
COMPLETIONS OF PERIOD MAPPINGS: PROGRESS REPORT

MARK GREEN, PHILLIP GRIFFITHS, AND COLLEEN ROBLES

Abstract. We give an informal, expository account of a project to construct com-

pletions of period maps.

1. Introduction

The purpose of this this paper is to give an expository overview, with examples to

illustrate some of the main points, of recent work [GGR21b] to construct “maximal”

completions of period mappings. This work is part of an ongoing project, including

[GGLR20, GGR21a], to study the global properties of period mappings at infinity.

1.1. Completions of period mappings. We consider triples (B,Z; Φ) consisting

of a smooth projective variety B and a reduced normal crossing divisor Z whose

complement

B = B\Z

has a variation of (pure) polarized Hodge structure

(1.1a)
Fp V B̃ ×π1(B) V

B

⊂

inducing a period map

(1.1b) Φ : B → Γ\D .
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Here D is a period domain parameterizing pure, weight n, Q–polarized Hodge struc-

tures on the vector space V , and π1(B) � Γ ⊂ Aut(V,Q) is the monodromy repre-

sentation. Without loss of generality, Φ : B → Γ\D is proper [Gri70a]. Let

℘ = Φ(B)

denote the image. The goal is to construct both a projective completion ℘ of ℘ and a

surjective extension Φe : B → ℘ of the period map. We propose two such completions

(1.2)

B ℘T

℘S .

ΦT

ΦS

The completion ΦT : B → ℘T is maximal, in the sense that it encodes all the Hodge-

theoretic information associated with the triple (B,Z; Φ). The second completion

ΦS : B → ℘S is a quotient encoding the minimal amount of Hodge-theoretically

meaningful data. The nilpotent orbit theorem [Sch73] indicates how one might try to

do this, at least set-theoretically (§2.1): boundary points of ℘T should parameterize

(equivalence classes of) nilpotent orbits (or limiting mixed Hodge structures) [CCK80,

Cat84, Hof84, KU09, KP16], and points of ℘S should parameterize (equivalence classes

of) Hodge structures on associated “weight-graded quotients” [Gri70b, CK77]. It is

conjectured (and proven in a few special cases) that the spaces ℘T and ℘S are algebraic,

and that the maps in (1.2) are morphisms [GGLR20, GGR21b].

Remark 1.3. In the classical case that D is Hermitian and Γ is arithmetic (which

includes period mappings for curves and principally polarized abelian varieties, and

K3 surfaces), Borel’s theorem yields an extension ΦS : B → Γ\DS of the period

map Φ : B → Γ\D to the Satake–Baily–Borel compactification, and we may take

℘S = ΦS(B), [BB66, Bor72]. In particular, the conjectured algebraic structure holds

for ΦS : B → ℘S. The maximal completion ℘T is what one would expect to get if
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one took the closure of ℘ inside a toroidal desingularization Γ\DT � Γ\DS, [Mum75,

AMRT75, CCK80, Cat84, Hof84].

Remark 1.4. Consider B = Mg the Deligne–Mumford compactification of the mod-

uli space Mg of smooth complete curves of genus g [DM69]. In this setting, our

ΦT is closely related to the Torelli map studied by Namikawa, Mumford and others

[Nam76a, Nam76b].

Remark 1.5. In general ℘T has the flavor of what one would expect to obtain by taking

the closure of ℘ in a Kato–Usui horizontal completion Γ\DΣ when Γ is arithmetic

[KU09]. We will not need to work work with fans. Our construction is relative, in

the sense that it depends on choice of triple (B,Z; Φ) and the pair (B,Z) provides

the boundary structure. We are not constructing a compactification, or horizontal

completion, of Γ\D.

Evidence for the conjectural algebraic structure on ℘T includes Theorem 1.7. Let

(1.6) B ℘̂ ℘
Φ̂

Φ

be the Stein factorization of the period map (1.1b); the fibres of Φ̂ are connected, the

fibres of ℘̂→ ℘ are finite, and ℘̂ is a normal complex analytic space.

Theorem 1.7 ([GGR21b]). Assume Γ is neat. The complex analytic variety ℘̂ is

Zariski open in a compact, normal Moishezon variety ℘̂T, the map Φ̂ : B → ℘̂ extends

to a morphism Φ̂T : B → ℘̂T of algebraic spaces, and there is a map ℘̂T → ℘T with

finite fibres so that the diagram

(1.8)

B ℘̂T

℘T

Φ̂T

ΦT
finite

commutes.
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Remark 1.9. Let Fpe ⊂ Ve denote Deligne’s extension of the Hodge vector bundles

(1.1a) to B. The restriction of the (extended, augmented) Hodge line bundle

(1.10) Λe = det(Fne )⊗ det(Fn−1
e )⊗ · · · ⊗ det(F d(n+1)/2e

e )

to B is semi-ample, and realizes the image ℘ as a quasi-projective variety [BBT18].

This immediately gives a projective completion ℘. However, this falls short of what we

want as it is not known what Hodge-theoretic information is encoded in the boundary

℘\℘, or whether there is an extension Φe : B → ℘ (both of which are important for

applications). However, if one could show that Λe is semi-ample over B, then

℘S = Proj⊕k H0(B,Λ⊗ke ) .

This naturally raises the question of whether or not the Base Point Free Theorem

can be applied to show that Λe is semi-ample; unfortunately, this does not seem to

be the case, cf. Example 1.11.

Example 1.11. If dimB = 2, then Λe is semi-ample [GGLR20]. Let’s try to prove

this using the Base Point Free Theorem. For convenience of exposition, assume that

the cone Eff1(B) of effective algebraic 2-cycles is finitely generated. We need to show

that mΛe −KB is nef. Taking m� 0 this is equivalent to

(1.12) −KB · Zi ≥ 0 .

Let Zi denote the irreducible components of Z = ∪Zi. Let gi be the genus of the

curve Zi. Then KZi
= (KB + [Zi])|Zi

implies that

−KB · Zi = −degKZi
+ Z2

i = 2− 2gi + Z2
i .

So (1.12) holds if and only if

(1.13) 2gi ≤ Z2
i + 2 .

Suppose that Φ0(Z) is a point, then Z2
i < 0 [GGLR20]. Then (1.13) holds if and

only if gi = 0 and −2 ≤ Z2
i . However, there are examples in which this fails. One is
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given by taking B to be Mok’s “Mumford compactification” XM of the ball quotient

X = B2/Γ [Mok12]. Then Φ0 is precisely Mok’s map XM → Xmin, and the connected

components of Z = XM\X are complex tori that are collapsed to points.

1.2. Boundary points and fibres. The completions ℘T → ℘S will be described in

greater detail in §2.1. Here we give a brief overview of the boundary points, and the

fibres

(1.14)

F ℘T

℘S

Points of ℘̂T parameterize equivalence classes of limiting mixed Hodge structures

(§2.1.2). The image of one such equivalence class [W,F, σ]T under the map ℘T →

℘S is an equivalence class [GrW , F, σ]S of Hodge structures F p(GrW` ) on the graded

quotients GrW` = W`/W`−1. Here elements of the cone σ determine subspaces of GrW`

which admit induced polarized Hodge structures (§2.1.3). The fibres F parameterize

limiting mixed Hodge structures with the same associated graded; equivalently they

parameterize extension data (§§3.2, 3.4).

1.2.1. The classical case: Hermitian symmetric period domains. Suppose that Γ is

neat. Let Γ\DT → Γ\DS be a toroidal desingularization of the Satake–Baily–Borel

compactification. It is well-known [CCK80, Hof84] that points of Γ\DT parameterize

equivalence classes [W,F, σ]T of limiting mixed Hodge structures, and that the map

Γ\DT → Γ\DS sends [W,F, σ]T 7→ [GrW , F, σ]S. If we fix a point [GrW , F, σ]S ∈ Γ\DS,

the fibre F ⊂ Γ\DT over the point has the structure of a semi-abelian variety

1 → (C∗)k → F → J → 1 .

In particular, the fibre F admits a fibration F → J over an abelian variety. A

somewhat similar, but richer, structure holds in general.



6 GREEN, GRIFFITHS, AND ROBLES

1.2.2. The general case. Returning to the general case (1.14), we have F = ΦT(A),

where A ⊂ B is a ΦS–fibre. The weight filtration induces an iterated fibration

(1.15) F = F2n → F2n−1 → · · · → F2 → F1

of the fibre F. In the classical case (§1.2.1), we have n = 1 and

F2 F1

F J .

In general, the F1 are not abelian varieties, or even complex tori. However, the

connected components of F1 are subvarieties of compact complex tori T, and the irre-

ducible components of F1 are subvarieties of abelian varieties J ⊂ T (§3.5). The tori

(abelian varieties) parameterize level one extension data of (limiting) mixed Hodge

structures (Remark 3.8). The continuous data in the fibre F2 → F1 (which parame-

terizes level two extension data) are encoded by canonical sections sM of a family of

line bundles {LM}. The line bundles relate the geometry of the fibre A to the nor-

mal bundles NZi/B
, (3.23). The sections sM essentially capture the nilpotent orbits

approximating the period map along A (§3.5.3). The map F → F2 is finite (Re-

mark 3.24). Both the finiteness of this map, and the fact that the continuous data

in F2 → F1 is given by the sections sM are consequences of the infinitesimal period

relation, the compactness of A, and the structure of the extension data of a mixed

Hodge structure.

1.3. Contents. Theorem 1.7 is discussed in §2. Two key ingredients here are period

matrix representations of Φ and extension data of limiting mixed Hodge structures;

these are discussed in §3. Finally, in the spirit of [Car87], we discuss geometric

interpretations of the extension data in limiting mixed Hodge structures, and their

relationship to the period matrix representations in §§4–6.

Remark 1.16. In general the monodromy γi = γi,s exp(Ni) about Z∗i is quasi-unipotent:

here γmi
i,s = 1 for some mi ≥ 1, Ni is nilpotent, and γi,s exp(Ni) = exp(Ni)γi,s. After
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a base change, the monodromy γi = exp(Ni) becomes unipotent, with an action of

the semisimple γi,s on the limiting mixed Hodge structures. We will not consider the

action of the semisimple factor γi,s and so, for the purposes of this paper, will assume

γi = exp(Ni). We do note that γi,s is of significant geometric interest; the assumption

is made here primarily for the purpose of exposition.

Contents

1. Introduction 1

2. Construction of maximally extended period mapping 7

3. Period mappings at infinity 15

4. Discussion of weight n = 1 31

5. Discussion of weight n = 2 39

6. Discussion of Hodge–Tate degenerations 54

Appendix A. Lie theoretic structure of extension data 58

References 59

2. Construction of maximally extended period mapping

2.1. Set-theoretic construction. We begin our discussion of the extensions (1.2)

with an informal description highlighting the underlying geometric ideas.

2.1.1. Let Zi denote the irreducible components of

Z = Z1 ∪ · · · ∪ Zν .

Define

ZI =
⋃
i∈I

Zi .

Then ZJ ⊂ ZI if and only if I ⊂ J . Set

Z∗I = ZI\Z ′I , Z ′I =
⋃
J%I

ZJ .
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Given point b ∈ Z∗I we assume that the local monodromy about Zi is unipotent, and

let Ni denote the nilpotent logarithm of monodromy, and

σI = spanR>0
{Ni | i ∈ I}

the local monodromy cone. In general, σI depends on a local lift of the period map,

and so is defined only up to the action of Γ.

2.1.2. The nilpotent orbit theorem [Sch73] associates to any point b ∈ Z∗I an equiv-

alence class of limiting mixed Hodge structures (LMHS) (W,F, σI). The weight fil-

tration W = W (N) is independent of N ∈ σI . The Hodge filtration F ∈ Ď satisfies

the first Hodge–Riemann bilinear relation, but not necessarily the second. It also

depends on the choice of local coordinates at b. The nilpotent orbit exp(CσI) · F is

independent of the choice. Two such LMHS (W,F, σI) and (W ′, F ′, σ′I) are equivalent

if and only if there exists γ ∈ Γ such that σ′I = AdγσI (which implies W ′ = γW ) and

F ′ ∈ γ exp(CσI)F . Let

(2.1) ΦT(b) = [W,F, σI ]
T

be the associated equivalence class.

Definition 2.2. The completion ℘T is the set of equivalence classes of LMHS associated

to (B,Z; Φ) and ΦT : B → ℘T is the map b 7→ [W,F, σI ]
T.

Remark 2.3. At least at the set theoretic level it is clear that ΦT retains the maximal

amount of Hodge theoretic data in the triple (B,Z; Φ).

Conjecture 2.4. The set ℘T is a projective algebraic variety and ΦT is a morphism.

As evidence for the conjecture we have Theorem 1.7, which will be discussed in §2.2.
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2.1.3. Given a limiting mixed Hodge structure, (W,F, σI), the Hodge filtration F

determines a pure Hodge structure of weight ` on

GrW` = W`/W`−1 .

Any other F ′ ∈ exp(CσI)F determines the same Hodge filtration Fp(GrW` ). Let

fp` = dimC F
p(GrW` ) denote the Hodge numbers.

Given N ∈ σI , the subspace

PrimN
n+k = ker{Nk+1 : GrWn+k → GrWn−k−2}

inherits the Hodge structure, and the later is polarized by Q(·, Nk·).

Given σI , the weight filtration W = W (σI) is uniquely determined, and we con-

sider the triples (GrW• ,F, σI), with the Hodge filtration F(GrW` ) having the same

Hodge numbers fp` , and the properties:

(i) Every N ∈ σI maps Fp(GrW` )→ Fp−1(GrW`−2).

(ii) For every N ∈ σI , the induced Hodge structure F(PrimN
n+k) is polarized by

Q(·, Nk·).

We say two such (GrW` ,F, σI) and (GrW
′

` ,F′, σ′I) are equivalent if there exists γ ∈ Γ so

that σ′I = AdγσI (which implies W ′ = γW ), and the induced action γ : GrW` = GrW
′

`

satisfies γ(F) = F′.

Let

(2.5) ΦS(b) = [GrW , F, σI ]
S

be the associated equivalence class.

Definition 2.6. The completion ℘S is the set of equivalence classes of graded quotients

of LMHS associated to (B,Z; Φ) and ΦS : B → ℘S is the map b 7→ [GrW , F, σI ]
S.

The space ℘S is endowed with a natural compact Hausdorff topology with respect

to which ΦS is continuous and proper, and the restriction of ΦS to Z∗I is analytic,

[GGR21b].
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Conjecture 2.7. The set ℘S is a projective algebraic variety, ΦS is a morphism, and

we have a commutative diagram (1.2). This conjecture is discussed in general and

proved in special cases (including dim℘ ≤ 2) in [GGLR20].

Remark 2.8. The extended Hodge line bundle Λe is a natural candidate for an ample

line bundle on ℘S. The identification of an ample line bundle on ℘T seems to be a

more subtle question. Even in the classical case (§1.2.1), while Γ\DT is known to be

projective, to the best of our knowledge no explicit ample line bundle is known. One

candidate is the line bundle of Conjecture 3.29.

2.2. Proof of Theorem 1.7. There are three steps.

(i) The first is to apply the Cattani–Deligne–Kaplan result on the algebraicity of

Hodge loci [CDK95] to deduce that the closure of

{(b, b′) ∈ B ×B | Φ̂(b) = Φ̂(b′)}

in B ×B is an algebraic variety X̂.

(ii) The second step is to show that X̂ defines a (proper, holomorphic) equivalence

relation on B. It then follows from [Gra83] that the quotient

℘̂T = B/ ∼

is a compact complex analytic variety, and the quotient map Φ̂T : B → ℘̂T is

holomorphic.

(iii) Since B is projective, it follows that ℘̂T is Moishezon [AT82, §5, Corollary 11],

and Serre’s GAGA implies Φ̂T is a morphism [Art70, §7].

It is in the second step where the new work comes. We informally summarize it here.

The problem is to show that X̂ is a proper, holomorphic equivalence relation. For

this we must show that every point b ∈ B admits neighborhood O ⊂ B and a proper

holomorphic map

(2.9) f : O → Cd
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whose Stein factorization O
f̂→ Ô→ Cd has the property that the (connected) fibres

of f̂ coincide with those of Φ̂ over O = B ∩O. Note that Φ̂ will then be proper on O.

The basic idea is that any point b ∈ B admits a neighborhood O ⊂ B with the

properties that:

(a) Over O = B ∩ O the period map is represented by a period matrix (§2.3).

This period matrix may be multi-valued – this multivaluedness comes from the

monodromy over O.

(b) The infinitesimal period relation implies that the full period matrix is determined

(up to constants of integration) by a subset of the coefficients; we call these the

horizontal coefficients. The horizontal coefficients (ε1, . . . , εd) : O → Cd are of

two types. Either the coefficient εj : O → C is well-defined (single-valued) and

extends to a holomorphic function on all of O; or εj is multivalued (and does not

extend to O), but τj = exp 2πiεj is well-defined (single-valued) and extends to a

holomorphic function on O.

(c) Suppose that we index the horizontal coefficients so that εj is holomorphic if and

only if j ≤ c. Then f = (ε1, . . . , εc, τc+1, . . . , τd) : O→ Cd is proper over O, and

the fibres of f̂ and Φ̂ coincide.

Given this structure, the existence of the finite map ℘̂T → ℘T follows from this period

matrix representation, properness and the infinitesimal period relation.

The sticking point here is the requirement that f be proper. It is relatively easy

to see that every point b ∈ B admits a local coordinate neighborhood U ⊂ B with

the property that Φ may be represented by a period matrix over U = B ∩U (Remark

2.16). The issue is that the function f : U → Cd constructed from this matrix

representation need not be proper. We will outline in §3.1 how to obtain the proper

map f : O→ Cd of (c).

2.3. Period matrix representations.
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2.3.1. Hermitian D. The period domain D parameterizing polarized Hodge struc-

tures of weight n = 1 with Hodge numbers h = (g, g) is naturally identified with the

Siegel space Hg of symmetric g×g complex matrices with positive definite imaginary

part. In this way each Hodge structure F ∈ D admits a period matrix representation.

We think of the period map Φ : B → Γ\D as admitting a multivalued period matrix

representation.

More generally, any bounded symmetric domain may be parameterized by ma-

trices [Ise71]. So any period map Φ : B → Γ\D into a locally Hermitian symmetric

space will admit a multivalued period matrix representation.

Remark 2.10. In general there are various realizations of D as an open domain in Cd,

d = dimD. The realizations are used in both the Satake–Baily–Borel and toroidal

compactifications of Γ\D, [BB66, Mum75].

In contrast, the non-Hermitian period domains contain compact subvarieties of

positive dimension (Example 2.11), and so can not be realized as subsets of any com-

plex affine space. These domains do not admit (global) period matrix representations.

Example 2.11. Suppose that D is the non-Hermitian period domain parameterizing

Q–polarized Hodge structures of weight n = 2 and with Hodge number pg = h2,0 ≥ 2.

Given (F 2 ⊂ F 1) ∈ D, set C2pg = F 2 ⊕ F 2. Then the isotropic Grassmannian

C = GrQ(pg,C2pg) = {E ∈ Gr(pg,C2pg) | Q|E = 0}

naturally injects into D by sending E ∈ GrQ(pg,C2pg) to the Hodge decomposition

VC = E ⊕ (E ⊕ E)⊥ ⊕ E.

2.3.2. Schubert cells and Plücker coordinates. The compact dual Ď is covered by

Zariski open Schubert cells S ' CN ; this biholomorphism is nothing more than the

Plücker coordinates on S. These coordinates are the period matrix representation of

F ∈ S.
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Example 2.12. Let D be the Hermitian period domain parameterizing weight one,

Q-polarized Hodge structures on V ' Q2g. The compact dual is the Lagrangian

grassmannian

Ď = LG(g, VC) = {E ∈ Gr(g, V )C | Q|E = 0} .

Fix a basis {v1, . . . , v2g} of VC so that

Q(vi, vj) =

 δ2g+1
i+j , 1 ≤ i ≤ g ,

−δ2g+1
i+j , g + 1 ≤ i ≤ 2g .

Set E = span{vg+1, . . . , v2g} ∈ Ď. Any element in the Schubert cell

S = {F ∈ Ď | F ∩ E = 0}

admits a unique basis of the form

F = spanC{va + ξsavs | 1 ≤ a ≤ g} ,

where we sum over g + 1 ≤ s ≤ 2g. The condition that F be Q–isotropic (the first

Hodge–Riemann bilinear relation) is

0 = Q(va + ξsavs , vb + ξrbvr) = ξāb − ξ b̄a ,

where ā = 2g + 1 − a. So the ξ define a biholomorphism S → Cg(g+1)/2. These are

the Plücker coordinates on S ⊂ Ď, and we say
1 ξg+1

1 · · · ξ2g
1

. . .
...

...

1 ξg+1
g · · · ξ2g

g


t

is the matrix representation of F ∈ S.

Example 2.13. Suppose that D is the non-Hermitian period domain parameterizing

Q–polarized Hodge structures of weight 2 and with Hodge number pg = h2,0 = 2.
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The compact dual is the Q–isotropic Grassmannian

Ď = GrQ(2, VC) = {E ∈ Gr(2, VC) | Q|E = 0} .

Given E ∈ Ď, the Hodge filtration F 2 ⊂ F 1 ⊂ VC is F 2 = E and F 1 = E⊥.

Fix a basis {v0, . . . , vr} of VC so that Q(vi, vj) = δri+j. Set E = span{vr−1, vr} ∈ Ď

so that E⊥ = span{v2, . . . , vr}. Any element in the Schubert cell

S = {F 2 ∈ Ď | F 2 ∩ E⊥ = 0}

admits a unique basis of the form

F 2 = spanC

{
v0 +

r∑
i=2

ξi0vi , v1 +
r∑
i=2

ξi1vi

}
.

Set ī = r−i. The condition that F 2 be Q–isotropic (the first Hodge–Riemann bilinear

relation) is

0 = 2ξ0̄
0 +

2̄∑
a=2

ξa0ξ
ā
0 ,

0 = 2ξ1̄
1 +

2̄∑
a=2

ξa1ξ
ā
1 ,(2.14)

0 = ξ0̄
1 + ξ1̄

0 +
2̄∑

a=2

ξa0ξ
ā
1 .

So the ξ define a biholomorphism S → C2r−5. These are the Plücker coordinates on

S ⊂ Ď, and we say  1 0 ξ2
0 · · · ξr0

0 1 ξ2
1 · · · ξr1

t

is the matrix representation of F 2 ∈ S.

Definition 2.15. A period map Φ : B → Γ\D admits a period matrix representation

over an open subset O ⊂ B if there is an open Schubert cell S ⊂ Ď such that:

(i) The monodromy ΓO over O preserves D ∩ S.
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(ii) The restricted period map O→ ΓO\D takes value in ΓO\(D ∩ S).

In this case, the period matrix representation of Φ|O is given by the Plücker coor-

dinates on S. The matrix coefficients will be multivalued when the action of ΓO on

D ∩ S is nontrivial.

Remark 2.16. Every b ∈ B admits a local coordinate chart U with the property that

Φ admits a matrix representation over U = B∩U. When b ∈ B, this is an immediate

consequence of the fact that period maps are locally liftable and that Ď ⊃ D is

covered by Zariski open Schubert cells. In the case that b ∈ Z, this is a consequence

of the nilpotent orbit theorem [Sch73].

3. Period mappings at infinity

The restriction of the map ΦT in (2.1) to Z∗I defines a variation of limiting mixed

Hodge structures that is encoded by a holomorphic “period map”

(3.1) ΦI : Z∗I → (exp(CσI)ΓI)\DI .

Here DI is the set of all F ∈ Ď with the property that (W,F, σI) is a polarized

mixed Hodge structure. It is a homogeneous submanifold of Ď with automorphism

group Aut(DI) containing both exp(CσI) and ΓI , with the latter a subgroup of Γ

centralizing the cone σI [KP16]. Likewise, the restriction of the map ΦS of (2.5) to

Z∗I defines a period mapping

(3.2) Φ0
I : Z∗I → ΓI\D0

I .

Here D0
I is a Mumford–Tate domain and a quotient of DI by a normal subgroup of

Aut(DI) containing exp(CσI). The map Φ0
I factors through (3.1), and we have a

commutative diagram

(3.3)

Z∗I (exp(CσI)ΓI)\DI

ΓI\D0
I .

ΦI

Φ0
I
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See [GGR21b, §2] for details.

Modulo some finite identifications (which we shall not go into here) the restriction

of (1.2) to Z∗I is (3.3). In particular (and modulo those identifications), any fibre F

of ℘T → ℘S is contained in a fibre of

(3.4) (exp(CσI)ΓI)\DI → ΓI\D0
I .

The latter parameterizes limiting mixed Hodge structures (W,F, σI) with fixed/constant

associated graded Hodge structures F p(GrW` ). In particular, what varies along the

fibre is the extension data of (W,F, σI). This extension data encodes a rich geometric

structure on the fibres of ΦS. It is reviewed in §§3.2–3.4.

3.1. Period matrix representations at infinity. The purpose of this section is

to sketch where the map f of §2.2(c) comes from.

As will be discussed in §§3.2–3.4, the extension data is filtered, and filtration

factors (3.4) as

(3.5) (exp(CσI)ΓI)\DI → ΓI\D1
I → ΓI\D0

I .

The fibres of ΓI\D1
I → ΓI\D0

I parameterize “level one” extension data (cf. §3.5.1).

The diagram (3.3) in turn factors as

(3.6)

Z∗I (exp(CσI)ΓI)\DI

ΓI\D1
I

ΓI\D0
I .

ΦI

Φ1
I

Φ0
I
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The map Φ1
I is holomorphic. Both the Φ0

I and the Φ1
I “patch together” to define

proper, continuous maps onto compact Hausdorff topological spaces

(3.7)

B ℘1

℘0 .

Φ1

Φ0

See [GGR21b] for details.1 Notice that Φ = Φ0|B = Φ1|B.

Remark 3.8. If A is a Φ0–fibre, then the fibre F of (1.15) is ΦT(A) and Φ1(A) = F1.

Let A1 ⊂ A0 be connected components of a Φ1 and Φ0–fibre, respectively. Both

are compact, complex subvarieties of B. Given i = 0, 1, the fibre Ai admits a neigh-

borhood O
i ⊂ B with the properties:

(i) The restriction Φi|
O
i is proper.

(ii) The period map Φ admits a matrix representation over Oi = B ∩ O
i

(Definition 2.15). The monodromy Γ1 about A1 is particularly simple. Simple enough

in fact that the matrix coefficients of the representation over O1 satisfy §2.2(b).

Whence we obtain the map f of §2.2(c). See [GGR21b] for details.

For both O1 ⊂ O0, the Schubert cell giving the period matrix representation

is given by (3.9) below. Fix any b ∈ A0 and consider any representative (F, σ) of

ΦT(b) = [W,F, σ]T. The limit

F∞ := lim
y→+∞

exp(iyN) · F ∈ Ď

is independent of all these choices, cf. [GGR21b], as is

(3.9) S =
{
E ∈ Ď | dim (Ea ∩ F b

∞) = dim (F a ∩ F b
∞) , ∀ a, b

}
.

The monodromy Γ0 over O0 fixes F∞, and therefore F∞, and so preserves S.

1Caveat emptor: the “patching” may require that we make some additional identifications. That

is, Φ0
∣∣
Z∗

I

will factor through Φ0
I , and Φ1

∣∣
Z∗

I

will factor through Φ1
I . However, those identifications

are finite, so that the maps Φ0
I(Z∗

I )→ Φ0(Z∗
I ) and Φ1

I(Z∗
I )→ Φ1(Z∗

I ) have finite fibres.
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3.2. Extension data for a mixed Hodge structure. To begin, fix a mixed Hodge

structure (W,F ) on V with weight filtration

0 = W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2n = V ,

and Hodge filtration

0 = F n+1 ⊂ F n ⊂ · · · ⊂ F 1 ⊂ F 0 = VC .

Set associated graded

GrW• =
2n⊕
`=0

GrW` .

Let H` denote GrW` = W`/W`−1 equipped with the pure weight ` Hodge structure

F p(GrW` ).

3.2.1. Description. The extension data of the mixed Hodge structure (W,F ) is the

set EW,F of ΓW–equivalence classes of mixed Hodge structures (W, F̃ ) with the same

associated graded Hodge structure H̃• = H•. As will be summarized in §A.1, it is a

discrete quotient

(3.10) EW,F = ΓW\(P 1
W · F )

of a complex homogeneous manifold, and it is an iterated fibre bundle

(3.11) EW,F = E2n
W,F � E2n−1

W,F � · · ·� E2
W,F � E1

W,F .

To describe the fibres, given ` ≥ 1, let

Ext(Hk, Hk−`) =
Hom(Hk, Hk−`)

F 0Hom(Hk, Hk−`) + HomZ(Hk, Hk−`)
,

be the set of congruence classes of short exact sequences

0 → Hk−` → Wk/Wk−`−1 → Hk → 0
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of mixed Hodge structures; see [Car87] for further discussion. The base space E1
W,F

parameterizes the level one extension data; it is a product

E1
W,F =

2n⊕
k=1

Ext(Hk, Hk−1)

of compact complex tori. The fibres

Ext`(W,F ) E `W,F

E `−1
W,F

parameterize the level ` extension data. It also a product

Ext`(W,F ) =
2n⊕
k=`

Ext(Hk, Hk−`)

of (in general, noncompact) complex tori. The space E `W,F parameterizes the extension

data of level ≤ `.

3.2.2. Constraints imposed by the infinitesimal period relation. Consider a complex

analytic map ψ : Z → E `W,F . In general, the maps that we are interested in will

satisfy the infinitesimal period relation dF p ⊂ F p−1, and this has some important

implications for the map ψ. To explain these, define

F−1Ext(Hk, Hk−`) =
F−1Hom(Hk, Hk−`)

F 0Hom(Hk, Hk−`) + HomZ(Hk, Hk−`)
⊂ Ext(Hk, Hk−`)

and

F−1Ext`(W,F ) =
2n⊕
k=1

F−1Ext(Hk, Hk−`) ⊂ Ext`(W,F ) .

Note that F−1Ext`(W,F ) is the product of a complex torus with an affine space Cd.

Keeping in mind that Ext`(W,F ) is also a complex torus, we may consider translations

of F−1Ext`(W,F ) in Ext`(W,F ).

If ` = 1, then the infinitesimal period relation implies that ψ : Z → E1
W,F takes

value in a translate of F−1Ext1(W,F ). More generally, if ` ≥ 2, and the composition

Z
ψ→ E `W,F � E `−1

W,F of ψ with the projection of (3.11) is the constant map, then ψ
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takes value in a fibre Ext`(W,F ) of E `W,F � E `−1
W,F and the infinitesimal period relation

implies that the map takes value in a translate of F−1Ext`(W,F ).

If Z is compact and connected, then we obtain further restrictions on the map

ψ : Z → E `W,F . To see this, notice that F−1Ext`(W,F ) is the product of a complex

torus with an affine space Cd` . If ` ≥ 2, then the complex torus has no compact factor,

so that F−1Ext`(W,F ) = Cd`×(C∗)d′` . In the case that ` = 1, let T ⊂ F−1Ext1(W,F )

denote the maximal compact complex torus. Since Z is compact (and connected),

ψ : Z → E1
W,F must take value in a translate of T. If ` ≥ 2 and the composition

Z→ E `W,F � E `−1
W,F is constant, then ψ : Z→ E `W,F must be constant. This establishes

Lemma 3.12. Let Z be a compact, connected, complex analytic variety and ψ : Z→

EW,F an analytic map satisfying the infinitesimal period relation dF p ⊂ F p−1. Then

(i) The map π1 ◦ ψ : Z → E1
W,F takes value in a translate of the maximal compact

complex torus T ⊂ F−1Ext1(W,F ).

(ii) If ` ≥ 2 and π`−1 ◦ ψ is constant, then π` ◦ ψ : Z → E `W,F must be constant. In

particular, ψ is locally constant on the fibres of π1 ◦ ψ.

3.2.3. Extensions of maps to the compact torus. In practice the maps to extension

data that arise when considering period maps at infinity are defined on (noncompact)

quasi-projective varieties. So it is interesting to note that the maps to level one

extension data will extend to smooth projective completions.

Lemma 3.13. Suppose that Z∗ is Zariski open in a smooth algebraic variety Z. Then

any holomorphic map ψ1 : Z∗ → T extends to ψ1 : Z→ T.

Proof. Let H1(·) denote the first homology group with Z coefficients, modulo torsion.

The induced ψ1
∗ : H1(Z∗) → H1(T) is a morphism of mixed Hodge structures. The

mixed Hodge structure on H1(Z∗) = W−1(H1(Z∗)) has weights ≤ −1, while H1(T) is

a pure Hodge structure of weight −1. Thus we have an induced map

α : H1(Z)
'−→ GrW−1H1(Z∗) → H1(T) .
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The morphism of Hodge structure α is, up to translation, induced by a holomorphic

map Alb(Z)→ T. And the desired extension of ψ1 to Z is given by the composition

Z→ Alb(Z)→ T. �

3.3. Limiting mixed Hodge structures. A limiting mixed Hodge structure is an

equivalence class of polarized mixed Hodge structures (§3.3.1). As such it both carries

a richer structure than a mixed Hodge structure (coming from a cone of polarizing

nilpotent operators), and is a slightly coarser object (virtue of working with equiv-

alence classes. The coarser nature is due to the additional quotient by spanC{σ} in

(3.16) compared with (3.10)). This dichotomy is seen when juxtaposing Lemma 3.12

above with §3.5 and Lemma 3.20 below. The richer structure gives us the ample

line bundles LM over the irreducible components of Φ0–fibres, and their relationship

(3.23) to the normal bundles NZi/B
(§3.5). This strengthens the first statement of

the lemma, and encodes the central geometric information arising when considering

the variation of limiting mixed Hodge structure (3.1) along Z∗I . The coarser nature

gives us Lemma 3.20 as the analog of Lemma 3.12(ii).

3.3.1. Definition. A mixed Hodge structure (W,F ), with F ∈ Ď, is polarized by a

nilpotent operator N ∈ End(V,Q) if

(i) the action of N satisfies N(F p) ⊂ F p−1 for all p,

(ii) and N(W`) ⊂ W`−2 for all `;

(iii) the induced map Nk : GrWn+k → GrWn−k is an isomorphism;

(iv) the weight n + k Hodge structure on PrimN
n+k = ker{Nk+1 : GrWn+k → GrWn−k−2}

that is induced by F is polarized by QN
k (·, ·) = Q(·, Nk·).

The triple (W,F,N) is a polarized mixed Hodge structure. Given commuting nilpotent

operators N1, . . . , Nm ∈ End(V,Q), the nilpotent cone

(3.14) σ = spanR>0
{N1, . . . , Nm} ⊂ End(VR, Q)
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polarizes (W,F ) if (W,F,N) is a polarized mixed Hodge structure for every N ∈ σ.

This is the case if and only if

(t1, . . . , tm) 7→ exp(
∑

itiNi) · F

is a nilpotent orbit [CKS86]. The associated limiting mixed Hodge structure is the

equivalence class

[W,F, σ] = {(W,F ′, σ) | F ′ ∈ exp(Cσ) · F} .

Given a polarized mixed Hodge structure (W,F, σ), W is the unique filtration

satisfying (ii) and (iii). So we will sometimes let (F, σ) and [F, σ] denote the polarized

and limiting mixed Hodge structures.

Remark 3.15 (Relationship to Deligne’s mixed Hodge structure). Deligne has shown

that the cohomology Hk(X0) of any quasi-projective variety X0 admits a functorial

mixed Hodge structure [Del74, PS08]. Suppose that X0 is a projective variety and

admits a smoothing: this means that X0 can be realized as the central fibre of a family

{Xt}t∈∆ parameterized by the unit disc ∆ = {|t| < 1} ⊂ C with Xt smooth for all

t 6= 0. Fix to 6= 0. Then Schmid’s nilpotent orbit theorem [Sch73] endows Hk(Xto)

with a limiting mixed Hodge structure that depends only on the family {Xt}t∈∆∗ of

smooth varieties, ∆∗ = {0 < |t| < 1}, not the central fibre X0. It is with these

limiting mixed Hodge structures that we are concerned in this note. However, we

note that the two mixed Hodge structures are related by the Clemens–Schmid exact

sequence [Cle77] and its generalizations [KL19, KL20].

3.4. Extension data for a limiting mixed Hodge structure. As in §3.2 we fix

a limiting mixed Hodge structure [W,F, σ]. As above, we let H` denote GrW` =

W`/W`−1 equipped with the pure weight ` Hodge structure F p(GrW` ). The condi-

tion §3.3.1(ii) implies that this Hodge structure does not depend on the choice of

(W,F, σ) ∈ [W,F, σ]; that is, if F̃ ∈ exp(Cσ) · F , then H̃` = H`.
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3.4.1. Description. The extension data of the limiting mixed Hodge structure [W,F, σ]

is the a set Eσ,F of equivalence classes of limiting mixed Hodge structures [W, F̃ , σ]

with the same associated graded Hodge structure H̃• = H•. As will be summarized

in §A.2 it is a discrete quotient

(3.16) Eσ,F = (exp(Cσ)Γσ)\(C1
σ · F )

of a complex homogeneous manifold, and has the structure of an iterated fibre bundle

(3.17) Eσ,F = E2n
σ,F � E2n−1

σ,F � · · ·� E2
σ,F � E1

σ,F .

To describe the fibres, set ` ≥ 1 and let

Extσ(Hk, Hk−`) =
Homσ(Hk, Hk−`)

F 0Homσ(Hk, Hk−`) + Homσ,Z(Hk, Hk−`)
,

Here, Extσ denotes extension classes of polarized mixed Hodge structures ; in par-

ticular, Homσ denotes homomorphisms in the category of polarized mixed Hodge

structures, and Extσ(Hk, Hk−`) is the space of congruence classes of short exact se-

quences

0 → Hk−` → Wk/Wk−`−1 → Hk → 0

of polarized mixed Hodge structures. The base of the fibration (3.17) is

E1
σ,F =

2n⊕
k=1

Extσ(Hk, Hk−1) ,

parameterizes the level one extension data, and is a product of compact complex tori.

More generally, if ` ≥ 3, then the fibre of

(3.18)
Ext`(σ, F ) E `σ,F

E `−1
σ,F

parameterizes the level ` extension data

Ext`(σ, F ) =
2n⊕
k=`

Extσ(Hk, Hk−`) .
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It also a product of (in general, noncompact) complex tori.

If ` = 2, then there is a natural map

spanC{σ} → Homσ(Hk, Hk−2)

(we say the nilpotent cone is “level two extension data”), and we may consider the

quotient

Extσ(Hk, Hk−2)

spanC{σ}
=

Homσ(Hk, Hk−2)

F 0Homσ(Hk, Hk−2) + Homσ,Z(Hk, Hk−2) + spanC{σ}
.

The fibre of

(3.19)

Ext2(σ, F )

spanC{σ}
E2
σ,F

E1
σ,F

is the quotient

Ext2(σ, F )

spanC{σ}
=

2n⊕
k=2

Extσ(Hk, Hk−2)

spanC{σ}
of the level two extension data by the nilpotent cone. The additional quotient by

spanC{σ} here is due to the coarser nature of limiting mixed Hodge structures (versus

polarized mixed Hodge Hodge structures). The fibre is again a product of (in general,

noncompact) complex tori.

3.4.2. Constraints imposed by the infinitesimal period relation. In general the maps

ψ : Z→ Eσ,F that we are interested in satisfy the infinitesimal period relation dF p ⊂

F p−1, and this imposes constraints on ψ analogous to those in §3.2.2.

Briefly, we let F−1Ext`(σ, F ) be the image of ⊕k≥` F−1Homσ(Hk, Hk−`) under the

projection ⊕k≥`Homσ(Hk, Hk−`) � Ext`(σ, F ). Again F−1Ext`(σ, F ) is the product

of a complex torus with an affine space Cd. The torus has no compact factor if ` ≥ 2.

Let J be the compact factor of the torus in F−1Ext1(σ, F ). The argument of §3.2.2

yields

Lemma 3.20. Let Z be a compact, connected, complex analytic variety.
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(i) Any holomorphic map ψ1 : Z → E1
σ,F satisfying the infinitesimal period re-

lation takes value in a translate of the maximal compact complex torus J ⊂

F−1Ext1(σ, F ).

(ii) Let ` ≥ 2. If a map ψ` : Z→ E `σ,F satisfies the infinitesimal period relation and

the composition Z → E `σ,F � E `−1
σ,F is constant, then ψ` must be constant. In

particular, any map ψ : Z→ Eσ,F is locally constant on the fibres of ρ1 ◦ ψ.

Remark 3.21. We are primarily interested in the case that Z is a fibre of one of the

two maps in (3.7). (These fibres are compact.) If A0 is a connected component of

a Φ0–fibre, then the restriction Φ1|A0 takes value in E1
σ,F . Part (i) of the lemma

implies that this map takes value in a translate of the compact torus J ⊂ E1
σ,F . The

implication of part (ii) is more subtle to state. Informally it implies that the variation

of limiting mixed Hodge structure ΦT
∣∣
A1 is determined up to constants of integration

by a nilpotent cone. (See [GGR21b, Proposition 5.1] for a precise statement.) As will

be discussed next, the level two extension data coming from the cone is encoded by

sections of certain line bundles, and some of these line bundles polarize J.

3.5. Geometry of period maps at infinity. We now turn to the geometry of a

connected component A0 of a Φ0–fibre as in §3.1. The fibre parameterizes limiting

mixed Hodge structures with fixed associated graded H•. So what varies along A0

is extension data. This extension data encodes rich geometric information via line

bundles over compact tori that are related to the normal bundles NZi/B
.

3.5.1. Extension data as fibres. The fibres of the projections in (3.5) are

EσI ,F (exp(CσI)ΓI)\DI

ΓI\D0
I

and
E1
σI ,F

ΓI\D1
I

ΓI\D0
I

By definition Φ0
I(A

0 ∩ Z∗I ) is a point of ΓI\D0
I . So Φ1

I(A
0 ∩ Z∗I ) ⊂ E1

σI ,F
. It is a

nontrivial fact that Φ0
I extends to A0 ∩ ZI , and Φ1

I(A
0 ∩ ZI) ⊂ E1

σI ,F
as well. (In
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the case that A0 is smooth, this is Lemma 3.13; see [GGR21b] for the general case.)

Likewise Φ1(A0) ⊂ E1
W,F . Lemmas 3.12 and 3.20 imply that

(3.22) Φ1(A0) ⊂ T ⊂ E1
W,F and Φ1(A0 ∩ ZI) ⊂ JI ⊂ E1

σI ,F
.

See [GGR21b, §4] for details.

3.5.2. Ample line bundles over level one extension data of polarized mixed Hodge

structures. Given σ = spanR>0
{N1, . . . , Nm}, as (3.14), let N = spanZ{N1, . . . , Nm}

be the Z–module generated by the Ni, and let Ň = HomZ(N,Z) be the dual. Every

M ∈ Ň determines a line bundle LM over the level one extension data E1
σ,F . The fact

that the cone σ polarizes the mixed Hodge structure (W,F ) implies that there is a

nonempty subset Nsl2 ⊂ Ň of line bundles L∗M that polarize the compact complex

torus J ⊂ E1
σ,F ; that is J is an abelian variety, see [GGR21b, §4] for details. This pos-

itivity is a general property of extension data of a polarized mixed Hodge structure.2

Given a limiting mixed Hodge structure arising in the context of a triple (B,Z; Φ),

as in §1.1, these line bundles are part of a rich structure relating the geometry of the

Φ0–fibres to the normal bundles NZi/B
.

3.5.3. The central geometric information at infinity. Let NA0 = spanZ{Ni | Z∗i ∩A0 6=

∅}.3 Given any M ∈ ŇA0 , the neighborhood O0 of A0 (cf. §3.1) admits a line bundle

LM with canonical section sM having divisor

(sM) =
∑
〈M,Ni〉(Zi ∩ O0) .

In particular,

LM =
∑
〈M,Ni〉 [Zi]|O0

2See also [BBT20] where this positivity is used to prove that the image of a mixed period map is

quasi-projective.
3As defined, NA0 ⊂ W−2End(V,Q). A subtle point (which we elide here) is that the Z–module

NA0 is well-defined modulo W−3End(V,Q), and so should be regarded as a subset of GrW−2End(V,Q).
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The sections sM encode the information in the nilpotent orbit that is lost in the map

ΦI of (3.1) when we quotient by exp(CσI); see [GGR21b, §3] for details.

As in §3.5.2, each M ∈ ŇA0 determines a line bundle LM over the torus T in

(3.22). These line bundles are related to the normal bundles

(3.23) LM |A0 = (Φ1
∣∣
A0)
∗(LM) =

∑
〈M,Ni〉 NZi/B

∣∣∣
A0
.

An illustrative example is given in §4.3.5.

Remark 3.24. It follows from Lemma 3.20 that the extension data along A0 that is

not encoded by the map Φ1 to level one extension data, and the sections sM (which

is level two extension data) is discrete. This is the sense in which (3.23) is the central

geometric information at infinity.

3.6. Applications. We now turn to some applications of §3.5.2 and (3.23). The

irreducible components of the Φ0–fibre A0 are all of the form A0
I = A0 ∩ ZI with

A0 ∩ Z∗I (nonempty and) Zariski open in A0. Given any such I there is a nonempty

subset Nsl2
I ⊂ ŇA0 with the property that the L∗M , with M ∈ Nsl2

I , polarize JI ⊂ T,

cf. §3.5.2. Furthermore, the set

Nsl2,+
I = {M ∈ Nsl2

I | 〈M,Ni〉 > 0 , ∀ i ∈ I}

is nonempty [GGR21b, Theorem 4.3].

Example 3.25. Suppose that I = {i} and that A0
i = A0 is irreducible. We may choose

M ∈ Nsl2,+
i , so that L∗M → Ji is ample and κ(M,Ni) > 0. Then N ∗

Zi/B

∣∣
A0 is ample if

the differential of Φ1
∣∣
A0 is injective.

More generally, we have

Corollary 3.26 ([GGR21b]). Suppose the differential Φ1|A0
I

is injective. Then the

line bundle

(3.27)
∑

κ(M,Nj) N ∗Zj/B

∣∣∣
A0

I
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is ample.

Remark 3.28. The sum (3.27) is over those j with Zj ∩ A0
I nonempty; this includes

those j ∈ I, but will be a larger set when A0
I 6⊂ Z∗I . A subtle point is that we may

choose M so that the integers 〈M,Nj〉 are positive when j ∈ I; we are not able to

say the same when j 6∈ I. This gives (3.27) somewhat the character of a negative

definite matrix whose diagonal entries are negative but whose off-diagonal entries are

non-negative. Suppose that we may choose M ∈ Nsl2,+
I so that 〈M,Nj〉 ≥ 0 for all j

(in the sum), and that dimA0
I = 1. Then deg (Φ1|A0

I
)∗(LM) > 0. For j 6∈ I we have

Zj ·A0
I ≥ 0, so that 〈M,Nj〉deg [Zj]|A0

I
≥ 0. This suggests that 〈M,Ni〉deg [Zi]|A0

I
< 0

for i ∈ I.

The next two applications of (3.23) are special cases of

Conjecture 3.29 ([GGR21a]). Under suitable local Torelli-type assumptions, there

exist integers 0 ≤ ai ∈ Z and m0 so that mΛe −
∑
ai[Zi] is ample for m ≥ m0.

Proposition 3.30 ([GGR21a]). Suppose that Z = Z1 consists of a single irreducible

component, and dΦ1 is injective on Φ0–fibres. Assume also that the effective cone

Eff1(B) of 1–cycles is finitely generated. Then the line bundle Π = mΛe − [Z] is

ample for m ≥ m0.

Outline of proof. It suffices to show that there exists m0 so that (mΛe − [Z]) · C > 0

for all curves C ⊂ B and m ≥ m0. Without loss of generality, we may assume that

C is an irreducible curve.

If the image Φ0(C) is also a curve, then Λe·C > 0. So we will have (mΛe−[Z])·C >

0 when m� 0. Now suppose that C ⊂ A0 is contained in a Φ0–fibre. Then Λe ·C = 0.

However, the hypothesis that dΦ1 is injective and §3.5.2 imply that N ∗
Z/B

∣∣
C

is ample.

In particular, −[Z] · C > 0. �

Theorem 3.31 ([GGR21a]). Suppose that dimB = 2 and that the cone of Eff1(B)

of effective algebraic 2-cycles is finitely generated. Assume that the period map Φ :
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B → Γ\D is locally injective, Z is connected, Φ0(Z) is a point, and that there exists

m0 and integers ai ≥ 0 so that

Lm = mΛe −
∑

ai[Zi]

is ample for all m ≥ m0.

Remark 3.32. Several of the hypotheses in the theorem may be dropped. See [GGR21a]

for a more general result.

Outline of proof. Briefly, the argument is as follows.

The local Torelli hypothesis implies Λ2
e > 0. The hypothesis that Φ0(Zi) is a

point implies Λe ·Zi = 0. The Hodge index theorem then implies that the intersection

matrix ‖Zi · Zj‖ is negative definite. There exist ai > 0 so that Zj ·
∑

i aiZi < 0, for

all j [GGR21a, Lemma 2.3].

If C ⊂ B is an irreducible curve, then either C ∩ B is Zariski open in C in

which case Λe · C > 0, or C = Zj for some j. It follows that there exists m0(C) so

that Lm · C > 0 for m ≥ m0(C). The finite generation of Eff1(B) implies that we

may choose m0 independent of C. The desired result now follows from the Nakai–

Moishezon criterion for ampleness. �

Question 3.33. The proof above motives the following question. Suppose that O is

a smooth complex surface containing a reduced normal crossing divisor Z = ∪i Zi.

(What we have in mind here is that we replace the projective B with an analytic

neighborhood O of Z.) Given a period map Φ on O = O\Z, suppose that the map

Φ0 collapses the Zi to points. Can we conclude that the intersection matrix ‖Zi ·Zj‖

is negative definite?

The final application is a constraint on the variations of limiting mixed Hodge

structure that may arise along the divisor Z when dimB = 2.
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Proposition 3.34 ([GGR21a]). Assume that dimB = 2 and that Φ : B → Γ\D

satisfies generic local Torelli (equivalently, Φ∗ is injective at some point b ∈ B, so

that dim℘ = 2). Then Φ1 is necessarily non-constant on some irreducible component

Zi of Z.

Definition 3.35. The variation (WI , Fe|Z∗I ) of limiting mixed Hodge structure along

Z∗I is of Hodge–Tate type, if the associated graded variation Fpe (GrW
I

a ) of Hodge

structure is Hodge–Tate.

Remark 3.36. When the variation along Z∗I is of Hodge–Tate type, both the period

map Φ0|Z∗I and map Φ1|Z∗I of (3.7) are locally constant along Z∗I . (The level one

extension data Ext1(σ, F ) is zero along fibre A0 of Φ0.) In this case all the information

in ΦT
∣∣
Z∗I

, up to constants of integration, is encoded in the sections sM of the line

bundles LM → O0 (Remark 3.24).

Corollary 3.37. Suppose that B is a surface and that the limiting mixed Hodge

structures along all of Z is of Hodge–Tate type. Then dim℘ ≤ 1. Equivalently, if

dim℘ = 2, then there is at least one Zi such that the variation of limiting mixed

Hodge structure along Z∗i is not of Hodge–Tate type.

Proof of Proposition 3.34. We argue by contradiction. Suppose that Φ1 is constant

along all of Z. Then Φ0 is necessarily constant along all of Z; that is, Z = A0. Since

Φ1(Z) = Φ1(A0) is a point in the compact torus T, it follows from (3.23) that

(Φ1
∣∣
Z

)∗(LM) =
ν∑
i=1

〈M,Ni〉[Zi]|Z is trivial.

So

0 =

(
ν∑
i=1

〈M,Ni〉[Zi]

)2

=
ν∑

i,j=1

〈M,Ni〉〈M,Nj〉Zi · Zj

The Hodge index theorem implies that the intersection matrix ‖Zi · Zj‖ is negative

definite [GGLR20, Lemma 3.1.1], and this forces 〈M,Ni〉 = 0 for all i. As M is

arbitrary, this is a contradiction. �
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4. Discussion of weight n = 1

The goal of this section is to illustrate the constructions above in the classical

weight n = 1 case. The geometric interpretations of level one extension data for a

nodal curve C (as discussed in §4.1.1 and §4.2) go back to [Car87]. In that work

Carlson considers Deligne’s mixed Hodge structure on H1(C), for which all extension

data is of level one. The limiting mixed Hodge structure of a smoothing deformation

of C also has level two extension data, and this is discussed in §4.1.2.

The period domain parameterizing pure polarized Hodge structures of weight

n = 1 and Hodge numbers h = (g, g) is the generalized Siegel upper half space Hg.

For our illustrative example (§§4.2–4.3) we will take the case g = 2, as the significant

(classical) phenomena are all present in this case.

4.1. Geometric interpretation of extension data. Let C be an irreducible curve

with µ nodes {ri}µi=1. Let π : C̃ → C denote the normalization. A smoothing

deformation of C produces a limiting mixed Hodge structure (W,F, σ), with

H0 ' H0({ri}µi=1) , H1 ' H1(C̃) , H2 ' H0({ri}µi=1)(−1)

and

σ = spanR>0
{N1, . . . , Nµ} ,

where Ni corresponds to smoothing the i-th node ri ∈ C. We may fix a basis of

⊕` GrW` = H2 ⊕H1 ⊕H0 that respects this direct sum, and with respect to which

Q =


0 0 Iµ

0 Q̂ 0

−Iµ 0 0

 ,
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with Q̂ the intersection form on H1, and

Ni =


0 0 0

0 0 0

νi 0 0

 ,

where νi is the µ× µ matrix whose only nonzero entry is the i-th diagonal entry.

4.1.1. Level one extension data. Let π−1(ri) = {pi, qi} denote the preimages of the

nodes. A neighborhood of C in the corresponding stratum of moduli is swept out

by varying C̃ and the {pi, qi}. Restricting to a Φ0–fibre A corresponds to fixing

C̃. On that fibre, the level one extension data is Ext1(W,F ) = Ext(H1, H0) ⊕

Ext(H0(−1), H1). Setting D = ∪i {pi, qi} ⊂ C̃, the group Ext(H1, H0) parameterizes

the extension data in the sequence

(4.1)
0 W0 W1 GrW1 0

H0(D) H1(C̃,D) H1(C̃) 0 .

It is

HomC(H1, H0)

F 0HomC(H1, H0) + HomZ(H1, H0)
' (H0,1/H1

Z) ⊗ H0
Z '

h0⊕
1

J(C̃) ,

where J(C̃) is the Jacobian variety of C̃ and h0 is the rank of H0
Z. Then

Φ1(C) =
∑
i

AJC̃(pi − qi) ∈
h0⊕
i=1

J(C̃) .

(Here, we fix an ordering of {pi, qi} ⊂ C̃.4) In the classical formulation using differ-

ential forms, we have

J(C̃) = H0,1/H1
Z ' H0(Ω1

C̃
)∗/H1(C̃,Z) .

Given ω ∈ H0(Ω1
C̃

) we choose a path γ with ∂γ =
∑
pi− qi. Then Φ1 is given by the

map ω 7→
∫
γ
ω modulo periods.

4This may require that we take a branched cover for the family of curves.
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The group Ext(H0(−1), H1) parameterizes the extension data in the sequence

0 W1/W0 W2/W0 GrW2 0

0 H1(C̃) H1(C̃\D) H0(D)(−1) .

We have

Ext(H0(−1), H1) =
HomC(H0(−1), H1)

F 0HomC(H0(−1), H1) + HomZ(H0(−1), H1)
.

For each {pi, qi} we choose ηi ∈ H0(Ω1
C̃

(logD)) with Respiηi = 1 and Resqiηi = −1,

and Respjηi = 0 = Resqjηi for all i 6= j. Then

η =
∑
i

ηi ∈ H0(Ω1
C̃

(logD)) ⊂ H1(Ω•
C̃

(logD)) ' H1(C̃\D)

lifts
∑
pi − qi ∈ H0(D)(−1) and is well-defined modulo H0(Ω1

C̃
).

4.1.2. Level two extension data. The above is standard [Car87]. Perhaps less familiar

is the geometric expression of the level two extension data in terms of differential

forms and integrals. (As noted above, Deligne’s mixed Hodge structure on H1(C)

does not have level two extension data; but the limiting mixed Hodge structure given

by a smoothing deformation does.)

We are considering equivalence classes of limiting mixed Hodge structures with

monodromy weight filtrations {0} ⊂ W0 ⊂ W1 ⊂ W2 = V , and where both the Hodge

structures H` and the level one extensions of the mixed Hodge structure are fixed.

The fibre (3.19) is given the symmetric part of

Ext(H0(−1), H0)

exp(Cσ)
' Homsym

Z (H0(−1), H0)

spanZ{N1, . . . , Nh0}
⊗ C∗ .

Using the identification above, this data is represented by the off-diagonal terms in

h0 × h0 symmetric matrices whose entries are in C/2πiZ. Those off-diagonal entries

are obtained as follows. For each i, we choose a path γi with ∂γi = pi − qi. Then for
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Figure 1. Degenerations of C0 and their normalizations

 

i 6= j, the bilinear relations for differentials of the third kind give the classical∫
γi

ηj ≡
∫
γj

ηi modulo periods.

Example 4.2. The simplest and most classical example is when C̃ = P1 and h0 = 2:

in this case, the above construction produces the cross ratio of 2 pairs of ordered

distinct points in P1.5

4.2. Example: a 3-dimensional family of branched covers of P1. Consider the

family C = {Ca,b,c} → P1 × P1 × P1 of double covers Ca,b,c
2:1−→ P1 branched over six

points {0, 1,∞, a, b, c} ⊂ P1. Over the locus B ⊂ P1 × P1 × P1 where the six points

are pairwise distinct, the branched cover Ca,b,c is a smooth curve of genus g = 2. The

curve C0,1,∞ is singular, consisting of two copies of P1 identified at three points (the

curve C3 in Figure 1). We will consider the family {Ca,b,c} in a neighborhood of this

curve. To that end, fix local coordinates t = (t1, t2, t3) at (0, 1,∞) ∈ P1 × P1 × P1 so

that t1 = 0 − a, t2 = 1 − b and t3 = 1/∞− 1/t3. At a general point of {t1t2t3 6= 0}

the {a, b, c} are pairwise distinct and the curve is smooth. Our goal in this section is

to describe the maps Φ0 and Φ1 along the strata Z∗I .

5When C is not irreducible it is necessary to introduce combinatorial data arising from its dual

graph.
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Figure 2. Parameter space for curves
 

4.2.1. Behavior along codimension one strata. A general point in Z∗1 = {t1 = 0 , t2t3 6=

0} corresponds to a nodal curve C1 with pa = 2 and normalization C̃1 → C1 (Figure

1). The restriction Φ0|Z∗1 is the period map for the family of elliptic curves {C̃1}.

In particular, the fibres of Φ0|Z∗1 are the curves where the cross ratio (1,∞; t2, t3) =

(1− t2)/(1− t3) is constant. (This is represented by the green curves in Figure 2.)

The nilpotent logarithm of monodromy Z∗1 is

N1 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 .

(This matrix representation is with respect to the basis {v1, v2, v3, v4} below.) Here

the level one extension data J1 is equivalent to the Jacobian J(C̃1) and the mapping

Φ1 along Z∗1 is essentially the Abel–Jacobi map AJC̃1
(p− q). The level two extension

data is Ext2(σ, F ) = Extσ(H0(−1), H0) ' C∗. This extension data corresponds to

the nilpotent cone σ = spanR>0
{N1} (or rather its complexification, as in (3.19)).

The nilpotent orbit is encoded by the canonical section sM of a line bundle LM → O0

with divisor (sM) = Z1 ∩ O0 (as in §3.5.3) that vanishes along Z1 ∩ O0.

The descriptions over the strata Z∗2 = {t2 = 0 , t1t3 6= 0} and Z∗3 = {t3 =

0 , t1t2 6= 0} are similar, and the nilpotent logarithms of monodromy about Z∗2 and
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Z∗3 are

N2 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 and N3 =


0 0 0 0

0 0 0 0

1 1 0 0

1 1 0 0

 ,

respectively.

4.2.2. Behavior along the coordinate axes. A general point of Z∗12 = {t1, t2 = 0 , t3 6=

0} corresponds to a curve C2 with two nodes, and a normalization P1 = C̃2 ' C2

(Figure 1). Over Z12 the limiting mixed Hodge structures are of Hodge–Tate type.

In particular, the period map Φ0|Z∗12 is constant (Remark 3.36), as is Φ1|Z∗12 . In

particular, both maps collapse the coordinate axes in Figure 2 to a point. The level

two extension data is Ext2(σ, F ) = Extσ(H0(−1), H0) ' C∗ × C∗ × C∗. These three

copies of C∗ corresponds to the nilpotent logarithms {N1, N2, N3} of monodromy at

t = (0, 0, 0). As noted in Remark 3.36, all the information in ΦT
∣∣
Z∗I

, up to constants

of integration, is encoded in the sections sM of the line bundles LM → O0, where

M ∈ Ň with N = spanZ{N1, N2, N3}.

4.3. Example: period matrix representations and local analytic structure

about Z∗1 .

4.3.1. Limiting mixed Hodge structure along Z∗1 . Fix a basis {v1, v2, v3, v4} of VC so

that v̄1 = v1, v̄4 = v4 and v̄2 = −iv3. Let Q be the skew-symmetric bilinear form that

is represented by the matrix

Q =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


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with respect to this basis. Then

F 1 = span{v1, v2}

and

W0 = span{v4} and W1 = span{v2, v3, v4}

defines a limiting mixed Hodge structure (W,F,N1).

4.3.2. Schubert cell. The reduced period limit is F 1
∞ = span{v2, v4}, and has complex

conjugate is

F 1
∞ = span{v3, v4} .

The Schubert cell (3.9) is the set

S = {E ∈ Ď | E ∩ F 1
∞ = 0}

of all 2-planes E ⊂ VC that satisfy the first Hodge–Riemann bilinear relation Q|E = 0

and have trivial intersection with F 1
∞. This is precisely the set of two planes admitting

a basis of the form

E = span{v1 + αv3 + νv4 , v2 + λv3 + αv4} .

The coefficients define a biholomorphism (α, λ, ν) : S→ C3.

4.3.3. Period matrix representation. If the limiting mixed Hodge structures along the

fibre A0 are polarized by N1, then A0 admits a neighborhood O0 ⊂ B so that the

matrix representation of Φ over O0 = B ∩ O0 is given by

(4.3) Φ|O0 =

 1 0 α ν

0 1 λ α

t

;

that is, given b ∈ O0, the Hodge filtration F 1(b) ⊂ VC parameterized by Φ(b) is given

by

F 1(b) = span{v1 + αv3 + νv4 , v2 = λv3 + αv4} .
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In general (λ, α, ν) : O0 → C3 is multivalued (§4.3.4). However, if we restrict to

a local coordinate chart (t, w) : U → C3 centered at b ∈ O0 and so that N is the

logarithm of local monodromy about {t = 0}, then the nilpotent orbit theorem implies

that each of λ, α, ν − (log t1)/2πi have well-defined holomorphic determinations.

4.3.4. Action of monodromy. Here the α, λ, ν are multi-valued holomorphic functions.

The multivalued-ness is due to the monodromy about A0, which is given by

γ =


1 0 0 0

a 1 0 0

b 0 1 0

c b −a 1

 ,

with c ∈ Z, a ∈ Z+ iZ and b = −iā. The period matrix representation transforms as

(4.4) γ · Φ|O0 =

 1 0 α + b− aλ ν + c− ab + 2aα + a2λ

0 1 λ α + b− aλ

t

.

Note that λ is a well-defined function O0 → C.

4.3.5. Theta line bundle. If we write m = κ(M,N) ∈ Z, then locally the line bundle

LM admits a trivialization with respect to which the canonical section sM is given by

the function

τM(t) = tm1 exp(2πimν(t)) .

While τM(t) is invariant under the local monodromy exp(N1), we must also account

for the monodromy about the fibre A0. From (4.4) we see that τM(t) transforms as

τM(t) 7→ tm1 exp 2πim (ν(t) + a2λ(t)− 2aα(t))

= τM(t) exp 2πim (a2λ(t)− 2aα(t)) .

This is the functional equation for the classical theta function. We may normalize

our choice of coordinates t so that ν(t) = (log t1)/2πi. Then, taking m = 1, this

computation implies that t1 · ϑ, with ϑ a section of the dual to the theta line bundle,
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is globally well-defined along A0; that is, the pull-back of the theta line bundle is the

conormal bundle.

4.3.6. Local analytic structure. Upon restricting to a neighborhood O1 ⊂ O0 of a

fibre A1 ⊂ A0, the monodromy about A1 simplifies to a, b = 0. In particular, the

functions α, λ, exp(2πiν) are well-defined over O1 = B ∩ O1, and extend (again, by

the nilpotent orbit theorem) to holomorphic functions on O1. This gives us the map

f = (α, λ, exp(2πiν)) : O1 → C3 in step (c) of the proof of Theorem 1.7.

5. Discussion of weight n = 2

The goal of this section is to illustrate the constructions above in a non-classical

weight n = 2 case. We begin with a review of level one extension data in §5.1, and

then specialize to a class of surfaces with moduli space admitting a canonical pro-

jective compactificationMI that has been extensively studied by Franciosi–Pardini–

Rollenske [FPR15a, FPR15b, FPR17]. The compactification MI is highly singular

along the boundary, and it seems that it is exactly the extension data in the limiting

mixed Hodge structure that may guide a desingularization at a general point of the

boundary (Remark 5.4). The period matrix representation for family of surfaces with

pg = 2 is discussed in §5.3, and some geometric interpretation of this is given in §5.4.

5.1. Geometric interpretation of level one extension data.

5.1.1. Extension data for C ⊂ X. We begin with the review the geometric interpreta-

tion of the extension data for a smooth, but possibly reducible, curve C on a smooth

surface X. Then the relevant dual exact sequences are

0 −→ H1(C)

H1(X)
−→ H2(X,C) −→ ker

{
H2(X)→ H2(C)

}
−→ 0

0 −→ H2(X)

GysH0(C)
−→ H2(X\C) −→ ker

{
Gys : H1(C)(−1)→ H3(X)

}
−→ 0
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with Gys the Gysin map. Assuming for simplicity that X is regular, the numerator

of ExtMHS for the first sequence is

HomC
(
ker{H2(X)→ H2(C)} , H1(C)

)
.

It is convenient to write H2(X) = Hg1(X) ⊕ H2(X)tr, with H2(X)tr the transcen-

dental part of H2(X), and where the summands are orthogonal with respect to the

intersection pairing. Assuming for the moment that C is irreducible, elements of

ker{Hg1(X)→ H2(C)} are given by divisors D on X such that D · C = 0. Unwind-

ing the definitions, we see that the extension class corresponding to Hg1(X) ⊂ H2(X)

is given by the

D 7→ AJC(D · C) .

For the transcendental part H2(X)tr of H2(X), after factoring by the F 0–part of

the denominator, a typical element is ξ = α + β with α ∈ H2,0(X) = H0(Ω2
X) and

β ∈ H1,1(X) with β|C = dγ, with γ a (1, 0)–form on C that is orthogonal to the

harmonic forms H1,0(C). Given δ ∈ H1(C,Z) we have δ = ∂∆ for a 2-chain ∆ in X.

The transcendental part of the extension class is then given by

〈ξ, δ〉 =

∫
∆

α −
∫
δ

γ ,

modulo periods. The term
∫

∆
α is a membrane integral. (For more on membrane

integrals, see [KLMS06] and the expository [Lew06].)

5.1.2. Extension data for a pair of surfaces glued together along a curve. Consider

two smooth surfaces X1 and X2 with smooth curves C1 ⊂ X1 and C2 ⊂ X2 together

with an isomorphism C1 ' C2. Let X be the surface obtained by gluing X1 and

X2 together along the curves (via the isomorphism). For simplicity of notation, we

identify the curves and denote them by C. Then

X = X1 ∪C X2 .
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(The extension data for Deligne’s mixed Hodge structure on H2(X) was first studied

in [Car87].) A necessary condition [Fri83] for X to be smoothable is

(5.1) NC/X1 ' N∗C/X2
.

In this case, there is a well-defined equivalence class of limiting mixed Hodge struc-

tures [PS08, Ste76]. Again for simplicity we assume that X1 and X2 are regular.

Then the limiting mixed Hodge structure has

H1 ' H1(C) .

To describe H2, consider the complex

H0(C)(−1)
α−→ H2(X1)⊕H2(X2)

β−→ H2(C) ;

here α is the direct sum of the Gysin maps and β is the difference of the restriction

mappings. The smoothing condition (5.1) implies C2
1 + C2

2 = 0, as line bundles, so

that β ◦ α = 0. Then

H2 =
ker β

imα

is the cohomology of this complex.

5.2. I-surfaces. For a specific illustration of §5.1 we consider the Kollár–Shepherd-

Barron–Alexeev (KSBA) moduli space MI of smooth, minimal, regular (q(X) = 0),

general type surfaces X with K2
X = 1 and pg(X) = 2.6 These surfaces are in many

ways the analog of genus two curves. The moduli spaceMI is essentially smooth and

of dimension 28.7 The period domain D is of dimension 57 and the IPR is a contact

structure on D. The period mapping

Φ :MI → Γ\D
6The discussion that follows is cursory. Some of this is discussed in more detail in [Gri19, Gri18,

Gri20]. A reader with a working knowledge of surface theory and mixed Hodge theory, and the

papers [FPR15a, FPR15b, FPR17] will be able to to fill in the details.
7This means that H1(TX) is unobstructed. In particular, the Kuranishi space is smooth andMI

is locally the quotient of an open set in C28 by a finite group.
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is locally injective, and the image Φ(MI) is a contact submanifold.8

5.2.1. The KSBA compactification. UnlikeM2, the spaceMI is highly singular along

the boundary. It is exactly the extension data in the limiting mixed Hodge structure

that may guide a desingularization of the boundary (Remark 5.4).

The surfaces X0 parameterized by the boundary ∂MI = MI\MI have Q-

Gorenstein canonical divisor classKX0 and semi-log-canonical (slc) singularities. These

slc singularities have been classified [Kol13]. In the case that X0 is normal, and p ∈ X0

is an isolated singular point:

(i) If X0 is Gorenstein, then p is either simple elliptic, a cusp or a du Val singularity.

(ii) If X0 is non-Gorenstein, then p is a rational singularity. If X0 is smoothable,

then we may assume that X0 has Q–Gorenstein smoothable singularities [Hac16,

Kov13].

The period map Φ : MI → Γ\D admits an extension Φ0 : MI → ℘0, ibid. The

monodromy about points of type (ii) is finite. The monodromy about points of

type (i) is infinite and there is a nontrivial limiting mixed Hodge structure (W,F, σ)

associated with a degeneration X → X0.

5.2.2. The stratum N2. There is a 20-dimensional boundary component N2 ⊂ MI

whose general point corresponds to a singular I-surface X0 that is normal, Gorenstein

and with a simple elliptic singularity of degree 2.9 The resolution (X̃, C̃)→ (X0, p) of

this singularity is a smooth surface X̃, whose minimal model is a K3 surface X, with

an elliptic curve C̃ ⊂ X̃ of self-intersection C̃2 = −2. The map X̃ → X contracts a

8The monodromy group Γ is of finite index in Aut(VZ, Q). Since K2
X = 1, the intersection form

is unimodular on the primitive cohomology. The ideal situation would be that Γ = Aut(VZ, Q) and

that generic Torelli holds; but this is an important open issue.
9For us this example arose in the September 2017 meeting at Duke with Radu Laza, Marco

Franciosi, Rita Pardini and Sönke Rollenske and was instrumental in suggesting the use, in general,

of extension data of the period mapping at infinity as a method of (at least partially) desingularizing

the boundary of KSBA moduli spaces of surfaces.
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−1 curve E with E · C̃ = 2. In particular, the image C ⊂ X of C̃ is a curve with one

node and self-intersection C2 = 2. From this it follows that X is a 2:1 cover of P2

branched over a sextic curve C ′, and that C is a double cover of a tangent line ` to

C ′.

Given X0 ∈ N2 consider a one-parameter degeneration Xt → X0 and do a semi-

stable reduction to have a smooth total space with normal crossing divisor X̃0 over

the origin. From the Clemens–Schmid exact sequence [Cle77, Mor84] the simplest

possibility is that X̃0 has a double curve isomorphic to C̃; that is,

X̃0 = X̃ ∪C̃ Y ,

with Y ⊃ C̃ a smooth surface. Friedman’s smoothability condition (5.1) implies

N∗
C̃/X̃

' NC̃/Y .

The line bundle N∗
C̃/X̃

has degree 2. And if we think of Y as obtained from a smooth

cubic C̃ in P2 by blowing up points {qi} on the cubic, then there must be seven points

qi in order to have degNC̃/Y = 2.

5.2.3. The limiting mixed Hodge structure. The nilpotent logarithm N of monodromy

for this degeneration has rank 2 and satisfies N2 = 0. From the general procedure for

computing the limiting mixed Hodge structure over Q [PS08] one has the following

H1 = GrW1 = H1(C̃) , H3 = GrW3 = H1(C̃)(−1)

and H2 is the cohomology at the middle of the complex

(5.2)

H2(X̃)

H0(C̃)(−1)
⊕

H2(C̃) ;

H2(Y )

ρ
X̃

Gys
X̃

GysY
ρY

here GysX̃ and GysY are Gysin maps, and ρX̃ and ρY are signed restriction maps.
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In more detail we will think of C̃ as a cubic curve in P2 and will denote by C1

the curve C̃ in X1 := X̃, by C2 the curve C̃ in X2 := Y , and by f : C2
'−→ C1 the

identification that glues X̃ and Y . Denoting by Ei the blow-up of qi ∈ C2 in P2, we

have (Q–coefficients)

H2(Y ) ' Q[C2] ⊕
(
⊕7
i=1 Q[Ei]

)
.

The sum GysX̃ + GysY maps 1 7→ [C1] + [C2]. The fact that (5.2) is a complex is the

topological consequence of C2
1 + C2

2 = 0 of (5.1).

5.2.4. Level one extension data. We will be concerned with the algebraic part of the

level one extension data, which is defined to be the part of Ext1
MHS(H1(C̃)(−1), H2)

corresponding to the subgroup Hg1(X̃) = H1,1(X̃) ∩ H2(X̃,Q) of Hodge classes. It

will follow from the discussion below that, for a generic point of N2, the group Hg1(X̃)

is freely generated by the classes [C1] and [E].

Proposition 5.3. The algebraic part of the extension data is isomorphic to a direct

sum of copies of the Jacobian variety J(C2). Letting h be the hyperplane class of

C̃ ⊂ P2, the algebraic part of the level one extension data is given by the points

AJC̃(h − 3qi) and AJC̃(h −
∑
bi qi), where

∑
bi = 3. These points determine the

qi ∈ C̃ up to adding a common element of order there to each of them.

Proof. If ξ ∈ Hg1(X1) = Hg1(X̃) and a, bi ∈ Z, then map ρ = ρX̃ + ρY sends

ξ ⊕ (a[C2] +
∑
bi[Ei]) 7→ ξ · C1 + 2a +

∑
bi .

Then q(X̃) = 0 implies that ξ determines an element of Pic(X̃) , and

D = f ∗(ξ) + a (3h−
∑
qi) +

∑
biqi

is a divisor of degree zero on C1 ' C̃. So AJC̃(D) is defined, and gives the level one

part of the extension data. This is equivalent to giving AJC̃(h − 3qi) and AJC̃(h −∑
bi qi), where

∑
bi = 3, and these determine the qi up to adding to each a common

multiple of order 2 in J(C̃). �
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Remark 5.4. For the dimension count of 27 = 19 + 1 + 7, note that we have 19

parameters for X, one for C̃ and seven for the {qi}. The mapping ΦT is locally 1-1

on the data (X, C̃, {qi}). One may check that its image is locally isomorphic to the

blowup of N2 ⊂MI .

5.2.5. Level two extension data. What follows is a very brief discussion to suggest

the general nature of level two extension data in this case; details will be discussed

elsewhere.

For a general I-surface X with one simple elliptic singularity the level two exten-

sion data is relatively uninteresting.10 However if X has two elliptic singularities,11

then there is a interaction between them, somewhat in analogy to an irreducible

algebraic curve having two nodes that interact through a cross ratio type construc-

tion as in Example 4.2 and (6.2). The desingularization X̃ will have two disjoint

elliptic curves C̃1 and C̃2 that contract to singular points p1, p2 ∈ X. We choose

ωi ∈ H0(Ω2
X̃

(C̃i)), i = 1, 2, and with ϕi = ResC̃i
(ωi) a nonzero generator of H0(Ω1

C̃i
).

The vector space Ext1
MHS(H1(C̃1)(−1), H1(C̃2)) maps to level two extension data, and

similarly with 1 and 2 swapped. We thus have a map

Hom(H1,0(C̃1), H1(C̃2)∗) → ExtMHS(H1(−1), H1) .

Without giving details, an element of Hom(H1,0(C̃), H1(C̃2)∗) is given by

(ϕ1, δ2) 7→
∫

∆2

ω1 ,

where δ2 ∈ H1(C̃2) and ∆2 is a 2-chain in X̃ with ∂∆2 = δ2. An interaction between p1

and p2 is provided by using that ωi is the limit of ωi(t) ∈ H0(Ω2
Xt

) with ω1(t)∧ω2(t) =

0 and the alternating bilinear form on H1(−1) given by (α, β) = Q(Nα, β).

10To obtain more interesting classes in Ext1MHS(H1(C̃)(−1), H1(C̃)) one needs the elliptic curve

to have complex multiplication.

11The cases when this happens are classified by [FPR15a, FPR15b, FPR17].
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5.3. Example: period matrix representations and local analytic structure.

This is a continuation of Example 2.13. Consider the case that D is the period domain

parameterizing pure, weight n = 2, Q–polarized Hodge structures on V with Hodge

numbers h = (2, r − 3, 2).

5.3.1. Limiting mixed Hodge structure. Fix a basis {v0, . . . , vr} of VC so thatQ(vi, vj) =

δri+j and

v̄0 = −v0̄ , v̄1 = v2 , v̄1̄ = v2̄ , and v̄α = vᾱ ∀ 3 ≤ α ≤ 3̄ .

Let {v0, . . . , vr} be the dual basis of V ∗C , so that {va ⊗ vb} is a basis of End(VC), and

define a nilpotent operator by

N = iv1 ⊗ v2̄ − iv2 ⊗ v1̄ .

Then

F 2 = span{v0, v1} ,

F 1 = (F 2)⊥ = span{v0, . . . , v2̄}

defines F ∈ Ď, and and W0 = 0,

W1 = span{v1̄, v2̄} ,

W2 = (W1)⊥ = span{v0, v3, . . . vr} ,

W3 = V , defines a limiting mixed Hodge structure (W,F,N) on D.

5.3.2. Schubert cell. The reduced period limit is the flag F∞ given by F 2
∞ = span{v0, v2̄}

and F 1
∞ = (F 2

∞)⊥ = span{v0, v1, v3, . . . , v1̄}. The complex conjugate F∞ is

F 2
∞ = span{v0̄, v1̄} , F 1

∞ = (F 2
∞)⊥ = span{v2, . . . , vr} .

The Schubert cell

S = {E ∈ Ď | E ∩ F 1
∞ = 0}
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is the set of all 2-planes E ⊂ VC that satisfy the first Hodge–Riemann bilinear relation

Q|E = 0 and have trivial intersection with F 1
∞. This is precisely the set of two planes

admitting a basis of the form

E = span

{
v0 +

∑
a≥2

ξa0 va , v1 +
∑
a≥2

ξa1 va

}
,

as in Example 2.13. The infinitesimal period relation is given by either of the following

two equivalent expressions

(5.5) −dξ1̄
0 =

2̄∑
a=2

ξa1 dξā0 and − dξ0̄
1 =

2̄∑
a=2

ξa0 dξā1 .

5.3.3. Period matrix representation. If (W,F,N) is a limiting mixed Hodge structures

along the fibre A0, then A0 admits a neighborhood O0 ⊂ B so that the matrix

representation of Φ over O0 = B ∩ O0 is given by

(5.6) Φ|O0 =

 1 0 ξ2
0 ξα0 ξ2̄

0 ξ1̄
0 ξ0̄

0

0 1 ξ2
1 ξα1 ξ2̄

1 ξ1̄
1 ξ0̄

1

t

, 3 ≤ α ≤ 3̄ .

The horizontal entries of the period matrix representation are the {ξa0 , ξa1}2≤a≤2̄. The

matrix coefficients ξai 6∈ {ξ1̄
0 , ξ

1̄
1 , ξ

2̄
1} are all holomorphic on O (but possibly multival-

ued). Additionally ξ2
0 vanishes along Z ∩ O.

5.3.4. Local coordinate expressions. As noted above, the matrix coefficients ξai 6∈

{ξ1̄
0 , ξ

1̄
1 , ξ

2̄
1} are all holomorphic. Working in local coordinates (t, w) ∈ ∆∗×∆d−1 = U,

the three non-holomorphic matrix coefficients are given by

ξ2̄
1(t, w) ≡ i`(t) , ξ1̄

0(t, w) ≡ −i`(t)ξ2
0 , ξ1̄

1(t, w) ≡ −i`(t)ξ2
1 mod Ω0(U) ,

where

`(t) =
log t

2πi
.
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5.3.5. Action of monodromy. The ξai are multi-valued holomorphic functions on O0 =

B ∩O0. The multivalued-ness is due to the monodromy about A0. This monodromy

has matrix representation

(5.7) γ =



1 γ0
1 0

0 1 0

0 0 1

0 γα1 γα2 δαβ

γ 2̄
0 γ 2̄

1 γ 2̄
2 γ 2̄

β 1 0 0

0 γ 1̄
1 γ 1̄

2 γ 1̄
β 0 1 γ 1̄

0̄

0 0 γ 0̄
2 0 0 0 1


, 3 ≤ α, β ≤ 3̄ .

The condition that γ ∈ Aut(V,Q) preserve the polarization Q is δab̄ =
∑
γca γ

c̄
b . The

condition that γ ∈ Aut(VR, Q) is real is γab va ⊗ vb = γab v̄a ⊗ v̄b.

The functions ξ2
0 and ξ2

0 ξ
0̄
1 − ξ2

1 ξ
0̄
0 are well-defined (ΓA–invariant) functions. The

other functions transformation in a somewhat complicated manner, cf. Table 5.1,

where 3 ≤ α, β ≤ 3̄.

Table 5.1. Action of monodromy on period matrix representation

ξ0̄
0 7→ ξ0̄

0 + γ 0̄
2 ξ

2
0 , ξα0 7→ ξα0 + γα2 ξ

2
0 , ξ2

1 7→ ξ2
1 − γ0

1 ξ
2
0 ;

ξ2̄
0 7→ ξ2̄

0 + γ 2̄
0 + γ 2̄

2 ξ
2
0 +

∑
γ 2̄
α ξ

α
0 , ξ1̄

0 7→ ξ1̄
0 + γ 1̄

0̄ ξ
0̄
0 + γ 1̄

2 ξ
2
0 +

∑
γ 1̄
α ξ

α
0 ,

ξ0̄
1 7→ ξ0̄

1 + γ 0̄
2 ξ

2
1 + γ 1̄

0̄(ξ0̄
0 + γ 0̄

2 ξ
2
0) , ξα1 7→ ξα1 + γα1 + γα2 ξ

2
1 − γ0

1 (ξα0 + γα2 ξ
2
0) ;

ξ2̄
1 7→ ξ2̄

1 + γ 2̄
1 + γ 2̄

2 ξ
2
1 +

∑
γ 2̄
α ξ

α
1 − γ0

1

(
ξ2̄

0 + γ 2̄
0 + γ 2̄

2 ξ
2
0 +

∑
γ 2̄
α ξ

α
0

)
,

ξ1̄
1 7→ ξ1̄

1 + γ 1̄
1 + γ 1̄

2 ξ
2
1 + γ 2̄

α ξ
α
1 + γ 1̄

0̄ ξ
0̄
1 − γ0

1

(
ξ1̄

0 + γ 1̄
0̄ ξ

0̄
0 + γ 1̄

2 ξ
2
0 +

∑
γ 1̄
α ξ

α
0

)
.

5.3.6. Local analytic structure. Upon restricting to a neighborhood O1 ⊂ O0 of a fibre

A1 ⊂ A0, the monodromy about A1 simplifies to γ1
2̄ + γ2

1̄ = 0, and γij = 0 for all other
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Figure 3. Semi-stable reduction family
 

i < j. All the horizontal entries {ξa0 , ξa1}2≤a≤2̄ of the period matrix representation

are well-defined and holomorphic on O1, except ξ2̄
1 . And while ξ2̄

1 is not well-defined,

exp(2mπξ2̄
1) is for some 1 ≤ m ∈ Z. This gives us the map f in step §2.2(c) of the

proof of Theorem 1.7.

5.4. Classical period matrix interpretation for a smoothing deformation of

two surfaces glued along a curve. The objective of this section is to relate the

period matrix representation in §5.3.3 to the classical geometric presentation of the

period matrix. This discussion will be informal, and follows from [Cle69, Cle77].

The basic set-up is a semi-stable reduction family

(5.8)
X

∆ .

π

Here ∆ = {|t| < 1} ⊂ C is the unit disc, the fibres Xt = π−1(t) are compact, X0 is a

reduced normal crossing divisor, and the restriction X ∗ = π−1(∆∗) to the punctured

disc ∆∗ = {0 < |t| < 1} is a holomorphic fibration. Fix a fibered neighborhood

U ⊂ X of the singular locus of X0, and set Ut = U ∩Xt (Figure 3).

5.4.1. A toy model: nodal curve. It will be helpful to warm-up with the n = 1 case

that Xt is a curve. Consider a neighborhood of the singular point p in a nodal curve

(Figure 4). Because the nodal curve is only a local normal crossing divisor, it must
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Figure 4. Nodal curve and neighborhood of singular point

 

Figure 5. Fibres X0 and Xt

Figure 6. Neighborhoods U0 and Ut

be replaced by X0 = P1 ∪ E with P1 ∩ E = {q, q′} (Figure 5). The normalization

X̃0 P1 t X̂0

X0

of X0 is the disjoint union X̃0 = P1tX̂0 of the projective line with an elliptic curve X̂0.

The degeneration Xt → X0 is obtained by shrinking the vanishing cycle δ ∈ H1(Xt)

to a point p, and then replacing p by a P1 with two marked points {q, q′}.

We consider a neighborhood U as pictured in Figure 6 with homology classes

δ1 ∼ δ2 ∈ H1(Ut) and γ ∈ H1(Ut, ∂Ut) satisfying δi · γ = 1. Here curves δ1 and δ2

are homologous in both the local and global pictures. When we move to the n = 2

case (§5.4.2) this will not be automatic; rather it is a consequence of the necessary

condition (5.1) for the smoothability of X0.
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We now turn to monodromy, the limiting Hodge filtration and the period matrix

representation. The nilpotent logarithm of monodromy is given by

Nγ = δ and Nδ = 0 .

For F 1
t = H0(ωXt) we may choose a framing {ω1(t), ω2(t)} with the following proper-

ties:

• We have ω1(t) ∈ H0(Ω1
Xt

) when t 6= 0, and ω1(0) ∈ H0(ωX0) has residues ±1 at

q, q′. More specifically

ω1(0) ∈ H0(Ω1
X̂0

(q + q′))

determines a unique differential in H0(P1,Ω1
P1(q + q′)) by prescribing opposite

residues at the points {q, q′} of X̂0 and P1.

• We have ω2(t) ∈ H0(Ω1
Xt

) and the pull-back of ω1(0) to the normalization X̃0 =

P1 t X̂0 vanishes on P1 and is a holomorphic (1, 0)-form on X̂0.

The period matrix for {ω1(t), ω2(t)} may be normalized to take the form (4.3). That

is, ω1(t) is represented by the first column [ 1 0 α(t) ν(t) ]t and ω2(t) is repre-

sented by the second column [ 0 1 λ(t) α(t) ]t. Here α(t), λ(t) are holomorphic,

with Imλ > 0; and β(t) = ν(t)− `(t) also holomorphic. Specifically, ∫δ ω1

∫
δ
ω2∫

γ
ω1

∫
γ
ω2

 =

 1 0

ν(t) α(t)

 =

 1 0

β(t) + `(t) α(t)

 .

The entry α(0) encodes the level one extension data, which is

AJX̂0
(q − q′) ∈ J(X̂0) ,

where X̂0 is the elliptic curve C/(Z + λZ), given by λ = λ(0).

5.4.2. The example: smoothing of two surfaces glued along a curve. We now turn to

the n = 2 case that Xt is a surface. We want an analog of §5.4.1 when the central

singular fibre

X0 = Y1 ∪C Y2
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Figure 7. The curve C

consists of two smooth surfaces Yi glued along a smooth double curve C. With the

I-surface example (§5.2) in mind, we assume

pg(Xt) = h2,0(Xt) = 2 and g(C) = 1

(Figure 7), and denote by Ci the curve C in Yi. We will have

C2
1 = −d ,

with d > 0, and C1 may be contracted to a simple elliptic singularity in a normal

surface. We assume that X0 admits a smoothing deformation as in (5.8). By (5.1)

we must have

C2
2 = d .

We will take Y2 to be a del Pezzo surface.

The idea is to use the n = 1 picture (§5.4.1). Fix a point p ∈ C and let C ′ be a

hypersurface section of X0 that contains p and is transverse to C (Figure 8). Then

p is a singular point of C ′ and the neighborhood U ∩ C ′ of p in C ′ is as depicted in

Figure 4. As we allow the point p to vary over the curves α and β in C (Figure 7),

the 1-cycles δ1, δ2 in C ′ (§5.4.1) will trace out 2-cycles ∆1,α,∆2,α and ∆1,β,∆2,β in

Ut ⊂ Xt. It follows from C2
1 + C2

2 = 0 that ∆1,α = ∆2,α and ∆1,β = ∆2,β in H2(Ut).

So we may write ∆α for ∆i,α and ∆β for ∆i,β.

Again letting p vary over the curves α and β in C, the relative 1-cycle γ in C ′

(§5.4.1) traces out two 2-cycles Γα,Γβ ∈ H2(Ut, ∂Ut). We assume that the cycles

{Γα,Γβ,∆α,∆β} are the image of cycles, denoted by the same symbols, under the
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Figure 8. The curve C ′ ⊂ X0

map % of

H2(Xt) H2(Ut)

H2(Xt) H2(Ut, ∂Ut) .

' '

%

The vertical isomorphisms above are Poincaré and Poincaré–Lefschetz duality, respec-

tively.

This gives us a Z4 = spanZ{∆α,Γα,∆β,Γβ} in H2(Xt) whose intersection matrix

is 
0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 .

The action of the nilpotent logarithm of monodromy on this Z4 is given by

NΓα = ∆α , NΓβ = ∆β and N∆α , N∆β = 0 .

Turning to the Hodge filtration F 2
t , the procedure of §5.4.1 applies here to give

ωi(t) ∈ H0(ωXt), where ω1(0) ∈ H0(ωX0) has Poincaré residue ResCω1(0) ∈ H0(Ω1
C)

with ∫
α

ResCω1(0) = 1 ,

∫
β

ResCω1(0) = λ , Imλ > 0 .

The basis {v0, . . . , vr} of VC = H2
prim(Xt,C) in §5.3.1 may be chosen so that

spanC{v1, v2} = spanC{Γ∗α,Γ∗β} and spanC{v1̄, v2̄} = spanC{∆∗α,∆∗β}. (By this nota-

tion we mean that 〈vi,Γα〉 , 〈vi,Γβ〉 = 0 for all i 6= 1, 2; and 〈vi,∆α〉 , 〈vi,∆β〉 = 0
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for all i 6= 1̄, 2̄.) The period matrix (5.6) is

F 2
t =

 1 0 h(t) P (t) f(t) b(t)− i`(t)h(t) y(t)

0 1 λ(t) A(t) a(t) + i`(t) c(t)− i`(t)λ(t) z(t)

t

With the exception of `(t) = (log t)/2πi, all the functions above are holomorphic.

Additionally h(0) = ξ2
0(0) = 0. The entries ξ1̄

0 ξ0̄
0

ξ1̄
1 ξ0̄

1

t

=

 b(t)− i`(t)h(t) y(t)

c(t)− i`(t)λ(t) z(t)

t

are determined up to constants of integration by the horizontal component ξ2
0 ξα0 ξ2̄

0

ξ2
1 ξα1 ξ2̄

1

t

=

 h(t) P (t) f(t)

λ(t) A(t) a(t) + i`(t)

t

of the period matrix. In fact, three of the four parameters {ξ0̄
0 , ξ

1̄
1 , ξ

0̄
1 + ξ1̄

0} are de-

termined by the first Hodge–Riemann bilinear relation (2.14). The remaining degree

of freedom ξ0̄
1 − ξ1̄

0 is determined up to a constant of integration by the infinitesimal

period relation (5.5).

We take Y2 to be the del Pezzo surface obtained by blowing up 9 − d points on

C ⊂ P2 (in order to satisfy C2
2 = d). The entries A(0) = ξα0 (0) encode level one

extension data that geometrically arises from the points pi ∈ Pic1(C). The level

two extension data is encoded by a(0) + i`(0) = ξ2̄
1(0) and c(0) − i`(0)λ(0) = ξ1̄

1(0).

Of course, `(0) is not defined; we address this by taking exponentials: the function

exp 2πξ2̄
1(t) = t exp(2πa(t)) is well-defined and holomorphic on ∆.

6. Discussion of Hodge–Tate degenerations

There is an extensive and long standing body of literature on variations of graded

polarized mixed Hodge structures of Hodge–Tate type; for recent references see [Bro14,

Gon01, Hai94] and the citations therein. One may anticipate that from (3.23) those

arising in this paper, as variations of limiting mixed Hodge structures, will have addi-

tional special properties. We close the paper with a brief discussion in this direction.
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6.1. Hodge–Tate example: weight n = 1. Here we are considering limiting mixed

Hodge structures (W,F, σ) on V = Q2g with W0 = W1 and W2 = V so that H1 = 0

and dimH0 = g. The extension data is all of level two, and upon a choice of basis,

the set of extension data will be given by g×g symmetric matrices all of whose entries

are nonzero.

By Lemma 3.20(ii) the extension data of level ≤ 2 determines, up to constants of

integration, the full extension data. We wish to discuss this in the special case that

the limiting mixed Hodge structure (W,F, σ) is Hodge–Tate type, cf. Definition 3.35

and Remark 3.36.

Example 6.1. In P1 we choose g distinct pairs of points (pi, qi). For each i we choose

ti 6= 0 which gives an identification TpiP1 ⊗ T ∗qiP
1 ' C. It is standard, and will

be explained in more detail in the current context in ([Gri18] or [FGG+20]), that

is data gives a first-order smoothing of the g–nodal curve obtained by identifying

pi and qi. In particular, there is a well-defined LMHS. If Ni is the logarithm of

monodromy corresponding to smoothing the i–th node, then N = N1 + · · ·+Ng. The

diagonal entries of the symmetric matrix are the ti. The off diagonal entries are the

exponentials of

(6.2)

∫ pj

qj

ηi ≡
∫ pi

qi

ηj ,

modulo periods, where ηi is the unique differential on P1 with poles at pi, qi and

normalized to be d log ti (modulo a holomorphic 1-form) near pi. Then (6.2) is the

logarithm of the cross ratio (pi, qi; pj, qj), cf. §4.1.

The number of parameters of the pi, qi is 2g − 3. There are g of the ti’s, giving

the total number of parameters 3g − 3. On the other hand, as noted above there are

g(g + 1)/2 parameters in the extension data for a general LMHS. For g = 2, 3, the
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numbers are equal, but for g ≥ 4 we have g(g + 1)/2 > 3g − 3, so that there are

algebraic Schottky relations among the cross ratios (pi, qi; pj, qj).
12

Remark 6.3. In the weight n = 1 case the infinitesimal period relation is trivial. For

non-classical Hodge–Tate variations of limiting mixed Hodge structures there will be

universal infinitesimal Schottky relations imposed by the infinitesimal period relation;

see §6.2 for some discussion.

6.2. Hodge–Tate example: weight n = 2. Consider a local coordinate chart

t = (t1, . . . , tk) : U → ∆k, with U = B ∩ U ' (∆∗)k at a point b ∈ Z with a

Hodge–Tate limiting mixed Hodge structure (W,F, σ). The existence of a Hodge–Tate

degeneration implies that the Hodge numbers h = (h2,0, h1,1, h0,2) satisfy h2,0 ≥ h1,1.

For notational convenience we will assume that h2,0 = h1,1, and let h denote this

common integer. Let N1, . . . , Nk denote the nilpotent logarithms of monodromy, and

set

N = N1 + · · ·Nk .

We may fix a basis {v1, . . . , vh ; Nv1, . . . , Nvh ; N2v1, . . . , N
2vh} of VR that is adapted

to both the weight filtration

W0 = W1 = span{N2v1, . . . , N
2vh}

W2 = W2 = span{N2v1, . . . , N
2vh ; Nv1, . . . , Nvh} ,

and the Hodge filtration

F 2 = span{v1, . . . , vh}

F 1 = span{v1, . . . , vh ; Nv1, . . . , Nvh} ;

12There is extensive literature, both classical and current, concerning Schottky relations. The

papers [SB19, SB20] are particularly relevant here as they involve interesting Hodge theoretic con-

siderations. The smoothing of nodes process is also discussed. For the variations of graded-polarized

mixed Hodge structures of Hodge–Tate type and that arise from arithmetic considerations the finite

Schottky relations correspond to identities among polylogarithms [Bro14, Gon01, Hai94].
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and so that

Q(vi, N
2vj) = δij and Q(Nvi, Nvj) = −δij ,

and all other pairings are zero. Then we have matrix representations

Q =


0 0 I

0 −I 0

I 0 0

 and Ni =


0 0 0

νi 0 0

0 νti 0

 .

The commutativity of the Ni is equivalent to

(6.4) νti νj = νtj νi .

The period matrix is

[
F 2(t) F 1(t)

]
=


I 0

X(t) I

Y (t) X(t)t

 .

Here X(t) is the horizontal part of the period matrix, and is linear in the `(ti);

the component Y (t) is quadratic in the `(ti). (In both cases the coefficients are

holomorphic functions on U.) The block X(t) encodes the level two extension data

along the fibre A0; the matrix Y (t) encodes level four data. The first Hodge–Riemann

bilinear relation yields

(6.5) Y + Y t = X tX .

(The skew-symmetric component Y −Y t involves no `(ti) terms; it is holomorphic on

U.) The infinitesimal period relation dF 2 ⊂ F 1 is equivalent to Q(dF 2, F 1) = 0; that

is,

(6.6) dY = X t dX ,

so that the level four extension data Y (t) is determined (up to constants of integration)

by the level two extension data X(t). The presence of the `(ti)d`(tj) terms in the

right-hand side of (6.6) give Y (t) the qualitative character of a dilogarithm. For
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more on the connections, both established and conjectural, between polylogarithms

and Hodge–Tate structures see, for example, [Gon01] and the references therein.

6.3. The Hodge–Tate case: period matrix representations. If the variation of

limiting mixed Hodge structure along the fibre A0 of Φ0 is of Hodge–Tate type, then

we may choose our basis of VC so that the corresponding period matrix representation

of Φ over O0 has the property that the horizontal matrix entries εj : O0 → C are either

well-defined (single-valued) and extend to holomorphic functions on O0, or function

τj = exp(2πiεj) is a well-defined (single-valued), holomorphic function on O0. These

define the functions f = (ε1, . . . , εc ; τc+1, . . . , τd) : O0 → Cd of §2.2(c). An implicit

point here is that for Hodge–Tate degenerations we may take O0 = O1.

Appendix A. Lie theoretic structure of extension data

Here we summarize the structure of the extension data as the discrete quotient

of a complex homogeneous manifold; for details see [Car87, KP16].

A.1. Mixed Hodge structures. The set of all mixed Hodge structures (W, F̃ ) with

the same associated graded H̃• = H• is a homogeneous complex manifold

P 1
W,C · F = {F̃ | (W, F̃ ) is a MHS with H̃• = H•} .

The automorphism group P 1
W,C is the complex unipotent radical of the parabolic

subgroup

PW = {g ∈ Aut(V ) | g(W`) = W` , ∀ `}

of automorphisms preserving the weight filtration. Notice that every g ∈ PW induces

a well-defined element of Aut(W`/W`−k), which we will also denote g. Let

P k
W = {g ∈ PW | g = 1 ∈ Aut(W`/W`−k) , ∀ `}

be the normal subgroup acting trivially on the quotients. Set

ΓW = P 1
W,Z .
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Then the extension data is given by (3.10), and the iterated fibration is given by

E `W,F = (ΓW · P `+1
W,C)\(P 1

W,C · F ) = P `+1
W,C\EW,F .

A.2. Limiting mixed Hodge structures. The set of all polarized mixed Hodge

structures (σ, F̃ ) with the same associated graded H̃• = H• is a homogeneous complex

manifold

C1
σ,C · F = {F̃ | (σ, F̃ ) is a PMHS with H̃• = H•} .

The automorphism group C1
σ,C is the complex unipotent radical of the centralizer

Cσ = {g ∈ Aut(V ) | AdgN = N , ∀ N ∈ σ}

of the cone. We have Cσ ⊂ PW . Notice that every g ∈ Cσ induces a well-defined

element of Aut(W`/W`−k), which we will also denote g. Let

Ck
σ = {g ∈ Cσ | g = 1 ∈ Aut(W`/W`−k) , ∀ `} = Cσ ∩ P k

W

be the normal subgroup acting trivially on the quotients. Set

Γσ = C1
σ,Z .

Then the extension data of the limiting mixed Hodge structure (σ, F ) is given by

(3.16), and the iterated fibration (3.17) is given by

E `σ,F = (exp(Cσ)Γσ · C`+1
σ,C )\(C1

σ,C · F ) = C`+1
σ,C \Eσ,F .
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