- FPR have determined the stratification of $\overline{\mathcal{M}}_{I}^{\text{Gor}}$, and have almost determined that of $\overline{\mathcal{M}}_{I}$ (much more difficult because have to bound the index in the non-Gorenstein case);
- part of their table is[¶]

¶In general for a smoothable surface X_0 that is irreducible, regular and normal with k elliptic singularities $\implies k \leq p_g + 1$. 24/33

stratum	dimension	minimal $^{\parallel}$ resolution \widetilde{X}	$\sum_{i=1}^k (9-d_i)$	k	$\operatorname{codim}_{in}\overline{\mathcal{M}}_{l}$
I ₀	28	canonical singularities	0	0	0
I_2	20	blow up of a K3-surface	7	1	8
I1	19	minimal elliptic surface with $\chi(\widetilde{X})=2$	8	1	9
$\mathrm{III}_{2,2}$	12	rational surface	14	2	16
$\mathrm{III}_{1,2}$	11	rational surface	15	2	17
$\mathrm{III}_{1,1,R}$	10	rational surface	16	2	18
$\mathrm{III}_{1,1,E}$	10	blow up of an Enriques surface	16	2	18
$\mathrm{III}_{1,1,2}$	2	ruled surface with $\chi(\widetilde{X})=0$	23	3	26
$\mathrm{III}_{1,1,1}$	1	ruled surface with $\chi(\widetilde{X})=0$	24	3	27

 ${}^{\parallel}\widetilde{X} o X$ contracts k elliptic curves \widetilde{C}_i with $\widetilde{C}_i^2 = -d_i$.

25/33 25/33 • How can Hodge help understand the desingularization of $\overline{\mathcal{M}}_{I}$ along these components?

Example: For I_2 the picture is

Here, p = isolated normal singular point on $X, \tilde{C} =$ curve on \tilde{X} that contracts to p — the LMHS

$$2=
ho_{g}(\widetilde{X})+g(\widetilde{C})$$
 and $ho_{g}(\widetilde{X})=1$

gives $g(\widetilde{C}) = 1$ (simple elliptic singularity).**

• Gr(LMHS)/ \mathbb{Z} suggests that $\mathrm{Hg}^1(\widetilde{X})$ has a \mathbb{Z}^2 with intersection form

$$\begin{pmatrix} -2 & 2 \\ 2 & -1 \end{pmatrix}$$

for heuristic reasoning assume basis classes are effective.

** LMHS has
$$\operatorname{Gr}_2 \cong H^2(X_{\min})_{\operatorname{prim}}$$

 $\operatorname{Gr}_3 \cong H^1(\widetilde{C})(-1)$

27/33 27/33

Hodge theory now suggests the picture

• # of PHS's of type $\mathrm{Gr}_3\oplus\mathrm{Gr}_2=19+1=20$ which suggests

- codim = 8

• How to get this number? The fibre over origin in a SSR is blowing up p in $\mathcal X$ to have

$$\widetilde{X} \cup_{\widetilde{C}} \mathbb{P}^2$$

where $\widetilde{C} \in |\mathfrak{O}_{\mathbb{P}^2}(3)|$

• Now have to blow up $9 - (-\widetilde{C}^2) = 7$ points on \widetilde{C} to obtain triviality of the infinitesimal normal bundle as a necessary condition for smoothability. Thus

Fibre over origin in Δ is given by blowing up seven points on \widetilde{C} , is a del Pezzo.

29/33 ^{29/33}

B. Finite monodromy

• for $\Phi : \Delta^* \to \{T^k\} \setminus D$ another classical type of extension is when $T = T_s$ is of finite order

$$\begin{array}{ccc} \widetilde{\Delta}^* & & \xrightarrow{\widetilde{\Phi}} & D \\ & & & \downarrow \\ & & \downarrow \\ \Delta^* & & \xrightarrow{\Phi} \{ T^k \} \backslash \Delta \end{array} \sim \sim \widetilde{\Phi} : \Delta \to D \text{ extends.} \end{array}$$

- In geometric case X₀ will be singular and LMHS=PHS (but ≠ Hⁿ(X̃₀)).
- Generally $\widetilde{\Phi}_* : T_{\{0\}}\widetilde{\Delta} \to TD$ is zero but can define $\delta \Phi$ that has geometric information.
- For KSBA moduli of surfaces on $\partial {\mathcal M}$
 - X_0 is non-Gorenstein
 - singularity is $\frac{1}{dn^2}(1, dn^2 1)$ quotient singularity
 - rational $\implies N = 0$ (resolution is a tree of \mathbb{P}^1 's).

30/33 30/33 • Extension of Φ from \mathcal{M} to \mathcal{M}_f gives

$$\Phi: \mathcal{M}_f \to \Gamma \backslash D.$$

In contrast to the N ≠ 0 singularity the presence of an N = 0 singularity may define a divisor in M. This happens in particular for the Wahl singularity ¹/₄(1, 1), the quotient of C² by (u, v) → (ζu, ζv) where ζ = e^{2πi/4}. This singularity is of particular interest as the monodromy T = Id.

Example ([FPR]): For $\overline{\mathcal{M}}_{I}$ there are two divisors in $\partial \mathcal{M}_{I}$: *I*-surfaces (X_0, p) with $\frac{1}{4}(1, 1)$ or $\frac{1}{18}(1, 5)$ singularity; denote first by $\mathcal{M}_{I,W}$.

• resolution of Wahl singularity is $(\widetilde{X}, E) \rightarrow (X, p)$ where X = elliptic surface with a bisection $E, E^2 = -4;$

31/33 31/33

- semi-stable-reduction has X̃ ∪_E S where S = Veronese surface ((X, p) looks locally like a plane section through the vertex of a cone over S);
- $\widetilde{\Phi}(0) = \mathsf{HS}$ computed from $\widetilde{X} \cup_{\mathsf{E}} S$.

Theorem: $\mathfrak{M}_{I,W}$ = component of $\Phi^{-1}(\Gamma' \setminus D')$ where $D' \subset D$ is a Mumford-Tate domain.

• Proof uses computation of $\delta \Phi$ in $T \operatorname{Def}(X)$.

References

- [CM-SP] J. Carlson, S. Müller-Stach, C. Peters, *Period Mappings* and *Period Domains*, 2nd. edition, Cambridge Univ. Press.
 - [CK] E. Cattani and A. Kaplan, Degenerating variations of Hodge structure, Astérisque 179-180 (1989), pp. 67–96. http://www.numdam.org/item?id=AST_1989_179-180_67_0
 - [GGLR] M. Green, P. Griffiths, R. Laza and C. Robles, Period mappings and ampleness of Hodge line bundle, 2020. arXiv 1708.09523v3
 - [K] J. Kollár, Moduli of varieties of general type, in Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM)
 25, Int. Press, Somerville, MA, 2013, pp. 131–157. MR3184176 Zbl 1322.14006