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' 1, INTRODUCTION-. . . . . e

| This pa.pex" introduces and studies a space of measure theoretic -
surfaces called varifolds. Varifolds of dimension k-are defined in Rn for
all non-:nega.tive ix"xtegers .k <n as certain non-linear real valued functions
on the space of all continuous k-forms on Rn. Varifolds on a Riemannian
manifold can be defined either intrinsically on the manifold or, as is done
for convenience in this paper, using an isometric imbedding o‘f the mani-
fold in some Euclidean space. '

Many objects of geometric interest can be considered as varifplds

in a natural way; iticluding, for example., differentiable varieties which.are
loc'a.lly of finite 'a.rea., singular chains satisfying,a Lipschitz condition, flat

chains of fini.te maén over a finite coefficient group, integral currents,
]

i and more general surfaces such as are approximated by soap films. Since
E most natural geometric constructions are possible in.the space of vari-

F‘ folds, the language of varifolds is useful for an assortment of geometric

.; “problems. The existence of several geometrically important compact

“ subsets in the space of varifolds and the continuity (in contrast with the

JT usual lower semi-continuity) of the k-dimensional area function \_]:Vform'

the basis for the use of varifolds in the study of calculus of variations
problems in the large for the k-dimensional area integrand,
The most important subset of the space of all varifolds is the

space of integral varifolds. Except for arbitrarily small k-~dimensional

measure, each integral varifold of dlm(.nsmn kis a compact dlﬁ'crenuable
manifold of dimension k w1th posztlve integer multiplicities on its various .
components, A k-dimensional integral varifold is ca.!.led stationary if and
only if it has zero initial ‘ratg of change.of k-dimensional area (measured

' counting multiplicities) for each differentiable deformation of the support-

ing space. Within the framework of integral varifolds we are able to give

a solution to the existence portion of two problems of long standing.




A T ]

’

- Fifét, as .the most important results in this paper and as.the initial
justification for defining varifolds, we establish general topological conditions
sufficient for the existence of k-dimensional minimal surfaces, i.e. stationary
integral varifolds, on compact Riemannian manifolds (15.1), In particular,
winenever. k <n are positive integers, we show that each n-dimensional com-
pact Riemannian manifold M of class 3 supports at least one stationary in-
tegral varifold V of dimension k (15. 2). V will have boundary only if M does,
and, in that case, the boundary of V will lie on the boundary of M and itself
be a regular integral varifold of dimension k-1. (The boundary of a stationary
varifold is defined -analytically and does not necessarily coincide with the tocpo~
logical boundary, (11.1(4){5)). There are no curvature restrictions on M. As
a sfép in proving th%is result we show that the homology groups of M; with a
' downward shift in dimension by k, ‘ar.e_‘nat\.lrally a direct surnmand of the
| (appropriately defined) homotop‘y groups of the VZ-space consisting of pairs
(V, 'I‘)' where V is a k-dimensional varifold on M and T is flat k-chain on M
related to V(13. 5).

The proof of (15.1) requires the use of most of thg other results in
this paper. - : SRt
] . Second, we show the existence of a ""best possible solution' to Plateau'.s
problem, i.e. the problem of least area, If Nis a compact (k~1l)-dimensional
submanifold of R” of class 3 without boundary, then the set of non-zero
k-dimensional stationary integral varifolds V having N as (analytic) boundary
is compact with a positive lower bound on k-area, Hence there is a stationary
integral varifold of least area having N as boundary (11, 5), The term "best
possible solution! seems justified since there is always ‘at le.a'st one non=-
zero stationary integral varifold having N as boundary and, in every other.
formulation of Plateau's problem known to this author, each solution surface
(if one exists at all) is naturally a stationary integral varifold. In general,

solutions by ot_her methods will have strictly larger area. The éxamplcs of

1-2
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(11.1) _illu's.trate.the. necessi.ty‘ for admitting '.serfa.ces of the generalify of
integral vafifolas in the study of least area.‘problerns.

In provmg the above results one fu-st obtams the desired surface ~
asa (functlon valued) measure on R™ and then shows that this measure lies

on a recnﬁable subset of R” thh integer dens1t1es. '

In addxtlon to the two mam results above, a number of other results .

of clas s.tcal interest are obtamed through the methods of varifold geometry.
For example, we obtain an isoperimetric inequality for compact manifolds
with bounded mean curvature (8. 7), (8. 9)...' .Alse we show that a k-dimex:xsional
manifold of bounded mean curvature, but arbitrary topological type, which
lies near a k-disk must have k-area nearly equal an integral multiple of the
area of the k-disk (9 10).

The author is indebted to H. Federer for his suggestion that results
similar to those of M, Morse [ MR] for the existence of geodesics on mani-
folds .might be obtained for the existence of higher dimensional minimal sur-

faces using topological information about the integral cycle groups, Some of

our results are indeed similar to those of Morse. In the present context,

however, it does not seem possible to satisfy simultaneously the axioms of
"upper semi-reducibility" and "a.ccessibility".upon which the Morse theory - '

is based,. . R A Lo ST N A " 3ot e

The measure theoretic foundations of this’ paper are due largely .

to H, Federer, and the applications of these results to show the rectifiability .

properties of var:.folds is similar to a techmque used by W.H. Fleming. - -

This paper is, in part, derived also from the work of A, S. Besxcovxtch

E. R. Re1fen‘berg, H. Wh1tney, and L. C. Young. Thrqughout the prenaae.

tion of this paper, the author has en_]oyed st1mu1atmg and fru:.tful conversy -
tions with H Federer, W,H. Flemmg, D.C. Spencer, and H, Whitney,
among others, and a number of the 1deas generated by these conversatiohs

appear in th1s paper.

This research was supported by grants from the Nzational Scienc

Foundation.
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2.1

2. DEFINITION AND BASIC PROPERTIES OF VARIFOLDS-

2 1 DEFINI'I‘IONS Prel:meanes

(1) R denotes the real number field. R0 denotes the positive real numbers and
.':. R.a the negative real numbers. We set R' = R‘g v {0} and R™ = R(; U {0}. For

s . n . . ’ *
. .each non-negative integer n, R~ denotes Euclidean n-dimensional space with

' the usual inner product + and norm | |. For each peR™ and r e R; ‘we-
" define . -, | - .

Q ( 1:)'= Rnf\v {x: Ix-pl_<_r}.
132( r) = RN {x: |x-p| <},
- oD (p. r) = RN {x: Ix-pl ="r}, and

| st aD™o0,:1). . . . ‘

‘“ (2) For mtegers 0 < k<n we denote by (n: k) the binomial coefficient
;*." [k' (n-k) ] n . . , '- . i
: (3) For integers 0<k <n we denote by Ak(Rn) and k(Rn) the dual vectox oo

spaces of k-vectors and k-covectors on R" For AE A (R ) and pn & Ak(R ) ;
R 1
we wr1te AMp) = g, The direct sums - e

75, : ok :
AR = BARY, 4 RY = BARY

. oy . n . .
are the contravariant and covariant Grassmann algebra of R with the exteriok . '

A3 .y . . ; n . ‘e i |
" multiplication A. The inner product * and norm I l 'of R" induce inner prodwis
)

% -
.~ and norms on A (Rn) and A (Rn.) also denoted '+ and . We define
- =% =
4 DAk(Rn) - Ak(Rn) A{n: |2 <1} and ..
aDA™(R™) = A YA ] =

' ix
If peE A (R ) and kGAJ(R ) for 1ntegers 0<h<J<n we define u A\ 6./\:l (P\)
by requiring for each v € A (R ) that (u A x) v\ (/x ‘A v) ().1,5.1)

' If {x 2 X s eeey X } is an orthonormal basis for R then, in the usual |

N notation, |
((8/2x' ™ A (705", .. AGa/x ) 1 1 < sy < i2)< ... <i(k) <} ond
{axn ad@ | l\dx‘(k) 1<i(l) <i(2) < ... < i(k) < n}

. :.".\
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~ We say "that M\ is parallel with ¢ or, equivalently, u is parallel W1th N if and
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are dual orthonormal bases for A (W) and k(W) respectively where W & RrR"
1s the tangent space of R™ at some pomt in R « For simplicity of notation we

w111 1dent1£y R with its various tangent spaces ‘W throughout this paper.

For each integer m >k a differentiable map f: R® —> R™ hasa’

*'.fferent:al Di(p) : R® —> R® at each p & RrR® which in turn induces linear .

mappings £y (p): k(R )——->Ak(R ) and f%¥(p) : Ak(R ) — A (R“) x,m:/\,wm
rief LA Let 0<j<n and O <k<n be integers, \ GAJ(R ), and ué A (R ).

* : .
only if for some w € A (R”) either 4 = wWAN or A= wAu. A similar definition
wdefines parallel j and k-vectors. If v & ék(Rn) is dual to u we say that X

_ is parallel with v or, equivalently, p is parallel with v if and only if \ is

parallel with u. j-vectors and j-covectors are parallel with an affine subspace

f
" of R® of dimension k if and only if they are parallel with each k-vector lying

in that subspace. -

(4) For integers O <k <n we denote by Qk(Rn) the real vector space of all

"continuous differential k-forms on R™. Each such form can be regarded as a

continuous map P : R” '——>A (R ™). We define a norm | | on gk(gn)'by

" setting for each _ Pe (R IR

ICPI sup{ |9 (x)| .xeR e Yy {o}.

This defmes the umform or | | topology on C (R ) For each @ & C (Rn), the
'“support of , written spt(9), 1s clos{x. (P(x) # O}CR We set

C (R )=C (R ""{P: spt(CP) is compact}

a.nd topolog:ze C (R ) as the 1nduct1ve 11m1t of its subsets

SR N (P spt(‘P)CE (0, M, §=1,2 3, ... each of which has the | |

topology. Note that if ¢, P, P, QO , ., glg(Rn), t_he'n lim'iCPi =P if and

" only if limil CPi—CP| = 0 and Ui spt(®,) . is bounded.

The direct sums
C* (R )—GBCJ(R ) and ¢} —EBC%)(R )

are graded algebras with exterior multiplication” A.
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’, For UCR we set C (U) = { PlU: CPE C (R )} and C (U) = ,
{q>[U PeC KR™}. 1f U is bounded then C(U) = Ci(U). . i;

For ea.ch integer 'm > k each contmuously d1££erent1ab1e map f: R® —> R

|

[
!

':'.’f'mduces a linear map ¥, C (R )——> C (R ) given for @ € C (R ) and x e rR™

A,
e

" by ﬁ(‘P)(x) = f#(p)(CP(f(x))) If £ (K) is compact, whenever KCR is compact thex
W C(R)-—-—->C(R) o : h

==

"’/ .
o If p: R? —s A (R } is continuous and CPE CJ(R } for integers 0 <h<js

) we define u AP € CJ h(R ) by setting u AP (x) = pu(x) A P(x) for each x € r® i
For each A\ GA (R ). we define w(h)EC (R } by setting for each x € R™ , ,:'
w(k)(x) = A\ {/\ L") "(lR“"; 3 G../n' K) ' ;
! (5) Let 0<k<n be integers. We denote by 52 (R ) the Grassmann manifold of

all unonented k-plane directions in R with the usual metric and measure. For j
“each A € A (R™) wel define the contmuous function [[A]] : S? (R. ) — Rt by settmy
-‘::foreach PES? (R ) ‘ ) -
- M@Y= IA]P = Paen]= 1400

" where p € ék(Rn) is a simple unit vector parallel with any k-plane in r" lxeving 11

o

DR L R

i ‘directioﬁ P. The absolute value function in the definition eliminates the ambiguity

“in the choice of p.

'."’,'x .

3

lR

We 1dent1£y also Qk(R ) as the spa.ce of a.ll orthogonal pro_]ectmns rR"

:"" ~v'

(6) Let 0<m<n be 1ntegers. By an (abstract) m-dimensional closed Riemanniz

B ks

e

mamfold M we mean a closed submanifold of some (abstract) m-~dimensional

_ R1emann1an mamfold N (for example, the double of M) LI 0<k < m is an inte- (
ger we define C (N} and C (N) in the obv1ous way. We defme C (M) = (
{CPIM CPG.C (N)} and C (M) = C (N)nC (M) Throughout this paper the (

i
i

‘ word "manifold" always 1mp11es a dszerent1ab111ty structure of ‘class at least 1, ’I
We denote by dM the boundary of manifold M. I r isa positive integer and
M is a manifold of (differentiability) class r then, by definition, 9M is alsoa

. manifold of class'. r. If N is a submanifold of manifold M, then, by dejinition, il

"IMANN =¢. dim(M) denotes the dimension of manifold M. i}

AL NS
3t L
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""to be the k-dimensional density of p at x, provided this limit exists; similarly

f’:_the upper and lower densities

EY

' (10) If A and B are metric spaces and £ A —-— B, we define 'Lip(f) : A —
"rY U {oo} by settmg for a € A, - '

We write also Lip(f) = sup{Lip{f)(a) : a€ A}

'L.. (-

max{f(a), 0} and { (a) mm{f(a), 0} Note £ f -f .

.r

“and f(a, ) : B> C by setting ¢, b){a) = £(a, *)(b) = f(a, b),

C (13) If £ is a function we denote by dmn({) the domain o£ f. L

For notational simplicity we adopt the following conventions. Let g: R —> R

" an arbitrary function. Oz(g) will denote ainy of several functions f(z), depuwbk%

' are defmed as the correspondmg lim sup and lim inf.

(9) If n is a positive integer and ACR"™ we denote by clos(A) the closure of A |
and by diam(A) the diameter of A, ;

k L
(7) Let 0<k<n be integers. .H denotes k-dimensional Hausdorff measure onfg

R [FF 8.2]. H equals Lebesgue n-dimensional measure on R°, We set
| '. G(n) Hn(D (0, 1)), We write ﬂ((n k)) a{n: k). If u is a Borel measure on
iR® and x € R® we define, L ' o

\l
o

sy

. . i . y
O, W = m a0 D =) - O )
r—>0 .

-

O, ) and O, %)

(8) If g isa pos1twe integer and a;, a .oy aq & R, we define

2"
|

| _ -l N
average{al. 21 vees aq} = q '(al ta, ...t aq).

Llp(f)(a) lim s up {[chst(a., c)] d1st(£(a), f(c)) e G A and 0< dxst(a, c) < r}
r—>0

(11) If f: A—> R we set £ , f A-—-—>R by settmgfor aGA. ff(a)::

(12) If £: AXB—> C we define for each a€ A and bE B, - {(: b): A-—> C

(14) Several computations in this paper involve functions of more than one vériqbleg

only on the variable z, such thatfor some c & R+ lim m_f c‘g(z)l lﬁ(qﬂ = 0, :
z—->0 |




,-~° (g) w;ll denote any of several functions £(z),

-depending only on the variable ‘'z,
Ailse

) 2.2 DEFINITIONS Varlfolds. 'I‘.his section includes the basic definitions'

'or .varifolds. For expositional reasons we have included some definitions at this

", pomt whose justification depends on later results. Let 0<k<n be integers.
.n!tu .

(1) A varifold of d:mens:.on k 'in R™ is a function V : ng(Rn) — rY

‘satisfying
the followmg three axioms:

w. o (i) Vir®) = |r|V(P) for each rER and P G C (R %

T ) V(P + ) SV(P) + V(¥) for each P, ¥ € CHIR" ), and

(ii1) V(E /\<P+ gAN®P)= V(A cP )+ Vig A q>) for each P& CO(R ) and
f, géC (R) with £=£ and g = g .

: We denote by GV (R™) the space of all varifolds of dimension k in R"
Incase j is an integer and j ¢{0 1, 2, +.., n} we set CV(R ) = {0}.

For each V € ch(R ) we define the support of V, wr1tten spt(V), to be
the smallest closed set K for which V(P) = 0 whenever (P e C (R ) and
spt(cP) ﬂ K= 0, We denote by v (R ) the subset of V (R ) of var1£olds having

3 compact support. In case j is an integer and J ¢ {0, 1, 2, ..., n} we set
v, (R ) = {0}

RF

'i.‘_.:.‘;_ , I 0 <j<k is an mteger, CP € CJ(R ), and V € Wk(R ), we 'defme
v ,\ ® < "Vk (R™) by setting for each Ve C —J(R ). \4 l\ <P W) = V(DA Y¥). I
7"-?:~<P 3 CJ(R ) then VAP ey (R, ’

If 0< h< n-k is an integer, pu: rR" ——>A (R ) is contmuous, and
;:‘:_."V c "Vk(R ) we define VAu & °V (R ) by setting for each 9 e k'!'h(Rn),
. V/\#(‘P) Viu AP). If u has compact support then VAU GVk+h(R ).

Each V& V (R )} admits a unique contmuous extension V : Ck(Rn) —=ir 4 ‘

for which (i), (ii), (111) above are valid with @, ([/G.C (R ). If V V V o

‘e Y (R) and hm V(CP) V(@) for each ¢ €C (R ), then VC_V (R) an-

R has a compact subset containing the supports of all the V .




) ;g;‘;a_ch‘ Ué R we sét _
Vi l0) = V(R 0 {V 2 spt(VIC U} and
YV, (0) = ¥ (R N AV : sp(v)C U},

".j:(Z) Let k <m <n be integers and ACR"™ be an m-dimensional closed sub-
.’“r.nanifold of R® ofclassl. V € c)/ (R ) is said to lie intrinsically on A ii and t
only if V((?) 0 for each @ e’ C (R ) for which P {x)*\ = 0 whenever x € A - c
" .and A EA (R ) is parallel with the m-plane in rR" _tangent to A at x. If v lic:-.‘
_"mtrlnmcally on A, then V e‘Vk(A). If BCR" is another manifold and we‘V i
_ then (V, W) is said to lie intrinsically on (A, B) if and only if V lies mtr:.ns:ca.l

on A and W lies mtrmsmally on B,

It is clear how one defines the space °V (M) o£ varifolds of dimension k
 onan m-dimensional closed Riemannian manifold M; namely as continuous func-}if

tions V: Ck(M) — R+ satisfying the axioms of (1) above. So defined, “Vk(M)

is naturally 1somorphm with

Cyk(A)f\ {v: V lies 1ntrmsxca11y on .A} ’ i
‘ v.vhenever AC R"® is a closed isometric imbedding ‘of M into R". Y—k(M’ has the [}

obv1ous meaning.
e P

”.(3) The sum V + W of two varifolds V, W € CVk(R ) is again a varifold given fou i
..;_? € ¢ (R“) by (V+ WHP) = V(P) + W(P).

'-(4) ‘V (R ) admits a natural partial ordering < as follows: For V we 9 (R {

 we say V<W if and only if vV{9) < W(P) for each CP = c (R ). If V<W and ;‘
W <V, then V= W. '

;.;(5) The union V UW of two varifolds V, W & ‘V (R ) is that unique smalle.®
"vaufold in Cvk(R ) such that VSVUW and W<VUW, ie.if Ue. ‘V (R }
"and V<U and W< U, then VUW <U. The existence of VU W
m 3.10. Clearly VU W <V + W.

is estabh sheic,

(6) The intersection VN W of two varifolds V, W e (R ") is that unique la::

- est varifold in Wk(R ) suchthat VAW <V and VA W<W, ie. if UG "V
"and U<V and U<W, then USVNW,

The existence'of VN W is esta vl..m. !

|
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[ Often VNW=0 ‘when v;é 0 and W;! 0.

] ™ is a Borel set and V € "\/k(R ), we denote by VN A the intersection.
of V w1th A. The definition and proof of exlstence of VNA & c)/k(R ) are g1ven

‘ "m 3 9

Ml
8) (R ) can be regarded as a subset of the cartesian product space
k

Tr{Rq) CP e C (R )} where RcP denotes R indexed by P . The relative topology '
‘on “y (R ) is called the weak topology.. Note that if V, V V V3, ves €& ‘ch(Rn). 1
then lim, V = V in the weak topology if and only if hm \A (<P) V(qD) for each

C?EC(R)

(9} We define the E metric on V (R ) by settmg for each vV, We V (R )

E(V, W) sup{|V(q>) -W(@)|: 9e gO(R ™, |@] <1, and Lip(P) <1}.

. tem

S ' i
We write also F(V) = F(V, 0)

1“(10) We define the I\=r1 metric on \[k(Rn) by setting for each V, W & \ék(Rn),

M(V, W)

sup(V(P) - W(P) + W) - VW) : P, ¥ € Ch(R™ and |9 = |9} =1]
.‘We write also M(V) = M(V, 0). )

(11) We define the weight metric W on V (R ) by setting for each V, We Vk( 2™,

IO

WY, W) = sup{v(n. W o § [V(f(x VALY - W, ) A o)
T, f )\éDA (R ) .

. + V([ - £\, )]A w(>~)) - W([1 - f(h. IIA w(X)] dH(]rl Hehy }

where the supremum is taken over all continuous functions A (R ) X R

*—"->{t 0<t<1l}. Here

vt § .t IdI—I(n et
AEDA(R™). _
for some U & A (R ) with Iul 1. We write also " .

WOV) = WV, 0 =yla KD ) Vie)

DA (R")

Axiom (i) of (1} implies that, with a change of constants, the integrations abu v«

».
G
. L



could be taken over BD_Ak(Rn) with respect to H(n k) -1

il N aDA (R ).

,‘;’* g If - IAI (= Vk(R ) is the varifold correspondmg to a compact submamfo‘d A o
F n

R of dimension k (5, 3), then W(IAI) = M(IAI) (A)

'.‘;5'\3"‘
(13) For each V g C’Vk(R ) we define Radon measures MV and WV on R" by
, setting MV(P) = M(V A ) and WV(P) = W(V A P) for each P & CO(R ") with P= 7,

l)!

(14) We denote by U (R ) the set of all continuous functmns F: A (r" ) —> R for .

l

(1) F(xA) = {r|F(\) for r& R and \ eAk(Rn), and

e (i)  F(Mu) < F(\) + F(u) for \, u eA (R™).

Note that (i) and (ii) imply that F is convex. We define the M and Vﬂzf metrics on
=k(R -) by setting for each F, G € ;___Ik(R )s

M(F, G) = sup{F(\) - G(A\) + G{u) - Flp): \, p € DAk(Rn)}

WiE, G = Sup{v 0§, [FE0 AN - GEA N
- £ » € DA (R")
+ G([1-£ (M)A z) - F(1-£N] AN H(n k),

_ where the supremum is taken over all continuous functions f: A (Rn) —
{ +0<t<1}., We write also
M(F) = M(F, 0) = sup{F(\) : » & DA(R™)}, and

WE) = WE, 0= v P an™Fh,
DA"(R )
‘One verifies the existence of c & RO for wl'xich
% c"MIF) < WIF) < M(F)
’jor each F & Uk(R ). .
Note that if Ver(R ) then the function V(w(*)): A (R ) —> R' sendi

X EA (R" ) to V(w(\)) €R+ is in gk(R } and, in partlcular,. M(V(w( )))f_l:\ﬁ.{("f}‘ Cd
W(V(w( ) = W(V) V{w(-)) is the function mV(spt(V)) of'3.6.

For each ¥, G U (R )} we define the union F U G and intersecting
FﬂG of ¥ and G in U (R) by setting for each A € A (Rn)
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.F U G(\) - max{F(\), G(\)}, and
FNGN) = sup{H(\): H G._I=Jk(Rn) and for each u & I_;\:k(Rn)
H(u) < min{F(), G)}},

B . ¢ YRUX Y RY — ¥ (RD)
R . ' Yo ‘ . . k

by setting for each p & Rn, Fe U (Rn), and P e (Rn)- V(P. FP) = (P(p)).
‘ Each such v(p, F) is called an elementary varifold of d1men51on k in R®. Note’

that Fly(p, F)) = M(v(p, F)) = M(F). 3.6 and 3.7 imply that the space of finite -

sums of elementary varifolds of dimension k is dense in GVk(R ) in the weak

-

3 top ology. e

s

(16) We define
Ly R™ x {\.__k(R“) —_ V=k(Rn)

o X
. 1

by setting for each p &€ R?, u Eéi{(Rn), and P & C (R ™, vip, u}(P) = | PipY el

' Each such v{p, u) is called an elementary normal varlfold of dimension k in

R®, If K is a simple k-vector, v(p, pn) is called an elementary geometric vari-

fold of dimension k 3_13_ Rh. Note that in either case

Fly(p, 1)) = Mlv(p, 1)) = Wiy (p, u)) = |1},

4 does not preserve addition in A (R } since, for example, if

.....

uEAk(R ) - {0}, then

} :_c(p. po(p) = 0<y(p, y)'+ g(é. 1) = 2y (p, H).

More subtly notice that in R ’

vip, (0/ ax )/\(3/ ax ) + (3/ ox )/\(a/ ox )) < V(P. (a/ Bx YA/ ox ))
+v(p, (8/ 9> YA(3/ ax* ).

We denote by A/C)/k(R ) the closure, in ‘V (R ) in the weak topology of i -

Space of finite sums of elementary normal varifolds of dimension k in ’-‘\ no

by gcyk(R ) the closure in (’yk(R ) in the weak topology of the space of firnite o «n

of elementary normal varifolds of dimension k in R". In 5.3 we define ./ 'v‘/] A
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) and é&‘Yk(R“). .The following inclusions hold and, in general, are proper:

IV BHCRY (RHCGY RHYCHYRHCT YR,

b‘v

, Also, in the weak topology,

closm/ (R") = clos(éacyk(n )) = gcyk(n )

”7 (Rn) is itself the smallest closed subset of ‘Vk(R )" which contains ﬂcyk(Rn) ,
and is closed under the formation of unions., ‘
A varifold V& JVWk(R ) (resp. ‘90)/1((1{ ), ﬁaﬂ/k(R ), Jc)/l (R7) is
called a normal (resp. geometric, real, integral) varifold of dimension k in R"..
One sets va(R )= VYR N L RY, GV (R = g‘Yk(R )N Y, (R ™

RVk(R ) = Gacyk(n )Ny (R ), and IV (R ) = J‘Yk(R )n N (R ).

|
2.3 PROPOSITION. Let 0<k<n and g >0 be integersand V & ‘Y (R™).

Let (Pl. (PZ' e (p e C (R ) with {x: CP (x) # 0 and CP (x) # 0} = ¢ whenever
1<1<_)<q Then V/\ZCP 2V A §;. In particular, VAf= VAE + VAL
ior each f €C (R ).

PROOF.

PartI, If {K} is an orthonormal basis for A (R™ and @ € k(Rn) with

l‘P| <1, we can write uniquely @ = Z <P A w()\) for some CP e C (R ) w1th
ICPI L1 for each i. For VéVk(R ).
V(P) < 223 V(e A w()\ n
< 5, VI @I - o)
< 5, Ve + vy
< a3 Vi),

whlch nnphes M(V) <33 V(w(h )) < oo,

Part 2. It is sufficient to prove the proposition for q 2, Let CP CP e (R
WE CO(R ) and V& GV (R ), and choose @ & c (R. } for wha.ch QA W
Then V A @ & Y, (R™), and VA®A @0y = V A q>1(w). VAPAP,W) = V A °
and VA @ A ((P1 + (pz)(w) = VA (CPl + q72)(¢). In view of the obvious epruesiz: “ms

Py
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) e

based on part l and the continﬁity of CP and CP it is sufficient to show the con-
clusmn of the proposition under the st1 onger hypothes1s that spt(CP N spt((PZ) = 0,
Wzth th1s hypothes1s we choose a, B e G (R ) as a partition of unity for R" such
that spt(CP 1Ce” (1) and spt(CP yCp~ (1) Then '
SR 2 (P, + P,))

i,
W
S

VP, + @)AY) -
ViaA (P, + PIAVI+BALD A PRIAYD
VA (P + @AW +VIBALSP A RIAY)

]

The proposition follows. . -

2.4 PROPOSITION. Let 0<k<n be integers and KC R" be compact.

(1) The functions Z_E_*‘,‘ M, W: Yk(Rn) —_— R+ are lower semi-continuous in the weak
topology on ’\__’_k(Rn). However, if V, Vj, Vy Vg oo €V (K) with lim, V, =V
in the weak topology, then lim, E(V,) = E(V), lim W(V,)= W{V), and

—

(n: k) 1 iim sup, M(V,) < M(V) £ lim inf, M(V)) .

(2) There exists ¢ € R} such that for each V&V, (R") and P € CR™,
(a) o V() < MV ®] < WP,

.w 3 : ' : . . ,
(b) o F(V) < M(V) < cW(V) < cu.(n k)y (n k)F(V)

Also, for each V, W ev (R )s

(."? o F(V, w) < M(v. W),
3}1@_ | .
(d? - I“J(V) - V__Y(W)' _<_ a{n : k)y (.n; k.)J::“(V, w), ’

which means

(e) Lip(W) < e(n : k)Y (n, k)

e



_ With respect to the F metric on v (R ).

_(3) The F metric topology coincides with the wea.k topology on W bounded subsets
.'f.f_ =k(K)' Furthermore, for each b & R+, V=k(K) Nn{v: E(V) < b},
\;k(K) N {v: I\éI(V) f_b}v and V=k(K) Nn{v: W(V) f_b} are each compact in the weak

Irology and hence in the F metric topology also.

(4) Let f: Rg — R+ be contmuous and non-decreasing. Then

oyk(R )ﬂ{v XVﬂD (0, r)) < f(r) for each rER}

18 compact in the weak topology whenever X = E, M, or W.

Y

PROOF. Most of conclus1on (1) is stralg}n‘.forward Note that if {>\ }

as in2.3 (Part 1), then
Lim inf, M(V, ) < lim, z, M(w(h N = 2 V(w(k N < (0 KM(V).
'.Note also that lV(gP) _ V(‘l’)l < M(V)lqj -y| whenever V& V, (R ) and @, ¥ & C (=7,
Conclusions (2), (3), and (4) are left to the reader. Note that °}’ (R™) is-

Y

eParable in the weak topology.

. 0,.n . .
2.5 PROPOSITION. Let 0<k<n be integers, f & C (R") with Lip(f) <]

=d U Then for each V W e V (R ) andé

R N {x: f(x)<r} for each r € R,
.'6eR B N

F(VAU_, wNU)<L+8 Y E(V, Wt e WLV + WIN(U, - U_) )

Wh
;.-\% 0 < r<§. Here ¢ e RO is the constant of 2.4 (2a).

:;‘..' n . -
PROOF Let £, Vv, W, & be as above. Choose g, h: R" —= {t:0

2R tha U G y, ®"-U 0Ce o), Liplg) <8 1 and h=1-g. Yo
0< F<s one has
P(Vr\U , WNU ) = l:(Vl\g:l-Vl\ hNU_, WI\g+WI\ hnU )
" sup{ | v A g(@) FVARNU_(P) - WA g(®) - WA nNU_(§) : PE c olR SIS
and Lip(®) <1}
S| V(g A @) S W(g AP)| + (VAWIABNU(P): PE c JE&M 1Pl <,
and Lip(P) <1}

b <@+ s HEW, W)+ cW[(VEW) N (Tg - U g
ec =

-1
“se Lip(g A @) < Liplg) + Lip(P) S 87 + 1.

MR .
wle [N
' ’ "
QU




— .———--===-=--r-m- Nt e = e o e et P4 o 2t | et v et 00 bt e et o bk A A i o et T i
Sy i =S e S e e —s

3-1 |
= 3. VARIFOLD MEASURES L
3.1 DEFINI'I‘IONS Let n be a non-negative integer.
) (1) We set C Co (Rn) . _
(2) 'We denote by &£ the set of all functions L : C —5 R for which
() Irp+sy) =xr L{¢p) + s L) for ea.ch r, se Rand @, ¥ ¢ G, an'd
“(b) I{ep) >0 whenever (p € C and @ = ¢ .
(3) We denote by % the set of all functlons V: c— R for which
(a) V(rg) = |r|V(g) for each r ¢ R and ¢ « o
(b) V{g+¢) < V() + V(§) for each ¢, ¢ ¢ C, and
(<) V(go-i-tp) = Vip) + V(kl)) whenever ¢,y ¢ C and(p (p , U= q;
"(4) We define o ¢ of. —> % and 'T Y —> L by settmg for each L ¢ ,,L', ,
v€¢v,md¢eaoumw-LHm)mdﬂww)4W¢)-ww)
3.2 LEMMA, Letn be 2 non-negative integer, ¢, { . g, and
Ve 9. Then ' '
?n<¢ +¢)-<¢+¢)~<¢4¢3-<¢+¢r. |
(2 ¢+¢)><¢+¢)amu¢+¢)>4¢+w, N
(3) . V(g™ ¥): Hevie+ 1) =o'+ ™ - Vo™ yT), and N

(4 o and T are well defined mappings with 7. ¢ equal to the identity map

on £ and 0T equal to the identity map on C_Y,.

ve—

" PROOF.

() Notethat g+ =g 4 o0 -y = (@ +¥) - (g 4)”
.-(2) Obv1 ous .

3 Note that
S Ve +¢)-vu¢+¢)au¢+¢>-w¢+¢)n
o *W(¢+M)+VH¢+¢)—(¢+M)
- Vg ™+ 47 = V( (@+ )Y + VI (@ +47) - (¢ + ¢))
which implies

Vi(p+ 1)) - Vi (o+ 1)) = VieT+ N - Vo + 97 .



3.3 PROPOSITION. Letn be a non-negative integer.

Then cor-
responding to each V¢ % there exists a unique Borel measure m on R

.such that for each peC

Rn

Vi) = S l(p(x)l d.r=nx.

PROOF. The measure m is that unique Borel measure such that

n

p | o (V@) = S @® dm x .-
S R

3.4 COROLLARY. Let 0 <k <n be integers, Ve 9, (R"), and
le A (Rn)

Then there exists a unique Borel measure "m(V, \) such that
{or each ¢ ¢ Qg(Rn),

i Vip @A) = S qu(x)‘ d m(V,\ x .
x?n\». n =

R
[5-tlirt SV , .

ey

.

' 3.5 DEFINITIONS. Integration of differential forms with respect
" to U (R

n) valued measures. Let.0 <k <n be integers. By a Borel measure

ng “

on R with values in U (Rn) we mean a set function m which assigns to

1'.)

“each bounded Borel set ACR" a function m(A) € U (Rn) such that
(2) m(¢) =0, and

(b) m(A)

I
l‘ \'

E m(A) whenever A AZ' .A3 ... R comprise a
pan'w1se disjoint sequence of bounded Borel sets in rR" w1th A= U A bounded

'I‘he sum is to exist in the M metric or, equivalently, in the W metnc on
U (R”) Note that

W(m(A) = T, Wim(A)), and

MMIA) < Z; Mim(A)) < c Wm(Aa) ,

3-2
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', where c is the constant of 2.4 (Za)
o If ¢ € C (Rn') and m is a Borel measure on R" vnth values in-

U (Rn) we defme the integral g @ d mby setting

e
i | oam=tim 2 ma Mg [t )),
where for each i=l, 2, 3,..., {A(i, J)} is.a Borel partition of R~ such that

) d1am(A(1 n<ea -1 and p(i, j) € A(i,]) for each j=1, 2, 3, ... . The existence
of this limit and its 1ndependence of the choice of {A(i, J)} follows in the

£

usual way using the observation that for each bounded Borel set Bc R™ and
.eachl-l 2, 3,.... T

,u
.

, . (m [ BNA(i, )} ])<c W(m(B)) <.

.'_-_t...

i 3.6 DEFINITIONS. The Borel measure mV with values in ng(Rn)
-correspondin&to-a varifold V. Let 0 <k <nand Ve GYk(Rn). Correspond-

.ing to V we define the Borel measure mYV on rR® by setting for each bounded
Borel set ACR™ and each A € Ak(RD) mV(A) (A) = m(V M(A), where Iél(v, N
is the real valued Borel measure of 3.4. Note thatif e C (Rn)

k U A (Rn), and ACR is a bounded Borel set, then

5,,_’_ . m(V, N (g) = m(VAg, N(sptlg)) = Vph wlN),
and thus,

?, . ' m(V, M) <m(V, N) + m(V, p),

whlch implies . ,— o

CmVIA) (V4 ) < mVIA) () +m VIANR) -

The rest of the verification that mV is well deﬁned is left to the reader.

.",~ .
N
fntt et

e

i 3.7. THEOREM. Let0 <k <n beintegers, Ve % (R"), and
(pe C (Rn) Then V(g) = S @d mV .
R®




T

Pl

3.8 THEOREM. Let0 <k <n be integers and V ¢ o (R™. Then

.(1) For MV almost all x ¢ R or, equivalently, for WV almost all x ¢ R

there exist MV(x) e U (Rn) and WV(x) €U (Rn) characterized by the property

that for each \ € A (Rn)

- dm(V," N - N dm(V, N\
MVEHN = —5pmr—(x) and WV((N = —gmm—(x) .

(2) I\___/I(IS’_QIV(x)) <1and \g(ZVV(x)) <1 whenever x¢ R" and I\-__ZV(X) and WV(:{) '

exint, and equality holds for MV almost all x ¢ R” or, equivalently, for WV

almost all x ¢ Rn Also for some te R depending on M(x), MV(x) =t W(x,
In case x ¢ R S TR A (Rn) M(x) emsts, and for each )\e A Rn) MV(x)()»)

[\p], then MV(x) = WV(x) and M(MV(x)) = W(WV(x)) m |.
(3) For each @e C (R“)

Vi) = Sn MV(xX¢ (x)) @ MV x = j, -VEV(X)((;J(X)) d WV x,

o R R7

PROOF. For a summary of relevant measure theoretxc 1n£orma.-
tion, see “[F¥ 8.7]. The uniqueness almost everywhere of MV(x) and Wv(x)
1s clear and their existence can be shown by prescribing their’ values on a
counta.ble dense subset of A (Rn) whenever all these derivates exist. The .

convex1ty of elements of U (Rn) facilitates these arguments, The rest of

the proof is left to the rea.der.

son
IS Y 310 [ BTN

S
.,z"' o
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3.9 DEFINITION. The intersection of a varifold with a Borel set,
Let 0<k < n be integers, V¢ 9 (Rn) and AC R” be a Borel set. We definn
the intersection of V with A, written VNA, to be that varifold in °Y ’(Rn)

given for each e gg(Rn).bYa VN Algp) = 5 p dmV .
. A

v

‘.
P e

3-4
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~3,10, i)EFINI'I‘IONS Union and intersection of varifolds., Let
0<k<nbe integers and V, W ¢ ‘V (Rn) For eachi =1, 2, 3, ... let
,{A(l J)} be.a partxtmn of R” with dxam(A(z, Nn<a -i and
P, )_'5'__-&_“‘7('1. j) for each j=1, 2, 3, ... . We define

o VUW=lim 2y (el D m[VNAL 31U [ WNAG 2D,

o

VﬂW = hrniE v (pli, j), m[VﬂA(l» NN m[WﬂA(1, .

'~¢;

»!

Note that for ¥, F', G, G' ¢ gk(Rn):

(F+F')U(G+G')<(FUG)+(F'UG'), and

(F +F)IN(G+G') >(FNQG) + (F'OG'Y .
The existence of the 11m1ts above follows. The characterization of VUW
and Vﬂ W in 2, 2(6) and 2.2(7) is immediate.

M
B :

3.11. PROPOSITION. Let0 <k < n be integers. The smallest

closed subset of "Yk(Rn) which contains /V'“Yk(R.n) and is closed under

the formation of unions is c)/k(Rn) itself,

PROOF. For each F ¢ U (Rn) and each ¢ > 0 there exists a

e

p051t1ve integer q and and By By eee p.q € Ak(Rn) and corresponding

Fo F,, -...,quU(Rn) with Fy(N) = A | for eachxeA(R”s and
1-1 2,

051t10n follows by elementary arguments.

r ”’
i o
M AT
e o7 s

cess q, suchthatW(F FUF UF U...UF)<e. The prop-
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4. MAPPINGS OF VARIFOLDS

i

4.1 DEFINITIONS. The mapping of varifolds induced by a dif-

ferentiable map. Letk, m, n, p be integers with 0 <k < min{m n, p}.

() Let UCR™ be open and {: U——> R" be contmuously differentiable.

Then f induces a mapping

£ (L0, NV (UL, GY,(0), RY,(0), Wk‘“”
—> (V(RY, va(R”) GV, (R, RY(RD), IV (R")

g1Ven f01 each V € V (Rm) and Qe CO(Rn) by £ (V) (<p) = V(f#((p)). If -
KCU is compact and ViV Voo Vay ve e ¥ (K) with lim V. = V, then
lim, f %(V) = 4;:(\’) In case { l(C) is compact for each compact CCR

then f’ﬂ_ extends to give a mapping

—> (YR Y YLRD, gﬂ/k(R“), RVIRY: LVURY)

If £, fl :EZ, f3. ve. t U—>R" are continuously differentiable

mappmgs with 11m f1 = f and 11m Df = Df uniformly on compact sets then

lim, f#(V) V) for each V ¢ Vk(U)

.‘v

(2) For each linear mappmg L: R™— R® we set

251y = sup{ [£(w)} : 1 ¢ aDA (R”’)}
ENES -mf{]f (p)l ti e 8DA (Rm)} .

(3) Let f: U—> R™ be as in (1) We define contmuous functxonb

+
1 (f), g (f) U —> R by setting for each x¢ U, 5(_ (£) {x) = 5( (DE(x))
and ;(k(f)(x) L, (DEx)). 11 R™ --+ R? is a diffeomorphism, then

&(f) bt(fl)ofandot(f) R Y o, Iff R™-s R® andg R®—> RP

are both continuously differentiable, then £ (g o f) <( & (g) > f) ,k(f)
‘md Plg o 1) 2 (Lo (e) o ) L (9.
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4.2 REMARK, Letn be a positive integer and L : R%—> R” be
| hnéar Then there exists an orthonormal basis el, ez.. ver , € for R.n,
| real numbers ry _>_ T, 2 2 2T, 2 >0, and an orthogonal trar;sformation
6 R*—> R" w1th lL(e )Ie(el) L(el) for each i such that L = 6°E En_1° vee °E1

where E1 R™ --—> R is ngen,by Ei(e) = r1ei and E, (eJ) = e for j ;4 i. One

verifies that L5 (L) = z;or,e o0y ox) and "('k(L) =

1 Kk Tn'

Thektl Tnekd2' v " Tn

e
3. . s
G-

l - 4.3 LEMMA, Let0 <k <m <n be integers and f: RT— R" be
"givenbz f(xl, xz, veos xm) =(x1, xz,..., xm, 0, 0, ..., 0) for each

() %%, ... s ™ e R™. Then for cach V¢ VR, M(L(V) = M(V) and
\X(f#(V))F Ww(V).

P
ey y .

S 4.4 LEMMA Let 0 <k <n be integers, L: Rn—-—> R” be linear,
and Ve V,(R"). Then o (L) M(V) SM(LM) £ L kL) M(V), and
,tk(L) ww) SWILWM S & Ky W (V).

X5 S

PROOF.

.I:f.ﬁ 1. Let q be a positive integer, m: R%— R be convex, and 9..<_ :t‘f. L.
Then ) A , . ._ )

o S m(,{1’ R §qx2 . S S—— x3'.;-.'~:’ xq)'d"gqx-

o1 xeD? % D%0, 1) |

_Pla_rg 2. The first conclusion of the lemma is immediate. We verify the

.second. If Lis sinéular then ik( L).= 0 and the left hand ineqdélity is

'immediate. If L is not singular, the left hand inequality follows from the

"Tight hand inequality applied to L-l. Write L = 0 oE ° E 1o El as in

(n k) (nk) 1% v oFlwhere =

Q: A (Rn)-—-> A (Rn) is orthogonal and for some orthonormal ba51s

“4,2. Slm11ar1y, write L (0) =Q ¢ F

{X} ofA Rn) and real numbers sl>sz>... l)>0 I‘(h) %

) K,

'and I?i(M) =M for i # j whenever i, j=1, 2, ..., (n k). Note that 8 =
; k

rl. rz . ua. rk= oL (L). Thus




W (Ly(V)) = y(n, ¥) S L V) () a g™ 1y
DA (Rn) -

= y(n, k) kS m V(spt{V}) (L'*u‘:(o V) dH(n::k)v

DAK(R?) ™

'y

= y(ns K) S m V(spt{V))(R° F

<n. X
o F
D %k(Rn)' | (nt k) " (n g

Wo1® s F) aH

ey e WD L

= 5, ¥(n, ¥ g m V(spt VING

(n k)
DAK(RY) (n: K

? Gl ga1® crr G 4 H

o ‘ (n: k)
y K ° ° ... oG dH .
<5, Vo .)DAk'(YRn)mV(SPt(V))(G (e 19° G 19-1° ++2 <G4 aE™ H

(n: k) v

: | < <5 Y(n, k) S Ig_}V(spt(V))(G n (1)) d H

DAlan) (n: k)
'_<_s1 y(n, k) S m V{spt(V))(1) dH(n Ry
DAKRD)

L x
= LI W(V
Hérefori*l 2, voo0 5 (m: k),G A Rn)-——-—>A Rn)xsglvenbyG(K)
-1
8 s ). and G, ()\J) = )\J for i ;{J In the estimates above we used 2.2 (1(i),

1(ii}) and made repeated use of part 1.

4,5 THEOREM. Letk, m, n be integers with 0 <k _<_min{m, n},

[: R —> R™ be continuously differentiable, and 'V (R.n-). 'I‘Hen
o

T MVL0) S ML) < MV L (9), and
WV L, (D) < WIL(V) WV LD .

. .o -
o . .
R .

PROOF. Approximate V by finite sums of elementary varifolds and

use 2.4, 4.3, 4.4 and the continuity properties of £ for varifolds with supports

in 2 fixed compact set.




4,6 COROLLARY Let fand V be as in 4, 5 -Then
A.Igl(f (V)) < [sz(f)] M(V) gggi_’V__Y(g*(V)) _<_[L1p(f)] w(v) .

o T

4.7 REMARK If0<k<m,k<na.reintegers, 1£A A A RN
cn are k-rectifiable sets (5.1) such that V.= £ |A ] ¢ IV (Rm) (5 3, 5.4),
and if £ : R™ —> R™ is contmuously dlfferentlable, then £ (V) S ,E lf(A)I,

wm\ 'ea\ua\'\-\j m case § s onedo one on spt("V), "

sz;lg;

L T e e e e a e . r e
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.‘('1) There exists a k-dimensional non-parametric submanifold M of R™ of

5. INTEGRAL AND REAL VARIFOLDS AND THE VZ SPACES.

A, e e
oo B st
b e

5.1 DEFINITIONS. Rectifiable sets .. Letl <k <n be integers

e

'.j and ACR. Ais called a k-dimensional rectifiable subset of R , OT,

eqmvalently, k-rectifiable, if and only if A is a bounded Borel set and

w:each of the following four equivalent statements is true [ F1]

......

(1) ‘For each e >0 there exlsts a compact k- d1mens1onal submanifold M

'.. oIR of class 'l such that H ([A -M] U [ M-A]) <&,

{2) For each e >0 there exists a bounded open set UC RX and a mapping

k
f R -— R of class 1 such that

v H([A KUY [ KU -A]) <€ .

: (3) H (A) < o and there exists a countable family of k-dimensional non-

parametrxc mamfolds of class 1 whose union contains Hk almost all of A.

(4) H (A) < c0 and A has no Borel subset B such that H (B) > 0 and

-k
27(p(B) =0 for almost all p e 2 (R,

ERC TN TN
18,7 .

A is called a O0-dimensional rectifiable subset of R" » or, equiv-

"Ais called a (-1)- d1mens1onal rectifiable subset of R , OY,

equlvalently (-1)-rectifiable, if and only if A = ¢.

Note that for each k = -1, 0, 1, 2, ..., n the finite union or finite

. mtersect1on of k~rectifiable sets is again a k-rectifiable set,

5.2 PROPOSITION Let 0 < k <n be mtegers and AC R" be 2

”1

k- dlmensmnal rectifiable subset of R. Then for I—_Ik almost all ze A

——

:'ﬂ?}f_gl containing x as an interior point such that G)k(Hkn([M A]UtA -M]), %)= C.

{2} A has an approxlmate k- dimensional tangent plane at x, i.e. there

exists BcRrR" with ® (H N B,x) = 0 such that the tangent cone (10.3) to A-T3.




" atxis a k-dimensional disk through x.

£ * (3) "The function X:A—> S}k(Rn) of 5.3(1) is I”.ik(TA measurable.

PROOF. [ F5]

5.3 DEFINITIONS. Rectifiable varifolds. Let0 <k <n be .

; mtegers and ACR"® be a k-dimensional rect1f1able subset of R",

' (1) For each x € A at which A has an approxuna.te k-dimensional tangent
. 'plane we denote by A(x) e Q (Rn) the unoriented k-plane direction in.R® of
g the approximate k-dimensional tangent plane.of A at x. . - :
(2) We denote by lAl the varifold in V (Rn) given for each @e C (R.n) by
T K
|A| (@) = 5 lota ]} A(x) dENAx
" TN _", .'. Rn
ot e r. k I-{l(

notmg that K(x) is well defined for H NA almost all x ¢ R"® and 1s M A

' measurable. A varifold V ¢ V (Rn) is called a k~-dimensional rectifiable

vanfold in R”, or equivalently, k-rectifiable varifold, if and only if V = |B|

for some k-rectifiable set BC R". Note that the finite union and finite
intersection of k-rectifiable varifolds is again a k-rectifiable varifold cor-

. .r,esponding respectively to the finite union and finite intersection of the

[

- a_s.socia.ted k-rectifiable sets.

5.4 DEFINITIONS. Integral and real varifolds, Let 0 < kf_n be
‘ mtegers. ’ ' ‘

(1) A varifold Ve v (Rn) is called a k-dimensional antegrabl varifold in R

1f and only if each of the following three equivalent statements is true,

(2) For each € > 0 there exists a £1n1te number of pairwise disjoint

compact k-dimensional submanifolds A AZ' ceos A of RrR® of

class 1 together with positive integers aps By0 ee ey a such that
w(V, a.llAll + azlA2| +... 4 aqlAq|)<e .




(b} There exists a sequence Al’ Az.
rectifiable subsets of R" such:that U A is bounded, I, H (A) < o0,

and V=2 |A,].
1 1

A3. eo. Of k- d1mens1onal

(c) There exists a k-dimensional rectifiable subset A of Rn and a
positive integer valued 'I_gk measurable function { on'R™ such that

. for each ¢ ¢ gs(Rn).

Vig) = 5 (ot ]+ R 10 aH'NAx .

Rn
Here we write V = ]Al A f. Clearly for Hk almost all xe A, (x) =
®k<wv, x) ® (MV %) and [Jo(x) ||+ Alx) = WV(x) (@(x)) = MV(x)(c,f)(x))

I
%

, We denote by IV (Rn) the space of all k-dimensional integral varifolds
m V Rn) A vanfold Ve % (R% is called a k-diraensional integral varifold
in Rn if and only if VN U ¢ IV (Rn) for each bounded open set UC R”. we
. denote by < Oyk(Rn) the space ?f all k-dimensional integral var;folds in
°Vk(R“). For UC R™ we write 1y, (0 = __;l_rk(R“) NV, (0) and A% (V) =

%Y (Rn) N °vk(U) Note that the finite union and finite intersection of

k dimensional integral varifolds in R" is again a k-dimensional integral vari-
fold in R

»-_g

(2) A varifold V ¢ v (Rn) is called a k dimensional real varifold in R” if and

»

: only if each of the followmg three equivalent statements is true.

‘:r_.-,

(a) For each ¢ >0 there exists a finite numbexr of pairwise disjoint compact

.L

k -dimensional submamfolds Al' AZ’ eeey A of Rn of class 1 togetﬁer with

pos1t1ve real numbersa,, a_., ..., a.q such that W(V allA l + a IA ! T

2
+a IA ) <e.
(b) For eache >0 there exists a compact k-dimensional submanifold A of R®
’ Of class 1 and Qe C Rn) such that W(V, [Al A go) <e.
(C) There exists a sequence Al’ A A3, ... of pairwise disjoint k-dimen-
sxonal rectifiable subsets of R® and a sequence of Hk measurable functions

4

fl’ f, f3. oot RY—5g? such that UiAi is bounded, ln'ni sup{fi(x) st

[P

o



Vig) = Z S otall - Ko £ @550 A .

"._ Here we write 'V E IA | A f Clearly for Hk almost all x ¢ A , f(x) =

-2 (wv x) = @MV, ) and ||(p(>) I & = TV (@lx) = MV(x) (o).

r In case 1nf{® (WV. x) : x ¢ spt(V)}> 0 one can take Ai = ¢ fori>1and
V A /\f

e We denote by RV (Rn) the space of all k-dimensional real vari-
folds in v (R.n) A varifold Ve 9 (Rn) is called a k-dimensional real

_ vanfold in R" if and’ only if VN U ¢ RV (Rn) for each bounded open set
UCR We denote by @2‘)’ (Rn') the space of all k-dimensional real
vanfolds in ¢ (Rn) For UC R" we write RV, (U) = RY k(Rn)ﬂ ¥, {0) and

;'“r (72_°Vk(p) = OE,GYk(R.n) N ‘«Yk(U). Note that the f;mte union or the finite

Intersection of k-dimensional real varifolds in' R is again a k-dimensional

real varifold in R .
s ‘:\" - .

PRI YT .
)

5.5 PROPOSITION. Let0 <k <m <nbe mtegers and MC R"

e

be a closed m- dzmensxonal submanifold of R" of class 1. Then each
V € Rﬂlk(M) lies intrinsically on M and the space of all V¢ "Vl M) wh1ch
“lie mtrmszcally on M is closed in ‘yk(Rn)

R

5.6 REMARK. LetO0 <k <n be integers and f: RY, (R")—> R"

| {2) frV+sW) =rfV)+s W) for cach r, s ¢'R and
'f VW e RY, (R, and ' '
" (B sup{W(V)™ 4V) : Ve RV (R = {0} ) <oo.
Then assuming the continuum hypothes1s and the well orderma
prmcnple, one can use 3.3 and the methods of [ A3] to prove the existence

ofa differential k-form Q: R"—> A (Rn) such that for each Ve RV (Rn)

5-4

T R— TS T . ey
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S S WV0 (p() . d WV x .

' 5.7 DEI‘INITIONS Flat chams and their associated mtegral

—————

var1folds. Let 0 < k <n be 1nteg ers and B CACR We denote by G

e'ither the additative group of 1nt°gers with the absolute. value norm ”01

a flmte abelian group with a translation invariant metric such that lg[

" dlst(g,, 0) is an integer for each ge¢ G. Such a group is called admissible.
We denote by Z Z (A B; G) the abelian group of all flat k-chains T over G

in R" [ FL3, 1] such ‘that the mass of T is finite, the mass of 8T is finite,

Spt( T) is compact a.nd contained in A, and spt(ST) is compact and contained

"in B. In case G is the integers, Z (A. B; G) is the abelian group of all
“k- dlmensmnal mtegral currents in R [ FF 3.7] with spt(T)C A and

.;P_SPt(a'I‘) CB. ‘ _

’ For each - T ¢ -Z (A, B; G)we denote by M( T) the mass of T

i '[.FL3 3][FF 2.4]. We define the M metric on Z (A B; G) by setting
for each'S, T Z (A B; G), M(S T) = M(S-T). For each T € %k(A, B; Q)
.we defme :

- E(T) = inf{ M(P) + M(Q) ; T.=P+9Q where

Pe 2,(A B; G), Qe Z,,(4, A Q) .

We define the F metric on z (A B; G) by setting for each S, TeZ, (A, B; ‘G),
F(S T) = KS-T). Unless otherwxse indicated Z (A B; G) will have the F

metnc topology.

i
eend
. P
s

P To each T ¢ Z (A, B; G) there is associated a Borel measure

]

MT on R™ (denoted o in [ FL3 4] and [|T] in [FF 2. 4]) charactenzed
b}' the property that for each open set UC R", MT(U) = M(Tf\ U).

e SR

For T ez, (A, B; G) let AT—R N {,, ®(M'I‘ x) > 0} .

Smce T is rectifiable [FL3 10. 1] [FF 3.7], A
0 (MT x) will exist for H “N A

T will be k-rectifiable and

T almost all x ¢ R. be a positive integer,

T 34 o W A e g "+



:.‘

t : n
‘megersandA A+1, i+ ....AkCR.
(1) We define

’\=f(Ak Akl,...,A)—V(A)XV

T : .
Corresponding to each T ¢ Z (.A B; G) we denote by lTI the vari-

. and be Hk(‘\ A measurable as a functxon of x.. ¢

fold in IV, (R") given for each e ck(Rn) by

| T]te) = 5 (ll¢(x)|l X (x))O(M’I' ) dHNALx.

f.'.’,';:;,: e Rn
DL > e .
2 .

One verifies that the mapping I ‘ : %k(A, B; G) -——>_ka(er) has the follow-

" ing propertxee:

() For each T eZ (A, B; G), W(|T]) = M(|T]) = M().

z, (A, B; G) and both the

M metric topology and the Wmetrlc topology on IV (Rn)

'(2) I I'is continuous in the M metric topology on Z

(3) H is not, in general, one to one, nor is addition preserved; indeed if

' Te Z, (A, B; G) ~{0} then

|T+(-1] =0 # |T|+[-T| = 2| T|= |27

. (4) || is not, in general, continuous in the F metric topology on Zk(A B; Q)

and the F metric topology on _Z_[Yk(Rn) since, in particular, W is continuous
on =I‘ék(K) when KC R™ is compact, while M is only lower semi-cqntinuous

on -'{a__k(A, ‘B; G). However, if{ T, T TZ' T

Y 3

and lim, M(T,) = M(T), then lim, | T, |=]T].

- 5.8 DEFINITIONS. Varifold tuples. Letl<k<nand0 <j<Kk be

kl( )x...x\é"j(Aé),

NV (A Ay p e A = NY(A) X NV, (A )Xo x NV (A,

GV (A, A

gY K o1t A) RV(A kl' ....,A), and.]:'Yk(A'A 1,...,Aj)
“have corresponding deflmtlons _ ’
(2) We define the F metric and the W metrlc on V (A Ak ORERE AJ.) by

‘.settm i
. o g ior each (Vk Vk 1; oy VJ)! (Wk’ Wk“l, > ey Wj) € ¥ (Alc’ AI(-]_, ‘e

- € Z, (A, B; Q) lim, F(T, T)=0,




7 5-7
L | .
Fl (V. Vip oo vj), (Wys Wi 1o eens Wj)] = E E(V, W)
k

U WV Vi g vees Vj), (W0 W o ens WJ.)] = IE WV, W) .
' t[We write also .

ELOVie Vi w00 V1 = BV Vi -oe0 Vo (0,00 O]
i WV, Ve V)L = WV Vg e V). (0, 0, ..., 0],
i (3) For (Vi, Vy pr ver Vo (W Wy 1o eees W e VilA, Ay eer &)

"_ we define

k-l’ ooy Wj)
V.+ W)
J J

(Vk, Vk_l, o e o) vj) +(Wk, W

=|(Vk+ Wk, Vk-l + wk-l’ e e ey

e V (Ak Ak URERE A~)

’ (4) Ifmisa non-negatlve integer, { : R™—> R™ is of class 1, and

(Vk, Vk 1 * e 0 ) v) € V (-A Ak—l' o e v ) AJ), we deflne
Ed Vie Vieep <000 V9 = Vi £V o ey £,V9)
er(A Akl....,A-j) .

(5) Def1n1t10ns similar to those of (1) define

:’_:J‘

W WA A oo A NYAL A A, goyk(Ak, B g oeer A,
RV (A A

.Aj) and J“'Yk(Ak, Ay eees Aj) .

k—l’ o e sy k—

5.9 DEFINITIONS. The VZ spaces .- Letl <k <n be integers,
BCACR » and G be an adrnlssﬂ:le group. '
(1) We define VZ WA B G CV (A B) X z (A B; G) XZ, (B, ¢; Q) to
be the set of all quadruples (V, W; T, 8T) such that for some sequence
T, T3, oo Zy (A B G), Um T ] =Ve Y WA lim [8T | = Wey

k. 1(“-" ’
=Teg %k(A, B; Q), hmiaTi = 98T, and there exists a compact subasnt;

Ve epu e e T

- -y




: rect1f1able. Then for almost all p ¢ Q 1(Rn)

Wty Vv

o of R contammg the supports of all the T Note that for (V, W; T, 87T)
-'_. € VZ (A B; G) it is not in general true tha.t V= IT] or that W = laTl

one has M( T) < W(V) and M(E)T) < W(W)
(2) We define the F metric and the W metric on. VZ (A B; G) by setting

.for(V Wi T, 8T); (V!, W' T', 8T') ¢ YZ,(A, B; G),

E[(V' w; T, 87), (V's' wt; T, aT')]=£[(V, wy, (V?', W')]"‘E‘(T, T'),'

W[(\} W3 T, 8T), (V', W's T', 8T)] = W[(V, W), (V', W)] .

FL(V, W T, aT)]=F [(V, W; T, 8T), {0, .0; 0, 0] ,

Y_:r[(vn w; T, BT)] = “J[ (v, w; T, 8T): (0,-0; 0, 0)] .

(V, W; T, 8T) + (V) W, T! 8T')-(V+V' W+W; T+ T 9T +8T').

See 5.13 and 5. 14,

(4) If m is a non- negative integer, f: RP—> R™ is of class 1, and (V, W, T, 8T)

AERN

£(V, Wi T, 8T) = (£,V, {,W; £,T, {.37) .

5.10 LEMMA. Let0O <k <n-2 be integers and AcCR"” be k-

HAN {x: p {p(_x)} -{x} A9} =0.

o '~ PROOF. In view of 5.1 we can assume without loss of generality

..A;..

that Ais a compact k-dimensional submamfold of R” of class 1. Let A have

lhe induced metric, let AX A have the product metric, and let D denote the
dxagonal of AX A. We define

P:AXA-D—> g_zn_l(R“) by requiring P(x, y)(%) = P(x, y)(y)



l,,,.‘-—u::;z_ 2 2o e
Caie «-sr:::e:j:. 5 = XA S

9\!‘ e s e

T

f for X ye A, x¥vy. One verifies that P is lbcaliy Lipschitzian which
1mpheg by [F3 3.1, 3.2] that for almost all PeQ RD, (AxA-D)

\,x..

{(x, V) 2 P(x, y) =p} will be the countable union of j- d1mens1ona1 recti-

"T" o

k fxable subsets of A X A - D where j = max{-l, Zk-n+1} < k-1, and, in part-

1cu1ar, will be of Hk measure zero. The lemma follows since projection

' d°es not increase Hausdorff measure and for each p e gn_l(Rn) ,

o,
,‘a
L3t

5,11 COROLLARY. Let0 < k < n-2 be integers and ACR" be

.k'f_ec.ifiable. Then there exists a dense subset 6 of =k+1(Rn) such that

ploreach p e o

el 4 hd
X jre f IS
R

F5an (x p (00} - (3 9D =0

e Lo
ENg L C DR 4

B s
¥

$235
Tys o
-

Y
ol
L]
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""."' 5.12 THEOREM., Let 0 <p<m, 0 <g<nm, and k be integers with
0 k< mm{m n-1} and k- 1< min{p, q-1}. Let G be an admissible group

andf (R™ R Rp) —_— (R R.q) be of class 1, Then for each
. q, )
VW T,y vz (R™, B Q) £V, Wi T, A7) < vz, (R R% G), and

,W&g

g, vz (Rm, RP; G) —> VZ, (R, rRY, G)

\ls‘lvs-l-l-ie_ﬁlled Furthermore f#|

VZ (R. N K R Pn K; G) is continuous in

t}"e Fmetric topologies for each compact set KC R

m P. -
PROOF. Let(V,-W; T, 8T) ¢ vz (R R"; G) and Ty, T, Tys oo

“Zk(R » RP; G) such that lim, IT | —V, lim, IBT | =w, lim, T, = T and

q,
hm BT = 3T. To prove that £ (V w; T, BT) ¢ Vzk(R R G) ‘we must

flndsl, S, S, ...cZ (R R% G) such that lim, IS | = £, (V), lim, ]88 | =

%(W) llrn S = f (T), and 11m 85 =f (aT) Observe that f can be factored

w

Yo

o ANGe pTp(N) - 3 £ 6) = AN G, fox some [x, ) ¢ A% A =D, Plx, ) = ).




Rm f S Rn
/
R™% R® P > R R®

a‘-’ where for x e R™andye R, glx = (x, {0), plx, y) =(0, ), and h(x, y) = ye

- 'Note tha.t Pe Q (R x Rn) and that h maps all n—d1meno1ona1 subspaces of

R % R"™ which are sufficiently close to p(R an) 11near1y isomorphically

o onto rR™. s, 7(4), 5.11, and the fact that MT is absolutely continuous with

’ respect to Hk imply the existence of Ppp Pys Pgo ene e 2 (R x Rn) with

hmp = p such that“[(h. °P; g)#(T)I =(he °P,° g) (]Tl) for each i. A similar

' argument yields Qs Gps Ao - oo : RP —> Rcl converging together with first

;.'":denvatlves umformly on compact sets to fIRp such thet lq1 (87)|= q; (IaTl)

“for eachi. From [ FL3 7.6] one concludes the existence of Q Q, Q

, ;Z (R R"™; G) with lim. M(Q) = 0 such that 8[(h.p g) (T) + Q]
for each i. We setS = (hoe °p;° g) (T) + Q..

3 oo
qi#(aT).

: 5.13 COROLLARY. Let0<p<m and 0 <k be integers with
’ k<m 1l and k-1 <p- 1.

Let G be an admissible group and B, V ¢ vz .

Then}L Ve VZ (R , RP; G).

5.14 EXAMPLE Let G be the additive group of integers with

S xnetnc []. LetTe Z (D (0, 1), o D (0 1); G) correspond to the interval
i

D(O 1) with its usual orlentatlon. Then

‘. v“‘l"' e

“(IT[, laT|; T, 57T, (|.-T], |-s7[;

-T, -8T) ¢ ¥Z,(D'(0, 1), an%0, 1; G)
'.'_ibpt . '

(el Jorh 7, 8 +(|-1], |-27T]; -1, -0T)

=27, z]oT]; 0, 0) ¢ ¥z (DY, 1, 800, 1; G

z (R, RE G).

5-10




5.15 REMARK. Let 0 <k <m <n be integers and M be an

(abstract) compact m-d1mens1ona1 Riemannian manifold of class 1 having

ACR as its image under an 1sometr1c imbedding. One (abstractly) de-

fmes VZk(M M; G) in the obvious way for admissible groups G. Clearly

~YZk(M. -M; G) is naturally 1soml>rphlc with VZk(A, A; G). One verifies

results corresponding to 5.12 and 5,13 for (abstract and 1mbedded) mani-

) folds, submanifolds, and differentiable maps.

-
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’ 6. REGULAR AND STATIONARY VARIFOLDS

6.1 THEOREM. Let 0<k<n be mtegers. Let f: {(t, x) te R, x €R"} ;
,_,_;. R have as continuous partial derivatives (0£/ ot), (af/ ax ), (@ f/ Btaxl) for

"each i=1,2, ...y n, with £(0, x) = x for each x € R™, Define S: Yk(R ) —> R i
.‘;,bY setting for each v & Vk(R ).

S(V) (da/ dt)w(f(é." (V)

t=0
‘ Then S is well defined and for each Ve Vk(R Y, S(V) equals

(a) g, K) - S 5 | Dﬁv(x)(x. (d/ an)[£it, - ¥ (x, x)] )dWVS: dH(n'k) L
. )\EDA (R ) ) =0 .

PROOF.

..Pa-rt l. Let F: R"—> R be convex and suppose DF exists at x € R™. Then fo:r

F—1

each € > 0 there exists § > 0 such that whenever G : R® —> R is convex, DG h
~HEk
exists at x, and sup{|F(y) - G(y)| : |y-x] <1} < 6, then : ?{
" sup{|DF(x, v) - DGlx, v)| : veE sn'l} <e, K

rew o

"Part 2, Denote by U the set of all functions F : R" —> R which are convex znd l

frmemem——nd

satlsfy a Lipschitz condition with constant 1< . Then for each ¢ > 0 there esxi

550 (depending on 7 and ¢) such thatif F, G €U with sup{ | F(x) - G(z)] : 221 Ao A

g b s

then U I

. I -
.

(1) For H almost all x € R" R DF and DG both exist at x and
sup{lDF(x, v) - DG(x, v)| : ve s® } < 21

(2) H (D (0, DN {x: DF and DG both exist at x and
§ S“P{IDF(X. v) - DG(x, v)l:vES }>e})<£.,

-~

s imen e e
preema

»
9

Part 3. Let f be as in the hypothesis and V & Yk(Rn). ) Then thexe existn « - 6
. such that whenever -¢ < s < e, (d/ds)W(f(t, ')#(V)) t= s. exists and equals (at ' i,

* of course,‘ "t = 0" replaced by "t = s"),

I

D

AT Joo 4

TR

"f.';f-‘

- [
LR SRV FOW FER F o

e e

PRI




...Prc;of of part 3. We will abbreviate y = vy (n, k), D= DAk(Rn). q= (n:Kk)
| x(x)-f(t» ¥ (x, \), and x(x) (d/ds)i(s, -V (x, Mg

L k(x) are continuous as functions of t and x.

-t Note that -ht(x) and

We compute

Wt ) V) =y | St ), (Ve0) aE%

]
<

[
2
g g e el

V(f'(t, ) Fu(\) dgqx

o)
n=t

VO (x) awV aah

1}
<

WV (x) + (t-a)h () + (A () =A_(x) - (t-0)\_()]

=

He— He—

awvx agia

ngx)(xs(x)) dWVx d_r__ﬁqx

]

4
g
Sy

Py

ge— 5

+ (t-s)y gn DWVx)(h (), A (<)) WV ar®

ny

R
f WV (x)(A (%)) - '\’QV(x)(xs(x)) -D@V(x)(ks(x). Ax) - A _(x)) dWVx aH "\

There exists 2 compact set KC R™ and e > 0 such that f(t. )(Spt(V))C

';Whenever |t| < c and such that for each xE€ K and -e¢ <s <e¢ the mapping

DA (R ) —> A (R ), sending )\Elll_\ (R ) to xs(x), is a diffeomorphism onto"
- it image. 1If l | < ¢ then the integra.l

5 I DWV(x)(h (x), Plxs A)) Y Vx qux
D R

“is ‘well defined for each continuous mappmg ®: R® x DA (R ) > A (R ). Thuu;

',‘:.... ..

“'in particular, the integrals above in (b) are well defined for Isl <e. We will &

“"“I

Proved part 3 if we can show that the t derivatives of the third and fourth suy + .o¢'-;

;-.' of (b) are zero. Since

+y [ [ DEVeIn o, NORNC - (t-oIk_(x)) aWVx ap,; .




P

lim (t-s)’ [)\ (x) - A (x) - (t- s))\ (x)] =0
t—>s

u'x.lii'Oi'mly on compact subsets of Ak(Rn) and R" one sees easily that the t
‘ ':.:.derwatwe of the third summand of (b) is zero.

Note that for each x &€ RrR" y L, U E A (R } for which DWV()\ *) exists we

WV () - \EV(x)m - DWVEN M) < 2] | Lip(WV(x)

A B AR M

x(a.nd that the function

Wh, 8) = 8™ sup{WVEIOm) - WYL - DWVGNA, 1) ¢ (] < )

R . ; i
. is non-increasing as a function of s for s &R with

lim + ¥\, s} = 0.
s—>0

'I‘h1s follows using the convexity and positive homogeneity of W(x) One now uses
3 8 and Lebesgue's theorem on bounded convergence to conclude that the t deriva-
t1ve of the fourth summand of (b) is zero.

Part 4. The function S is well defined and continuous.

A iiroof of part 4. That S is well defined follows from the formula (a) established

m part 3. The continuity is straightforward using part 2 and Lebesgue! s theorera

on bounded convergence.

6 2 DEFINITION. The cartesian product of a varifold w1th an interval.

' Let 0 <k<n beintegers and a<b be real numbers, Let R™™ - R X R" have
EOLT 1 .2

orthonormal coordinate functions t, X, X , ..., x and let u : R X Rn —
{(a/at)}CA (R XR™). Set [a, b]= [RN{t:a<t<p}| c1v IV.(R). For each
V e v, (R ) we defme the cartesian’product of [a, b] with V 'to be that varifold

[a, b] XV e "\/k ) given for each ¢ & k+1(Rn+1) by

([a, B] X V)(Q) = S o FVEILAPIE, x)]d(Wla, B]X WYL, ).

' One ver1£1e5 that [a, b] XV € ‘Vk+l r™

). If Vqu/k(R ), then

n+l
[a, b] XV e 9Wk+l(R }o Also the function 5)/ (R )-———> "Vk_'_l(R ) sending
V € °)/ (R ) to [a, B] XV is continuous.
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4 - 6.3 THEOREM. Let 0<k<n be integers and f: {{t, x): tER, xER"}
I ——éR be of class -1 with f(O x) =

0 for each x €R". Define T:V, (R") — rY
by s.ettmg for each V& V (R ),

T(V) = lim L W, 2, [0, 81XV,
t—>0. -

Then T is well defined and fag cach V € V, (R™, T(V) equals

.y (n, k+1) ‘Yk-!-l . S nWV([uAf#(w(h))](O.x)) AWV dH(mkH,x
: )\EDA (R7) x€R

where :RXR"—> {(a/at)} €A (R X R"™) and we 1dent1fy
[}lAf#(w(K))](O x) GA (RXR ) as an element of A (R ), which is possible because

[!J/\ £#(w()\))](0 x) is parallel with {0} x R® for each x & R™. Also T[Y;k(K) is
contmuous for each compact kCr"™

)\,

PROOF. The proof is left to the reader.

6.4 DEFINITIONS.

Vector fields, deformations, and the functionq S, T

13.. and Q. We assume throughout this section that 1 ik <n are integers.
(1‘)‘ Let ACR™ be a closed submanifold of R" of class 3,
We

s

perhaps with boundaxy.
is tangent to A if and only if (a) for each
non-boundary point x € A, glx) is a tangent vector to A at =x,

boundary point x € 9A,

say that a vector field g: R" — rR"

and (b) for cach
g(x) lies in the tangent half plane to A at x. ‘

.n" USRS . :

2) Let’ q be a positive integer and Al' AZ' veo AqC R” be closed submaznifolds,
-\'“ t .

Of R" of class 3, perhaps with boundary, and- CC A be closed. We denote hy
X(R ' '

Al AZ'  ves Aq C) the real vector space of all vector fields g : R? e 0

Ht class 1 with Lip(Dg) < @, having compact support disjoint from C, and tsu -
R

gent to A for each i, We write also X(R ) = X(R g; 9), X(R Al, cees Lo ¥
'X(R Al, A g), and X(R C) = X(R g; C).

)

."6

assoc1ate with C two deformatmns £1 fz R X R — R which are of cl

aqd, in addition, twice continuously differentiable in the first variable ¢

(3) Let X(R Al’ vy A C) be as above and gEX(R Al' ey A

N




f(t,.k) = x+ tg(x) for tE& R and xER" and f, is characterized by the conditions
a_)";EZ(O x) = X, and (b) (a/ at)f (t x) = g(fz(t, %)) for each tE R and x & R",

PRI

,r rote that fl(t. x) = £ (t, x) = x for each tE€R and x € C, and that for each
e 'TéY'(UiAi)! fz(t, ')#(V) (= Y:k(UiAi) for each te& R+. We observe that for each

- ..#
= (&/ ant,(t, Ve, ”I;:o

(d/ dt)W(f (t,

= (&/ W, (e 7],

. for each Ve V (R ). We define

ST 8 R XX(Rn) —> R -

'S(v o) = (d/dt)W(f (& ), )|, o = (d/dt)g_v(fz(t.-)#m)t 0

For f1xed g e X(R ), 6.1 implies the continuity of S(-, g): Yk(Rn) —>> R and
for each vV, we V=k(Rn) and r,s € R+,

S(rV + sW, g) = S (v, g) + sg(W, -g).

I‘or fixed V€V (R ), 6.1 implies the linearity of S(V, *): }S(Rn) —> R,

f4)" I_{ g €=‘ X(R ), PE R" » and By Hoprtoney ukE j_}l(Rn) are an-orthonormal se.

vectors, then one computes

&K -
S(y(ps A RLA v Ay g) = Dglpy 1)K,
: .oi=l '

ces 2
Writing g= (g, g 5 ¢o-n gn) ‘we have, in particular,

k . .
S(y(ps (3/3x)A(8/3x2)A ... AL/ 3x™), g) = Zj (3g"/ 3x")(p)

. ,-‘l“'

If VG GV‘ (R ), i.e. V is the weak 11m1t ‘of fnute sums of elementary georas
var:folds, then (b) together with the additivity and continuity properties of :

'"'\ o .}
lmplles

P
l"

.

e e ——— ——Tr T




Is(v, g <kWV(Lip(g))),

|s(v, @) <xW(VILiple)

The 1nequa11ty of (c)} is the best possible as one sees by choos-

3"6 X(R ) with g(x) = x for X in som
If p.uER h: R-———>R is of class

e neighborhood- of - spt(V).

2 with compact support, and

u-f.. _H‘

WEAk(R ) 15 Slmple, then one computes

S(y tps #): hu) = |u| Dhip, wy)

Ly 19] where u denotes the orthogonal proje
f;nm '

eime anorm | | :XR ™) —

|lg|| sup{lg(x)l . x €R%} + sup{|Dglx, )] . x€R™ and v & s

;E(Rn) {S glVen the || | topology: Note that if g4 gl._gz.
lf}ﬂ - gon 0, if f f fz’ RXR — R are characterized by being
ddass 1 and sat1sf}’1ng (1) £, (0: x) = x, and (1) (8/ at)fi(t'. x) = gi(fi(t’ x)) for
J'E&}} 1t %) e r x R , andif tg t tp et R with lim, t = t;, then, by

NIy
!tand
it ard the01‘ems on differential equations,

) and 11m Df, (t, y = DI (t ’)

R+ by setting for each .g € X(R ), l
I
n-l
}.

G}g(R ") With

. 3 = ¢,
hmi fi(ti’ ) fo( 0

b,
J\T i .

mfo;-

Y mly on compact sets, and henc
d ey 73 p 3

lim, f(t, ) (V) = £, (tys ') (V).

6 3 : ‘
“ F°r each v GV (R ), 4(c) above 1mp1105 that S(Vs ) }___(_(Rn) —> R 1is

satisfies a Lipschitz condition with constant
n
) X X(R7)

e for each VE Y:k(R' ),

ELey
-
Al

}mea
r a
| “d continuous, and, in fact,

L v - o :
i () in the I || metric on X(R 7y, This implies then that S : (}__Xk(K

y whenever kC R"® is compact.
nd 0<j<k, we define
+

| R
G is continuous in the product topolog

For A, A, ..., A, C as in (2) above a
l 2' ? q

n o.n
S(R®, A Ay oot By C): GV, (R™) Ry wooy R) R

ction of u onto the k-'plané of u.

PRI YT WS =0y WY 2y SV T <




(Vir Viepr -0 V)€ GV (RY, R, ..., RD),

n > . .
SR AN Agr oo AL OV Vg ees A
g): gEXRY,. A}, A, ..., Ap O gl <1, and Lip(Dg) <1}

econtmuzty of S(R . Al’ AZ' oo Aq; C) can be established by straightforward .

T : Y (R™) X X(R®) —> rY

- 11m+t i 0 x| = lim+t-lvy[£2#([0, t] X V)]
t—>0": < jt=0  t—>C - t=0

fz are the deformations associated with g as in (3) above. 1If

simple, péRn, and ge}_{;(Rn), then
Tlelp, 1) g) = lg@)Au] <Wyip, m)(|g].

GV, (R"), the additivity and continuity of T (-, g) for fixed g € X(R™)

TV, g) <Wv(|g|). ’

inequality is strict. S'imilarly,. for V& Q'\_/'k(Rn) and g & }_C_(Rn),

T(V, g) = W(VAg)

=+. B7, P: Y, (R", R") x X(R" IN{V, Wi g): T(v, g) > 0} —> &Y

b) settmg for each (V, W; g) & dmn(P),

]

P v, w g)

max(0, [T (V, g>]"1[§ vV, g) - T(W, g},
PV, W;g)

max{o [T (V, )] - S(V, g) - T(W, g))}, and
PV, W; g) = max{p v, W gh B (V, W; g)}.

El
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,) 'We defme

Nﬁc‘.ul e ,

Q Q7, Q: V(R,.R)XX(R m{(v,w g): WwV(lgl) > 0} — R

0™V, Wi g) = max{0, (WV(IgI)]

[-.g(v. g) - g(W. g)]}

(V Wi g) = max{Q (V, Wi g), Q7(V, W; g)}

"‘n,, l . 1 2

: (10) Let‘.A A, oy Aq' cCR"™ be as in (2) above and 0 <Jj<k be integers.
defme functions o .

:,p

LPURY AL AL, .o A C): V(R R L R > RTU (o)

2

n n n +
P Agr v A O VRN R L R > RTU (o)

+ - .
denotes P+, }_3 , or P and Q% denotes (=) , 9‘, or Q, by setting

~‘5 3. - = =]
iy n

'.:Ioreach (Vi Vi +o0 V) EY SRY RT LR,

\=Pi (R'Al’ R ) Aq; C)(vkl LI Vj)

= E sup{Pa(V.. vi—l; gl:g€& g__{(Rn, Al' ey Aq; C) and ']_."_(Vi, g) > ¢}
i=j+ . = .

= 5 sup{@%V, V, 0 g e xR AL ..., Agi ©) and WV ([gl) >
i=j+l

cach of the functions a.bovc_ is lower semi- contmuous in the ¥ metric

ﬂ"’fxopology on V (K K, ..., K) whenever KCR" is compact. Also, in case

i ”"\1' A 2t e A are closed submanifolds of R" of class' 3 without bo.undary the s
the functmns P (R Al cees Aq- C) coincide and the functions ga(Rn, Al' coes
,Aq C) coincide. Note that if (V, W) ev (R R ), then

SRR spt(W))(V, 0) < P(R™)(V, W) and Q(R™; spt{W))(V, 0) <RV, W).

. We sometimes write P (R 23 WYY for E (R '3 "NV, 0) and

AV) for QMR 5NV, o). o | '

e e e

[ PRI

v rrear remae
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. 6.5 DEFINITIONS. Stationary, P regular, and @ regular varifolds.

Vappdtinn

Let' CCR be closed and (v. W) € V, (A, B).

is called statmnary on (A, B} with respect to C if and only 1£ for each-

"R, A, B; C UR™ - D)0, (VN DO, B, WA D0, 5)

urg

= Q(R", A, B; CU[R" - D(0, ©)](VN D™0, r), W N D0, r))
=0 '

‘is called P regular on (A, B) with respect to C if and only if for

(R,A,B CU[R -D(O, r)])(VﬂD(O r),WﬂD(O r))<oo.

'(4) For each cER we define the boundary of P regularity ¢ of (V, W) on

(A. B), wrltten BP (R A, B}V, W), to be the mtersectlon of all those closed
”sets 4 DC RrR" having the property that for each r € R

P*(R%, A, B; DU[R" - D30, (VN Do, ¥), WN D0, r) <'e.

vty .

r'\" .

‘wntten BQ (R™, A, B). Clearly

=" BQY(R™, A, B)(V, W) = clos BQR", A, BNV, W)C BPS(R®, A, B)(V, W)

"= clos J_3___1_°°(Rn, A, BV, W)CRr",

yENT

6.6 PROPOSITION. Let 1<k<n and q>1 be integers and

i, ..., ty R™—> {t: 0 <t <1} be a partition of unity on R of Clowni 7 itk
' LlP(Df ) <o for each i. Let gGX(R ) and (V, W)EV (R ) with
T(V f *g) > 0 for each i. Then

Let 1<k <n be integers and A, BC R be closed submanifolds of R® of class 3.

Ina 51m11ar way one defines the boundary of Q regularity c¢ of (V, W) on (A, 1%

S
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- P(V, W; g) <max{P(V, W; frg)ei=1, 2, ..., q,

w; g)'f_max{g(v. Wifeg)l:i=1, 2, ..., q}.

It is sufficient to consider the case q= 2.

The first conclusion -
';;;;medztate in case P(V. Ww; g) = 0. For P(V, W; g) > 0 we have

H]

[TV, @17 s(v, o) - T(W, g)]

[Z(V, 58) + T(V, 1,9

[I8tv, £g) + s(V, fzg)l - T(W, f}g) - T(W, £,g)]
<ITOV, ) + TV, 6,e0] 7

[V, Lo - T(w, f1g>1+[|s<v. Lol - o, 8

< max{[T(V, { lg)] [[S(V f.g)| - T(W, £,2)],
[TV, 5,178V, £,0)] - - TV, £,8)]}

."he Fecond conclusion follows by a similar argument.

n 6.7 PROPOSITION. Let 1<k<n beintegers and (V, W)& gyk(R“, RrR™M
",;..m p(R WV, W) <oo (resp. Q(R NV, W) < ). Then for each ¢ >0 there

R R e P PR Py o .
Iy ) . AR
3 Seead .- « .t

‘c.xsts a unit vector u & R and a class oo function f: Rn —_— R+ with
dam(spt(i’)) < ¢ such that P(V W; fu) > P(R WV, W) - ¢ (resp. C=2(V, W; fu)
SRV, W) - e). '

V;”PROOF
i

" Suppose P(Rn)(V, W)< o and € > 0. We will show the existence of u
znd :f ‘as above so that P(V, W; fu) > P(R MV, W) -¢. In case P(R v, w)=

A"u..,l

h,,_.,,”,,.,-

b result is immediate. We assume therefore that 0 < P(R )(V W) < ® and

éth;se gE X(R ) such that Lip(g) <1 and (v, w; g) > P(R )(V' W) - {1/ 3)e.
BEN por each 6 =178 27, 37 L qet €6, H:i=1,2,3 ...} bea

.;:daé’s;;‘co partition of unity on R® such that diam(spt[f(5, i)]) < § for each

“i""z 3, ... . Nowfor each § = 1"1, 2 1. 3 -l

’ e and i=1, 2, 3
thOOse p(6, i) € spt(f(s, 1)) and define g(5, i) = £(8, i)g(p(s, i) € X(R ).




+ sup{lg(x) - Z:.'g(ﬁ, i)x)| 1 x € R™} = 0

3

g - X;8(6, 1)) = lim  T(W, g - 5.g(5, i) =
5—>0

. (.t

Whlch since P(R )(V, ‘W) < oo, implies

lim . S(V, g - Zg(ﬁn i)) = 0.
6-—>0
'“Thus fof all suff1c1ently small values of §,

th A
Ll ._'.

‘I ..

P(V, W $,e(6, 1)) > PRV, W) - (2/3)e.

"‘One observes that for each n =17, 27, 3™, ..., each i=1, 2 3, ..., and

u“iA” et ] n

.

le(s, )(x) - €8, Dx) (s, Dx)| < 264(5, )x)
Tecause Lip(g) < L. Hence

lim + }Z 'I‘(V g(6, 1)) = lim v T (v, 2 g(s, i)),
5—>0"  * - 5—>0

11m+2 T(W g(S, i)} = 1lim 'I'(W Z g(6, i)).

6—0 =0

T%lu's £or all sufflc:l.ently small §, using the linearity of S(V +), we have

[Z LV, gls, iN]° [}: S(V, g(6, 1)) - SLT(W, gl 9)]> P(R*)V, W) -¢. Thus
V’e can choose 60 <¢ and 10 such that

[T(V g(8y, 1iN] [S(V gldy 1) - T(W, g(SO, 10))]> P(R")V, W) -¢. One,

' Ofcourse, takes f = £(60, i ) and u = |g(p(5 y i ))‘ G(P(50v i,)) which gives

P(V, W; fu) > PR™)(V, W) - ¢




il }uch was to be shown.

N“}‘ "“" ¥, -

'The proof of the other conclusion of the prqposition follows by virtually

6‘ 8 PROPOSITION Let 1<k<n be integers and ACR” be a closed

‘“bmanlfold of R with boundary B. Let C bea closed submanifold of A of
{ ; clla‘ss

P '3 with boundary D. Let (v, W)EGV (C, C) with Q(R A, C)V, W) <OO.

'V lies intrinsically on C and \4 ﬂ D lies intrinsically on D.

| e difficult assertion; namely, that VN D
Sk »PROOF We will prove the mor

lies mtrmsmally on D. Choose g = X (R ) so that for each x in some neighbor-
"hood. U of D,

the nearest point on D to x. If
"”‘m glx) = % - N(x) where N(x) is n P

r-.-, \"ﬂ D does not lie intrinsically on D then §(V N D, g)>0.

..}0 Obtam gOE X(R . A, C) for which go(x) g(x) = 0 and Dgo(x, ) = Dg(x, *)
.;i!or gach x € D, which 1mp11es S(Vﬂ D, go) S(Vﬂ D, g)

We now modify g

It is not difficult
~10 estabhsh the existence of a sequence gl' gz, g3, 19 = X(R A. C) such that.

K . ne 1 1' z’ 3’
‘i"*‘lnlg (x)l <1 and sup{Dg (x, vV}: VES } <2 for each i=

X iU for some neighborhood Ui of D foreach i=1, 2, 3, ...}
i gi(x) = 0 for each x €& 'R - D; and

. - D,

BY 6 4 (4a) and Lebesgue‘s Theorem On bounded convergence wWe have.that

lim, (VA (R” - D), g)) = My T (W, g) = lim, WV(gl) =

g .A{n D does not lie intrinsically on ‘D, then

lim; $(VND, g) = (VN D gq) > 0

I r‘ld'.i‘.(;nua QR™

A, CHV, W)= © contrad.icting our hypothesis.

n .n
6.9 LEMMA. Let 1<k <n be integers, (v, W)eGV (R, R, _z:._r_)_d_
g hEX(R ) with T(V, g)> 0, T(V, h) > 0, and T(V, g+h) > 0. Then
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rm
S
5
18y
(53
143
f-
B
.
M r
. -.
(RO
A

T(V, g+h) < T(V, g) + T(V, h) F‘

wv{lg+h]) < Wv(lg|) + WV(|n|%

[T (V, g+h)]” [§ V gt+h) - T(W, g+h)]

2 [TV, g) + T(V h)]” [§ Vv, g) - T=(W, g) + 8(V, h) - T(W, h)] o i

> [TV, D]7[S(V, ©) - T(W, 0] | o

'Szf.fezlf_ f € {g h}; S | - [

| S i i
1 WV eI TSV, gh) - T(W, gHn)] | ii1g

> [wv(]fl)]'l[g(v. £) - T(W, )] DU :

. e e .
. . .
. L. PP RPN
- gl i Thsp . Liat
Sor
%
Z

|
i
['1__:(v, 2)]” lg(v. g) - T(W, g)|> [z,vvugl)]'llg(v. g) ~ T(W, g)l; i

Ty

T . P vV, W; g+h) > 0 whenever both :_I?O'(V, W; g)>0 and PXV, W; h)> 0.

: Here P denotes either P or P; and

. (7) Q (V, W; g+h) > 0 whenever both ga(V. W; g) > 0 and (_Ju'(v, W; h) > 0. “Mf!i

. [ § -
u.H\elf 8 denotes either 9+ or Q.

o m———

' 6.10 LEMMA. Let 1<k<m<n be 1ntegers ang fotl gmt2 £

2 e v 0

‘~>R be of class 3 with £(0) 0 and (3f /a )(0)

0 for each i =
! m+1, mtl, ..., n andeach j=1, 2, ..., m. Let

i, 1 2
A= R" ﬂ{x:x %, x°, ceey, XY for each i= mt+l, m+2, ..., a}

‘and g EX(R ™ such that g(0) = (0, 0, ..., O, 1) and for each x € A, g(x) i

. PErpendlcular to the m-plane tangent to A at x. Then

’“) Sty {0, (a/ax )N/ 3. . ACB/ 8x%)), g) = - (0] Z (%677 (3:1)4)(0),

uﬂi_',. . i=1

(2) Sty (0, (3/ax )/\(a/ axP)Ae . A3/ 05 a(o/ 8x") + b(3/ 3x™), g)

- g(0)] Z (0%7/ (3xM))(0) - a2 g(0)] 2%/ (3:5y%)(0) -
i=l ’ :

+b%(2g™/ 2x™)(0) + ab[(3g"/ 3x™)(0) + (38" 8x5)(0)]
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n
[(8/ 8x) + S 'BfJ/ax )(x)(3/ 8x)]* [5: g (x)(a/axJ)]
j::m-i-l j=1

L}

: n . . .
g+ S @)/ ax ) (x).
j=mtl

' Su'xce.fcgr each x€ A, (8/ ax Y+ Z (of /ax Yo/ axJ) is tangent to A at x, and
WAt n j=m+l

Z g (x)(a/ axJ) is perpenmcular to A at x, © \A = 0. Since for each
- 5=

(o]
1t

(09, /ax ¥(0)

1}

(3g'/ 8x)(0) + 5‘_1 (03 a0 ae/ 3 )(0) + 0228/ axh (o)
j= m+l

(0g /ax )(0) + g™ (0)(2 2%/ (a1 )(0),

i=1
- lg(o)] Z (326%/ (3 2)(0)

\-

r*”'U-hu:h is (1). (2) follows by similar arguments based on 6.4 (4b).

6.11 DEFINITIONS. Let 0<q<p<n be integers, AC R" ve a closed
?L-dxmensional submanifold of R" of class- 3 with boundary B, and CC A be’

Let y € B [resp., let z € C-D]. Then for some set of orthonorrnal

"coordmate functions (xl, xz, A ) on R" the manifold B -y= {{x-y):xC3}

1‘.

.[rE‘Sp » the manifold C-Z = {x-2: x € C}] can be represented in é.‘neighborhéc«".




IR
Ry

2 0-\;

iy I ’ o *
SRR
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'-:‘hex;e fp R RP- 1-—-—-—>R [resp. gq+1, veos gn : Rq———>R] are functmns
o TV e

xof. class 3 such that the vector e = (0, «.., 0, 1) is contained in the tangent half -

0 for each i = P, PH, ..., n and j = l, 2, «v.y p-l [resp.
= 0 and (3g /BxJ)(O) 0 for each i= gtl, q+2, ..., n and j=1, 2, ..., ql.
o We define for each integer k, 1<k <p-l [resp. 1 <k <q],

A Ay () oo N = -3l 2o o)

i ®Y ! k

;’[fff?P A(C A; z, (x, ceey X)) = Z ap (0)]
A i=1 (SX)

1 n 1
A;(B. A y) = -inf{Ak(B. A; vy, (Xy eeer XN (x, ouvy x) is an
orthonormal set of coordinate functions for- Rn

for which B -y can be represented as a non-

parametric surface as in (*) in some neighborhood

of 0 with e in the tangent half space of A -y
at 0.}

- 1 1 '
Ak(Bs A Y) = SuP{Ak(Bs A; Y (x ? ooy xn)) : (x ) ey xn) is as in the °

WA preceding definition}
R v

* ' . 1 1 .
[resp. Ak(C’ A; z) = Sup{Ak(C' As y, (X, oo xn)) s (x5 ..., xn) is an ortho-
ki,

,_, '1 v
':'.!’;
Apwy

. N ped
normal set of coordinate functions for R“ for
which C - z can be represented as a non-

parametric surface as in (**) in some neighbo:-

-
3 4

hood of 0 with e in the tangent space of A
at 0}]

-4y

N[resp (**) (x, cees q)-—.—»(x. . %3, gq+1(xl, ceey X, '.... gn(xl, oo xq))]

AEPE DTS L
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A) = max{sup{Ak(B. A; Y) YE B}, 0}

i i
Ak(B' A) = Ak(Bo A) = Ak(Bl A) =

[resp. Ak(C, A) = 0].

- 6.12 THEOREM. Let 1 <k <n be integers and suppose
ACR"

RO is a closed submanifold of R" of class 3 with boundary B;
(11) CC A is a closed submanifold of A of class 3 with boundary D
(1\1)‘ EC C is a closed submanifold of C of claés 3 without boundary;
W FCR®

is a closed subset of Rn; and
.V, Wye gy, (c, C).

P(R", ANV, W) < P(R", A, C)V, W) +4,(C, A);

PR, A)(V, W) < PT(R", &, CXV, W) +A1'<(D,: C) + A (C, A)

:'ELVi'ded W lies intrinsically on C;

'-{5) .

B(RY, C){(V, W) < PR, C, E)V, W) +4(E, O

w W lies intrinsically on C and WM E lies intrinsically on

‘(6) Statements corresponding to (1), (2), (3}, (4), (5) are true with Q

repkate
'and without the additional hypothes1s on W,




R[I) W(l)» (2): (3). (4), (5), (6) are true with
w i F) replacing P(R »*»*) and Q(R »*+° 3 F) replacing =P(R ,

‘5 )s
loss of -

) PROOF We assume without/generality that A (C. A) < o, (D C) < oo,

(E, A) < o since all our arguments will take place in a bounded neighborhood

I'

-' Part 1. Let gE X(R A). Then in some neighborhood of C we can write

o \

'+ g'" where for each x& C-D, g'(x) is perpendicular to C at x and g'"(x)
r15 parallel with C at x. If V lies intrinsically on C, we have by 6.4 (4b),

{Wtne

610 and the continuity of § and T that

........

SV, g) <A (C, A)T(V, g
S

1 I

PV, W; g) = [T(V, @[SV, )l - T(W, g)]

<[T(v, g")]"l-tlsw. g - T(W, g]+A(C, A)

S PAP VU ORS S
P
pral ey 37 - 7
A -

§
o
[¢]
’-]
%
m.
/\
u-
- =
n

E(v' W' g'_') _<_=P(R ’ Av C)(V, W)

,*}Eb‘serve that if P(Rn A, C){(V, W) = o, conclusion (1) is immediate. We there -

NeZney .
:'Fa"z"'tlz Let ge X(R A) be chosenso that for each x & C- D, g(x) is pa all'::‘..

Lo C at x, 1 <T(V, g) <2, and P(V, W; g) >0. We write g= g'+g",
, A), g'e X(Rn A, C) such that g'(x) is perp“ndlcular to D for aur

Possibility (a), VN C-D= 0 and T(V, g') = 0. Since V lies intrin:® .ily

on'D and T(V, g') = 0, we have that S(V, g") = 0. Thus P(V, W; g) <
P(V W; g") <P(R » A, CNV, W). '
\.tss

Possibility (b). VN C-D # 0. Here we can assume without loss cf

T(V, g < T(V, gh and T (V: g") < T(V, g) provxdﬁd ;-
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enfx"ahty that T (VN [c-D], g) >0,

By ." Possﬂnhty (). T(V, g') > 0. Here we can assume without loss of

b R

gcnerality that
JupR

VA BN {x: g'(x) points into c}#0

C) with the following properties:

n
Let ¢ >0 and choose hEX(R y By

|Q, For each % € DN sptlg), ih(x)[ > 0 and h(x) is perpendicular to D at x

1o S
)

i “‘d Pomts into A;

(u)k .Wv(lhl) <m1n{2 sT(VﬂC -D, g'h CV__g(Vn DN {x, g'{x) points. into CH};

"L’

i) lS(v h)| +W‘W(lhl)<a “tls(v, g)l - TV, 2l

One now chooses functions 0,

'.FOr each x€ R", afx) + B(x) =
a{x) = 1 for each x&D for which g(x) + h(x)

to C oris tangent to D;

T (v (C-DIN G B = 1 82 27l (v (c-D), g).

BY 6.6 we have

P(V, w; g) < <max{P(V w; aAg)y PV, w; pAg)}

Possibility {a) holds. Here we already know that P(V, W; g)

» A, C)(V, W) and there is nothing more to prove.

‘C;és
-?\S 2, Possibility (b) or possibility (c) holds and P(V, w; g) < P(V, W: aAgl.
i leAglex(®®, 4, O giving

. n . : .
E(V, W g) i_}?(v' W q,/\g) = ?(V, Ww; -o./\g) E_E(R y By C)(V, vy

by making arbitrarily small modifications of |

‘3 R ._—->{t.0_<_t_<_1} of class oo so that

points out of C or is-tangent’

o3
pipds

4

1
!
|
|
|

T ——r———-
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',amﬂmvm,.-

we are done, .
{, 5‘vqt;7-»~,“; -

e @:Ag)l - T(W BAg) 45[‘5(\7. g)l T_:(W. g)] In thls case we have"

s(V ol -T(W. g)) - SV, aAp)| - TAW, ah g
;;Isw. ahg)+S (v, pre)l - 1SV, arg)| - ISV, AR +(IS IV, BAG) - T (V. BAg

P(V w; g) < (1- 5) P(V» ) ~a A g) <§(Rr’1: A, C)(V, w).

L‘» 5

Case4 .Poss1b111ty (b) or pos sibility (c) holds, P(V W; g) < I:(V, W; pAg), and
lS(V ﬂ/\g)l> T(W B A g) > s[lS(V, g)| - 'I'(W, g)]. In this case we have

....‘S(v p/\g+h)\ T (W, BAgth) > ls(v, BAg)| - TIW, pAg)) - ([S(V, h)l+T(Wh»

> (L-e)(|S(V,pAE) - T(W, BAg)

T(V, BAgth) STV, BA g) + Wv({n|)
<T(V, pAg) +T(V, BAg)
= (1+e)T(V, BAg) -

The proof of conclusion (1) is complete since the choice of ¢ and g was

:; lmhﬁ ":""
p“'t?’ We now W111 prove conclusion (2). From part (1) we have
Vaar. s .

E(R + ANV, W) S_E(R ’ -A: CHV, W)+ Ak(c: A)

\:e W'ﬂl have verified Conclusiori (2) if we can show that .

P(R", 4, CHV: W) <PT(R", A, OV, W) +AL(D, C)

‘-LethX(R A, C), In case S(V g) <0, then

b \
-

P(V, w; g) = E (v, W; g)<P(R A, OV, W).




P(V, W; g) <P~ (R A, C)V, W)+A (D, C)

g x;vn (C-D) = ¢, then this result follows from the definitions and 6. 9.
i -:,v.w : ;

;ouppose then S (V, g) > 0. We can suppose without loss of generality that

‘.N‘] Sran L3

(Vﬂ C-D; g) > 0, making an arbitrarily small modification of g if necessary.

Mi
¢

_ ~'E‘o‘r each su.££1c1ent1y small & >0 let fﬁ

:RT—> {t: 0<t<2)} of class 2

= distly, D);

for each x € C with dist(x, D) _<__2'16;

‘ WV {x : fs(x) >0 and |grad(f (x))| < (26)-1} < SWV{X : f (x) > 0},

'GX(R A), g”EX(R A, C),

We write g = g'+ g, where g'(x)

Observe that
lim sup S(V f Agm)< Ak(D C) T(VﬂD g
g—>0t

Let € > 0 and choose § > 0 so0 that

S(V, £,Ag") SAL(D, C)~L(VN D, g") +e,
T(W, £,Ag") - T(W, g)<c, and
O<T(V, £,Ag" - @) STV, g) +c.

that fSA g" -g € }_{.(Rn, A, C) and that A

g e+



\ lﬁﬁ “5‘ ¥

o ‘9*1,;'*

R
o) ’!‘!‘0};‘
A
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20TV, ) —e]’l[g (V. g) -A, (D, C) T(VN D, g™) - T(W, g) - 2¢]

> [T(V, g) -e]’ltg (V. g) - T(W, g) -A~(D, OVT(V, g) - 2e]

P(R A, C)> P(V.W g) -4 (D <)

BT
. h§§h._<_estabhshes conclusion (2). Conclusion (3) is established by essentially iden-

Conclus1ons (4), (5), (6)_are left to the reader.

" Ny :',‘, \‘

. "6.13 COROLLARY. Let 1 <k<m<n be integers and AC R® be a com-
R —
Pg}_:_t m- dunensmnal submanifold of R" of class 3 with boundary B. Let

s N LN

(V W) € GV, (A, A). Then

' (1) _The following statements are equivalent:

: {a) PRV, W) < o, o

" (») P(R, AXV, W) < oo,

() PR", &, CUV, W) < o, : .
(@) PTR™M)(V, W) < oo,

() PTR™IV, W) < oo,

(2) QR"NV, W) <,
(b) QR", A}V, W)< oo,

6.14 PROPOSITION. Let 1<k<m<n be 1ntegers, .ACR" be a com-

“Pai t submanifold of R" of dimension m. and class 3, and CCA bea con:roac

——y

> e o e

T TveE e

R




L
[

F]

's.u .,‘ P
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[p]) = @®r™, a)|cl, |p]) = & (C, A);
= @"(R", XD, 0) = AJ(D, C); and
= @"(R%, c)|D|, 0) = A (D, C).

Let g& X(R » A)., One can write g = g'+ g" where for each

. PROOF.
ST 3ol .
m some neighborhood of C, g'(x) is perpendicular to C at x and g"(x) is

-,-parallel with C at x. One verifies that

lIgticl, gl <T(Dl, gm < wIDltle")

-lstlels enf s 2thcl, gn-a(c, A= Wiclig - (C, A

<

‘_Tius with 6.9 estabhshes that Q(R A)(|C| |D]) > g(R“ A)(lcl |D|) 6.9 (5) -

6.15 COROLLARY., Let 1<k<n be integers and AC R™ be a compact

s“bn’lamfold of R™ of dimension k and class 2 with boundary B. The following

’;'_f.ta&nﬁnts are equivalent:

i .
[

(IAl, |B|) is stationary on (Rn, Rn);

(|A|, 0) is stationary on. (Rn, Rn) with respect to B;
S(R% B)(|A|) =

P(R™ B)|A]) =

Q(R"; B)(|A|) = 0;

The mean curvature of A is zero at each non-boundary point of A;

A-B is a real analytic submanifold of R" satisfying the minimal surfa..

equation;

The coordinate functions of Rn restricted to A are harmonic in the

Riemannian metric on A induced by its imbedding,

6.16 PROPOSITION, Let 1<k <n beintegers and (V, W)& RV (R N R

-

f'lf'E(R MV, W) < oo then P(R™)V, W)= QER")NV, W).
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and ge& X(R } with
Since (V, W)G li_gk(Rn)

. g" EX(R ) Wlth g= g' + g'" and

_T(V, 'g') SSE(V, g)» g(wp g') S_e'zr(wo g)
T(V, g") > (1-e)WV([g"])

N

|S(v g)l <e[T(V, g) P(R NV, W)+ T(W, g)] = ¢+C

lQ(V. g = |8(V, g) - 8(V, g"]
>|s(v, g)] -¢C

oV, wi g™ = [wvilg"D) s (v, gM] - T(W, g
> [{1-e)” T(V g"[Istv, g)| -¢C - T(W g"]
> [(1-e)” T(V g)lls(v, g)|-¢C - Q- £) T(w, g)]
> P(V, Wi g) -0 (1)
> P(R™)(V, W) -0 (1) -7

6.17 PROPOSITION. Let 1<k<n be integers and (V, W)EGY, (R", R".
—> R_. be of class 1. Then '

‘. (R WVAE, WAL) < QR™V, W)+ sup{f(x) x @ spt(V)} sup{Lip(f)(x):x € spt(V}}

..  PROOF. o
?’Pa‘r't'l Let 1<k <n be integers and V& GV (R ) Then for each ¢ > 0 there

+
emsts a positive integer q, functions 1"’1, o tee (P : R®—> R" of class o

3
fr

wnh compact pairwise disjoint supports, and simple umt k-vectors
"'l
TR, qu __k(R ) such that E(V, Pay ‘Pu {<¢ and

T wmrwr ey v

T T T erm——- ¥
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pt(‘qx) )C {x : dist(x, spt(V)) <e}. Here for each ¥ & glg(Rn)' [Ziqjil—ii](g.//) =

LI

’”S % (X)ltl/(x)'u | aH .

2. Let 1<k <n be integers, V& GV (Rn), £: R —> R+ be of class: 1,

R ""‘"

k ‘Rn-—-> R be of class o0 with compact support, and u & R". Then

ALY
HCAS T

f S(.V/\f hu) < sup{lgrad(i)(x)\ : x€ spt(V)}WV([h]) + S(V, fhu).

S Y

P*oof of part 2. Let ¢ >0 and choose {CP, M. } to approximate V as in partl.

lc define u, R —> R by setting u, (x) equal to "P(x) times the orthogonal

EREh] .:‘1‘(:-

,rOJectxdn of u onto the k-plane of u if x& spt(q’) for some i and u,(x)=0
"\’:‘L‘h\' >

ogxerwme. u 1s of class oo and 6. 1 and 6.4 (4e) 1mp1y

*

§ : f(x)(grad(h)(x)'u* (x))dxc dx?, . . dx™

R

o, ..%,{s'
S(Z Py hu)

n [ .
32§ 1t (on/ ax') ey () axldaxl. . . ax®

i=l R

i . . . .
feihteuy (0|7 - § it/ e il o) . . axt Taxttl L L ax®

x = -Q0 R
' ' n ’
(of/ ax )(x)u* (x)h(x) dx dx L..dxs Z Sn f(x)h(x)(au*/ ax )(x)dx dy -
i=1l R

..’_'.Sf\%";i’{{grad(f)(x)l :x & U spt((Pi)} Sn ST (P,(x)h(x)dxldxz. - ‘
s w“s.‘.:';.. . R J )

o
n
8

o | o
305 omeaug |, adad et a®

i=IRn‘ X = =00

+ Z 5 (a/ ax )(fh)(x)u (x)dx dxz. .o d.x
. i=1 R

:'suP{lgrad(f)(x)l dist(x, spt(V)) < e}WZZCP po(|n]) + S(X, P, fhu).

¥
pR}

! ,jfhe Cf)nt:muxty of é(_- , fhu) and W[-]([h‘) imply part 2 since ¢ is arbitrary.

e, “ Let V, W, f be as in the hypothesis of the proposition and .1'1, u as ir -




Then

" Assume v=vir([hu|) > 0.

"'(___;(V/\f, WA£; hu) = [gVAf(Ihu|)]'1[|§(VA f, hu)| - T(WA{, hu)]

<[WVA £(| hu | )]-lsup{lgrad(f)(u)l 1 x € srft(V)}VzvV(lhl)
e V() |5V, )] - T(W, fhu)]
5_"sup{[gra.d(f.)(x)| : x € spt(V)} sup{f-l(x) : x e.spt(V)}

4 Q(R“)(v.' w).

—

6.18 EXAMPLE, Let 1 <k <n be integers and set

n-k

A D(O 1) X {0} C ¥ x R®* ¥ = P,

li]

B alg (0, 1) x {0} C R® x R* ¥ = r™,

lf.;:‘]-let £: R® —s R-g be of class 1. Then

i

QR™)(|AAL, [B|A D) = QR B)(IAI/\f 0)

o if Lip(f|A)>0;

(]

P(R™)(|A| AL, |B] Af) = P(RY; B)(|A| A, 0)
N 0 if f|A is constant,

6.19 PROPOSITION. Let 1 <k <n be integers and (V, W)éV (R R,

". Let r&R and f:R"— R™ be given by f(x) = rx for each x € R". Then

£ |.|P(R NV, W) = PRIV, W) and || QRME (v, W) = QR™)V, W).

‘ PROOF. Note that for each g EX(R )
: Bk SV, g) = S(E,(V), £.(a)), |r| T(W, g) = T (W), § (g)).

T(V, g) = T( (v). f.(e), and |r|k+1vyw|g]) = W, (V£ (2)]).

6.20 REMARK. Most mappings do not preserve P and Q regularity.

1<k <n be integers and suppose f: R" —> R" is a diffeomorphism of «. .

Then one can pProve:

\... .

sup {[£0x)] " Lip(£| Ao s x & AT




- 0 i S R

o o o v e A *——MM; TR AV T ] {"“ 1iiafAens bty \

4 DaPps Vi ®™M N, W) : P(R "M, W) = 0} onto itself if and only

the comp051t1on of an 1sometry with a uniform expansmn or contraction (as. A

*4%;,“;_:,_‘—-'(2.) f:“, maps Vk(R YN {v, W) P(R )V, W) < o} onto itself 1£ and: only
é onforma.l

Vi \ Observe that conformal mappings are preczsely those preserving tangent
N .}; v&\'hg .. R
: J»:%éi“’huo 3.

m
.E‘ -

;g?
2.’;-.”- 6.2 DEFINITIONS. Higher variations.

. 'l Y}'&“,r\ﬂ rr

"Let 1 S_k <n and 2. < q be integers and suppose. f: RXxR® — R®
”‘gqt‘i:\"\

is- of class
>'§+1 wzlth £{0, x) = x for each x & RrR®

It is not d1£f1cu1t to verify that the function
- R.V (R y——> R givenfor V& RVk(R ) by
s ~

sv, 1) = (@Y athwte, )

_: WELE, ), (V)

t=0
.i‘ well defined and continuous on RVk(K) for each compact KC R®

P (Z) Let 1<k <n be integers; g, hEX(R }; and f: R X R" — R given for
’."tGR and x €R" by

f(t, x) = x+tg(x)+ 2 th(x)+0(t)

(d /dt )W[f(t

), x(0, (3/ 8x WA/ 8x%IA. .. M3/ axd)]

-ZZ S leg/ ax 0N .
. '1" j=ktl : . ol

w2 QL (ag/ax)0)(ag/ 8x)(0) + (3gY/ axh)(0)-(agY/ ax)(0)
1<i<j<k . | :

¥,

, : !":1:

S . - i

+2 L (3h'/ 3x)(0). | o
i=1

(3) Let 1<k<n be integers, ACR™ be a closed submanifold of R", (" ;""'

be closed and V € 0?.‘71/ (A). We say that V is stable on A with recr .o

Ly ()
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(VnD (0, r), >0 for each réR

.'o-i-

f. "RxR‘.‘-—» R" of class 3 for which £(0, x) = x for each x e rRY,

A' for each t& R. and
(a/ atylt, ° \ e X(R A; CU [R® - D7(0, M.

;WV oty
1 1)

. =0
un,t nig'g’k';..-

i ,;j“g (1) and (2) above n'nply that if V& RVI(R ) and Q(R C)(V) 0, then V
" ’\stab?%\;n R™ with respect to C.
\;5 Wenae
B y“& 6,22 EXAMPLES.
R ILet’ WE v (R. ) consist of six points equally spaced around the unit c1rc1e. The

l IR

!*;‘bdxxstmct varifolds Vl, V (= IVl(R } sketched below have P(R )(Vl, W) =
§ g .

3 m J(V ; W)= 0 and agree in a neighborhood of spt(W). ‘_
K L. ‘

are two members of a continuum of 1 dimensional integral varifolds

:;_'.*:.'?" 2
- R . which are stable with respect to spt(W),  the other members of this con-

.:.;,.- r,;.

2y ”Let Ve v (R )} consist of eight pomts equally spaced around the unit
“’Cle- Avarlfold VERV (R ) with P(R. WV, W) = 0 is sketched below, Th:
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m.\ou{c"'?;'i"i'ii'éi rays can be taken to have density 1, One can then'compute the de'nsity
"’-"”'j‘iﬁg*.'gther segments using the force diagram method of elementary physics, One
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“13): The varifold V€& -I—Y-z(R3) sketched below provides a mathematical model for
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7. VARIFOLD SLICES,

DEFINITIONS., Slicing a varifold with'a differentiable function.

(1) Let 1< k < n be integers, uCR" be open, VEV (R Ty, and
}‘\\.*‘ .
R be of class 1. 'One sets [grad(f)] = C (U) as the covector field

. 4?:“‘(75 o

:,. o the vector field grad(f) : U —> A (R ) We define the slice of V by f§
SO —

M Ier!’&)

DY
denoted B(V, f, r), to be that element of '_\_’k_l(Rr.l) given for

e

B(V. f, T{P) = lim >0+ (s+t) Vﬂ {x:r-s < {(x) < r-l;t}([grad(f)]*/\ P
g t->0t

gl S
S

Tt

1 t}:}xi limit of ( x)_ exists for each P& C ),

"rh' sup t W(Vﬁ{x :r-t < f{x) < r+t}) < o0, and ’

. = >
e I T e

defined by (%) isin \_/k_l(Rn) (this is, in fact, implied by

y \‘73/?%1 e
. . i
b+, 95 L0 —> Y (0) |

bV, 6 = V a([grad(d] [grad(n]") A ([grad(n] " grad(n)

IR -
each Vev (R ) One verifies that

{:)‘b( ; f)lV (K) is continuous for each compact K( U,
ms(v f, r) = B(b(V, §), §§ r) if VENV, (U), rER, and either side exists,

W) WR(V, £) < W(V) i VENV,(U), | | ro
tw) it veny [U) and W(R(V, 9) = W(V), thén bV, £) =V, |
{v) 11' f and g are of class 2, TER, and £ (r) ~'l(r), " then T

B(V f, r) = B(V, g, r) whenever either side exists.

A e i vt S s = o = mame o
> - 5

==
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‘THEOREM. Let 1< k < n be integers, UCR be open,
and f:U—>R beof class 3 with |grad(f)(x)] > 0
. If r€R and E_’>__(V, f, r) exists, then

TER™ (VA x ) <z} WO {x: fx) <2} + BV, £ 1) < PR™(V, W)

X g

=Y L-‘)‘.'"" gy
.)(Vﬂ {x:1ix)<r}, WA {x: f(x) <r}+]_'i_>(V, f, r)) Eg(Rn)(V, w) .

§ PROOF We will prove the first conclusion. This is immediate if

&3:“5(\] £, 0) exists. Let gEX(R ) with T(Vﬂ {x:g(x) <0} g) > 0 and for

(_‘ ‘”q—

ec.,i; suff1c1ent1y small ¢ >0, choose CPE P U—>{t:02t<]) of class 2

Ve v\\ .3 Ry ')
T‘f‘ﬂm ,';;

:u::h Lhat»

J’L\' f\Q‘ i
::z :,ff (1)3{x : f(x) > - 6§} for some § > 0;
‘\\\-g- '_raj

t‘.t;u?(x) = PAy) if £(x) <0, i(y) <0, and dlst(x, £ (0)) = dlst(y, £ (0)).
333 0" (O)D{x I(X) < -¢}; and

‘I-’
*Q"prw )(x) < e gradifi(®)| 40 (1) for cach x€U.

t -\,‘. - 2
'\So"(_:)O pEU with -e<f(p)<0 a, beR with az-l-b =1, and
Y ?'

g ;Z, ‘e, «" be orthonormal coordinates for R" such that grad(f)(p) is

R *\J".:Ji

f**mne; with the x" direction. 6.10(2) implies

“Sitp, @12 A GIBAIA . NI A (al013:) 4 b(ar 07y, 9 g)

St gy
Z(a/ax)w g£)p) +a (/x5 ¢ g 5 (p)
..1=1

7-2

. We assume therefore that P(R HV, W) <o, and we assume



e %m - »

5 lgrad(f)(pmg NIRRT +o,()

%e:%%

; 7c) implies
9,g) = WIB(V, £ 0)Ag)
L y S B(V, £ 0)A glu(n) d 5
! ) D=Ak(Rn)
! ~ S (a/a)[ VN {x : £(x) < r}grad(] A e /\w(mn\ d H(n N
! DA (R )~ N
‘ < (n: k)
Vﬂ {x £(x) r}([grad(f)] A g/\w(x))d B “o

DA (R)

0 (1) e N, K) j VO {x: - ¢ < £x) < 0}([grad(H] A g Aw(\) d H
pAKRD) ' '

proudiney
-_—_—

== ([grad(f)]=;=/\ [gAw(N]) a H(n:k))\

b| gra.d(f)(p)l\__h_/’(__\:r(p, (a/axl)/\ (a/axz)/\ ves A(a/angk'l))A g)
Bl gradtn(e | (€50 + DY

.‘; From 6.1 and the fact that ;\IEE___\__[k(Rn), I. one .concludes that
S(VN{x : £(x) <0}, P g) - T(B(V, £ 0}, P g) <o (1) -

ww(}0)) = 0, we have

(n:k) N

ORPLLAEALTR Rt A Y NN A 5,

T

e

L P S R PP

B T P



W oo W e
i ox)

PR )(lTlm{x:f(x)<0}. |2T{M {x : £(x) <0} + B(| T|, £, 0))

réar‘ {xv' £(x) < o} 2] [s(vn {x: 1(x) < 0} P.8) - TBIV, £, r), ¢ g)]
*: (‘;"‘i“:‘}f} ‘

”f*f'%v."(l - 9,)g) +o ()

3; ':c"'-

c“"xc.mx*f? ;‘v;\‘ ] . . : , . .
-mdusmn (1) follows since ¢ is arbitrary and g is arbitrary., Conclusion (2)
“.u&p-'"_“ '

\(‘i"‘\f'

pHows: by sxmllar arguments.

: 7"' 3, EXAMPLE.  Let G be the additive group of integers and

';_;z'(R R2 G) be the integral current given as follows. 3T consists of four

. '..-o -

p.nts '(1 -1) with coefficient -1, (-1, 1) with coefficient 41, (1, -1) with

m_ﬁcxe.nt -1, and (1, . 1) with coefficient +l. T consists of the line segment

mng‘ ( 1 1) to (1, 1) and the line segment joining (1 1) to (1, -1), each

2
v.h Lhe approprlate orientation. Let f: R —>R, f(x , X ) = xl for each

fl.t’;,z) RZ. Then
2
' P(R )(ITl |aT]) = RO T], [2T]) =
\»)B(ITI f, 0) is defined and equals the point (0, 0) with multiplicity 2

d) a('m {x:£(x)<0)) ~-3TN{x: {x) <o} is defined [FF 3, 9] and equals O ;

L

»

’—Q(R )([Tm{x f(x) <0}, |9T]| N {x: f(}u.)<0}+B(ITI £, 0))=
(R )(lTn{x f(x) < 0}, (TN {x: fx) < 0}])
;R)(lTﬂ{x:f(x)<0}| la('m{x:f(x)<-0})l)=oo.

: THEQREM Let 1<k <n be integers, uC rR® be open,
'CNV (U), and £:U—>R beofclass I ‘with 0 < |grad(f)(x)] < £ < oo for

ich x€U. Then for H1 almost all r &R,

J'I__s_(v, f, r) exists;

Y(&/a) WV {x : £(x) < s} A | gradf)])|_ exists;

Ay
e

X ALY
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POIALETER

e
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w'”

““"wdswmv D0 {x: fx) <s))| - exists;

g. @,ds.)w“(b(v HN {x: i(x) <s}A [grad(f) [)‘ - exists;
4 t;};ts N
' i (B(V. £, 1) = (@AWY, DA (x: £ < 8] A Igradml)\

S (/as)W(VA {x: £(x) < s} A |grad(d])]

<g(d/ds)W(vn{x f(x)<s})| _i and

HEka 3 - k-1, _n . .

i ;;PROOF. Choose ?1: ('Pzt (P3v ... € 9_0 (R7) so0 that {CPi|U}i
.c..ge in C
SRS, T
cxoressions VN {x : {{x) < r}([grad(f)] A CP Y(i=1, 2, 3, ...),

»_:.zv.'l"ﬂ- .

0 (U) in the | l topology. Considered as a function of r each of the

m,(v HN{x: f(x) < r}A|gradd)]), w(vn {x f(x) < r}A Igrad(f)l
i }“ \ e
'k'(Vﬂ {x f{x) < r}) is non-decreasing for r&R and hence differentiable for

RASCHEE

..i almost all reR. Smce these functions are only countable in number they

‘ ,l‘ ‘1' qoe

L.
-

-i.'e sunultaneously differentiable for H1 almost all rER. For each such r
" r .

‘,:, A

!-.e. co'nclusmns of the theorem are true. To see this one observes that for

lim S&p (s+t)"lvﬂ {x:r-s <f(x)< r+t}([grad(f)]*/\ P)

< cl[grad(n]” A P&/ ds)W(VN fx: s < o))| g

< ct| P/ ds)W(VN {x : £(x) < x})

AN 'er.en._c is the constant of 2. 4(2a). Conclusion (1) {follows by elementary

.".r A o - -
‘Suments We already know (2), (3), and (4) to hold. We examine the equzlity

For eachta >0,

n

oE(l) +e xg(g(v, HO{x: r-e < £x) < r}A | grad(n])

-1
o () +¢ “y(n, k) S SV, N {x t w=e < 10x) < r} A [gradig| (o)
DANRD) | )

, [L\('L:L':)‘



16,
(n, k) S VN {x:v-e < f(x) <r}A]|grad(f)| A
~1_2__!—\1¢:(Rn) : ‘
[lgraa(n| [egraa(nl’] (w(n)a g™ .
(n:k-1)
(1) + £ vy{n, k-1) S VO {x: v-e < f(x) < r}Agrad(f) (w(n)d H 7

DAk(Rn)

Gac verlﬁes by explicit computation that expressions (a) and (b) differ only by o (1)

1 %

chenever we set VA{x:r-c < {x)<r}=vlp, #) forany pEU with r-¢ < £(p) < r

.)-:

hdany HEDA (R ). Since VENV (U) by hypothesis, (a) and (b) differ only by

‘.—,

9(1) The equality of (5) follows since ¢ is arbitrary. 7.1(2c) implies the first

'l\.}

-ﬂtquahty. and the second inequality is obvious. Conclusion (6) is immediate.

"'\,LL,.
sE 7.5. LEMMA. Let 1<k<n be integers, UC R™ be open

L == ot - P

i V0, VZ. Vi .. ENY, (U) with HmM(V,, V) =0, and f: U—>R be of
il.fis.. _1- Then for I;Il almost all r€R,

ﬁ)B(V f, r) exists;

‘V\«i

)B(V f r) exists for each i=1, 2 .3, +o.3and

3) hm M(B V.
b ( i(j)*
.,of 1 2 3’ o e o

-1, r), B(V, £, r)) = 0 for some subsequence i(l), i(2), i(3), ...

- "PROOF. 7.3 implies (1) and (2). We prove (3). Let V, WENY, (U)

'*f!'

d for each ¢ >0 let L(c) denote all those re& range(f) for which both

1{'"‘&

‘Vf r) and B(W, §, r) existand M(B(V, £, r), B(W, r))>g_ For

Ch rEL(C) there exists an open interval I(r) CR and CP(r)C_ C (U) with
(")l <1 such that

>2 15 H (J(x))

PR PSP BRIy St PP
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Z.iI;II(Ji) > min{l, 3'11;11(L(e))}

3— LT
g,
or each i,

' 'Ynl{gq f(X)GJ }([grad(f)] A CP ) - WN{x:{x)eJ, }([grad(f)] AP 3" t-:H (7).
' N\???ﬂ A . )

[ it C‘ el

oﬁnow chooses ¥, !//2. War one E(__}O(Rn) such that if

: '_‘i.'t‘ﬂn RS
sup{-l grad(f)(x)]| : xE spt(V) Uspt(W)},
J;]yl < 2§ for each i;-

j.)& %Xt
""(.'i"‘"' SIS .
[grad(f)] A (Pj for each x&€ U, and f(x)éJj

then

(Z) hm W (x)

for some j=1, 2, ...,

0 whenever x¢U or x€U and f(x)¢UJ

' Lebesgue's theorem on bounded convergence 1mp11es that for all sufficiently
.":, w!" \ )

urge values of i,

V(!,Di) - wiw) > 47 e mingl, 375 (L))

M(V, W) > (85) " ¢ min{l, 3 H'L(e)))

“oft Hl(L(e)) <24c¢

-1 - .
EM(V, W) whenever M(V, W) < (8¢) 1. One now chooses a

AT
:ubsequence i(1), i(2), i(3), ... of 1, 2, 3, ... such that Z'M(Vi(')’ V) < oo,
; ~v\;~w~~ =
! T}xen for each ¢ > 0, ' J J
i ?i‘-f“’* -
3 "|'
|8 P Hl(Rﬁ{r : B(V f, r) exists, B(V() £, r) exists for each .j,
{ }
’ and ¥(§(Vi(j)' f, 1_'{. B(v, {, 1)) Ze for infinitely many
% . positive integers 'j}
‘ e is arbitrary.
MJ 7.6. THEOREM. Let 1<k<n be integers, UCR"® be open,
i
EIVk(U) we RVk(U), and f: R™” —> R be of class 1. Then for.gl alrao.t

, ‘f-:-~u;f::;a'-'-'.{-"fv-.'*w“-"‘-i"-?*'"" *

.
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ddass 71, One uses [F3 3.1, 3.2] to verify that for I:Il almost all r&R,
t’(? ”;"u‘; a2 k-rectifiable subset of Rn, and §(|A| , £, ¥) = lAﬂ f'l(r)l .
i FILe =

.131"2135: ‘follows.

: ‘1;&?"“':

A“““‘i,-,] 7. REMARK. Let 1 <k<n be mtegers and (V, W)GV (R R ) w1th

l"" .

(R )(v Y) < P(R ™)V, W) and W(Y) = inf {W(U) : vey, 1(nn) and

S —l-l‘h .

B‘n)(V. )< P(R )(V, W)}, Alsoif W€ RV (R } there exists a unique

~th l(R ) such that Z < W (which implies ZGR I(R )} and

\I)—mf{W(U) vey, (R ™, USW, and P(R“)(v U) < PR7)(V, W)}, The’

‘&:ﬁ'e'xiéss of Z follows {from the observa.tmn that if W, Zl ZZG RV (R ) with
w‘\""\' \-'

ﬁtw and z <w, then Z.NZ.,<W and
2 = 1 %2 =

h,n)w" W) < . It is not difficult to verify the existence of Y& V (R ) such

= |A] where ACR is a compact submanifold of R" of dimension k

s
-

2o

FiDi NS WPl ) o s
-; " A ‘:"_..._.

A e T g At St et IS,
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i
- :m“. 20 ne.e i

i
SR - .
RN 8, INEQUALITIES FOR REGULAR VARIFOLDS,

-§ . )1 ’ Let 0<m<k<n be integers, "ceRt, and ACR®
RN '
;ci dosed m-dimensional submanifold of R" of class 3 without boundary.

‘ prdny s s-t

{V W)EGV (R rR"® ) with
(p dcf

}23: hm 1n£ t W(Vﬂ{x 0< dlst(x, BQ (R R” WV, W)) < t) <o .

:&W‘éﬁﬂi‘oﬂl-
? nxhcre exists r ER U {0} such that

L

0.4 £ (r) and m‘(r) ex1st and

0<- (k-’;n)rg}(r) + r_:!;'(r) + r}'___xl(r) + krg_:xz(r)'
+ mr(AIl - r)-lréx(r) + crr’g(r)'

< - (k-m)i‘_};l(r) + rm'(r) +ro(r) +lrn,(r)

+ mr(Al-l - r)—lr_-r_x(x:) + crrr:1(r) .

=™ ) - expler + Jilmee) M +kx__12(t)]dt:\

: Mcreasmg as a function of r for 0<r < r_. provided the integral exists.

0
is replaced with _1}20 throughout.

3

""'i\"

“V)‘:W(b(v dxst(o ANN[{x: 0 < dist(x, &) <} - BRYR", R™)(V, W)])

'."#%’j'ﬁ.}}“:
frbic i

—\h_}la-_s the obvmus ‘meaning)

= W(VN[{x: 0 < dist(x, &) <z} - BQ“(R", RPNV, W)))
= 5 WA [{x : distlx, &) <} - BRURY, RP)(V, W)], g)

S WWN[{x:0<distlx, &) <r} - BQ%R™, R™)(V, W)])

‘—"dis,t(x, A) - grad(dist(s, A)) is well defined for 0 < dist(x, A) < r

=Z(r)"1:rj>5nft W(Vm{x : dist(x, BO(R”, R™(V, W) - A) <t and dist(x, 4} <

SR
RIS E

17 sup{a (A, RT; x) .xEAn{x dist(x, spt(V)) < r }}



8-2

.' g g.{:‘éi.
3 ‘"" \n\‘-r« o)

skenever Yenever: m > 1. In case either m=0 or m >1 and A, =0, we take

SN A - -
A‘z.;,ﬁ?'j r) lm(r)] =0 in (1) and [(A 1. r)m] =1 in (2).
‘ \\A}‘f:.l:t’t; = —.— 1 — .

RQOF. .
Let 0<m<n<ow and fm+1, fm+2,...,fn:Rn-——>R be of
£(0) = 0 and (3€/8x")(0) = 0 for each j= m4l, m+2, ..., n and

, 2, ..., m. Suppose also a AN amER and

1 %2

§; "f';(-x.x,...,x) Za(x) +0 ., ([2(123/2 .

i=1 (x,x,...,x ) i=l

2

=R ﬂ{x:x fJ(x, X ) eee, X ) for each j = m+l, m+2, ..., n}

+, r(:é) = dist(x, A) for x€& Rn, and g: R® —> R" given for

3ER™ by g(x) r(x)grad(x){x) whenever grad(r)(x) exists and g(x) = 0 in case

&h-\*" ~
;.ad(r)(x) does not exist. One verifies that in some neighborhood U of OER
; ,_ﬂU Is of class 2,

-5'vb)’f~~ -

Let x ER with xo<1nf{a :ai>0 and i=1, 2, ... m} and

vee, xO)GU. We compute . .

2
x-p(lx-pl ) PR

-1 m_ n 2 m+l
- 1) a X x +0x__p(lx-pl ), x ' xm+2, ive xn)

Let m<k<n and 1§_il<iz<... <ih_<_m<ih+1'<'... <ik§_n. Then

\\\'3 ‘i. . R .
svr\'\‘ : 1 1 1

S(yle, (3/3x YA /% DA .. A3/2x ), fg)
k
_ n -1 n
= ,Z(aijxo - 1) ainO + k-h
> (k-h) - hxgl[inf{a,;l : ai. >0 and i=1, 2, ..., m} - 2;31_1

-1 )
> (T _ . . . ~1
2 (k-m) mg(p)[1n£{a..1 : a._1 >0 and i=1, 2, ,,, , m} - g(p)]

0y
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is identically equal to 1 in some neighborhood of p and

Let m, k, n, A, V, W be as in the hypothesis of the theorem..
oe R; U{o} such that

and dist{x, spt(V)) < ‘ro} and g|{x: r(x) <r, and

, .«.r(x,f spt(V)) <r } are of class 2. We conclude from part’l that, in case
,,vr' xuua;-.;.e e '

Then there exists a largest r

r(x) < rl}nU)' where 0 < r1-< ro,' then

S(v, fg) > [{k-m) - mrl(z.\.{l - rl)'l]\g(V)

0

';tv:ne .nelghborhood of spt(V) U spt(W)

'-»-\ﬁ‘,;\

! '."“ (X) l if € S rlx) Sr-e and

| :.:~‘(x clos[BQ (R®, ROV, W) - A]) >¢
. .ft(i‘) =0 if r(x) > r or if

.,.“‘t(x AUBQYR™, R™)(V, W) < el

| ['“) Llp(f )< l[e - ZE?‘] g
; :z“h

.")' the def1n1t1on of BQ (R R )(V W), we have that

[ngdfsgl)]’l[lgm o)l - Tl ghlge

Ch when evaluated using 6.4(4b, 4c), 6.10(2), and part 2 one obtains for

‘s L "L". ,;,‘- '

l"b‘tra.nly small va.lues of ¢ > 0:

N

lcmmhm(e) - mr(a]! = 0 mie) - (e - 26572 - glr-o)]

'.- rx=11(r) + o, (1) < Crr_g.’l(.l‘) .

I-a‘ku'lg the lower limit as &—> 0+ and noting that for Hl almost all’ r, 29 ‘)

hﬂatnever f R® —> R of class o satisfies f| spt{V) =1 and £l {x: g(x)?_ro}-_:

fPartS Let m, k, n, A, V, W, r, g, r, be as inpart2 and O<r<r0,

- rk(e - 22y MWV {x ¢ dist(x, BQYR, R™)(V, W) - A) < ¢ and dist(x, A) <

R
.



8~4

ins conclusion (1). m, n, and n2 are clearly non-decreasing in

-'t""'-» sx‘}
(,;‘<‘_\ r ", and hence differentiable for H1 almost all r, 0<r< ro

;xgugon of conclusion (1) after dividing through by rm(r), yields

@{f{%& \)‘\‘ " .

a(idlds)l - (k-m)log & + log m(s) + S[n:x(t)]'ltgl(t) +kn,(0]dt - m log(ar - 2) ves)|

‘;} K
P T v,
?ﬁw"&-"»: o

\‘;.*j.d\gf‘lon (2) follows since the logarithm function is non- decreasing., Conclusion’

r“kv___V(vn D2p. m)exp[rP(R™ C)(V, W)]

- %mng as a function of r for 0 < r < dist(p, CU spt{W})).

; C)(V, W) < o, then

= WV D, mexplrQR™ C)(V, W]

: ‘s‘_"_”ij_e_creasa.ng as a function of r for 0 < r <dist(p, CU spt(W)).

- maey

'&"L.,»’Z AN Y

. COROLLARY. Let 1<k<n be integers, CCR™ be closed, and

k 1(R ). Let V, Vl' V2 V3, ...EGV (R ) w1th 11mV V. and

e,f‘? (R C)(v W) < oo, and p, 127 pz. Ps» ... ER" - (CUspt(W)) with
g
=

t‘( o

Then'

' Q,),O (Wv, v ) - (CUspt(W)) — R is upper semi-continuous;

-

Q). O(WV p)>11m sup O (Wv.,, P )

Vi, 8.4, COROLLARY. Let 1<k < n be integers and V& GV (R ) with
MR IV) < . Then

: ’J}H Q(R CHV, w) = 0, then r kW(Vn 120(0. r)) is non-decreasing as a function

‘k) O (WV, p) <alx)” dlSt('Pn C U spt{W))~ W(V) + exp(dist(p, CU spt(W)) - QR %c) (V "

e T R T TR

l




,‘\ n. n - ’
n[R - ‘I__)_o(p, r)] # # whenever pER® and re R;.with
’xk\‘\ \' ' .

and and

% (9'7.4"4:,‘

45 [spt(vm QR™V) > k.
¥ ‘RIL?“‘ .

o ')'-\.:.- r-u vn 0
‘ ~7-¢'n.aecreasmg as a function of r for r > t which implies

W exp(rg(R BVINQRT(Y) - r”lk) ,

4 g;;y;hlch it follows that rQ(R )(V) >k and hence tQ(R )(V) > k which implies
; .“1;*"{ af,e',/f
' ‘mcmsmn (1). Conclusion (2) is immediate.

I‘r"‘“‘ "l

":;?".'5. COROLLARY. Let 1<k<n be integers and AC R™ be a compact

mensional submamfold of R of class 3 without boundary. ¥For each

..¢‘<oo and d > 0 there exists b> 0 such thatif V& GV (R ) with
,-g{iil'he; QR™; A)V) Sc or QR v, (A <

flu-“io’t(V)mR -A)# 0, and

@iﬁ{o (WV, p) : pEspt(V) - A} > d, then W(V) 2 b,

I

) ;*

;;;UVPROOF One shows first the existence of a positive lower bound on the
n.-.mzi’um distance from points in spt(V) to A by arguments using 8.1in2
gia:r"\;/ay to its use in 8.4. The conclusion now follows from 8.3(4) and the.
: .-::::}{)ound on the density. |

g

8.6. LEMMA. To each non- negative integer n there corresponds 2

g’?‘xuve integer N(n) " with the following properties:
~Madpris
’_Ii_f‘ﬂBl BZ CR comprlse a sequence of bounded open balls in R”
‘bl l‘b.'.p wiy N
& ¢h that center (B )¢B for iéj, then each point pER. is contained

!‘)..
‘ﬁhm at most N{n) d1st1nct balls of the sequence;

;‘wm

‘ ’)’If AC R® is compact and f: A—> R;. is upper semi-continuous, then

\e're exlsts a finite number of points Py pz, veo, pqu such that the open

T
, l\* B. = D (p f(p)), i=1, 2, ..., g, cover A and each point pER

. iB contamed within at most N(n) distinct balls.

Qﬁr'pROOF. If spt('V)CD (0, t) for some téR then r-k\_i_V(V)exp(rQ(Rr.l)‘(V)'

.« came n b a4 mem ara




ra\;{‘}? . : : o
h‘;wgiﬁ(,ﬂwh - ) . - .: 86 .
ey . . .. . Lt

n}(’:- s

*Tond o l‘ Ay,
WAL
Ty v
E.!;?';.!

}‘J Ae
]
?? / s

.;\

e

11n [B 1]. To prove (2) one chooses pléA such that

“J"‘" }9"\ e

; max{f(x) : xEA), chooses pZEA D (pl, f(pl)) such that
#‘E‘h, v

L’v max{f(x) txEA - D (Pl. f(pl))}, etc.

'»‘I .

..} :

8.7. THEOREM. Let 1<k <n be integers, CCR"™ be closed, and.
BERAL
)EGV (R", R™ with WV(spt(W)UC) = 0. If

1/(k-1)

2 L palog)]”
X:b(l n) = 2[log(2)] N(n) '
ogig M 0 ”[1 g2 ™/ O gy I oz 2,

T xE spt(V) - (spt{(W)UC)}, and

———————e »

L Part 1. In view of the mappings GVk(R ) —> GV (R,n) which (a) multiply

var:}folds by a fixed positive real number changing the dens1t1es accordingly,

ind’ (b) are induced by elementary expansions or contra.ctmns (as in 6.19), we

~, A;"X

can assume without loss of generahty that W(V) , Q(R ; C)(V, W) < o,
df(“ -

o
e

inf{ Gk(\ng. p) : pEspt(V) - (spt(W)U C)} = a(k)-l

PROOF The proof of (1) follows by obvious arguments from the proof of - :

P

et

P

i R SR T SR IS

e
A

RS Miaats i AER A

T L L T s

ettt ot =




Let pE spt(V) - (spt(W) UC) and define .for each rER;
DY RN

"; ‘Fg‘!
W(VﬂD g, ) 1 n,(r) = W(WﬂD (p, 1)) and

= lim m_f t W(Vﬂ D (p, )N {x : dist(x, C) <t} .

[

. ‘ - '
> lim r-kr_:g(r) exp rQ(Rn; CY{V, W) + X [r_p(r)]-l[;_xl(r) +k§2(r)]dr
r—>0% - - AR -

- -
(R CUV, W) + S [an(e)] [y () +k§2(r)]d1]
0 7.

; > a(k) inf{ oll‘(vgv, x) : xE spt(V) = (spt(W)UC)}

{t:0<t<1 and nft) +ka,(t) 2 Zhllog(z)rg(t)}



A
'8
:l_n
2

=

e, _{;" y

Let fl fz. £3, veo :R*—>R" forma non-decreasing sequence

Q-*néxgontmuous functions convergmg pointwise to the set function { of D (0 1)
ARy, ¢
‘\

(g2 Y

,M‘Fo.rneach xER rER and i=1, 2, 3, ... we define
m‘g&;"& .

ek
R

o
2

S fi(r’l(y-x))dva and v (x, r) = X e (y-x)aWWy |
R® B RP -

.-.‘ng‘tmg that each My and each v, is continuous on the domain R" X Rg and that
. \zhgsequences {H } and {v, }.1 are non-decreasing. ‘One observes that the

N‘fux}ctxons 4 and u1 ngen for (x, r)ER XR; by

~\,f. “\’l““

uix, *) = limop (x, 1) = 5 ft N y-x)aw vy = WvA Dlx, )
i ' n

R .
ook, 1) = Hmy (x, 1) = X f(x " y-x)dWWy = W(WN D, )
* . . . n - ——

R

0

Let ¢ >0 and gl, gz, g3, ... :R® -——>'R+ form a non-decreasing sequence -

of

rER;, and i=1, 2, 3,

... we define

uf(x, o) = | e Hy-aglinawvy | '

Rn

;mng that each v, ( «, £) is continuous on the domain 'Rn .X R+,.

s
3
e

One observes
lh 2 . : n +
en that the functlon v(, *,¢e) givenfor (x, r¥)ER"X R, by
J‘ZC’{‘ ‘»M’ . N 0 S
SR TR o, 4 .
vix, r,e) = limyu. (x, r, e} = £(r “ly-x)g (y)dWVy,

Rn

W(vnD ol TN {y : distly , C) <e} .
3 -Ba\re '?uvxchov\ on 'R“ X-R+

e E RO with 1'1mie:iL = 0 such that if @: RO — R.o is non-decxn ™ .,
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hm inf e, CP(E )= lim inf{s?lCP(c.) :j> i},
i—=>o0 i—o0 J J .

CP(E.)

P i> i}}.1 is a non-decreasing sequence.. Letting -?{ei}i'
See) 2 ? .

,_‘b.e! as above, we defme Voo R™ x R; —_— R+ for each j =1, 2,. 3, «.. by setting' :
cAry reach (%, ERTX R, | L o

jv (x, r) = inf{vz(x, r, s.i) ti>3}) .

jv is a Baire function since it is the infimum of a sequence of Baire functions.

:RUX R -—>R+ by setting for each (x, r)eR ><R

0 o’

Tt PR

vz(x, r) = limjj'vz(x, r) .

SRS Gty SR

is a Baire function since it is the pointwise limit of a sequence of Baire
24 !' 2 1 I
functlons. Note that in the notation of part 1, m(r) = u(p, r), r_xl(r) =v{p, r), :

. 1 2 . . .
= vz(p, r). Since u, v, and Vv are Baire functions, so is

n= v+ f - 2 o2

Y:RnXRgﬂ{(x, r):nx, ¥) >0 and 0<r<1} . ‘,

' > ]
RUKIELE .

Clearly Y is a Borel set, and partl implies that for WV almost all xe:R
T

‘(x. r)€Y for some r. We define h:R" —> {r : 0<r <1} by setting for each
= sup{r : (x, T)EY} if (x, r)eY for some r, and 'h(x).=

R7M {x : hix) >t} = (YN {{x, ) : r > t})

;——-—>R qlx, r) = x for (x, r)eRan;. Since

Yn{(x, r) :r >t} is a Borel set, q(YN {{x, r):r >t}) is a Suslin (analytic)

‘."where q: R® X R

.“{ set which makes q(Yﬂ{(x, r):r>t}) WV measurable (since WV measures

Hence h is WV measurable.




Beiai. iz A5liiil u......";";’.’, ,;525""“” IR
LTI ik

SO OSSO ST - -

s-10  Jil

o

I"or cach 6 > 0 Luzin's theorem guarantees the existence o£ a compact Eé"

i HCR such that h|H is continuous, h(x)> 0 for each XEH and $ i
“ﬁﬁ) S WV(R ) ~ 6. Using 8.6, we cover H by a finite number of open balls :

gt ——
r.n\;v“

?1 Bz vees B such that center(B.)¢B. for i #j and each point x&R" :Ls I
F".} -y .'.. N |«

amed within no more than N(n) dxstmct balls. One concludes, therefore, AR
b

N(n)[W(W) + k lim lnf € W(Vn {x : dist(x, C) < e}}] o f
ge—>0t - : i
m il
> (WW(B)) +k lim inf ¢ “Wwvns, aREX dlst(x C) < e}) Fg,;
i=l ) C"'>'O “21'
S ot
>3 2 Tlog(2)WV(B,) it
i=] .:r
> 2 og(2)WVIU;By) |
> 2t log(2)W V(H) . {ZZQ
> z'llog(Z)(vy(V) - 8) ' s
) i

> 4 og(2) - 2716 10g(2) A
k/ (k-1 i

[W(W) + k lim inf ¢ "'W(VN e s distln, ©) € e D
= >0t ‘ ’ ,ff
- 5T - k- . ‘

> N(n) k/(k 1), 2k/(k-1) | log(Z)k/( 1) ' ' ;
' i

k/ (k-1 i

[W(W) + k lim 1n£ £ W(Vﬂ {x : dist(x, C) < e}] [ (k-1)
E'—>'o - l"g

;

N(n) -k/ (k- -1), -2k/ (k-1), (Z)k/(k 1) L 2W(V) - a(k) - inf{ O (wv %) : X € spt(V)
- {(spt(W) UC)} a

P

The theorem follows if k> 2., For k=1 the theorem is immediate.

X 8.8. COROLLARY. Let 1<k<n be integers and Ve GV (R ). Then
1o QR )(V)] W) > al) sup ON(WV, %) : xEspt(V)) where a(k) is4s in 8.7,
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andlet f:A—>R"” bea class 3 1mmerszon of A into R:. :;';;’:'.'

B.

,

'M denotes the maximum mean curvature of f(A) 1n R and

o 7\{(7" 3"

“(k-area of f‘A) < a{k), then (k-area of £|A) < bk, n)({k- 1)-a.rea. of fl B)k/(k 1)

e

o )‘7,!,'
“,:):itjcular, if {f satisfies the minimal surface equation, then, without addltiona.l
Y.

Yy
.

k/(k~1)

"(k—area of f|A) < bk, n){{k-1)-area of f|B) ) L

1

8 10. REMARK. Let 2 <k<n be mtegers and b(k, n) be as in 8.7..

et ‘G‘ denote the additive group of integers and TE Z (R rR® ; G) be minimal. .
'-q"-‘}lv‘
m'the weak sense [FLZ p. 17]. The example below shows that it is not true in
‘:;z:* k/(k-1) ) .

ggneral that M(T) < b(k, n)M(3T) . However, if for some & > 0, M(S) > M(T)

“henever SEZ (R”, R™ G), 85 = 3T, and F(S, T)<e, then

M(:r')‘< b(k, n)M(a'mk/ tke-1),

Exam Ele. Let C = aD (0 1) X {O}CR be given an orlenta.tlon and

I't;"'é'ga'i"ded as an element of Z ( , #; G) where G is the group of integers. Let

3 g > 0 and D be an oriented smooth simple closed curve of length no greater

:,hah 'E:, whlch coincides w1th C along an arc of length at least 3 le , and which

x' r.,,f’. S

aoes ‘not lie entirely in R X {O}CR We regard De as an element of

Z&P, p; G) also. Let 5, S &€ Zl(R b G)‘ be of least area, where 95 = C

54 8S_ = C - D_. [FLZ, Thea. 2] implies that M(S - § ) = M(S) + M(S ). Fox

v P
',,-mm‘,.;: ph

gach (large) posn:xve integer m, set S(m, ¢) = (m+l)S ~ mSE notmg that

L (LR AT

Y22y

et BS(m,'a) = C + mDe. Hence

lim  M(S(m, ¢) M(38(m, en®=0 ..
m—>co T , ’
" me—>0

G 8.11. REMARK. [A2] provides a partial converse to 8.7.
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9. VARIFOLDS LYING NEAR A DISK.

. 9.1. PROPOSITION. Lct 1<1
:'..'v;(;vk(D (0, 1 x {ohCgy (R x R™
B 1 P(R™; aD (0, 1) X {o})(v, 0) < oo,

n be integers and

™

~

then there exists r eR+ such that

bl SN S e 5 T P ¢ o et T Seh Ertovi b S s e o

VN (Dglo, 1 x {0)) = x| D0, 1) x {0}|e RV, (") .
e QR™; aD(0, 1) X {ON(V, 0) < w0, then either

vn[glg(o, 1) X {o}] =

R . n +
. or there exists f: R —> RO such that

sup{f(x)'lLip(f)(x) : xER™) gg(R“; al__g_k(o, 1) X {0}V, 0)

VDo, 1 x {0} = [DN0, 1) x {0}|A feRV, (R ) :

'3.'.(3) It P(R 900, 11X (ON(V, |20, 1) x (0}]) < o, then there exist
r, sER with lr - s[ <1 such that

Vﬂ[lzD}(;(O, 1) X {0}] = rl[Dk(O, DA x> 0)] % {0}]

e QR aDk(o 1) X {0}V, |D go, 1) X {0}|) < w, then there exist
u .‘:prschltz functions f, g: R —-—>R such that

F ) sup | £(x) - gl xED o, 1 X {0}}<1.

.'(11) If f is not identically 0, then f: R™ —> R.+ and

0 —

- -1 U
sup {£(x) lLip(f)(x) : xERD } < Q(R ; aD (0, 1) X {0})(V, |Dk y 1)

(111) If g is not identically 0, then g: rR® ——->R0 and

sup{g(x) "' Lip(g)(x) : x€R} < o™ 9070, 1) x {oh(v, |2 Ko,

B




S VARG, 1% (03] = (D0, A G s 25 03] x (o} ¢

+ 1[2}‘(0, DA fx xS <0)] {0}A g

. PROOF. The proof, wh11e not trivial, is straightforward and is left to thi

reader. A more sophisticated version of the deformations required appears in
the proof of 10.4, See 6.17, 6,18, 8.2, and 8. 3,
9. 2.

COROLLARY. Let 1<k<n be integus and c€R+

IAFIFN
IO L]
B .

|

Then for
“each € > 0 there exists § >0 such that if ve GVk(D (0 1) X D (0, 8))

L with W(V) <c, andif WEGV, (R") with F(w, |D Yo, 1) {0}]) < 6, and e EEe

(1 2™ 900, 1) x B* o, H)HV) < e,

z _qz (@) QR™ D0, 1 x Do, s (W) <c,
e o P(R™; aD(0, 1) x D" 0, eV, W) <,
it 1t
Cor (4 QR™ a0, 1 x D0, en(v, Wy <o, g‘
. -.t‘lie.n, respectively, 2@, l:

L— (1) There exists r€R+ such that |3‘ ¥

PV 2770, 1-e) X &™), |00, 1-0) x (o)) < ¢

(2) There exists f: Rn———>Rg with

sup{f(x)"1 - Lip(f)(x) : x €ER™) <ec¢

: .z.such that

o Fewr AT gt M

!

o
i - -k k ': :
o FVN[D* X0, 1-¢) x R*™] D70, 1~} X {0}]Af) <e , 4
.:.',-“- = - = i ;l ;
TN ‘ i
e or (3) There exist r, sE.R+ with [r-s[ <1 such that fiv
“ n-k -k k k ' |
SFvA DT (o, 1-e) Xx R ], r|[D(0, N {x: x >0}]1% {0}]
B +s[[D0, DA (x: x SO {0}y <e , B
;o oy
: N . mn o ',
or (4) There exist {, g: R —3> RO such that < o

i

{311

il




sup {£(x) ! - Lip(f)(x) : x€R™} < ¢

sup{g(x) ! - Lip(f){x) : xER"} < ¢

sup{lf(x) - g(x)l : xegk'l(o, 1) X {0}} <1

. |[12k(o, l)ﬂ{x:xk_?_O}]X {0} A £

+ I[Ek(O, NN {x: xk< 0} X {0} A g <

, .

9.3. COROLLARY. Let 1<h<k<n beintegers ceR’ and dER].
For each ¢ > 0 there exists & > 0 such that if

[

A W)ERY, (RP, R7 (x : dist(x, agh(o, Hx {0} <5}

vith QR™)(V, W)< ¢ and
inf{@k(\__yv, p) : pEspt(V) - spt(W)}>a ,

n-h

spt(V)ﬂ[lgh(O, l-e) X R 1=96 .

. PROOF. Observe that

RN {x : dist(x, algh(O. D x {0} <8}C RN {x : dist(x, azgk(o, )X {0}) < §}

L 9.4. COROLLARY. Let 2<k<n be integers. There exists LGR
.w Vegy (R ) and W, W , €GV, (R ™ with Q(R WV, W1 + W ,) =
dlam(opt(w N, dxarn(spt(W )) <1, and dxst(bpt(W ), spt(W >N > 1,

Ea_foirlc_i_ A v, 9~¥k(R) such that V=V +V

then one

> and

I’
Q(R WV W) = QR™)(Y,, W,) =
"~ PROOF. Apply 9.3 with h = 0.
.. 9.5. DEFINITIONS. Let n be a.positive integer.
"m,'};'Or each i=1, 2

y +++, n, we define et R” —> R Dby setting el(x) m :gl
br xgR®,

e e S VL P TRV

.
4
N
L
H
|
N
i
4

ey
&‘ ‘.."l
Ly
AR,
:
;
)
;

by s ey m e s
TN LT oy




P

: ' -4
| : . , 9
j?or each k=1, 2, ..., n, we define T(‘ R > R by setting

\)-(xl, xZ, ooy x‘{) for x=(xl, xz, ey x)ER .

I
| or each - *{ER each r, neRg, and each k=1, 2, ..., n we define
|

n k
. - i i 2 VA i 2
cr, ) = [DNOTNG), 1) X RN ALy D (v < Dy x)
" i=k+l i=1

9.6. PROPOSITI.ON. Let 0<k<n beintegers and V& .Q.Yk(Rn) such that

R"; aD(O 1) x R™ )(V 0) = c<00;

af{o (WV, %) : xE spt{V) - (aD 0, 1) x R™® )} =d>0; and
iV, ei) = 0 for each i=k+l, k42, ..., n.

) there exist (at most [du(k)]-l’\_A:lV) distinct points Pp» Py voes pqé_Rn"k and

———t

dons f, £

X .,fq:R“—~>{t:t_>_d} with

o0

sup{fi(x)'lx_,ip(f)(x) . xeR®, i=1, 2, ..., q}<c
. that

vn(Do(o 1) x R len(o 1)><{p}[/\£ .

| 1se E(Rn;'aDk(o, 1) X Rn_k)(V, 0) < o0, one can choose fi to be constant

:ach i=1, 2, ..., Q.
_— 1 .
PROOF. 7.2 and 7.4(5) imply that for H. almostall r R,

c__)_(R“; apk(o, 1) X R Ey v {x: eHx) <)) <c

.repeated use of such partitions and 8.2(2), the theorem reduces to 9. 1

9.7. LEMMA. Let k be a positive integer and ACD (0, 4) be open

. Qk(o H-A 7L $. Then there exists a finite set of points
Xor sees rq‘é R such that

pz, veey pqu (0, )NA and numbers Ty

"St(P, D (0 4) - A) = T for each i=1, 2, «+.., Qi
D (P. 2r, )(‘\D (p ' Zr) $ whenever i# j; and

q -1 k

1D (P, ¥)) 2275 “gan Do, ).

1- ) ) ‘ o
PROOF. One chooses the p, and x, as follows: Let r:A—>% Ny

.._’
._J

= dist(x, R_k - A). Choose pléD (0, 1) as a maximum for 1|A(‘\D (o, 0
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':i._and set J.1 = r(p ). Choose P, G‘;D (0 1) as a maximum for

g;:r][Af\D (0, 1] - kpl, 4r,) (provided [AnDk(o, 1] - Jgg(pl. 4r)) #H; if this is
':not the case, wc are done) and set r, = r(pz) onceeding in this manner, one
chooses P; ED (0, 1) as 2 maximum for rI[A D (0 1] - D ofPss 4r,) for
"J = 3 4, 5, .. SO long as these choices are possible and S(‘ts r. = =(p.). One
.verlﬁcs that AﬂD (0, nHC U D (p , 5r, ;)- The lemma follows,

, 3.8. THEOREM. Let 1<k <n be integers, dGRO, and NER For
each € >0 there exists § > 0 (depending on k, n, d, N, ¢) such that if
VeGY, (R™) wlth

(1) °Pt(V)C D (0, 4) X D (0» 6),

W s,

B QR™; BDk(O 4 x R™)(v) <N, and

.'(4) inf{ O~ (WV, x) : xE spt(V) - (aD (0, 4) x R* %)) 24,

'then

HYNspe(v) D0, 1) x R™) > a-e)mN0N0, 1) .

PROOF.

' Partl Let k, n, N be as above. Then for cach ¢ > 0 there exists
°>0 (dependmg on k, n, N, £) such that if Ve GV (R ) with

(l) sp( V)C D (0, 1+e) X D" %0, 6), and

(4) Q( ag (0, 1+£))(V):<_N,

.L.“.’..‘..
W(b(V, emD K0, 1)'x R?” )5 e W(V)

for_'each i=k4l, k+2, ..., n.

Proof of part1. Partl follows ffom the continuity of b(., ej) and 9.1, * ..

Part 2. Let k, n, d, N be as above. There exists ceR (depending -
E, 2y d, N) with the following property: Let Vegv (R ) such that
i) spyV CD (0, 4) x R®7¥,
(Z)W(V <N,

s
L e T T T T Tt L L
RSN 50 e At e R SR N

]
1
1
i
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l

l w(” QR aD (0, 4) X R* X)(V) <N, and

: ) inf{ @ (WV, x) : xEspt(V) - (30"(0, 4) X R” "y >4
5 e there exists rGR such that

wip(v, e > e BYR 0, )

fo . .
Mr fome j = k+1, k+2, ..., N

Proof of part 2. 9.6 implies that one can find c such that

Wity Hnpko, 20 xRY 2 e B0, =)

b oy .
i r S0me j = k#l, k+2, ..., D
E_ili 3. Let k, n, 4, N, and V beas in the hypotheses and set

Ve

A.—.lgk(o, O {x: () X REON spv) = B)

r €RY asin9.7. Then for
q 0 :

Pl, Por sees p €-D (0, 1) and rl, rz, e
vrne J""k'i'l k+240c-’n

. q o
Wiy, & 2 Swevn ey, ) xRV <)
Wb 2 WBvVN D
13k
> (k) ST e B (DR, 1))

i=1
> (n-k) " c 27l 57k I;Ik(Amgk,(o, 1))

e,

The theorem now follows from part l. Note

ﬁ.:"'he
. Y, '® ¢ is the constant of part 2.
k

y# 0 and

| '“\at
8.2 and the hypotheses that spt{ V)N (D “(0, 1) X

{o (Wv, x) : xE spt(V) - (3D ™o, 4)x R 51> 0 imply a lower bound for w(v).
9.9. THEOREM. Let 1< k<n and Z 2> 0 be integers and o.éR+ Few

such that 1[

Qac}
'\ € >0 there exists &6 > 0 (depending on k, n, Z, and a)

]
p——r_



[
Fr

) k -k
leLv, (R™) with spt(V) CD'(0, 2+a) X D70, &) and
R apk(o, 2+9 x R 5 (v, 0) <6, then

k
1 k

H (D0, 2))'1V___V(Vn (ng(o, 2) X R“'k))gé{z L Z4e<z<Z ] -¢)

=

PROOF. The proofis in four parts. The crucial idee appears in part 2.

+
Partl, Corresponding to each c&R  and ¢ >0, there exists § > 0

chthat if VEGV, (R") with
sp(v) C D0, 1) x D70, 5,
)\g(V) <¢, and

)QR", 300, 1) x R* (v, 0) <6,

en
X,k

.
enever r >¢ and I_Dk(p, r)CD(0, 1-¢).

Proof of part 1. Partl follows from 9.1, 9.2 and the continuity of w.
g 2. Suppose ZO is a non-negative integer and that the theorem—(c). %)
s been proved for each non-negative integer Z < ZO' Then for each ¢ > 0
tre exists § > 0 such that if VEI__:_Y_k(Rn) satisfies
spt(V) C gk(o, 1) x D" %0, 1),
QR"™; algk(o, ) x R*5yv, 0) <s,
Wib(V, ej))_<_6 for each j = k+l, k+2, ..., n,
500, ) wivy <z, 1 - e
there exist y,~z erR™F with |y-z| > ¢ such that

e
1

spt(V)N [D(0, 1-¢) X {y)] # 8

spt(V)N[DN(0, 1-¢) X {z}] £ 0 ,
in

(00, 1-en WA D0, ey xRP Y <z v

k

00, 1-e)) Tweva Do, 1-0) x RPN - B9, o) wiva DN, 1) x RPH) <.

—

Proof of part 2. Itis clear that we can fix'y, z erR™F, For eauht o ot

O R e R NN




such that if § < 6 then one can find Pi» Pys »e+y P R K with [p.-p.l > 3y
v q EEN

: whenever i#j such that

- 9 k
spt(V)ﬂ[I__I_)k(O, 1-e) X rR" k]C UQ (0, 1-¢) > Dn-k(pi, Y) .
i=1" -

Clearly g > 2 and we can assume without loss of generality that

spt(V)N D(1-¢) X D Mo, ) #

iforeach i=1, 2, ..., q. Partl guarantees the existence of §_ > 0 (depending

' .."'o-. ' 2

,~~°n Y} such that if § < 62 then

BYDN0, 1-¢6))” W(Vn[D (0, 1-¢) x D" (pi. V) >1 -y

‘,ﬂ.‘.’fc‘ir each i =1, 2, ..., q. We apply our hypothesis to each

an__?k(O, l-g) X I_D_n-k(pi. Y)

;:t.(;.conclude that
’ "." k I’l"k
W(vn[DY0, 1-6) X D" (o, v)))

NS very nea.rly an integer multiple of Hk(D (0, 1-e)). Part 2 follows from the

'll ’
.f‘?b.servatlon that the sum of q numbers each of which is very nearly an integew

5::‘16 ftgelf very nearly an integer. The details are left to the reader.

"SuPpose Z 0. In case § is sufficiently small it follows from 8. 2(2) that \:‘

n-k
. »pt(V)nD (0, 2) x R™™" is empty, in whlch case the theorem holds trivialiy
there exist points p in spt(V) close to {O}XR k. By 8.3, @' (WV, ) -
The theorem then follows by 8.2(2) if § is sufficiently small. The t-:ncorr:- el
thus valid for 2Z = 0.

Now let Z be a positive integer and assume that the theorem LT ‘

PI'OVed fo g z
r all non-negative integers Z < 0' Let a, ¢ eR be fiszad

k. small Y > O one sees by 8.2 and 9. 6 that there exists 61 > 0 (depending on v)

Part 3. We will prove the theorem by induction on non-negative inteygv: .

Y.
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, €,4) denote the set of all varifolds Ve_I_Yk(l_D_k(O, 24a) x R™%) for which

yxrR™ <z s1-c .

3 < H(D(0, a+z'1a))\g(Vﬂ [D(0, 2427 0

4 [

2’ 53) 54! 5) 561 ‘31) ﬁzl 63! 50'

-. t.
= is s ici small s s i ith -
1 61(20, eo). 6l > 0 is chosen sufficiently small so.thaa if Ve {=Jk(ZO, so) with

n-k

spt(V) C D0, 2+a) x D770, )

QR™; agk(o, 240 x R* 5V, 0) <5

1 ’

8 cOHk(I:)k(o, 1) > sup{Iik(]gk(O, r))"l[\g(vn Qk(o, r) x R™7K,

I A
- WA, 1< <2) . 3

(Z)n1 = nl(ZO, eo). w > 0 is chos.en sufficiently small so that if Veg (Zy, £4) with (’

k : .
)

Q(R™, 300, 24a) x R*TN(V, 0) < .

. and if x €D50, 2) x R* 7K, rERg such that

1

o<r§2+2"a-|vk(x)|

n-k

Cep(v)A [DE(0, 24a) - DT (), 1] X R k

X o -
CE G 6, n)N[D0, 24a) x D70,
then
- k -1 k1 -k -

2050, ) WA R e, xR <z v - e+ 67,
, The existence of such a choice follows from 8. 2{(2), partl, and elementary
‘geometric arguments relating cones and balls which are left to the reader.’ . a

: -1 k, _k
(3) £ F El(so). Choose' €, = 8 sOI:—_; (12_ (0, 1)).



L. eyl g
B i St hieh i e 6.

+ 28050, = wvn (oo, ) - (0

n-l;

» (=36 )m) ] X RPTY) <

2
éE ‘,(\6) Bl = pl(zoy EO: nl’ k83)' ﬁl > O iS ChOS
i \(c-:_x_yk@k(o, 1) X R®*™%) with

-
¥

en sufficiently sma) 80 that if

QR™ 200, 1 xR W) <,

3

WR(V, &) <B for each j=kil, ki, ..., n..
k -1 -
10M0, MWy <z 1 -, 8%
= V2 =12 % 0 0
"“and if there exist

k -
P, a&spt(V)N[D(0, 2/3) x R" k] such that

n

i i2_ -1 2
> (p-d) > (4 n)
i=k+l

H(D0; 1-¢,)) " 'w(vn Do, e ) XRP M) <z 4 g7

'j':'..Part 2 justifies such a choice.

L ey -1k k

e = . -
( ).'54 54(50). Choose €y 8 I;I (1_2 (0, 1))50.
LBy = e5{Zy, €4 €,). Choose 0< eg <1 sufficiently small so that if
'.-'{":VE lgk(Zo, Eo), then for some r, 1< < 2,

| L

WVAUDY0, 1) - D0, 1 - e )] x R*H)) <,
"..':(9) 52k_—_ 52(20, Egr g ”1)‘ 52 2> 0 is chosen fufficiently small so that if
J Veg (ZO, EO) with spt(V)C I_D_k(oa 2+a) X 121’1
- PE spt(V)N DK(0, 2) x Rn'k,

..
¥,

€

k
(0, 62), then for each

et e~ .,,.._}::-—-A
B P Lard

|/ Rt T e
f i S Tl bl 3 rirbearlolgaety i it

B R T b s s e e v__'.‘_.__,_.,ﬂ_;_;;;
=10 pigh
=€.(Z , £.). Choose ¢ = [8Z N(k -1 - : (
2'70" C0 2 0 (k)] €0 Where N(k) is ag defined ip g 6t
| i: 53(201, sz). 0< €, < 47l ¢ chosen so that if ve ¥k(12k(0, 2) x RR"k and
‘(1=) (0, 2)) Y__V(V) < ZO +1, then for some r, 3/2< < 2, $
1 _,-'r!"l:l 1 l'
. < - 1< k .,
D (0, r) - D0, (1-3e_)r)] " "w(V D (0, - - n-k .

I weyer ambte p R s
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. wuwwm
= = e ....A..Jg.; .A nnuuuu

1 -X . -
x>0 and spt(V)[D (0, 2+a) - Ek(p, n]x R FC N, )} <2 155 )

-1
56(53). Choosersé-—k €5

‘.'(11) [32 = ﬁ (Z €y’ E3 86)- Choose BZ. > 0 sufficiently small so that if
"'ve GV (D <0, 1) x R*F) with

]

oR™ 900, 1) X R* VI <8,

PR

W(B(V, &) <B,W(V) for each j =k, k+2, ..., n, and

< - k - -
200, 1-¢ ) WvA DO, e ) X RP < 2 187

then

T xR < Zg 4 47

”for each k-cube K(C D (0, 1-2¢ ) of side length €

FS
g 1
- — e Srp— L T AL S AP ITE Sy
Cirepnrosaen

PR

0218, = B,(Zys € £y Byl Let By= [N D0, 20] 7B, €.
(13) 63 = 53(2,0, g.o, €y ﬁz, [53). Choose 63 >0 suff‘1c1ent1y small so that if ‘
Vevu (Zge £4) with |
P spt(v) C D0, 24) x D" 70, &) |
b

: : QR”, 3DM(0, -2+a) X R™ vy <1,

then

250, 20wy, Hnito, 2 xR <8,

. Ior each j=k+, kt+2, ..., n.

(14) 54 5 (z , € ) Choose 5 > 0 sufficiently small so thatif Ve U (.. .0}
k

w1th spt(V)C D (0, 2+a) X D (o & ), then for each r,1<1r <2,

Yv

k, _k -1 k k N -1
H (1_2 (0, r)) \X(TT#(V)HI___? ‘0, r)) > ZO +50 -8 £y -

Part 4. The covering construcnon. Lct ve IV (D (0 2+a) X .Dn K((!‘ o

-
.-.thh QIR™; aDN(0, 24a) X R™TN(V) £ 6. We will prove V¢U (Zgr )

:‘dccomphsh this we now assume V€:U (ZO, so) and demonstrate 2 co.afv coan

:.An.uu.har Fielel ( adteloon
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~We define for each positive integer Z,

A(Z) = Rkﬂ {x: —CTDk('\__A__f TT:;(V), x) > Z}

each Z.
< 2, such that

D ﬂnotlng that A(Z) is Hk measurable for

' l.
N Y

(1) The outer annulus AO Choose T, 1< Ty

'\5

EK A
KD A

n-k
wivn[ay, X R e, : |

k k
AO = Ig (0, rO) - l:_)_ (0, ry " ES)CR

|
‘ :\"(2) The function p.

;%) For each x€4(Z )N DO, o),
umber r such that for some p € spt(V), 'ﬂ' (P

1et Py (x) be the srnallest non-negative

—

) = x, and

otV (2500, 2H0) - D 0] x RPN CES®, 6, m)

1%y
‘ ._"‘(b) :FOr each xE& A(Zo-%-l)ﬂ I:_D_k(O, r0-€5),' let pz(x),

(3/2)p1(x) < p,ylx) < 2py(x)

Ky = D5 py ) - B (138 5)0p 0

WvALe X R £ 22, (AL

n-k k, Kk
WV &) X R D < e, 2oH (20 p,(x)) -
‘T;f;:ThiS is possible by the selection of €4 Note that the choice of m guarantees e

.:,,(\

o

i -k . -1 k
5 WA D pyl) x BT DS (Zg 0T 8 ¢

’ #

-

o em ® -
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' n . kK
for some p&€R with T (p) = x. :
| i
. . '
. p: clos[A(Z.O +1)] — R
]‘;)y setting for each x& dmn(p),
plx) = limy sup{p,(y) : yEA(Zy +1), |y-x| <e} . ;
ﬂ(‘)ne verifies that p has the following properties:
(1) p(x) < 65 <1 for each x&€dmn(p), by the choice of Egs ,
(ii) p is upper semi-continuous with a compact set as domain, ;]
{
(iii) For each xEclos(A(ZO +1)), set :
g ! k k %
, A(x) = I_go(x, p(x)) - I:_? {x, (1—353)p(x))CRk . :
_:..:'._. Y;
By Fatou's lemma, for each x& clos(A(ZO + 1)), g
- WV [A(x) X R™ ) Se,Z,H Q(lgk(o, p(x))) . 3
(iv) p(x) > 0 for each xEA(ZO +1). If this were not the case, it would g
'.follow from our assumptions about. ™ that
=k k -1
R < -
O] (‘{__VTT#(V), x) —ZO +1 £y + 8 €5
‘ontradicting x€A(Z, +1),
(v) For each x&dmn(p) for which p(x) > 0, there exist ‘
%, 9€ spt{V)N [D(x, (2/3)p(x)) X R™¥] such that '
n .
2.1/2 -1 : M
[22 (p;-q,) 77> 4 ne(x) . -
} i=k+l : ' :
-"z:This is the crucial property which enables us to use the results of part 2 in our .
':covering construction. This property of p follows from the geometry of
: -
E}k(p, 6, nl), the definition of p, and the compactness of spt(V). i
. 3
(3) Selection of the balls Bi" Bi and the small annuli A.l. We now. choose 2 ;
A\ ) i‘;ﬂ
: i
%
§
Ly
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. e_l_gk(o, ro—e

)N clos(A(Z, 4+ 1)), For cach
X 5 0
= Dy(p; olp)).

"plg“(o, £yt 5) Nelos(a(Z, +1)).

0
(b) pZED (0, X, "€ )ﬂ clos(A(Z + 1)) - B! is chosen so that p(pz) is 2 maximum

1
)f\ clos(A(Z +1)) -

PN
et
,

¥
)
E
=
hi‘

’for ple(O r

(.) Assuming (;1, SPZ, cees pq 1 have b?eln chosen, choose
pqelgk(o, r -€ )ﬂ clos(A(Z + 1)) - QB' so that p(p ) is & maximum for
ik q-1
':ﬁpll-_?_ (0, ry-e ) clos(A(Z, +1)) - U B!
,’ This defines the P, and Bi for i=1, 2, 3, ... . Note that

p(p) > plp, _*1) for each i =1, 2, 3, ... and, in particular, center(B')¢B’

."whenever i # j» We now define for each i=1, 2, 3, ...,

sy - k - - - P =
.f.:-‘. . Bi - '12 (pi’ (1 353)p(pi)) a'nd Ai e Bi Bi - ‘/\(p')

_,'N t,

It is a consequence of the remark above and 8. 6 that each point xEDk( r

'}.l contalned in no more than N(k) distinct annuli A

Now define
3, NG W(B(vN [B] X RPK), o) <B,W(VN[B; % R™K)) for

each j = k41, k+2, ..., n} .

y.the choice of 6, we have that for each j= k+l, k+2

) s ey n.

200, 28, 2 wievn %o, 2)x &™), o

2 N0 3T wieva sy x &P, oy
ST

>N, 7 w(vn[s; x R*H))
1¢@

_"svo that, in particular,




"(4) Selection of cubes. Let O = {11, i 3, oo}, 1 <i <y«

-k -1 k _k
2 Wvn B! xR*]) < g2l npoES DN, 2)) <c. .
i¢®- 1‘ —-"2"3 ()= (=( ))__El

1 2

i (a) We choose a collection of closed rectllmear k-cubes, each of side length

6p(p ), which cover B so that the interiors of each pai: of distinct cubes

1
“are disjoint and such that each cube has a non- empty inter section with B

(b) We now cover that part of B which is not covered by A.UB, by a1
i

L "2 1 Y
:;':collectlon of closed rectilinear cubes, each of side length g()p(p_ ), such that

2

‘the interiors of each pair of distinct cubes are disjoint and such that each cube

"has a non-empty intersection with B.1 - (A,U B, ). This construction

: 2 U
guarantees that no cube touching B.1 touches any cube touching B by the
A 2

“definitida of Egr i.c. recall that the diameter of the unit k-cube is k /Z

. (c) We now continue in the manner initiated above to cover all the B, 3! ie @

by small rectilinear cubes with pairwise disjoint interiors.

(5) Covering observations. We observe the following:

B

(a) o oMo, x,

.

“and, furthermore,

e )N (2 +1)CUAUB :
i=]

" (b) The union of all the rectilinear cubes together with U A. covers U B!,

tyr v,
e

ie@ ! i€ ®

3 wVv(a(z, +1)N DY, romeg) - U B{]an'k)ﬁel
ie® '

9 W, rge )N DI T, W <z

_<_gvﬂj§(V)(lgk(0. T Teg) — A(Zg + 1)

Ve 1 .
-(d) W S(V)(Dk(O, r,)) is no more than the sum of the following terms:

’()WV(A xR ) <e =87 Oxgk(lgk(o, 1))

1k
<87 HUD0, 1) .

et A Ty s X

LTI TR R RIS

et e e 2P T

e Dama A

.
@y

e 2 N e

Tt et
Sroeey 4

wa

s = oma o
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9~-16
)+ K is a rectilinear cube in r"

chosen in (4) above}

-1 . )
< (ZO + 4 eO)I_:_Ik(U{K : K is a rectilinear cube as abpve})

1k

<(z, +4 e )HY B!)
; 0. 0= ig@ *
i) > WA, x R™® )<zO ) > I;Ik(B.’)

€@ 1€®k
< Ze,N(K)H (D Y0, r o)

-1
<8 eOI:__I (12 (0, ¥ ) -

. -
iv) Y_JV([A(ZO +1 - U A.UBi]X R" k)
o= ie@ *

5el=§%0§%’ﬁ01n<8 £ B0, )

3

.v)\.)_:V k’V)(D (0, =, U B!)

k =1 k
= \grr#(vmg (0, Tyeg) - UB{ﬂ{x: o‘(v_yn#(v), X <2, )

gzogk( k(,r -€ )-UB'

“..,;

1-
Hue we are using the fact that TT_%_(V)EIV (R ) and hence corrcsponds to a H“
measurablc integer valued function whose value at xCR is O (WT\' (V), x)

for Hk almost all xERk

(e) Summation-of the terms listed in (d) yields:

WITAVHD(0, 7o)
<(3/8)¢ Hk(D (0, =g
[Z +(2/8)s [H( U B') +H (D (0, r -t ).. UB')]

" ie®
<[z + (5/8)¢ ]H (D “(0, T -

(0 By our choice of 61.

WVIDN0, =) x R < (2 + (681 R0, =)

"-"ull .

'?ji‘:FrOm the definition of 54 we must have

“:‘"e';?‘ ':il ,';.:
e
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[ is proved.

W) (m, e)eRT xRS

Ty we gy, (D0, 1+ Pln, Ki(m, k) - DO, 1] x Do,
'Zf with W(W) <m, and |

togethel with 9.9 imply that we can assume Q(R; aD (0, 1) X RrR" )(V)

.Here C2 denotes.the complex plane and c€ R

WD, ) X R™S) > [z + (1/8)e J D 0, 1)

(3

'I‘he contradiction is apparent. We conclude V¢g (ZO, go) and the theorem

9.10. THEOREM. Let 0<k<n beintegers. There exists a function

P(n, X) : RT R;—-——>R;

with the following property: If

0

-

) verv, (o, 1+ Pla, Kim, )X D70, Pla, Wm, e)
With W(V) < m.“

l
P(n, k)(m, ¢€)))

4 Q(R WV, W) <m,

": then there exlsts sorne non-negative integer Z such that

'!"':.2_.-5<H (D (0, 1))~ W(V)<Z+s.

PROOF. 8.1(1) together with 9.2, 7.2, and 7.4 imply that WV near

BD (0, 1) X {0} can be made small by choosing CP(n k)(m, ) sma.ll. 6.19

.small

:‘:?:: by choosing @(n, k)(m, €) small and applying an elementary expansion of R,

The theo'rem then follows using 7.2 and 9.9.

4
9.11. EXAMPLE. Let V € °9/,(R") be the stationary integral varifold

correspondmg to the complex algebraic varlety sz {{z, w) : w= CZZ}' (11. 1(2)).

If ¢ is 1arge then

VN 124(0' 1) will lie near the unit disk in C N {{z, w):z = 0} and have

2-dimensional area nearly equal twice a(2). V isa counterexample to a

number of-plausible conjectures concermng the behavior of a minimal surface

Whlch lies near a disk,

!
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COMPACTNESS THEOREMS FOR INTEGRAL AND REAL VARIFOLDS IS 4“*,

3

10.1 DEFINITION. Cones. Let0 <k <n be integers, p¢ R" ;‘._,13,

and Ve V (R.n) We define the cone pV over V with center at p by pV = ; ,

,AJIJL([ 0, 1] X V) ¢ Vk+1(Rn) where f: R X R n__s R , £(t, %) = p + t(x-p) for . P ] :

'“ R, x¢ R, If Ve Gv (Rn) and r = sup{ |x-p|: x ¢ spt(V): one verifies , - |

‘3 ! !
”, that W (pV) <k 1r W(V) Note that if V ¢ GV (R_n) then pV ¢ Gvk I(Rn)’ if

--‘ ] il:‘l
Ve RV (R”) then pV ¢ RV, . (R)i and if V ¢ IV, (R") then pV'c IV, (R 10

i
b 1

10.2 PROPOSITION. Let 2 <k <n be integers and V ¢ GV, (R

Plie intrinsically on S l. Then S(R", )(V) = 0 if and only if ° E i}

- i, «:‘

™, s o) = o. JEG

! | .

i PROOF, : ' ¥ 1y

- ! -1 _ - S

; (1) Suppose S(Rn. S77H(V) = 0. Then if E(Rn: s o) #0, I
" ‘there exists g ¢ X (R", n-l) such that §(0V,, g) > 0. For eache >0 let ‘. ,~
iy t l;x
i i R {t:0 <t <1} be chosen of class ® 50 that { (x) = 0 whenever Lo

....’:‘ i ..1
] ‘xl <e, fe(x) = 1 whenever lx] > 2¢, and Llp(fe) <2 « One notes that,

Ztince V lies intrinsically on s, wiovnD™0, 1) = k 8 e W(V) when- A
: " cver 0 <r <1, and concludes from 6.4(4d) and the linearity of S(V, <} o
‘ that 1__r§0+ s( ov, f g) = S( 0V, g). Hence there exists € > 0 such that . | 1; !’
: .L'S( OV { g) > 0 We now write umquely f - hl -+ h where h1 h . 'EL’E‘
) satisfy Ih (x) + x| = Ih (x)]lxl and h (x) x = 0 for each “1,-
It is clear that S(OV, hj}= 0. Hence S(OV h )> 0. An easy !l
4

(2) Suppose S(R )(ov) = 0. The argument to show §(R , sn'l)(V) =0 |

‘:‘: is not difficult, See, for example [ FL2 p.20]. ) ‘
N

10.3 DEFINITIONS. Tangent cones. Iet 0 < k < n be integers,

CCR be ClOSed and V ¢ V (Rn) with Q(R C)(V) <o. For each

Bt e

BTN 00N At VORI LS NIRRT R M At Chulan et oonrtie it v ag o st o o ot L IXU R

—— = o ‘.
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——

|
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3 | e
‘.?( spi{ V) - C we define the set of tangent cones to V at p, denoted K(V, P> ": E‘*ﬁ‘
0 consist of all varifolds K e V (D (p, 1)) such that for each ¢ >0 there "g‘i |;‘l'v
xist arbitrarily small values of r >0 for which F(K f(p, ), (V)’\ D “(py 1) 1” E%
¢c. Here f(p, 7 :R™—> R, f(p, (%) =p+r (X -p) for x ¢ R". One i 111{
\:':eriﬁes easily that for each p e spi{V) - C, K(V, p) is not empty, K(V, p) é x
1s compact and W(K) ®k(WV p) &k) for each K e .K(V, P). E § i
1f AER is a set and p ¢ A, the tangent cone to A at p consists of :ﬁ .f
a'llpoints X e D (p, 1) such that {for each e >0 there exist arbitrarily small .l:: '
values of T > 0 for which dist(x, f(p, r)(A)) <t . .r] ‘4
u : rl l‘
10. 4 THEOREM. Let0 < k <n be integers CcC R” be closed, d >0 1 l.
amd Ve RY, (R") with Q(R'; CI(V) <o and © Sw, p) > d for each
pe spt(V) - C. Then t‘ 1{
(3 spt(V) C is a k-dimensional rectifiable subset of rR" and WV(A) ‘ h,
3 _>_dH (A) for every Borel set AC spt{V) - C. ;i‘j‘
{2) For I—Ik almost all p ¢ spt(V) - C, there exists a simple k-vector § -: J
’ .p € A (Rn) with \p.l >4, MV(p) ex1sts, WV(p) exists, and for each Ne & (R-n3 " ’
MV(PIN) = WV(RHN = % el
;'Furthermore the tangent cone of spt(V) atp is contained in the k~plane of 1, f ’I,
| and K(V, p) consists of a single varifold D corresponding to a unit k-disk ’ s
: centered at p and contained in the k-plane of having constant density no .
iless than d. . 2 I
ok PROOF, The theorem follows from 5.2, 5.4(2C), 6.19, 8.2, 9.1

.9.2, and the arguments in the proof of [ FF 9.14].
s

10.5 LEMMA. Let0 <k <n be integers, cC R"” be closed, and

Vf GV (RY) with QR™C)(V) <co. IE spH(V) is & k- dimensional rectifiable
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“abset of R, then VN(R™- C) ¢ RY, (RY).

_ PROOF. From 5.2(1) and 9.1 one concludes that for Hk almost
'11 x¢ spt(V) - C there ex1sts some K e A Rn) parallel with the approx1-

mate tangent plane to A at x such that WV(x) exists and for each X ¢ A Rn)
', wwx)(x) = |\- p|. Thelemma follows from 5.4 (2c).

p 10.6 LEMMA. Letl <k <n be integers, CC R™ be closed, and
Ve Gv, R“) with Q(R C)NV) <oo. Letpe sp{V) - C, Ke K(V, p) and
Rn—> R*, e(x) = |x-p| for xe R™. Then '
(1) S(R, aD%(p, D)(K) =03
(2) b(K, e) = K '_
(3) For H' almost all r, 0 <r <1, B(K, e, 7) exists, S(R™ 8D%p, TNB(K, e x)) =
o and WKnD (p, 1) = WpB(K, e, 1);
| (4) I£0<xr<l, BK, e, 1) exists, and B(K, e, 1) ¢ RV, 1(R“) then
| pB(K e, x) ‘ RV, (R") and KND Mp, 1) =pB(K, e, 1)}
(5) i 1n£{® (WK x) : x ¢ spt{K)N D (p,l)}> 0 then 1nf{® (W'@_(K, e, r), X} : %
ke spt(B(K e, r))}> 0 whenever 0 <r <1§_§12§__(K e, r) e_x_1_§_§§— ) ‘

PROOF

. Part l. Conclusion (1) follows from 6.19. The first part of conclusion (3)

follows from 7. 4(1).
| Part 2, Abbreviate Q = Q(R CHV) and define for 0 <r < dlst(p, 0, 11( r) =

'¥(= ) c)ﬂD (p, 1)) and m(r) = w(vn D (Po r)). Sincel and mare non-

decreasmg as functlons of r, ﬁ' (r} and m (r) exist for Hl almost all r,

0<r < dist(p, C), and 7 1(2iii)) and 8. 1(1) imply

"1».1

I

I
S 2'(s) < 4x) <m(r) Sk"l r ' (1) +xar m(r) .
0 ' <k ro (1) + 1 ar m(r) .
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3 - o

dandhence, as in 8, 2, r

V'h

1{: >0and 0 < T, < dist(p, C) and m(r) <(1l+e¢) rk

.,then

e,
e

k-1 ] O
¥ O WV, P TS rf/(m) + 1k (L +e) Q ON(WV, phefl) <5

m

1;_’1(1‘)-exp(Qr) is non-decreasing for 0 <r< dist(p, C).

k
O (WV, plalk) for 0<r < Xy

‘whenever 0<r < rO and hence
W ) ] ~k+1 k
: lim inf o4 T £ (x) 2k © (WV, p)alk),

= ey
23

EAReE

Hm s o4 i(r)-l m(x) =1,

ST AT SR AT

3
AN _k .
and r {¢(r) exp(cr) is non-decreasing for 0 <r < T, and suitable ¢ ¢ R+.

The continuity of b( , e) and 7.1(2(iv)) imply conclusion (2).

Part3 Let q¢ R {p} For each x ¢ R" -{p} we define 8 (x) ¢ R to be
the angle between px and pq. Let Ke K(V, p). For each m, 0<w<Twe
-'deﬁne

n(6) = WA {x: x ¢ R"-{p} and 0 (x).< 6}).

4 =

Since n is a non-decreasing function of 6 for 0 <8 <w, n'(0) exists for I:_ll
almOst allg, 0 <9 <w, LetO < 6 < 1w such that n (9 ) exists, For each

<5 < e , let f_: rR" -{p}— R be chosen of class oo so that for each

5
'“R {P}
h) f(y)—olfe(x)>eo

b ¢ g0 = 1if Gq(x) <9, - 8

(111) f (p + t(x-p)) = f (%) for each t ¢ Rg )
‘“’) T2 = £,(y) if @ (x) 6,y and

) Lip(s laD (p, 1))< 26~ 1

& 4

- For each e >0 and 0< ) < rz <1, let g, : R —> R be chosen
fclaSS o such that for each x, y e R™

i

.i) . '

.ii) gc(rl, ;-Z)(x) = 0 if Ix-pl _<_r1 or |x-pl _>_r2
B lrpy T )0 =1 if rj+e < | x-p| Sz, -
iy .

i

N

I .

o

T e

T




el

f~"("i) Lip(g ) <¢ e

’;,(“_ For each e, 9§, Xys T, as above, define h(rl, i € 8)
}‘ X(R » 8D (p, 1)} by setting for x ¢ rR" h(r LY 8)(x) =
f(X) g (xy w00+ (x-p} .

;;,;: . From the continuity of b(+, e) and the fact tha.t Ve G'V (Rn)

we see that K is the weak limit of finite sums of elementa.ry geometnc

vanfolds v for which b(v, e) =0,

s

One uses 6.1(4b) and conclusion (1)
above to verify that if 0 <r, <r_ <1 and

E 1 "2
(a/dx) WKN{x: 0 < |x-p| <7 and 6 () < 8})
(}custs 'Ior s =71y, IZ'. then
0= lli? o+ §(K, h(rl, T, €, 6))
e 56—> 0t

=k WKN {x 1 < |x-p] <r, and eq(x)f_ 8,1

+r(d/dr) WKN{x: 0 < |%-p] < r and eq(x)f_ o 1) |

r =71

4 rz(d/dr) \g(Kﬂ {x: 0< Ix-pl < r and Gq(x)_i 90}) l

,'-Ior fixed q and 90 let

\_1_(1')~= V_V(Vﬂ{x: 0 < |x-p| <rande (x)f_ 60}) .

k g(rz) - ku(x) =r, \__4'(1'2) -r

T RGUE

ku(r) = ru'(r) ;
= =
u(r) =cr ,

k-1

9'(r)=ckr )

; k
Ior some constant ¢, 0 <c< G)c(\_*{V, Pla{ k). Since q 8, T

, T, are arbitraxy

1" "2

°“e concludes that WKﬂD (p, ) = WpB(K, e, r) whenever B(K, e, r) exists

‘Jand by 7.4 B(K, e, 1) exists for E-_Il almostall r, 0 <r <1l.

Conclusion 5

22 T e B K e -

.
T L e =

e m—
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s an immediate consequence,

art 4. Let 0 < r <1 such that B(K, e, r) exists and suppose ik

¢ X(R", aD%(p, 1)) such that S(B(K, e, 1), g) >0. For cach ¢ >0

hoose fE: R; —> {t: 0 <t<l1} of class o such that

P Y

]

il
N
-

Uszng 6.1, conclusion (2), and the assumption that B(K, e, 1)

il
eXlStS, one verifies the existence of eo > 0 such that S(K h ) > 0 when- i
ever 0 <eg <¢ 1

o Hexe h € X(R , 8D (p, r)) is given for x e RT -{p} by

e

;
{x) = fs( ]x-pl) g(x) and hc( p) = 0. Hence the existence of g contradicts 1

. i o

“conclusion (1). Conclusion (3) is now established.,

e b s e S Ry W &
;

Conclusion (4) is verified using 5.4(2a), 9.2, and conclusions
(2), (3).

FE R e

10. 7 THEOREM. Let 0 <k <n be 1ntegers, CCR be closed,
anch GV (Rn) with Q(R : Q) (V) < oo and 1nf{® \QIV, p) : pe spt{V).~- C}>0.
'Then VA(R™- C) ¢ BYR(R").

weger

i

PROOF. We prove the theorem by induction on k. Clearly the
theorem holds :for k = 0. Suppose then 0 <h < n and the theorem holds

for 0 <k <h-l1<n. We will prove the theorem for k = h. Let then d
Ve GV, (R) with Q(R™; (V) = Q < o and inf{ ®™ WYV, p) :pe spt(V) - C} =

J

§> 0. By 10.5 it is sufficient to prove that spt(V) - C is a h-dimensional ™
';.éctifiable subset of R". spt{V) - C is clearly a Borel set and by [Fz 3.1]
d H ﬂ(upt(V) C) < WVﬂ(R - C) < oo. Let BC spt{V) - C be a Borel

'set with H (B)> 0 and p € B such that © (WVﬁ(R B), x) =0, Let

G0 i AN A8 F A

‘*Ke K(V, p) and 0 <r <1 such that B(K, e, r) exists for e as in 10, 6.

e

By

S SLEN

'10 6(5) mf{@ (WB(K, e, 1), x) : x e spt{B(K, e, r))}>0 and

fobsiliinst-wep

o EAAA S S

RO
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3 i
s 10-7 h il
Eed | e b
iy
[9R"% oD"(p, T(B(K, e, ) = 0. By 6.13 QR(B(K, e, 1)) <co. By il
;’;ur induction hypothesis E(K, e,' r) ¢ l_}zh_l(Rn) and hence K ¢ Bzh(Rn)- :;i -1
“By 10, 6(1) and 6.13 Q(Rn; 81_3__n(p, D)(K) = 0. One concludes from 10. 4(2) E
gand 9.8 that there exists ¢ >0, ¢ >0 and an open set UC S_'_:Zh(Rn) such that .%F;

.‘for each m ¢ U, Igh(-n(spt(.]:))) >c . whenever J ¢ =G\=7h(Rn) with «{

: fg(R“; 8D™(p, MNI) <Q, inf{O(WIT, %) : x ¢ spt(J) - 8D(p, 1)) > 4, Il
%?Y(J) <2 Gh('\gvv plal) andZ_E:'(K, Jy<e. Let0< *, <1 be chosen so that ' ;
gbjr-h-léh([ spt{(V) N lgn(p, r)] -B) < 2-1c whenever 0.< r < ry. Now choose % ;
’0 < 1, < Ty such thg.t F(K, f(p, rl):”:(V)ﬂ I_gn(p. 1)) <¢ and rl—h w(vn Ign(p, rl)) !ﬂ :
;:5 2®h(\/__YV, Pla) where {(p, rl) is as’in 10, 3. Clearly then I;Ih('rr[ spt(f(p, rl)_#(V)) 1) éi :éig,;
:T_S..Zc,for each w ¢ U. Hence I_-__lh(v[ spt(VN lgn(P» rl)) 1) > e for edch w e U. *; e
??.Hence. I:_@h(n'[ spt{VN Ign(p, rl))ﬂ B]) > Z-lrhc for each m ¢ U. Since Bis an ‘ |
".::arbitrary Borel subset of spt(V) - G, 5.1(4) implies that spt{V)~C is an
.e}'l-dimensional rectifiable subset of R”. The theorem follows. ‘
10.8 THEOREM. , |
rHypothes es:

(1) Ee_t 0 <k <n be integers,
(2) Let Ao, Al, AZ’ e AkC R" be closed subsets of rR™.
,(3) Let Cl CZ- C3 .ene Ck R" be closed jubs ets+of R™.
'?;"(4) For eachi=0,1, 2, ..., klet d, w,: R —> R be continuous and g
Eifnon-decreasing.
(5) For eachi =1, 2, ..., klet q R+ —_ R+ be continuous and non- l"’.
;’féécreasing. ' ‘
.:.‘['éonclusion: The following subset of g"Vk(Rn, rR®, ..., R™ is compact
! m the weak topology: "
| GV AR A -oen B O H
(Vi Vi_po w0 Vo) (2) WV, DO, 1) S wis) fox ench |'1'
reR andi=0,1, 2, ..., i {l
B
- Rt
G ;




o B 2 T e e et et s m

f'\"

(b) Ok(WV., x) > di'(r) for each r ¢ R, each
= 1 — ——— ———
xe [ spt(V)NDG(0, ©]-C,, and

i=0’ 1, 2) s 00} k;

<q(r)

(d) Vﬂ(R C)ECX“)/(Rn)for each1-0 1, 2, «.., k}

._ PROOF.

Partl Let 1< j < k be an integer and (V, W) ¢ G, (R®, R™) with Q(R SAIWA
:;3— For eachpe R - CJ, either (1) G)J(WV p) exrsts and is finite, 2_1;

[2) For each ¢ > 0 there exist arbitrarily small values of r > 0 for which
W(VﬂD (p, r)) <e WWND ", ).

Proof of Partl. Let V, W, p be as above and for each r ¢ R set m(r) =

W(Vr\D (p, r)) and n(r) = W(WﬂD (p, r)). Both m and n are non-decreasipg

and thus I—Il measurable and differentiable H almost everywhere. We consider

7“ 7

‘:two cases. 1

Case (a). Suppose X [ m(r)] -1 n(r) dr < . In this case 8.1 implies

. X
+ () el QRN ONVLW + ] [m(e)] ™ xi(s) ds]

{"15. non-decreasing for 0 <r <dist(p, C). Hence @J(Y_\TV, P) exists and is finite.

Case (b) Suppose (S) [m(r)] n(r) dr = co . Clearly for each

t > 0 there are arb:.tranly small values of r >0 for which m(r) <e n(r)

4 e phe s T S e T IE e

[
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() L(R™ C.U[R" p__g(o,r)])(vimg"w.. r, v, ;N R0, 0

for each r ¢ R and each1=1; 2, cie k;




Part 2. LetO .<_j < n be an integer and AC R” be a compact j-dimensional 3

reCtlflable subset of R". Let B and Y be Radon measures on R™ such that

i

{

i

for each p ¢ A either OJ (b, p) =0 or for each ¢ > 0 there exist arbitrarily
e i
vsmall values of r > 0 for which p.(D (p, r)) <e v (D (p, r)). |

Then p(A) = 0.
p.r.o.of of Part 2,

Let ¢ >0 and choose 6§ > 0 so that V(R ﬂ {x: dist(x, A)< 6} )< e.
SetB-A {x: @i, x) =0}. Use[B][MO][FF 8.7] to cover i almost

§
all of B by a countable union of disjoint balls Qn(pi, r)), i=l, 2, 3, ... , where |

p e B, 0 < r, <&, and D (pi, r)) <e V(E (p;» 7)) for eachi. We have i

_'.P(B) N (D" (pys 7))

imers
e

et e e 3l e e 3

n
< -
T % e UD (p,y T))

< ¢ V(Rnﬂ{x: dist(x, A) < 6})

u < e UA) +¢

L : j . . !
forpe A-B, ©(i, p) =0. Since H(A-B) <oo, [ F2 3.6] implies p(A-B) = 0. 9

Part 2 follows since ¢ is arbitrary.

Part 3.

Let'Z <J <k be an integer and (Vj, Vj—l’ Vj-— ) € GV (R, R® Rrﬁ v
such that

“) AR, CV,, V) <

;’(2) Q(R.c )(v p Vi) <

.:('.3) mf{OJ(WV ; x) P Spt(Vj) - [ spt(V l)UC 1} >0
{4 inf{ol- 1v__vjvj_1, %)

P X e spt(Vj_l) - [spt(V )UC 1]} >0
s) SPUV, ) - C

i-2 is a (j-1) dimensional rectlfla.ble subset of R® with
':{f:clos[ spt(V )] C spt(V )UC In case j = 2 one takes C_ = ¢ . "
i ' ‘
.‘Then WV(spt(V ) - C) -0and VA (R"- C)ERV( RY. ‘

:Proof of part 3. By 10. 4(1) spHV,) - (spHV,
}1rectifiable subset of R and spt(V

_1) UCj') is a j-dimensional
) - CJ 1is a (j-1) dimensional rectifiable

fsubset of Rn. Note that if p ¢ spt( 1) - C such that ®J(WV p) exists and

'.is {inite, then @J_l(wvj: p) = 0.
Wispt(V, -C) =0.
j-1 i

Smce CJ_ CCJ, parts 1 and 2 imply that

t
i 10.5 implies that V- C ¢ gyj(R“). . '




-

"Part 4, Let 0 <j <k be an integer, d >0, q <, and V

>
’Q( i C)(V) <q, and @3(wv p) > d for each p ¢ sp{V) - C..

l)V V LI ]
BVJ (R™ with lim, V. = Ve ¥, (R"), Q(RY CHV) <a, and@J(WV,p)
dfreachpespt(V)—C for eachi=1, 2, 3, ... . Then V « RV(Rn)

In case

vy, VZ, Vi ee e LV Rn) then V e IV(R“)

:' and the lower semi-continuity of Q(R C )( } .

- Proof of part 4. The first conclusion of part 4 follows from 8. 3, 10.7,

The second conclusion

follows from 5.4(c), 6.19, 8.2, 9.10, a.nd 10. 4,

: Dart 5. 2.4(3), parts 3 and 4, and the Cantor diagonal process show the
" subsets of gcy (R™, R™, ..., R™ of the conclusion to be sequentially
) compart The fact that CJ(Rn) is separable in the I ] topology for each

J- 0,1, 2, ..., kimplies that g(‘v (R R Ve e Rn) satisfies the first

a>.10m of countability. 9“V(Rn) j=0,1,2, ,.., k, contains a countable

wec.kly dense subset, namely the space of all finite sums of elementary

‘geometric varifolds v(x, A) where x ¢ R" has rational coordinates and

'.')\e J_\:j(Rx,’) has rational coordinates. Thus Cqc)/k(Rn, Rn, cee, Rn) is

'éleparable. The compactness of the subsets above follows from their

“sequential compactness.

10-10



11. PLATEAU'S PROBLEM

I_’;‘ﬁﬁ‘ 11.1 Some phenomena of least area problems. J. Plateau

211801 - 1883) was a Belglan physmlst and professor among whose accomp-

lishments was a study of the geometric properties of soap bubbles and

4
,-‘w,

':soap films [ P]. The forces of surface tension (incidentally a soap film

.,"as two sides on which surface tension acts) are such that, to a good ap-

ik,

-\p oximation, the “!area' of a soap film having a given wire frame as bound-

: ary, will not exceed the area of surfaces which are obtained by small

deformatmns, obtained, say, by blowing on the soap film [ BO]. Itis

-approprlate that the various mathematical problems having to do with

least area should be called collectively Plateau' s problem.

A We now consider several examples which arise in the study of
Plateau' problem and which illustrate the need for admitting surfaces of

the generality of integral varifolds in its solution.

Example 1. The striking results obtained by J. Douglas [ D] tell

q.,:' 3
‘us that among all mappings of the 2-disk D_Z(O, 1) into R~ which map the

iboundary circle 8]22(0, 1) homeomorphically onto some given simple
‘:;'!,:j‘c.losed curve C in 1{3 there will exist some mapping whose area is least.
NLet Ay(C) >0 denote this least area. Douglas showed similarly for each '
n =1, 2, 3, ... there exists a map of least area among all mappings of
the "2-disk with n-handles'' into R3 which send the boundary c1rc1e homeo -

Thorphlcally onto C. Let A (C) denote this least area forn=1, 2, 3, ... -

,Now consider a simple closed (unknotted) curve C in R3 which looks like:

s
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boundaly and having least area (in some ultimate and, as yet, unspecified

“sense) then S must be of infinite topological type. One can in fact solve
':this least arca problem in the space of oriented manifolds [ FL2] and in

“he space of unoriented manifolds [ FL3] [ R3]. Such solutions will be

: 3
i real analytic submanifolds of R* at all non-boundary points and satisfy the

. mmlmal surface equation. " The boundary behavior is not thoroughly under -
y stood For a boundary similar to that of C above S. Scheinberg has observed

'that the values of area for manifolds having that boundary and satisfying the

minimal surface equation can include all real numbers in an interval.

Example 2. H. Federer has shown that each k-dimensional com-
;::'plex algebraic variety in complex n-space is a surface of least oriented
arta whenever 1 <k < n are integers [ F4 4.3]. Inparticularif V is such
“avarlety and § is any oriented surface without boundary -- say, for examplc.
a locally integral current -~ which agrees with V outside a compact set,
I"then unless S = V, the 2k-dimensional area of that portion of S not on V will
be strictly greater than the 2k-dimensional area of that portion of V not on

' This is true whether or not V has singularities. Thus the class of

smgularltles which arise naturally in the study of least area problems con-

'l".

'tams, at least, all singularities of complex algebraic varieties. Clearly

","'lvl € .;Q‘VZI(R n) is stationary.

Example 3. R. Thom has given an example of a 14- dimensional
fasdiatalte il

aet,

real analytic manifold having a 7-dimensional integral homology class which

annoi be represented by a 7~ dimensional compact submanifold [ T]. How-

c‘x.

eVel‘, this homology class can be represented by a 7-dimensional orientesl

, E“Tface T, i.e. an integral current, of least area among all oriented surface:!
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Lrepresenting this class [FF 9.6]. Thus T, of topological necessity,
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Ekample 4, Consider the curves Cl' CZ' and C below,

ot 2PtV Ay W B TGP T
—=p

P
Y X

et

e
o ———

O
Aot
T . e e
CR PR TR s

T

S Pt

F01 the curve C1 one would expect a surface S of least area to resemble ‘[
a MUbius band. Such a surface can in {act be obtamed by solving the least N

arca problem for boundary Cl in the space of flat chains with the integers !

modulo 2 as coefficient group. Similarly, for the curve CZ one would ex- {

of least area to resemble the so called triple MUbius

I
1‘,

2’
band (a sectlon of which is indicated), and one can obtain such a surface

Jp—T

- by solving the least area problem for boundary CZ in the space of flat
(‘..

.'
]
E pect a surface S
F
!
}
l
3

:;.j ‘thains with the integers modulo 3 as coefficient group. For the curve C

-,'(obtamed by removing a small arc from both Cl and CZ and adding a bridge o

v
.,,'

45 indicated in the dashed lines) one would expect a surface of least area 5
X

to resemble S (near C) attached to S (near C ) by a thm ribbon of surface . T

lelmg in the brxdge. In no topolog1ca1 sense does S have the boundary C
for J. F. Adams has observed the existence of a retraction (S5, C)-—--B’(C C)

[Rl p-80]. However, there is such a surface S for which
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(Isl, |C|) =0. The proof of this factis beyond the scope of this i ATE H
\ pa
i ' D
& ) . i 13
:f Example 5. The sketch below is of a curved wire C and soap lgl::ﬁ {
! flm S which actually forms on that wire i 3l
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Note that the wire C (indicated in solid lines) does not form a closed loop! 1 i’
To achieve this film one makes a closed loop (indicated in solid and dashed :2 ‘
";"hnes), punctures the lower part of the soap film (within the dashed lines), 3’ :i
" and cuts off the obsolete wire {indicated in dashed lines). Tangent cone l ;
farguments show that to approximate this partlcular soap ﬁlm by a stationazry F
B 2 dimensional integral varifold V in IV (R )} one cannot take as boundary an 4 ’» ;:

i .":‘:mﬁmtely thin) curve C approximating C. However, it is plau51b1e that if
Cl is a small tubular neq,hborhood of C0 then there will exist V approximat-
mg S for which P(R C )(V) = 0, Also, using a tubular ne1ghborh00d of

I tapermg thickness, one would expect a closed set lookmg like
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to contain the BP (R”) boundary of 2-dimensional stationary integral vari- b
folds of arbitrarily emall area. i
: ' o
11,2 LEMMA. Letl<k<n be integers and AC Rn be a compact ;gl 1{
R T
(k-l)-dimensional submanifold of R™ of class 2 with or without boundary. : :
Then for each ¢ > 0 there exists § > 0 such that whenever pe A and 0 <r <5, .zi',
- '.1 :.;t
. ":ii;:';{g'!
¥ W(o[vAD (p, 1)]) < e k) T . i
= = sl
PROOF. Straightforward calculation. R
o 5,
11.3 LEMMA. Letl < k <n be integers and ACR" be a comnact i v
3o
(l' -l)-dimensional submanifold of R of class 3 with or- -without boundary. :
“Then for each 4 >0 and c <  there exists ¢ >0 such thatif Ve B'Yk(R ) : I'
thh W(V) < c and @ (WV x) > d for each x ¢ upt V) - A, _1_-f_ 0<r<e, é_t '.
P ¢ spt(VIN A, and if ;
spt(V) N Qn(p, r)C{x: dist(x, A)<e r},
k QARY (v, [A]) > ..
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PROOF.

3

e

[ vPartl, Letqge Aandge }_((Rn), g{x) = x-q for x ¢ R™. For each r ¢ Rg
.v!'& -

%}5:’1'10te that

IR,

T(]alNRp, 0, @ = Wl [A[NDY e, 0 ]).

';;’Let d >0 and choose § >0 as in ll. 2 corresponding to ¢ = Z-k.-ld. For

}re R; we set
m(r) = W(vNDp, M,

m(n) = Wia[ |4]ND%a 8 1HNDYa 0,
m,(x) = m(xr) -~ my(n,

a(x) = 7 T([A]N DR, D, g) .

Assume Q(Rn)(V, !Al) < co. By 8.1 we have that for I—_Il almost

0 < -k (%) + T mp(x) + 1 ARV, |A]) m(x),
|

@ () =k (9 +x ()

'_-:."_ff 2@2( r) > m(r) for 0 <t < Sintegration shows that
-k n
r - m,(r) exp(2r QR NV, |A])

'is non-decreasing as a function of r for 0 <r <34,

o
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45 ¢, and @ (WV, x) >dfor each x ¢ spt(V) - A, Letpe spt{V)N A. 8.1

;-.«.’rlp ql < ¢ and z ¢ spt(V) w1th dist(z, A) = Iz ql <e. For sufﬁciently

', small e >0, 8,2 implies that W(VﬂD (z, Iz ql)) > (l-e) dafk) lz ql

~,}

,thus W(VﬂD (q, le ql) > (l-g) d (k) |2~ ql For 6 chosen as in partl,

rpart l implies that for e <r < 3§,
\-'7,‘

-k-1

Y__V(Vﬂgn(q, r)) > [ Z“k(l-e) -2 ] d ofk) :t'k exp(2 r c).

g_v’(vmgn(p. ) > 27kl (k) = exp(2 r c)

“whenever-0 < r < §, The lemma now is an easy consequence of 8.7 and
9, 2.
by

1.4 PROPOSITION. Letl <k <n be intcgers, d >0, ¢ <o,

.;;',:'ACRn be a compact (k-1)-dimensional submanifold of R" of class 3 with

{"or without boundary, and KC Rn be compact. Then the subset of RV (I’)

v conmstmg of all vanfolds V {or which A(C clos(spt(V) - A), W(V) <ec,
Q(Rn)(V [A]) <c, and ® (WV x) > d for each x e spt{V) - A, is is compact
’.' in the weak topology.

11.5 THEOREM. Letl <k <nand q>0 be integers; A and B

’L;J
be compact (k-1) -dimensional submanifolds of R" of class 3 with or without

boundarz, M M2 PPN Mq be compact submanifolds of R of class 3

yith or w1thout boundary; CC'.Rn be compact; and W € g\zk l(Rn), Then

‘(1) There exists V ¢ GV R.n) such that

.e' '.
s

(a) (R, My, My, weos Mg A CUV, [B]) =0

. +
Let ce R, de RO, and V¢ RY, (R ) with W(V) <e, QRM(V, [a])

;mplxes that p ¢ clos(spt{V) - A}, Therefore for each ¢ > 0 choose q ¢ A with

11-7
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(B) vN LR“-(spt(W) UM UM, U... UMq)] € gyk(Rn)

(c) W(V) = inf{W(S) : S e ng(Rn) - {0} and satisfies (a) and (b)
above with S replacing V}

whenever there is at least one S ¢ GV (Rn) which satisfies(a) and (b))

= =k

above with S replacing V. In case Q(Rn)(W) ‘< oo and

inf(©HWW, 3 : x ¢ spt{W) - (AUCUM,UM,U... UM} >0,

then VA [R™-(MUM,U... UM)] IV, (RT). Also W(V) >0 in case
either o

i) A¥dp, 8A=B =M

=M, =...=M =¢, C=¢ and W=0, or

"(ii) B{£ o, 8B =A=M =M, =... =Mq=¢>, C=¢, and W=0.

(2) There exists V¢ _IV__k(Rn) - {0} such that

(a) BP(R™; A)(W) =0,
(b) AC clos(spt{V) - A), and

(c) W(V) = inf{ W(S): S ¢ IV, (R") - {0} and satisfies (a) and (b) above
with S replacing V},

"Iprovided either'A # ¢ and 9A = ¢ or there exists at least one Se _I_YI”(R.n) -'{0}

“which satisfies (a) and (b) above with S replacing V.

('3) There exists V e _IYk(Rn) - {0} such that

€,

wee
oY,
(33

(a) P(R™(V, |B]) =0,
(b) BC clos(spt(V)~- B), and

(c) W(V) =inf{W(S) : S« _IYk(Rn) - {0} satisfies (a) and (b) above
with S replacing V},
.,'provided either B # ¢ and 8B = ¢ or there existsat least one S ¢ :E\:{lr(Rn'/-{L'}
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PROOF. Most of the theorem is implied by 10.8 and 11.4. To
obtain a stationary integral varifold having boundary A or B whenever
lthere are manifolds without boundary one can, for example, solve the
[least area problem in the space of flat chains with coefficients in the in-

tegers modulo 2 for this boundary and then take the associated varifold.
.
4
' 11.6 REMARK. The preceding theorem gives a solution, in the

context of integral varifolds, to a quite general formulation of Plateau's
problem -- including the free boundary case. In every other formulation

i
of the problem of least area known to this author, each solution surface

;f(if one exists at all) is naturally a stationary integral varifold. The space

¥
e
s
-
¥

in which one minimizes area in l1. 5 is then, intuitively, the space of all

;'.-" solutions to different formulations of Plateau's problem. It seems

to Plateau' s problem. The (weighted) area of the stationary integral vari-

Ry

_fold so obtained will in general be strictly less than the least area ob-
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' 12. HOMOTOPY CLASSES OF MAPPINGS P ”; ‘
i F i"ﬁ ;
12.1 DEFINITIONS. Cell complexes, gk-subdivisions, and the function C . 0 { :!g‘fﬁ!’

i el

i : LR
'E(l) Let f¥(1) denote the cell complex of the interval {x: 0 <x <3} whose l-cell i l;: Hial
R

?is [0, 3] and whose O0-cells are the endpoints [0] and [3]. ki { M}
]

f) For each positive integer m let

‘I J%‘F(m) = L.ﬂﬁ:(l) & c,Q#(l).@. o ® w?:hk(l) (m times)

o
i

b the cell complex of RN {x:0<x <3, i=1, 2, ..., m}.

]
5(3) 1 is any cell complex we denote by <! . the set of cells of dimension j for

g
420,14 2, ... . I a is a cell of <!, dim({a) denotes the dimension of a. A

¢ .
l-cell is called a vertex.

; - R
?(4) We define the O0-th 3F subdivision of J#(l), denoted JZ#:(l, 0) to be the cell, 1, " o
i o
fomplex given by "II i ;

$

: ST o) = {{0, 1) [L 2], (2 3]} i,
% ot
L g1, 0), = {[0) [} [2D} iy
¥ - H: |;
:(5) For eachpositive integer n we define the n-th #¢ subdivision of ‘Qﬂ'(l), ‘11‘ ,li-.;.
gdenoted :Qﬂ'u, n), to be the cell complex given by ' |E; l‘
& ‘ RN
b . - - - - - gt
: L, ) = {0, 1277 27, 2277, (227, 32, L 1l
i ) n -n -n B
ces [(27-1277, 01, [, 2), [2, 2410277, It
ke - - _ b
[2+127", 2+2277, ..., [2+ 251277, 3]} '- fii;;
% ' i
A .,-n -n - C
i SR, g = {10 2™ (22270 L, 1227 L (2), It
Eoo 2 +127, (242027, el (24 (27277, [3]). L

fNote, in particular, that these cells are not evenly spaced, and that to each vertex
;.}E J'F(l, n)0 there is a unique vertex n(’a)érﬂ#(l)o- which is nearest to ¢, i.e.

B g
1::'.IS_epara.ted from a by the smallest number of l-cells in .;,()“:(1, n)l.

o
=~y i
HE
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</Q:“;(njl n) = ‘:9'11-(1’ n)®v;,qﬂﬂ(1. n)@. . @:&Q“’(l» n) (rn times).

Corresponding to each vertex a & ,;Q#(m, n)o there is a unique vertex
le) & J%(m)o which is nearest to a, i.e. a can be joined to nfa) Dby a path of
'1-cells of ¥(m, n) which contains fewer l-cells than any other such path

connecting a to any othe1 vertex of :Q#(m)

(1) We define the boundary homomorphism d: ¥(1, n) —> I™1, n) by setting
' alfa, b)) = [a] - [b] for each l-cell [a, b]EEe,Q#:(la n), and d([c]) = O for each

0 cell {c ]ét,Q#.(l n) We define d: ﬁ(m, n) '——>:,Q#(m: n) by setting for each
leell o= (d®a @...@am)ed)#(m, n)

‘. dla) = ZZ (_1)0(1)a1® ®d ® 1+1® .Qa m
i=1

Tuhere ofi) = D1 dim(i).

j<i '

:':“""(8) Let m and n be positive integers. We will define

et i, ntl) | X U.&#(m)j > {0, 1, 2, ..., 2%}

to have the £olloW1ng propertles

IG (a, T G (B, ‘ <1 whenever a, Bpe t,(?#":(m. n+1)0 are endpoinis
of some 1- cell in- :,OTF (m, nt+l) and 7 is a cell in t,QAF(m).
(i1) C (a, T) = 0 whenever QE‘Q#(m, n+l) lies in the (n+1)-str_,'.f sulb -

:_'-:c:livision of some cell o of (,Q#(m) for which dlm(cr) < dim(r) where 7 is o cell
B g%

(111) For each QEYQ (m. n) there exists at least onevc'ell TE &%‘f‘-(_____‘) S
vhich G (a, 7) = 2",

' We define Gl as follows:

. (a) Define § : JH(m, 0) —"—;':,(7 {m) and, for p =1, 2, cee, I, 2; c,a (r‘.. g
~->Q,Q%(m p-1) by setting for each o.EJ (m, 0)0 (resp. QC‘Q“(m, n)o;,

(: (Q) (resp. f,p(a)) equal to that unique cell of least dimension in J (1 a) (v
:';..'_'m JF (m, p-l)) whose subdivision contains a.

f':,(b) For o€ )¥(m, 0), and (d, 7)€ dmn( Ch) we set Cla, 7) = 20 i1 -

3340

- o n v —————— = ® an
b4 et A
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3

123

and G (a, T) = O otherwise., Note that for each oE& J#(m, 0) there is some cell
"E:P*(m) for which {a, T)E dmn(C ) and G (a, 7) = 2™, Also @l(a, T) = 0

" whenever a € J¥(m, 0) lies in the 0-th = subdivision of some cell ¢ of J*’(m)
"where dim(o) < dim(7), 7 a cell in J*F(m).

(c) For a&JH(m, 1)0 and (a, 7)€ dmn( Gl) we set
Cla, 1) = max{ CNp, ) : pe JFlm, 0), is a vertex of L (a)}& {0, 27}

Not(. that if a, ﬁEJ (m, 1) are the endpoints of some l-cell in 0¥, l)o and
(a, ), (B, 7) € dmn( G ) then IG (a, 7) - Gl(ﬁ, 'r)' S_Zn. Observe also that

C (a, 7) = 0 whenever a :p#(m, l) lies in the l-st 3k subdivision of some cell 7
'of JH(m) for which dim(o) < dnn('r), 7 a cell of J“"“(m). This is clear since each
ﬁérp*'(m, 0) which is a vertex of gl(u) will also be a vertex of o, giving

@ (B, 7) = O.. .
Note also that for each m-cell y& J#(m, 1) there exists some
.,:chQ (m, 0) which is a vertex of y. We assert that C {a, ¢ (s)) 2" for each
.r~verte>; o of y. To see this, observe that for such a, dlm(g (a)) equals the
smallest number of l-cells of :,Q#'(m, 1) necessary to form a path connecting o
| to some P& *(m, 0) which is also a vertex of y. One concludes the existence
’ of € GY,Q#(m, 0) whlch is both a vertex of y and a vertex of gl(a). To establish
""" o ur assertion it is sufficient to verlfy that ?; (e) = L’,O(.c') whenever ¢, €'E cﬂ#(m, 0)0
“are both vertices of v. If T denotes the unique m-cell of :,Q#"(m)m 2nd Y
:contam., some vertex céw,()ﬂ:(m, 0) for which QO(S) = T
xmply 1mmed1ately that { (e') Tm whenever 'EJ#(m, n)o is another vertex

then the definitions

of Y. Suppose then that for no verte:\ EEJ’#(m, 0) of v does dim(go(s)) = i
Tn that case each vertex sEJ”‘(m, 0) of Yy must 11e in the l-st =ZF subdivision
of some (m-l)-cell of J#(m)m j -~ not necessarily the same cell for each vertes.
If howwer, for some vertex EG‘;,()# {m, 0)0 of v, Lo(c) =T ecj?"‘(m)m RL
1 kil '."_
Tl Whenever € E:,Q (ra, G

'1J another vertex of Y. The proof of the assertion is obtained from arguments

then the definitions imply immediately that { ( N =

3 -

2 s}m1lar to those above applied to successively lower dimensional cells

of :_Q#(m).

m-2' Tm-3" " Tp
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(d) 1‘01 QE‘Q (m, 2) and (a, T)Edmn(el) we define

T
Rt

Gl(o., T) = average{el(ﬁ, T) 2 ﬁéd}zﬂ:(m,'l) is a vertex of § (o.)}.

R )

,

SRR

© are the endpoints of some l-cell in J**(m, 2) and (a, 7), (B, 7) dmn(e) We

‘ see this as follows. Without loss of generality we can suppose dim({,(a)) =

"

dim(éz(ﬁ)) 4+ 1., There then exists a unique Y& ¥ (m, 2), for which the vertices

“of §,(a) equal the union of the vertices of L,(B) with the vertices of {,(v)

b Furthermore there is a natural one-to-one correspondence between the vertices of
'i,. ({3) and the vertices of § (Y ); namely vertex e{B) of (ﬁ) corresponds to

; vertex €{y) of § (\{) if and only if these vertices are the endpoints of some l-cell
in v.Q “{m, 2) ance lG (cB), 1) - C (c ) 'r)l < 2. for each pau‘ of vertices

L e(B), e{y) correspondmg as ab0ve, we have that |C (B, ) - e v, -r)l < 2B

Gz(a. T) = average{@o(ﬁ, T)s Go(“” )},

J we have l@ (a, T) - G (53, | < Zn"l. By a similar, but easier, argument one
’ concludes a.lso IG (a, T) - G (ﬁ. 'r)l < 2R -1 whenever og& &*’L(m. 2) - J#(m» 1)
and pe \-,Q#(m, l) are the endpoints of some l-cell in V_Q'"‘(m, 2) nd

# (G. ), (B, TVE dmn(c ).

For aE&TF(m, 2) and (a, 'r)edmn(C) we define

Cla, 7) = J(a, 7)2" € {0277 AR TP PP L

’

St

where J{a, T)

is that unique integer satisfying
| (a7 - 022 < Chla, 1) < Ta 12"

':~"Note that Iel(a, T) - @1 (B, :r)l < Zn'l whenever a, ﬁetﬂ*"(m, ?)
ofsom(. l-cell in :,Q#(m, 2) and {a, 7), (B, 'r)Edmn(G ).
¢ G (a, 'r) 0 whenever a& v,Qﬂ:(m, 2.)

are the endpo!
Note also that

lies in the 2 nd #H: subdivision of some c=i
g ° of :Q#(m) with dim(o) < dim(T), (o., T)E dmn(e ), since { (a) will be a cell
in the l-st 4 subdivision of 0O, For each m-cell Y&E J*(m, 2)
" One cell 7 J¥(m) such that e (a, T) = 2"

there existn w:’

for each vertex a of v .

We assert that lG la, 7) - C ((3, )| < 2.n~1 whenever a, 7€ 4% (m, 2) ﬁ(m, 1)

Since

Y. o i

P

.._.;._?,_—':—-‘-.-.__—_a:?;_ce-‘-;:.-u‘

0




12-5

le) Assume inductively that 2 <k<ntl and

G amn( CHN {(a, 1) a € I, 1))

—> {0, l~2n-k+1, Z.Zn-k-f-l’ o Zk—l.zn—k-{-l}

hzs been defined w:.th the followmg properties:

(1) \G {a, T) =~ G (B> T)l < 2" ~ktl whenever a, ﬁétﬂ#r(m, lc) are the
.ndpoints of some l-cell in JFm, ), {a ) (B ’T)E dmn(G );

(i1) G (a, 7) = 0 whenever (a, V& dmn(e ) and QECQ"(m, k) lies
nthe k-th 2= subdivision of some cell © of r,Q:ﬁ: m) where dim(o) < dlm('r), and

(iii) For each m-cell v& J#(m, k) there exists at least one cell
TEJ%:(m) such that G (a, T) = 2" for each vertex a of vy.

For a& (™ (rn, k1), and (a, TIE dmn( CY) we set

Glo(a, T) = avcxage{e (B, ) pEc,Q%(m, k) is a vertex of t,k(q)}

1 -l -k n-k -
Cla, ) = (e 22N {0, 1277, 22T, L, 2520

where J{a, T) is that unique integer satisfying
-k 1 -1
(T(a, 7) - 12" < Cle, ) £ 3la L

One verifies as in (d)‘

@ | CYar 1) - CHE, ] < 2" whenever ﬁcﬁ(m, ki), are end.

"pomts of some l cell in t,o {(m, H”l)l. (e, ) (B "')C dmn(G ).

(i1) @ (o., 7} = 0 whenever (a, & dmn(e) and O.E .:,Q"(m, 1\+1) lie s
‘n the (k+l)-st#subdivision of some cell o of w_Q:”"(m) wher(, dim(c) < d1m('r)
(iii) For each m-cell Y& J (m, k+l)m there exists at least one cell
TE J*(m) such that Gl(a, r) = 2" for each vertex a of Y.
T The definition of Gl is completed by the inductive procedure.

’,"(9) [l will be called a cubical complex for R if and only if there exists a doubly

‘infinite sequence of numbers
}.'5'.

. < < < < < < <
4—3 a_2 a.__1 ao a1 aZ a3<

“with




" and only if there exists cubical complexes [:_']l, DZ, ..

Tofcell T =T ®'r ® ._..®'r if and only if 01 =7t whenever 7 E DO ang if

lim a, = o
i 00

lim a, = -
i—» -0 *

and the 1 cells of [, denoted U, are given by

Dl = {"" ’ [a_3' a;z]' [a_z' a‘__l]' [a_li ao]’ [ao’ al]’ [aln 3-2]: [azi a3]'

* 2nd the O-cells of 11, denoted Lyr are given by

Do = {or v [agd () [a ) [agh (2] [2,) (a,), ...)

’.(10) Let m be a positive integer. [J will be called a cubical complex for R™ if

“» Dxn for R such that

= [31@ DZ®. e (jm. We denote by []p the p-dimensional cells of [1
‘for each p= 0,1, ..., m. We define the distance, denoted dist (o., B}, between
"two vertices a and B in [_'j to be the smalles t number of 1- cello in D which

' comprise a path connectlng a to B, Cell og=¢ ®0' ®. ®O’ is called a face

i

. i i i
& D; then either o = 7 or ¢  is an endpoint of 'r »i=1,2, ..., m. A
2

0-dimensional face is called a vertex.

‘(1) Let m be a positive integer and [J a cubical complex for R 7 C 0

'is called a subcomplex of [ if and only if o & YV whenever ¢ is a cell of

Ld

O C I and <> is a subcomplex of [J. For p= 0, 1, » M, we set \/ =
E
and = .
7N o, 0, = 0N,
'.(12) Let m be a positive integer and [0 a cubical compley for R™ Let v & .
. and Y (m) be the subcomplex of [J generated by vy cmd all its faces. ad (11}

is 1somorph1c with J#(m) in the obvious natural way preserving coordinate dire

Ceve.

“Let SOY : (m) — J"F denote this isomorphism. Then there exists =n
affine mappmg fY : R —s ™ having each coordinate direction as an eigen-
direction with a positive eigenvalue such that for each cell a of élw(m),

fY(IaI) = ICPY (a)]. Here |al, ICPY(O.)I CR™ are the closed sets correspon.’i ..



i m the obvious way, to a and CP (a) respectively. Again, in the obvious way,

for each non-negative integer n, the n-th 3 subdivision <,Q4 (m, n) of .;,Q“f

determmes a subdivision ﬁfj(m, n) of Y(m), also induced by f and called

the n-th = subdivision of g"f {m). q)\{ extends to be an 1somorph1am

f’(m n) —> JF(m, n).
We define

CY : t(m. n)y X U. j#(m).—~> {0, 1, 2, ..., 27}

by setting C’ {a, T) = (‘) (gl/ (a), ',J (T)) for each ({a, T)Edmn(e ).
To each m-cell ¥y e o, we have associated the n-th :%F subdivision of

the subcomplex 3y(m) of 3. We define the n-th 3% subdivision of ] as

U { gé‘?(m, n):y &€ D }. This union is, of course, not a disjoint union.

Let [:] be the (n+l)-st 3t subdivision of [J. We define
& C. ( E] X U D)ﬂ{(a, 7): a is avertexof 7} —> {0, 1, 2, ..., 2™
= ULC, Y € O} amn(C)-

" One verifies that G is well defined and has the following properties:

{i) For each a 61[] there exists some (a, 7)& dmn{C) with

e, Ty = 27

':5.‘: (ii) For (a, 7), (B, 7)€ amn(C), |Cla, 7) - C(B, 7)| < dist ot B
1

(ii1) If (a, 'T)Ednln(@) and B & lDO' (B, 'r)¢dmn(c). then

G , dis .

(e, B) < 1btlD(a, B)

(13) Let m be a positive integer and [J a cubical complex for R'™. [J has tha

‘;ﬁ}he various 1somorphlsms {CPY }\’ ‘of (12). Note that if V is a subcomplex of i

hen A7) C 7.
" 12.2 DEFINITIONS. Homotopy relations between mappings.

i \

(1) Let m be a positive integer and [ a cubical complex for R, Let ¥ ha

bl ity

/
subcomplex of [J and Q a subc.omplex of V¥ . Let K be a metric space wiii
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| L
distance function, distK, and LCXK. For each ¢: (VO, QO) —> (K, L) we @ ,%3
éj"aefine the fineness of P to be &l ':i
¢ . -1,. HELE
. sup{(dist_{e, B disty (Ple), QBN : @, B E Yy, a # B} iy
A
Ve say that ® has fineness & if and only if the fineness of P does not exceed §. %:l‘\‘ ILEI
. Wi ]
4 _7,“:
) Let m be a positive integer and 11:(, ZD be cubical complexes for R™. Let Tk
i ..
iv be a subcomplex of i[:], let 10 be a subcomplex of iv , and let ';'l i
L il
: : I
iq) :+(iv0’ i<>0) —> (K, L) for 1i=1, 2 where K and L are as in (1). Let {'“’ ‘I:
'{€R’. One says that ID is simply homotopic to ZD with fineness 6 if and ||‘ -li:i
LRI |
i
.- by
(a) Either 1[] = 2[] or there exists a non-negative integer n such that “i : g!ﬁ'
. o

ZD is the nl-th 3 subdivision of 1[___], Zv is the nl-th H subdivision of lv’

and 2.<> is the nl-th:.# subdivision of 10;

(b) There exists a non-negative integer n

3

v LF n )@ 1y [ ST 2@ 01) — (%, L)

i
¢
i
> and a mapping .{
|

T

RSy A

. ‘i\x.{ i
having fineness & such that Y([0]®a) = 1<P (a) and Y([3]®a) = ZCP {a) for cach !;"22;%1':‘ f
: . T
[§ v :P; M
‘ €1VOC ZVO’ and e |
(c) ZCF (a) = ZCP('q(o.)) for each QEZVO. Here n(a) is the nearest |
vertex in 1vo to a. ‘ jg : ;,
: i
We say ‘that lCP is homotopic with ZCP with fineness & if and only if é, :‘.
.
there exists a finite sequence of mappings ;gI‘
N ) .
i i Al Ca oo
C)D : (Vol Qo) (Kl L)O 1= 1; 2’ 3. « s ey q. i
Yere for each i, vl. is a subcompléx of some cubical subdivision of Rm, Qi
S a subcomplex of Vl, and: . ok
(a) Either 1CP is simply homotopic to CP]' with fineness & or Cpl i : ’
imply homotopic to 1<P with fineness ©6; ‘(
(b) Either ZCP is simply homotopic to CPq with fineness & or C,')q 13 is
simply homotopic to ZCP with fineness 6&. ;l
i
!
. i
]
~__—




i i .

2S if and only if there exist 61, 52. a7

‘.F,’:”C say that 1S is homotopic with

i e O g @ P e T e

A e Snalrd
-

;
i 12.9
f (c) For each i =1, 2, 3, ..., q-1, either CPi is simply homotopic
;: (?PH with fineness & or CPi-H is simply hon;otopic to CPi with fineness 3§,
H { (3) Let m bea positive integer and [] be a cubical complex for R, Let ~*
; 1V’ ZV be subcomplexes of O . We say V and V are isomorphic if and
' only if there exists a chain map ©: iV —_ Zv of degree 0 which is a chain =;
i isomorphism., %é,
z il
o
: _ 12.3 DEFINITIONS. Critical sequences of mappings. Let m be a pos1t1ve’ﬂj:‘%l
" jnteger and [0 a cubical complex for R'® Let <V be a subcomplex of TJ and O :}HI
, a subcomplex of V Let K be a complete metric space, LCK a closed subset, ‘;;!i’
and {: K —> R be lower semi-continuous such that for each r & R , l‘,]'
” KN {x: £(x) <r} is compact. "A homotopy sequence of mappings (¥, ¢)—> (X, ?{1'
Iwuh respect to f is a sequence S of mappings Lg*{
9" (Ve Qg —> (K L, i=1,2, 3 ..., 1‘3
’ ;together with 61, 62, 63. e E R+ such that %g?“
I‘: (a) For each i=1, 2, 3, ... there exists a finite sequence {'3’3
n (1 (1), n (1), cees nq(i) of non-negative integers such that | ).,
g (i) v is the nl(i)-th #= subdivision of the nz(i)-th = subdivision of E
... of the n (1) th 3f subdivision of 7, and : :}‘
(i) Q is the n ('1 )-th 3 subdivision of the nz(i)-th 3= subdivision o ':
of the n (1) th == subd1v1s1on of <> ?
(b) CPl is homotopic with CP1+1 with fmeness 6 for.each i=1, 2, 2
(c) 15.rni ﬁi = f); and .
(@) sup{f * P():a€ Yy i=h 2 3 -} Lo
If lS and ZS arc homotopy sequences of mappings (V, Q) —* (
§: With respect to { given by

PN e ar

B T
e e v, - -




W‘wzth 1im:,L 61 =.0 such that 1@1 is homotopic with CP /for each i=1, 2, 3,

One verifies that 'is homotopic with" is an equivalence relation in the space of
homotoPY sequences of mappings (V/, O) —> (K, L) with respect to . We call
an equivalence class of such sequences a homotopy class of mappings

';.i'.'(v, ¢) —> (K, L) with respect to f.

12-10

with fineness 6

Let 1] be a homotopy class of mappings (¥, $) —> (K, L) with respect
We define .

K: T7 — {A: ACK is compact}

K(S) = {x : for some sequence i, <i_ <i_<... and

"1.' hd . 1 2 3.
L ’ 1

i, .
: choice of ajEV ‘], x = 1imj CPJ(uj)}
for each S = {@': (Vo Q) — (K, L)}, € TT. We define
L: T — rT

L(S) = sup{f(x): x € K(5)}

“for each § € T[. For each S & TT we define the critical set of S to be

C(S) = K(S) M {x : £() = L(S)}.

—

_Unless { is continuous, C{(S) may be empty. We define also

L(TT) = inf{L(S) : § € TT}

‘° be the critical level of TT . S & TT is called a critical sequence for T if

and only if L(S) L('ﬂ').

r.’_v,r
i1

12. 4 PROPOSITION Let K be a complete metric space, LCK 2

-'closed subset, and f: K —> R be lower semi- contmuous such that for each

rert » KM {x: f(x})<r} is compact. Let m bea positive integer. Then

“each homotopy class 1| of mappings (¥7,.{ ) —> (K, L) with respect to £ nrv.-

i : m -
Bins a critical sequence S. Here for some cubical complex [ for R, Y

is a subcomplex of [1 and < is a subcomplex of §/ .

PROO¥. Let TI be a homotopy class of mappings (%/, Q ) —~ > .(I'{.

at

St aa

SR, 1 SO
Tt e T EE
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w1th respect to { (where ¥ and {) are as above)and S {j(Pl ARva _Ql)
—-—> (K, L)} & Tl for j=1, 2, 3, ... such that l1m'j &(JS) = I;_,(TT). Noting
thatfor each j=1, 2, 3, ...

43

@ azom TAKOTRERET

lim supi{f ojCPi(o.) : anV;} = g(jS),

lim inf {5 : ,CPI is homotopic with j(P1+1 with fineness 6} =

Efand

' lim inf, {6 : ,CPl is homotopic with j+lCP1 with fineness &} =

i

i

* one chooses integers 1< n(l) <n(2) <n(3) <... such that

i . ol -h

() sup  sup{fo, @(a): o€ VI LGS+ 27 for k=2, 3, 4, ..,
& i>n(h-1)

14 i . , . i+l . ~-h
.. (b) sup inf {5 : hCP is homotopic with hCP with fineness &} <2 for
i i>n(h-1) ' .

h=2, 3, 4, ..., and

sup  sup inf{6:

¢ is homotopic with z+1q>1 with fineness §} < 2P
1<¢<h i>n(h) ‘

2

i . . .
.-.,‘we define § = {q)} e TU by setting <{> CP for 1<i<n(l) -1, and CP‘ = jcpl
for n(j-1) < i< n(j) -1 for each j=2, 3, 4, ... . One verifies that 'S T and

US) = L(TT).

12. 5 THEOREM. Let 1 ik <n and 0<m be integers and G an ad-

: : n 1
" missible group. Let A be a compact submanifold of R~ with boundary B, and

s . +
"C be a compact submanifold of A with boundary D. Let c&R :and 7T denote

i G)N

{ W(V) < c}) with respect to W. (Here for some cubical <_omp1r,x [ for Rm’

V is a subcomplex of [}, and Q is a subcomplex of ¥/ ). Then there exists a

cr1t1ca1 sequence S for TT such that:

i (1) C(S) is not empty,

(2) For each (V, W; T, 9T) € C(S), S(R", A, B, C)(V, W) =
"'}: (R", A}V, W)= 0, and PT(R", B, CHW, 0) <L

":":' ":(\
AR
&
il H

o il
v'II 31 XE
b
bl i
., -';i?'*

P T

ik

S S S e

a
AR ety

e

as 8 Ao mimy

T meoL et £Sar

L mavs, s

vt

o aSh e T LA

XEL RN

EE TR Ty a0
e

3L

55
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n - n
;(3)}5‘&5_9 B=D= § then PR, ANV, W) =0 and PR,

CY{wW, 0) _<._1 29__1:‘
Peach (V, w; T, 3T) € C(S)-

PROOF. Let .S = {ICPI}, be a critical sequence fér TT (12.4) and
. 1 . ;

= i 1 I = " s < . Th i i adli
g sup{lqa (a) : o€ dmn(lcp y, i=1, 2,3 | } < e theorem is immediate
for k> dim(A), We assume therefore k < dim(A).

For i= 0,1, 2 we define
i n n _n n _n
G Bx x(RM X ¥z, (R7, R G) —> VZ,(R%, R Q)

GO(e, g, (v, Wi T. 0T)) = (£t LV, £t Wi £t 1), T, £t +), 0T),
G, g, (V, W; T, aT)) = (£t, ")V + £,.([0, t]XW), W; £(¢, ), T +
| + £,([0, t]X9T), 3T),
G(s, g, (V, w; T, aT)) = (V + £, ([0, t] X W), £t *), W3 T - £,.([0, t] X 3T),
£(t, *)y.30).

Here f: R X R —> R is that unique deformation characterized by £(0, s) = x

and (9f/ 3t)(t, x) = g(x) for each x cRrR" and t&R. The continuity properties of
0

G, Gl, and C}'2 were noted in 4.1 and 6.4 (5).

We define for a= 0, 1, 2 and i= 2, 3, 4, ..

A=Vz (A, BUG GIN{v: W) <egl} |

A-(O)O = AN{v, Wi T, o7T) : g(Rn, A, B, C{V, W)= 0}
Al = an(v, wiT, 9T): BTRT ANV, W)= 0)

A:o = AN{V, Wi T, 9T) ; P (R, B, C)(W, 0) <1
A= AN{v:EW, AY) _>_2’1}

Al = AN{y: 2T SEW AD) <27

where for each BC A and vE A, E(v, B) = inf{F(v,p): &€ B}.
For a=20,1, 2 and j=1, 2, 3, .

.. one chooses a positive integew
gle, j)} and:

2 ol e

P . L T T i g
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w®Gy 1w, 2) .ees w®Gs gle, j))EAJ‘.‘,

%G, 1, %G, 2 e, 2%, gl §)) ERN{r:0<r<2y,

R O ey it

g%, v g%Gh 20 -ens 2%, qla, nex®n{g: el <1

{(where >g° = X (R", A, B, C), }_c_l = X(R", A), and >52
for each i=1, 2, 3, ... the open balls

= X(Rn, B, C)) such that

ote e

AR oL

UG, )= AN {v: By, w®G 1) < 2%, 1)

..:\-

have the following properties:

ala, j)

Z_(a) ACU U™, 1)

’(b) s (v, g%, o + sw®, g%, in]> 2 in{{S(R", A, B, C)\V, W)

“: F (V, W; T, aT) EEA? for some T} >0

Fror cacn (v, w0, 0, a1 € 0%, 1, 1= 1, 2 ..., a0, ) oand =1, 2, 3, ...
?.(C) -§(V L g, ) - '{_(W . g, D) > 2'1inf{sup{-§(v. g) - T(W, g) : gEX(R", A)
and [glf <1} : (v, w; T, aT)EA; for some T} >0

.i" 7

for each (V1 W T aT)GU(J, 1), i=1, 2, ..., gfl, j) and j=1, 2, 3, ...

-sO0%, g%, - T, g%, 02 2 int{eup (-5 (W, @) - T(W, g :

g€ X(RY, B, C) and |g| <1} : (V. w; T, 37T) GAjZ

for some V and T} >0

_’»,for each v%, whoo? et e vl 1, i=1 2, ..., q, ) and j=1, 2, 3

LR -

‘ The choices above are possible by the compactnevs of each AY and the

HOE

c0nt1nuxty of S(*, g) and T(*, g) for each gGX(R) Note that :
ﬂU (j+2, i) = § for each i= 1, 2, ..., qla, j+2) and that A% nU (J. i) = 0

,r

'fpreachi L, 2, ..., gla, j), for j=1,2, 3, ... and a= 0, 1, 2.
& For a=0.1,2 §=12 3 ..., and izl 2

ﬂ-c

e .‘._._4m_e_s..__ - .._'

v ++ey gla, j} we definn
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+

v, H: A—> R

fven for vE A by
vG, ) = Elv, A - UG, D)
or the same a, j, i we define
Q,, . +
CP (J» 1) : é— —> R
Yipy setting for each vVE A
".\5'(1.. a ' -1 a,. .
= CP (i, ) = (Z{‘rl/ (g, m){v) : L= 1, 2,3, ... and m= 1,2, ..., alq, 2)}) v (5, 1).

' Note that in each sum appearing in the denominator only finitely many summands are

" pon-zero for each v € A. Note also that for each a, {Cpa(jv i)}i j is a partition
rf',‘”'._ - '
" of unity on A - A%,

= o0 )

We define for o= 0, 1, 2
g a— XN e el 21
) = ST Q% DG D=1 2 3, ... and i=1 2, .., ale, )}

i

F metric topology on A - AZO and the

Now choose for a = 0,1, 2 a continuous function

h®:A—> {t:0<t<1}

¥ a) hW) = 0 if vEAS

¥ ®

" (b) pw) >0 i VE A - AT

Tl wWietey, g0 v)) < WSy, gt v)

a
¥ whenever 0 < 1:l < 1:Z < h (v).
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‘We are using 6.9 (6) at this point,
: We define for a= 0, 1, 2

H : {t: 0<t<1} XA —>

it

Ao

givenfor 0<t<l and vE A by

W

H]

HY(t v) = G, g¥(v), v) if 0<t< k(W)

HY(t, v)

i

HYa%), v) if n%u) <t<1,

“ One verifies for a= 0, 1, 2

H” is continuous in the pr.oduct topology on dmn(Ho').
H*(t, v) = v whenever 0<t<1l and v E Ago.

W(H™(1, v)) < W(v) whenever v & A - A
The desired critical sequence { C?l}i for T1 is given by

PHa) = w4, 1, 100, @)

B -ty LHi
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13. THE HOMOTOPY GROUPS OF THE VZ SPACES.

13.1 DEFINITIONS.

-.-..;(1) FOT eachn =0, 1, 2, ... let- Jf(1, n) be the cell complex of the unit

1 -
mterval I'=RN{x: 0 <xX 1} whose l-cells are the subintervals [0, 1.2 n] ,

-n 2‘Z--n]’

, [127"

L (Zn"l')' 271 1] and whose 0O-cells are the endpoints
1, [2:277), oony [(2%-y-277), [1].

.')“'ior eachm=1, 2, 3, ... andn=0, 1, 2, ... let

Jlm, n) = L n© N, ... & I, n) (m times)

'.ibe’a cell complex of the unit m-cube I = Rmﬂ {x:0%< x <1for eachi =

'nv

:1 2, +.., m}. For each cell @ ¢ f(m, n) we denote by |@| the closed subset

-\

' ofl corresponding to a,

o] =1 @ * @ ... © ™| T7N (x xe [}

'»&here I[ a, b] I {x: a <x <b} and l[ c] l = {c} whenever [ a, b] and [ ¢]

are cells of <f(1, n). Note also that if o is an m~-cell of {(m, n) the
E“bcomplex d(m, n; @) of f(m, n) generated by « and all its faces is nat-
drally lsomorphlc with f(m, 0) by an isemorphism 0 : f{m, n; @)—> J(m, 0)

l'xduced by an affine mapping fa R™ —s R™ whose Jac.obian has each

ve A Rm') as an eigenvector with eigenvalues 2, i, e. for each B e L(m, a; o).

'19 ml £ (1]

(3)" Let me {1, 2, 3, ...} be fixed. We choose and fix a function

i

gl {o: 0 is an m~cell of £(m, 1)}-————>{0 1, 2, ceey 2=}

with the property that § (a) > & (’r) whenever

oup{x‘y cx e o)) < supl D2 m s we |7])

i=1

) VR AT
'eachn =2, 3, 4, ... we define
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£ :{o:oisan m-cell of f(m, n)} —> {0, 1, 2, ..., 2= 1}

£ (o) = £,(0 (o))
r each m-cell o of f{m, n) where & is that unique m-cell in f(m, n-1)

w which ¢ ¢ dmn( Ga).

) Letme {1, 2, 3, ...} be fixed. We define

o .
£: U {o@: ¢is an m-cell of (m, o)} — {t:0 <t <1}
n=l

- -2m «3m -1m
g(an) = p"m gl(al) + 2 gz(az) + 2 §3(a3) toe. +2 gn(an)

or each m-cell a e Hlm, o), n=1,2, 3, ... . Here o is that unique

1-cell in Y‘Q(m! 1): i =1' 2. RN n-l for Which
m
|Q’nlC |an-1|C‘an—ZlC”' ]tzllCI .

) Letme {1, 2, 3, ...} be fixed. We define for each t, 0 <t <1,

¢ = 1M clos U{|e] : @ is an m-cell of H(m, n) for somen =1, 2, 3, ..,

and £(a) > t}.
ach At is, of course, compact.

) We define for eachm =1, 2, 3, ... and eacht, 0 <t <1,

fm, m, 9 : L —>1",

iven for x ¢ ™ by
; ' 1. 2 m
. flm, m, t{x) =(x -5, X =8, «e0, X -5)

shere s ¢ R+ is the smallest non-negative number for which either

X8, X S, sss xm-s) 3 Ator xi-s =0 for somei=1, 2, ..., m,
jeometrically, f{m, m, t) is the diagonal retraction of I onto the union
of At with those (m-1)-dimensional faces of ™ containing the origin 0. It

5a consequence of the fact that a uniform limit of a sequence of functions
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havmfD a common Llpschltv constant is a function with the same Llp..»ChltL

1
constant that Lip(f(m, m, t)) <m? for 0 <t <1, Note that

fm, m, H(I7) C U I e % = 0} .

4 i=1

it

- We define for eachm =1, 2, 3, ... and t, 15_!:::2,

i.‘;. f{m, m-1, t) : U Ilnﬂ{k x' -—0}—-—> U I x"O}
~ i=1l i=}

K . .
givenforx=(xl, xz, ey x" 2, 0, xJ+1, “ees xm') € '™ b

N

f(m, m-1, t)(x) = o'j(f(m-l, m-1, t-l)[)\j(x)])

7 - ' - 1 -1 i+ -
yherecr.:lm 1-—-—-—>Im sends y ¢ ™ 1t:o(y, SN y" , 0, y‘] 1. RN ym 1)
) m m-1 m 1 j-1

e

1
NOte that Llp(f(m, m-1, 1)) <(m-1)% for 0 <t <land

.k,,

f(m, o, 200 fem, m, DIV, Y o TN w0y

One makes successive definition of f{m, m-k, t) for eachm =

23, ..., k=2,3, ..., m-l, and k <t<k+1as follows:

i
M)
)
g
.

;'ﬁf'm, ] - U m ST R
;..( mlk, t).l<i i< .. < <mI M {x: x*= x %=, x = 0}
-1 2 k —

o \1<i<ikJ<...<i <m * () {3 x= e omx 0}

n ¥ setting for each 1 <i(l) <i(2) <... <i(k) <m, x¢ ™ for which 2 = o
igr'jzl, 2, ., k, andkftfk-{-l,

o
(B T

c v f{m, m-k, t)(x) =

1

Y, 1(2), ..., iglimek mek, t-l9 A

| Ther ' N Gt —_— m-k
“W, (2), ..., i L I'" sends ye 1 to

(), 1(2),.., i

m +1 -
:I.and)\ I 1 sends xe¢ 1 to(x,..‘.,x , X ....,xm)elml

13-3
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i1 2 iy-1 i ilc. i m- m
}Y.V.-c-yll .anl»n-,ylkl,O,yk,....y k)EI , and

e -1 )
xlk X 1 +1’

. m m-k m 1 2 11 1 s
: 5 ? 3 e e o3 'l'
l)c 1(2), veo, iK) 1 I ends xe I  to(x, x
m-k

X1 ¢ 7, Note that Lip(f(m, m-k, t)) <(m-k)

Y0 ey

U

for

e s ay

'. f(m, m-k, kt+l) o f{m, m-ktl, k) o {{(m, m-kt2, k-lJe ... o {{m, m, 1)(1m) C

1(1) 2) m)_
1 <i(1) <i(2) <...<i(k+1)§mI M A{x: = 0} .

We define for eachm =1, 2, 3, ...

T ft, x) = f(m, m-k, t )o fm, m-k#l, X) o f{m, m-k+2, k-1 o ... ° f{m, m, D(x)

whenever X e I and k<t< ktlfork=0,1, 2, ..., m-1,. Note that

pr(f ) < (m')?- and f(m, %} =0 ¢ 1 for each xe I .

13.2 THEOREM. Letl <k <m be integers and G an admissible

r.;

group. Then the mapping

m

D: {t:0<t <m})('é (7 ™, G—> 2, e, Q).

glven for0 <t<m and T e Z (I G) by O, T) = 1(t, -)__#T, is con-
tmuous with respect to the M metric topology on Z (I Im; G). '

PROOF.

#Part 1, Let m be a positive integer and f: {t: 0 <t <m} x ' —> 1 be as
g — o - -

ln 12.1(5), Then corresponding to each t with 0 <t <1 there exist p(t), q(t)

Hoym . s
I such that for each ¢ > 0 there exists 6> 0 satisfying

m

lmﬂ{x: (s, # # (¢, x)}CImﬂ‘{x: (xl-s, xz-s, veer X =8)

€ Igm(p(t). e} U lgm(q(t) , e) for some r ¢ R}

. .




borier

,’(
}v;henever ! -t| < 6.

v

Proof of part 1. One notes that if

L...‘.
{0 Bpp eee@y, wees B ¢{0, 1, ..., 2 -1}, a_ e {0, 1, ..., 2 -2},
NN
pand n . o
o -im ~-im nm
i IR AR AP
TN i=1 i=
cthen As - la[_ = At - [al where « is that unique m-cell of {(m, n) for which
i n s
tla} = 12\ 27t a.. We consider two cases:

s e

=1
Case (a). There exist By 3oy ey ane {0, 1, ..., Zm—l} such that

n
?:11 2~1ma . In this case one chooses a B.l e f{m, n) fori=
n+2 nt3, n+4, ... such that &(cz) t - 27" and g([‘}i) =t . One notes that

*‘an+2lDlan+3[D| gD ana e LIDIe 1Dl 1D ... and sets
,:-‘{P )} = ﬂi{ail, and {q( t)}_ﬂilpil_

Case (b). thas no finite expansion as in case (a). In this case for

%Y

—
1

e
i -

.

‘éaChn= 1, 2, 3, ... one can find numbers 2y @, ceen @ e {0,1, ..., Zn—-l}

;_;:'fmd a ¢{0,1, ...,2 —2.} such that (%) holds (w1th =t} and As-lan] = At..lar.ll

: “for each s with |s-t] < min{t - i:-l Z-irn 2 2?1 2 -im a, ;2 n'm -t} . Here
‘ a is that unique m-cell of f(m, n) for which §(« n) = le , T 2. We have
‘)f‘urthcrmore that Ia l:jla I_Dl“3lj . One sets {p(t)} = {q(t)} =ﬂilail.
1
K

iPart 2. For k > 2 &)l{t 0 <t<1} X zk (I, I'; G) is easily verified to be

~'contmuous since MT( 1) =0 for each T ¢ Z (Im . m’ G) and each straight line

: JLC I For k = 1 the desired cont1nu1ty follows using the fact that MT N L
' {15 absolutely continuous with respect to H N L and the continuity of
fl (:0 <t <] XL—>L for each T e Z(I",.I"; G) and straight line LCI

Parallel with (1, 1, ..., 1). The theorem follows from the sequential definition
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13.3 DEFINITIONS.
1) Let m be a non-negative integer and [J a cubical complex for R™. Let

'y.be some m-cell, V¥ the subcomplex of [ generated by y and all its

B

’Vfaccs. and <) the subcomplex of ¥/ generated by all the proper faces. of

': y, not including vy itself, Let K, L, fbe as in12.3. We denote by H:#: K, L)
the homotopy classes of mappings ( 7/, <> ) =—> (K, L) with respect to 1,
As uming now that L consists of a single point , one gives Hl(K 1) a group
Istructure and gives H'ﬁ'(K L), m > 2, the structure of an abelian group.

\

We denote by Hm(K L) the usual m-dimensional homotopy

RO
:'7.,";"«;‘

s
3

group. i. e. the homotopy equivalence classes of continuous mappings
(I

L,m
I’{‘(I , ™—> (K, L), again assuming that L is a point.

pr-
s

' ,1(2) Letl <k <n be integers, BCAC_Rn, and G be an admissible group.

i 'Zk(A B; G) has been defined and given the Fmetrlc topology. We define

Zk(A B; &y M) to be the space Z

“tor S, T e Z(A B; G) by

..u-

k(A B G) with the metric topology given

1}

Adist(s, T)
dist{S, T)

M(S, T) + M(8S, 8T) for k>2, and
M(S, T) + F(sS, 8T) for k=1 .

]

(A B; G) has been defined a.nd given the F metric topology. We define
k(A B; G; WM) to be the space VZ (A B; G) with the metric topology

';;"given for (V, W; T, 8T), (V', WY; T, BT') ¢ VZ,(A, B; G) by

dist[ (V, W; T, 8aT),(V', W'; T', aT')] =
W(V, V') + W(W, W') + M(T, T') + M(8T, 8T') for k > 2, and

dist[ (V, W; T, 8T), (V', W' T, 8T")]

= W(V, Vi) + E(W, W) + I\=/£(T. T + F(dT, 87T') for k=1

v/‘_ ;

We define also-

‘w

s
st
V)

vzla, B G = vz A Bi o N (] T) JeTl T, e Ty s T e Z, (A B G)}
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G wmn{|tl, [eT]; T, 87) : Te z,(A, B; G: M)}.

The following diagram is a commutative diagram of continuous maps:
2]
> Z,(A, B Gi M)
vi
z2
V2
vz! (A, B Gi WM
i2 i j
vzl (A, B; G)
14 z4 i
W
|
P Y p” z3 S i/ i
XEIQ(A' B; G) . 2, (&, 3; G) :

1k(1/)'= y .dor Ve dmn(xh), h=1, 2, 3, 4 _!
HT).= T for T ¢ dmnlj) ,
v (T) =(|T|, |oT[; T, 8T) for Te dmnlv.), h=1, 2

Note that v, o z = (identity), v, ¢ z, = (identity), z_ o v,-= (identity), brt

. 1 v 2

m general 2y

° vy # (identity).

13.4 THEOREM. Letl<k<n. and 0 <m be integers. Let AC rR"

be a compact submanifold of R"™ of class 3 with boundary B, Let CCA be 2

Compact submanifold of A of class 3 with boundary D. Let G be'an adraisaible




R
&

e
s

POk
TR

n

Sy
A
S

group The following groups are naturally isomorphic : Hm+k(A' BUC; G),

% TR =
RN e

4 banes

f.f;' . 3 ..
L 1_(2,(A, BUGC; G), {0)), ¥ (2 (A, BUC;G), {0}),

Lo (2, (A, BUC; G; WM), {0}), and
‘!. d.%: . 3
t T Z A BUG G W, {0])

_PROOF. For each of the above homotopy groups the methods of

[Al 3.2] give a homomorphism into the homology group. For the homotopy
groups based on the F topology, the methods of [ Al] generalize immediately

:...to give the desired isomorphism. For the homotopy groups of ‘?Ek(A’ B C G; \_/‘_{I__\él)
“these arguments fail because the deformation D[ Al 5.2] no longer provides
continuous paths in the stronger topology. With D replaced by 3] , the argu-
E{'.ments of [ Al] give the isomorphism. One, of course, uses the interpolation
'.formula [ Al .6.5] to show the surjective property rather than [ Al 3.4], and

‘uses a differentiable triangulation of (A, B, C, D) rather than the simplicial

| i complex of [ Al 5].

1

13,5 THEOREM. Let kX, n, m, A, B, C, D, Gbeas inl3. 4.

ST b s, s

There exist natural isomorphisms

\'F"x‘f«'-:.\-..e:-'-«’,- At LR

F(yzh . o y ,
n¥(yzia, BUG G WM, {0) ¥H__ (A, BUG G,

3 , T :
n¥*(yzia, Buc; o, {op ¥nf(vz (A BUC G, {0}

{
Also H (A B UGC; Q) is naturally a direct summand of H.:;(_Vz‘_k(A, BUC; G,
{0})

ER TN

Tvdls

PROOF. The first conclusion is a consequence of 13,4 and the

. homeomorphism v, The second conclusion follows since Y_Z_;(A, BUC; G)

.is dense in V?1 (A, BUC; G). The third conclusion follows from the first two

13-8
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» and the obvious isomorphism Tl:ﬁ-(z4 ° il) (_1 0 VZ)

Here the symbol
3’. l'l:ﬁ: refers to the induced mapping on homotopy groups.

13.6 COROLLARY. Letk, n, m, A, B, C, Dbe as in 13, 4 with

g k <dim(A) = m. Let G be the group of integers modulo 2 with ‘(1) l =

3F .
Men® (VZ, (A BUGC G), {0}) such that L{T) > 0.

bl " Then there exists

PROOF. Note that H (A BUC; G) £0.
2 from13 4, 13.5, and [ Al 8.2].

The corollary follows

ey
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e

?’ 14. CONSTRUCTION FOR DECREASING AREA.,

i 14.1. ASSUMPTIONS. We assume the following throughout this chapter:
5

% () m and n arc positive integers.

;{

i (2) A is a compact submanifold of R™ of class 3 having boundary B,
&

; (3) C is.a compact submanifold of A of clase 3 having boundary D.

'4 (4) 1 <k < dim(A) is an integer.

(5) L{m) is the number of cells of all dimensions in £ (m).

{] (6) M(n) is the positive integer defined in 13.10.

)

! (7 N(n) is the positive integer defined in 8. 6
'?."‘(8) a(h) is the number defined in 8.7 for 1<h < k.

(9) b(h, n) is the number defined in 8.7 for 1< h <k,
3m

700} clm, ) = (i) L)
g"-f'(u) c,ERY.
(12) d(h) u(h)'l[sb(h)]l“k for 1<h<k We set d(0) =

,{13) Pin, X) ; r* XRO————>-R is as in 9.10.
§

(14) G is an admissible group.

~
i

14. 2. DEFINITIONS. We partition y_gk(A, BUC; G) into six classes
as follows

'v

EE

v

._,}'.. AT *‘t“:'::;

Class (0). 'Class (0) consists of all (V, W; T, BT)GVZk(A BUC; G)
»fOr which S(R A, B, C{V, W)>0 or P (R ANV, W)>0 or

'{ PR B, )W, 0) > 1.

Class (a). Class (a) consists of all (V, W; T, ITIEYZ, (A, BUC; Q)
whlch are not in class (0) and for which there exist c_(m, n) dxotmct points
pl, Por oves pc(m, )E spt(V) - spt(W) such that @ (WV p.) < d{k) for each i.

Class (b). Class (b) consists of all (V, W; T, ar)c VZ (A, BUC; G)

s Whl(_h are not in classes (0) or (a) and for which there exist c(m, n) distinct

pomt., Pis Pyr vens pc(rn n)E spt(V) - spt(W) such that the tangent cone to

‘ SPt(V) at P, is a k-dimensional disk but @ (WV p) is not an integer for

. each i. Note that 10.7 implies thatif (V, W; T, 9T) is in class {b) then
Vﬂ(R - spt(W))GéR_:Yk(R )e

‘ Class (c).

I

Class (c) consists of all (V, W: T, 0T)EYZ, (A, BUG; (3

= wewmcaer ¢ T T

e L

W S e A ¥

T vt wEeme ey

Ty e S

v vt e ¥



FS(R A, B, C)(V, W) =0, P (R", A)(V, W) =0, and P (R"

e T
R
e i

1

Ry
NN T
ST

>
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X

¥
0 :?‘;;.:-, Lo

o)
B

X

;gwhlch are not in classes (0), (a
A

g
g,,pomts pl, pz, cee, P

1!

), or (b) and for which there exist c(m, n) distinct

c(m, )é spt(W) such that @k 1(WW p. ) < d(k-1) for each i,

i:”Note that 5.4(c) implies that if (V, W; T, dT) is in class (c) then
EVNART - spt(w))€ v, (R7).

PO )

1‘? Class (d). Class (d) consists of all (V, W; T, aT)& VZ (A BUC; G) )
iwhlch are not in classes (0), (a), (b), or (c) and for which there exist c(m, n)
;" distinct points Pyr Ppr vvvs Prin n)e spt(W) such that the tangent cone to

x_'f'c

- A3 CE O R

spt(W) at p, is a (k-1)-dimensional disk but CD

(WW p; } is not an integer for
each i.

Note that 10,7 and 5.4(c) imply that if (V, W; T, BT) is in class (d) then
vn(R - spH{W))E LV, (R %) and WE RV, (R ).

Class (e). Class (e) consists of all (V, W; T, BT)G_VZ (A B C;G)

whlch are not in classes (0), (a), (b}, (c), or (d). 10.7, 10.8, and 5.4(c) imply

that if (V W; T, aT) is in class (e) then VEIV (R ), We IV1 l(R )y

'l

» B, CY(W, 0) =

PR
%

_!'.-., Note that if k =1 then classes (c) and (d) are empty

o

{ 14.3. DEFINITIONS. For each sufficiently small positive number n
4’iwe classify fourteen types of subsets of A.

."n‘

»,'A.

Type (1). AND (a., r) for some a€A and 0 < r < dist(a, BUC).I
IM(Z)- An;:_f‘(b, r) for some bEB and 0 < r < dist(b, C).
Type (3). Af\];n(c, r) for some c€C and 0 < r < dist(c, BU:D).
Type (4). Aﬂ;Jn(d r) for some dED and 0 < r < dist{(d, B).
Type (5). AﬂD (a, r) {x s dist(x, T )< nr} for some ac& A and
0 <r < dist{a, BUC) where TT is a k-plane in R®

S m it sre ¢ BANSSE PEpogk e By
PRI R e e S

WL 29T
¥

-7‘\

c0nta:.n1ng a and

-

pa1a11e1 with the tangent plane to A at a.

N5
’x

containing b and parallel
with the tangent plane to B at b.

""v ’ ’ 7/
4 k .

; Type (6) AﬂD (b, r)ﬂ{x dist(x, T17) < nr} for some bEB and X
3:0 <r <dist(b, C) where TT is a k-plane in R" )
J

b

BTN

Type (7). A(\D (c, r)ﬂ{*c : dist(x, 'ﬂ'k) < nr} for some c&C and
0<r< dist(c, B{UD) where TT is a k-plane in rR" containing ¢ and

Jparallel with the tangent plane to A at c.

: Type (8). AﬂD (d, r)N{x: dist(x, 7T )<nr} for some dED and

T A o e e ey




R

:,iﬁthc {angent plane to A at d.
Y\y"

Type (9). BMNE where EC A is of type (2).
Type (10). CNE where EC A is of type (3).
_Type (11). CNE where ECA is of type (4).
Type (12). BﬂD (b, r)(']{x dist(x, TT -1) < yr} for some b&B and

qv 0 < r < dist(d, ,B) where ﬂ’ is a k-plane in R" containing d and parallel with

J
g M Lih
HENEH

L AN,

0< r < dist(b, C) where '\'T is a (k-1)-plane in R® containing b and parallel

with the tangent plane to B at b.

SN e
AR

B

1
XE e (13). CﬂD (c, r)m{x dist(x, TT k ) < wr} for some ceC and
0< r < dist(c, BUD) where Tr is a (k~l)-plane in R® containing ¢ and

Ty

s e 2 bl oA s
RN L
a"*-“ﬁv

parallel with the tangent plane to C at c.

-
-1\?.-,

Type (14). CﬂD (d, r)ﬂ{x: dist(x, T]’kul) < nr} for some d&D and

0< r < dist(d, B) where T]' is a (k-1l)-plane in rR" containing d and

yootws
ey
L% AR

P
-4J’ o

parallel with the tangent (half)- plane to C at d.

Fa

Gy s

. . +
14.4. LEMMA., Let n>0 be as in 14.3, Then there ex1st o, Ac::R

«”-. ax

"« (dgpendlng on 7, A, B, G, D) with the £ollow1ng property: Let E CA be of'

¥"' ype (i) for some i =1, 2, «-., 14 with 'dlam(E ) < 6 Then for each e >0

gf there exists E (C R” satisfying:
t {8)If i=1, 3, 10 then E° - £° is a compact submanifold of R* of class 3 wit"

'J

bOundary and is diffeomorphic w1th a closed disk of appropriate dimensicn.

0 . .
(b) If i=2, 4,5, 6,7, 8 then eCCESC AN{x: dist{x, E') <t} isa compact

Lo
P>

~1n.zr;
o

'\T

submamfold of R” of class 3 with boundary and is diffeomorphic with a closed

1mr
.n"'

dlsk having the same dlmensmn as A.
(C) If i=9, 12 then E C E°C BN {x : dist(x, o ) < e} is a compact submariict

°f R" of class 3 with boundary and is diffeomorphic w1th a closed disk havine ¢

r,‘v ~‘

f
‘1
%

ame dxmensmn as B.

(d) If i=11, 13, 14 then e’ C EFC cn{x: dist(x, £ ) < e} isa compact gun-

LI N

{mamfold of R™ of class 3 with boundary and is diffeomorphic with 2 closed dir

rrg
..
PAS

haan the same dimension as C.
'*‘”(c)xf i=1, 2,3, 4,5 6 7,8 then A (E", R) <A,

i !(f)g i=9, 10, 11, 12, 13, 14 then Ak 1(13 R )<A whenever dlm('

P
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PROOF. One can realize the ¢-neighborhoods of EO as star-shaped
. reglon& with respect to a suitably chosen center and the exponential mapping,
¥ Smoothmg the radius function defining the boundary yields the desired smooth

% mamfolds with boundary. The estimates one obtains by this process are
»l’

”I‘ sufficient, together with small §, to prove the lemma.

Y’M

*fg 14.5. DEFINITION. Let r, €, 6€R and p&EA., We denote by

0
N 1 " 1
:‘.' R(A BUC; e, 6 p, r) the family of all sets {Vl’ 0y s L(m)} of L(m),

not nece‘ssanly distinct, elements of VZ (A BUC; G) for which there exists

vl UZ u3 : ' ,S
L{m})’ L{(m)’ L(m)’ """’ "L{(m)

91' elcmcnt of VZ. (A, BUC; G) satisfying the {following conditions:
(1) r(u J“)<5 for each i=1, 2, ..., L{m) and j=1, 2, .
(2) F(VJ VJ) <& for each i, h=1, 2, ..., Lim) and }
(3) sup, W(VJ)< sup, W(v ) + 6,

(4) sup, W(v %) < sup, W(v, ) - ¢, and

( v ﬂ[R D(p, )] =V, m[R - D™(p, )] for each i

By
’..
v

eey S,

1, 2, ..., s,

i

.-r—, .2 ‘,

1, 2, ..., L{m)

14. 6, LEMMA. Let E be a compact submanifold of R of class 3

H +
”€W1th boundary ¥. For each bERO, N€R+ and positive integer m therr

e,

XJ" exists a continuous function gb RT— RY with gb {0} = {0} and

":‘§b(r) > § (r) whenever 0<b<c and rER+ having the following prore:”

ltl

ki TLet £ R” —> R be of class 1 with Lip(f) <1, and let

14-4

and j=1, 2, «.., 8, where the 1nter sections in this context have the obviowvs

Cerrte oe Mo L Tidn Vo LAy e el g k2 e o

I e o

el
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supjg[(l'rjl', la'rjl; T; 9T, (7,0, lar | T, dT)] <6

hen there exist Tl T;, . T:; as above satisfying (1) and (2) above and

—

..,,,,v,.
ST AN R

T

.,
o

e . sk b . e 0 I’ . . -
1 sup FL T, | aT s Ty, a1, dmyl, Joryls ), aT)] < .

To show this we now choose several small numbers whose choice depends on
{E F, b, N, and m but does not depend on Tl' TZ’ «ee, T

r*.,...

‘1a =

"t""( ) & cl(a). Choose € 11

*(b) 5 = § (E ¥, b, N, m, cl) Choose 0<§<4 lb with the following property:

For ea.ch g : R™ —> R of class 1 with Lip(g) <1 there exists some
0< r,<b- 361 for which

v

-1
l+361})<c £
-1
<
+361}) c ey

suijT ({x: Xy < f(x) <r

- < <
supjl}__/IaTj({x N f(x) r

t is the constant of 2.4(2) and 2.5,
-1, -1

1» 8)- Choose 6, = (L + 61 ) €,+ Note that 2.5 implies that if
<6, and F(]BT [, |aTl)) S 6, for each i, then for each r

‘7’1 + < r< x) + 251 with ¥, as in (b), and for each i =1, 2,
'.1‘5":
if

s 00y I

o 1 P AR
e

LA

g

TR LT
PR

43

e 2,
i)
<

2 TR 2 3
LIV
RN SN

.

#

>
§-le’ Ty oves T_EZ,(E, F; Q) with M(T) + MOT) <N for each i=12, ..., m. §

i
=Then there exist 0 <r < b a.nd T ) T" c ey T GZ (D, F; G) such that for each :2

o
gi:l- 2 3, eesr, IMm, :Z
.,(l)T ﬂ{}g:f(x )<r}= T N{x: fx) < 1), i
(Z)T ﬂ{x f(x) >r} T, ﬂ{x f{x) >r}, and U
‘ ?:( , Lo, < . o, {:
i 3)F(|T [ 1aTi|, AT, ([T e ter oy, TN S & fsup,FUUI T |, ot |5 T, a7
:' '1‘ r ol . ',;’5
5( e ]8[‘1],Tl, aT))]) é
?‘ PROOF. Let E, T, b, N, m, and { be as above. We will have proved F
L. X
‘"the lemma if we can show that for each e > 0 there exists § > 0 such that if 1
“ZT, T,, ..., T are as above with

Y
xPe?
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£(|Tilmx=f<>‘>>r}, [Ty N o £(x) > £ ))
<rdrl, lTll)(l+6-1) +CWT ({x 5 1) < f(x) <7 +35])
+ CYTI({X : 1‘1 < f(x) < rl + 351})
5_35'1 R
E(laTilﬂ{x D i(x) > r}, IaTllﬂ {x:£f(x)>r} < 351

and

'k. {d) 63 = 63(m,.£1, 61, E, F). Choose 0 < 63 < e, to have the following property.

Let IIGR as in (b). Then whenever F(T T ) < min{c-163, 53}' there exists
¥ some Tor Ty bby <, <r 4 26,, such that N {x:f(x)=r } =0 and
AT, iN{x:£(x)=r,} =0 for each i=1, 2, ..., m, while for each i=2, 3,

ll; there exists Kie %k—rl(E’ E; G) such that

4

0K, - (T)-T) EZ(F, F; G)
MOK; = (T -T;) + M(K,) < e,

1_\__/1(31>i(r2) - BPiﬂ {>: £(x) > rz}) < e and

I):/I(Qi(rz)) < min{c—lsl, cl}

”Herefor i=2,3, ..., m,

P, =T - T, - 3K,EZ(F, F;G)
Pir,) = PiN{x: i(x) >r}E2 (F, Fi @) ,

Qi) = BN {x 2 £x) > ¥}) - 8K, O {x : £(x) > x)

€ Z,(E, E; G)

¢ The choice of r, 'is possible by the methods of [Al, 1.18].

. For each i=2, 3, ..., m we define

T:‘ = Tlﬂ{x : f(x) < rz} + ’I‘iﬂ {x : {(x) > rZ} + Qi(r:,_)

SO AT DAY

Under the hypotheses that sup.l.I_:"( I Til . |T1|) = 52. supig‘( I BTil . |8T1|) )

e e
S AL R

g
M




Sk AT

e L
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£

R ot
R
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Seat”

St e R o par s
HEEDPERSEEEIT

BeEay

Bt -t TR s T
e al 7 vs b
T TR :

2RI

IR

T AR

T SLIEAT I
SRS S

T
T

)
a4

Vi

T TR
RIS

AT
AT

e

=25
£

e YR

T R

I

T
I

o
Bt

sup, F(T T ) < 63 we make the following assertions:

< 2¢..
T)) <2

Proof of assertion l. Observe that

Assertion 1. sup, F(T

a(K N{x:f x)>r2}) - (T T)

1}

a(Ki(\{x:f(x)>r2}) T1+Tﬂ{x: )<r }

+ Ti"n {x:f(x) >r,} + Q)

i

O, N {x : £x) > 1, 1) = (T)-T, ) {x ¢ £(x) > 1)

+ Qi(rz)
= P.(r,)
has mass no larger than El for each i=2, 3, ..., m. Hence
sk X3
< o f > - -
F(T,, T) SMEEK N {x: ix)>r,}) (T,-T))

+ I_\__/I(Kiﬂ{x 2 £{x) > rz})

<
"’251

Assertion 2. sup F(| Tfl, [Tll) < 4ey.
Proof of assertion 2. For each i=2, 3, ..., m
F(T,, T,) = _g(l'rflm{x LH69 < r, ) 4 [T x> 1)
+Q ]Tlﬂ{x:fx)<rz}
+ lTll'm{x P E(x) >, })
= F(|T | N{x: 0 >x,} + Q) v
| Ty I : f(x) > r, )
SEUT NG &0 > b [T N {x: i) >, ])

+ eW(Q(r,))

14-7
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S ¥

SRS

Assertion 3. sup.l__I_:‘(Ianl., IaTI‘) < 4e

1‘
Proof of assertion 3.

For each i= 2, 3,

PT IV
LR

e, IN

ey

SN

*
aT,
1

a(:rlm {x : £(x) <r2}) + B(Tiﬂ{x P f(x) > rz}) + BQ(rZ)

iy,

a'(Tlf'\{x t f(x) < rz}) + a(Tiﬂ {x : f(x) > rz})

FOL-P; + T) - TIN{x 2 £(x) > r,}]

3 "',‘.l!-‘c-\{';’:::". TR
STV T

, = a'I‘l - BPiﬂ{x : £(x) > rz} + apim {x : f(x) > rz}
g -
&, aPl(rZ) ‘

i

#

= aTl - (aTl - aTi)('\{x : f(x) > rz}

T RS R

+ aPiﬂ {x: f(x) > rz} - aPi(rZ)

= aTlﬂ{x : 1{x) < rz} + aTi(‘\{x T f(x) > rz}
b, + apim {x: f(x) > rz} - aP.l(rz)
i Thus

. BRIl lomh = AT NG 109 < 1) 4 0T A o1 > )
L : + lapin{x P i(x) >, } - aPi(rZ)l ,

18T [ (e s 160 <} + AT | (2 = £() > 5, ]y

< BT 1M 2 09 > £, ), [0T)1M 6 : £ > 1, )y

? + eM(AP, M {x : {(x) > r,} - BPi(rZ))

% T o

Assertion 4. F[(|T,|, |aT |; T,, 3T,),

(|T1|. laTll; Ty 0T)] < 10e <¢

1

~v 2T T

';;\yhenever 6 = min{éz, 63} and

e
IR

-

e Fee g Tl AT

-
]

R
w0

iamy
e T TS AL 3
Srei oAty e A
AN |

-~
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[ . o s mge
] Proof of assertion 4. Obvious as a consequence of the definitions and

1agsertmns (1), 2), 3).

;;'
%: This completes the proof of the lemma.
k

tﬂb unda.rx F, andlet (V Wl' T BTl)E VZ (E, F; G). Then for each ¢ > 0

14,7, LEMMA. Let E be a compact submanifold of R™ of class 3 with

t]lere exists a positive integer q and a sequence

: , L ee, (V, W, T, 0T

Rt

ox elements of VZ (E ¥; G) such that

erg s
'*.‘5.‘:‘4:;«

3T)) = (l'rll, laTll; Tl, aT))

T e——
—
—

vV, W T,
(q qQ 1

-
".” H

o) “3';5

-z,
oA

(2) v__\_r(vi, wi; Tl' aT ) > W(V (41’ W a2 T aT ) for each i=1, 2, ..., q-L;

—
o
—

I k>2 ,

LT

LLCIT N
4=

£

Rt

F{(V,, Wi T, 3T}, (Vo Wigd Tp aT)] L€

13
"."‘ for each i = 1, 2, ...y Q-1

(4) If k=1 and G is the additive group of integers then\_l_?(Vi, Vi+1) <eg
and W(W W )<2 for each i.=1, 2, ..., q-1;

(5) If k = 1 and G isa f1n1te group, then F(V V 1) <g and

Wiw, W, )<i+e max{lg[ 1 g€G)

PROOF.
Parxt 1. Let € = Z*ZCG where cGR; is the constant of 2.4(2) and notice

thatif v, wey R, per®, reRrY, VA[R*D%p, )] = WAR™-D(p, 1]
W(VﬂD (p, ) < 5, and WWND(p, )26, then F(V, wy < 2.

i35 -:3,-;::3,«;9:-::«.. s

XE K
Tt

LR T

RIS

ot

' Part 2. Let V, V), V,, Vg, €V (R with lim V.=V,
J T, r), T, T, ..€RY with lim, r1='r, and pER®. If VNID (p, ) =0 theP

_Fatou's lemma implies 1lim V.M D ™(p, r.)=Vvn D"(p, r.) and
lim, V. m[R -D%p, )] = vn[R -D%p, = r )]

[

T

i Part 3. Suppose for each p€R W(V N{p}) <& and W(W ﬂ{"f)
2
i One then chooses Pis Pyr cves p GE and r1 Yoy ooy T -16R0 such ihe

B R B LIRS RV TN

L




n
= o,nwln ;8D (e, r) =
and Y:V(Wlﬂlg (pi, ri)) < 6. We define

V1= VlﬂR ,

n n n
V, = ViN[R-D(p, =] + TN D ey, )

vy = VinRY - Yo%, r) 1+lT|ﬂUD o Ty

1=

3]

n qa-l n q-} n
Vg = ViNIRT - U Ditpy, 7] ¢ I'rllmik___Jllg (p;s =)

14

. n n n
W, = Wi N[R-Dp), )] + [3T, |NDp, ¥)

n .q-l n q-l n
W= WiNRY - i=Ullrg (ps x,) + IaTllniszllg (p,, =)
= |a'r | .

.,'“g,.' h -1 -
“ One observes that F(V V )_<_2 ¢ and __}:_“(W.l, Wi+1) <2 lc for each

..\,

x =1, 2, ..., g-l. We will have established the lemma in this case if we caa

show (V W T aT )EVZk(E F; G) for each i. Itis clearly sufficient

d;'to show (V WZ’ T T)EVZ (E F; G). Let T1 ’1"2 '1‘3, L EZ (_,, o)

S with lim T = T,. lim aTl 8T, lim, | T" ] and lim, Ia'r |'= W Let |

;',pl PZ P3, .. Ezk(F F; G) and Ql Q Q]3 E%k l(E, E; G) such tha?

:aQ - (1t -T)) = p1 and lim, M(P) = lim, M(Q) . One chooses b, £2, 2, . ;

‘r such that 11rn1r =T lim, B[Q MD ( p T )] - aQ ﬂD (pl’ r ) =0, and .
| lim, a[p D(p,, *)] - B(T,- -1 D (pl. r.) =0 [FF, 3.9, 3.10], [FL3, 5.7]. [

Wesetfor each 1—1 2, 3

-..-'.'-
ISAg g

T e

~

By g

s = T, + 3N [R™Dp,, 1)) - Pn [R™-D%p,, *,)]

LR

and observes using part 2 that 1'1m_Sl =T limiasl =0T
i

ll 1) limilsll =

e ¢ "

frgres
TR

-t 0o

RS
oS

2

Fﬁ.ﬁ&;
-

a4



qEi=l, 2,3, (.., with uniform convergence to the identity on R™

Suppose k > 2, pER » and W = max{W(V N{p}),

ForO t<t <...<t2<tl-1chosensothat

(t)-(t ) '(til}<2 Wls we define

2= INER™ - () + ()5, 1 (p)

3= VINER™ - (o) + 5"V, N {p)

ViN(R" - {p}
- wln(R - {p}) + (¢ )k"lwlm{p'}
W= W N(R -{p})+(t) Wlﬂ{p}

n
W= WNR - {p}) .

20 SN Y T ST

j We now show (Vi) W;; T, 39T))EVZ, (E, F;i G) for each i.
c 10 consider only i = 2. Let Tl, TZ, T3, .

e b B Bl ey

14-11

-+ be as in part 3, One verifies the

emstence of a sequence of diffeomorphisms £ (Rn, E, F, {p}) — (Rn, E, F, {ph

together with

.: uniform COnvergence on compact subsets of R - {p} of first derivatives, such
.;.that Df, (P v) = t,v for each VEA (R ?) and lim, f_g_.'r = Tl’ lirn foart - BT
:' RiE ]fl = l 2’ and lim, l aT I = 2' The above constructlon together w1th

Lpomts pER with

max{vzv(vlq {Ph, WW N{ph}>5 .

F01 k=1 the constructions necessary to prove

.::‘“ 14.8. LEMMA. Let 4, ¢c€R" and 1<h<k Let m:R"

i

satisfy

R

parts 1l and 3 imply the lemrna. for k > 2 since there are at most finitely many

the lemma are easily obtained

Clearly it is sufficient



<

iy
5‘, 5
”

e
Pt
i

~h . .
r m(r)exp(Ar) is non-decreasing in r for rERF,

Ty W

433 .- -
L1 lim * r hm(r) < cl h.
Y ont =

v rer

+
0 for which

h-1 h-1 h

NS 20 A Ngedete bl gl
Sy

ig m(x) >c ‘m'(r)" .
jt
I' ‘S% PROOF. Suppose ¢ >0 andfor 0<r<eg, m(r) ch"lmu(r)h_
%%‘311nteg1atlon of this inequality yields r hm(r) > clﬂ}1 for 0<r< s._
g it 14.9. THEOREM. Let vEYZ (A, BUG; G) be in some class (a), (b),
Ehe ==k
#{c)y or (d) with W) < Cye Then there exist e €y 536 Rg and
mﬁ‘ ., . -
4: 128 pz, cee, pc(m,n)EA with lpi - pjl > lOt:1 whgnever i#j such that
%5‘;{1/1 ! v} JER(A, BUGC; ¢,, 2v(n, Kla(n : k 1A
:i. 1) 2. L L Y L(m) = 1) H 3! Y ‘ ] '. )gal(supi. j::F[Vi' Vj]); ph’ 551)
?NJ h . VI l ) 1
z for each h =1, f, «+s, ¢{m, n) whenever RS UREEY: U‘L(m)e \;_gk(A, BUC; G)
2 with < '
; with sup F(v vl) €y
""f;‘ PROOF.
5 Partl. Let v =(V, W; T, 0T) be as above and §, AE R as in 14. 4.

R
.

Smce V- is in some class (a), (b), (c), or (d) we can find 0 < £ < 5 16, c¢(m, n)

& A with [pi - pjl > 10¢

£ :«.\‘-’

g dlgtmct points Pys Pys +oe0 P whenever i # j;

1
ER with 0< s, <t <g. for
i i 1

c{m, n)

N et
PR S

**and s

e oy

by
1) SZ' . ve, Sc(rn’n)r tl 2 C(m,n)
each i; satisfying the following conditions (2), (b), (c), and (d).

Condition (a). If V is in class (a) then
( - : dist(x, t > .
(1) py» Pyr coes P(m, n)Espt(V) {x : dist(x, spt(W)) 5:1}, _
17 (2) For each i=1, 2, .., c¢{m, n), piGD, or piEB’ or piec and

N T T
FEERh S T S

(3) WV({x: lx - p ‘e{s , t. }}) = 0 for each i=1, 2, ..., ¢(m, n);

" (4) WV(D (p 1)) 22 1a,(k) (2+A) "k for each i=1, 2, ..., ¢(m, n);

& (5)If X>2, then |

v

o -1 n ' k/ (k-1
Y WI(VADYp,, s.)) > 3b(k, a)(t;-s) WIVAID (R, t) - Dtpyr )] Sl
2 - - C B

o

¥ for each i = 1, 2, ..., c(m, n); and

o
=N

Y.
SRR

13,

D

g

&

T

w




|, distlp, BUD) > 5¢

"(6) If k=1, then

|l¢ iy

s

Gt

* (-5 WA RYp,, 1) - Dpy spD <1

i = = 1 1 = 1 1

“for each i=1, 2, ..., c(m, n).

14, 8 guarantees that condition (a) can be realized.

,: Condition (b). If vV is in class (b) then there exist 1, NeR; w‘ith
(k) <N; and

(1) Pp» Pos -eo C( C spt(V) - {x : dist(x, spt(W))> 551};

(z) For each i =1, 2, evey c(m, n), P, &D, or piEB, or piEC and

det(P , BUD) > 5ey, o piCA and chst(pl, BUC) > 5¢.; and

1
(3) Theze exist k-planes TT 'iT s e ey 1T in R™ such that for each

3 c{m, n)

:21 =1, 2, «.., clm, n), P, eT , ’]T is parallel with the tangent plane to A at

‘ P in case piEB then Tri is parallel with the tangent plane to B at P, and
;’.';-:é\‘ ‘

spu(VIND(p,, 5c,) C {x : distlx, TTy) < 4'lelq>(n, K)(2N, 27}

¢ (4) lu(k)—lr-kv_y’(VﬂQn(p,, r)) - Zl > 2n for each integer Z, each
cl <r< Zel, and each 1, 2, «.., c(m, n);

(6 W(VNDR™p,, 3¢)) < slf
(6) (2+A) < N.

; for each i=1, 2, ..., c(m, n); and

Condition (c). I V is in class (c) then
1 ’ i) LI Y ;
ey P2 * Pe(m, n)E spt(W)

i

+ (2) For each i=1, 2, ..., c(m, n), piGD, or piEB, or pieg and

2 1
;f (3) WW({x: |x - P, |€{s , t. }}) 0 for each i=1, 2, ..., c{m, n);
i (4) W(W(\D (p , t. )) < z’la(k -1)(2+4) "kt for each i=1, 2, ..., c(m, n);

'“ (5)I£ k >3, then

37.

W(WﬂD (P , S, )) > 3b(k-1, n)[(t - s) W(W{‘\ [D (p t'i) _ En(Pi' si)])](k--l)/(}e;.,..

e
R

4;
- for each i=1, 2, ..., c{m, n); and

5.. (6)If k=2, then




'(ti—si) W(Wﬂ[D (P, t)" va)]

for each i =1, 2, ..., c(m, n).
14. 8 guarantees that condition {c) can be realized.

Condition (d). If ¥ .is in class (d) then there exist 1, NeR; with
gilk-1) < N; and

, (1)P1. Pyr «ees P

c(m, ) S SPHUWD

" (2) For each i=1, 2, ..., c(m, n), P;E€D, or p,€B, or pEC and
u ’
dxst(pi, BUD) > 551;

y (3) There exist (k-1)-planes TT 'ﬂz, ceey Trc(m' n)

.
:
4
N
Ao
i

.
?

, spt(wmg"(bi. 5e)C {x s distlx, T <47, Pln, k-ni2n, 270)

4) la(k- 1) k IW(W(\ ]gn(pi, r)) - Z| > 2n for each integer Z, each

?".sl<r<251 and each i=1, 2, ..., c(m, n);

1

e W(V(\D (p , 3¢ )) < Nsk -1 ior each i =1, 2, ..., c¢(m, n); and
(6) 2¢ (2+44) < cP(n, k-1)(2N, 2 'n. '

Part 2. Since V7h(A BUC; G) is dense in VZ (A BUC; G) itis

i' sufﬁc1ent to prove the theorem when there exist Sl’ SZ' ey L(m)

’ wﬂhout loss of generality,make this additional assumption.

Part 3. Let v, Vi, 1/12, cous Ui(m) be given as above and suppose
' £ Pyr Pyy veey P c(m, n) have been chosen as in part 1 to satisfy conditions

(a), (b), (c), and (d). In view of 2.4(2d) and 14. 6 we can assume, without loga

’

of generality, that
1 n 1 n
. v.ND (Pl, 251) =v,ND (Pl. '281)

.for each i=2, 3, ..., L{m) provided we then show that for some ¢_ > 0,

| 2
T some €5 >0, and each § > 0,

b

T IR ALY

€ Z (A,
~ with v = (Is;], |8s,|: 5, 9S,) for ecach i=1, 2, ..., L(m). We therefore,

14-14

n 3" or e fnas o i e e, o e 4
e E e mw rer— =

in R® such that for each
i=1, 2, ..., c(m, n), pié Tfi, 'lTi is parallel with the tangent plane to BUC
at P in case piéD then TTi is parallel with the tangent plane to D at Py and

i DAk

PSPy

D

“
B M

BUG; ¢

T ww o ow




i . 1a-15
1.

ji

14 v, v VI}ER(A, BUG; ¢,, 6;

12 p Yy e IERA, P Eg0 8 Py )

i

e
b

1 g -
whenever g(v, Ui) < €5 We therefore 'rnake this additional assumption and will

verify the stronger conclusion.

Part 4, Let ECR"™ be compact, h&€{k, k-1} - {0}, sle z,(E, E; G,
2

B R TR A TR T S T TR N T 15 o F et Y st T Sy ~._\,:=4_'~1~*;_17-{, AT -‘-itmq«.i_g;.f_-t M e

and 6ER$. We denote by I' the set of all finite sequences vl, Yo oo, ¥ of

triples

y = [Ti, w S ]CZ

i=1, 2, .,., u for which

(1) asi = 881 for each i=2, 3, ..., u;

(2) aTi=s'1 s for each i=2, 3, ..., u;

(3) For each i= 2, :5, cee, U there' exist S S;, S;, . -E%’h(E- E; G
such that th = 8", lim, |s| W', and as - 35’ for each j=1, 2, 3, ..
(4) F(Si S )J<36 £or each 1-1 2, eees u-l,

(5) M(T ) < min{s, 2 (W(W ) - W(W ))} for each i=2, 3, ..., u;

(6) W(Wlﬂ) < W(W ) for each i=1, 2, ..., u-lj

(7) F(W/ W )5_5 for each i=1, 2, ..., u-}

(8) W' = |s R

(9) T* =

.
L ]

—— - v—

N

Since clos{y. :y is a term in a sequence of '} is compactinthe FXFXF

topology there exists a positive integer u such that whenever
Y= {\’1: YZ. ...y YOJET, \/i = [Tl,- wh, Sl], one can find
. (141
= i{l) <i(2) < ... <i{u) =u such that F(WI(J), .WI(J+ )) <& and
F(Sl(J) gt

.
P L P TRRIR o o

observation one concludes by elementary arguments thatif vy = [T, W, 8] is the
last element of some sequence in I, then Y is a.lsp the last element of some
sequence in I" having no more than u(l + 25"1[1\4(51) - W(W)]) terms. The
compactness noted above together with the preceding bound on the length of

«+ i, sequences having a given last term implies the existence of a sequence

1 u T ou . g
Y., YZ. ooy Yu in I’ whose last term Yu= [T , W, S ] satisfies

b
R

) < § for each j=1, 2., .ee, M. In view of (5) above and the prccet.’”

T W Mewr B AT TR T T

B

o e e W
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i '.f'émpnes w = |sY].

ahre « oo,
RV

wnn  Now suppose E is compact submanifold of R™ of class 3 with

"A lE: rR") <A and y' = [T, |S|, S] is the last term of a sequence

b‘

ade by

{"lfno.t- then P(R)(|S|, |85]) > 2 + & and, inparticular, P(R", m)(|5], |08]) > 2

.. ";Hence there exists a dlfferentlablc deformation f: R X R™ —> R" with

".f(t . )(E yC E for each tCR and (0, x) = x for each xE€R™ such that

" " -g(lsl, (0£/9)(0, -+ )) - T(|3S[, (2£/81)(0, - ) > 2T(| 8|, (3£/d1)(0, - ) ;

';and in particular, for some t > 0 if one sets

.-' ooty !
%.‘.v\ 2 ’ ¥
7 .

4 .
= [-f#([o, t] X 8), |f(t, - )#(S) - f#([o, t] X 88)|, £(t, )#(S) - f#([o, t] X 38)]

B Ly

then the sequence Yy Y, ..., Yu, yu+l isin I’ and

w(lf(t );%(S) - #_([0. t] X 85)|) < L(I'} which is a contradiction.

b Part 5, We give three applications of the results of part 4, Let

E- h. Sl’ &, I, L(I‘) A be as 1n part 4.

Application (1). Let E C E be closed and
1 h
M(S’) < rexp(-r(2+4))

where r = dist(EO, spt(aSl)). 8.2, 8.3, and part 4 imply thatif y = [T, |s], sl
15 the last term in a sequence in I' with W(|S]) = 1-')» then spt(S)N g% = 0,
1 ' EElication (2). Suppose
(1) (2+A) M(S < a(h);
(2) M(S ) > 2b(h, n)M(3S")
(3)M(aS)<1 if h=1.

Lh/(h-1) if h_>_2;-and

8 7, part 4, and the fact that if h =}, M(aS ) must be a non-negative integex

lmPlY that if Y, =T |S], S] is the last term of a sequence in I’ with
¥ils]) = L(T), then

}
o
i)
"
)
13

R
BT L

.&u v oo, ¥ in T owith W(|S|) = (). We assert that P(R™)(|S|, |95]) <2 +aA.
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(1) W(ISI) < b{h, n)W(35 1,/ (h-1)

”,. (z) S=0 if h=1, andhence

if h>2, and

w(ls') - wilsh > 27 wils'h

Apphcatlon (3). Let r, N TIERO with na(k) < N and suppose
(1) LCD (o, 1[1 + P(n, h)(2N, 2~ n]) X Dn b (0, r Pn, h)(2N, 2~ T])),
(z) spt(3S )C[D (o, x{1 + P(n, h)(2N, 27'n] - DY(0, 1] x D" 0, r P(n, (2N, 27
(3) la(h) tx M(S ) = Z| > q for each integer Z;
., (4) :(2+A) < 2N;
(5) r M(S ) < 2N; and
(6) r M(as ) < 2N.

7

\(‘"\

[
e

..'.._\g;_‘,. it «‘.X

9 10 and part 4 imply that if Y = [T, [SI , S] is the last term in 2 sequence in I'
with W(|S|) = L(I), 'then '

Sgerod.
o 3.0 )
AN TAS

uo ' Ia(h)rhV=V(]S|) - Z| < z'ln

.; ‘for some integer Z, and hence
i}l
‘7;. . P

w3 1 -1 h
& wis]) - wilshz2 " .

.a-.

it
T
R A i

Part 6. Our arguments now separate into fourteen cases. The following

.,'_o‘
et T
st

-

_table gives information characterlzlng the scparate cases.

;‘»‘..".’54 R

T
STEaRA

77
AN
e tea

‘.«{;’

[

ST

S

h

> era e
T
o

Y

-
CATRET

vt
S XEY




thcse three cases are representative of the arguments necessary for the proof

T

i i
Oi the other cages. One obtains from each case (i) numbers €50 €5 from

are computed in part 7.

TN TN

whlch EZ and e3

Case (l). Let v

SuPPOSe P €A - (BUC) and AﬂD (pl, 551) is of type (1) with
+

LTRSS

T eenins w‘:-::

(AOD (p, 52))) £ 4. Choose ezeRO sufficiently small so that if
s’r - . .
; v = (|sll, |as | 51' 9s)E Yz, (A, BUC; G)
- L1
i With F(v, v)) < e, then

(l) w( [s lﬁD (pl, t M < (zm) a(k).
W(IS |n " (Pp» s))) > 2" W(vnD (Pyr 8

_i;;-s.'?-‘-f::vﬁ:.-":‘;;:;:-?.{ﬁ—ﬁ:q‘?':fs-" R

F;
!

" ?&r‘;
I 14-18
it
?\‘{ Class of v Appli i
# E . Y oo g \ppllications
} \} Case no., = Condition lo;:atlon rel;::vax;.)t %:Yf—g—s- used {from
,l;‘k ' V satisfies ot P of subsels part 4

@g, (1) (2) A - (BUC) 1 (2)

f ; (2) (2) B 2, 9 (1), (2)

§ EY (2) C-D 3, 10 (1), (2)

| 4

i ; (4) (a) D 4, 11 (1), (2)

) EAE) * (b) A - (BUC) 5 (3)

; :% (6) (b) B .6, 9 (1), (3)
& (b) C-D 7, 10 (1), (3)
]

:, (8) (b) D 8, 11 (1), (3)

§ ) (c) B 9 (2)

' £ . (o) C-D 100 (2)
Y (c) ‘D 11 (2)

{ %} (12) (d) B 12 (3)

’* (13) (d) C-D 13 (3)

g (14) (d) D. 14 . (3)

' l

l q!We will provide the details of the proof only for cases (1), (6), and (11). Case (1)

e

s probably the easiest case and case (6) the most intricate. The arguments in

=(V, W; T, 8T) be in class (a) and sa.t1sfy condition ().

PR,
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(s)wdSImmpl 5))) 2 2b(k, n)l(t)-s
§c1fk>2 and

_lxg(vm[:gn(pl’ £y - Iz_)-n(P]_’ sl)])]k/(k-l)

1) 1

’(4) (t,-s) " WVA R (e ) - D7eys s))) <1 if k= 1L.[FF, 3.9, 3.10] and
- W D D

ig[f‘L3, 5.7] imply the existence of s, <r <t such that 3[S N I_gn(pl, r)] exists
i;'and )
i k/k-1 ,

!‘(1) W lS lﬂD pl r)) > 2bk, n)M(a[S ﬂD (pl, r))) if k>2, and
‘.(2) M( a[s mD (P, r)]) <1 if k=1,

kwe set s1 =5 ﬁD (b, 7). Part5, application (2) implies, with h =k, the

I

;emstence of a sequence

2

2 2 Q2 3 w3 &3 nogt o s®

IE‘ [-0! Islll Sl]! [T ) W ’ S ]’ [T ) w ] S ]' MR [T 4 ls |’ S ]

o .

25 in part 4 with w(ls |) = L(l") for L(I‘) as in part 4 The desired sequence
vt 1

1’1, ulz, f, RN Uf by virtue of which

11 ] 1
{Vl, Vl, ese, UV } l____{(A) BUCGC; 53: H Pla 551)

-F‘«ﬁil,?f':’: ?ﬁ""‘ ey

‘.‘S defined as follows:

|6

% l . .

e v = (|s |, 198,13 8),°88)

25 2 1 2

%; v (1s-sl+w,|asll S, s+s,asl)

i )3 1,83 9sy

; v (|s—s|+w |asl =S +87, 85

i

f

\ u 1 u . _ ot U ae

5 vi=(|s -s|+W, [88]i5 -5 +57, 35)

-

i \Pplication (2) implies, in particular,

1 u -1 n o

i W) - W) 24 WIVODR Ry, o)) = <

}‘ Case (6). Let V= (V, W; T, 3T) be in class (b) and satisfy condition (D),
'%S“PPOSe p,EB and TT is a k-dimensional plane in R" containing py and
I
.¥tange.nt to B at p, such thatfor N, n asin condition (b),
¥

J’
] y:‘

b

‘

)y
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ANDHp, DN {x s distlx, T < r Pn, k)N, 27 0]

5 a subset 6 + ici
1 set of A of type (6). Choose EZERO sufficiently small so that if

PGSR

RAREE
s =

= (|s |, |asll; 5p 9S))EYZ, (A, BUGC; G)

-

P

..4
ARET "f'l*c.i%.

wlth Flv, V)<e§ then -

S0 W95, [ A Dy, 55 ) < X Lexp(ee 20a));

M . . .
5 (2) lW(IS lﬂD (P, r)ﬂ{m dlst(x, T)<2 e e, Pn, K)(2N, 27 n)}) : i
'f - W(VﬂD (pl, )| <2’ nu(k)s for each g, <r< 251, i
Fk‘
; ) WS 1N p%py, 3e) N disilx, TT) 227 @n, WizN, 2709 ,
¥ n -] k 1 - ;
.i{ +2 W(|aS IﬂD (pl,-llie )) < mln{Z na(k)sl, (mln{s 1@(“3 k)(2N, 2 11.1)})1c 51
';;;; exp(~ (2+A)m1n{£ e, Pln, K)(2N, 2 n)})} i
i 'l
i The construction of the desxred sequence 5y
'-ﬁ:.

1 2 3 u o utl | u+t2 v v+l vi2 w

7 Vir Yy Via sees VP VL, Y e V) VT ey V)

PRSPPIV IRYPL)

b et

PRy

RS b B
a3 MY

by virtue of which

& 11 1 6
;w;; {Vl' Vll er*y Vl}eg("A', BUCJ €37 6! p1; 581)

if";":'takes place in three steps:
:-:;;4:;. Step (1). We construct terms vi, Vlz’ cen V;l of the sequence to remove
v 65 ﬂD (p), 3¢ ). Use [FF, 3.9, 3.10] and [FL3, 5.7] to choose de) < ¥ < 5e,
}-_:gsuch that a[aS ﬂD (pl, r)] exists. We set S1 = aslm Ign(pl, r) and note that
”(1) ptaS)CBmD(pl. 5ey) |
x ('z) dlst(BﬂD (P, 3¢y), spt(BSl)) >

700 M(s) < cFexp(-e,(24))

(4) BﬂD (pl, 5¢)) is a subset of A of type (9) with Ak(BmD (pl, 5¢), R )_/.\. N
¢ If one takes h = k-1 in part 5, application (1), there exists a sequence

|4 [0, |s'], sl],- (%, we, s%], [T3., w3,'s3], coos [TY 8], 8Y

as in part 4 with W(]S ]) L(F) as in part 4, such that spt([S B ﬂD (pl, 3e.) -

N 1
kel
58
)
e
i,
e
i
L1t
i'.I»?
=,
£
Nt
KRTAN
:'.fl.
).
(768
RN
3l
I8
" 2 RaA s d B TN ST -
3 AR e A YA ST S U A CACI A/ A 0 b SN D e ata ALt in oo tyre prr i LA TSI T sttt 91 s o Lo g- g e e
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}_‘;M(T)<z M(S)<2 1-,51 .
i=2"
We define
l

) v = (Is,], 18s,]i s, 3s)

2 2 1, 2

i Yy (Isll+|'rl. lasl-sll + we sl+'r 85, - 5 +5°)

: 2 3
s f (lsll + szl + ]T3l, Iasl -,sll Fw 5, +T +T°, 38 -.s1 ¥ 8°)
& :
¥ u 2 i 1 u Yo 1 u
|} vy =,(|51| +}:'§lT |, los, - 57| +|s%[i 5 +§2T, 3, - S +8%). .

Wc have, in partlcular,
t (1) W(vlﬂ) < W(v ) for each i=1, 2, ..., u-l;

(2) W(ls | +ET "y - W(]S Yy <2 lnsll and

(3) sPt(las - sll +|s® |)m:> (s 3¢)) = 0.
1" Step (2). We now construct terms U?H, VIH-Z, ey UI’ of the sequence to
|‘v remove J,S | + Z [T | from the region
I.;i;' ) . -1

::; Anp(p), 2¢)) - {x: dist(x, ) <) P, K)(2N, 27 0)}

14 7 implies the existence of a sequence V;l“ V;HZ, o aay v?‘for which

= (]S;l], lasgli X aS?) where S;i- 5, +Z§ T and asil = asl - sl 4 5% Use

'[FF, 3.9, 3.10] and [FL3, 5.7] to choose 3t < r < 4c, such that |

. 1 1
. a[S?ﬂEn(Pl. r)] exists and to choose :

(1/2): P(n, k)(2N, 2~ n) <s< (3/4)e P(n, k)(2N, 2"111)' ’
_such that if
s = S?ﬂ Ign(pl, r) N {x : dist(x, TTI) > s}

then aSq exists. One notes that

: sntAsEILTS

e ot 2 e

e m e
e
el

g

AL A

.- -
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% | : 14-22 li." "
e ) ] lg-lﬁ
1
“uisd , 21k g i
i) M(S87) < (m1p{cl, 4 € P(n, X)(2N, 2 7} exp(-(2+A)min{sl, e CP(n ‘()(ZN 5" T])})'i;'gi
e . ¢
find f{ﬁ
3 il v
:(2) dlst(spt(aSq), D" (p): Zsl)ﬂ{x: dist(x, T7) > ¢, Pln, K)2N, 2 LM iz
Pmin(e,, Cp(n, K)(2N, 279}, I
,If one takes h = k in part 5, application (1), there exists a sequence ‘l :
'ﬂ[ .
;(1“ 'l '
+1 +1 +1 +2 +2 +2 1]
‘,}[o, 8%, s%, [T, W, 9T, (T4, wtE, St L rY 1sY], s il
"fl‘ il
,as in part 4, with W(IS [) = L(I') as in part 4, such that i
' had . ‘v:
%s.. A
A il
{f spt(]s |)mD (pl 2¢ )n{x tdist(x, TT)) >, P(n, K)(2N, 2" 11)} it
i ' | i‘
fand W(IsY[) < w(sY. i
'f' We define B
il i
b q q 9, g3 554 |
& = . '
g;‘ Vl = (lsl l! lasl I Sl’ asl) ‘I
b '
b uB o (s - 59 s wIH, Jas]]s sl - 5T 4537, 253 g
2 |
k va*2 (153 - 89 + wI, Jasd|; 83 - s 4 5972 559 k)
B
:i‘," . b
gt -
= (|82 - 89| +[s"[, [os]; s} - 8T 45", as]) gt
! ;‘,%We have, in part1cu1ar, ii:
EZ() W( ;H) < W(ul) for each i=1u, utl, ..., v-1; I;
¥ s k :
L0 wish) < 2 lna(k)sl. 1
£6) spy(s - 5%+ 5)NDpy 1) C {x distlx, ) <) Pln, WY(2N, 27 ).
:; Step 3.- In this step we make use of the fact that spt(V) near Py lies
b
qclosc. to TT but does not have an integer density there, 14 7 implies the
‘J +2 St
2ek1rtc11ce of a sequence V;,Hs ;’ v oeres Yy for which
?vt ot t <9 _ o4 v t_ aed
115 ls [ [asll, Sy 851) where §) =57 -S5%+8§" and 35 =05" Use
.[FF, 3.9, 3.10] and [FL3, 5. 7] to choose £ <r< £, such that if
K.
%‘:S = S;ﬂ .Qn(pl, r), then BSt exists and
%r;‘
&
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M(3S%) < [N + ma(k)]el < 2Ne

‘O\y e notes that

'kzgx(s ) < 2N;

M(2S ) < 2N

(3) r(2+A) < ZN'

44) \a(k) M(S ) - Z| > o for each integer Z;

‘f(S) spt(S )CAmD (Pr ) {x ¢ dist(x, T < v PN, 20 n)}
3(6) spt(35 Y CAnaDMp, ©)N s distlx, Ty <= PN, 2"t

Or\e uses 14. 4 togethez with part 5, application (3) to obtain a sequence

t+2 L t42  tH2 R w w
t4 * * oeees [TV 1SV, 8]

'as in part 4, with W(IS ‘ = L{T") as in part 4, such that

1 W(lS |) - Zl <2 l-q for some integer Z and hence
-1
W h>2 .

We define

t t

v1=(\sl [as\ as,)

t ot t

;J“ (s - s' +wt+1, 1ast|;st-s + s, asl)

t+2 t+2 t

v, (|s—s[+w las{ -s - asl)

t ot w b ot oty oW gt
= (|8 -8 | +1s" |, |85;]i8 -5 +5°, 8s,) -
We have, in particular, W(viﬂ) < \_}_V(Iq) for each i=t, t¥], ..., w-1 and
1 w t w -1 k 6 -
- - > = .
W) - Wiv)') 2 Wiv)) W, )22 mEy SEg -

S“PPOSG pIED and DﬂD (pl, 551) is a subset of A of type (11). Choose
4 11

(% &y ER sufficiently small so that if

Case (11). Let v =(V, W; T, 9T) be in class (c) ) and satisfy conditiown (ci.

JERPPRRGRSNY V) |
et
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N3y
38T

FRETET
.
* ;_l.-_‘-. t

e vy = (s, |8s,|: s, 9s))E€YZ (A, BUC; G)
i

’é;wuh F(v, v ) < 5121' then

5 (1) W(IBS ](‘\D (p1 th < (2+A) a(k 1);

o

;{z) \g(lasllmg (b s 22 WWND R, 5)));

ﬁ“ n

’;:,3) w(los [N D(p, s 2

3 S n n (k-1)/ (ic-2)
L 2b(ic-1, n){(t,-s) W8S, IN[R (R 1) - D7(py 5D
15{»’- : .
T > 3;

K

.,u

5 &) <t -s.) W(las N, ) - D%p. 5] <1 if' k=2
Rccall that class (c) is empty if k=1,

[FJ: 3.9, 3.10] and [FL3, 5. 7] imply the existence of s <x <t such

WL 054

that if s aS ﬂD (p,, r), then BS exists and
5 v (k-1)/ (k=2)
(I)W(|s|)>zb(k1 n)W(lasl) if k>3,
(2) M(as ) <1 if k=2,

Part 5, application (2) implies, with h = k-1, the existence of a sequence

and

-~
R T

LR e

1\, sl], [Tz, wz, sz], [T3, W, s3], oo [T 18, ST

7o

[0, |s

ney
RSP
5_.'.:*

£3

2 in part 4 with W(IS |y = L(I") for L(I) as in part 4. The-desired sequence

g

""'—'m

f ces ,vr by virtue of which . .

.“—#
LSS

HETR

11 Cn
{Ul, l/l, ey VI}EB(A, B UC; €3n 6 Pla 551)

s
-e'q-f -
N

AT

I

1s defined as follows:

5".

H '.«..-__" A

8 %728 T

= (Is,], |8s,]; 8, 8S) ,
2. 1, o2
(]S|+|T| |os, - s|+w Sl+T as—s +8%)

(ls|+ZiT| las -sl+w s, +ZT -sl+s3)

v

1
1
2
1
u3
1

)

.

u b= i 1 u u' i
v, = (8] +§ZIT1|, las, - s'| +W ;sl+i§;2'r. 8s, -5 +5) .

o ATe e T
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O e
w2 e T

e
Ay
e e tH e FL
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11

. 1 u -1 n
o W - 4 WIW -
5N = (vl) \_.2 (Vl) Z 4 = ( m 12 (le Sl)) e3 .

f}‘ Part 7. We now choose ey and 23 as required in part 3, We set

W -1 1 2 6 11
3l - .
&,5 €4 = 3 mln‘{.l, Egr Egn vy Egy ees €y eeny Eg }

R

A % B

>

K

ow choose eg >0 suff1c1ent1y small so that if vl

N
1 0 !
g‘(v, v < 252, then W(V ) - W(v) < Sey and

€YZ (A, BUC; G) with

-,

H i_»:?-“ -

o mm ARy

2y(n, Kla(ln : K)E_(2¢,) <
1

E2 56 E:ll ¢4y
z! Ez: 2"").2) e s ey 2, LI Y 2

3 .,

B R e L
=
b

% e, = min{r

y One verifies easily with ¢, € e, as defined the conclusion desired in part 3 is

there exist some i, j€{1, 2, ..., M(n) +1} suchthat i# j and |p,1 - pjl <1.

. Observe that if m 1is a positive integer and bl’ bZ' ey bm e pairwise
dlSJOmt closed balls in R™ with diam(b, ) >1 and b ﬂD (o, 2" ) # 9 for each

1 =1, 2, ..., m, then m < M(n). We see this as follows. Define

?pl’ Pyr «en, P GD (0, 1) by setting p; = center(b) if lcenter(b )l <1 and

Icenter(b )| center(b) if [center(b )] >1 for each i=1, 2, cea, ML

%ance D (pi )Cb for each i, [p - p | >1 for i j» and hence m < M(n}.
2} 14.11. LEMMA. Let £, m, n be p051t1ve integers and

,E{.{g.{" Bi=z {b{i, j):i=1,2, ..., £ and"j =1, 2, ..., £mM(n)}

1be a set of closed balls in R" such that for each i=1, 2, ..., 4,

-;b L JINDB(, k) = p whenever j#k and

] e —

s

b{i, j), b(i, KEB, = {bli, j):j=1 2, ..., ImM(n)} .

R A
I e ABAERRT

(. T g
::, H ‘*;’::7‘-“""*_‘_‘.'.

B 1’ "2 73

itrue. The theorem follows.

RiTs .

¥, 14.10. DEFINITION. For each positive integer n we define, M(n) to

!‘ :'be the smallest positive integer such that whenever Py Pos ves pM( )+l€D (0, 1}

RS

TR e Iy

SR

ot SN

D T e T e g e T e i

S

1 ¥ ——— e 2 s b
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Then there exists CC B such that b(i, jNb(h, k) = § whenever

b{i, j), b(h, kK)&EC and such that the number of elements in C.l = Bir\g is exactly
m for each i=1, 2, ..., £.

PROOF. Let B be as above, We choose C as follows. Let b(il’ jl)

be some ball in B of smallest diameter. Then b(il, jl) intersects at most

e T R ey

M(n) balls in each Bi' i# il' which balls we discard. Let Bi denote the

(at least) (4m-=-1)M(n) balls remaining in each B, i#j, and
1 . . . .
Bil = Bil - {b(1l. 12)}. We place b(ll. jp in Cil. o
SO 1 .
Now let b(iz, 3,) be some ball of smallest diaieter in UiBi' b(i

o T i e e T e e P

27 Jz)

lntersects at most M(n) balls in Bl, if 12 which balls we discard. Let

B:L denote the (at least) (fm=-2)M(n) balls remaining in each B, g 4 # i, and
2 1
B.2 = Biz - {b(lz, :)z)}. We place b(xz, JZ) in Ciz

i
We continue choosing elements of C in this manner until for some 1, Ci

contains m elements, at which time we discard the remaining elements of Bi
and continue choosing the elements of C as above. Since for each choice of an
element of C each B loses at most M(n) elements, and the selection of __\_’3:

is compl/ete after fm ch01ces, it is clear that C U C can be chosen as

desired.

——— e -

14.12. PROPOSITION. Let m and n be positive integers and. V¥V a

subcomplex of the unit cubical complex [J for R™. For each cell ¢ of

T i

of any dimension let Bo be a pairwise disjoint family of c¢(m, n) _EBD_SE_(}_P_E‘-H?

. n :
In R, Then there exists a function b which assigns to each cell o Q_f_ \4

a ball bo €Bo such that boN\bT = § whenever o, T, Y are cells of ¥/, aot

e

necessarily of the same dimension, and ¢ and 7 are faces of Y.
PROOF.

Two m-cells ¢ and 7 of [J will be called equiva;lent if anad

g . . m . . <
only if there exists a vector v&R'™", each of whose coordinates is an integer,
E ol

1’ Ez’ o o ? q
m-cells of [] have the property that any two distinct m-cells in the same

e -

such that |o| = |7| +3v, The 3™ equivalence classes E

equivalence class have no faces of any dimension in common. We assvuae
without loss of generality that §/ = D

- -

14.11 implies that for each m-gnll v
. m_
in E1 we can choose a subfamily BlorC Bo of {M(n)- L(m))3 1 elaiaa .

T wlr a3 Em st
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' for each face ¢ of y such that U{Blor : 0 is a face of y} is a pairwise disjoint

family of n-balls in Rn. Similarly, 14.11 implies that for each m-cell y in EZ.

: 3mn-2
we can choose a subfamily BZO'C Bo of (M(n)L(m)}) elements for each
face ¢ of y such that BZGC Blo' in case o is also a face of some m-cell of

E, and U{Bzc . o is a face of Yy} is a pairwise disjoint family of n-balls in R".

?roceeding in this manner, one chooses for each m-cell y(——Ei, i=3,4, ..., 3™
m._;
i .

i a'subfamily BlcC Bcr of (1\/11(n).L(rn))3 elements for each face ¢ of y such

that B cC BJO' whenever j<i and o is also a face of some m-cell of E, and
U{B o: 0 is a face of y} is a pairwise disjoint famlly of n-balls in R™. At the
end of the 3 -th step above we will have assigned to each cell o of [ a set

B (0)0 (where i(o) is the largest integer i for which B o as been defined)

i(o)

consisting of at least one closed n-ball in R™. Let boeB"'%¢ be any element.

b sp defined has the desired property.
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15, STATIONARY INTEGRAL VARIFOLDS ON MANIFOLDS

L
1
r:}} 15.1 THEOREM. Let m and n be positive integers and 0 < << < c, < oo,
1 )E
et ACR™ be a compact Riemannian manifold of class 3 with boundary B which
R
S is isometrically imbedded as a submanifold of R" Let C be a compact submani-
4 "l,
;r:?fold of A -B of class 3 with boundary D. Let 1<k<d1m(A) and G be an
{
:::admls.,lble group. Let Y/ be a finite subcomplex of some cubical complex [] for
.Q;Rn and <> be a subcomplex of \/ . Let TT be a homotopy class of mappings
"l’n
LRl
Li (Y, <>) —_— (VZ (A, BUC G), VZ (A, BUC; G)IN{v: W(v) < H
§:RW1th respect to W such that L(TT) = c,e Then there exists
PR ’ -
i 9 v = (V, W T, 3T) € YZ, (A, BUG; G)
L3 :
';w:th W(v) c, such that
T V E IV, (A),
N =k
: (2) wel, (BUC),
(%) S(R", A, B, C)(V, W) = 0,
4%’*(4) P (R®, A)(V, W)= 0, and
;-fr -
i) P (R“. B, C)(W, 0)<1,
N7 -
éy B=D= g, we have also
Z“'s;:?:.
%"Ml) E(Rn, ANV, W)= 0, and
50 PR, cyw, 0)<1.
e :
& PROOF,
ik
s ¢

Partl. Let 4, B, ¢, D, TT, c;» ¢, beas above. If k= dim(A) the theorem

IS tr1v1a1 We assume therefore k < dim(A). Let

poo
,;-'
o

= {9'; (VO, <>0)———> (VZ, (A, BUC; G), VZ, (A, BUC;G)N {v: W) < c 1)}

be
o critical sequence for TT satisfying the conclusions of 12.5. We wish to she,

r;:w S e g AR T
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.l

$there exists at least one v & C(S) in-class (e). By virtue of our choice of S

tusmg 12.5 there is no v € C(S) in class (o). Assume then that there is no v& C(S)
~m class (e). Then each v GC(S) is in some class {(a), (b), (¢), or {(d). Under this

Y‘

‘,,assumptlon we will now construct a new sequence *S for T w1th L(* S) < L(S)
by

nThlS contradiction proves the theorem.

l "'

:Part 2. Under our hypothesis that each v = C(S) is in some class (a), (b), (c) or

_—

h(d), 14.9 implies the existence of functions € C(S) _ Ro i=1, 2, 3, and
t':.

C(S) —_> A, j=1 2, ..., c(m, n)= (L(m)M(n))3 such that for each
,,ve'C(S), lph(v)- pW)| > 106,() for i#j, and

).)

¥ 1

:; {v,v,....vL( )}é

A . . LI T

;;a._ ‘I__}(Aa BUC; 53(.1/)' 2 Y(n, k)a(n'k)gel(v)(supi, jg[vi' vj])’ Ph(v); 5El(V))

15 11 1

13 for each h =1, 2, v.+, c{m, n) whenever Ul. VZ eees vL(m)e Y__Z‘k(A, BUC; Q)

: with sup, Flv, v, ) <e (V) The compactness of C(S) implies the existence of a
A

posmvc integer z and v(l), v(2), ..., v(z) EC(S) such that for ecach v & C(S)
;; mere is some i=1, 2, ..., z for which Flv, v(i)) < 2" c (v(1)) We set ¢, =

émm £ (1/(1)) for j=1, 2, 3, and

1

'f};’ €47 3-1 sup{e : for each v & K(S)N {v : V__\_f(v) Z%(S) - 2¢},

h%g' l__f‘(v, v(i)) <‘Z'lcz(v(i)) for some

’q;%?é =1, 2, ..., z} >0.

'{“}Part 3

;’;g(l) Choose a positive mteger ny sufficiently large so that whenever i>n and
:Ii %‘:u E V either (a) W(CP (a)) < L(S) - 2'34 or (b) W(CP (a)) > L(S) - 254 and
Iit‘)‘}"((p (a), v{j)) < e (U(J)) for some j =1, 2, ..., z.

%%J(Z) Choose for each i> ny

5 fi:'\7iﬂ{ : <Pi(a)>L(S)-2c}—-—>{1 2, vo., 2z}

: 50 that F(CP (a), V(i) < (v(f (a))) for each a € dmn(- ).

S

& _ N
r«m“

ot i A T 3

P e s e it SR

ekt 14




,-"-,.('3) Choose for each i> nl a positive integer n (i) such that whenever
IRy '1. Qs oeny L( ) [ V are (not necessarily dlstmct) vertices of a co
m

m cell with mm W(CP (o. ) > L(S) - 254 then there exists a family of

2 3
Cp(o,) vl, Vis Vys eoen vl

i 1 2 3 u
CP (0'2) - vz.' vzl VZ, s 0y VZ
i, . _ 1 2 3 u
CP (0'3) VBD v3! v3, 3 » V3

bi - 1 2 u

(‘P (QL(m)) b vL(m)) VL(m)' 0 0y VL(m)
nz(i)
: of elements of VZ (A BUG; G) as in14.5, with u <2

» by virtuc
: AP Pay), L, @ oy )t €
i . i
R(A, BUGC; e3(v(f1(al?)), 2 Y(n, k)a(.n= k) g‘l‘”“i(%m(suph' jg(c?l(ah}.
P, (E e ), 5ei(v(f;(a1))))

(4) Choose a positive integer ng > > n such that if i>n, then

3
Jg(CP (a), ¢ (B)) < inf{E(v, v'): v v evz (A BUC; G) and

W) - Wv') >3~ . }>o

cokT e STy
2Ny WL

R A RANY
i

s ..1 :;‘-‘.d{&’_.‘!

whenever a, B € V are vertices of some common me-cell in [

-4.‘

aal

(5) Choose for each i >n

: v4o -
..o. 3

3 2 positive integer n4(i) sufficiently large s

- choice of f3 below is p0551b1e. First for each i >n
l,f :

i
3 denote by V th
I'--‘-ﬁ? subdivision of V

cons1dered as a subcomplex of the n (1) th =&
i i
', 1[] of [O°. (Here V is a subcomplex of a cubical compley [:11 fo:
7 For each i> n3 define A
B
IR VA
BRI
“b

y settmg f (a) equal to the nearest vertex in V

;Now defme for each i>n

0 ‘to a for each a &,
i -3

J—



AS S, [
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"
p5;
§ I

o i

“". \ 1
%

Fe - X N
T A R
VA X

i

A WA
TR

gk

\-g. "‘:-.,_'_""-""" =
—t

s,

R

el e R
Sy§reE

Aoty
’.'. ‘-’C,‘__’ 4 Yos 4
.‘.“

r’/‘

ﬁally choose

gty

o
X

Vo {01, 2, ..., 02 }

T

e each i> n, to have the following properties:
” ; n_ (i)

i'!_ (a) f13(0.) = 2 whenever a elv; and \_Y(lcPl(o.)) > L(S) - € 4

"f. (b) £13(q_) = 0 whenever a & 1\7]6 and V_\_f(lcPi(a)) < L(S) - 2&:4; and

<"§-f_'r1‘
= L=

N "'-«'“'/-ﬂ"m A
T

£y

i i i
(c) f3(a) - £5(B) <1 whenever o, p € 1V; are vertices of some common

i A TG

[T

-cell in 1[:] .
‘ . : i . :
) For each i2>mn, let Y% be the nz(l)—th F= subdivision of 1’V1, considered
i .
O of ;01" and define

TN TR AT A D i e (2

G

1.5 a subcomplex of the nz(i) -th 3 subdivision 5

i i i
i —_—
4 zvo 1V0

SEXG TODAL S0 W gy

g o

. . i ’ . i
(Y setting f4(o,) equal to the nearest vertex in 1V0 to a for each a & th)

b

5

Fl?) For each 1> > ng choose

i . i : i
: —

f5 Uj 1vj 1V0

such that for each cell 7& V f;('r) is a vertex of T.

TR

R R %

(8) For each i> > 1, choose

TR

1

i,: 56 H

w/' to have the followmg propernes o .

g (a) 56(’7)6 {(Pj.(V(fl 0 fz ° fiﬁB(T))]' 5¢ i[v(fi o £12 ° flsi'r))])' Pi=l 2., el
gfor each cell 7 of lle and

, ~ (b) En(fié(o'))ﬂ En(fi(,('f)) = § whenever o # 7 are faces of a common
%l in . O '

l; S ITIVEAd 4 HYELA !f)lis'i?'ﬁ‘lldw

PREPPNSNG -x.u;.f&l-‘.‘l‘—f

v ﬂ{’r :+ 7T is a cell and £13(o.) > 0 for each vertex q.‘ of 7} —> A Y .




;!
i

o

waia

<5 e

s

14 12 implies the possibility of choosing £6 We observe \:f
4 3
4 0 < inf{dist(D" (fé(c)), D' (f (P : 4= ny, nytl, ng#2, ... and :
:;,\* o,TE&E dmn(fé) are chstmct faces of some common m-cell in [j } ?ﬁ
» '
R'

Y
2

because there are only finitely many choices involved in selecting

{V J)} i3 {Ph(V(J))} 5’ and {Eh(V(J))‘}h j; these choices, in particular, do not de-
J’;pend on 1i.

S UACRREERS

£ = T e S A T2

‘..:';'(9) For each i>n choose_

[ .

i i i, b . LA
£, 2 WU VX V)0l a) s a isavertex of 73]1% {0, 1, 2, ..., 27 };
¥ —> vz, (A, BUG; G)

i = .

I . i i np )

. as follows: Let T be a cell in 1V with f3 ° f5('r) >0, ¥For some u<2 )

(3) guaranteés the existence of a sequence

g 2 3

‘P(a) v.V.v,...,v € vz (A, BUC; G)

' for each a & V which is a face of 7, constructed by 14.9 utilizing the fact that

£,

o (), vig o £ o fLr)) < cz(v(fi o f"z f;(rr))).

o o
P

1 and by virtue of which

A { CPl(a) : O.G_:_lvl is a vertex of T} &

: R(4, BUGC; ‘3 2¥(n, Kaln: kg, (6 ),f ().
; !

: Here 6 is the fineness of CP If then a Elvo is a vertex of .7 we set

f?z('r, a, 0) = CPi(Q);

f;('r, a, j) = VJ for 1£j< min{u, f3(a)} and !
3 mm{u, f3(a)}
f (T: a, J) = O. . for

o~
e R T N

, min{u, f (o.)} <j<2 nali ); provided f (a) > 0. If f (o.)

0 we set f;('r, a, j) -
‘ for each 0<j<2 2(1)
3.

(10) For eachi > 2 n, define

i

£ ot s
8 2Vo TV

PPV b el

fre
FOPETNT T
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}’eachj—o Loz, 2

whenever T is a (not necessarily proPer) face of f (a)

15-6

by setting for each o &€ Vo, £ g{a) to be that unique cell 7& V of highest
dimension such that a is a vertc_x of some = subdivision of 7 but a is not a

vertex of any 4k subd1v1s1on of any proper face of 7.

§ (1) For each i> >n, define

f; ( v le )ﬂ{(a. T): 7 is a (not necessarily pr (per) face of

f(a)}—-—>{0 1, 2, ..., 2 },

£i9 - Gldmn(f;) (12.1 (12)).
S a, (1)
’ (12) For each i> 2. ng let ZDQI be the cell complex of the interval {t: 0<t<2 2 }
| given by . :
) . . n_ (i) . n. (i)
1:9;= {[o, 1] [, 2], [2 3], () [2 K L, 28,
. i
1 Fo= 0L 0L 2] sun, 2 2y,

(13) For each i> n3 defme

1

2 [ZJ ®2V] -—QVZ (A BUC; G)

follows: If a & d o - i, . ~ i0 i
as fo ZVO nzr(li) £3 f4(a) 0 we set 250 ([i1®a) = 1CP f4(a) fpr

If aEZVO and f3of (a) > 0 we set
¢/ ([J]®a)ﬂD (f () -

=0 °f4(amp(f(7n for j=o0,1 |,

fl("'. fl(a), J)ﬂ D (f ('r)) for 1<j< mm{f ° f ('T). f (0-. ™},

i

f (-r f (o.), mm{f ° f (7), ¢t (a, 'T)})ﬂD (f6('r))

for mm{f ° f (o.), f (a, T)} <j<z2 nz2(1)

and

s// ([J]® Q)H(R U{D (f (7')) T is a (not necessa.rlly proper) face -
of £ (a)})

A
= P f;(a)ﬂ(Rn - Up" (f 7)) :
face of f (u)})

T is a (not neces sarily propex)
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¥,

1)

E . a0

ijf“ 0<j<2 . The intersections above have the obvious meaning.

1::!. . i i * Q’.
{(14) We define for i=1, 2, 3, ..., n,-l, *@* = @t *V v , and Q

-rf‘or i= n3, n3+l n3+2. esv we define *VI = zvi, *()1 = 201' and

Pl g O )"‘>(—-1(A BUC; G), ¥z, (A, BUC; )N {v : W <

by setting for each a & *vo »
i . n_{i)
*P'(a) = 2!111([2. 2 1® a).

PR A L Y LT E B e 1w D

Part 4. It is straightforward to verify that *S = {*Cpi}. & TV wusing the homotopies
1 .
{Zwl}i' Furthermore

AT VT I

L(*8) < max{c), L(S) - e,} < L(TT).

O

LAl £3LT 4

serttaftie . Sl etile Ll bty et

[

Thls is the contradiction desired in partl, and the theorem is proved.

R

15'2 COROLLARY. Let A, B, C, D, k be as in 15.1. Then there exists

L wtpd Yen

-

at least one
atieesr =

TG W1y

v = (V, W, T, 9T) € Yz, (A, BUGC; G) - {0}

&‘_q,gg'.ﬂ:it.?!v-.w; T AAL Ay
£

et

A CL R SIS T3

catisfying the conclusions of 15.1. In particular, whenever 1< k< m are integers,

i each compact m-dimensional Riemannian manifold M of class 3 supports at

? least one non-zero k-dimensional stationary integral varifold pair (V, W)’IV (I\~. BN%E

i Furthermore W will be (k- 1)-dimensional regular integral varifold.

g

3 can occur as a stationary integral varifold in some manifold. For example

S

. ) . .
(lM X {P}I ‘aM x {P}l) is a stationary integral varifold pair in M XS wheneve:

¥y

l

‘f 15.3 REMARK. Note that any compact Riemannian manifold M of clase
EJE pES.

; 15.4 REMARK. One might conjecture that the proof of 15.1 could be

simplified by requiring

-
4t

T S
e

U; range( P Cyz, (A, BUG ANV, W; T, 3T): P(R”, A, B, C)(V, W) 7 ¢}

- -§,

’ + 3 . . . ~
for some c & R0 and using the compactness theorem 10,8, The difficulty iu suel

| an approach is illustrated in the following example by the fact that varifolds

opemes

2
g e Co o et o WS4 S

ot

"

PR T E LA
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with S

integers.

" Also L{S) = L(TD).

15-8

¢ (curves in this case) lying near the desired stationary varifold have large P valve

> (curvature).

Example.

and isometrically like the skin of a three legged starfish), Let G be the

We have illustrated a raapping CP & S where S is a hornotopy sequence

* of mappings

( ¥, ¥ —> (LZ,(A, £; G), {o})

" with respect to W representing the homotopy class T corresponding to a generator

7 of

- .
H,y(A; G) ¥TNy(Z)(4, 45 G), {(ONC T (¥Z,(4, 45 G), {0}

)
]

©

L ™

Let A be the Riemannian manifold illustrated (A is diffeomorphic

e FEY BTy m:,':'r-—r'eac'tf.’-?:‘

P e Rt

4
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Z' The vertical arrows represent the mapping @ ' Observe that the l-dimensional

stationary integrél varifold V occurs at the maximum of the function W o @,

15.5 REMARK. The topological invariants used in 15.1 are (appropriately
defined) homotopy groups.: A similar theorem is true based on (appropriately
defined) homology groups, and |[Al] and [M] guarantee the, at least partial, com-
putability of these groups. The chief utility of the homology approach would lie in
the attempt to assign a topological index to stationary integral v‘arifolds in some
analytically useful way. The exzmple of 15. 4 illustrates the difficulty in this attemp
The stationary curve V shouldhave a topological index of 1. This curve, however:
is stable (6.21) and would imply an analytic index of 0 unless there is some way of

computing part of the analytic index from the singularity of V.
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