Extended Period Mappings*

Phillip Griffiths

*Clay Lecture at the INI, June 2022. The lecture is based on joint work with Mark Green and Colleen Robles

1/41

- Theme of the lecture is global properties of period mappings with applications to the geometry of completions of moduli spaces
- I. Introduction
- II. Construction and properties of extended period mappings
- III. Geometry of extension data
- IV. Basic formula
- V. Applications to moduli of general type algebraic surfaces[†]
 - A. Infinite local monodromy
 - B. Finite local monodromy

[†]This section is based in part on joint work with Radu Laza and on the work of and discussion with Marco Franciosi, Rita Pardini and Sönke Rollenske. 2/4

I. Introduction

- Given $(\overline{B}, Z; \Phi)$ where
 - \overline{B} is a smooth projective variety, $Z = \bigcup Z_i$ is a normal crossing divisor in \overline{B} and $B = \overline{B} \setminus Z$;
 - $\begin{array}{l} \longleftarrow \Phi: B \to \Gamma \backslash D \text{ is a period mapping where } D = G_{\mathbb{R}} / H, \\ \rho: \pi_1(B) \to \Gamma \subset G_{\mathbb{Z}} \text{ is monodromy.}^{\ddagger} \end{array}$

[‡]WLOG we assume that the local monodromy around Z_i is of infinite order. Then Φ is proper and $P \subset \Gamma \setminus D$ is a closed analytic subvariety. 3/4

In the extensive literature there are

- global results on B (theorem of the fixed part, image $\Phi(B) = P \subset \Gamma \setminus D$ is an algebraic variety over which the Hodge line bundle $\overset{p}{\otimes} \det F^{p} := L \to P$ is ample, algebraicity of Hodge loci)
- local results on neighborhoods $\Delta^{*k} \times \Delta^{\ell}$ in *B* of points at infinity in *Z*. (Nilpotent and sl₂-orbit theorems, existence and properties of several variable limiting mixed Hodge structures, Chern forms of the extended Hodge bundles; these results are used in proving global results on *B*.)

This talk will be concerned with global results on \overline{B} ; specifically

— extensions of Φ mapping to completions of P

- properties of $\overline{P}_T, \overline{P}_S$ (e.g., ample line bundles on them)
- geometry of the fibres of f (this is of particular interest)
- will mostly restrict to the case dim B = 2 and will assume dim $\Phi(B) = 2.$ §
- traditionally one seeks completions of $\Gamma \setminus D$ to which \overline{B} maps (cf. [KU]); the approach here is *relative* in that the completions \overline{P}_T and \overline{P}_S depend on $(\overline{B}, Z; \Phi)$.

 $^{^{\$}}A$ fundamental invariant of any VHS is monodromy, which lives on a general 2-dimensional section of the parameter space. 5/42

Will also discuss some applications to moduli of general type algebraic surfaces, illustrated by one interesting surface. Main emphasis will be on the case of infinite local monodromy around the Z_i ; will also briefly discuss the finite local monodromy case.

II. Construction and properties of extended period mappings[¶]

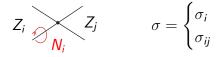
- Given V, Q
 - polarized Hodge structure (PHS) is $(V, F), F = \{F^p\}$ where the Hodge filtration F satisfies Hodge-Riemann I, II
 - mixed Hodge structure (MHS) is (V, W, F), where $W = \{W_k\}$ is the weight filtration
 - limiting mixed Hodge structure (LMHS) is (V, W(N), F) where $N \in \text{End}_Q(V)$ is a nilpotent operator with $N : F^p \to F^{p-1}$ and

$$\begin{cases} N: W_k(N) \to W_{k-2}(N) \\ N^k: W_{n+k}(N) \xrightarrow{\sim} W_{n-k}(N) \end{cases}$$

uniquely characterizes the monodromy weight filtration W(N).

[¶]A general reference for Hodge theory is [CM-SP]. For limits of Hodge7/41 structures see [CK] and the references cited therein. $^{7/41}$

The *Q* will be understood for MHS's and LMHS's. Will also consider $(V, W(\sigma), F)$ where $\sigma = \operatorname{span}_{\mathbb{Q}^+} \{N_1, \ldots, N_k\}$ is a monodromy cone. When dim B = 2 we have



— equivalence class $[V, W(\sigma), F] := \mathcal{L}$ where

 $F \sim \exp(\lambda N)F, \quad \lambda \in \mathbb{C} \text{ and } N \in \sigma$

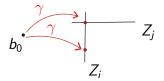
8/41

— assuming T_i unipotent^{\parallel} there are canonical extensions $F_e^p \to \overline{B}$

— extended Hodge line bundle $L_e = \overset{p}{\otimes} \det F_e^p$.

[|]With slightly more elaborate statements this assumption may be dropped.

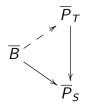
Definition: \overline{P}_{T} = quotient by Γ of the set $\{(\gamma, [V, W(\sigma), F_{b})]\} = \{\gamma, \mathcal{L}_{b}\}$ where $\gamma = \overline{b_{o}b}$



Given a MHS (V, W, F) the associated graded is a direct sum of PHS's. For L = [V, W(σ), F], Gr(L) is well-defined.

Definition: \overline{P}_{S} = quotient by Γ of the set { γ , Gr(\mathcal{L}_{b})}.

We have



In the following we assume dim B = 2.

Theorem:** (i) \overline{P}_{S} is a compact analytic surface. (ii) The Hodge line bundle descends to an ample line bundle on \overline{P}_{S} .

— Regarding (i) essential case is $Z = \bigcup Z_i$ where $L_e \cdot Z_i = 0$. Then

dim $B = 2 \implies ||Z_i \cdot Z_j|| < 0$ (Hodge index theorem) $\implies Z$ contracts to a normal singular point (Grauert).

^{**}Part (i) is in [GGLR] and part (ii) follows from there and [GGR] for 10/41 the descent result.

- Regarding (ii), even if we know that $L_e|_Z \cong \mathcal{O}_Z$ there are generally non-trivial obstructions to trivialize L_e in a neighborhood of Z. Proof involves
 - new ingredient in Hodge theory (semi-global representation of Φ by period matrices)
 - observation that L = pullback of O(1) under the Plücker embedding

$$D_i \subset \prod^p \mathbb{P}(\wedge^{h_p}F^p), \quad h_p = ext{rank } F_p,$$

applied to the maps

 $\operatorname{Gr}(\mathcal{L}) \to \{ \mathsf{Mumford-Tate domains } D_i \}.$

- Result is conjectured to hold in general. True when the original period domain D is Hermitian symmetric and Γ is arithmetic (Baily-Borel).

11/41 11/41 **Theorem:** (i) \overline{P}_T is a compact analytic variety.[†] (ii) Assuming $\Phi : B \to P$ does not contract any curve,[‡] there exists m_0 and $a_i > 0$ such that

$$L_{e,a} := mL_e - \sum_i a_i Z_i$$

is ample for $m \ge m_0$.

[†]This result is also conjectured to be the case for general dim B. When Γ is arithmetic and has a fan it follows from the theory developed in [KU]. In the non-classical case the existence of a fan seems to be quite restrictive.

[‡]This assumption can be removed with a slightly more elaborate statement of the result.

Regarding the proof of (ii), the a_i are chosen so that for each j

$$Z_j \cdot \sum_i a_i Z_i > 0.$$

That this is possible is a property of negative definite symmetric matrices. The a_i reflect the nature of the singularity to which Z contracts.

In summary

•
$$\overline{P}_S = \operatorname{Proj}(L_e)$$

•
$$P_T = \operatorname{Proj}(L_{e,a})$$

13/41 13/41

III. Geometry of extension data

Still assuming that dim $B = \dim \Phi(B) = 2$, in the diagram

 $- Z_i \text{ not a fibre of } \Phi_S \implies \Phi_T \big|_{Z_i^*} \text{ is like a usual period}$ mapping

 $-Z_i$ is a fibre of $\Phi_S \iff \mathcal{L}|_{Z_i}$ has locally constant $\operatorname{Gr}(\mathcal{L})$.

 $\frac{14}{41}_{\frac{14}{41}}$

Taking the second case, for simplicity assume along Z_i^* we have VLMHS \mathcal{L} where $\operatorname{Gr}(\mathcal{L}) = \{H^0, \ldots, H^m\}$ is constant.* The fibres of f are compact analytic subvarieties of a complex manifold that is an iterated fibration of $\operatorname{Ext}^1_{\mathrm{MHS}}(\bullet, \bullet)$'s that give extension data of levels $1, 2, \ldots^{\dagger}$

• (V, F), (V', F') Hodge structures of weights k > k'

$$\begin{split} \mathrm{Ext}^{1}_{\mathrm{MHS}}(V,V') &= \frac{\mathrm{Hom}_{\mathbb{C}}(V,V')}{F^{0}\,\mathrm{Hom}_{\mathbb{C}}(V,V') + \mathrm{Hom}_{\mathbb{Z}}(V,V')} \\ & \\ & \\ E &\cong \mathbb{C}^{m}/\Lambda, \quad \Lambda \text{ discrete} \end{split}$$

*The $\mathcal{L}|_{Z_i}$ are related to the unipotent variations of mixed Hodge structure studied in [HZ]. The fact that we have *limiting* MHS's provides rich additional structure.

$$^{\dagger}\mathrm{Ext}^{q}_{\mathrm{MHS}}(\bullet, \bullet) = 0$$
 for $q \geq 2$.

15/41 15/41 Tangent spaces to variations of the extension data of levels $1, 2, \ldots$ lie over the red.

•
$$k' = k - 1$$
 gives for $\operatorname{Hom}_{\mathbb{C}}(V, V')$
 $\underbrace{(k-1, -k) \oplus \cdots \oplus (0, -1)}_{F^0} \oplus \underbrace{(-1, 0) \oplus \cdots \oplus (-k, k-1)}_{T_e E}$
 $E = \text{compact complex torus with } E \supset E_{ab} \text{ where}$
 $T_e E_{ab} \subset (-1, 0)$
• $k' = k - 2$ gives
 $\underbrace{(k-2, -k) \oplus \cdots \oplus (0, -2)}_{F^0}$

connected analytic subgroup S whose T_eS is over \checkmark is a \mathbb{C}^{*k} .

 \oplus (-1, -1) \oplus (-2, 0) $\oplus \cdots \oplus$ (-k, k - 2)

 $T_e E$

•
$$k' = k - 3$$
 gives

$$\underbrace{(k - 3, -k) \oplus \cdots \oplus}_{F^0} \underbrace{(-1, -2) \oplus (-2, -1)}_{T_e E} \oplus \cdots \oplus (-k, k - 3).$$

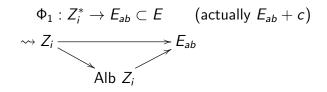
This will imply that there is no VLMHS with non-trivial tangent space to level 3 extension data. Thus up to integration constants the fibres of f are given by extension data of levels 1 and 2.

Remark: For the period matrices of a VMHS of Hodge-Tate type (the $H^{2p} = \bigoplus \mathbb{Q}(-p)$'s) the

- level 1 extension data is trivial
- level 2 extension data is given by $\log t_i$'s
- level 3 extension data is given by Li_2t_i 's
- $d (level 3) ∈ level 2 \implies ODE expressing Li₂t_i in terms of log t_i's, etc. 17/4$

17 / 41

• Along Z_i^* the level 1 the extension data gives



- Φ_1 (locally) constant $\rightsquigarrow \Phi_2 : Z_i^* \to \mathbb{C}^{*k}$.
- If Φ_1, Φ_2 are both constant along Z_i^* , then $\Phi_3 = \Phi_4 = \cdots = \text{constant along } Z_i^*$.

Theorem: dim $\Phi(B) = 2 \implies$ the map to extension data is non-constant on any Z_i .

Corollary: dim $\Phi(B) = 2 \implies \Phi_T$ contracts no curves in Z.

18/41 18/41

- At a point of Z_i ∩ Z_j if N_i, N_j are linearly independent, then Φ_T extends by filling in the origin to some of the C*'s; essentially Δ* × Δ* completes to Δ × Δ.
- If N_i , N_j are linearly dependent, then $\Delta^* \times \Delta^*$ fills in to $\Delta \times \Delta$ with the axes contracted to points.[‡]

[‡]The general version of this case involves a somewhat subtle analysis of the relations among the N_i in a nilpotent orbit

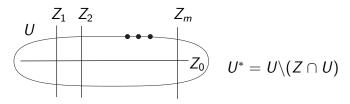
$$\exp\left(\sum_{i}\left(\frac{\log t_{i}}{2\pi\sqrt{-1}}\right)N_{i}\right)\cdot F;$$

also in general Φ_T will be a meromorphic mapping.

19/41 ^{19/41}

IV. Basic formula

• Relates the geometry *along* a Z_i to the geometry *normal* to it



- Assume Φ_S(Z₀^{*}) = point, thus *L* locally constant along Z₀^{*} ⇒ π₁(U^{*}) acts as a finite group on Gr(*L*); assume this group is trivial; then
 - $W(N_0) = W(N_i)$ and $Gr^W(V)$ is a fixed vector space;
 - $N_0, N_i \in \operatorname{Gr}_{-2}^W \operatorname{End}(V), \text{ gives a cone } \sigma \subset \operatorname{Gr}_{-2}^W \operatorname{End}(V);$
 - $-\operatorname{Gr}_{+2}^{W}\operatorname{End}(V)\cong\operatorname{Gr}_{-2}^{W}\operatorname{End}(V)^{*} \text{ (uses } Q);$
 - $\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Theorem (basic formula): $\Phi_1 : Z_0 \to E_{ab}$ and in $Pic(Z_0)$

$$(*) \qquad -\Phi_1^*(L_M) = \left\{ \sum_{i=0}^m \langle M, N_i \rangle \left[Z_i \right] \right\} \bigg|_{Z_0}$$

Corollary: - deg Φ₁^{*}(L_M) = ⟨M, N₀⟩ Z₀² + ∑_{i=1}^m ⟨M, N_i⟩.
RHS is ⟨M, N_i's corresponding to the row having Z₀² / (*) tells us how negative that row is in terms of the variation of the level 1 extension data.

Corollary: $\Phi_T |_{Z_0} \neq constant.$

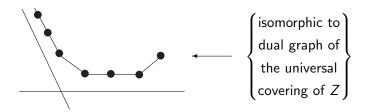
This uses dim $\Phi(B) = 2$ and $N_0 \neq 0$.

• Special case: Z is a cycle

 $Z_i^* = \mathbb{C}^*$

$$-\langle M, Z_i \rangle Z_i^2 = \langle M, Z_{i-1} \rangle + \langle M, Z_{i+1} \rangle.$$

21/41 ^{21/41} monodromy gives a *circuit* — then
 — γ acting on the N_i spans a 2-plane in Gr^W₋₂ End(V), and in this plane there is a sector such that the γ^kN_i give in the sector a convex figure where γ = translation by m



— from the basic formula (*)

$$\begin{cases} \text{straight line at } Z_i \leftrightarrow Z_i^2 = -2 \\ \text{bend at } Z_i \leftrightarrow Z_i^2 \leqq -3. \end{cases}$$

- Hodge-Riemann II \implies convexity. Hilbert modular surface picture is general.
- In this case the basic formula gives a proof that $||Z_i \cdot Z_j|| < 0.$

V. Application to moduli of general type surfaces

A. Infinite monodromy

We begin with the question

• What are the singularities of \overline{P}_T and \overline{P}_S ?

— the singularities of $P = \Phi(B)$ seem to be arbitrary

— we will illustrate the general principle that the LMHS along a Z_i helps determine the singularity type of $\Phi_S(Z_i)$.

Example 1:[§] Weight n = 2m

$$- Z = \text{smooth curve and } \Phi_{S}(Z) = p \in \overline{P}_{S};$$

—
$$N^2 = 0$$
, rank $N = 2$;

- Gr
$$\mathcal{L} = \{H^{2m-1}, H^{2m}, H^{2m-1}(-1)\}$$
, with dim $H^{2m-1} = 2$
and $N : H^{2m-1}(-1) \xrightarrow{\sim} H^{2m-1}$, then
 $H^{2m-1} = H^1(C)(-(m-1))$ for an elliptic curve C;

§These are maximal dimension LMHS's.

- for simplicity assume rank $\operatorname{Hg}^m = 1$ and *C* is general; $\implies E_{ab} = \operatorname{Ext}^1_{\operatorname{MHS}}(\operatorname{Hg}^m, H^{2m-1}) \cong H^1(C);$ - $* \implies \Phi_1 : Z \to C$ is a finite morphism and for U =neighborhood of *Z* in \overline{B}

gives a resolution of an elliptic singularity.

Example 2:¶ n = 2m— Z = cycle;— $N^2 \neq 0, N^3 = 0$ and rank N = 1.

[¶]These are the maximal dimension LMHS's with $N^2 \neq 0$

Then a similar analysis to the elliptic singularity case might be used to show that $\Phi_S(Z) = \text{cusp singularity (work in progress)}$.

Moduli[∥]

Will assume the structure theorems from Section II hold in general.

- $\mathcal{M} =$ irreducible and reduced KSBA moduli space whose general point corresponds to a smooth general type surface.
- $\overline{\mathcal{M}}$ = canonical completion whose boundary points correspond to surfaces X_0 having slc-singularities.

Even if \mathcal{M} is irreducible and almost smooth (e.g., looks locally like the moduli space of an ADE singularity), in contrast to $\overline{\mathcal{M}}_g$ the boundary may be quite singular. There are geometric and Hodge theoretic reasons why this should be so. [K] is a reference for moduli.

26/41

Question: How can Hodge theory help understand the geometry of \mathcal{M} near $\partial \mathcal{M}$?

- Basic idea: Using Lie theory LMHS's have been classified; use this to infer results about ∂M .
- If a point of ∂M corresponds to a normal surface X₀ having a singular point p and where N ≠ 0 for a general smoothing of X₀, then from the list in [K] p is either a simple elliptic singularity or a cusp.**

^{**}Interestingly if p is non-Gorenstein, then it is a rational singularity and consequently N = 0. 27/41

- a general result, here stated informally, is that for a singular surface X₀ corresponding to a point x₀ of ∂M, the associated graded to the LMHS L for any smoothing of X₀ the Gr(L) is the same.^{††}
- Suggests that the map

$$\overline{\mathcal{M}} \dashrightarrow \overline{P}_T$$

may provide a guide to a resolution of the singularities of $\overline{\mathcal{M}}.$

^{††}More precisely the smoothings of X_0 may have several components and the $\operatorname{Gr}(\mathcal{L})$ depends only on the particular component. This result suggests why $\partial \mathcal{M}$ should be singular along components where $N \neq 0$. Specifically, if dim $\partial \mathcal{M}$ is much less than dim \mathcal{M} at p, then since \mathcal{L} does not depend on the direction of approach then $\overline{\mathcal{M}}$ should be singular at p. We will see below that we can also obtain divisors in $\partial \mathcal{M} \subset \overline{\mathcal{M}}$ along certain components where N = 0. Example ([FPR]): The "first" general type surface with $p_g \ge 2$ is an *I*-surface X

$$p_g(X) = 2, \ q(X) = 0, \ K_X^2 = 1;$$

- well known classically, it is on the Noether line $p_g = [K_X^2/2 + 2];$
- \mathcal{M}_I is almost smooth, dim $\mathcal{M}_I = 28$;[†]
- $D = SO(4, 28)/U(2) \times SO(28)$, dim D = 57;
- IPR is a contact system and Φ(M_I) is a contact subvariety;

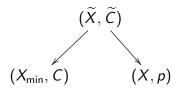
[†]More precisely, if X has at most a canonical singularity, then the Kuranishi space at X is smooth.

- FPR have determined a stratification of $\overline{\mathcal{M}}_{I}^{\text{Gor}}$, and have determined the divisors in $\partial \mathcal{M}_{I}$ ($\overline{\mathcal{M}}_{I}$ is difficult because one has to bound the index in the non-Gorenstein case);
- part of their table for elliptic singularities is

stratum	dimension	minimal resolution \widetilde{X}	$\sum_{i=1}^k (9-d_i)$	k‡	$\operatorname{codim}_{\operatorname{in}}\overline{\mathfrak{M}}_{I}$
I_0	28	canonical singularities	0	0	0
I_2	20	blow up of a K3-surface	7	1	8
I_1	19	minimal elliptic surface with $\chi(\widetilde{X})=2$	8	1	9
$\mathrm{II}_{2,2}$	12	rational surface	14	2	16
$\mathrm{II}_{1,2}$	11	rational surface	15	2	17
$\mathrm{II}_{1,1,R}$	10	rational surface	16	2	18
$\mathrm{II}_{1,1,\textit{E}}$	10	blow up of an Enriques surface	16	2	18
$\mathrm{III}_{1,1,2}$	2	ruled surface with $\chi(\widetilde{X})=$ 0	23	3	26
$\mathrm{III}_{1,1,1}$	1	ruled surface with $\chi(\widetilde{X})=$ 0	24	3	27

[‡]Hodge theory gives that for a smoothable surface X_0 that is irreducible, regular and normal with k elliptic singularities implies $k \leq p_g + 1$. Here $\tilde{X} \to X$ contracts k elliptic curves \tilde{C}_i with $\tilde{C}_i^2 = -d_i \frac{31}{41}$ I, II, III means 1,2,3 elliptic singularities. The subscripts are their degrees, which may also be bounded by Hodge theory.

 How can Hodge theory help understand the desingularization of M
₁ along the boundary components?



Theorem (informal statement): For I_1 , I_2 the extended period mapping Φ_T gives a desingularization of a general point on the boundary.

32/41 _{32/41}

- Parameter counts in the table suggest that this result may be true for all cases of elliptic singularities.
- Cusp case has yet to be studied.

Example: For I_2 the picture is

This will give for a general boundary point that Gr_2 isomorphic to the primitive cohomology of a polarized K3 surface and $g(\tilde{C}) = 1$ (simple elliptic singularity).

^{33 / 41}

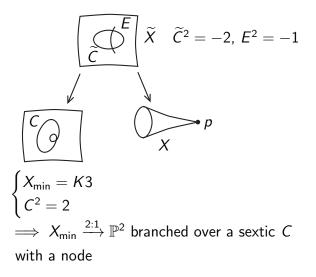
Gr(LMHS)/ℤ suggests that Hg¹(X̃) has a ℤ² with intersection form

$$\begin{pmatrix} -2 & 2 \\ 2 & -1 \end{pmatrix}$$

for the purpose of heuristic reasoning we will assume classes are effective.

$$\frac{34}{41}_{_{34/41}}$$

Hodge theory now suggests the picture



35/41 35/41

- # of PHS's of type $Gr_3 \oplus Gr_2 = 1 + 19 = 20 = \dim I_2$ which suggests local Torelli on I_2
- How to establish the theorem? The fibre over origin in a SSR is blowing up p in X to have

$$\widetilde{X} \cup_{\widetilde{C}} \mathbb{P}^2$$

where $\widetilde{C} \in |O_{\mathbb{P}^2}(3)|$

• Have to blow up $9 - (-\widetilde{C}^2) = 7$ points on \widetilde{C} to obtain triviality of the infinitesimal normal bundle as a necessary condition for smoothability. Thus

Fibre over origin in a SSR is given by blowing up seven points on \tilde{C} ; thus is a del Pezzo.

• dim_p $\partial \mathcal{M}_I$ + dim(*level 1 extension data*) = dim \mathcal{M}_I - 1.

B. Finite monodromy

• for $\Phi: \Delta^* \to \{T^k\} \setminus D$ where $T = T_s$ is of finite order

- In geometric case X_0 will be singular and the LMHS is a PHS (but $\neq H^n(\widetilde{X}_0)$).
- Generally $\widetilde{\Phi}_* : T_{\{0\}}\widetilde{\Delta} \to TD$ is zero but can define $\delta \Phi$ that has geometric information.
- For KSBA moduli of surfaces on $\partial \mathcal{M}_f$ we have X_0 where
 - X_0 is non-Gorenstein
 - singularity is a quotient singularity of type $\frac{1}{dn^2}(1, dna - 1), (a, n) = 1$
 - rational $\implies N = 0$ (resolution is a tree of \mathbb{P}^1 's).

37 / 41

• Extension of Φ from \mathcal{M} to \mathcal{M}_f gives

$$\Phi_f: \mathcal{M}_f \to \Gamma \backslash D.$$

In contrast to the N ≠ 0 singularity the presence of an N = 0 singularity may define a divisor in M. This happens for the Wahl singularity ¹/₄(1, 1); of particular interest as the monodromy T = Id.

Example ([FPR]): For $\overline{\mathcal{M}}_{l}$ there are two divisors in $\partial \mathcal{M}_{l}$: *l*-surfaces (X_0, p) with a $\frac{1}{4}(1, 1)$ or $\frac{1}{18}(1, 5)$ singularity; denote first by $\mathcal{M}_{l,W}$.

• resolution of Wahl singularity is $(\widetilde{X}, E) \to (X, p)$ where \widetilde{X} = elliptic surface with a bisection $E, E^2 = -4$;

38/41 38/41

- semi-stable-reduction has X̃ ∪_E S where S = Veronese surface ((X, p) looks locally like a hyperplane section through the vertex of a cone over S);
- $\widetilde{\Phi}(0) = \mathsf{HS}$ computed from $\widetilde{X} \cup_E S$.

Theorem: $\mathfrak{M}_{I,W} = \text{component of } \Phi_f^{-1}(\Gamma' \setminus D') \text{ where } D' \subset D$ is a Mumford-Tate domain.

• Proof uses computation of $\delta \Phi$ in $T \operatorname{Def}(X)$.

Thus the presence of a Wahl singularity in $\overline{\mathcal{M}}_{I}$ is given by Hodge-theoretic conditions.

References

- [CM-SP] J. Carlson, S. Müller-Stach, C. Peters, *Period Mappings* and *Period Domains*, 2nd. edition, Cambridge Univ. Press.
 - [CK] E. Cattani and A. Kaplan, Degenerating variations of Hodge structure, Astérisque 179-180 (1989), pp. 67–96. http://www.numdam.org/item?id=AST_1989_179-180_67_0
 - [GGLR] M. Green, P. Griffiths, R. Laza and C. Robles, Period mappings and ampleness of Hodge line bundle, 2020. arXiv 1708.09523v3
 - [GGR] M. Green, P. Griffiths, and C. Robles, The global asymptotic structure of period mappings. arXiv 2010.06720

40/41 40/41

- [HZ] R. M. Hain and S. Zucker, A Guide to Unipotent Variations of Mixed Hodge Structure. Hodge Theory (Sant Cugat, 1985), 92–106, Lecture Notes in Math. 1246, Springer, Berlin, 1987.
 - [K] J. Kollár, Moduli of varieties of general type, in Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM)
 25, Int. Press, Somerville, MA, 2013, pp. 131–157. MR3184176 Zbl 1322.14006
- [KU] K. Kato and S. Usui, Classifying Spaces of Degenerating Polarized Hodges Structures, Ann. of Math. Stud. 169, Princeton Univ. Press, 2009.