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Introduction

The first part of these lectures deals with the theory of E. Carten's
exterior differential forms and of Hodge's harmonic integrals. Chapler I
conteins the principles of the theory of exterior differential forms; I
systématically introduce two kinds of differential forms and two kinds of
chaing, the Yeven kind" and the "odd kind", thanks to which the whole theory
can be applied to non orientable manifolds as well as to orientable ones.'
Chapter II develops in & new way, with the help of the idea of distribution
of Mr. Laurent Schwartz, the concept of current, that I have introduced in
order to make & synthesis of the theory of differential forms and the topo=-
logical theory of chains (references in §26)s Chapter III is an exposition
of the theory of harmonic differential forms, in which the currents are
wtilized to simplify some recent results of Mr. K. Kodaira and myself,
Chapter IV is a complement to Chapter II and sketches a new method for study=-
ing the homology properties of differential forms and of currentse

I am most thankful to Professor Js We Alexander for helping me to
revise the English version of the text,

Georges de Rham

The last Chapter V is concerned with the application of harmonic
forms to the theory of anelytic functions on oompact complex analytic meni=-
foldse First, in §27, I show the existence of "amalytic currents” with
given singularities and then, in §28, I prove two theorems on the existence

of many valued meromorphic functions with given divisors.

Kunihiko Kodairae



Chapter 1.

Differential Forms on & Manifold.,.

§1. Manifold ¢, Partition of Unity.

An n-dimensional manifold coo. M,1s a topological nwdimensional
manifold with an infinitely differentigble structure, or, as we shall say
briefly, a c® structure, The general congept of a ¢® structure can ba
defined axiometically, with the help of one primitive concept, that of a

function ¢ at a point, and the two following axioms,

Axiom l¢ £(x) being a regl valued function defined in a neighbore

hood U of & point x ¢ M , £ 4s either c® gt x or it is not,

-~ Axiom 2, To each point x, € My there is a neighborhood U and n
functions xl(x),...,xn(x) defined in U, such that
a) the mapping x ~=> (xl(x),...,xn(x))~is a topological mapping of U on
gn open set of En% Consequently, each function f defined in U can be ex~-
pressed with the help of xl....,xn,f(x) = f(xl,...,xn).
b) £(x) is ¢ at a point of U if and only if £(x)se00s%,) is infinitely

differentiable for the corresponding values of XysecesX o

The functions xl,...,xn are called logal coordinates in U,

According to 2b, they are ¢® invU (i.0e at each point of U)e Axiom 2
asserts the existence of local coordinates in a neighborhood of each point

of My -



24

The ¢° strucfure will be determined. as soon as we have a rule
allowing us to recognize if a given function is ¢® or note. Practically,
this is done by giving an open covering {Ui} of the manifold and a system
of local coordinates in each Ui' But, in the intersection Ui(\ Uj the co~
ordinates of one system must be infinitely differentiable functions of the
toordinates of the other system, according to 2b.

A function is said to be Gr, for any given integer r 4 0, ify when
expressed -with the help of local coordinates, it has continuous derivatives
of orders up to and including r, 4 function c® is simply a continuous funce
tion,

We shall say that the carrier of a function f is the smallest closed

set of points outside of which f = Os Thus, it is the closure of the set

of points x such that £(x) # 0. Its complement is the largest open set

inwhich £ = Q.

Theorem. Given an open covering {Ui} of M%, it is possible to

——————

find a set of functions ‘fj such that

1) 1= 2 %
J
J
00 < < .
2) EPj is £ and O - ﬁfj = 1 everywhere, its carrier is compact and
contained in one of the open sets Ui'
3) Every point of M has a neighborhood which is met by only a finite

number of the carriers of the Sfj'

From the theorem of Borel«Lebesgue, it follows that the pondition

3) is equivalent to the following



Se

3') Only a finite number of carriers of the Sfj can meet a given compeact

set,

Formula 1) is called a partition of unity, which is said to be

locally finite if it satisfies 3). If the manifold is compact, the set

of the Efi is finite., If not, it is enumerable,
Since this theorem deals only with well known facts, its proof is

not given here,

§2. Differential Forms.

We get the differential forms of the first degree on M as sums of

products
2_gdt,

where f, g, soe are functions on M.
With the help of local coordinates x ,.‘w,xq, any such a form can
be reduced to the expression

n '
ii: o, dx"
j=1 *

and when we change the coordinates, the coefficients a, change like the

i

components of a covariant=vector. The form is said to be equal to zero

at a point, if all coefficients vanish at this point., It is said Cr, if
its coefficients are C .

From the forms of degree 1, we get the exterior differential forms

of higher degree, with the help of a new kind of multiplication, exterior

multiplication, which is represented by the symbol /\ « This last obeys
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to the following rules
1) A4ssociativity and distributivity
2) Pseudo commutatiyity
axl /AN axd e caxd Aaxt, ot Aad-o
a«/\ dxi = dxi,/\ a=a dxi

axt/\ e axd = a dxi//\ dxY (a being a scalar),

With the help of these rules, every form of degree p can be reduced

to the canonical expression

i i

1 ’\ p
O« = . a, dx /\ 'YX / dx
ll< 12<voo< ip 11.0Iip

The form A is said to be equal to zero at a point, if all coefficients

a vanish at this point.

il...ip

If A and are two forms of degrees and respectively, we have
g P q
ol /\{Aa (-1)1"1(@/\0& ,

and it is clear that Rules 1) and 2) are independent of the coordinate

system,

Now, the differential of the form o\ is the form d ol defined by

i 1
ax= 2 da, . AN\ ..A\axP
P

. . i i
i.<eee< 1p 1**

1

From this definition follow the rules



2

Ss

d(o&l-l» cxz) = do,+da,

A Np)y=aanAp+ (-1)Pa /\d(s (p = degree of ok )

dzck & 0 for every form o ,

From these rules it follows that the definition of A« is invariant with

respect to changes of coordinates.

Let us now consider these forms from the point of view of the ten-

sor calculuse The coefficients ai vesd of o being defined for il<"'< ip’
l [ ]

we can defipe them for all values of the indices by the condition of skew-

p—t—

syrmetry. Then, taking the sum over all values of the indices, we can write

i i
&"-—-,—1—— Z a dxl/\.../\dxp
Pe i eesl ilcooip
17p
i i axi -
If we change the coordinates, we get dx =§E:‘ S§~ dxj and, according to
J
the preceding rules, 3
. _ N g
e L Z aj o] dx /\.../\dx
pl :‘jlootjp 1l P
with
- axl . éxi
1% da 1°**'p Ox 0x
P 31 JP

We see, the coefficients change according to the same law as the components

of a covariant tensor of rank p,.

Following E. Cartan, a skew symmetric tensor of rank p will be

called a g-vector, An exterior differentigl form of degree p will be called
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a p~-form. To give & p-form is the same as to give, at each point, a co~
variant p-vector. Hence, the concepts of a p-form and of & covariant

p~vector field or covarient p-vector function are exactly equivalent.

In order to write the canonical expressions of ck/\(B and d &\,

J ooaJ
the Kronecker symbol 61 e .ip will be usefule For p = 1, it is defined
1 p

by5=1,53=0(17‘j)- For p > 1, 51".3 JLH

1 oui is the determinant H 6
P

of order p (k, L = lesep)e

The following two properties are equivalent to.this definition

j ocoj
1) 1P 45 skew symmetric in the i, and in the j, .
11...1P k k
2) For il<ooo< lp and Jl<ooo< JP,
« s < . . . l if i= j (k=1-oop)
Jqdgeee] Jy ¢J J k “k
§ 1ve P .6 1 5 2 e 6 P .
f1teeetp 1tz *p 0 if ik% 3 for at least one '
ll.lj
Hence, the 61 ; cen be considered as the elements of a unit
l...

matrix with (;) rows and (?) columnse
Condition 2) is equivalent to

(21) For every system of (g) numbers a (il<...< ip),

il...lp

DS .
1

ai . i a, .
looolp e jp 10" P Jlooon

J1
On account of the skew symmetry, this is also equivalent to the

following condition
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" - oF-a; -
2 ) For every covarisnt P YGCtbr‘aileonip’

ceo]
%1 eeoi, "%? ZZ:. 611.0.1p #3,000d
1 P jlnooap 1 P 1 P

This identity shows the tensorial character of the Kronecker symbol,

j oooj
For each p (0 < p =z n), the 6.t P

ere the components of a tensor which
1lcooip

hes the same zomponents in any coordinate system.

Now, if the coefficients of . are e, Wi and those of (3 are
loo p
b, R the coefficients ¢ of K Ap are
Jlo-an ’ klooakp+q {b
i cesd _Jieool
Cy k = E &kl P lk 9 q, . b, .
1°°%ptg  1<0en< i 1T 0 Fpag Tateetp Jpeeedy
jl<...< Jq
Ve
and the goefficients ai X of do\ are
1000 p+l
J 1,000 0817 ¢eoi
a! k = 2:: 53 1°**"p Mieedp
fpeeekpn i <eees iy Kpreskon O
J

as can be immediately verified,

!
]

To each type of tensor .in the usuael sense, or, as we shall say, of

§3. Forms and Tensors of 0Odd Kind«/

even kind, we can associate another type of temsor, which will be said to

be of odd kind,.

Let us begin with the scalars. 4 scalar of odd kind is determined,

at each point, by one component £, which depends on the coordinate system
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L
F

according to the following law; if f is its value in another -coordinate
) n

1 .
system El,.t.,in, Fepir the Jacobian J = Eigi::ggggi is pogitive, fa ~f
D(x"g0ex")
if J is negatives We can write -

= J
f=mf

A covariant vector of odd kind is determined by components L

which change according to the rule

J
a; = T%T' zg: "%%I" 8y
In the same way, by introducing the factor T%T in the transforma=~
tion equations, to each type of tensor of ©ven kind is associated a type
of tensor of odd kind.
We can multiply these tensors by e number and gdd two tensors of
odd-kind and of the same types We can also teke the product of two such

teénsors, but wé noticé that the product of two tensors of the same kind is

. tensor of even kind, and the product of two tensors of different kinds is

a tensor of odd kind.

We are particularly interested in the covariant p-vectors, or, what
is the same, the differentisl formse To each covariant p-vector function

a of add kind, we also abgociate a differential form

P . "

i i
B.i N qlx 1/\co'§/\dx P
loo.lp

11.ooi

il<o . o<ip

which will be called g differential form of odd kind,

We can multiply.end differentiate these forms in exactly the same.

way a8 the forms of even kinaP g8 we shall call the forms introduced in §2.

%
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We notice that the exterior product of two forms of the same kind is a form

of even kind, The exterior product of two forms of different kinds is of

odd kind, The differential d<& of & form KX is of the same kind as oL «

Crientability can be defined as follows, The manifold M is said

to bs orientg}lg3 if there exists a continuvous scalar of odd kind on M, & ,
such that £2 = 1,

The square of a scalar of odd kind is a scalar of even kind, i,e.,
en ordinary scalar, Suppose & and El are two continuous scalars of odd
kind, such that E2= Ei = 1, Then, & él is a continuous scalar of even
kind, i.e., an ordinary scalar, whose value at each point is %1, 1If the
menifold is connected, either £ 61 = +)1 everywhere, or E.€l= -1 every-
where, consequently El= &€ or fla - & ., Hence, on an orientable and con-
nected manifold M, there are exactly two continuous scalars of odd kind with

square equal to l. Fach of these scalars & and =& can be called an

orientation of M ,

This definition is equivalent to the usual one., Indeed, let us de-
note as positive the coordinate systems with respect to which & = +1, and
as negative the others. The Jacobian relative to two coordinate systems is
clearly positive or negative, according as the systems are of the same sign
or not. Conversely, if we have such a repartition of the coordinate systems
in two classes, we can define & by the condition that € = 1 with respect

to any coordinate system of the positive class.

Now, if the minifold M is orientable and if we choose an orientation

€ , we can associate, with each form of odd kind A, a form of even kind ¢ of,
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Hence,in the case of orientable manifolds, it is possible to avoid the ten-

sors of odd kind, by choosing an orientation. But for the non-orientable

rcr s

manifolds, the concept of "odd kind" is useful and natural,

§4. Integral of an n-iForm of 0dd Kind.

Let A = ey ndxl./\o..z/\dxn e n~form of odd kind. If we change
LN ]

the coordinates, it becomes

- 5 =l =n
(f\ = alz.”nd.( /\ cee /\dx

where .
et e
a o '
a = 8, . ———— g @ e e——
12...n 1J iltioi llo.oln b;(l &n
n
or, as
a, . 610 « o 10
loeeel = . a
1 n ll-ooin lo..n
and il N
Z gl eeem Ox ox t
R i oooi -] o =11 ,
ijeed 1 Ox X
. %124een "lJlalz...n

e see that the coefficient a of an n~form of odd kind changes accord-

126een

ing to the same rule as a scalar density.

oy,

Now, suppose the carrier of o\ is contained in the domain U of a co=
ordinate system.xl...xn. (The carrier of eny form is defined as the smallest

closed set, outside of which the form is equal to zero.) Then, By 18

a function of xl...xn, which we can extend to the whole Euclidean space B
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by putting a = 0 outside tho domain of E- corresponding to Us More=-

1244en

over we define the integral of & by

+C0 +00 2

1
Jd = j‘ eee j alZ...ndJc dx
~00

-Q00

Oildxnc

Clearly, this definition is independent of the choice of the coordinate

system in U,

For an arbitrary form ol of degree n and of odd kind, we use a

locally finite partition of unity,

with 0 = L_Pis 1 and such thet for each i the carrier of Lyi is compact
and is contained in the domain of some coordineate system. Then j‘kpid\

is defined. We say jo& is convergent and we set

jd"}-;—gk?id‘

if the series is convergent for each partition of unity satisfying to the

above condltions.

If this condition of convergence is satisfied, the series is ab-
solutely convergent, tecause it must remain convergent under any permuté-
tion of its terms, It is easy to see that the values corresponding to two
partitions 1 = Zi\fi and 1 = S_:_\//J are equal, by comparing them with the

J -
value corresponding to the third partition 1 = z \?i \]fj. If the carrier
1,J
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of o is compact, the number of \fi's such that \yick is not identical teo

zero is finite and the integral is ‘always convergent,

Theorem. If (3 is an (n«l)-form C1 of odd kind with a ¢compact

-

carrier, Sd (5 = O..

To prove this, we can suppose the carrier of (5 is contained in

. . 1 n . . .
the domain of some coordinate system X" 4eeX o .Otherwise, using a partition

-

of unity, we would replace [> by 2 ¢y [5,.: Now, if

f3 = b dxz/\ dxs/\ coo/\ dxn+ see

23sesn
.b ‘ .
d/3 L 2..’n dxl//\... /\ dxn + oae

+oo ' Ob;
2eea 1
542 - 5 I

-Q0

+00 bbz ‘ .
is compact, J ~—~é§%5— dx” = 0, the first
-00

term vanishes and also the others in the same waye

eand as the carrier of b
znvon

Remark about deysitiese As we have seen, a saalar density is thse

seme thing as a covariant nwvector of odd kinde HNow, consider a tensor of
i oooi
odd kind ajl., jp which is skewsymmetric im p contravariant indjices and gkew
1°%*“n
symmetric in n covariant indices. On accoupt of its skew symmetry, it ig
}lgpoi iloooi
completely determined by the components 31 n = Cr p’ whlch are
[ XX

the components of a contravariant skew symmetric density of rank pes But,
to egch such a density, we cgn associate a covariant (n-p)~vector of odd

kind b, s end conversely, by the

OOOJ
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following two equivalent formulae (in which the indices ,jl...jn_pare

assumed different from kl"'kp)

k.vesk l . e . AN i ooi l .. e NN
b, : =a_l.. p .n s YA al’ P
Jl"'Jn-p l yoan kl...kal".jn*P il<°“< ip l seon il...ipjl...jn“l)
akl...kp . 6k1...kpj1...:jn_p 3 Z , 6kl...kp£l...,4_P
1 seg 1 Jl"'jn-p leeoen Il<...<ﬂp jltoo,pn_p l.sen

/

Thus, & covariant (n-p)-vector of odd kind is exactly equivalent
to a contravariant skew symmetric density of rank p. Hence, it will not be

necessary to use the densities explicitly; the forms of the two kinds will
be sufficient,

N\

§6+ MNappings and Chains,

Let M and M1 be two manifolds Cm, of dimensions n and m respectively,
and p a mapping C2 of Ml in M. Bach point y € Ml is mapped on a point
X=nye i

Then,to each p-form o in M, of even kind, corresponds a p-form

}x*d\ in Ml’ of even kinde The operation ;.1* has the following properties,

which are characteristic,
1) For p = 0, .64 for a function g )u*f(y) = f().x y)

2) }J*dok = d}z*ok . }1*(0&/\(3) = ,u*ck/\,u*[.‘s ]
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So, in order to get the expression Of‘P*ok in a neighborhood of
¥, € Mi with the help of local coordinates yl...ym, we have only to take
the expression of o\ with the help of local coordinates xl...xn in a neigh-
borhood of X, MY, and to replace xl...xn by the functions of yl...yn which

determine the mapping x =R Ye

In order to do the same with forms of odd kind, we need the concept

of the orientation of a mapping.

An orientation of the mapping p is a law associating in a continuous
way to an orientation 61 of the neighborhood of y € Mi an orientation ¢
of the neighborhood of x = uye M,

If this is impossible, we say p is non orientable, If this is
possible and if Mi is connected, this is possible in exactly two manners,
one associating € and & (or,what is the same, -& and ~'€1), the other
associating & and - El (or ~€ and.El). This ls alweys possible if Mi is

simply connected (monodromie theorem)

Let us consider the case where Ml is regularly imbedded in M and P
is the identical mapping. If the dimensions m of Ml and n of M are equal,

Ml is a domain in M, and there is an orientation in which £ = g_; this

13

last will be called the absolutely positive or natural orientation.

Suppose now m = n-l, let e, & vector at y in M normal to Ml‘ and
Ogseees8 M linearly independent vectors tangent to M1 at y. The vectors
determine an orientation &l of M1 in the neighborhood of y, while ©)1855000,0,

determine an orientation of M in the neighborhood of Yo e see that the
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orientation of the identical mapping in which & corresponds to El is

along

completely determined by the choice of the positive direction of 2

the normal to Ml'

Now, let us go on to the definition of‘p*a~ in case & is of odd kind
andlp.is oriented. wWe take an orientation El of a neighborhood of a point
Yy end the corresponding orientation g of the neighborhood of x = Py, and
we set

}1*r>g = Elp*(& A Yo

Thus, FfO& is defined in the neighborhood of each point y, i.e. on the
whole M,e It is therefore a form of odd kind, and the properties 2) are

still valid,

Differentieble chains,

A p-dimensional simplex of odd kind in M, sp, is defined by a mapping

TC of a rectilinear p-dimensional simplex Sp, contained in a Euclidean

space Ep, and an orientation of SP, i
sP= (5P, T, orientation of sP).

If instead of an orientation of Sp, we consider an orientation of 7T, |

we get the definition of a simplex of even kind in M

sP= (sP, T , orientation of TC )e

The simplex is said to be Cr, if the mapping [ is Cr, more precisely
if it can be extended to a mapping in M of a domain D of gP containing sP so
as to be ¢’ in D. We shall always suppose r z 1, the simplex is then dif-

ferentiable,
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A chain in M is a linear comcination of simplexes
P _ p
c 2;: ki si

with real coefficients ki. wWe shall always suppose all the simplexes of
the same dimension and the same kind, which will be the dimension and the

kind of the chain. Further we agree that if s? and sg are defined by the

seme mapping T but with opposite orientations (of T or of Sp), s§ = -sg .
p

The expression for ¢ are % 0 and if all

is reduced, if all coefficients ki

mappings T of the s? are different, Two chains are identical, if they

have the same reduced expression,

If the number of terms occurring in the reduced expression for of

is finite, P is finite, It will be useful to consider also infinite chains,

but we shall always suppose they arc locally finite, i.es only a finite

number of sg can meet a same compact set of Me If M is compact, there are

only finite chains.
It must be noticed that the usual kind of chains are the chains of

odd kind, while the usual kind of forms are the forms of even kind,

Transformation of a chain by a mappinge Let m be a mapping of Mi

in M, s¥ = (sP, T, £ ) a simplex of odd kind in M,, where € is an orien-

tation of ¥, Then Psp = (Sp, pﬂf, & ) is a simplex in M: the image of s?

by‘p. If the mapping‘F is oriented;, we can define in the seme way the image
of a simplex of even kind, because if T is oriented, the product Pﬁf is

then oriented in a natural way.

- . D g
Now, for any chain oP= ; kisi s we define the transformed chain
i

pef =2 k; p P .If of is finite, poP is also finites But if of is infinite
i
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and locally finite, Pcp is not necessarily locally finite, )AOP will be
locally finite if p satisfies the following condition: for each compact set
Kc N, p.-l(K) is compact.,

Integral of a p-form on a p-dimensional chain. Let & be a p-form

of even kind and s¥ = (Sp, T, &) a simplex of odd kind. Then we set

l J’ S £ "E*O‘s-
A= ETW K = g g7
’ sP _S\SP

In the last integral, f is the characteristic function of sP in EP
(f =1in Sp, f = 0 outside Sp) and ¢ an orientation of EX (scalar of odd .
kind = 1), thus f ¢ Tt*d\ is & p-form of odd kind with a compact carrier in i
&P and the integral is determined by the definition of §4, i

P

If oL is a p~form of odd kind and s* a simplex of even kind, ¥ being

oriented, E*d\ is a p=form of odd kind in E° and we set i
j AN = Jf ’}Z’*d\ .
g?

Now, for every finite chain cp=z kisg and every p-form o of
i
p

different kind than cp, we define the integral of oK extended to c¢* by

ok=>:k.fo( :
Jcp i + s?

If the chajin is infinite (but locally finite) and the carrier of o

is compact, we defjne the integral by the same formula; only a finite number
of terms of the sum can be different from zero.

1t cP is infinite and the carrier of is not compact, we say

S\pot is convergent and we set
c
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fcpcu ? kaeio«

if the series is cunvergent for each partition of unity, 1 = EZ:X? s satis-
i
fying to the same conditions as in §4.

In the singular homology theory, one used to say that a chain is
equal to zero if its reduced expression vanishes. Here we shall use another
concepte A chain ¢ will be said to be negligible, if de\= 0 for each
form o It is sufficient that this hold for each & Cog with a compact
carrier.s The definition of the sum and the diiference of two chains are
obvious. iie shall say further that two chains are identical, if they have
the same reduced expression, end that they are equal, if their difference

is negligible,

§6. Boundary., Stokes! Formula.

From the definition of }1*o< and e, we obtain

%
1 =
(1) L)AOK )moa

Boundary of a chain. Let sP a rectilinear simplex, S?”l (i=0,1,442,p)

its (p~1)-dimensional sides, If we agree that the positive direction along
the normal to S?hl is the direction towards the outside of Sp, we determine,
as noticed, a relation between the orientations of s? and Sg-l « Then, if

Pisa simplex in M determined by the mapping 7 of Sp, the restriction

8
of T on Sg_l » together with that relation between the orientations of SP
aund S?nl » defines g well determined simplex 52_1 in M, of the same class

a8 sp. The chain B sP= E:: sg—l is the boundary of sp. The boundary of
i



19,

~—
any chain ePs Z kjsg is then defined by B Pz 2 ij s? « This is a
J J

chain of dimension p~l and of the same kind as cP. As is well known and
can be immediately verified, the lboundary of a boundary is identical to zero.

Further, for any mapping p, m B oP= Bp P,

Stoke's Formulas, If o is a (p-1l)-form ¢! and ¢ a finite p-dimen-

jdo&: o

c B¢

sional chain Cz, we have

It is sufficient to prove this in the case ¢ is a simplex
sP= (8P, T, €). Then, as sP= wsP, B sP= w3 sP, according to (1), we have

only to prove
fooes e
sP B sP

where co = T o is a form Cl in the Euclidean space P containing sP. Let
us suppose, to make matters definite, that the form is of even kind., Then
sP is of odd kind, i.e. sP is taken with a given orientation .

The summits of SP being Po’Pl’"”Pp’ we consider the coordinate

gystem t "'tp defined in EF by

1

P= Po+ i ti(Pi- Po)
i=1

or

p P
P = Z t,P, with € =1 - Z‘ t,
i=0 i=1

We can suppose this coordinate system is positive with respect to

the piven orientation of Sp.
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Then, the form <o is a sum of p terms, and it is sufficient to prove
the formula for one of them, let us say the first. We can thus assume
@ = altybyeeenst )b, ATIWA at, o
p~1

i
hence the integral of <o on §

Let S We have t,= O on SP"1 .

i* i i

is zero except for i = 0 or la According

be the side of SP opposite to P

p-1
i

to the definition of the boundary, tz
§ and a positive one in Sg « Consequently

"°tp is a negative coordinate system

in S

W =

( :
(28] = . ~— -
5P ~Jsp"1+s§"1 _(‘j £ [a(t.tz,...,tp) a.(O,'bz,...,tp)]dtzdts.,.dtp
o

where T = 1 = ﬁ% t. is the value of t

i=z 1
p~-1
1

1 on Sg and f is the charactéristic

function of S (or, what is the same, of Sg) expressed with the help of

tzb..t L
. P %(tlgoot'tp)
On the other hand, as dW = .

at, A at, A /\dtp,

0,

- Ja(t,eeet )
f dw = ( S g » 1 Pk dby dtyeeedt
oP 3 o, P

we have

where g is the characteristic function of Spo But g = f h(tl) where h(tl)

is the characteristic function of the interval O = tl :T.. Integrating
-~

with respect to tl’ we get for _j pdcd precisely the above expression of
S

W
BSP

In the above general statement, the chain ¢ is assumed to be C2 in

order that the mappings TC defining its simplexes are C2 and W= 71*0& is

Cl. But as every simplex C1 can be represented by the limit of a series
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of simplexes Cz, the formula still holds for chains Cl.

It is essentiaml that the chain ¢ be finite. If the chain ¢ is ine
finite and the carrier of o is compact, the chain ¢ cen be replaced by a
finite one and the formula holdse But if c¢ is infinite and the carrier of o
is not compact, the formula is not valid.

It is convenient to consider also the case p = 1, A form of degree
0 and of even kind is & fungtion £(x), a chain of dimensjion O and of odd kind

is a linear combination of points, = zz:k e:, and the "integral™ is then

3 i
defined by
j' £ = 2 k(s
o i"Mi
¢ i
Now, for the case p = 1, the formula means only that, if B sl = si - sz R

S;l if = f(si) - £(s0) o



224

Chapter II.

Currents and Distributions.

§7. Definition and Exemples.

There is a deep analogy, in an n-dimensional manifold, between the
p-dimensional chains and the forms of degree n-p. It suggests that they be
considered as particular cases of a more general concept, which will be called
current, From this point of view, the operation d (differential) and B
(boundary) will be particular cases of the same operation, and the exterior
product cf differential forms will correspond to the topological intersection
of chains, The exact definition given here was first found by Laurent

Schwartz, with his theory of distributions.

Definitions

In an n~-dimensional ¢® manifold M, a current T of odd kind and
dimension p is a functional T[], defined on the linear space of all ¢®
forms ‘f of degree p and even kind with a compact carrier, which is linear,

i.os such that

Tlky P+ %p'Pp) =TIy ]+ KpTlep,)

for any constants kl’kz and any forms Lfl’ k?z of our linear space, and which

is continuous in the following way:

if kPl,sz,ooa,LFh,oo. is a series of forms of our linear space,
such that their carriers are all contained in the same compact set K, itself
.contained in the domain of some coordinate system xl,o..,xn, and such that

each derivative of each coefficient of Yh (expressed with the help of xl.,:xnl
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tends uniformly to zero for h =—> o0, then T[kfh] ——> O

By replacing \p by a form of ggg kind, we get the definition of a
current of even kind.

In the above definition, among the derivatives of the coefficients
of \?h are included the derivatives of order zero, i.es the coefficients
themselves,

The number n-p will be called the degree of the current T, Thus

the sum of the degree and the dimension of a current is always equal to

the dimengion of the whols manifold M,

1St examples Let oA be a differential form of degree n-p, of odd

kind, whose coefficients are locally integrable functions. Then, Y being
¢® of degree p and of even kind with a compact carrier,cx/\\f is of degree

n and of odd kind, and its integral, as defined in §4, gives a current

« [\P] = Jo«/\&?

We shall say that this current is equal to the form o\ .
In the same wey, a form of even kind defines a current of even kind,

an example. A chain c defines a current, of the same dimension

and of the same kind as c,

91 = [y

We shall say that this current is equal to the chain c.

The chain can either be finite or infinite, but locally finite,

Srd examples Let y be a point of M, and v a contravariant p-vector
i OOOi
at y, whose components v with respect to a coordinate system xl&ﬁur,nn
— i i
are numerically determined. Then,if(f = 2: \Pi 1 (x)ax l/\.en/\dx 3
i,<eee< i 1°**7p

1



24,

ioool
Mple 2 @ tE

i1<ooo< i

is independent of the coordinate system and defines a current,

Let D be an open set in M, e shall say that the current T is equal

to zero in D, if T[] = O for each form \p with a compact carrier contained

in De
Theoreme If T = O in a neighborhood of each point of D, T = 0 in D,

Indeed, the neipghborhoods in which T = O form a oovering {Uj} of D
end, according to §l, there is a partition of unity inD, 1 = E:tyi in D,
’ i
such that the carrier of each ‘?i is contained in some Uj and consequently
T[\Fi\?] = Os As the partition is locally finite in D and as the carrier
of p is compact and contained in D, p = Ey_'_\oikp s with only a finite

number of terms different from zero and consequently
1p] = 2_1eppl =0
i

On account of this theorem, there is a largest open set in which
T = 0: the set of all points which have & neighborhood in which T = 0, The

complement of this set will be called the carrier of T. In the case where

T is equal to a form C°, this definition agrees with the previous onse,

Generalized Chainse Two chains define the same current if, and only

if, their difference is a negligible chain, in the sense of §5. 1In this
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sense, they can be equal without being identical; they them give two dife
ferent representations of the same current by linear combinations of simp-
lexes; for the calculatibn of c(\?] =‘i;f we can use either the one or the
others But we can als6 make the calculation without any such a representation,
by usig§ a partition of unity. We shall say that the current T is a general-
ized cbain, if eny point is contained in a neighborhood U in which T is

equal $0 a chain e i.ee if, for any ¥ c® with a compact carrier contained
in U, we have T[] = S;UL? ; then, using a partition of unity, we can cal=-
culate T[\p] for any  with a oompact ¢arrier; 4t is not necessery to know
whether T can be represented in the large by a linear combination of simp=-
lexes,

The whole n~dimensional manifold M can be considered as a generalized
n-chain of even kind, Each sufficiently small neighborhood U is indeed con-
tained in a regulerly imbedded n-simplex sn; with the natural (absolutely
positive) orientation of the identical mapping, s is an n-chain of even
kind and the integral over M of any n-form of odd kind whose cafrrier is con=
tained in U is equal to its integral on sn. AB a current,’this n-dimensional

chain of even kind represented by M is equal to the function 1, because

according to the above definitions,

liore generally, it is easy to see that each n-chain of even kind is

equal to a function, 1464, that to every such chain ¢ there is associated

fute Jes

for each n-form \p of odd kind, with a compact carrier.

a function £ such that
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Convergenée, Suppose P is ¢® with a non-cofipact carriere Then

we shall sey that T{¥] is convergent and that
[yl = § [, ]

if the series is convergent for each partition of unity 1 = Z LPi (locally
: i

© with e compact carrier)s Then the series is

finite, 05 P,5 1, P, ©
absolutely convergent and the sum is the spme for all partitions (the proof’
1s the same as in §4 for 1{\¥]).

i}

In the case where the carrier of T is compact, there is always

_ convergence, Thus, T[] is defined for all W c®.

§8¢ Products, Differentiation, Transformatjions

If A and (3 are forms of degree p and q respectively, we have

@A) el = P AQ el = [aApAy = arpAe)

Now, for any current T of degree p and any form [3 ¢® of degree q,

we _define the products T/ o and (}/\T by
(tAp) L) = (APUPAD) ) - 20pA )
In perticular, for any function £ ¢%°, we have
£l =12[¢) = 1Y)

We shall say that a current is ¢c® in a domain D, if it is equal in

D to a form Coo. The above formula gives the definition of the product of

two currents in the case where one of them is Coo. "
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The following notationg will sometimes be useful, If T is a currsnt
of degree n and of oda kind, provided T[l] is canvergent, whith is always

the came if the carrier of T is compact, we shall write

ST for T{1]

as in the case where T is equal to a forme If T is of degree nsp 4nd Y a
form c°° of degree p with e compeagt carrier, T and \p being of different

kinds, ‘since ?[¥] = (T/ P)M1], we ghall also write

LICS I ST/\kP

In particular, for & chain o,
’ jc/\\p - Jkp
¢

' Differential of a current, Suppose o\ is a p~form and \p an (n~p-1)-

form with & compact ¢arrier, not of the sams kind as ¢ Then 4{ A $p) is

an n~form of odd kind with & compact carrier and atfording ¢o the theorem -
of §45 (dxAp) =00 But, 85 A&k p) waa A g # (s1)Pu Aty this

means that -

dx[@] = (-1 s a ] .

Now, for any current T of degree p, we define d T E'y_'

a1ltp) = (-1)"* 1{q)

IfFTis equal toa formo, d T=dk o If T is equal to & (n-p)chain c®°P,

- +1 n- +1 +) . 1_ ne
ac” Pw1=’<-1)P 0" Plag]=(-1)? fc npdP=(-1)° Lcn-p%(-l_)l’* Bo" B[]

¥



28,

according to the Stokes' formula, This means that, except for the sign,

the differential of a chein is its bounderys do™ P= (~1)P* 5P, For a

chain of dimension p, we would have deP= (-1 )n-p-chp.

From the definition of 4 T, it follows immediately that
dzT = 0 and d(T/\ [’5) = 47 /\]/5 + (-l)pT/\d/s

where p is the degree of T.
In the defining formula dT[Y] = (-l)P+1T[d'L?], the carrier of \p

is supposed to be compact. But, if the carrier of T is compact, this‘ formula

holds for any . Coo. In partioular, if T is of degree n-1, of odd kind

and with a compact carrier, dT{1l] = (-l)nT[dl] = 0, 1,84,

SdT-'Oo

Transformation of a current by a mapping. Let p be a mapping c®

of the manifold M1 in the manifold M. Then, to every form P ¢® in M

*
corresponds & form p  in M,, which is ¢® and has the same degree as \p,

1
* * * * * *
end we have d)J.LP a}xdkp s P (k{)/\\)lf) =}1kP/\}J. Vo }11 = 1,
The carrier of )l*kP need not be compact even if the carrier of \p

is compact, For instance, if M is compact and Ml not compact, the carrier

of 1 in M is M (compact) while the carrier of ).1*1 =1in M is Ml (not

compact ).

Definition., If Tl is a current in Ml’ with a compact carrier, its
fochidalboimtudetear

transformed by n is the current )1'1‘1 in M defined by

pralel = 7lpT el
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Since the carrier of Tl is compact and since }A*L? is Coo, Tl[}l*kfa]
is always convergent and the definition is correct,

Since Y and }1*&9 have the same degree and are of the same kind,
T1 and pTl have the same dimension and are of the. same kind, but not of the
spme degree except in the case where M and Ml are of the same dimension,
In case T1 is of even kind, \p being of odd kind, we must suppose that P
ip oriented,

For chains, this definition agrees with the usual one given in §5,

The image of an O-simplex consisting of the point y € M, is the point

1
X =py € M

The carrier of P*“P is contained in the converse image )flc of the
carrier C of ¢ (set of all points y € Ml such that VA C)s Consequently,

the carrier of /"lTl is contained in the image )zKl of the carrier K, of T

1 1?

and, as Kl is compact, it is also compact,

If the mapping)u is such that, for each compact set C < M, }1-10 is
also compact, then, for each ‘P with a compact carrier, }l*kp has also a
oompact carrier, and the ahbove formula gives the definition of )1T1 for all
currents Tl’ even with a non compact carrier, In the contrary case, let
151 be the set of all points of M which have a neighborhood U such that
}l.lU is compact; M}l is a domain in M and for any compact set K C Nj}, )u-lK
is compact. Consequently, if the carrier of ‘p is compact and contained
in M}; , the carrier of }1*&? is compact and }le[kp] = Tl[}l*\P] is well de=-
termined. Hence, the image }.lTl of any current in Ml is & current well de-
termined in MP, but not, in general, in the whole manifold M.

In the case where M and Ml have the seame dimension, p 1 is a current

of degree zero in MP-’ whose differential vanishes, because dpl = pdl = Q.
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It can be proved that such a current is a function (c¢f.§7) which must be
constant in esch open connected component of %ﬁ. This is nothing else

than the topological degree of the mapping Je

§9¢ The Symbolic Form Associated with a Current.

If T (1,< 1.< oso < £_) are (°) currents of degree zero
illcoip 1l 2 P P

defined in the domain D of a coordinate system x1,~...,xn, theny according

to the above definitionms,

Z I i
(1) I = T, dx 1/«..../\dx p
i) eeedl
il<o.o<'ip 1 P

is a current of degree p, defined in D.

Now, any current T of degree p defined in D can be represented by

such an expression., Indeed, T being given in.D, if we dafine Ti 5 by
1...
. J Jn-
) 1, ., laax/ L o Aax™ =.6§ PRI 5 Meax Ao Aax 2Py,
1°%* P 1000 leoeo n-p

where il"‘ipjl"'jn-p is a permutation of 1 +ae n, the formula (1) holds.

The currents of degree zero are the distributions introduced by

L. 3chwartz. Ve see that every current can be represented by a differential

form whose coefficients are distributions, or, as we 'shall say, ‘by a symbolic

differential forms The coefficients are well determined by (2).

i i
Derivatives. For a form & = E dx 1/\ ...Adx P s the
il<...< ip

derivative --g-\l- is defined by

bai i i i

100-

BT ol Y S P
&« fy<eeeS i x
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We suppose, of course, that A is Clo The derivative is thus de-

dined in the domain D of the coordinate system, But if the carrisr of ok
A

is contained in D, we agree that-g—T = 0 outside of D, and it is then de-

fined everywhere. Under this condition, if ol is of degree n and of odd

§3 -

nbd\

kind, we have

Indeed, oA = & dxl/«,../\dx = d(a dxz/\coo/«dx ) and our assertion
follows (for i = 1 and in the same way for each i) from the theorem of §4.
Now, if o is of degree p and Y of degree n-p with & compact carrier

contained in D, o\ and Y being of different kinds, since

—-év(d/\“f)= LA raA 25,

Ox* Ox
we get

dx 3

— [l = ===

O ot

Now, following Laurent Schwartz, for any current T, we define 5;;

in D by

or (0] = av

bxi P bxl

It can be immediately verified that the formula (3) is still valid
for a current T instead of for & form o\ Furthermore, the differential
operator d can be expressed, for currents as well as for forms, by

<:1==§:dxi/\6-xa—_,L

i
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Hence, in the same way as we got the differential forms from the functions,
we can get the currents from the distributions.

Under & change of coordinates, the distribution coefficients Til..-i
change according to the same rule as the coefficients of a form, i.e.,

the components of a covariant p-vector, The currents are particular cases

of distribution tensors,

§10, Differentiation with Respect to Parameters.

Tensor Product of Distributions and Currents.

Theorem I, If the form Y = \F(x;t) depends on a parameter t and
if its coefficients are ¢® with respect to the coordinates of x and t
together while its carrier remajns in & fixed compact set for t0< t < tl’

then, for any current T, T[] is a functien ¢® of ¢ for to< t < tl and
i) T[E’.‘f]
Ot ot

This theorem is a generalization of the theorem of the Calculus
according to which an integral can be differentiated with respect to a pa-
rameter under the integral sign.

To prove the theorem, we can suppose the carrier of \p remains in a
fixed compact set contained in the domain of some coordinete system xl...xn.

For any function of % let us set

F(t+h) = F(t)

A F(t) =

On account of the linearity of T[], we have ﬁkhT[*{] = T[Zkhkf],

and on account of the continuity condition which has to be satisfied by T,
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Ow
1im T[A\, ] = T{—-—]
m h‘P] %

h=0

because each derivative of any order with respect to xl...xn of each co-

efficient of ﬁ&h%>-.%f tends uniformly to zero for h —> 0, while the
t
carrier of this form remains in a fixed compact set,

or ] together with the equality

This proves the existence of
QZLjil = T[%ﬁf]. The existence of the derivatives of higher orders follows

all at once from this,

Let us now consider two manifolds M and Mi, of dimensions n and m
respeotively. If x is & variable point on M, y a variable point on Mi,
(x,y) represents a variable point on the product space M X M Let T = T(x)
be a current of degree n and of odd kind on M, S = S(y) a current of degree
m and of odd kind on M . Then, if ¢ (x,y) is & function ¢® with a compact
carrier on M X NH, for each y it is a function c® of x with a compact
carrier on M; according to Theorem I, T(x)[kF(x,y)i is a funotion ¢& of y
on M, whose carrier is obviously compact; consequently S(y)[T(x){ 4 (x,y)]]

is a well determined linear functional of kp(x,y). Following Laurent Schwartz,

we shall call it the tensor product of S and T and we shall write

S(y)T(x)P(x,y)]  for  S(y)T(x)p (x,5)]]

Theorem II, The tensor product of currents of dimension zero and

of odd kind is a current and is commutative

(1) S(y)T(x)vp (x,5)] = T(x)s(y )l (x,¥)]
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In the first place, we have to prove that the linear functional
S(y)T(x)[P(x,y)] satisfies the continuity condition, i.e. tends to zero
if each derivative of p(x,y) tends uniformly to zero while its carrier
remainsg in a compact sets We can suppose this compact set K is contained
in the product U X V of a neighborhood U on M and another one V on Mlc
Then it is clear that the carrier of T(x){‘P(x,y)] remains in the projection
of K on Mi (set of all y corresponding to which there exists an x such that
(x,y) € K), which projection is a compact set contained in V. Moreover,
as each derivative of\?(x,y) with respect to x and y tends uniformly to zero,
T(x)[*P (x,y)] tends to zero wniformly with respect to y, and, according to
Theorem I, the same holds for each of its derivatives, Consequently,

S(y)T(x)['(x,y)] tends to zero and S(y)T(x) is a current.

To prove the commutativity, we remark in the first place that the
equality (1) is evident if (x,y) is a product \Pl(x) (Pz(Y) of a function
of x and e function of y. Consequently, (1) still holds if P (x,y) is a
finite sum o~ (x,y) of such products. Ac¢cordingly, on account of the con~
tinuity condition which is satisfied by S(y)T(x) end by T(x)S(y), the ex-
tension of (1) to the case of any LP(x,y) follows immediately from the

following lemma (which can be considered as well knownm).

Lemma. Given a function ¢p (x,y) ¢® with a compact carrier con-
tained in U X V, it is possible to find a series of functions o'l‘c(x.y)
(k = 1,2,¢40), where each c&(x,y) is a finite sum of products kpl(x)kfz(y)
of a function kpl(x) ¢®° with a carrier contained in a fixed compact set in U

and a function Lpz(y) ¢® with e carrier contained in a fixed compact set



35,

in V, such that each derivative of ck(x,y) tends uwniformly, for k ~> o,
to the corresponding derivative of kp(x,y),

As an example, if T and S are siﬁplexes of dimension zero, i.e.
points t € M and s ¢ N& respectively, their tensor product is the simplex

of dimension zero which consists of the point (t,s) of M X Mlo

fie shall now define the tensor product of two currents of degree
zero and of even kind,

Given a coordinate systen xl...xn in U, let us consider the form of
degree n and of odd kind equal to dxl/ﬂ ...//\dxn, and similarly the form
of degree m and of odd kind equal to dy1/4 o../A\dym in V, where ylo.-ym
is a coordinate system in V. lie shall represent the first by dx, the second
by dy. They are currents of dimension zero., According to our definition,
the tensor product dxdy is represented in U X V, with the coordinate system

1

1 n m
X seeX Y e00Y , by

axdy = dx A eee Nax® Ayt A o0 A\ g™
R 1 m 1 n . )
With the coordinate system y eeey X esex we get in the same way

dydx = dyl/\ .../\ dym/\dxl/\ .../\dxn 3

Yow, let us consider two currents of degree zero and of even kind,

To(x) on M and So(y) on M. Then To(x)dx and So(y)dy are currents of di-
mension zerec and of odd kind well determined in U and V respectively.

According to §9, their tensor product To(x)deo(y)dy can be represented
in U X V by an expression like Ro(x,y)dxdy where Ro(x,y) is a ocurrent of

degree zero and of even kind, which, as can be easily verifiied, is inde-
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pendent of the choice of the coordinate systems and depends only on To(x)
and So(y). It is consequently well determined on the whole manifold M X Mia

We call it the tensor product of To(x) and So(y) and we write Ro(x,y) =

= To(x)So(y). Clearly, the commutativity law holds.

In the case where To(x) and So(y) are two fuuctions, this is nothing
els e then their product in the usuel sense., The name tensor product comes
from the enalogy with the tensor product aibj of two vectors, the indices

i and j being replaced by x and y.

It is easy to extend the definitjon of the tensor product to the

cage of two currents of arbitrary degrees and of the same kind. But we

shall not use it here,

§11. Harmonic Distributions,

According to the Laurent Schwartzs! definition of the partial de-
rivatives given in §9, the Laplacian of a distribution, in the Euclidean
space Es, is a well determined distribution. If this last is equal to zero

in a domain D, the former is said to be harmonjic in D, We shall now prove

the following

Theorem: If a distribution is harmonic in D, it is equel in D

o a function Coo.

The coordinates of a point x being X19Xp1%zs WO note by lap or lapx

the Laplacian
&, F

+ +
Z ) 2
Y

Lapx =
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and by dx the volume element dx = dxldxzdxs or dxl/\ d.xz/\ dxs, considered
es a 3-form of odd kind. FPFor anothsr point y = (yl,yz,ys) of the same
space, leLpy and dy are defined in the same way.

T being a distribution in Es, according to the definition of the

partial derivatives, we have, for each function P ¢® with a compact carrier,
lap T[\pdx] = T{lap \p dx] .

Let & be a positive number and j)(x,y) a function ¢ of x and Vs
which depends only on the distance r(x,y) of the two points x and y, such

thatofffl,f=0ifr>&,f=lii‘r<-§-. We consider the function

5) (x’y) = —B.QC_’_X.L.._
4Tr(x,y)

and, following K, Kodaira, we call it the modified elementary solution,

It has the following properties

1) The function g(x,y) = lapxx(x,y) for x #y, = 0for x =y is ¢

with respect to x and y, even for x = y,.

2) If \p is a function ¢® with a compact carrier,

TIU'(X) = JX (x,y)kf(y)dy is ¢° and
ap Y (x) = =)+ { F @y

This last equation is equivalent to Poissons' equation,
Now, let DE be the set of all points of D whose distance from the

complement of D is greater than £ . Suppose T is harmonic in D and the



38,

carrier of ¥ is contained in D Then, the carrier of ‘\p is in D and

6 °
consequently

[lap V dx] = lap T[ Wdx] = 0
On account of 2) and of Theorem II of §11, we have
wpax] = 26)ast | P 0)F )iyl = 2maxe g (xy)] -
= P (r)ay el § (e,y)] = (2 () p(yday

where f&(y) = T(x)dx[?(x,y‘)] is Coo’ according to Theorem I of §ll. This
means that T = fc, in D e f& depends on & becausse Y and Y depend on £ .

But if 6/32 £ , as Dé,C D‘E s £oo= £, in D&“ Hence fo = lim fe. exists and

00 : €=0
is C inDandT*foinDc

Of course, since T is harmonic in D, fo has also to be harmonic in D.
With the same argument, we can prove:

Theorem, If lap T is ¢® in D, T is ¢® in D.

Indeed, if lap T = h in D, h being ¢ in D, we have
T[lap Y dx] = lap T[Ydx] = h{Yax] =
- ([ n)y ) g)eey = 0P )er)
where h&(y) = 5 n(x)y (x,y)dx is ¢® in D.

The above argument now gives T = i‘2 - hE. in D, instead of T = f& A

end T = lim(f, - hé) in D, the limit existing end being C* in D.
£=0
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The same proof is valid for any linear differential operator_/\.for
which we have a "modified elementary solution" with the properties corres=

ponding to 1) and 2); This is the case for amy total elliptic differential

operator, It is not escential that /\ ve self adjoint. The proof and the
theorem are also valid for systems of equations., e shall use it in the

theory of harmonic differentials.,
§12, Homology.
Here, we shall only state, without proof, the main theorems con-

cerning homoloyies between currents, forms and chains in a manifold,

Definitions The current T 1s said to be closed, if dT = 0., It is

said to be homologous to zero, if there is a current S such that T = dS.

It is said to be compact homologous to zero, if there is a current S with

———

a compact carrier such that T = dS,

If T = dS, we shall also say that T bounds S,

Clearly, if T is homologous to zero, T is closeds If T is compact
homologous to zero, the carrier of T is compacte All closed currents, of
e given degree and a given kind, which are homologous to one of them, con-

stitute an homology class,

Theorem Ae 1) Bach closed current is homolo.ous to & form ¢®,
Each closed current with e compact carrier is compact homologous to a form c®.
2) If a form C' (0 Sr3 ® ) bounds a current [ a current

with a compact carrier], it bounds a form Cr[a form with a compact carrier].



40,

Theorem B, 1) Bach closed current is homologous to a chain. Each
closed current with a compact carrier is compact homologous to a finite
closed chain,

2) If a closed chain bounds a curreut, it bounds &
chain. If a finite closed chain bounds a current with a compact carrier,

it bounds a finite chain.,

Theorem Ce (Duality theorem)

The current T is homologous to zero, if and only if T[¥] = 0
for each closed form \p with a compact carriers The current T, with a com-
pact carrier, is compact homologous to zero, if and only if T[] = O for

each closed form k?.

These theorems generalize those that I proved in my Thesis. They
can be proved by the same method, using a triangulation of the manifold.
For Theorem C, in the non compact case, the duality theorem of Pontrjagin
has to be used instead of that of Poincare, Another method for proving A
and B, the "smoothing method", will be given elsewhere,

For compact manifolds, Theorems A and C and part 2 of B will be de=-

duced from the central theorem concerning harmonic differentials.

Let us remark that the "only if" part of Theorem C is immediate.
Indeed, if T = dS, T[P] = dS[+p] = ¥8{dp] = O, provided dy = O and the

carrier of \p or that of S is compact. Consequently, if Tl is homologous

%o Ty, Tl[‘P] = Tz[\P] for each closed form \p with a compact carrier, And

if T, is compact homologous to T,, Tl[kP] = TZ[L(] for each closed ¥ .
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Here are a few consequences of these theorems.

Suppose T is a clossed form ¢« , which is not homologous to zero,
Then, according toc C, the e exists a cicsed form ‘Y , with a compact carrier,
such that c«y[wp] = j.u)/\\f # 0. Now, according to B, \pis ccmpact ho~-
mologous to a finite closed chain ¢, and according to the above remark we
have

cfw] = jwaq[w]=iw[q]f0,
c

¢ being a closed chain, \gco is celled a period of «w . Our result
c

shows that:

A closed form all of whose periods with respect to finite closed

chains are zero is homologous to zero,

In the same way, we get:

A closed form with a compact carrier all of whose periods, with

respect to finite and infinite closed chains, are zero, is compact homologous

to zero.

Now suppose that T is a closed chain ¢ which is not homologous to
zeros Then, according to C, there is a closed form p with a compact carrier
whose period relative to c, c[kp], is not zero. hiore generally:

iy Clsese,C  8re I closed chains such that ¢ =§§lkici

i

logous to zero unless all coefficients ki are zero, and if al,...,ar are r

is not homo~

arbitrary given numbers, there is a closed form \f with a compact carrier

whose period relative to c; is equal to 9P oi[\P] = ai(i=l,..,,r).
Indeed, if this were impossible for some set of numbers ey the

periods ci[¥>] of any closed form \p with & gompact carrier would all satisfy
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the same relation of the form ZE: kici[tp] = 0 and we would have c[ke] = 0,
- - i
contrary to the above result.
In the same way we get:

There exists a closed form whose r periods relative to r given

finite closed chains no combination of which is compact homologous to zero

have r arbitrary given values.
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Chapter III.

Harmonic Differentials on a Riemann Spacse.

AN

§13, Scalar Product. Adjoint Form.

On an n-dimensjonal manifold Ca), M, let gij be g covariant tensor

function of rank 2, Coo’ symmetric and positive definite;

a 2. I axd
gij gji . ds ;Zg gij dx” dx¥ > 0 .
E

The manifold M with this tensor function is a Riemann Space,

We shall use the associated contravariant tensor g13 determined by

the equations

end we shall use the operation of raising or lowering indices according to

1 eeed R 1k
R T e A o x ¢

klccokp 1 P

the formulee

a = ‘5. ees &, a .
iloooip k10'0kp 11k1 lpkp

The coordinate system is said to be orthonormal at a given point,

'3 A o i ...i
if at this point g = 62 . Then, at this point, g V= 62 end e * P

= 8 .
il"'ip

Volume Element. Taking the product of n tensors equal to gij and

making it skew symmetric, we get a new tensor
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g

)
[44]
[
S .
.
.
.
.
o
(1]
™
[
=
)
»
.
L 4
[}
5
HPT'
o]

il...ln,kl...kn

Clearly we have &y

=g and
lnooin,klo..kn kloo-kn,i

100-1n
o 61 ess 1 61 e I

& g .
iloo‘in,klocnkn lloooin klo-okn l...n,l...n

Under a change of the coordinate system, the first component of this

tensor (which tensor i8 a double covariant n-vector) changes according to
the formula

- - Jz
gl...n,l...n gl...n,l...n

. where J is the Jacobian, If the coordinute system is orthonormal,

8)ueen,loasn 1. Consequently, in any coordinate system €1,u.m, is

leaen
always positive., Let us set

=1

elnoon = vglogon,looon '

we get the transformation formula
el...n =‘J ‘ elooon

Hence, &y nis the first component of a covariant n-vector of odd kind.

The corresponding differential form

PR A VAY

elooon
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of degree n and of odd kjnd is the volume element, Of course, the other

compaonents of this n-vector are eil"‘ina 11"'in ®) vesn®

Definition, The adjoint form to

i i
A = Z ai o.cip dx 1/\ 0--/\dx P

i1<...< ip 1

iz the form
3 J
*Ne Z a; see dx 1/\ en/\dx n=p
s

jl<-0o< Jn_p 1 n-p

where
a* . /= E e . ail..'ip .
jlvooJ - : < g iloooi Jloo'j - ¢
n=-p 11 ese< P P n-p

Let us remark that, in this last sum, only one term can he different
from zero: the term corresponding to the values of 11"‘ip which are different

from jl..ojn_po

The adjoint to a p-form X is a (n-p)-form * X, which ig of different

kind, because the volume element is a form of 0dd kind. The adjoint to 1

(considered as a form of degree zero) is the volume element,

*1 bl 91 dxl/\ ‘a./ﬁ\dxn
soell

The adjoint to any function, considered as a O-form, is its product

with the volume element,



46,4

Clearly, the operation * is a linear operation. Furthermore,

if p is the degree of oA , we have
#x ol = (-1)Pn+pq\

as can be immediately verified with the help of an orthonormal coordinate
system. If pn+p is even, * is its own inverse, If pn+p is odd, i.e., if
n is even and p odd, the inverse of * is ~*, In all cases, *** is the in-

verse of *,

Now, let us consider two forms of the same degree p and of the same

kind, cA with the coefficients a, . and (3 with the coefficients b, . o
laeeel 1,000l
1 p 1 P
We have
il'..i
O(/\*/?) % '?),/\*d\n E a pbi 5 o]
il<..'< ip l..‘ P

as can be immediately verified with the help of an orthonormal coordinate
systems, Moreover, the coefficient of *1 in

i...i
d\/\*o’\a _S al Pa o %]

il<‘°'< ip 1 P

is always Z0and it is = 0 only if ol = Q at the corresponding point,

Definition., The scalar product of the two forms cA and /3 , of the

same degree and of the same kind, is the number

(o(,/g)-jc( /\*(5

Of course, (c(,/g) is determined only if the above integral is con-
vergent., This is always the case if the forms are c® and the carrier of ome

of them is compact,
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Clearly, this scalar product is bilinear and symmetric, The scaler
square is positive definite: (k, k) = Os If o 45 C° and (w,ol) = 0, then

CA = O identically. We also have
(*U‘:*/A) = (d, [5)
hecause *d\/\**ﬂxu (’3/\*0&- ok/\* 3.

Adjoint to a Curremnt, The above defining formula for *d,, applied

to a symbolic form, gives the definition of the adjoint to a current. We

shall also consider the scalar product of a current T and a form CGJKP ,'

defined by

(1,9) = (gom) = 2lx 91 = (2dep.

It is always determined if the carrier of ‘P or that of T is compact, In-
stead of the notation T[}’] of Chapter II, in which T and \f are not of the
same kind and the dimension of T has to be equal to the degree of P, we

shall now use chiefly the notation (T,\f), in which T end ¥ have the same

degree and are of the same kind,

§14. The Operators SandA, X

Suppose now that T is of degree p and N of degree p~1, and that

the carrier of either T or is compact. Then,according to §8,
P p

Sd(\-g/\*‘r) = 0,
and consequently
gd\f’/\* T = (-1)ngf /\ asr

which can be written

np+n+l

(1,a%) = (1) (xaur, )
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because, since the degree of d*T is n-p+l,

*¥d*T = (_l)n(n-p+1)+n-p+1d*T - (__l)np+n-p+ld,.tT .

npin+l

Definition, ile set OT = (-1) *d*T and we call 6T the

codifferential of T (p is the degree of T).

With this symbol, the above formula becomes

(1) (Tod‘f’) = (6 T, ‘“?)
It is valid if the carrier of either T or ‘P is compact.

In the same way, we see that, if Wy‘is ¢® of degree p+l and if

the carrier of either T or Wy'is compact, we have

(2) (1,8y) = (a1,y)

It is clear that §is a line;r operator.' Applied to a current or a
form of degree p, it gives a current or a form of degree p-l, Applied to
a function or a current of degree 0O, it gives zero., Moreover, if p is the

degree of T, we always have
2 P p+l
(3) 60 = 0, #6T = (-1)Pasr,  wdT = (~1)F T0er

We shall say that a current or a form is coclosed if its codiffere
ential is equal to zero. It is equivalent to say that its adjoint is closed,
IfT= 65, we shall also say that T cobounds Se. A current will be said to

be cohomologous to zero, if it cobounds another current,

It is clear that the concepts of codifferential and of adjoint form,
in contrast to that of differential, depends on the Riemann metric gij’

and not only on the differentiable structure.
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The OperatorA, ie set AN\=ad+ & .

This is & linear differential operator of second order. A ol is
of the same degree and of the same kind as . , For a form of degree zero,
i.e, for a function f, we have & = 0and AFf = 0df. As we shall see, this
is nothing else than - div grad f and [\ can be considered as & generaliza-

tion of the Laplacian. This suggests the following definition:

The current T is said to be harmonic in D, if AT = OinD .

In the following paragraphs, we shall prove the existence of an
elementary solution corresponding to the operator A e« From this it will
follow, &s in §11, that a harmonic current is equal to a form Coo‘ which
of course has to be harmonice

Here, we shall prove the following

Thearem, A form which is harmonic in a compact Riemann space is

closed and coclosed.
Proof: According to (1) end (2), we have
(o Asx) = (o,d000) + (k,8000) = (G, 0k) + (dox,d k)
Hence, it N oL = 0, ((5—0&,(5-0&) = 0 and (d,do) = O and consequently

Jot= 0 and d & = Oa

According to the definition given by Hodge (see: W, V. D. Hodge,
The Theory and Applications of Harmonic Integrals, Cambridge University

Press 1941), a form is said harmonic only if it is closed and coclosed.

- ———— it ——

- e oo
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We see that, in the case of a compact space, the two definitions are equi-
valent. If the space is not compact, they are not equivalent and a harmonic
form in our sense nee§ not be closed and coclosed. The operator /N has been
first introduced in this theory by Ke Kodaira (see: K. Kodaira, Harmonic
FFields in Riemannian Manifo}ds, Annals of Yathematics, Vole 50, 1949) and'
independently by P. Bidel et G. de Rham (see the paper: Les formes
différentielles harmoniques - reference below in §16)?

An important property of the operator /\ is that it is permutable

with 4, 6-and * , As a matter of fact, we have

aN=Nda=a0a, §AD=ANAE0=8E,

and, on account of (3),

«d§ = Gax, +0a=ab+ and x4 = D«

§154 Explicit Formulas for § and A o

It is convenient to use covariant differentiation. In the follow-

ing formulae, all summations are explicitly indicated.

The covariant derivative of the covariant p~vector ai i is the
loto P
tensor
ba a
110-01 P .
a,. 2 ; a, s . . .
lloooiP,i &x val ""“a 110 onlv_lalv+1ooolp lvi

i
in which the [~T

ik are the Christoffels' symbols

i {2 Og., .
ARk
2
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Let us recall that the covariant derivatives of a sum and of a

product obey to the same rules as ordinary derivatives, and that the co-

13 jl"'jp
varient derivatives of 513' g Y, .© eand e . bare all identical

ilooolp iloﬁoln

to zeroa.
vle shall denote by gai { } the p~form agsociated with the p=-vector
1000 P

a, s i.8s the p-form whose general coefficient is a .
1l'-oip ilooaip

On account of the symmetry of the Christoffel symbols [—“;k = r“ij ’
in the formula of §2 giving the differential of a form, the ordinary deri-
vatives can be replaced by the covariant derivatives without changing any-

thing, and we get

ST gheedy
d {;ail"'ip } j1<":; jpsil..’ip+
J

1 dpeseded

*

Now, on account of the rules we have recalled for covariant differ-
entiation and of the formula of §13 giving the adjoint, we see that the co-

efficients of 6 {ai i z will also be linear combinations of the

lQ’Q

» and that the coefficients of dé'{ail"’ip} and Od {ai

., 3
110001P,i 1‘..ip

will be linear combinations of the second covariant derivatives a . s ®
i .OOlP’l,j

1
By direct calculation, we have

o o4 2 St g

§<eer 3 Ligeeed
Li o
’l
~
] id eedd Jyeeed .
dg{e‘i ool }’"" - Z 511 E-l é{i? f? g, | 'iﬁ
1 ¢ P ii<0'14:gp 1 eso p looo P'l Jl..‘JP’J’J
<soe<
p~1
i3,

a.o' i
Jl JP:
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jl<...<jp 1 P J1°'°dp’1’j

From the above, using the identity

;v 65'. Ilasg 1 61 ooo ip 61 l ooal 6}%1...113 ’
/l<.°"</1) Jy o » e JP 1'21“"/'7 /e Jlo‘oJ Jl‘oo’)p

we obtain for A = d§ + 6d the following expression

. .j oc.:]
S 1 235 .
A B e iL _ng;}ai eeed bini . @71 ...ipg J(a preedyed 17%5. eeed i, 3}
e N e T R e : Wod Iy eeedpes

1,5,4 .

Now, on account of Ricci's formulae, the differences a. . R . s
y ? Jl...ap"j’l Jl'HJpsla‘J

are linear combinations of the &,y N themselves, and we finally obtain
100. p
for A{ 5 i the expression
?..
p

s ij 'oo‘j .
ij 51 p £j h
-E B Ve, E E . g R a, . . .
{ i ecoip i,j 31<°"<j = Xll.e.lp 3. 31 31...3}1_lh3 s10eedp
i,3.4,h

where Rhi,jk is the curvature tensore

If the space is Euclidean, the curvature tensor vanishes, and if the

coordinates are rectangular, we have glj= 62 end
as. ...
19000l
A {a ' = ~ E -—-——T—-—-l D
i 0.0i )
1 P i bxi

Except to the sign, A is the Laplacian,
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In a Riemann spac¢e; for p =:0, ises for a scalgr £, we gét the

Beltrami operator

-

Dre-2 gy,

i,

where

P E;— NI

The above formulae haye bsen established by L.E.J.Brouwer for

Euclidean space and by ReWeitzenbock for Riemann space, See references ing

Go de Rham, Remarque au sujet de la théorie des formes différentiellss har=

moniques, Annales de 1'Upiversité de Grenoble, Anndes 1947 et 1948, p.6b.

From the above general expresgion for ZS;. one gets immediately

e
i:I

A{fa e i = fA{ il"'i }'25-2 g "'ip‘j/} +(A£){ail"’%p} »

P

i1

8§16 The Parametrix

The word "Parpmstrxx" introduced by Hilbert, is, in the theory of
elliptic differential equations, the name for a rough spproximation of an
elementary Qolutiono For equations with constaht coefficiénts, it is in
general easy to find an elementary solutions In terms of this, as has been
shown by EsEelevi and Hilbert, one can get a parametrix for the corresponding
equations with variable goefficients, and fimplly, the problem of constructing

an elementary solution is reduced to solving an integral equationa
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Here, we shall first write the expression of the elementary solu-
N
tion for the operatorA in Euclidean spaces Then we shall get a parametrix
by replacing in it the Euclidean distance by the geodesic distance in a Rie-

mann space,

In Buclidean space with rectangular coordinates, let r(x,y) be the

distance between x and y,

ey = /e

and let 5, be the aree of the (n-l1)dimensional sphere Zx? = 1,
We set
rz-n(x )
= )
go(x,y) --S-;(i-_-z%_- forn>2,

go(x,y) = i—% log r(x,y) for n=2,

Then, as is well known from poteantial theory, if \f(x) is a funce

tion ¢%° with a compact carrier, the function

G\ = ggo(x,y)kf(y)dy (where dy is the volume element)
is also a function C° and we have

GA\?= P and AG\?=kf

These equations express the characteristic properties according to which
go(x,y) is called an elementery solution of degree zero for the operator A o
Now, let us consider the double form

. s s .
gp(X.y) = 8,(x,¥) Z dxll/\.../\ ax P, ay l/\.../\dylp

il<o ee< lp
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and let us set, for every p-form o((x) with a compact carrier,

GoA = (gp(xoY)’ OQ(Y)) = jgp(X,y)/\*ok(y) .

From the above result relstive to the case where p = O it follows
immediately that, for any p (O s P s n), if o is ¢® with a compact carrier,

G is also Coo end we still have the relations
GA&ﬂd. and zﬂG&am.

e shall cell gp(x,y) the elementary solution of degree p in the

Euclideen space, We shall now write its expression in an arbitrary coordinate

systems

Let us set

2 2
r°(x,¥) 0°A
X B e ettt — A. S ——

A(x,y) > ) i,3 bxlbya

For fixed values of J and y, the Ai 3 (i=l.sen) are the components
?
of a covariant vector at the point x, and for fixed values ¢f i and x, the
Ai j(j=1...n) are the components of a covariant vector at the point y.
»
In a rectangular coordinate system, Ai Ju 62 o Hence
4

go(x,y) %;% Aiod dxi.dyj

is the invarieant expressiom for gl(x,y). It can be written in any coordinate
system as soon a§ we have the expression of the distance function r(x,¥)e

Let us now consider the determinents

A . oeaae A
113,777 Thpedp K, vk
Ai veodl j . = : : = 6;1 ip Ak J ses Ak .
1%t prdpeetdp N kpseensk, 10Tp 10 p?Yp
ip’jl iPOJP
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For fixed values of jl...jp and y, they are the components of a covariant

p-vector at the point x, and for fixed values of i ...ip and x, they are the

1

components of & covariant p-vector at the point ye

In a rectangular coordinate system, we have A

j oooj
= il g Hence we can write the inveriant expression for gp(x,y) in the
l.l. p

following way:

gl',(X.y) = g, (x,¥) é\____

A
.  BPPS. § pj roj
ll<ooo< ip 1 P l P

;jl<...< ,jp

11...1p.jl...3p’

i i J
dx lA .../\dx P,dy lAcon/\dy P o

Let us now consider a Riemann space M and let r(x,y) be the geodesio

distance from x to ¥, 1.e. the lower bound of the length of all arcs joining

x to ys We know that if x and y are near enough, there is one and only one
geodesic arc from x to y whose length is r(x,y)s, More precisely, to each
compact set K < M there corresponds a positive number 7 such that:

1) if r(x,y) < % and ¥ ¢ K, there is one and only one geodesic arc from x
to y whose lemgth is r(x,y);s 2) rz(x,y) is a function ¢ of x and y for
y €K and r(x,y) <% o (This will be proved in the next §)s If M is come
pact, we can take K = M.

Let_y(x,y) be a function ¢*° which depends only on r(x,y), such that

[

< < .
0 = p(x,y) = 1, plx,y) = 1 if r(x,y) <5 and p(x,y) = 0 if r(x,y) > M
This function contains 7 as a parameter and cen be written in the form
p= o %:) where ¢~ is a once for all determined function of one argument,

2
T = L (x,¥)
Now, we set A — we define Ai,j and Ail,..ip,jlo-ojp by

the same formulae as in the case of the Euclidean space and we call parametrix

of degree p the double form
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@, (=, y)= Ex'yi (x,¥) Z dxll/\.../\dxlpdle/\.../\dyjP.
8

<eiesy 1 1 ceedpsdyeedy

1
-jl<°°’<jp
For p = 0, of course, the sum has to be renlaced by l.
2-n
/e have supposed n > 2, For n = 2, rn-z has to be replaced by ~log r.

When there can be no misunderstanding, we shall write ¢ (x,y) instead

of wp(x:y)°

The marametrix has the following properties.
1) ¥ ¥ is c®, Qtjn fcu(x,y),/l*\f(y) is ¢® ,

#e must assume, of course, that the integral QLy is convergent, and
elso thet co(x,y) is ¢® i ¥y belongs to the carrier of P . These two con-
ditions are satisfied if the carrier of ‘9 is contained in the compact set K
which appeared in the definition of the parameter M in P

Since r(x,y) = r(y,x), the paremetrix is also symmetric and the

operator e selfadjoint:

(Q ‘f: ’\)[/) = ("f:m/y’)

2-n
)s

2) The form q(x,y) = = Axw(x,y) is Oo(r ie®q the coefficients of

--2]-'_-_-5 q(x,y) remain bounded when r tends to zero (for n > 2; for n = 2,
r

1'2"11 must be replaced by log r).

3) Let us set

Qe ﬂfq(x,y)/\*‘?(y) end Q'Y = jQ(Y:X)A*\P(V) ‘
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If \p satisfies the conditions stated in 1) and if its carrier is com-
pact, we have
(1) NAY=y-ay

If @ satisfies the conditions stated in 1) (its carrier need not be
compact), we have

(11) ANy=yg=-Q¢

These properties are proved in:s P, Bidal et G. de Rham, Les formes

différentielles harmoniques, Commentarii lMathematici Helvetici, Volumen 19
(quoted in the following CMH)e Part of the proof can be simplified along the

following lines,

oi dxi os 1 dzxi
Write X5 ae— , = » and consider the differential equations
dt at’

of the geodesjc, or, considering t as the time, of a.moving particle on the

¥t +Z P;Zi:j 342 o

Js R

Riemann space

If x and y are two given points near enough to each other, there is
8 well determined solutiom x(t) of these equations such that x(0) = x and
x(1) = yo Let £=%(0) and = % = %(1) be the initial and final velocities
of the particle. 2§ is a vector at x, W a vector at y, their ¢omponents are

functions ¢° of % and y, and gince
2 i
o) = 30 g8t 2 !
1

we see that rz(x,y) is ¢% (for x and y near enough),
By considering the variation of the integral r(x,y) = _Sds taken

along the geodesic from x to y, we getb
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a = wr(ry)ar(ey) = 2 §yaxte D ey
i 3

and consequently

0A
O

A 5"§1 O .

= J

T R T B R

Now, to prove 1), one remarks that -(?-Al- + — kg +N .= O(r ) and
Oxl i i

()y_l

one follows CMH pe32-34.

To prove 2), it is convenient to use le...'y{n as coordinates of x

while y is considered as fixed., These are the normal coordinates of x with

origin at y. See: 0, Veblen, Invariants of Guadratic Differential Forms,
Chapter VI. C(ne shows that the covariant derivative of the vector A 3
I
(L » leeen, j and y fixed) vanishes at the point y and that Ar e O(r?'-n). !
i1 i
Then, if we consider y and the products dy /\ .../\dy P as fixed, we can write
w(x,y) = pmn -fai } and we apply the last formula of §15, which gives
~ l'.. p
the proof of 2). Besides, for our actual purpose, it would be sufficient to

prove that q(x,y) = O(rl-n) and this is still easier.

To prpve 3), one proves Formula I as in CMH p.27-3l, Formula II
then follows from it, on account of the fact that A\ (N.1s adjoint to ()L A,
i.es that, if P has a compact carrier, (.(1&33, ) = (?,AQ}/{).

The parametrix which is considered here wys introduced by H.Kneser
and has been used by Hodge and by H., Weyl in proving the existence theorem for
harmonic integrals, See: H. Weyl, On Hodges! Theory of Harmonic Integrals,

Annals of Methematics, Vol, 44, 1943, pele. AIt is used in a different way ,
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s
for the same purpose, in CMH and in: G, de kham, Sur la théorie des formes
diffé/rentielles harmoniques, Annales de 1'Université de Grenoble, année 1948,

Pe 135, We shall follow this last paper in §18, 1In §17, we shall use the

parametrix to construct an elementary solutione

§17. The Equation 2\ B =(> in a Small Domain. Elementary Sclution.
/

Let us ‘consider a domain D in the Riemann space M, D can itself be
considered as a Riemann space and we can apply to it the formulae I and II,
in which the integrals defining {), Q and Q' have to be extended to D instead
of to M.

Now, in order to find a solution}J. of the equation A): = (3 s Where
(3 is a given form in.D, according to E.EcLevis! method, we set P o= 0 f.

On account of Formula II, we get for K the integral equation

3-egep-
We shall show that, if D is small enough, this integral equation can
be solved by the Liouville - Neumann iteration process, based upon the idenw-
tity

(1-Q)Ll+Q+eve +@Y)e1-"

Suppose D is contained in the domain of the coordinate system
xl... x" and let us denote by ,\f’l the upper bound of the moduli of all co=

efficients of the form ¥ in D. Ve have an inequality of the form

. <
lewl Txly]
in which k depends only on D and not on P . If D is small enough, we have

k <1, and, since lQmu?‘ S ‘\fl, the series
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‘g a (&¢Q/3)+ ...+Qh/5+ ces
{s uniformly convergent and, on account of the above identity, gives the

solution of our integral equation,

Let us set 'g = [+ P(I) « The operator P is an integral operator
whose kernel is

h
p(x,y) = a(x,¥7) + QA(x,¥)* se0 + Q Q(X,¥) * 00e

The solution}a of our differential equation is given by
e (L= (L vQlp)

Since the kernel of the integral operator (L P is O(r4—n) (820 CMH, po46-47),
we see that the kernel Y (x,y) of the operator r' =0 +QP has essentially
the same singularity es co(x,y)e

Thus, for each form (5 in D, we have

ATpp 1o Alyenppe) = po.

On the other hand, in the same way as in Formula II §16, we ged

AJ—'[S = fAx) + ~g[.\xg(x..v)/\“' Ply)

and conseqguently Ax& (x,y) = O for x £ y. Hence, the double form x(x,y)
ig an elementary solution,

Theexistence of an elementary solution corresponding to the operator
Awas first proved by K, Kodaira (loc.cite) in the case of an analytical
Riemann Space, with the help of a method of Hadamard.

Now, the argument used in §11 can be applied and we get the follow-
ing

Theorem. If /\T is C® in a domain D, T is also ¢® inD,
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. . : ., eo]
In particular, a harmonic current is €~ , i.e. equal to a form C N

which of course has to be harwmonic.

§18. The Equatiom AB = /3 on & Compact Space.
7
Let /’5 be a form on the compact space M, If there exists a form)l

such that A}l = /A , we have, for each havricaic form P »

(@o‘f) = (APs\f) = (P»A‘9> =0,
Thus, for the existence of a form).x such that A/u = /’6 ¢-1t is necessary

that /5 be orthogonal to all harmonic forms. We shall now prove that this

condition is also sufficiant,

R

A hormoznic form P sincs it satisfias A‘ff" 0, also satisfies
f\ﬂt.jn 0, or, on acccunt of Formula I, P - Qfyp= O Now, according to
the theory of Fredholm, this equation has only a finite number of linearly
independent solutions, which form a linear space Es Consequently, there are
only a finite number of linearly independent harmonic formse They constitute
& linear pubspace E' of Es Let E" be the orthogonal complement of E' in E,

If we try to solve the equation A}x = /5 by setting )1 =) \g, we
get as in §17 the integral equation g - Q”g = ﬁ, and according to the
theory of Fredholm, this equation can be solved if, end only if, /5 is or-
thogonal to all solutions of the associated homogeneous equation P~ Q! e 0,
i.06 if /é. is orthogonal to E. But /}, is supposed to be orthogonal to E!
and it may not be orthogonal to E", so that our integral equation may be
insolubles Nevertheless, we can solve our differential equation in the

following waye
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iy Z& € E" and ﬁi # 0, (Zl%ﬁl,ﬁ) cannot vanish for each £ € E",
because @f&zﬁi,ﬂi) = (Z}ﬁl,zﬁﬁl) end this is different from zero, other=-
wise we would have Zl.¢i= 0, which is impossible since ﬂ%is orthogonal to
E's In this way, to each ﬂ& € E" there corresponds & linear function
Qﬁxzﬁi,ﬁ) defined on E", which cannot vanish identically unless ﬁlﬂ O0s Since
this correspondence is linear and since the dimensionality of E" is finite,
it follows from the above that, conversely, each linear function on E" can
be represented by @ﬁkzﬁi,ﬁ) with a convenient ﬂl.

In particular, there is a ﬁi such that ({S,ﬂ) " (szﬁlgﬁ) for each
# e E"s Then /1_' - Azﬁfl is orthogonael to EY, and also to E' because /3 and
Azﬁl are, Consequently, the integrel equation R~ Q¥ = /5 -Aaﬁl cen
be solved and).l = QE + Aﬁl satisfies our differential equation A}l =/5 .

Thus, we have proved the following

Theorem. On & compact Riemann Space, there are only a finite number
of linearly independent harmonic¢ forms, and the equation.lﬁ§y.= /6 is
possib}e if and only if /5 is orthogonal to all harmonic forms.

§19. The Operators H and G on a Compact Spaces

To each current T, on a compact Riemann space, we can associate a
woll determined harmonic form h, such that (T,h) = (hl,h) for each harmonic

form he We shall call it the harmonic part of T and we shall write hl= HT «

Clearly, T is an harmonic form if and only if T = HT. The linear

operator H is a projector: It is self adjoint, (HT,S) = (HT,HS) = (T,HS),

and H2= He It is orthogonal to d and to 5:

dH = Hd = 0 , H=H0=0.
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Ag a matter of fact, dHT = O and 0BT = 0 because HT is closed and coclosed,
HAT = O becmuse (HAdT,h) = (dT,h) = (T,0n) = O for each harmonic form h and
HOT = 0 because (HOT,h) = (6T,h) = (T,dh) = 0 «

Moreover, the operator H is permutable with x,

*H = H*
bpcause (H*T,*h) = (*T,*h) = (T,h) = (HT,h) = (*HT,*h),
Now, according to the theorem of §18, the equation A)l =\ - Hy
always has a solution P and there is only one solution which is orthogonal

to all harmonic forms, i.e. such that H}x = 0. We shall denote this solution

by G e The relation}x = G\p is thus equivalent to the two equations
A)l=\f-H\P and Hp = 0Os

The linear operator G is permutable with 4, § and *, and is self

_a;c_l_,ioint.

This follows immediately from the definition of G on account of the
fact that /\ and H are permuteble with d, § and * and are self adjoint,

Henee, G is also permutable with A.

For any current T, we now define GI by setting

(GT,\p) = (T,69)s
From this definition, it follows that (AGT + HT,\p) =
= (1,6 A\ + Hy) = (T, p) for each form \§ and consequently /ANGT = T - HT
for each current T, In the same way, we see that HGT = O Thus we have

the following generalization of the theorem of §18,.
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L]

Theorem I» To each ourrent T, there is one and only one current

S which satisfies the equations
AS8=T~-H, H =0,
This is the current § = GTy If T is C® in D, GT is also ¢® in D,
The last statement follows from the theorem of §17,

For eny current T, let us set T, = ader, T, = & ar, T, = HT o Ve

have the decomposition formula

If T is closed, T2= 0 because T2= 8GdT. Conversely, if T2= 0, T is

closed because Tl and T5 are always closed, As T, bounds 5GT, we see that

1

& closed current is homologous to its harmonic part,

If T is homologous to zero, T = dU, its ﬁarmonic part T3= HT = HQU = O
because Hd = 0 Then T bounds the current éGT, which is cohomologous to
zoros This is the only ourrent cohomologous to zero and bounded by T, bew
cause if U were another one, U - 8T would be closed and cohomologoua to zero,-
consequently.harmoniq end, on account of H6 = 0, identical to zero,

Let us further remark that, if T is ¢® ina domain D, as GT is c®

in D, d6T, &T, T, add T, will also be ¢* 4n D,

1
We have thus proved the following
Theorem II. 1) Each closed current T is homologous to a harmonic
form, which is the harmonic part HT of T.
2) A current T which is homologous to zero bounds one

gnd only one current U which is cohomologous to zero, and this current

U= 66T is ¢® in every domain in vhich T is coo.
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3) A closed current T is homologous to zero if, and only if, its

harmonic part HT vanishes,

Let us remark that 1) and 2) contain Theorem A of §12 for compact
manifolds, Theorem C of §12 follows from 3), because if T[tf] = 0 for each
closed ¥ , T[#h] = (T,h) = O for each coclosed h, in particular for each
harmonic h and this means that HET = O .

Of course, the integral equation method does not pive a means for
constructing chains and we cannot hope to prove Theorem B of §12 in this ways.
Nevertheless, in §20, with the help of the Poincard Duality Theorsm, we shall
get part 2 of this Theorem B.

We shall here apply the above results to some general problems of
construction of harmonic forms and currents,

Froblem 1. Construction of a harmonic form with given periods re-

lative to r given linearly independent cycles.

Let cl"°"°r be r cycles (i.e. closed chains), of the same dimension
and of the same kind, no linear combination of which bounds a current. Then
Hcl,...,Hcr are r linearly independent harmonic forms and if Pyses«,p, are
r arbitrary given numbers, we can always find a harmonic form h such that
(Hci,h) = pi(i=1,...,r). The form *h is harmonic and, since

5;1*h = (ci,h) = (Hci,h),
it has the given periods, Thus the theorem of Hodge, which asserts precisely

the existence of such a form, is proved.
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Let Rﬁ be the maximal number of closed currents of degree p and of
odd kind, no oombination of which is homolagous to zero., According to part 3
of Theorem IY, Ré is also the maximal number of linearly independent harmonic
forms of degree p and of odd kind, and, according to the theorem of §18,
it is finite. UNoreover, if R; is the corresponding number for those of
even kind and n the dimension of our compact space, on account of the corres=-
pondence h -~ *h between harmonic forms of odd and of even kinds, we have
Ré = R;_p. I£ the caese of an orientable space, Ré = Rg = RP s We get the
reletion Rp 2 Rn-p between Bettl numbers which is an essential part of the

Poincaré’Du&lity Theorems

Let us now consider two problems of constructing currents with

given singularities,

Problem 2, Let E be a closed set of points in ), {Ui} (i=1,2,440)

en open covering of E and Ti a current defined in U, such that, if CE is

i
the complement of E, Ti is harmonjic in Ui/\ CE and Ti- Tj is harmonic in
U N Uj (for every i and j)e

To be found is a current T, harmonic in CE, such that T - T, is

harmonic in U, (for every i)

To solve this problem, we remark that there is a well determined

current 8 such that S = 0 in CE and § = é&Ti in U,, for every i, Then the

i

required current T, if it exists, is a solution of the equation
AT =8
The condition of solubility is clearly HS = O and if it is satis=-

fied a solution is given by T ¥ GS.
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Problem 3, With the same notations as in Problem 2, we suppose now

theat Ti is closed and coclosed in Ui/\ CE and that Ti- Tj-is closed and

if\'Uj (for every i and j).

To be found is a current T, closed and coclosed in CE, such that

coclosed in U

T = Ti is closed and coclosed in Ui (for every i).

There are two well determined currents S, and Sz, such that §.,= §,= 0

1 1 "2

in CE and S,¥ dTi, Sz= 6Ti in Ui' Then the required current T, if it exists,

1

is a solution of the equstions

6T = 8

daT = Sl, 5 ®

The conditions of solubility are that S, be homologous to zero and

1

S, cohomalogous to zero, or, what is the same, HS,= HSz = Q, If these cone

1

ditions are satisfied, & solution is given by T = GdS,+ G5§1e

2
Thig preoblem gan alsg pe reduced to the preceding one by setting
§ = ds,* 63% '
The ¢ongtruction of harmonic functions and harmenic differentials
with given singularities or. periods on a Riemann surface and the analogous
problems on a Riemann spacé; considered and solved by K. Kodaira, are parti-

cular cases of the above general problems. -

§20. Extension of the Scalar Product. Kronecker Index.

Up to now, the scalar product (S,T) has only been defined in the
case where one of the two currents S and T is CX. We shall now extend its
" definition to some other cases.,

In the first place, if the carriers of S and T don't meet, we set

(S,T) = 0.
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Now let us suppose that S = S'+ 8" and T = T7¢ T, where S" &nd

™ are Coo while the carriers of S' and T' don't meet, Then we set

(S,T) = (81,T1) + (8',7") + (8",T') + (8",1")
where of course (S',T!) = O according to the above conventione

Tt is easy to see that the value thus obtained for (8,T) is inde=
pendent of the particular spiittings of § and T into S*'+ S" and T'+ T%,
But under what conditions ere such splittings possible?

Let us consider the smallest closed set of points outside of which

a distribution is c® and let us call it the singular set of the distribu-

tione It is clear that, in the above splittings, S and S' have the same
singular set, also T end T!, and consequently the singular sets of S and T
don't meet. Conversely, if the singular gets of S and T don't meet, we can
find two functions COO, f and g, whose carriers don't meet, such that £ = 1
in e neighborhood of the singular set of Sand g =1 in a neighborhood of
the singular set of T, and we get splittings satisfying to the above con-
ditions by setting ' = £, T' = g, 8" = § = St and T" =T = Tt

Hence, the scalar product (8,T) is defined by the above convention

in the case where the singular rebs of S and T don't meet.,

We can go further by using the docomposition formula of §19., Let
us first remark that, if T = T1+ T2+ T3 is the decomposition of T, the singu-
lar set of T, is identical to the singular set of &7, because I,= dc0T and
or = 6T1, and the singular set of Tz js identicel to the singular set of dT
for a similar reason.

Now, in the case where neither the carriers of 0s and ST nor those

of dS and d T meet, we can define (S,T) by setting
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(8,T) = (S]_:Tl) + (SZ"TZ) + (SS'TS) 6

On account of our preceding remark, each scalar product in the right hand
éide is well determined, and it is easy to verify that in the case where
the carriers of S and T don't meet and consequently (8,T) has already been
defined, this formula is correct.

It is also easy to verify that the following formulae are still valid

(dS:T) (SséT).» (S:&T) = (ASOT)’ (S:GT) = (GS,T),

(HS,T) = (S,HT), (Si’T) = (si‘Ti) = (S’Ti)’
and the defining formula is equivalent to
(s,T) = (6&3,0T) + (ads,daT) + (HS,T) »

Let us now consider two chains of different kinds and of comple-

P ana cn-p’ and let us suppose that neither of them

mentary dimensions, o
meets the boundary of the other., The conditiors of our definition are satise
fied for 8 = #cf and T = cn-p, because the carrier of 85 = *xde® does not
meet the carrier of T and the carrier of 4T = de™ P does not meet the carrier
of S Hence,(*c®,c"P) is woll determined.

The number (*upgcn"p} has the following propertiess

1) It is a bilinear function of cP and ¢®°P which is equal to zero
if of and ¢® P don't meet,

2) For p = 0, if o® is a O;simplex of odd kind consisting in a point
X, with the coefficient +1 and if ¢ P is the whole manifold M which, con=~
sidered as a current, is equal to the function 1, since (*xo,l) = (xo,*l) -
= l[xo] = 1, we have

(*XO,M) =1,
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3) On account of the formulas(6S,T) = (S,dT) and 5¥cP=(-l)n~p+1*dc?,
we have

(#doP, PPy o (1) PHL (4R g PP |

Now, the Kronecker index I(cp,cn-P) or algebraic number of inter-

gections of the two chains cf and cn—p’ considered in Topology, has the same
properties. Since they are characteristic (for p = 0 this is immediate and

on account of 3) the case of any p > 0 is reduced to p~1), we must have
(*cpacn-P) = I(cp’cn-p) -

Now, Poincard!'s Duality Theorem asserts that g closed chain c?
bounds e chain if I(cp,cn-p) = Q for each olosed chain cn-p’

Part 2 of Theorem B of §12 can be deduced from this as follows.

P

Suppose ¢ bounds a current; then S = *oP is cohomolozous to zero, conse=

quently S = 82 and if o™ P= 7 ig closed, T2=

‘ I(cp,cn-P)~= 0. Thus the Poinceré condition is satisfied and ¢ must bound

0 and (S,T) = 0, i.e.,

a chain,

§21. The Kernels of the Operators H and G.

Explicit Formula for the Kronecker Index.

Let us consider a contravariant p-vector at a fixed point y in the
i ‘0.1
compact Riemann space M, with components Y p' It determines a current

Y defined by
1ee0dl
(Y’ k?) ¥ Z ailoo.i (y) Y 1 P
p

il<o o< ip

i i
vhere (p(x) = EE: 8 vuii (x) ax %/\.../«dx » .,
1 [ XY p

il<.. o< i
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i eeel i i
Let us replace Y 1 P by dy l/\.../\dy P, e have

(T(x)s (x)) = 9(¥)s

The carrier of Y is the single point y,.
Suppose hl""’hr is an orthonormal basis for t he harmonic forms

of degree p, (hi’hj) = 6g , and let us set
R(x,y) = 2_ hy(x) By(y) »
i

For fixed ﬂh h(x,y) is harmonic in x, and for each harmonic form LF(X) we

have

W) = (b(x,y), pl(x)) = (¥(x),Hep(x)) = (HY(x), Pp(x))e

This means that the form h(x,y) is the harmonic part of the current Y,

Moreover, for 3322 form <, also not\harmonic, we have
Hp(y) = (Y(x),Hp(x)) = (HY(x), @ (x)) = (h(xsy), p(x))
or, on account of the symmetry of h(x,y),
Bip(x) = ghoc,y)/\w(y)

We see that h(x,y) = HY(x) is the kernel of the operator He There is one

such a kernel hp(x,y) for each degree p (0O s o s n) and for each kind (even

or odd).

Let us nmow consider the current GY(x). Since AGY = Y - HY, GY is
¢® outside the point y, i.es GY is equal to a form g(x,y) which satisfies
the equation zcxxg(x,y) = ~h(x,y) for x # ¥a

In a neighborhood D of y, consider an elementary solution Y (x,¥)

and the current | (x) equal in D to X(x,y), where Y is fixed, From the
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properties of the elementary solution it follows immediately that
A (x) = Y(x) in D, Consequently, ZN(GY -{") = =HY in D, 6Y = [ is ¢
in D, g(x,y) has the same singularity as % (x,y) for x = y and GY = g(x,y)

in the whole space M.

Moreover, for sach form \p , we have
GYy) = (X(x),61p(x)) = (@2(x),p(x) = et Avpt)

We see that g(x,y) = GY(x) is the kernel of the operator G.

This double form g(x,y) is called the Green's form, As a matter of

fact, we have one Green's form gp{x,y) for each degree p (0 s P s n) and for

each kind (even or odd)s It has the following pr;)per’cies.

1) It is symmetric, g(x,y) = g(y,x), because G is selfadjoint,

2) Since 6O = SG: (gp_l(XOY)og?(Y)) = (ngp(xn.‘f).o‘?(y))o and, as
(gb_l(x.y).s?(y)) = (dygp_l(x.y). ¢(y)), for any form \p, we have

OBy (®o¥) = dg (%y)
Consequently, dxé;c gp(x,y) = dxdygp(:c,y) which form is obviously symmetrics
4,0, €3(x,y) = d 06 (x,7)-
3) A4s already noticed, Axgp(x,y) = -hp(x,y), ie00
deXgP(x,Y) = v-é;d,;gp(x.y) - b (=) for x £ y.
4) From the relation *G = G* there follows

gp(;:.:ur) - (-l)Pmpgn_p(xa;)
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where g(%,y) means the adjoint with respect to x of g(x,y) and g(x.§) the
adjoint. with respect to y, Inthis relation, gp(x,y) and gn_p(x,y)vare the

Green's forms of degrees p and n-p and of different kinds, TVie have further
* %
Bo(Es¥) = gy (xay)

and we see that the Green's form of degree n-p is the adjoint, with respect

to x and to y, of the Green's form of degree p and of different kind,

We shall now write an explicit formula for the Kronecker Index, with
the help of tha form dxéggp(x,;).

The defining formule for (S,T) given in §20 can be written as follows:

(8,7) = (afes,T) + (8,0d46T + HT).

Replacing S by *of and T by o™ P, we get

(*cp,on'P) = (d6¥Gop,on-P) + (*cp,5aGcn-P+ ch-p).

Outside of op, the current Go¥ is equal to the following form, in

which the varjable point is y,

*
p gn_P(an)

X
means that the integral is to be taken over o with respect to x,

aP(y) = (vsec®) = (oP,av) wg
[+

where cp
X

We have also, outside of op,

P - * R -
dxGo LP dyé'ygn_p(xsy) Jcp dxé;gp(xw)
X

on accoynt of the above properties 2) and 4)s But the singular set of

ad+aeP = *GGde® 1s contained in the boundary BeP = :dop, and this form is ¢*
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outside of Bcp, as we cen verify by changing the last integral into the
integral of ﬁggp(x,y) over BcP, Consequently, as ¢"Pdoes not meet Bcp,

we have

1 dSGP,n-paf g a6 ,
(1) (d0%Ge*, e ™) c;"P J;:xg(xy)

By interchanging p and n-p, x and y, we have a similar expression
for (d5¥Gon-P,cp). Since this is squal to (-1)Pn+P(*cP,6a*Gcn-p) and on

account of the relation

*\ _ (_1\PB¥RS *
dyé-ygn_p(Yax) = (~1) oxdxgp(xsy)
which follows from the above properties 1), 2) and 4), we get

- *
(2) (%cP,0a6c"P) = J J' 6.4 g (x,7)
’ P (AP xxpY
y
In a similar way, we get
n=- *
(3) (*cP,Hc P) - g;p -gcn_p hp(x,y) .

x y

By adding (1), (2) and (3), we have an explicit formula for the Kronecker
index. If cf is closed, (1) vanishes; if ¢" P is closed, (2) vanishes; if
both cf and ¢”7P are closed, the Kronecker index is equal to (3),

On account of the above property 3), we can transform the sum of (2)

and (3) and we eventually get

S P PR (Y L
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Let us remark that, for x = y, the form dxﬁ;tgp(x,;) is O(r-n); this
is the reason why the order of the integrations cannot be changed, except if
c? and o™ P dout meet, in which case I(c®,c" F) = 0.

This formula (which is in my paper in Annales de Grenoble 1946) is
also valid in Euclidean space, if we take for gp(x,y) the g¢lementary solution
considered in §16; it contains as a particular case the Gauss formule for the
looping coefficiente It can be generalized to emy non-compact Riemann space,

as we shall show in the next §.

§22. Method of; Orthogonal Projection.

In an nrdimensional Riemann gpace M, which will not be assumed to be
compact, let us consider all forms c® with a compact carrier; of a given
degree and a giyen kind, They constitute a linear spage F,

We shall say that & series of forms oohe F(h=1,2,604) is con=

vergent in the mean, if -

lim (® =W, , 0 »dy) =0,
mbfs 0 O LA

If this condition is satisfied, there is a well detsrmined current T such
that

(T, @) = hiiz::o(wh, ¥) for each € Fo

Such & current, limit of a series which is convergent in the meen, will be

sald to be square integrable,

The scalar product of two such currents can be defined by setting

(1,8) =hlim (Coh, k{?h), where 'p, converges to S in the same manner as <, to
=00
T, and it can easily be shown that the lineer space F of all square integrable

currents ig a complete Hilbert space, F is the closure of F.
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Let Fl be the subspace of F consisting of all forms which are differe

entials of forms CC with compact carriers, let ﬁl be the closure of Fl in

f, F2 the subspace of F consisting of all forms which are codifferentials
of forms ¢*° with compact carriers and fz the closure of F2 in F, On account
of the formulae (1) and (2) of §14, a current is closed if and only if it is
orthogonal tq F2 and it is coclosed if and only if it is orthogonal to Fl'
Consequently, ﬁl and fz are orthogonal and the orthogonal complement F5 to
their direct sum in F consists of all square integrable currents which are
closed and coclosed.

On account of the completeness of the Hilbert space, we get

Theorem I. Each square integrgble current ol cen be decomposed in

e unique way into a sum

A= A+ K.+ A

1 2 3
where 0(1 € Fi, 0(2 &€ Fy, ol & Fya
Moreover, okz 16 ¢° and 0(1 and olz are COO in each domain in which
o« is ¢%.

The last statement follows from the theorem of §17, because ™, is
harmonic, AN oll= d0w and A K= bdol .

’,{'l;‘j.g theorem together with the above proof are due to K. Kodaira
(loce ci‘!;,). On the general method used here, see: i-I. Weyl, Method of
Orthogopal Projection in Potential Theory, Duke Mmth, Journal 7(1940),
pPpe4lls444, Previously, the equivalent Minimum Method wag introduced by
W.V.D:Hodge in his first papers on the theory of harmonic integrals (see

references in his book).
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We can now extend this decomposition formula to the class C of all

currents T such that T[] is convergent for every form Y which is ¢® and

square integrable.

We have only to set
(Ti’kP) = (Tp‘?i) (1 = 1,2,3)

where Y = ‘y1+ ‘{2+ \93 is the decomppsition of @ o ZEven if the carrier
of ¥ is compact, the carrier of @, need not be compact, but, as T ¢ C,
(T,t?i) is always convergent and the definition is correct.

Clgarly, T = Tl+ T2+ ng T1 and T3 are orthogonal to F2 and consew-

quently closed, Tz and TS are coclosed, T3 is an harmonic form (closed and
coclosed) which is square integrable because Iz € ¢ ard each form ¢° be-
longing to C is square integrable, as can be easily pircveds Ioreover, in

each domain in which T is C°, T, and T, are also G . because A\ 7,2 abr

and AT2= dar.

The class C obviously contains all currents with a compact carrier
and all square integrable currents. It contains the current Y, defined in
§21, and we can decompose Y into

Y=Y + YZ + Y3 ’

1
where each component has to be ¢® outeide of Ve

In the case of a compact space, as we have seen,

Y, =d0exy) , Y,=0dexy) , Y, =h(xy).

In the cese of a non-compact space, we have not proved the existence

of a Green's form g(x,y), but we have the forms (or currents) Y,» Y, end Y,.

2
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I hl‘ hz, ess is a complete orthonormal system of squere integrable

closed and coclosed forms, we still have
Yy = h(x,y) = 2 b (x)h,(y).
i

The series may have an infinite number of terms, but it is always convergent,

and h(x,y) is still the kernel of the projector H defined by HA = o

3
Let us set e(x,y) = Yys f(x,y) = Y, o These expressions are symmetric
double forms, c® for x %'y, which can be considered as the kernels of the
projectors which project T on T1 and T2 respectively, but they are in general
not integrable in the neighborhood of x = y.
The forms e(x,y), f(x,y) and h(x,y) are nothing else (sign excepted)
than the "harmonic fields" s**(x, g), e(x, %) and o(x,'€) introduced by
Ko Kodaira (loc.cits p. 647 and 657)s The form h(x,y) is closely related

to the Kernel Function introduced by S.Bergmenn (see: S. Bergmann, Sur la

fonction-noyau dtun domaine et ses applications dens la theorie des trans=
format;ons pseudo~conformes, Paris 1948, Gauthier~Villars).

As a matter of fact, we have a form e(x,y) = ep(x,y) for each degree
P, and for each kinde WNow, the argument of §21 leads in the same way to the

formulae for the Kronecker index in a non~-compact space

(
1(cP,c??) S j e(x,§)-g (e i) .
oAP Jon-p °p oP P P
y X X Yy
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Chapter IV.

Homotopy and Smoothing,

2}

§23. Homotopy and Currents,

Let us consider two menifoids Coo, M and Ml' and a mapping ft of M"’
in ¥, x = fty with y € Ml and x € M; depending on a parameter t (0 S¢S 1),
such that fty is ¢© with respect toy and t together, e shall denote by
MZ the tqpological product of Ml and the interval 0 S¢S 1 and by £ the

mapping x = £(y,t) = £,y of M, in Mo

Suppose yl,o..,ym are local coordinates in Ml' Then yl,.,.,ym,t are
local coordinates in M2 and any form in Ml' whose coefficients may depend

upon t, cgn also be considered as & form in M2 whose expression does nodt

contain dte Apy form K in M2 can be represented by the expression
A= o+ dat A"

where o’ and oL” are forms in Ml of degrees p and p-l respectively with co-
efficients depending upon t, and such a representatio.n is ymique.
In particular, if “p is a p-form in M, for A= f*\?, we have

ckln (f*L?)' = _:k?. Let us set
&'=(g%¢) =x .
Then

(1) f*\_p = f,:‘y + dt/\’}XL?

The differentiation operator d in MZ splits into

d =4 + dt/\éf— where dr = ; dyi/\ B—g-;
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There follows from (1)
dr¥y =anie + dt/\(--e-)-f* - d'X ©)
Y £ % b Y P

and consequently,since df*'i_e = f*duf s on account of (1) applied to d in-

stead of P
Xdg = (f*dkf)" = B-S—f,:gf - d'X

If we consider X \p as a form in Ml and t as a parameter, we can write
dX\f for d'X v « By integrating with respect to t from 0 to 1 and setting

ngk_g-dt=F*k5> ,

we eventually get

(2) ]9 =t =dFsFdy

Clearly, if \pis a p-form ™ in M, F'¢ is a (p-1)-form ¢® in M, 3
*
for p=0, F ':p=X§>=O.
Now, if T is a current of dimension p in Ml’ with a compact carrijer,

we define the current FI of dimension p+l in M by

Frly] = 7(F g ] .

This defining formula can also be applied to a current T with a non compact
carrier, provided ft has the following property: for eny compact set XC M
f-lK is compact; then the carrier of F*\P is compact if that of ‘¢ ise This

holds in particular if f_ is & homeomorphism.

t
This operator F can also be defined in the following weyes Let T, be

the tensor product,in M,, of T and the current 1 in the interval 0 S ¢ < 1,
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def'ined by

(o] [1”1
TN ] =T of, dt] .
. J.

. * _ *

e have sz[‘f] = Tz[f ] = T[F p] and oonsequently FT = £T, &
Now, on account of the definition of the differential of a current,

there follows from (2) the following formule, in which m, n end p are the

dimensionalities of M,, M and T respectively

(3) £17 = £0 = (-1)*Parr - (-1)"Prar .

1

In the particular case where T is a chain, this formula is well

known in Topology. Ve can say that the currents f.T and foT are homotopic,

1

and we see that two homotopic closed currents are homologous.

§24, Smoothing of Currents in Euclidean Space,

In Euclidean space E, let sy be the translation syx = X + ¥y which
carries the origin into the point y. Let j)(x) be a function COO, containing
a parameter & > 0, O S_P(x), with a carrier contained in the sphere of
centre 0 and radius & , such that, if dx is the volw:e element and
r(x) = p(x)dx, Sr(x) = 1o

Now, to each form o in E we associate the forms

* *
REOK = Ssyd\‘ r(y) and R A = Ssyd\- r{y)

£

where, of course, the integration is taken with respect to y, Let us re=

mark that syd\ = (s;l)*ok , which form is ¢ if K is, and that

R&ok (gl-= d\[R:\g] .
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For any current T we define R&T by

R[] = TR, ]

*

*
Clearly the operators s 8 R
v B v* 5y* e

and RE are permutable with de

Let us now consider the translation Sty with a parameter O S+ .
For t = 0, this is the identical mapping and for t = 1 the translation s .
It Fy and F; are the operators associated with Sty in the same way as F and

F* are associated with £, in §23, we have, according to (2) §23,

* * *
(1) Sy“f"‘f“dFyE?"'FydLS)
Let us now define the operators A: and AE by setting

N g*";%” r(y), AMe] = (4% ]

If we multiply the relation (1) by r(y) and integrate with respsct to y,

we get
R aate +a%a
P B e S e &9
and there follows

- = - n-p -
RET T = (~1) (dAET A_4dT)

3

where n and p are the dimensionalities of E end T respectivelye

Clearly the carrisr of RZ‘f’ is contained in the €& =neighborhood
of the carrier of ¥ (i.es the set of all points whose distance from the
carrier of SD is less than & ) and the carrier of RET is contained in the

£ = neighborhood of the carrier of T.
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We shall now prove that R

(T is ¢®. Suppose first that T is of

degree zeros. e have

e () = (g glemey = § ptrmrg ey .

According to the definition of R&T and to Theorem II, §10, there follows,

R.T(x)[p (x)dx] = T(x)ax ¢ (y)dy[ply-x)] = @ (y)dy T(x)dx[p(y=x)] .

If we set T(x)dx[f(y-x)] = g(y), we have

R I(x) ¢ (x)ax] = gl (v)dy]

and this means that RET(X) = g(x), which function is c® according to Theo=
rem I §10.

The cgse where T is of degree > O follows from the above, because
if 8 is any coefficient of the symbolic form associated with T with respect
to rectangular coordinates, RES is the corresponding coefficient of the

symbolic form associated with R&To

The dgfining formula of R;: shows that, for & > 0, R;\g > O
y . 0 % *dy .
foreover, since -—-{-R Y =R —% in rectangular coordinates, for £ == O,
each derivative of R:'f tends to zeros Consequently, on account of the
continuity of the current T, RéT[’f] = T[R:\f] —> 0 for £ —» 0, We see

that, for & ~> 0, RéT converges towards Te

*
&

of AET is contained in the & ~neighborhood of the carrier of Te. In general,

Prom the defining formulee of A and AE s it follows that the carrier

AET is not ¢®. But if T is 000, AET is also coo. This can be shown in the
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following way., If o\ is a p-form, a direct calculation shows that
Fy oA = (-l)PH’F_yck » Which form is ¢® 1f L is coo’ end consequently Aé oA

is also coo.

Thys, we have proved the following

Theorems In Buclidean space E, for any & > 0 there are operators
!
R& and A&. with the following propertiess
1) If T is & ocurrent of dimension p in E, R_T and AT are currents of

&
dimensions p and p+] respectively, whose carriers are contained in the
& =~ neighborhood of the carrier of T, which satisfy
1 - = n-p -
RE.T T = («1)" “(d A&T Aad T)

2) RTis ¢ and RT = T £or & == 0,

3) £ T is ¢®, AT is ¢®.

§254 Smgpthing in a Manifold,
@Weo shall extend the Yesult of §24 to a genefal manifold M and

sketch s few applicetionss

Let M be an nedimensional menifold ¢ . According to a well known
theorem of Whitney, M can be regularly imbedded in a Euclidean space E of
dimengionality nym (x.p. can be a.ssumed N 2n;)—1)__. At gvery point x € M there
is @ well determined m-dimensional normal pl,a.ne L to M, We shgll assume
that there is a constant ¥} > O such that for J;';[x the distané:eg from x and
from x' of any point of er\ Nx' are greater than N, . As a matter of fact,

the existence of a posjtive function M = W(x) with this property follows

3
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from the theorem of Whitney, but we assume in addition that this function
has a positive lower bound.

Let D and D! be the sets of points of E whose distances from M are
less than %, and 4@/@ respectively. To each point y € D there corresponds
& point x = Py € M, which will be said to be the projection of y, such that
y € Ni and the distance from x to y is less than N, » Clearly P is a map-
ping ¢ of D in M,

Let us denote by I the identical mapping of M in Ee¢ The product PI

is the identical mapping of M onto itself, If M is orientable, the mappings
P and T are orientable and we shall choose orientations such that the re-
sulting orientation for PI is the natural one. If M is not orientable, P
and I are not orienteble, but we can always orient them in any neighborhood
of M and the corresponding set of D and we shall suppose the above condition
is satisfieds, For the following definitions of RE and Aé s this will be
gufficient,.

If T is a current in E, whose carrier is contained in D', we define

the projection PT of T in M by

PIly] = [P ]

*
In this definition, p is a form in M with a compact carrier, P Y is a form
in D whose carrier is not compact,but the intersection of the carriers of T
* *
and P © is compact and consequently T[P S’] is always convergent and our

definition is corrects The following lemme states thet PT is ¢® if T is ¢,

Lemmas The projection P in M of a form c® o whose carrier is

. . . co
contained in D' is a form C in M



87.

Proof: We can introduce local coordinates xl,...,xn,yl,...,ym in

D, such that x]',...,xn aere local. coordinates in M and are constant in Nx

and that ylg...,ym are rectangular coordinates in Nx’ Let us set
W = dyl/\ ece /\dym *

The form oA can be represented by the expression
A = o+ w A I
where /3 is a form of degree zero with respect to the dyi end okl is a sum
of terms of degrees less than m with respect to the dyi. Such a represent=
ation is unique,
Let n+m-p be the degree of ok » If Y is a p-form in Y, P*ks) is of

degree zero with respect to the dyl and we have

'8 /\P*ty ==o.>,/\ (1.»/\ P*‘)o
and consequently
Pl = °<[P*k5_>] = Sco /\/AAP*L?
The integration has to be taken over D! and can be decomposed into an inte=

gration over Nx end an integration on M« If we set

S:Nw/\/i)=[51,wehave P[P] = S’/Sl/\kf

X

and this meens that Poc= (3., which form is ¢ in M .

If T is a current-in M, IT is the current in D defined by
IT[A] = T ' Jo Clearly PIT = T for any current T in M and I*P*kg = \p
for any form P in M,

&

Euclidean space E which are respeotively equal to the operators RE/z and Aé/
C /2

Now let us denote by R'. and A'é the operators relative to the
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defined in §24, If € < Y , for any c¢urrent T in M the carriers of RéI,T
and A!IT are contained in D', because D' is the M./2 = neighborhood of M

and the carrier of IT is in M, Then, if we set

» L] t
(1) R, = FRIT and A =PMIT ,

it follows from the above ‘aﬁd from §24 that these operators R& and A& have
with respect to M the properties 1) and 2) of the theorem of §24,

The property 3) does not follow, because IT is never ¢® in B, except
if T = O But by slightly modifying our definition, we shall get operators

which have the three properties 1), 2) and 3).

Let o (y) be e function C* in E such that: the value of this func-
tion depends only on the distance of y from M, o (y) = O whenever this dis-
tance is greater than €/2 (as is the case outside of D! since € < )

& (y) = 0 everywhere, and

g CTwWe )
NX

For any form A in E and for any current T in M, we set

I*QL= S won( and I T[et] =T{I*°k] o
& N £ <
X

The first formule means that each coefficient of the form Igok in M, expressed
with the help of the local coordinates xl,...,xn, is equal to the integral
over Nx (Lees with respect to y) of the corresponding coefficient of the

form <X expressed in D with the help of the coordinates xl,.. .,xn,yl, ...,ym,

multiplied by oo o
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For any form ¥ in M and for any current T in M, we have I:P*Lf =

and PI&T = T, Moreover,

I&\?[ok] = &f[IZo(] & gm\f/\—gnx o-co/\ot= SP*ly/\ d'co/\d\

This meens that I,\p = P*p/\ cco, which form is ¢*. Hemce, 1f T is €

in i, LT is ¢® in E.

Let us now set, instead of (1),

2 = 1 d = 1
(2) Re PREIE an A PA&I&
we see that these operators RE and A& have with respect to M the three

properties 1), 2) and 3) of the theorem of §24, Thus, the theorem of §24

holds for the manifold M instead of for E.

As first application, we shall prove Theorem A of §12,

Suppose the current T is closed. Then RéT -Tsd dAéT and T is
homologous tg RST’ which current is Coo. If the carrier of T is compact,
the homology is a compact one, because the carrier of A&T is compact, !

Suppose the form o bounds a current, o« = dS, Then, since

4
RE% dRES and R&“ -k == dAéok » <A bounds -RE.S ¥ A&ok, which current

is ¢® if o is ¢%.

As second application, let us consider the n-dimensional Euclidean
space Es Let ftx (0 s T~ 1) be a retraction of E into & point 2, i.e, &
mapping ¢® with respect to x and t of E in itself, such that fox = X
(identical mapping) and £ix = 3 (constant mapping)e If ' is & closed form
of degree p > 0, since f: =1 and i‘;\p = 0, the formula (2) §23 gives
Y= -dF*'f and shows that 4 is homologous to zero; for p = O, thia formule

gives \P(x) s Y(z) and shows that \p is a constant, which fact is evident,
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On account of Theorem A just proved above, it follows that each closed

current of degree > 0 in E is homologous to zero and that each closed current

of degree zero is equal to a constant function. This last statement means

that a distribution all of whose deriveatives of the first order vanish is

equal to a constant function.

In a similar way, by using Formula (3) §23, we get: each closed

current of dimension d > 0 with a compact carrier in E is compact homologous

to zeroj a current of dimension zero with a compact carrier is compact ho=

mologous to a multiple of a O-simplex,

On account of Theorem A, this contains as a special case the follow-
ing lemma that I used in my Thesis: a closed form of degree p < n with a
compact carrier in E is the differential of g form of degree p~l with a com-
pact carrier; for p = n the same is true if and only if the integral of the

form over E is equal to zero.

§26+ Additional References to Chepters I and II.

The concept of chains of even kind was introduced under the name
"chemps de seconde espéce™ in my paper: "Sur la théorie des intersections
et les intéérales multiples™ (Commenterii Mathematici Helvetici, vol. 4,
Pe151-157) and also, in another form, in my Thesis:"Sur l'enalysis situs des
varidtdés & n dimensions™ (Journal de Mathéﬁatiques pures et appliquéés, 1931,

Pe 115-‘200)0

The concept of curremt was introduced, in a less precise and less

general form than here, in my papers:"Relations entre la Topologie et la



91,

Théorie des intéérales multiples® (L'Enseignement Mathéhatique, 1936,

Pe 213-228) and "Uber mehrfache Integrale" (Abhandlungen aus dem Mathe~-
matischen Seminar der Hansischen Universitat, Bd.12 (1938), pe313-339),

For the development of the concept given here, I used the ideas introduced

by Mr. Laurent Schwartz in his paper "Généralisation de la notion de fonction,
de dé}ivation, de transformation de Fourier et applications mathéﬁatiques

ot physiques" (Annales de 1'Universite de Grenoble, Annde 1945, Peb7=74),

The distributions there introduced are at the same time curremts of degree n:
in the n-dimensional Euclidean space, it is possible to identify a current

of degree zero and the adjoint of degree n,

A book by L. Schwartz, "Théorie des distributions, Tome I" (Paris,
Hermann et Cie, 1850) has just appeared since the writing of these lectures,
It contains the two theorems of our §10, together with their proofs, the
ideas for which are already to be found in the paper referred to above, The
book elgo contains the theorem of §12, with a proof very similer to ours;
the main jdeg of this proof, which consists in using a modified elementary

solutipn, is already in the papers of K, Kodaire.
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Part ITe

By

Kunihiko Kodaira

Chapter V,

Differential Forms on Complex Analytic Manifolds.

§27. Complex Analytic Menifolds with Kahlerian Metrics.

A complex analytic manifold NFn of complex dimension n is, by defi-
nition, a topological 2n-dimensional manifold with a complex analytic struce
ture, The concept of a complex analytic structure can be defined, in the
same way as in the definition of a ¢® structure (see §1), by means of the

concept of regular analytic functions in a neighborhood of a point and of

the following two axioms:

Axiom l. f(q) being an arbitrary function defined in a neighborhood

U of a point in M?n, £(q) is either regular analytic in U or it is not.

Axiom 2, For every point d, in Mzn, there exists a neighborhood U

of g and n complex-valued functions zl(q), ceny zn(q) defined in U such that
a) the mapping g =—» (zl(q),...,zn(q)) is a topological mapping of
U on an open subset of the space of n complex variables, and that
b) an arbitrary function f(q) defined inv&Uis regular analytic
in V if and only if f£(q) = f(zl(q),,.., zn(q)) is & regular ana-
lytic function of n complex variables 2ta zl(q),...,zna zn(q),

where V is an arbitrary open subset of U,
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In this Chapter we consider a complex analytic manifold Ma % which
is compact. The functions ‘zl-«,..:. ,;.'z!1 appearing in Axiom 2b) are called local

analytic coordinates in Us. Axiom 2 asserts the existence of local analytic

coordinates in a neighborhood of every point of MZn. Putting
% 20& Ny 2 ok
(1) z = '.1 1x , (h=1,2,444,n),

we introduce real loéal coordinates xl,xz,...,x on M2 , which clearly de=-

termine a _coo structure on Mzn. Thus MZn is a manifold Coo ; moreover MZn is

orientgble, Indeed, for an arbitrary transformation of analytic coordinatesti

2P x20<-1+ 1 xzu.___> > izm-l* 3 .i2d~

- we have

o AVEN
det(bx) Ide‘b(bz )! ,

as one readily verifies by using the relations:

&AL gEp 8P R w4t
bx2d-1 = .ox204 - Re NN ’ bx2°\-1 = DXZO\ ()Z

We choose the orientation & of MZn 8o that & = +1 with respect to the system

of coordinates xl,xz,....:r:zn introduced in (15. This orientation will be

called the natural orientation of .Mzn; it is determined uniquely by the ana=

lytic structure,
Now, supposing the conjugate variables z% = xzx-l- V-l xzu to be

formally independent of 2% = x2°k-l+ V-1 de » We write an a.rbitr:ary function

1 2 2n 1 2n

f(x 21X geee,X ) of x gee9 X as ﬁ(zl,,..,zn » El,oo.,zn ) and define the

partial derivatives /02" , OP/0E™ of £ us follows:
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of 1/ 0f of
ézd\g-z-(Ode\—l - \/-l O}(de) !
(A= 1,2,0004n),
d 1/ d o\
e 2\ TVT aER)

Then an arbitrary function £(z,z) of ot is regular analytic with respect to

zl,...,zn if and only if -b-g-;\ = 0 (A= 1,...,n).1)

Z

A positive definite Hermitian metric

2 }“: & =A -
d = 2 . d d N » =
’ eu/”=1 gd‘/i : ’ (g/sm gm/g)

will be called a Kahlerian me‘bricz), if gd‘/a satisfy the partial differentisal
equations

Og., : Og Og . Og, :
(2) Sep L Bab Lo My BA

0z * dz ¥ oz It 0z ¥

A\l

Now we assume that a Kahlerian metric dsz= ZZgo(/-b dz” dz is defined on Mzn.‘
By means of the system of real local coordinates, ds2 can be written as
AR
ds = g, 8x¥dx " ,. (8., 8,.)3
Jok=1 Jk jk K
thus MZn is a Z2n-dimensional orientable Riemannian menifold with a positive

definite metric, Hence the whole theory of differential forms expounded in

the previous chapters can be applied to‘Mzn; we can consider differential forms

1) See, for example, Pochner and Martin [2], ppe36-40.
2) Kshler [5].
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i i
(3) LPP:: Z \?. i dJ\’.l/\.../\dxp
il<ooo< ip ll..° P

defined on Mzn, the derived form d\fp. the dual form *\?P, etc., where the

coefficients Civeed may be complex valued func};ions. Since our system of

local coordinates xl,xz,...,xzn defined by (1) has always the positive

orientation, it is not necessary to distinguish differential forms into

even and odd kinds (see §3)e
Inserting 2, 1(& +z2 ), L (z> - 2%) into (3), we
2 \/-l
can rewrite \._pp as .

"f Z Z Y x 3 5 dzdl/\-u[\dzur)‘\dzglf\.../\c.i-z/ss .

r+63p o <eee< 0 100 e Breee s
A1<Q00</58

3)

Now we introduce two operators _/\_and ¢ operating on kfp as follows ‘1
eL

r-103 1
./\. P Z Z V—"_l"( 1) ‘1‘1“»0( ".& 1/5/31“'/")’5 1 /\.oo

r"’5=P °Ll<o . o<°‘«

/51<"'</Ss'1 .../\d:r'l/\digl/\.../\dzﬁs'l ’

cyP= P > (VD . dzdlf\.../\d:r/\d‘z‘%/\...

r+s=p A <eee<o, °L1"°°(r(31"'@s
(51<...<{2ss
OQOAd-ﬂS F)

] . d\
where gd(h are the quantities defined by the equations Z gd‘x gﬂ% = 6@
¥

3) These two operators were introduced by W.V.D.Hodge. See Hodge [4],

pel7le
The definitions of _/\ and C employed here are due to A.Weils CfaWeil [8].
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(in case p = 0 or p = 1, we have to put -/\.\?p = 0)¢ It can be easily veri=

fied that A and C are invariant under an arbitrary enalytic transformation

of local coordinates zl,..., zn, Furthermore we have the following formulae4):
(4) C A = A (I

(5) _/\..A = A.A.n

(6) » cc P= (-1)PyP,

(7) ANd-aA=cc.

By means of the 2-form

n
A -
W = \f =1 Zl gm/-5 dz /\dzp

D() Fv”
associated with dsoe S 2,5 az* ail AP can be written as
- 5
(8) _/\_\fp = (-1)P l*(oo/\*‘fp), )

Hence we have

(-1)P" AL Pyl = j;fn s A gP)AY -
- g PAwARY) = ((1)PTGPLAY),

or
(9) APyl = $FIAYT,
'\// being an arbitrary (2n«p+2)-form. Again we get readily

(10) cyPlyl = (-1)P9Pleyl,

where 7 is an arbitrary (2n~-p)wform. These two formulae (9), (10) lead us

4) The formulas (4), (5), (6), (7) are to be found in Eckmann and Guggen-
heimer [3]s Cf. also Weil [8)y Hodge {4],pp.165-168, pel7l, pel75, It
should be noted here that Eokmann-Guggenheimer's operators C, /\. are not
exactly the same as our C, -A_,

5) Weil [9], pyl1l; Eckmenn and Guggenheimer (3], p.489.
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to define _/\_ T, CT for an arbitrary current of the degree p as followsi
\
(x1) Arlw] = AW,
(12) orly] = (-1)Prlcy] .

It is to be noted here that the 2~-form « defined above is a harmonic

forms) on M?n° Indeed, as one readily infers, the condition (2) is equiva~-
lent to
(2) d =0,

while, since -A_w = -n, we get, using (7),
Sw=c(/\Nd=-dN)w=0.

By an exact regular analytic differential in an open subdomain

n

C PR - - K . .
L= M7 we shall mean a l-form \p of the type P d;=1\a* dz = defined in
Iﬂlsaxisfying d ¥ = 0 whose coefficients Yo are regular analytic in o,

b - S:O%’

of the exact regular analytic differential P is a (meny velued) regular

The integral

analytic function in () and g coincides with its differential d é@ o
Lemme 1. If e current T of the degree 1 defined in L1 & 1 satise

e ———etp——

fies CT =\ =1 T, then we have

§r==V-TAdar.

Proof: We get, using (7)

§rawVabdcrs-VaacAdr==-V-1AdT1, qee,de

6) Cf. Hodge [5], pp.168=171,
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Lemma 2. If a current T of the degree 1 defined in an open subsey
)L S ¥ satistios CT =\ =1 T and dT = O, then we have 0T = 0 and T is
an exact regular analytic differential.i'n n .,

Proofs By Lemme 1, T satisfies OT = 0 in {) , Thus T is a harmoniec
current and therefore, by virtue of a theorem in §17, T is a harmonic form;
moreover, since CT = \}-.-E T, T must be a form of the type: T = Z Pa. dzd‘ .

Now we have

n b\fd, B ” n O?eL 6 -
% 4z d cazPAasT=ar =0,
o FECEAET L mr e

This implies 5‘j>d/62(3\= 0 (oL,(?:: 1,e00,0), proving that 3’6\ are regular
enalytic functions in {1, qee.de
In view of the above lemma, we introfuce the following

Definitions A ourrent T of degree 1 defined in en open subset

QN g MBn satisfying CT = \}—-—f T is called an agalytio current, if ?.T vanishes
in () except for a nowhere dense closed subset E of {) 3 then T is said to
be regular in {)«Eand singular on E,

By virtue of Lemma 2; the analytic current T mentioned above coincides
in Q « E with en exact regular analytic differentials Now, let us consider
the following problem, which is similar to Problem 3 in §19:

Problem. Assume that, for every point q of Mzn, an analytic current
Tq defined in some neighborhood U(q) of q is given so that each Tq is regular
in U(q) - E and that each Tq- T. is reguler in U(q) - U(r).* Then, does there
exlst an analytic current T defined in MZn such that T = Tq is regular in

U(q) for every point q of Man ?

* F is a nowhere dense cdmpa.c'b subset of Mzn.
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This problem c¥n be solved by the method of de Rham (see §19). By

hypothesis, the currents Tq are given so that

(13) cT, Vel Ty o in U(q) ,
(14) ,d'r_q' =0, in U(q) - E ,
(15) az=m,) = 0, in U(q) A\ U(r ).

The laat condition (15) implies that
(18) 2= qu

is a well determined current in M?n satisfying dZ = 0, which Wwill be called
the gglar cyﬁle7) of the gystem of the currents Tq- Thus our problem re=

duces to ‘that of solving the simultansous linear equations

(17) cr=V-17T, in 12,
(18) T = Z , in ¥

for the unknown current T of degree 1,

To do this, we introduoe ‘the gperators G sand H defined in §19. Then
it follows from (4) shd (5) that C and A are commutative with G and H, Now,
by Lemme 1, we get

'5‘I'q~v-\/-1:/\ﬂq=w\/-1./\.z

and therefore

ATq=é'z-\/'-'-IdAz§

Combined with (13), this yields

v

7) Cf. Weil [8]. Po 114.
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c(6z ~ V=1 gAz)=V-1(&%~-V-1alz).
Hence, putting
(29) T = (02 - V-1 a\L2),

we infer that the current T thus defined satisfies (17), while we get readily
aT = 6adz = ¢A g or

(20) AT = Z - H 3% .

Comparing this with (18), we infer therefore that the above problem has
(at least) one gplution T if and only if Z ~~ 0 (homologous to zero) oy MZIl
and, in case % ~40, a solution T is given by (19), Obviously the solytion
is unique up to gyerywhere regular exact analytic differen'téials an Mzn', Thus
we conclude:

Theorems There exigts on MBn (at least) qne apalytic current T such
that for every q € Mﬁn the difference T = Tq is reguler in U(q) if and only
if the polar cycle % :pf.f‘ the system of currents Tq is homolggous to zero;

end; in case Z i® homploggus Lo pero, such a current T is given by

R ot 1 ) -_—
(21) T=boz-VeldAczrad ,

“d b

where 4 C} is an arbitrary everywhere regular exact analytic differentialaa)

8) Cfe Weil [8]s In order to deduce from this result a theorem of Weil
[8] on the existence of meromorphic forms, it is necessary to verify
that every meromorphic form can be considered as a current,
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§28+ Meromorphic Functions.

We start with the following definitionss

Definition la A compact subset " of MZn is called a (n-1)~dimen=

sional analytic subvarjety of Mzn, if, for every point q &€ Mzn, there exists
e regular analytic function fq(z) defined in some neighborhood U(q) of q
such that [ M U(q) = {z‘ i‘q(z) = O} ° fq(z) w 0 is called a local equa~

tion of [ at q (in case q ¢ [ we have to put fq(z) 1)

Definition 2, A lotal equation fq(z) = 0of [ at qis said to be

minital, i, for every local equation b (2) = 0 of " at g, the ratio

hq(z)/fq(z) is regular analytic in some neighborhood U(q)e

Let us call a function hq(z) regular analytic at g if it is defined
;!i‘.h«ﬁoﬁle neighborhood of q and is regular analytic theres, For each g the set
of all functions regular analytic at q forms a ring Oq without null divisors.
A member hq(z ) of Oc1 is a unit if and only if hq(q) # Oe Tt is known that
every h 3 Oq ¢an be decomposed into e product h = uq-"q Bk of irreducible
factors hqk where the hqk are uniquely determined up to multiplication by
a unit uq.g) It follows that the minimal local equation mentioned in De-

finition 2 exists,

Definition 3. P is said to be reducible, if [ can be represented

/ 7
as a sums | = [ 'y [ of two (n-1)-dimensionel analytic proper subvarieties

! 1
l"' % r’, ™ ; [T of 73 otherwise [ is said to be irreducible,

9) See Bochner and Martin [2], Chape IX.
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As is well known, every reducible -(n-1)-dimensional subvariety
can be decomposed uniquely -intq & sum of a finite number of irreducible
(n-1)-dimensiqnal subvarieties.

Suppose {" to be irreducible and dénots for every q € Mzn the mi-
nimal local equatién of r at q by fq(z) = O, The;l, ® point qe [ is culled

a simple point of l'" s if one of the partial derivatives éfq(z)/bzeﬂ

(X = 1,see,n) does not vanish at q; otherwise g is called a singuler point

of [ o The set § of all singular points of T constitutes an anlytic sub-
variety of [ with the complex .dimension = nep > which will be called the

singular locus of r o For every simple point q of - o We can find in a

» 3

neighborhood U(q) of q 8 parametric represevhaiion

o

zZ = Z&(tlpcoo.tn-l)

) ’ (A= 1,2,0e.,n)

of F:, where 2z (t) ere reguler anslytic funciions of n~-l complex paramsters
tl,... ,tn'l (defired in some open domain in the complex t-space); thus

[M w5 isean open anaiytic manifold of complex dimension h-le Moreover

[ - S is & connected set, |  is therefore en orientable (2n-2)-dimensiomal

pseudomenifold with respect to the natural orientation and thus [Mis a

(2n=-2)=cycle, Further, it can be easily verified :bhat,. for an arbitrary
(2n-2)=form \(/of coo’ the integral (yl = jr(\// converges absolutely; thus

£ : -~
{"cen be considered as a current [ [\)(/]o The 'lcurrent F‘ satisfies
X

(22) cl«[ .

In fact, we have

-

r+s-2n- (As
oo‘oA d.
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Inserting zd\tn zO( (tl,...,tpn'l) in this expression, we get readily

Fleyl = [Tly ], proving (22).
Now, let q be an arbitrary point of u?.n and put

T, 1 1 dfq(z)
"z 41 g Ty

fq(z) = 0 being the minimal local equation of P at de Then, for an arbitrary

1

(2n-i)Lfm'm ’I,V of ¢ whose carrier is contained in U(q), the integral

TLYlw SU © Ay

(q) ¢

converges absolutely; thus 'Eq can bs considered as a current ’Cq['y/] defined

in U(Q)o

~ Lemma 3¢ As a current defined in U(q),. t’q satisfies
(23) C'Cq”‘\/"l t‘g'

(24) dtq“' V‘T. r—'o

Proofs By a suitable choice of the system of local coordinates
W, 82,...,zn whose origin -is the point g (where we dénote the first coordi-

nate by w instead of zl), fq(w,z) u fq(w,zz,.,.,zn) can bs written as
‘ ) mel 10
(#8) £ (wz) = ulw,2)- (™ s 4 ™ e a(2) ), 20

where u(w,z) is a regulser analytic function of W,zz,..,,i~n with u(0,0) / o)

and .A.k(z) (k=1,2,440,m) are regular analytic functions of zz,...,zn guch that

e

10) Bochner and Martin [2], pp.188-190; see also Behnke and Thullen [1],
pPe56-58.

/]
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Ak(o) & O Putting
F(w,2) = e e Al(z)wm"l-e- see + Am(z),‘

we have therefore

1 1
’cq‘?'t?d“gu"w d log F

Obviously we have d & d log u = 0; hence it is sufficient for our purpose
to show that

d'dlogFuéTLV-l r-‘

or

(26) Xv(q) dlogFAdY = 2T \ -1 EF’V N

where Y/ is an arbitrary (2n-2)-form of C* whose carrier is conmtained in

U(q)s TFirst consider the case in which Y is & form of the type

(27) v = '@' (wyz) azA aFE N VAR AR Tl
\P(w,z) being an arbitrary function of C° whose carrier is contained in
U(q)e F(w,z) can be decomposed:as

i
F(wyz) = 1 ljw = A5(2)3,
J=1

where o .(z) are g¢onmtinuous functions of zz....,zn. Moreover, since F(w,2)
j --gr—v—v--;— T, + K
is the minimal local equation of [ ', F(w,z) and OF (w,2 )/Ow have no common
factor as polynomials of w and therefore the digecriminant D(z) of F(w,z) does
not vanish identically; thus
°kj(z) 7 *,(2) (3 # k) for overy g with D(z) # 0 .
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Hence [' is decomposed into the union M= u P of m different "sheets"
J=1

r_'j each of which is defined by the parametric representation: w = d\j(z).

Now we have, for \J/ of the type (=€),

Sd log FAd Y = g 0 tl;g L. gv_vw awAaw A az? A\ aBPA vao A @37

oW - 2 =2 -n
~JZ=;-SW-°((Z) bv_v dWA dW/\dZ/\dZ/\.oo/\dz °

First we compute this integral with respect to w, w for fixed z. Then we have

S 1 o bg} dw/\ dw = 1lim ! dqf aw/N\aw =

womss E—>olw_$_,zew'°(j o

= =1im S {-—é%z-l dw}= lim @ p_.(_vl'.!_.z_ldw=

W~
lw-o£jl=8 J Eﬁofw-df:& J

= ZTC\/t.l— é(da, Z)o

Hence we get

Sd log FA a4y =2 TE\/—:;ZIL_ S qf(okj(z),z)dzz/\ dE?‘/\ coe /N dZ" =
51 -

’zmﬁgﬁr}\lfﬂﬂ \f-‘l‘jrﬂ\//,

proving (26) for those ’\// of the type (27)e In order to deduce (26) for

eneral we introduce a new system of coordinates:
’ ¥

’V\V":W.’ ;‘J=Zv+tvw (\)=2,3,o-o,n),

tv being small complex parameters, and apply the above result to

~

Y= . 5P A N L A G0
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Then we get
Sd og F'/\d‘:\}f - zmﬁgry .
Pubting : ’
Y= U a2 A 4B A vea A 2P 6P,
Wy 1t \]ﬁdzzﬂ.., A A A awAdi AW AGR,
Vi Y. a2 A e Na N\ aw A as™A L N aE®
Vop" Y .asf A cee AawAai A A aPA @A o0 A dE®

we have therefore

'}1 S & log F/\ayf\y--}:ex%‘yz’m \/IS V"}‘ .

tt
)\’rﬁl A

where :blﬂ 1, This yields

Sd log FA (11@?1 = 2T V':'i'jx//Ay v (Aup = L2,00,0),

‘proving that (26) is valid for arbitrary Vs @e0eds

It is to be noted h;re that, if f‘q(z) P O is a minimal local equation
of [ &t q, then, for a sufficiently small neighborhood U(q) of q, fqh(z*) =0
represents a minimal local equation of M at every point p € U(q)e

A (many valued) function F(z) defined on M'Zn is oalled a meromorphic
funétion, if, for every point q € MZn!_ F(z) can be represented in a nsighbor=
hood U(q) of g as a ratio F(z) = hg(z)/fq(z) of two regular analytic funce
tions hq(z), fq(z) defined in U(q)e Such g function F(z) is said to be

multiplicative if the absolute value |F(z)| is one velued on Mzn. By an

analytio continuation elong a closed curve Y s the multiplicative meromorphic
function F(z) is multiplisd by & constant factor X( x) with IX(8 Yi=1

depending only on the homology class of X on MZn -
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Suppose that & multiplicative meromorphic function F(z) on Mzn is

{  given. Then, assuming that the functions fq(z) and hq(z) appearing in the
representation F(z) = hq(z,)/fq(z) have no common divisgr in Oq’ we denote
by r P the (n~l)-dimensional enalytic subvariety defined by the system of

local equations fq(z).hq(z) = O Decompose this subvariety I p into a sum:

rah T
F kai %C -

the minimal local equation of each [ i 8% a by fkq(z) = O, Then, for every

of irreducible subvarieties Pk(k = 1,2,400, £) end denote

q€ Mzn, F(3) can be represented in U(q) as

g
(28) F(z) = uq(z) .;f;T; {fkq(z)}mk , ¥y i3 e unit m«Oq;

moreover the integers m. appearing inthis expression are independent of g,
since, denoting by Sk the singular loccus of F‘k, sach [-‘.k-ﬂ Sk is a connected
enalytic manifold. We assooiate with the decomposition (28) the (2n-2) =

7

cycle Z

= Pn
Dkz_lmkk

which will be called the divisor of F(z)e The multiplicative meromorphio
funotion is determined uniquely up to a multiplicative constant by ita .
divisor, Incidentally, the subvariety r F defined above will be denoted
by ID|, deee |D} = ur;‘k.

Now,assume conversely thay an integral (2nw2)=cycle D = Z mn r‘k
consisting of irreducible’ (n-l1)-dimensional analytic subvarietiels“][-"k is

giyens Then, does there exist a multiplicative mevomorphic function F(sz)

haying D as its divisor? As an answer of this guestion, we have
L SR )
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Theorem 1. (Existencs Theorem) There exists a multiplicative
meromorﬁhic function F(z) with the divisor D if- and ohly if D is homclogous
to zero and, in case D is hamologous to -zsro E(z) is given by

) L (3
(29) : F(z)-coexp 2T {_./\.GD+ Vel S SGD} R

2
o}

(oo is a constant g 0)11)'.

Proof: . Putting

£, (z) = 0 being the minimal lopal equectlons of [” at g, we get a system
of the enalytic currents 'C such that each 'L‘q - 'zr is regular in

9(q) N U(r). Moregover we ha.Ve, by Lerma 3,
rd
(30) d ’L'q_ » \/:-i D

thus the polear cycle of the system iﬁq} is V-1 Do Now, if e multiplicative
meromorphi¢ function F v%ith the divisor D exists, then @ = %’—c— 4 log F is
an analytic current such that 6 « ’c’q is regular at each q € Mzn; hence, by
a theorgg in §27, D must be hcmoloéous to zero., Asdume conversely that D is

homologous to zeros Then, by the same theorem,

esdAaD+V-106cD

»

is ay gnalytic currént guch that @ -.'Eq is regular.at eagh q € MZ n. Cone

sequeptly, putting - . -

2 z

F(z) = exp ZTLY 9-coexp'2’tt{_/\,GD+\/-l§ 6GD},

2z &
- 0 fQ

11) The existence of F(z)vms proved by AJVeil ix; s more general form.
See Weil [8].

.
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we got a many valued meromorghic function F(z) such that for each q & T
the ratio F(z)/:[ll"{fkq(z)}mk is a uwnit in Oqs The current D {8 real 4in
the sepse that D[ W] takes a real value for every real forn VY 4 while thy
opera‘b?rs d, G, A. transform real currents into reédl oness Hence /ALGD and

SGD é.rP both real and therefore
br(s)) «lc l exp 2 Acr,

showing that |F(z) | is wmivalent on 1%, Thus F(z) 3§ & gultiplicative
meromopphic function with the divisor D, qseids

By using the Green's form g, (2, 7 ) introduced in §21; GD can be

written F.s

gD = #gn(qz) s gplz) = S 82,1_.;(5; Z? !

Hence we ob{bp.ip, ag a, gorollary of. Theorem 1, the fo}lgwmg
The ltiplicative meromorphi, tion F with t
Theprem oy multiplicative meromorph o g,‘unc :.on (2) b the

divigor D can be reprpsen‘l-:ed as

. » ’ & 2
F(z) » o, exp 2T i- *w A gp) = \/—.—..j,' “S‘&o -edgn} ’

st

o4 ‘f
where gD(z) is the integral of the Greenfs form an 2%(,'z, Z) over the- divisor

p.12)

It is obvious by (29) that, by en enalytic continua.tmn along a
closed curve y on MZp, F(z) is multiplied by the factor X (X) -
wexp 27 V1| {GDs Now, denote by Q & (Znel)~chain such that dQ = Ds
3 .

Then, as was shown in §20, we have

. a Siquarliammgibilomn s
g - Satas L

12) See Kodaira [6]« -




110.

Iq,y) = (8%, Gy) + (0. y) »

yielding immediately

ay) = (D) - (@emy) == [ B0 e my

Hence we obtain
Theorem 3, By an analytic continuation aleng a closed gurve Y o
the multiplicative meromorphic function F(2) with the divisor D = dQ is

multiplied by the factor

Y (y) = exp 2% Vo1 {10y 40) +Sqn3§-

As a corollary of this theorem, we get
Theorem 4, Let éx;j |;j = 1,2,...,b§ be a base of integral l-cycles
on Maxi. A multiplicative meromorphic function with the divisor D = dQ is

wnivalent on M if and only if

y50Q) + SQ By 50 (d1),  (31,2eessb)s

This theorem can be considered as a gensralizatiéh of Abel's theorem]‘?)
The existence theorem proved above can be generalized to the case:
D "]-' 0, if we consider a more general class of many velued functions than
that of multiplicative ones, To consider such functions, it is convenient
to introduce the universal covering menifold 'ﬁZn of Mlra n. so that every many
valyed funttion on MZn can be considered as a univalent fynction on T&zn.
Now, supposé an arbitrary integral (2n-2)-cycle D = Z m T‘k consisting of

irreducible (n-l)edimensional analytic subvarieties l"'k as given and consider

13) eyl [10], ppel26=127,
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the cyrrent
ovalop sV} Gons

Then {t follows from the results in §27 end (30) that @ Batigfieg

Qe}!mg ’
a0 ¢ ¥ =} (D = D) ,

end that, for every q € Mzn, 0~ 'Cq is regular in U(q), Henge, if we can
£ind & }-form T of % defined in ¥ such that
cF=ya¥F,
{ a7 = VTl HD ,
24

g, ~
then @ + T is an amalytic current in M

(31)

having the same singularity ag

'l:qm) at each q ¢ U™ end therefore, putting
~

2
F('i')qexp2‘hf8~ 0+% 1,
2

we get & many valued meromorphic function F(z) on MZn with the divisor D,
Thus qur problem is reduced to the simultansous equatious (31) for the
unktiown l-form ¥,

Now we shall show that (31) has a solution P if D can be represented

as
(32) D~ 9 o, Z, 3
j<k Je 73k
where Zl,é..,Zj.... are (2n-l)=cycles on MZn and each ijk denotes the inter=
section of Z;j end 2, Let {dPl,sz, seey de§ be a base of everywhere rew

g
guler qxact. analytic differentials on MZn. The integrals PA(';) ® g'i‘ dP)\
o

14) All funpctions, Qurrénts and sub'isiggs on ¥°® can be considered as funow
tjons, currents and subsets on .
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are obviously univalent regular enalytic functions on 'ﬂzn. As was proved

by Hodgels) s the l-forms dPl"'"’dP" o d.él.r"'ndﬁg constitute a base of the
space of all harmonic l-forms, Gonsequently, it follows from (32) that HD

is represented as a linear combination of dP}‘A @P,\ s d'lle df)\ and
H{df}l/\dPA} 16) (A st = 1,2,000, V)3 while, since HC = CH, and CD = D by (22),
HD and HJ cll'S}1 A dP, } are inverient under the transformation C whereas

dPP/\dP/\ and df}lA d?/\ change their sign by C. Hence we get

v
V-ime=8{ 2 & dbA ar }.
»\,}1=1 Ia

Putt:.ng n-e Z e, dP A dl;u s We get, using dn, = 0,

d&}vL=GAn= n-Hyw=w~-\V-1m.
Again, since CGY = GCn = G 0, , we obtein, nsing (6) and (7)

cée n, - -c"lé'cavl_ = dJ\.Gwl , showing that dcdav, = 0 .

Henoe, putting

v
33 P dp, - (1 « -1 ¢)be ,
e T S b eV ey

and

we infer readily that r satisfies (31). Thus we seg, under the assumption

(32), thet

-

z
F(2) = exp 2% §~ {_G+?}
3

0
is & many valued meromorphic function with the divisor D, where T is given

by (33)s It follows from (33) that, for every covering transformation W of

15) Hodge [4], ppe191-192; Weil [8], ppol11-112.
16) dp /\ dP/\ and dP A dP)\ are harmonic forms, whereas d'l}/\ dP)\ are

ndt necessarily harmomzc,
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WP over Mzn. F(z) is transformed
v
F(W ¥) = F(¥)-exp 27 1_ v W] + ) v, [W) Ph(?)} .

where vA[W] are constants depending on W, A meromorphic function on ﬁZn

having such a property will be called a genere.lize?d thete function with re-
spect to Mzn, since it can be considered as a generalization of the classie
cal theta function.”) We summarize above results in the following
Theorem 5, If an integral (2ne-2)-cycle D = ka F‘k on MZn con=
sisting of irreducible (n~-1)~dimensional enalytic subvarieties F‘k is ho=

mologous taq a cycle of the form Z ¢, Z then there éxists on ﬁZn

s Loy
j<k Jk 3k
g generalized theta function F(Z) with respect to MZn having D as its divisor.

v

s -y

17?)' For the theory of classical theta functi;n; sege Siéggl {7], Weil [9s
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