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I.A. Introductory comments. Algebraic geometry is frequently seen as a
very interesting and beautiful subject, but one that is also very difficult to get
into. This is partly due to its breadth, as traditionally algebra (commutative and
homological), topology, analysis, differential geometry, Lie theory — and more
recently combinatorics, logic, categorical and derived algebraic techniques, . . .—
are used to study it. I have tried to make these notes accessible to a general
audience by reviewing some of the most basic concepts, illustrating the material
with elementary examples and informal geometric and heuristic arguments, and
with occasional side comments for experts in the subject.

Although algebra, both commutative and homological, are the central tools in
algebraic geometry, their use in many current areas of research (birational geometry
and the minimal model program) is frequently quite technical and will not be
extensively discussed in these notes. On the other hand, partly because Hodge
theory involves analysis, Lie theory and differential geometry as well as a wide
variety of homological methods, it is perhaps less prevalent in the more algebraic
works in the field. One objective of these talks is to illustrate how, in partnership
with the more algebraic and homological methods, Hodge theory may be used to
study interesting and important geometric questions. In the appendix we have
sketched how this may be carried out in a particular example.

Notes based on the lecture presented at the conference “Geometry at the frontier” held at
Pucon, Chile during November 2018.
Parts of this paper represents joint work in progress with Mark Green, Radu Laza and Colleen
Robles.
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In summary the theme of these notes is to discuss and illustrate how complex
analysis, differential geometry and Lie theory may be combined to study a basic
problem in algebraic geometry. Although the main techniques in much of contem-
porary algebraic geometry are algebraic, some of the most interesting questions in
the subject require non-algebraic methods for their study and this is what we hope
to illustrate.1

As a warm up and to establish some notations we recall that an affine algebraic
variety is given by the solution space over the complex numbers to polynomial
equations

(∗) fi(x1, . . . , xn) = 0 i = 1, . . . ,m.

The “elementary” examples are

linear spaces ax+ by + c = 0 ���

conics ax2 + 2bxy + cy2 + ex+ fy + g = 0

quadrics Q(x) =

n∑
i,j=1

aijxixj +

n∑
i=1

bixi + c = 0, aij , aji

The first non-elementary examples are cubics

y2 = 4x3 + ax+ b

The first two elementary examples and the non-elementary example are algebraic
curves. One of course considers higher dimensional varieties; surfaces, threefolds,. . .
We will be primarily concerned with curves and surfaces.

The above algebraic curves are all affine algebraic varieties in C2. In general
one adds to an affine variety the asymptotes or “points at infinity” to obtain the
projective space Pn = Cn ∪ Pn−1

∞ . Equivalently, Pn is the quotient of Cn+1\{0}
by the scaling action zi → λzi where λ ∈ C∗. Geometrically Pn is the set of lines
through the origin in Cn+1. The picture of the projective plane P2 is

line at infinity

1This paper is written in an informal style, usually without precise definitions and statements
of results. At the end there is a fairly extensive set of references where the more standard presen-
tation of the material to algebraic geometers may be found. In particular we suggest [CMSP17]
as a general reference relating Hodge theory and algebraic geometry and where several examples
relevant to these notes are discussed in detail.
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and the picture in P2 of the hyperbola in C2 given by

y

xx2 − y2 = 1

is something like

The equations of the completion in Pn of an affine variety given in Cn by (∗)
are obtained by homogenizing: set xi = zi/z0 and clear denominators to obtain

fi(z0, z1, . . . , zn) = 0

where fi(λz0, λz1, . . . , λzn) = λdifi(z0, zi, . . . , zn), di = deg fi. Then the hyperbola
above becomes

z21 − z22 = z20 .

Later on we will consider varieties in weighted projective spaces P(a0, a1, . . . , an)
where λ ∈ C∗ acts on zi by λ(zi) = λaizi, and in the quotient Cn+1\{0}/C∗ the
algebraic varieties are defined by weighted homogeneous polynomials. Here the
weights ai are positive integers and gcd(a1, . . . , aN ) = 1. The following will be used
in our discussion of the I-surfaces:

Example: P(1, 1, 2) is embedded in P3 by

[x0, x1, y] → [x2
0, x0x1, x

2
1, y].

The image is

z0z2 = z21 , which is

Two algebraic varieties are considered to be equivalent if there is a “change of
variables” that transforms one into the other. Thus if the discriminant b2 − ac �= 0
all conics are equivalent to the circle

z21 + z22 = z20 .

Initially changes of variables were linear transformations (including projections);
later on rational changes of variables became allowed.

Historically algebraic varieties arose from two sources: projective geometry
(lines and linear spaces, conics and higher dimensional quadrics), and from complex
analysis. In complex analysis the issue was to understand the integrals∫

r(x, y(x))dx, f(x, y(x)) = 0

of algebraic functions, and the “functions” defined by inverting the integrals

w =

∫ x(w)

r(x, y(x))dx.

Here f(x, y) is a polynomial and r(x, y) is a rational function; y(x) is a multi-
valued “algebraic function” defined by f(x, y(x)) = 0. The integral depends on
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choosing a path γ of integration in the complex plane and a branch y(x) of f(x, y(x))
= 0 along γ.2 Thus

w =

∫ sinw dx√
1− x2

=

∫ sinw dx

y(x)

where x2 + y2 = 1 and
√
dx2 + dy2 = dx/y gives the parametrization w →

(sinw, cosw) of the circle by arclength in terms of “elementary” functions (trigono-
metric functions and logarithms). However parametrizing the ellipse by arclength
led to integrals such as

w =

∫ p(w) dx√
4x3 + ax+ b

which gave non-elementary functions and led Euler, Legendre, Abel, Gauss, Jacobi,
Riemann,. . . to the beginnings of the rich and deep interplay between analysis and
algebraic geometry. This evolved into modern Hodge theory, and it is this interface
between analysis and algebraic geometry that is a main theme of these talks.

Part of the richness of the subject of algebraic geometry are the multiple per-
spectives that may be used in its study:

• geometric;
• algebraic — e.g., as we will briefly discuss, in birational geometry the algebraic
classification of certain classes of singularities

of algebraic varieties plays a central role;3

• analytic; we have mentioned complex analysis and the integrals of algebraic
functions;

• topological ; one always has in mind the first picture

that is encountered.

Example (running example for illustrative purposes): The compact 1-
dimensional complex manifold associated to the algebraic curve

X = {y2 = (x− a1)(x− a2) · · · (x− a2g+1)}
where the ai are distinct is a compact Riemann surface of genus g which can be
studied from all of these perspectives.

2A more correct notation would be w =
∫ (x(w),y(w)) r(x, y(x))dx where (x(w), y(w)) is the

point on the curve f(x, y) = 0 in C2 that is given by the integral along the path γ in the curve.
To simplify the notation the second coordinate y(w) will be implicit in what follows.

3Cf. [Kol13b] in which the extent and complexity of this story are on full display.
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For g = 1 as in the cubic above, in addition to the topological one the pictures
are

∞

∞

algebraic

analytic

a1 a3
+

-

a2

where a1, a2, a3 are the roots of the cubic equation in the RHS of the above
equation. The + and − represent the two possible values of y(x) with the un-
derstanding that analytic construction across a slit changes the sign of y(x) =√
(x− a1)(x− a2) · · · (x− a2g+1).
The integral ∫ w dx

y

is determined up to the periods

π1 =

∫
δ

dx

y
, π2 =

∫
γ

dx

y
;

one may show that π1 �= 0 and Im(π2/π1) > 0.
Incidentally for the hyperbola y2 = x2 − 1 the picture is

+

- ;

there is only one cycle δ. In this case there is only one period
∫
δ

dx
y .

For another analytic perspective, as will be further discussed below the function
p(w) given by inverting the elliptic integral is a doubly periodic entire function
(doubly due to the periods

∫
δ
dx/y and

∫
γ
dx/y)4 that leads to the parametrization

of the cubic curve

C �� X

∈ ∈

w �� (p(w), p′(w))

4For the hyperbola above there is only one period and inverting the integral gives singly
periodic trigonometric functions.
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w

=

We note that y(w) = p′(w) arises from

dw = d

∫ p(w) dx

y
=

p′(w)dw

y(w)
.

Here the ratio λ = π2/π1 of the periods is determined up to

λ → aλ+ b

cλ+ d

with
(
a b
c d

)
∈ SL2(Z) reflecting the choices of the basis δ, γ∈H1(X,Z) with (δ, γ)=1.

I.B. Classification problem; first case of relation between moduli and
Hodge theory. A central problem in algebraic geometry is to classify the equiva-
lence classes of algebraic varieties. For this there are two types of parameters:

• discrete (e.g., the genus g = (1/2)b1(X) for smooth algebraic curves)
• continuous (moduli ; the smooth curves of genus g form a (3g−3+ρ)-dimensional
family Mg, where ρ = dimAut(X)).

Example (curves):

g = 0 there is only one equivalence class; for example using the birational
map given by stereographic projection all non-singular conics are
projectively equivalent and are birationally equivalent to a line P1

(x(t), y(t))

t

where x(t), y(t) are rational functions of t.

g = 1 dimM1 = 1, from the theory of elliptic curves on has that

j =
1728a3

Δ
, Δ = a3 − 27b2

gives a set-theoretically 1-1 map M1 → C; thus the curves{
x3
0 + x3

1 + x3
2 = x0x1x1 (in P2)

Q1(x0, x1, x2, x3) = Q2(x0, x1, x2, x3) = 0 (in P3)

are both equivalent to y2 = 4x3 + ax+ b for a unique value of j.
Here Q1(x) = 0 and Q2(x) = 0 are smooth quadrics that intersect
transitively.5

In general one hopes that

5We are finessing the subtle issues that arise when the curve has non-trivial automorphisms.
We refer to [Kol13a] and the references given there for a discussion of the structure of moduli
spaces at points where the corresponding algebraic variety has automorphisms.
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(i) a moduli space M will be an algebraic variety, generally not complete
(compact);

(ii) there will be a canonical completion M corresponding to adding certain
singular varieties.

In these notes we will assume (i) and will be primarily concerned with (ii).
What does (ii) mean?

We imagine a family of plane curves

Xt = {f(x, y, t) = 0}, t ∈ Δ

that are smooth for t ∈ Δ∗ but may be singular for t = 0. A picture like

t = 0t = 0

t 0

will give such a family.6

Applying coordinate changes depending on t can give a family X̃t such that X̃t

is equivalent to Xt for t �= 0 but X̃0 is quite different from X0. For example we can
have

and even

How can we say what a canonical choice for X0 should be?
Historically one suggested answer to this question was provided by Hodge the-

ory; i.e., considering the period matrix associated to the curve. For the example
y2 = x(x− t)(x− 1)

t0 1

as t turns around 0 by following what γ does we get a picture like the figure on
the left

∼

and denoting homology by ∼ the picture on the right leads to the result that as t
turns around the origin in homology we have the Picard-Lefschetz transformation{

δ → δ

γ → γ + δ.

6Below we will give equations for such a picture.
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For the periods by π1 =
∫
δ
dx/y, π2 =

∫
γ
dx/y, using elementary complex analysis

one may show that

• π1(t) is non-zero and holomorphic for t ∈ Δ;

• π2(t) = π1(t)
log t
2πi + (holomorphic function of t ∈ Δ).

In general for any family Xt, t ∈ Δ∗, of smooth genus 1 curves we will have
periods π1, π2 as above where

λ = π2/π1, Imλ > 0;

here we are thinking of λ as a point in SL2(Z)\H where H = {w ∈ C : Imw > 0} is
the upper half plane. The periods are locally holomorphic functions of t ∈ Δ∗, and
as t turns around the origin the cycles δ, γ will undergo amonodromy transformation{

( π2
π1

) →
(
a b
c d

)
( π2
π1

) , where

T =
(
a b
c d

)
∈ SL2(Z) is the monodromy matrix.

For w a lifting of λ to H this gives a diagram

z ∈

��

e2πiz =

H

��

w �� H

��

t ∈ Δ∗ π �� SL2(Z)\H

where π(t) = λ and
w(z + 1) = Tw(z).

Lemma 1. The eigenvalues μ of T satisfy |μ| = 1.

Since the characteristic polynomial of T has integral coefficients, by the Gelfand-
Schneider theorem from analytic number theory

μ = e2πip/q

is root of unity. Replacing t by tq gives that T is unipotent, and for a suitable
choice of generators of H1(Xt,Z) we may assume that

T =

(
1 m

0 1

)
, m ∈ Z+.

Thus any monodromy matrix is equivalent to a power of a Picard-Lefschetz trans-
formation.

Lemma 2. Given a holomorphic mapping w : H → H satisfying

w(z + 1) = w(z) +m,

it follows that
w(z) = mz + u(e2πiz)

where u is bounded as Im z → ∞.

Taking m = 1 for simplicity this gives

π(t) =
log t

2πi
+ u(t),

where u(t) is holomorphic in all of Δ.
Both of these lemmas are proved by complex analysis arguments using the

Schwarz lemma in the form



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HODGE THEORY AND MODULI 171

w is distance decreasing in the SL2(R)-invariant hyperbolic (Poincaré)
metric dw dw

|w|2

and the observation that

the length of the circles |t| = ε tends to zero as ε → 0.

Sketch of the proof of Lemma 1: Let zn ∈ H be a sequence with Re zn = 0,
Im zn → ∞ and set

wn = w(zn).

Then

w(zn + 1) = Tw(zn) = Twn.

The hyperbolic distance d(zn, zn+1) → 0, and by the distance decreasing property
of w we have

d(wn, Twn) → 0.7

Now wn = An · w for some An ∈ SL2(R) and fixed w ∈ H, and using the
invariance of the metric from

d(w,A−1
n TAnw) → 0

a little argument shows that by passing to a subsequence we will have

A−1
n TAn → H = {isotropy group of w}.

Since H is compact, all its eigenvalues have absolute value 1 and this implies the
same for T .8 Since all that we have used is that the ratio of the periods λ(t) of
any holomorphic family of genus 1 curve parametrized by Δ∗ has the same analytic
behavior as for the above family has a pair of roots of the cubic coming together
at t = 0 we may draw the

Conclusion: The periods of an arbitrary family of genus 1 algebraic curves over
Δ∗ have the same asymptotic behavior as a family acquiring nodal singularities
given locally analytically by

x2 = y2 + tf(x, y).

The local pictures are

local picture of 

local picture of 

analytic

topological

This analysis of the asymptotics of the period matrix (Hodge structure) extends to
that of algebraic curves of any genus g � 2 and provided an early suggestion as to

what Mg should be.

7The horizontal segments from zn to zn + 1 map down to circles in the punctured disc.
8Since SL(R) acts transitively on H, the isotropy group of any point is conjugate in SL2(R)

to the isotropy group {
(

cos θ sin θ
− sin θ cos θ

)
} of i ∈ H.
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The schematic of M2 is

This gives the stratification of M2 together with the incidence (degeneration) rela-
tions among the strata. (The solid and dotted arrows will be explained later.) We
will see that this stratification is captured by the Hodge structures and their limits.

The objective of these notes is to discuss how this picture might be extended
to some completed moduli spaces of varieties of general type (analogues of curves
of genus g � 2) and to illustrate how this works for the first non-classical algebraic
surfaces (called I-surfaces and which have the invariants pg(X) = 2, q(X) = 0,
K2

X = 1).
To jump ahead and anticipate some of the main points to be made; with nota-

tions and terminology to be explained, there are first the general results (some of
which are work in progress).

• For a given class of surfaces of general type the moduli space M exists and has
a canonical completion M.

• There is a period mapping

M
Φ−→ P ⊂ Γ\D

that associates to each surface X the Hodge structure on H2(X,Z).

• There is a canonical minimal completion P of P to projective variety, and the
period mapping extends to

M
Φe−−→ P.
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There are then the specific results for the I-surface X. We will foreshadow these
here with the explanation of the notations and terminology to also be given later.
The objective is to give something of the flavor of what is to come. We begin with
the

Picture/equations:

•

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
P

V

P(1, 1, 2) ↪→ P3 given by (t0, t1) ↪→ [t20, t0t1, t
2
1, y]

X → P(1, 1, 2)is a 2:1 map branched over the vertex P and the inter-

section of P(1, 1, 2) with a quintic surface V ∈ |OP3(5)|;
• X is realized as the weighted hypersurface in P(1, 1, 2, 5) given by an equa-
tion z2 = F10(t0, t1, y).

9

For the moduli space, MI is smooth and

• dimMI = h1(TX) = 28;10

• the period domain DI is a homogeneous contact manifold with dimDI =
57 = 2dimMI + 1;

• Φ = MI → ΓI\DI and Φ∗ is injective (local Torelli)

⇓
Φ(MI) = contact submanifold P ↪→ ΓI\DI .

The contact structure on P will be explained below. In the appendix by analyzing
the Hodge structure at the boundary of moduli we will sketch a proof of generic
local Torelli.

On the Hodge theoretic side we have the

Picture of the stratification of P (N = logarithm of monodromy):

9This is the bicanonical model of a smooth I-surface.
10In fact, it can be shown that for a smooth X, h0(TX) = h2(TX) = 0, and from the

Hirzebruch Riemann-Roch theorem the Euler characteristic χ(TX) = −28. One may also “count
parameters” in the above equation for X and arrive at the same conclusion.
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I

0 2

2

1
1

1

1

1

2

N = 0

2N  = 0,
rank N = 2

2N  = 0, 
rank N = 4

N = 0,
rank N = 1 II III

IV
N  = 0, rank N=3 and
rank N  = 1

2

2

V

2N  = 0,
rank N  = 22

The main result, here stated informally, is

The Hodge theoretic stratification of P uniquely determines the stratification

of M
Gor

I .11

Rather than display the whole picture, the following table is just the part for
simple elliptic singularities (types I and III). They have N2 = 0 since for the semi-
stable-reduction (SSR) of such a degeneration only double curves (and no triple
points) occur; all of the other types occur if we include cusp singularities.

stratum dimension minimal
resolution ˜X

k∑
i=1

(9− di) k codim
in MI

I0 28 canonical singularities 0 0 0

I2 20 blow up of a K3-surface 7 1 8

I1 19 minimal elliptic surface with χ(X̃) = 2 8 1 9

III2,2 12 rational surface 14 2 16

III1,2 11 rational surface 15 2 17

III1,1,R 10 rational surface 16 2 18

III1,1,E 10 blow up of an Enriques surface 16 2 18

III1,1,2 2 ruled surface with χ(X̃) = 0 23 3 26

III1,1,1 1 ruled surface with χ(X̃) = 0 24 3 27

The particular K3, elliptic surfaces, rational surfaces and ruled surfaces can be
specified. Note that the last column is the sum of the two columns preceding it.

11Here M
Gor
I is the completed moduli space for Gorenstein I-surfaces. Work in progress

suggests that the Hodge theoretic structure of P may go a long way towards determining the full
stratification of MI by singularity type.
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(This may be explained using Hodge theory; in the appendix we will sketch how
this may be done for I2.)

II.C. Moduli and Hodge theory. We have seen that Hodge theory, in the
classical form of periods of integrals of algebraic functions together with some com-
plex analysis and differential geometry, suggests what singular curves should be
included to compactify the moduli space Mg, leading to an essentially smooth Mg.

For surfaces (and higher dimensional) varieties of general type the story thus far
is both similar and different,12 especially in the non-classical (term to be explained)
case.

Birational geometry tells us that it is possible to define a moduli space M with
a canonical completion M. It does not

(i) tell us what the singular surfaces X corresponding to the boundary ∂M =

M\M are;13

(ii) tell us the stratification of M; and

(iii) in contrast to the curve case, M may be highly singular along M\M, and
it does not suggest how to desingularize it.

We will explain and illustrate how Hodge theory, in partnership with birational
geometry, helps us understand points (i)–(iii).

A. Moduli Invariants of a smooth projective variety X are basically

•
Kodaira dimension κ(X)

discrete ��

�� topological (Chern numbers); and

• continuous (moduli).

X is a compact, complex manifold and a basic invariant is the space H0(Km
X ) of

global holomorphic forms expressed locally in holomorphic coordinates x1, . . . , xn

as
ϕ = f(x)(dx1 ∧ · · · ∧ dxn)

m

where f(x) is holomorphic and transforms by the mth power of the Jacobian deter-
minant when we change coordinates.

The Kodaira dimension κ(X) is defined by

dimH0(mKX) = h0(mKX) = Cmκ(X) + · · · , C > 0.

By convention we set κ(X) = −∞ if all h0(mKX) = 0.
The purpose of this part of these notes is to give an informal introduction

to moduli, to describe two simple classes of algebraic curves and surfaces, and to
illustrate the semi-log-canonical (slc) singularities that arise for surfaces and to
begin the discussion of how Hodge theory relates to them.

Examples: When n = 1 and X is the smooth algebraic curve (compact Riemann
surface) with affine equation

y2 =

2g+1∏
i=1

(x− ai), ai distinct,

12Cf. the papers [Kol13a], [Kol13b] and the recent Séminaire Bourbaki by Benoist in the

references.
13In fact, even though the non-Gorenstein isolated singularities are all rational, there does

not yet seem to be a practical bound on their index.
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we may picture X as a 2-sheeted branched covering of P1

∞ai

and the holomorphic 1-forms on X are

ϕ =
p(x)dx

y
, deg p(x) � g − 1.

For m � 2 there are similar expressions q(x)dxm

y where deg q(x) � (2g− 2)m− g for

the holomorphic m-forms.
The genus g(X) = g and the number of parameters of X’s given as above is

2g + 1 − 2 = 2g − 1; a general curve of genus of genus g is represented this way
for g = 1, 2. The ϕ’s above give the space H0(KX) = H0(Ω1

X) of holomorphic
differentials on X, and the first de Rham cohomology group is a direct sum

H1
DR(X) ∼= H0(Ω1

X)⊕H0(Ω1
X)

which using de Rham’s theorem gives the Hodge structure on H1(X,C) ∼=
H1

DR(X,C). Thus for h0(KX) = dimH0(KX) we have

h0(KX) =

(
1

2

)
b1(X) = g,

the first result in Hodge theory relating the algebro-geometric invariant h0(KX) to
the topological invariant b1(X).

Now take X to be the smooth algebraic surface with affine equation

(∗) z2 = f(x, y), deg f(x, y) = 2k

where f(x, y) = 0 defines a smooth algebraic curve C ⊂ P2.14 The holomorphic
2-forms on X are

ϕ =
p(x, y)dx ∧ dy

z
, deg p(x, y) � k − 3.15

There are formulas similar to the above in the curve case for the H0(mKX)’s.
For H0(Ω2

X) = H0(KX) the direct sum decomposition

(∗∗) H2
DR(X) ∼= H0(Ω2

X)⊕H1(Ω1
X)⊕H0(Ω2

X), H1(ΩX) = H1(Ω1
X)

gives the Hodge structure on H2(X,C) ∼= H2
DR(X).16

For an initial explanation of the H1(Ω1
X) term, if Q is the bilinear form on

H2(X,C) given by the cup-product, then

F 2H2(X,C) := H0(Ω2
X)

∩
F 1H2(X,C) := H0(Ω2

X)⊕H1(Ω1
X)

where under the cup product Q in cohomology
F 1 = F 2⊥

14This surface is similar to but both simpler and more complicated than the I-surface.
15Here p(x, y) is arbitrary. Later in these notes we will encounter the case k = 3, i.e., X is a

2-sheeted covering branched over a sextic curve in P2: this is a K3 surface with h0(Ω2
X) = 1.

16In contrast to the curve case, for any k � 4 a general surface in the moduli space M of
surfaces of the above numerical type is equivalent to one given by (∗).
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and
F 1 ∩ F

1
= H1(Ω1

X)
so that the Hodge decomposition (∗∗) is determined by H0(Ω2

X) and Q. Thus in
both these cases, H0(Ωn

X) together with Q determines the Hodge decomposition
and resulting Hodge structure on the cohomology Hn(X,C), n = dimX.

The Kodaira number κ(X) for curves is

κ(X) =

⎧⎪⎨⎪⎩
−∞ for g(X) = 0

0 for g(X) = 1

1 for g(X) � 2.

For the above algebraic surfaces

κ(X) =

⎧⎪⎨⎪⎩
−∞ k � 2 (rational)

0 k = 3 (K3)

2 k � 4 (general type)

to get κ(X) = 1 you have to allow C to be quite singular.
General type surfaces are those with κ(X) = 2; for these the important numer-

ical invariants are

• pg = h0(KX) = h0(Ω2
X) = geometric genus;

• q = h0(Ω1
X) = irregularity;

• K2
X = c1(X)2.

They are related by

• pg − q + 1 = 1
12 (K

2
X + χtop(X)) (Noether’s formula);

• pg � K2
X

2 + 2 (Noether’s inequality).17

Theorem ([KSB88], [Ale94]). For general type surfaces with given numerical

invariants there exists a moduli space M with a canonical completion M.

As noted above the proof is via birational geometry. It describes in principle
what the singularities of a surface X corresponding to a boundary point in M\M
can be.18 For surfaces there is no description, nor examples that I know other than
the work of [FPR15a,FPR15b,FPR17], of the global structure of what the X’s
can be and how they fit together.

Some guiding questions are

• How does Hodge theory limit what the singular X’s can be?
• Which Hodge-theoretically possible degenerations are realized algebro-
geometrically?

• Does the Hodge theoretic stratification capture the algebro-geometric one?

Given a family X∗ π−→ Δ∗ of smooth surfaces Xt = π−1(t) for t �= 0, by the
theorem there is defined a unique limit surface X0 = X that fills in the family
X → Δ where the conditions

17For the above surface we have K2
X = 2 and pg = 3, so that it is extremal for Noether’s

inequality. For the I-surface we have K2
X = 1 and pg = 2 so that it is also extremal.

18In the paper [Kol13a] by Kollár in the references there is a fairly short list of the singularity
types that can occur. However within each non-Gorenstein type there is an invariant, the index.
The recent paper [RU19] seems to be a promising approach to bounding the index in terms of
K2

X .
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• X has canonical singularities over Xsing;
19 and

• X is of relative general type and minimal (more precisely, the relative dualizing
sheaf ωX/Δ is Q-Cartier and relatively ample).

The first condition is local along X; the second is global.
As is the case for any analytic variety, M has a stratification

• M is a union of irreducible subvarieties Zi;
• the incidence relation Zj ⊂ Zi means that singular varieties parametrized by Zi

can degenerate further into those parametrized by Zj .

The proof of the general existence theorem does not suggest what the strat-
ification should be; again aside from [FPR15a,FPR15b,FPR17] I know of no
other examples where it has been analyzed.

To give some flavor of how Hodge theory helps to organize the singularities, we
note that X∗ → Δ∗ is topologically a fibre bundle over the circle, and thus there is
a monodromy operator (here t0 ∈ Δ∗ is a base point)

T : H2(Xt0 ,Z) → H2(Xt0 ,Z).
20

Denoting by

T = TssTu

the Jordan decomposition of T where Tss is semi-simple and Tu is unipotent with
logarithm N , using analytic arguments arising from Hodge theory that extend the
one given above in the case of elliptic curves leads to a proof themonodromy theorem
[PS08], [Sch73]

Tm
ss = 1 (i.e., the eigenvalues of T are roots of unity)

N3 = 0 (i.e., the Jordan blocks of T have length � 2).

A crude Hodge theoretic classification of the singularities of X is given by

• normal (a): N = 0
• normal (b): N �= 0, N2 = 0
• normal (c): N2 �= 0
• non-normal (a): N �= 0 but N2 = 021

• non-normal (b): N2 �= 0.

This may be refined by putting in the ranks of N and of N2.
A much finer invariant is given by also including the conjugacy class of Tss,

usually expressed in terms of the spectrum. And if we include the extension data in
the limiting mixed Hodge structure (LMHS), we obtain even more Hodge-theoretic
information.22

The following is an informal discussion of typical singularities of each of the
above types.

19For normal X this means that for U any open set in X any holomorphic ω ∈ H0(U∩Xreg, KX)
satisfies ∫

Xreg

ω ∧ ω < ∞

.
20We will consider integral cohomology modulo torsion.
21In the examples I know of, non-normal =⇒ N �= 0.
22The above crude Hodge theoretic classification is extracted from its associated graded. The

LMHS will be defined below.
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Normal (a): Then the monodromy is finite and the Hodge structures on the
H2(Xt,C) extend across t = 0.23 These include a number of finite quotient singu-
larities; typically among them are those denoted

1

d
(1, a), gcd (d, a) = 1

and which is given by the quotient of C2 acted on by the cyclic group generated by

(x, y) → (ζx, ζay)

where ζ = e2πi/d. Among these are the Wahl singularities 1
n2 (1, na− 1). For n = 2

this is a cone over a rational normal curve C in P4. It is noteworthy in that for this
singularity T = Id.

Normal (b): simple elliptic singularities. Here (X, p) is a normal surface X

having an isolated singular point p, the minimal resolution (X̃, C) → (X, p) is then

given by contracting an elliptic curve C ⊂ X̃ with C2 = −d where d > 0 is the

degree of the elliptic singularity. To say that (X̃, C̃) is minimal means that there

are no (−1)-curves not meeting C̃.24 The assumption that (X, p) is smoothable
implies that 1 � d � 9.

For d � 3, one may think of the cone over an elliptic normal curve in Pd−1.
One typically pictures such a singularity as

C

p
There are two types of restriction here:

(i) the cone is over a smooth elliptic curve as opposed to a cone over a curve of
genus g � 2;

(ii) the restriction d � 9 for the elliptic curve.

An analytic explanation may be given for (i); as noted above, (ii) is the condition
that the isolated singularity be smoothable.

Note: We are finessing the subtlety that in order to fit the desingularization X̃ of

X into a family X̃ → Δ̃ we have to do semi-stable-reduction (SSR), which involves

a base change t = t̃m where Tm
ss = Id. The fibre over the origin in X̃ → Δ̃ has X̃

as one component. The other component is a rational surface Y meeting X̃ along

C, and pg(Y ) = 0 so that limt→0 H
0(Ω2

Xt
) lives on X̃.25

For the normal (b) degeneration a similar argument applies except now for
ωt ∈ H0(Ω2

Xt
) and limt→0 ωt := ω ∈ H0(Ω2

˜X
)

ResC(ω) ∈ H0(Ω1
C)

∼= C.

23There is a Riemann extension theorem for a family of Hodge structures over Δ∗ having
finite monodromy. Thus even though X0 may be singular, there is associated to it a polarized
Hodge structure.

24These are curves E ∼= P1 with E2 = −1.
25An additional subtlety is that in order to have some degree of uniqueness one may want to

allow X̃ to have cyclic quotient singularities of a “simpler” type than the ones that were started
with. The meaning of limt→0 H0(Ω2

Xt
) will be discussed below.
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If there are e elliptic singularities, this type of argument leads to the bound

e � rankN.

Another type of Hodge theoretic argument gives

e � rankN + 1.

We will see that both bounds are sharp for I-surfaces.
We will also see that for I-surfaces the degrees of the elliptic singularities are

determined by the eigenvalues of Tss. An explicit such singular surface will be
discussed in the appendix.

Normal (c): cusp singularity. (X, p) where the minimal resolution (X,D) →
(X, p) has for D a cycle of P1’s Ei with all E2

i � −2

E
E

E
E

1
2

3
4

and the least one E2
i � −3. It seems plausible, and may in fact be known, that the

−E2
i are determined by the spectrum of Tss.
For the cusp, ResEi

(ω) is a 1-form on P1 with log poles at the two interssection
points. At a point of Ei ∩ Ei+1 the residues are opposite. Hence for each cusp the
pg can drop by at most 1 in the limit.

Non-normal (a): X has a smooth double curve C with pinch points (Whitney
swallowtail given locally by x2y = z2).

Non-normal (b): Informally stated, X has a nodal double curve with pinch
points whose minimal resolution has a cycle of P1’s. These surfaces are frequently
constructed by a gluing construction that will be illustrated below.

Example of non-normal (a): Let C ⊂ P2 be a smooth plane quartic having an
involution τ : C → C with quotient D = C/τ an elliptic curve. Then X = P2/τ is
a surface having a smooth double curve D with pinch points at the 4 branch points

of C → D. The desingularization X̃ of X is P2 and by pulling back 2-forms one
has that

H0(KX) ∼= H0(Ω2(logC))− ∼= H0(OP2(1))−

are the τ anti-invariant 2-forms on P2 having a log pole on C. Thus{
h0(KX) = 2

K2
X = 1

so that X “looks like” an I-surface. In fact X can be smoothed to such ([FPR15a,
FPR15b,FPR17]).

non-normal (b) ([LR16]): This is a degeneration of the preceeding example.
Before explaining it we will give a general contextual comment.
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Conjecturally an I-surface analogue of the “most degenerate,” meaning no eq-
uisingular deformations, genus 2 curve

or $ (dollar bill curve)

obtained by identifying three distinct points on each of two P1’s is the surface
obtained by identifying pairs of lines in a quadrilateral

L1

L2 L3

L4

P2

Here to obtain a well-defined involution τ of the quartic curve given by the quadri-

lateral we identify L1 and L2 by

⎧⎨⎩12 ←→ 21
13 ←→ 24
14 ←→ 23

⎫⎬⎭ and similarly for L3 and L4. In more

detail, to identify two P1’s we need to say how three points on each are identified.
Setting ij = Li ∩ Lj the identification of L1 with L2 is described by the procedure
in the brackets. The construction is illustrated by the picture

Here the dotted lines are the blowups of the intersection points of the original four
lines. On this blowup P2 the involution τ is well defined, and the cycles of P1’s are
obtained from those in the picture. We will return to this example later.

B. Hodge theory: Traditionally there have been two principal ways in which
Hodge theory interacts with algebraic geometry:

• topology; as previously noted many of the deeper aspects of the topology of an
algebraic variety X are proved via Hodge theory;26

26This was true initially when X is smooth. Using mixed Hodge theory it is now the case

when X is arbitrary (singular, non-complete or both), and as will be discussed below it is also the
case when we have a degeneration Xt → X leading for example to a proof of the above monodromy
theorem and definition of the definition of limt→0 Hn(Xt). There is also a very rich and beautiful
Hodge theory associated to isolated hypersurface singularities.
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• geometry; the Hodge structure on cohomology and its 1st order variations have
been used to study the geometry of an algebraic variety X, especially the alge-
braic cycles that lie in X and in varieties constructed from X.

A central point of these notes is to possibly add a third point to this list:

• it is now well understood how Hodge structures can degenerate to a limiting
mixed Hodge structure; this can then be used to guide and complement the
study of algebraic varieties acquiring singularities as occur in moduli.

What is meant by a Hodge structure (HS), a mixed Hodge struc-
ture (MHS) and a limiting mixed Hodge structure (LMHS)?

Traditionally a HS or a MHS was given by a period matrix∥∥∥ ∫
Γα

ωi

∥∥∥
where the ωi are rational (meromorphic) differential forms on an algebraic variety
X and the Γα are cycles (including relative ones).27 When X is smooth and the ωi

are regular (holomorphic) n-forms this gives a holomorphic part

H0(Ωn
X) = Hn,0(X) ⊂ Hn

DR(X) ∼= Hn(X,C)

of the cohomology of X. As noted above, when n = dimX = 1, 2 using conjugation
and the cup product in cohomology the holomorphic part H0(Ωn

X) determines the
Hodge decomposition ⎧⎨⎩Hn(X,C) = ⊕

p+q=n
Hp,q(X)

Hp,q(X) = Hq,p(X)

on cohomology, where using the isomorphism given by de Rham’s theorem

Hp,q(X) =

{
cohomology classes represented by C∞

differential forms of type (p, q)

}

One defines a Hodge structure of weight n (V, F •) to be given by a Q-vector
space V and a decreasing Hodge filtration

Fn ⊂ Fn−1 ⊂ · · · ⊂ F 0 = VC

that satisfies

F p ⊕ F
n−p+1 ∼−→ VC

We note that much of the use of Hodge theory in birational geometry centers around the
implications (primarily to vanishing theorems) of the surjectivity of the natural map H1(X,C) �
H1(OX). There is a natural splitting of this map. Also, of course the mere existence of functorial
mixed Hodge structures and the strictness property of morphisms between them is of frequent use
(cf. [KK10]). The actual geometry arising from Hodge structures together with their extensions
and 1st order variations has thus far not played a particularly significant role.

27Classically (Riemann, Picard, Lefschetez,. . . ) there were differentials of 1st 2nd and 3rd

kinds. It is now understood that the first kind deals with the holomorphic part of the Hodge
theory of smooth varieties, the second kind with the full cohomology of smooth varieties and the
third with the mixed Hodge theory of singular varieties.
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for 0 � p � n.28 The relations ⎧⎨⎩F p = ⊕
p′�p

V p′,q

V p,q = F p ∩ F
q

give a 1-1 correspondence between Hodge filtrations and Hodge decompositions⎧⎨⎩VC = ⊕
p+q=n

V p,q

V
p,q

= V q,p.

The reason for using Hodge filtrations is that the F p(X) vary holomorphically
with X. In practice there will also be a lattice VZ ⊂ V that represents integral
cohomology.

When X is of dimension n the cup products on cohomology and relations
extending {∫

X
ω ∧ ω′ = 0 (because ω ∧ ω′ = 0)

cn
∫
X
ω ∧ ω > 0 (because cnω ∧ ω > 0)29

for holomorphic n-forms lead to the definition of a polarized Hodge structure (V,Q, F •)
where

Q : V ⊗ V → Q, Q(u, v) = (−1)nQ(v, u)

and the following two Hodge-Riemann bilinear relations are satisfied:

(I) Q(F p, Fn−p+1) = 0;

(II) ip−qQ(V p,q, V
p,q

) > 0.

A mixed Hodge structure is given by (V,W•, F
•) where the increasing weight

filtration
W0 ⊂ W1 ⊂ · · · ⊂ Wm

is defined over Q, and where the Hodge filtration F • induces on the graded quotients

GrWn V = Wn(V )/Wn−1(V )

a Hodge structure of weight n. Here F p GrWn V = F p ∩Wn(V )/Wn−1(V ).
Mixed Hodge structures have wonderful linear algebra properties. They form

an abelian category,30 and any morphism ϕ : (V,W,F ) → (V ′,W ′, V ′) is strict in

the sense that ϕ(V ) ∩W ′
k = ϕ(Wk) and ϕ(V ) ∩ F

′p = ϕ(F p).
The basic results connecting Hodge theory to the cohomology of algebraic va-

rieties are

• for X smooth and complete, Hn(X,Q) has a Hodge structure of weight n
(Hodge).

As noted above, for m = n = 1 the HS is determined by the period matrix

Ω =

∥∥∥∥∫
γi

ωα

∥∥∥∥ �� ωα ∈ H0(Ω1
X) (dim = g)

�� γi ∈ H1(X,Z) (∼= Z2g)

28One may think of F p as represented by differential forms of degree n having in holomorphic
local coordinates z1, . . . , zn at least p dzi’s.

30Polarized Hodge structures constitute a semi-simple category. Although many Hodge struc-
tures occurring in geometry have no natural polarization, the proofs of the deeper results in Hodge
theory and its applications to topology require the Hodge structures to be polarizable.
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For m = n = 2 the HS on H2(X) is determined by H0(Ω2
X) = F 1 by F 2 = F 1⊥;

as in the curve case H0(Ω2
X) is given by the period matrix for the holomorphic

2-forms. Thus for both curves and surfaces the PHS is determined by the classical
period matrix.

For a general complete algebraic variety X, Hm(X,Q) has a mixed Hodge
structure where the weight filtration is W0 ⊂ · · · ⊂ Wm (Deligne).

W0 W1

�
�

��

�

�

The picture is meant to suggest that MHS on Hm(X,Q) is constructed from the
pure HS’s on the strata of a desingularization of X; this is (very non-trivially using
homological algebra constructions — cf. [CMSP17] and [PS08]) indeed the case.

The use of Hodge theory to study a degenerating family Xt → X0 = X of alge-
braic varieties leads to the notion of a very special type of mixed Hodge structures,
namely that of a limiting mixed Hodge structure (V,W (N), F •). Here W (N) is the
monodromy weight filtration constructed from the logarithm N of the unipotent
part of monodromy. Assuming Nn+1 = 0, Nn �= 0, it is the unique filtration

W0(N) ⊂ W1(N) ⊂ · · · ⊂ W2n(N)

satisfying {
N : Wk(N) → Wk−2(N)

Nk : Wn+k(N)
∼−→ Wn−k(N).31

Then a LMHS is given by a MHS (V,W (N), F •
lim) where

N : F p
lim → F p−1

lim .

The associated graded Gr(LMHS)∼=
2m
⊕
�=0

H� whereH� is a HS of weight �; the picture

is a Hodge diamond. Here m = 2 and N is the vertical arrows; the dots are the
Hp,q’s:

(2,2)

(1,2)

(1,0)

(0,0)

(0,1)

(2,1)

(2,0) (0,2)

We will set hp,q = dimension of the (p, q) dot.

Theorem (Schmid).32 Given X → Δ as above

lim
t→0

Hm(Xt) = LMHS.

The proof is a combination of

• Lie theory

32Cf. [Sch73] and [CKS86] in the references. An algebraic approach may be found in in
[PS08].
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• complex analysis
• differential geometry

In simplest terms, the period matrices of a degenerating family of varieties have
entries that are polynomials in log t and with holomorphic functions as coefficients.
Monodromy is given by analytic continuation of log t around t = 0. The above
ingredients, especially Lie theory, are then used to give a precise description of the
asymptotic behavior of the period matrix.

The following is a typical picture one has in mind of a family of varieties Xt

parametrized by the disc Δ and which are smooth for t ∈ Δ∗ = {t ∈ Δ : t �= 0}
while X0 has acquired singularities.

X∗

��

⊂ X

��

Δ∗ ⊂ Δ

t o

The following picture represents a family of genus 2 curves acquiring a node:

Xt X0

�

Associated to a general family of degenerating smooth varieties is a monodromy
operator T : Hn(Xt) → Hn(Xt){

T = TssTu (Jordan decomposition)

T k
ss = I, Tu = eN with Nn+1 = 0.

It is the basic topological invariant associated to the family X∗ → Δ∗.
For the above degeneration of a genus 2 curve the LMHS is

�

�

� �(1, 0) (0, 1)

(0, 0)

(1, 1)

The solid vertical line represents the action of N on the associated graded to the
LMHS (cf. Chapter 4 in [CMSP17]).
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Referring to the picture of M2 in the introduction, the solid lines in the diagram
represent degenerations with N �= 0.

The following illustrates the type of pictures one has in mind for a LMHS:

• topological picture�

• y2 = x(x− 1)(x− t)

algebraic picture

�

• X = C/Λ, Λ = {1, λ}

λ

1

analytic or Hodge-theoretic picture

Here λ is determined up to λ → aλ+b
cλ+d where

(
a b
c d

)
∈ SL2(Z) and M1

∼=
SL(2,Z)\H, H = {λ : Imλ > 0}

In this case V = ( ∗∗ ), Q =
(

0 1
−1 0

)
, F 1 = [ λ1 ] ∈ P1, HR II corresponds to Imλ > 0

and the space of PHS’s is H ⊂ P1. The monodromy T = ( 1 1
0 1 ) is translation in the

upper half plane, and as λ → i∞ we have F 1 → [ 10 ] = F 1
lim.

33

λt =
log t

2πi

λt

�
∞

How does Lie theory enter? The actors in the story are

• Period domain D = {F • = flag
{
Fn ⊂ · · · ⊂ F 0 = VC} in VC : (V,Q, F •) =

PHS
}
;

• compact dual Ď =
{
F • is a flag with Q(F p, Fn−p+1) = 0

}
;

• G = Aut(V,Q) is a Q-algebraic group;

33This picture is not indicative of what happens in the non-classical case. The F ′
lim will not

in general lie in the boundary of the period domain in its compact dual (see below).
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• GR acts transitively on D and GC acts transitively on Ď so that we have

D = GR/H with H compact

∩

Ď = GC/P with P parabolic

( ∗ ∗ ∗ ∗
◦ ∗ ∗ ∗
◦ ◦ ∗ ∗
◦ ◦ ◦ ∗

)
where D is an open GR-orbit in Ď.

Examples:

• m = 1: D = Sp(2g,R)/U(g) = Hg where g = h1,0;
• m = 2: D = SO(2k, �)/U(k)× SO(�) where k = h2,0, � = h1,1.

The classical case is when we have

D = Hermitian symmetric domain (HSD)

=

GR/K, K = maximal compact.

In algebraic geometry these arise as

m = 1 (curves, abelian varieties);
m = 2 is HSD ⇐⇒ k = 1 (K3’s).34

Thus h2,0 � 2 is non-classical. For n � 3 and X Calabi-Yau, the D corresponding
to Hn(X) is also non-classical.

Period domains have sub-domains corresponding to PHS’s with additional
structure; e.g.,

D′ ⊂ D

={
reducible PHS’s
that are ⊕’s

}
This is what the dotted lines represent in the diagram in the Section I.A for M2. In
general one has Mumford-Tate sub-domains of D, defined to be those PHS’s with
a given algebra of Hodge tensors.

Period mappings arise from holomorphic mappings

Φ : B →

⎧⎨⎩equivalence
classes of
PHS’s

⎫⎬⎭ = Γ\D

where B is a complex manifold and Γ ⊂ GZ contains the monodromy group. One
may think of B as the parameter space for a family of smooth algebraic varieties
Xb, b ∈ B, whose cohomology groups can be identified with Hn(Xb0) for a base
point b0 ∈ B up to the action by monodromy of π1(B, b0) on Hn(Xb0).

Example: As noted above the first non-classical case is weight n = 2 when h2,0 = 2.
In this case D has an invariant contact structure and the image of any period
mapping Φ is an integral variety of that structure. This means that if the contact
structure is given by a 1-form θ, which up to scaling is invariant by GR, then

Φ∗(θ) = Φ∗(dθ) = 0.

34In this case D is a type IV HSD; it may be equivariantly embedded on Hg . Also the unit
ball may be equivariantly in Hg . Thus the classical case should probably be defined as referring

to algebraic varieties whose PHS’s lie in a Mumford-Tate sub-domain of Hg .
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In general the differential constraint satisfied by period mappings in the non-
classical case is the basic new phenomenon that occurs. Thus Φ(M) cannot contain
an open set in D, Γ need not be arithmetic, etc.

Note: For families of algebraic surfaces with pg = 2 we think of the period mapping
Φ as given by a holomorphically varying 2 × k matrix Ω satisfying HRI expressed
by ΩQtΩ = 0. Differentiating this relation gives that the 2 × 2 matrix dΩQtΩ =
−t(dΩQtΩ) is skew symmetric; writing

dΩQtΩ =

(
0 θ

−θ 0

)
the 1-form θ gives the contact structure.

Using Lie theory the set of equivalence classes of LMHS’s has been classified
[Ker15]; they form a stratified object. As noted above one may informally say
that we know how Hodge structures degenerate; the strategy is then to use this
information to help understand how algebraic varieties degenerate.

Examples: For n = 1 the stratification may be pictured as

I0 I1 · · · Ig .

reflecting (for g = 2)

. . .

For n = 2 with h2,0 = 1 the picture is

I II III

with corresponding Hodge diamonds

I
� � �

1 b 1

II

� �

1 1

�

b− 2

� �

	 	
N2 = 0, rank N = 2

III

�

�

�

	

	

1

b N2 �= 0, rank N = rank N2 = 1
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In the case of moduli of K3’s, case I corresponds to smooth polarized K3 surfaces.35

In case II, Hodge theory suggests is that the surface acquires an elliptic double curve.
Case III is the case when the LMHS is of Hodge-Tate type. Dating from the work
of Kulikov in the 70’s, the moduli of K3’s is a much studied and very beautiful
story (cf. [Fri84] and [Laz16]).

For n = 2 the picture is

II

��
��
�

���
��

0 I IV V

III

�����
�����

The detailed picture with the ranks ofN andN2 filled in when h2,0 = 2 will be given
below. In all of these examples the Roman numerals reflect the associated graded
to the equivalence classes of LMHS’s. The stratification is linear and transitive
in the classical case, transitive but not linear in the non-classical n = 2 case, and
neither transitive nor linear in the general n � 3 case.

Within each of the above strata there is a refined stratification given by PHS’s
with “additional” Hodge tensors (Mumford-Tate sub-domains).

We emphasize that the Hodge-theoretic stratification has the following ingre-
dients:

(a) the equivalence classes of LMHS’s over Q;
(b) the spectra (basically the eigenvalues) of the semi-simple parts of monodromy;
(c) for each equivalence class of LMHS’s over Q, within the PHS’s given by the

associated graded there is a stratification by Mumford-Tate sub-domains.

For the I-surface example we will see that the part of the stratification of MI

that has been determined is faithfully captured by using all of the Hodge-theoretic
ingredients (i), (ii), (iii) above.

Example: Curves with N = 0. Using the proper Mumford-Tate sub-domain
given by PHS’s that are non-trivial direct sums over Z one may Hodge-theoretically
detect the degeneration

which has trivial monodromy. In general, in the stratification of M2 pictured in the
first section of these notes the solid lines refer to degenerations where N �= 0 and
the dotted lines to degenerations where the Jacobian of the normalization splits
further into a direct sum of principally polarized abelian varieties.

Example: n = 2. At least in some examples one may Hodge theoretically detect
a degeneration to a 1

d (1, a) singularity where N = 0. The first case is the Wahl

singularity 1
4 (1, 1) where T = Id; then for I-surfaces X with one such singularity

there is an outline of an argument that the image in the period domain picks up
an extra Hodge class. It is known that having this singularity defines a non-empty
boundary divisor in moduli, and then the tentative result is that where the image

35Suitably interpreted it also includes the case where X is nodal.
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of the period mapping meets the Mumford-Tate domain corresponding to the extra
Hodge class will define that boundary divisor. This will be further discussed below.

III.A. Generalities on Hodge theory and moduli. The first point is that
there is a moduli space

H = Γ\D
for Γ-equivalence classes of PHS’s (think of D = H and Γ ⊂ SL2(Z)).

The second point is that there is a period mapping

(∗) Φ : M → P ⊂ Γ\D
where Γ contains the global monodromy group given by the image of the monodromy
representation

ρ : π1(M) → GZ.

There are several important technicalities here, some dealing with the singu-
larities of M and some with the presence of X’s with extra automorphisms. And
of course the general X may not be smooth but rather will have canonical singu-
larities. In the example of the I-surface to be discussed next these issues can be
addressed directly.

The following are statements that have been proved at the set-theoretic level
and full results established under various assumptions; complete proofs are a work
in progress (cf. [[Gri69]] for a discussion of this).

Theorem A. The image P = Φ(M) ⊂ Γ\D is a quasi-projective variety that

has a canonical projective completion P.36 Set-theoretically, P is obtained from P

by attaching the associated graded to the limiting mixed Hodge structures arising
from Φ in (∗).

We shall call P the Satake-Baily-Borel (SBB) completion of P. In the classical
case using the Borel extension theorem the P is induced from the classical Satake-
Baily-Borel compactification of arithmetic quotients of HSD’s.

In general P is the minimal natural Hodge theoretic completion of P. One
may think of it as throwing out the extension data in the LMHS. For Γ arithmetic
and with the assumption of the existence of a fan, Kato-Usui in [KU09] have con-
structed a universal maximal completion of Γ\D, one in which the extension data
is included. It may be thought of as a Hodge-theoretic toroidal compactification of
Γ\D.

Note: The proof of the above theorem (if completed) will have the following
algebro-geometric implication: Let

Y
f−→ Z

be a morphism of smooth, projective varieties and assume that the relative dualizing
sheaf ωY/Z is a line bundle. Then

(∗∗) Λ =: det f∗(ωZ/Y ) is semi-ample.

It is known that Λ is nef, and if local Torelli holds for a general point of Z, then Λ is
big [[Gri69]]. The freeness seems more subtle (witness the abundance conjecture).

36Cf. [BBT] and [BK] for an interesting “model-theoretic” proof of the result that when Γ is
arithmetic P is quasi-projective.
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One may ask: Once you know that Λ is big and nef, why don’t the standard
methods of birational geometry (the minimal-model-program, including the base-
point-free theorem) apply to give a proof? The interesting answer is that the signs
needed in the base-point-free theorem are opposite to those that occur in the above
situation.

The connection of this statement with the above theorem is that if

X
f−→ M

is a versal family of general type varieties, then

P = Proj(Λ).

Thus assuming (∗∗) one may define the SBB completion of the image of the period
mapping without using any Hodge theory.37

The second work-in-progress result is

Theorem B. The period mapping Φ extends to

(∗∗) Φe : M → P.

The above two structural statements provide a conceptual framework for the
use of Hodge theory to partner with and help guide the standard algebro-geometric
methods used to study the boundary structure for the KSBA moduli spaces for
surfaces of general type.38 How this works will now be illustrated.

III.B. I-surfaces and their period mappings. Murphy’s law (Vakil):
Whatever nasty property a scheme can have already occurs for the moduli spaces
of general type surfaces. Thus unlike curves one should select “special” surfaces to
study. In geometry extremal cases are frequently interesting; Noether’s inequality

pg(X) � K2
X

2
+ 2

suggests studying surfaces close to extremal. The 1st non-classical case is given by
the

Definition: An I-surface X is a regular (q(X) = 0) general type surface that
satisfies

pg(X) = 2,K2
X = 1.

Here we are assuming thatX is either smooth or has canonical (du Val) singularities.
The KSBA moduli space for these surfaces will be denoted by MI .

One studies general type surfaces via their pluri-canonical maps

(�) ϕmKX
: X ��� PH0(mKX)∗ ∼= PPm−1

and pluricanonical rings R(X) = ⊕H0(mKX).
Instead of (�) it is frequently better to use weighted projective spaces corre-

sponding to when we add new generators to R(X). From

Pm(X) = m(m− 1)/2 + 3, m � 2

37Of course even if (∗∗) is proved algebro-geometrically, just taking the Proj of det(f∗ωX/Y )

does not seem to even roughly suggest what singularities are added on the boundary.
38It is not necessary to have proofs in order to use the statements of these results to help to

guide how one may understand moduli.
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and Kodaira-Kawamata-Viehweg vanishing (cf. [Dem12]) one has for the I-surface

ϕKX
: X ��� P1, |KX | = pencil of hyperelliptic curves

ϕ2KX
: X → P(1, 1, 2) ↪→ P3 of degree 2;

ϕ5KX
: X ↪→ P(1, 1, 2, 5) ↪→ P12 an embedding.

Here the homogenous coordinates of the mappings ϕmKX
are given by the

generators of R(X) in the indicated degrees. If C ∈ |KX | is a general smooth fibre,
then by adjunction

2KX

∣∣
C
= KC .

Thus the images ϕ2KX
(C) = ϕKC

(C) are canonical curves. The I-surface was
important classically since ϕ4KX

is not birational, while for any general type surface
ϕ5KX

always is birational.
For the I-surface we have the following equations and picture:

•

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P

V

P(1, 1, 2) ↪→ P3given by

(t0, t1) ↪→ [t20, t0t1, t
2
1, y]

X = 2:1 map branched over P and V ∈ |OP3(5)|
• The canonical pencil |KX | has base point P and is given by the two sheeted
coverings of the lines L through the vertex in the quadric and branched
over P and L ∩ V .

• The equation of X is z2 = F5(t0, t1, y)z + F10(t0, t1, y) (weighted hyper-
surface in P(1, 1, 2, 5)).

One may extend the definition to include surfaces X whose canonical Weil
divisor class KX is Q-Cartier and which have semi-log-canonical singularities and
which have the numerical properties of smooth I-surfaces (cf. [Kol13a]).

Example: At the other extreme to the smooth I-surfaces is the surface

discussed above and which is obtained from (P2, 4 lines) by identifying opposite
pairs of lines. For this surface the equation is (cf. [LR16])

z2 = y(t20 − y)2(t21 − y)2.

Geometrically it is a double cover of a quadric cone in P3 branched over the vertex,
a plane section, and two double plane sections. A general curve in |KX | is

Concerning the moduli space MI for smooth I-surfaces we have
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• MI is smooth and
– dimMI = h1(TX) = 28,
– dimDI = 57 = 2dimMX + 1 ,

• Φ : MI → ΓI\DI has injective differential Φ∗ (local Torelli)

and this implies that

• Φ(MI) is a contact submanifold P ↪→ ΓI\DI ,
• ΓI is arithmetic; it is not known is whether Γ = GZ or not.

Elaborating a bit on a previous statement, in general, in the non-classical case
there is a non-trivial homogeneous sub-bundle E ⊂ TD such that any period map-
ping satisfies

Φ∗ : TM → E ⊂ T (Γ\D); 39

thus the image can never be an open set in Γ\D. Moreover, although it is always
the case that

volΦ(M) < ∞,

It can happen that Γ ⊂ GZ is a thin subgroup, i.e., a subgroup with [Γ : GZ] = ∞.

Stratification of the space of Gr(LMHS)’s: For curves with Γ = Sp(2g,Z) we
have for LMHS’s

I0��

��

I1��

��

�� I2��

��

· · · Ig
��

��

Hg Hg−1 Hg−2 H0.

Note that Ig−m corresponds to N : Gr2 → Gr0 with N2 = 0, rank N = m.

� �

	
�

�

g −m

m
Gr2

Gr1 (∼= H1(C̃))

Gr0
For each boundary component we have the stratification

H1 = ⊕H1
i .

The composite of these induces a stratification of Mg by

{# nodes, # components}.
Of course this is just the beginning of the story of Mg.

For K3 surfaces there is an extensive literature dealing with the stratification
of the image of the period mapping extended to include singular K3’s for which
N = 0 (Heegard divisor, etc.); cf. [Laz16] for an analysis of degree 2 K3’s and
further references. The stratification diagram for the possible LMHS’s was given
above.

For surfaces with pg = 2 a refinement of the earlier picture by N �= 0, N2 �= 0
of the classification of Gr(LMHS)’s/Q is

39E is defined by the differential constraint

•
F

p ⊆ F p−1.
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I

0 2

2

1
1

1

1

1

2

N = 0

2N  = 0,
rank N = 2

2N  = 0, 
rank N = 4

N = 0,
rank N = 1 II III

IV
N  = 0, rank N=3 and
rank N  = 1

2

2

V

2N  = 0,
rank N  = 22

For the refined Hodge-theoretic stratification of Gr(LHHS/Z)’s we use Tss →
{conjugacy class [Tss] of Ts in Γ}. Within each of these strata we use Mumford-Tate

sub-domains appearing in Gr(LMHS)’s in MI .

We begin by considering the Gorenstein part M
Gor

I ⊂ MI . One reason for this
is the general result

if Xt → X is a KSBA degeneration of a surface where all the
singularities of X are isolated and non-Gorenstein, then N = 0.

Hence only Gorenstein singularities can non-trivially contribute to the LMHS/Q.40

Heuristically the reason for this is the following.

• For the resolution of the singularity of a non-Gorenstein slc singularity
one has a divisor D =

∑
Ei where the Ei are P1’s and the dual graph is

a chain or perhaps a Dynkin-like diagram with forks; there are no cycles.

• For a KSBA degeneration Xt → X with X̃ → X a desingularization,
and ωt ∈ H0(Ω2

Xt
), the limit limt→0 ωt = ω ∈ H0(Ω2

˜X
(logD)) and then

ResD ω gives a meromorphic 1-form on the Ei’s with log poles on Ei ∩Ej

and thus ResD ω = 0. It follows that pg(X̃) = pg(X), which then implies
that N = 0.41

The following results from coupling the classification in [FPR15a,FPR15b,
FPR17] with the analysis of the LMHS’s in the various cases.

Theorem B. The Hodge theoretic stratification of P given by the above diagram

via the extended period mapping uniquely determines the stratification of M
Gor

I .
Moreover, any Hodge-theoretic degenerations that are possible as pictured in the
table below are actually realized by Gorenstein degenerations of I-surfaces.

40We recall that for a normal surface X, Gorenstein means that the canonical Weil divisor
class KX is a line bundle. In general the index is the least integer m such that mKX is a line
bundle. For the 1

4
(1, 1) singularity the index is 2. A central general question in moduli is to

determine a useful bound on the index.
41This is a consequence of the Clemens-Schmid exact sequence; cf. [CMSP17] and [PS08].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HODGE THEORY AND MODULI 195

Rather than display the whole table the following is just the part for simple
elliptic singularities (types Ik and IIIk). They have N2 = 0 since for the semi-
stable-reduction (SSR) of a degeneration only double curves (and no triple points)
occur; all of the other types occur if we include cusp singularities.

In the following,

• X is irreducible (since KX is a line bundle with K2
X = 1 and any compo-

nent of X will have positive K2
X)

• di = degree of elliptic singularity
• k = # elliptic singularities — in general, as previously noted using Hodge
theory one may show that k � pg + 1

• X̃ = minimal desingularization of X — in a SSR given by X̃ → Δ̃ the

surface X̃ will appear as one component of the fibre over the origin.

In the following table, in the 1st column subscripts denote the degrees of the
elliptic singularities, which one can show are uniquely determined by the [Tss]’s.

42

We will explain the
∑

(9− di) column below in the appendix.

stratum dimension minimal
resolution ˜X

k∑
i=1

(9− di) k codim
in MI

I0 28 canonical singularities 0 0 0

I2 20 blow up of
a K3-surface

7 1 8

I1 19
minimal elliptic surface

with χ( ˜X)=2
8 1 9

III2,2 12 rational surface 14 2 16

III1,2 11 rational surface 15 2 17

III1,1,R 10 rational surface 16 2 18

III1,1,E 10 blow up of an
Enriques surface 16 2 18

III1,1,2 2
ruled surface with

χ( ˜X)=0 23 3 26

III1,1,1 1
ruled surface with

χ( ˜X)=0 24 3 27

Note that the last column is the sum of the two columns preceding it.

Appendix: We will will use Hodge theory as a guide to study the boundary
component

M
Gor

2 ⊂ MI

whose general point is a normal I-surface X that arises from a KSBA degeneration

(∗) X → Δ

whose monodromy logarithm N satisfies{
N2 = 0

rank N = 2

42The Tss contains the Coxeter element of the Dynkin diagram. By inspecting the table of
Coxeter elements for simple elliptic singularities with indices 1 and 2 one may check this statement.
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and where the degree of the specialization (∗) is 2 (we will explain below how to

define the degree of the specialization). As above, M
Gor

denotes the part of M
parametrizing surfaces with only Gorenstein singularities.

With these assumptions we will see that X is irreducible with a single normal
singular point p. Hodge theory then gives that p is a simple elliptic singularity
whose degree is in this case defined to be degree of the specialization. In this
situation one has the following diagram:

(∗∗) (X̃, C̃)

g

����
��
��
�� f

��
��

��
��

�

(Xmin, C) (X, p)

where

• (X̃, C̃) is the minimal resolution of (X, p) where C̃ is a smooth curve that
contracts to p under the mapping f and that has self-intersection −2. To

say that X̃ is minimal means that there are no (−1)-curves in X̃ that do

not meet C̃;

• Xmin is the minimal model of X̃ (all (−1)-curves in X̃ have been con-

tracted) and C = g(C̃).

We will use Hodge theory as a guide to show that

(a) Xmin is a K3 surface with a degree 2 polarization. Thus Xmin → P2 is a 2:1
covering branched over a smooth sextic curve B ∈ |OP2(6)|, and C ⊂ Xmin

is the inverse image of a tangent line to B. Thus C is irreducible with
a single node; the arithmetic genus pa(C) = 2 and the normalization is

C̃ → C where C̃ is a smooth elliptic curve.
(b) Any such configuration (Xmin, C) gives rise to a diagram (∗∗). From this

we will infer that
• dimM2 = 20;
• a suitably interpreted version of local Torelli holds for the extended

period mapping Φe : M2 → P.
(c) A semi-stable resolution of the KSBA degeneration may be obtained by

smoothing a normal crossing surface X̃ ∪
˜C Y where Y is a degree 2 del

Pezzo surface. For a fixed X the number of parameters in such surfaces

X̃ ∪
˜C Y is 7.43 These parameters correspond to the extension data in

the limiting mixed Hodge structure associated to the KSBA degeneration.
Inserting these amounts to blowing up M2 in MI and leads to a desingu-
larization of MI along M2.

We will also see that the arguments used in the above lead to a proof of generic
local Torelli for the period mapping

Φ : MI → P ⊂ Γ\D.

As mentioned above, using other methods one may also prove that local Torelli holds
everywhere for this period mapping; a result that was independently obtained by
Carlson-Toledo and by Pearlstein-Zhang. It seems quite possible that the methods

43This is the “7” that appears in the
∑k

i=1(9− di) column in the above table.
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of Friedman (cf. [Fri84]) may be used to prove generic global Torelli, meaning that
the period mapping Φ : MI → P has degree one.

Conclusion: Using Hodge theory as a guide one may determine the structure of
the boundary component M2 of MI as well as a desingularization of MI along M2.

Using the results of [FPR15a,FPR15b,FPR17], together with them we are

working to extend the above conclusion to the other boundary components of M
Gor

I

as listed in the above table. We will also discuss the non-Gorenstein components
below.

Step one: The Hodge diamond for the LMHS associated to a semi-stable reduction

X̃ → Δ arising from a KSBA family with X as central fibre in

� �
1 1

� � �

� �

1 127

	 	

where the dimensions are written in above the dots. This suggests (does not prove)

that the central fibre X̃0 of X̃ → Δ is a normal crossing surface of the form

X̃0 = X̃ ∪
˜C Y

where

• X̃ is a desingularization of X;

• C̃ is a smooth double curve.

In this situation the LMHS is computed from the groupsHp(C̃),Hq(X̃) using Gysin

and restriction mappings (cf. [PS08]). Assuming that H1(X̃) = 0 and H1(Y ) = 0
this gives

• H1 := Gr1(LMHS) = H1(C̃);
• H2 := Gr2(LMHS) is the middle cohomology of the complex

(�) H0(C̃)(−1)
Gy−−→ H2(X̃)⊕H2(Y )

Re−−→ H2(C̃)

where Gy is the direct sum of Gysin maps and Re is the signed restriction
map.

Note: The condition [Fri83] that X̃ ∪
˜C Y be smoothable is

(��) N
˜C/ ˜X

∼= N∗
˜C/Y

.

Denoting by C̃
˜X the curve C̃ considered in X̃ and similarly for C̃Y , (��) gives

C̃2
˜X
+ C̃2

Y = 0,

which is exactly the condition that

Re ◦ Gy = 0

in (�) above.

Step two: C̃ is a smooth elliptic curve and therefore can be realized as a smooth
cubic in P2. In order to have − degN

˜C/ ˜X = degN
˜C/Y = 2 in (��) to obtain Y we

must blow up P2 in 7 points pi and take the proper transform of the cubic curve to
obtain

C̃ ⊂ Y = Bl{pi}P
2.44
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There is still one parameter to adjust to have (��) as an equality of line bundles.
From dimensions in the Hodge diamond and dimH2(Y ) = 8 we obtain{

dimH2,0(X̃) = 1

dimH1,1(X̃) = 21.

Now we use intersection numbers. From the assumption that (X̃, C̃) → (X, p)
is a minimal resolution of an I-surface and adjunction we obtain{

(K
˜X + C̃)2 = 1

K
˜X · C̃ + C̃2 = 0 =⇒ K

˜X · C̃ = 2.

From this we infer that K2
˜X
= −1, and since h2,0(X̃) = 1 the line bundle K

˜X is [E]

for E a (−1)-curve in X̃. This gives the diagram (∗∗) which may be pictured as

Xmin

C
p

X

C̃

X̃

E

We then have

• KXmin
∼= OXmin

(since K
˜X = [E]);

• h1,1(Xmin) = 20;

• C2 = 2 =⇒ pa(C) = 2, g(C̃) = 1.

Step three: We now observe that this construction is reversible. Given a K3 surface

Xmin with a degree 2 polarization and a curve C with pa(C) = 2, g(C̃) = 1 we have

the situation described in (iii) above. We then construct X̃ by blowing up the node

on C to obtain C̃ with C̃2 = −2. Contracting it then gives (X, p).
We next count parameters. First we have{

dimXmin’s = 19

dimC’s = 1

44In [Fri84] type II degenerations are constructed by first gluing two P2’s together along a
common cubic curve C. To obtain the condition (��) one has to blow up 18 points on C. As shown
in [Fri84] there are exactly four ways to group these points into two groups that specify in which
P2 the blowups occur. It may be that in the situation being discussed here there is a unique such
choice.
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so that the boundary component M2 has dimension 20. This gives the dimension
count in (ii).

For the dimension count for the semi-stable surfaces X̃∪
˜C Y with a fixed (X, p)

we have

+

⎧⎨⎩
dimension of the spaces of pi’s in P2 = 14

dimension of cubics through the pi = 2

16
and

−

⎧⎨⎩
parameter to have (��) 1

dimension of Aut(P2) 8

9
This gives {

dimension of the surfaces X̃ ∪
˜C Y

with a fixed (Xmin, C)

}
= 16− 9 = 7 = 28− 1.

Letting (Xmin, C) now vary one may show that the space of X̃ ∪
˜C Y ’s forms a

smooth variety of dimension 27 biregularly equivalent to the blowup of MI along
the 20 dimensional M2.

Step four: Finally how does Hodge theory enter via Torelli to relate to the above
parameter counts? With the details to appear in a later work the rough idea is

• H1 determines the elliptic curve C̃;
• H2 = H2′ ⊕H2′′

where H2′
is the Hodge structure of a K3 with a degree

2 polarization, and H2′′
is a lattice of rank in Hg(H2) of rank 7;

• the extension data in Ext1MHS(H
2′′
, H1) gives the set of 7 points pi on C̃.

There are a number of subtleties involving the quadratic forms on weight 2 PHS’s
which are a work in progress. We refer especially to [Fri84] where similar con-
structions are carried out in the case of K3’s, and where a first instance of the
use of extension data to provide parameters for boundary components in moduli of
surfaces appeared. In summary, Hodge theory suggests where to look — the seven
parameters arise from the possible extension data for GR(LMHS) — and following
[FPR15a,FPR15b,FPR17] in the references), and on discusssions that the four
of us have had with them related to a joint project that is in progress.
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