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Abstract

We show that simple majority rule satisfies foanstard
and attractive properties—the Pareto property, amay,
neutrality, and (generic) transitivity—on a biggéaiss of
preference domains than (essentially) any othengatile.
Hence, in this sense, it is the modbust voting rule. If we
replace neutrality in the above list of propertieth the weaker
property, independence of irrelevant alternatitiesn the
corresponding robustness conclusion holds for uniénrule
(rule by consensus).
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1. Introduction

A voting rule is a method for choosing from a set of socialradiives
on the basis of voters’ preferences. Many diffexeting rules have been
studied in theory and used in practice. But fat away the most popular
method has beesimple majority rule, the rule that chooses alternative
over alternativey if more people prefextoy than vice versa.

There are, of course, good reasons for majorigystlpopularity. It
not only is attractively straightforward to usepiractice, but satisfies some
compelling theoretical properties, among themRhaeto property (the
principle that if all voters prefertoy andx is available, theg should not
be chosen)anonymity (the principle that choices should not depend on
voters’ labels), andeutrality (the principle that the choice between a pair if
alternatives should depend only on the patterrotérg’ preferences over
that pair, not on the alternatives’ lab&ls)

But majority rule has a well-known flaw, discovetegdthe Marquis
de Condorcet (1785) and illustrated by the Paradasoting (or Condorcet

Paradox): it can generaitaransitive choices. Specifically, suppose that

! For convenience, we will omit the modifier “simplghen it is clear that we are referringdonple
majority rule rather to the many variants, sucthassupermajority rules.

2 In fact, May (1952) established that majority risiéheunique voting rule satisfying the Pareto property,
anonymity, and neutrality, and a fourth propertifechpositive responsiveness—if alternativex is chosen
(perhaps not uniquely) for a given configuratiorvofers’ preferences and the only change thateis th
made to those preferences is to mpwp in some voters’ preference orderir@ now uniquely chosen.



there are three voters 1, 2, 3, three alternativgs, and that the profile of

voters’ preferences is as follows:

N< X |
XN< | N
< XN |

(i.e., voter 1 prefers toy to z, voter 2 prefery to zto x, and voter 3 prefers
ztoxtoy). Then, as Condorcet noted, a two-thirds majqnigfersx toy, y
to z, andz to x, so that majority rule fails to selemty alternative.

Despite the theoretical importance of the ConddPeeadox, there are
important cases in which majority rule avoids ingiéivity. Most famously,
when alternatives can be arranged linearly and eaielr’'s preferences are
single-peaked in the sense that his utility declines monotorycial both
directions along the line from his favorite alteiwe, then, following Black
(1948), majority rule is transitive for (almost) &profiles of voters’
preferences. Alternatively, suppose that, for geree alternatives, there is
one that no voter ranks in the middle. This propevhich is a special case
of valuerestriction (see Sen 1966, Inada 1969, and Sen and PattGalx, 1
seems to have held in recent French presidengéietiehs, where the

Gaullist and Socialist candidates have not engedd@&uch passion, but the

Without positive responsiveness, there are manpgotiles—including all the supermajority rules—itha
satisfy the properties. We shall come back to Mayiaracterization in section 5.
% We clarify what we mean by “almost all” in sectidn



National Front candidate, Jean-Marie Le Pen, hgsined either revulsion
or admiration, i.e., everybody ranks him eithestfor last. Whether or not
this pattern of preferences has been good for Ersnagpen to debate, but it
Is certainly “good” for majority rule: value resttion, like single-
peakedness, ensures transitivity (almost always).

So, majority rule “works well"—in the sense of s&fing the Pareto
property, anonymity, neutrality and generic traugyt—for some domains
of voters’ preferences but not for others. A naltguestion to ask is how its
performance compares with that of other votinggul€learly, no voting
rule can work well forall domains; this conclusion follows immediately
from the Arrow impossibility theorefh(Arrow, 1951). But we might
inquire whether there is a voting rule that worldlvior a bigger class of
domains than does majority rule.

We show that the answer to this questionois Specifically, we
establish (Theorem 1) that if a given voting rkleorks well on a domain

of preferences, then majority rule works well oattilomain too.

4 Our formulation of neutrality (see section 3)—uwis, in fact, the standard formulation (see Sen,
1970)—incorporates (i) Arrow’sdependence of irrelevant alternatives, the principle that the choice
between two alternatives should depend only onrsopeeferences for those two alternatives anconot
their preferences for other alternatives andsgiiimetry with respect to alternatives, the principle that
permuting the alternatives in voters’ preferendesukd permute social choices in the same way.
Neutrality, however, is strictly stronger than inspa (i) and (ii) together.

® It is easy to find voting rules that satisfy the of our four properties aall domains of preferences.
For example, majority rule and many of its variaetg., two-thirds majority rule (which deems two
alternatives as socially indifferent unless onenges at least a two-thirds majority against thegth



Conversely, ifF differs from majority rul& there exists some other domain
on which majority rule works well bt does not.

Thus majority rule is essentiallyiquely the voting rule that works
well on the most domains; it is, in this sense rttustrobust voting rule’
This robustness property can be viewed as a clesization of majority rule
complementing the one given by May (1952) (for mamehis, see the
discussion and corollary following Theorem 1).

Theorem 1 strengthens a result obtained in Madld@g). That
earlier proposition requires two rather strong kamxi assumptions:

The first is that the number of votersdmiel. This assumption is
needed because Maskin (1995) demands transitoviglIf preference
profiles drawn from a given domain (oddness is alseded for much of the
early work on majority rule, e.g. Inada, 1969). dfas we will see below,
even when preferences are single-peaked, intraifysis possible if the
population splits exactly 50-50 between two prefeesorderings; an odd
number of voters prevents this from happening.cdmure the idea that
such a split is unlikely, we will work with @ntinuum of voters and ask

only for generic transitivity.

satisfy Pareto, anonymity, and neutrality on ansndim. Similarly, rank-order voting (see below)isis
Pareto, anonymity, and generic transitivity on doynain.

® More accurately, the hypothesis is tRadiffers from majority rule for a “regular” prefaree profile
belonging to a domain on which majority rule wovksll.



Second, to prove the latter half of the proposjtiaskin (1995)
makes the strong assumption that the votingFudeing compared with
majority rule satisfies Pareto, anonymity, and reditly onany domain. We
show that this assumption can be dropped.

Although treating all alternatives alike—as neutyagntails—is a
natural constraint in many political and econonattisgs, it is not always an
appropriate assumption. For example, there amsaasvhich we may wish
to treat the status quo differently from othermlétives. For that reason, it
Is of some interest to investigate which votingerworks best when
neutrality is replaced by the weaker assumptionag#pendence of
irrelevant alternatives.

Our second major finding (Theorem 2) establishas th this
modified scenario (where we also impose a mildteak consistency
requirement)unanimity rule with an order of precedence is uniquely the
most robust voting rule. To define this rule, dix ordering of the
alternatives, interpreted as the “order of precedénThen, between two
alternatives, the rule will choose the one eanlighe ordering unless voters
unanimously prefer the other alternative. Unarymide with an order of

precedence thus corresponds to the sequentiakpidiat a committee

" More precisely, any other maximally robust votinte can differ from majority rule only for finitg!



might follow were it not willing to replace the ata quo with another
alternative except by consensus.

We proceed as follows. In section 2, we set upribdel. In section
3, we define our four properties, Pareto, anonymigutrality, and generic
transitivity formally. We also characterize whamk-order voting—a major
“competitor” of majority rule—satisfies all theseoperties. In section 4, we
establish a lemma, closely related to a resulbhadld (1969) that
characterizes when majority rule is genericallpsrave. We use this
lemma in section 5 to establish our main resulnaqjority rule. Finally, we
prove the corresponding result for unanimity raleection 6.
2. The Model

Our model is in most respects a standard sociatetitamework.
Let X be the set of social alternatives (including alives that may turn
out to be infeasible). For technical conveniengetake X to be finite with

cardinalitym(=3). The possibility of individual indifference oftenakes

technical arguments in the social-choice literatuggeat deal messier (see
for example, Sen and Pattanaik, 1969). We shalplsirule it out by
assuming that individual voters’ preferences carepeesented bstrict

orderings. If Ris a strict ordering, then for any alternativeg X the

many profiles on any domain on which it works well.



notation"xRy" denotesX s (strictly) preferred ty in orderingR” Let O,
be the set of all logically possible strict ordggrofX. We shall typically
suppose that voters’ preferences are drawn fronesubseti 00, . For
example, if we can arrange the social alternatfires “least” to “greatest,”
i.e., x <x,<K <x_®thenO consists ofingle-peaked preferences (relative

to this arrangement) if, for akO0, wheneverxRx,, for some, then xRx;

for all j>i, and whenevex,,Rx for some, thenx,,Rx; for all j<i.

j+1
For the reason mentioned in the Introduction (dadaated on
below), we shall suppose that there atinuum of voters indexed by

points in the unit intervglo,1]. A profile R onO is a mapping
R:[0,1] - O,
whereR(i) is voteri’s preference ordering. Hence, proftas a

specification of the preferences of all voters.
We shall use Lebesgue measuras our measure of the size of

voting blocs’® Given alternatives andy and profileR, let

s (%, Y) :,u{i| xR(i)y} )

8 We are using the terms “least” and “greatest’figively. All we mean is that the alternatives are
arranged linearly, e.g., along the left-right idmptal spectrum.

° Because Lebesgue measure is not defined forlzslessi of[O,]] , we will restrict attention to profileR

such that for alIRCC ,R™ ( R) is a Borel set. Call the®orel profiles.



Thena,(xy) is the fraction of the population preferrirgoy in profile R.

LetC be the set of complete, binary relations (not ssaely
transitive or strict) orxX. A voting rule F is a mapping that, for each profile

R on0, (strictly speaking, we must limit attention to Blopeofiles—see

footnote 9—but henceforth we will not explicithyast this qualification),

assigns a relatior (R)CC . F(R) can be interpreted as the “social

preference relation” correspondingRaunderF. More specifically, for any

profile R and any alternatives yO X , the notation %~ (R)y” denotes thak
is socially weakly preferred tpunderr (R). If both xF(R)y and yF(R)x,

we shall say that is sociallyindifferent toy and denote this by

Finally the notationt: xF(R)y' denotes that is not socially weakly
preferred toy, givenF andR. Hence, ifxF (R)y and: yF(R)x, we shall say
thatx is sociallystrictly preferred toy underF (R), which we will usually

denote by

F

—

R)_

X
y
For example, suppose that is smple majority rule. Then,

xF™(R)y ifand onlyif g (X y)=d: (Y X)



As another example, considank-order voting. GivenROO,, let v;(x) be

mif x is the top-ranked alternative Bf m-1 if x is second-ranked, and so
on. That is, a voter with preference orderhgssignsn points to her

favorite alternativem-1 points to her next favorite, etc. Thus, givenfigo
R, jolvR(i)(x)dy(i) is alternativex's rank-order score (the total number of
points assigned t) or Borda count. If F*° isrank-order voting, then
XF™ (R) y if and only if [ v (x) da(i) 2 | Vg, (v) (i)
Speaking in terms of socipteferences may seem somewhat indirect
because the Introduction depicted a voting rule asy of making social

choices. That is, it might seem more natural to defin@ting rule as a

mapping that to each profilr onO, assigns a choice functiax([), which,

for each subset O X (whereY is interpreted as the “available” or “feasible

set), selects a subsefy) 0y (wherec(Y) consists of the “optimal”

alternatives irY).** However, because it is less cumbersome workitly wi
preference relations than choice functions, theeetradition going back to
Arrow (1951) of taking the former route. Furthemmat is well known that
there is a close connection between the two appesat In our setting, we

shall take the statement andy are socially indifferent” to mean “ifis

1% ndeed, we took this approach in an earlier versiothe paper



chosen and is also available, thenmust be chosen too.” Similarlyx fs
socially strictly preferred tg” should be interpreted as %fis available,
theny is not chosen.”
3. The Properties

We are interested in four standard propertiesahatmay wish a
voting rule to satisfy.

Pareto Property on O : For allRon O and allx,yO X, if, for all i, xR(i) y,
thenxF (R)y and: yF(R)x, i.e.,

F

—

R)_

y
In words, the Pareto property requires that iaters prefex toy,
then society should also (strictly) prefetoy. Virtually all voting rules
used in practice satisfy this property. In paftacumajority rule and rank-

order voting satisfy it on the unrestricted domain

Anonymity on O: Suppose that:[0,1] - [0,] is a measure-preserving
permutation ofo,1] (by “measure-preserving” we mean that, for all&or
setsT 0[0,1], u(T) = u(n(T))). If, for all R, R™ is the profile such that

R"(i)=R(7(i)) for alli, thenF(R")=F(R).

1 See, for example, Arrow (1959).
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In words, anonymity says that social preferencesiishdepend only
on the distribution of voters’ preferences andamtvho has those
preferences. Thus if we permute the assignmevitefs’ preferences by
i, social preferences should remain the same. Tdsnefor requiring that
7T be measure-preserving is to ensure that the dracti voters preferring
toy be the same foR” as it is forR.

Anonymity embodies the principle that everybodydevshould count

equally’® It is obviously satisfied om, by both majority rule and rank-

order voting.
Neutrality on O : For all profilesR andR' on0 and all alternatives, y, w, z,
if

xR(i)y if and only ifwR'(i) z for alli

then
xF (R)y if and only ifwF (R') z

and
yF (R) x if and only ifzF (R') w.

In words, neutrality requires that the social prefee betweer andy

should depend only on the proportions of voterégprag x and preferring

y, and not on what the alternativeandy actually are.

2|ndeed, it is sometimes called “voter equalitygdDahl, 1989).

11



As noted in the Introduction, this (standard) vansof neutrality
embodies independence of irrelevant alternativesptinciple that the
social preference betwe&randy should depend only on voters’ preferences
betweernx andy, and not on preferences entailing any other atera:
Independence of Irrelevant Alternatives (11A) on O : For all profiles
R andR’' onJ and all alternatives andy;, if
xR(i)y if and only ifxR' (i) y for alli ,

then
xF (R)y if and only ifxF (R') y,

and
yF (R) x if and only ifyF (R')x .

Clearly, majority rule satisfies neutrality on tinerestricted domain
0,. Rank-order voting violates neutrality an because, as is well known,
it violates IIA on that domain. However, it saigsf neutrality on any
domainO on which “guasi-agreement” holds.

Quasi-agreement on O : Within each triplg[x,y,zZ2 O X, there exists
an alternative, say, such that either (a) for a0, xRy andxRz; or (b) for
all ROO, yrRx andzRx; or (c) for allROO, either yrRxRz or ZRxRy .

In other words, quasi-agreement holds on domaif for any triple

of alternatives, all voters with preferencegimagree on the relative ranking

12



of one of these alternatives: either it is best withia thple, or it is worst, or
it is in the middle.

Lemma L F® satisfies neutrality on if and only quasi-agreement holds
ono."®

Proof See appendix.

A binary relationcC istransitive if for all x,y,zO X, xCy and yCz
imply that xCz. Transitivity demands that Xis weakly preferred tg andy
is weakly preferred ta, thenx should be weakly preferred to z.

Transitivityon O: F(R) is transitive for all profileR onO.

For our results on majority rule we will, in faopt require transitivity
for all profiles in0O but only foralmost all. To motivate this weaker
requirement, let us first observe that, as mentlonghe Introduction,
single-peaked preferences do not guarantee thatitgapule is transitive for
all profiles. Specifically, suppose that y <z and consider the profile

1) 39

y
z
X

[0

N<< X

That is, we are supposing that half the voterssg@ifoom O to ) preferx to

y toz and that the other half (those fraito 1) prefery toztox. Note that

13



these preferences are certainly single-peakedvelat the linear
arrangementx<y<z. However, the social preference relation under
majority rule for this profile is not transitiv&:is socially indifferent tg, y
Is socially strictly preferred ta yetzis socially indifferent toc. We can
denote the relation by:

Nevertheless, this intransitivity is a knife-eddepomenon - - it
requires thaexactly as many voters pref&ritoy asy to x, andexactly as
many prefex toz as prefeztox. Thus, there is good reason for us to
“overlook” it as pathological arregular. And, because we are working
with a continuum of voters, there is a formal wayihich we can do so, as
follows.

Let Sbe a subset of (0, 1). A profieon O isregular with respect to

S (which we call arexceptional set) if, for all alternatives< andy,
a: (% y)OS.
That is, a regular profile is one for which the godions of voters preferring

one alternative to another all fall outside thecdpsd exceptional set.

13 See Barbie, Puppe, and Tasnhade (2003) for a deratios that rank-order voting satisfies 11A and
symmetry with respect to alternatives (see footddten a broader class of domains then those watisf
quasi-agreement.

14



Generic Transitivity on O : There exists &inite exceptional seb such that,

for all profilesR on O that are regular with respect$pF (R)is transitive.

In other words, generic transitivity requires otilgt social
preferences be transitive for regular profiles,sonwbere the preference
proportions do not fall into some finite exceptibsat. For example, as
Lemma 2 below implies, majority rule is genericalignsitive on a domain
of single-peaked preferences because if the extedtset consists of the

single pointi —i.e., S={4} —social preferences are then transitive for all

regular profiles.

In view of the Condorcet paradox, majority rulecg generically
transitive on domaim, . By contrast, rank-order voting is not only
generically transitive om, butfully transitive (i.e., generically transitive
with exceptional ses = g).

We shall say that a voting ruerks well on a domairt if it satisfies
the Pareto property, anonymity, neutrality, andegertransitivity on that
domain. Thus, in view of our previous discussioajority rule works well
on a domain of single-peaked preferences, wheegksarder voting works
well on a domain with quasi-agreement.

4. Generic Transitivity and Majority Rule

15



We will show below (Theorem 1) that majority rulenks well on or
more domains than (essentially) any other voting. rifo establish this
result, it will be useful to have a characterizatod precisely when majority
rule works well, which amounts to asking when majaule is generically
transitive. We have already seen in the previegian that a single-peaked
domain ensures generic transitivity. And we natetthe introduction that
the same is true when the domain satisfies limagggéement. But single-
peakedness and limited agreement are only sufticamditions for generic
transitivity; what we want is a condition that sth sufficient and necessary.

To obtain that condition, note that, for any thadternatives, y, z,
there are six logically possible strict orderinghjch can be sorted into two

Condorcet “cycles™:

N<< X
XN
< XN
< N X
X< N
N X<

cycle 1 cycle z
We shall say that a domaih satisfies theo-Condorcet-cycle property™ if
it contains no Condorcet cycles. That is, for guaple of alternatives, at

least one ordering is missing from each of cyclasad 2 (more precisely for

14 We call these€ondorcet cycles because they constitute preferences thatigie to the Condorcet
paradox
! Sen (1966) introduces this condition and calslitie restriction.

16



each triple{x,y,z} , there do not exist orderingsR,R"in O that, when
restricted td x,y,z} , generate cycle 1 or cycle 2).

Lemma 2 Majority rule is generically transitive on domai if and only if
O satisfies the no-Condorcet-cycle propéfty.
Proof If there existed a Condorcet cyclelin then we could reproduce the
Condorcet paradox. Hence, the no-Condorcet-cydeqnty is clearly
necessary.

To show that it is sufficient, we must demonstratesffect, that the
Condorcet paradox is tloaly thing that can interfere with majority rule’s
generic transitivity. To do this, let us suppds&t £™ is not generically

transitive on domaimm. Then, in particular, if we les={4} there must
exist a profileR on O that is regular with respect {¢} but for which

F"(R) isintransitive. That is, there exist y,zOX such that

xF"(R) yF"(R) ZF"(R)x, with at least one strict preference. But bec&use
is regular with respect {3}, x™(R)y implies that

L O (% ¥)>%,

that is, over half the voters prefetoy. Similarly, yr™(R)z implies that

(2) ae(y.2) >4,

17



meaning that over half the voters preféo z Combining (1) and (2), we

conclude that there must be some voteiR who prefexxtoytoz, i.e.,

3) yoo ¥
V4

By similar argument, it follows that

g,

XN
< XN

Hence,O contains a Condorcet cycle, as was to be shown.
Q.E.D.

It is easy to check that a domain of single-peaketerences satisfies
the no-Condorcet-cycle property. Hence, Lemmajdien that majority
rule is generically transitive on such a domaime $ame is true of the
domain we considered in the Introduction in conio@civith French
elections.
5. The Robustness of Majority Rule

We can now state our main finding about majoriteru
Theorem 1: Suppose that voting ruleworks well on domaimi. Then,

majority rule F™ works well onO too. Conversely, suppose tirit works

well on domaind™. Then, if either (i does not work well om™ or (ii) F

'8 For the case of an odd and finite number of voteeda (1969) establishes that the no-Condoragecy
property is necessary and sufficient for majoritierto be transitive.

" To be precise, formula (3) says that there esisterdering inC] in whichx is preferred ty andy is
preferred ta. However, becaude™ satisfies IIA we can ignore the alternatives othan X, v, Z.

18



works well onO™ and there exists profile’, regular with respect t#6's
exceptional set, such that

(4) F(R)2F™(R°),

then there exists a domaini on whichF™ works well, but- does not.
Remark: Without the requirement that the profile for whiehandrF™ differ
belongs to a domain on which majority rule workdlwbe converse
assertion above would be false. In particularsasr a voting rule that
coincides with majority rule except for profilesattcontain a Condorcet
cycle. Itis easy to see that such a rule worlksameany domain for which
majority rule does because it coincides with méjanile on such a domain.
Proof Suppose first thd works well onO. If, contrary to the theorem,

F™ does not work well o, then, from Lemma 2, there exists a Condorcet

cycleinO:
X VA

(5) V.2, % oo.
zZ Xy

Let Sbe the exceptional set fBron 0. Becaus&is finite (by assumption),
we can find an integer such that, if we divide the population int@qual
groups, any profile for which all the voters in lgoarticular group have the

same ordering in must be regular with respect$o

19



Let [0,2] be group 1(%,2] be group 2, ..., an{rt,1] be groum.
Consider a profiler on O such that all voters in group 1 prejeto x and all

voters in the other groups prefetoy. That is, the profile is

(7)

X< | =
<X N
<X |>

From (5), such a profile exists an. From neutrality (implying llA), the
social preferences (R) do not depend on voters’ preferences over other
alternatives.

There are three cases: eithi@ix(is socially strictly preferred tp
underF (R); (i) x is socially indifferent toy underF (R,); or (ii)y is socially
strictly preferred tox underF (R,)).

Case (i) F(XRL)
y

Consider a profileR” on O in which all voters in group 1 prefgrtoy

to z all voters in group 2 prefgrto zto x; and all voters in the remaining

groups prefeetoxtoy. Thatis,

18

(8) R’=

N< X | =
XN< | N
< XN |
< XN |5

20



Notice that, in profiler’, voters in group 1 preferto z and that all other

voters prefez to x. Hence, neutrality and the casehypothesis imply that
zmust be socially strictly preferred xainderF (R7), i.e.,

F(R)

4
X

(9)

Observe also that, iR, voters in group 2 prefgrto x and all other

voters prefex toy. Hence from anonymity and neutrality and the ¢Bse

hypothesis, we conclude thamust be socially strictly preferred yainder

F(R).ie.,

F(R)
(10) v
y
Now (9), (10), and generic transitivity imply thaits socially strictly
preferred toy underF (R7), i.e.,
F(R)

(11) .
y

But (8), (11), and neutrality imply for any profieich that

123, n
Yy V 2z VA
Z Z 'Yy Yy

'8 This is not quite right because we are not spejfilow voters rank alternatives other thay, andz.
But from IIA, these other alternatives do not matbe the argument.
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z must be socially strictly preferred yo Hence, from neutrality, for any

profile R, on O such that

(12) 12 3, n
y y X X
X X Yy Yy

X must be socially strictly preferredyoi.e.,

(13) F (XRz)
y

That is, we have shown thatxifs socially strictly preferred tp when just
one out ofn groups preferg to x (as in (7)), thex is again socially strictly
preferred toy whentwo groups out ofi prefery tox (as in (12)).

Now chooseRr) on O so that

(14) RY =

N< X |
XN< | N
X N< | w
*<><N|.|>
< XN |5

Arguing as above, we can use (12) — (14) to shawxtls socially strictly
preferred toy if three groups out oh prefery tox. Continuing iteratively,
we conclude that is strictly socially preferred tpeven ifn-1 groups out
of n prefery to x, which, in view of neutrality, violates the case (

hypothesis. Hence casg¢i6 impossible.

Case (ii): @

22



But from the casda) argument, casei) leads to the same contradiction as

before. Hence we are left with

Case (jii): FX(_R;)

Consider a profileR on O such that

>
|
[EEN

R=

N< X |~
x|
XN< |5

From anonymity, neutrality and the cagé hypothesis, we conclude that

is socially indifferent toy andx is socially indifferent te under F (Ii), ie.

(15) F(R)
X-y

and

16) i

But the Pareto property implies thais sociallystrictly preferred t@ under
F(R), which together with (15) and (16) contradicts grentransitivity. We

conclude that caséi( is impossible too, and 8™ must work well onz

after all, as claimed.
Turning to the converse, suppose that there ed@st®in0™ on

which F™ works well. IfF does not work well om™too, we can take

23



O0'=0" to complete the proof. Hence, assume Ehabrks well onO™ with

exceptional seb and that there exists regular proffte on O™ such that
F(R°)#F"(R°). Becauser(R°) andF"(R°) differ, there exisr0(0,1)
with

(17) 1-a>a ,

and alternatives,yO X such thaty, (x y)=1-a and F(R°) ranksx andy

differently from F"(R°). From (17), we have

F™(R)

X
y
We thus infer that
(18) yF (R°)x
Becauser is neutral ond™, we can assume th&t consists of just two
orderingsR,R'00 such that
(19) yR'x andxR"y

Furthermore, becauge is anonymous on™, we can writerR° as

._[04a) [a.]
(20) R R

y 1

so that voters between 0 andhave preferenceR, and those betwean

and 1 haver'.
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To give the idea of the proof, let us assume fertitme being thaE
satisfies the Pareto property, anonymity, and aétytron theunrestricted

domaind, . ConsiderzO{x,y} and profileR® such that

(21) R00:(0,0'] [a.1-a) [1a.] 19
y x 7
X y y

Then from (18)-(21), anonymity, and neutrality, agve
(22) yF (R°°) x andxF ( R°°) z
From the Pareto property, we have

ey ®)

V4
y
But, by constructionR®is regular with respect #6’'s exceptional set. Thus,

(22) and (23) together imply thitviolates generic transitivity on

Z
D':{y,
X

implies thatD’ is a domain on whiclF™ works well but- does not. Thus,

< XN

X : : " .
,z}. Yet, from Lemma 2F™ is generically transitive o’ , which
y

we are done in the case in whi€lalways satisfies the Pareto property,

anonymity and neutrality.

¥We have again left out the alternatives other taly, Z, which we are entitled to do by IIA. To make

matters simple, assume that the ordering&R0t are all thesame for these other alternatives. Suppose
furthermore that, in these orderings, Y, Z, are each preferred to any alternative nc{t)kr,] Y, Z} .

25



However, ifF does not always satisfy these properties, theoaneno
longer infer (22) from (18)-(21), and so must artgss directly (although
we shall still make use of the same basic idea).

Considerr andr’ of (19). Suppose first that there exists alteveat
zOX such that
(24) Ry and  zZR'X
Letw be the alternative immediately belawn orderingR’. If w#x, let R’

be the strict ordering that is identical®d except thatv andz are now

interchanged (so thatwR’z). By construction of
R, the domaif R R" R} does not contain a Condorcet cycle, and so, from

Lemma 2,F™ works well on this domain. Hence, we can assurag+t
works well on this domain too (otherwise, we arae)o Notice that

neutrality ofF and (18) then imply that if we repla@ by R’ in profileR® (to
obtain profileR%) we must have

(25) yF (Rg) X,

Now, if w, is the alternative immediately bel@in R andw, # x, we can
perform the same sort of interchange as abovettroR’, andR®.and so
conclude thaF™ andF work well on{R,R.,R}}

and that
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(26) yF (RSD)X.

By such a succession of interchanges, we canfentefnovez
“downward” while still ensuring tha and F™ work well on the
corresponding domains and that the counterpaftsio (25) and (26) hold.
The process comes to end, however, once the dliermamediately below

zin R" (orR,R%,, etc. iISX. Furthermore, this must happen after finitely gnan

interchanges (sincéis finite). Hence, we can assume without loss of
generality thatv=x (i.e., thatx is immediately below in R").

Let R" be the strict ordering that is identicalRb except thak andz
(which we are assuming are adjacenrin are now interchanged. From

Lemma 2,F™ works well on0’' ={R' R" R"}, and we can suppose tltatloes

too (otherwise, we are done). Hence, from the sangiement we used for

R*above, we can conclude that

(27) yF (RD°°) x andxF (RD"") z
and
(28) iy

y

whereR® is the profile

[0,a) [a.1-a) [1-a.]
R R’ R"
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contradicting the generic transitivity 6fon0’. Thus, we are done in the
case where (24) holds.
Next, suppose that there exigts X such that
(29) xRz and yR'z.
But this case is the mirror image of the case wf@tgholds. That is, just
as in the previous case we generagédvith
(30) xR"zR"y
through a finite succession of interchanges in Wwhimovesdownwards in
R', SO we can now generaRé satisfying (30) through a finite succession of
interchanges in whicamovesupwardsin R". If we then take

0'={R,R',R"}, we can furthermore conclude, as when (24) hofdd,F"

andF work well on0’. But, paralleling the argument f&*, we can show

that
yF(R‘D’%)x and zF(RE"S)y
and
F(R?)
v
z

whereR? is the profile

[0,0) [a.1-a) [1ra.] |
R R’ R"
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implying that F(R%)is intransitive. This contradicts the conclusibatf

works well ond’', and so again we are done.
Finally, suppose that there exisis X
such that
(31) ZRy and xR'zR'y.
As in the preceding case, we can mawpwards inR’ through a succession
of interchanges. Onlthistime, the process ends wheandx are
interchanged to genera® such that
(32) R'XR'Y .
As in the previous cases, we can concludeRratd F™ work well on

{R’, R",FE"} . TakeR™ such that

2o [00) [a1-0) [ra]
R R R’

Then, as in the arguments ab@tandR®, we infer thatr (R*) is
intransitive, a contradiction of the conclusionttRavorks well on

{R.RR}. This completes the proof when (31) holds. Teteaining

possible cases involvingare all repetitions or mirror images of one or
another of the cases already treated.

Q.E.D.
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As a simple illustration of Theorem 1, let us sewrlit applies to

rank-order voting. IfX ={x,y,z, Lemma 1 implies thag " works well on

(8

And, as Theorem 1 guarante€&s, also works well on this domain, since it

the domain

N<< X
X< N

obviously does not contain a Condorcet cycle. @osely, on the domain

I

F"(R)# F™(R) for any profileR in which the proportion of voters with

e o=

N X
XN
X< N

. X : : :
orderingy is a, the proportion with orderlnéisﬁ and
V4 X

(**) 1<2a<pB+1
(if (**) holds, then F™ andF™ rankx andy differently). But, from Lemma
2, F™ works well on0' given by (*). Hence, from Lemma 1L, constitutes
a domain on whiclF™ works well butF* does not, as guaranteed by
Theorem 1.

We have already mentioned May’s (1952) characteoizaf majority
rule (see footnote 2). In view of Theorem 1, we peovide an alternative
characterization. Specifically, call two votindesiF and F' generically the

same on domaind if F(R)=F'(R) for all but finitely many profilesR onO.
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Call F maximally robust if there exists no other voting rule thgtwWorks
well on every domain on whidhworks well andif) works well on some
domain on which does not work well. Theorem 1 implies:
Corollary: Majority rule is maximally robust, and any otheaxmmally
robust voting ruld- is generically the same as majority rule on anyaio
on whichF or majority rule works well.
6. Unanimity Rule

The symmetry inherent in neutrality is often a cewble and
desirable property-- we would presumably want éattiall candidates in a
presidential election the same. However, theraks@many circumstances
in which it is natural to favor certain alternatveThe rules for changing the
U.S. Constitution are a case in point. They haanldeliberately devised
so that, at any time, the current version of thagiitution—the status quo—
is difficult to revise.

Accordingly, let us relax neutrality and just impd$A. We will
require the following additional weak condition woting rules:

Tie-break Consistency: Given voting ruld=, there exists an orderirg. (not
necessarily strict) such that, for ally0 X and allR ori1, for which

ak (% y¥) =0z (y,x), we havexR.y if and only ifxF (R) y.
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Tie-break consistency requires that in situatiohens the population
splits 50-50 between two alternatives, the “tie’doeken (or not broken as
the case may be) consistently in the sense thatdbndransitively (note
that, given IlA, the only aspect of the conditibvat is restrictive is the
stipulation thatR. be anordering—which entails transitivity). That is, ¥
Is chosen ovey when the population splits betweeandy, andy is chosen
overz when the population splits betwegandz, thenx should be chosen
overz when the population splits betweeandz. Observe that because the
likelihood that the population will spléxactly is very low, tie-break
consistency is not a terribly demanding conditidfatice too that it
implicitly invokes anonymity (which we are assumiagyway), since the
way that the population splits 50 — 50 is assumedamoiatter.

Let R, be a strict ordering of. We shall denotananimity rule with

order of precedence R, by Fg and define it so that, for all profile® on O,
and all alternatives andy, x=g y if and only ifeither xR(i)y for alliD[0,] or
xRy and there existssuch thatxR(j)y. That is, betweerandy, the

alternative earlier in the order of precedercavill be chosen unless voters
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unanimously prefer the other alternatiVeNotice that for any profil&®

R,Fg (R) is a strict ordering.

FU

r, Can be implemented by the following proceduregiBevith

alternativex, as the status quo (whex®Rx,L Rx_ ). Ateach stage (there

arem-1 in all), compare the current status quo with teetralternative in

the orderingR,. If everyone prefers this next alternative, titdoecomes the

new status quo; otherwise, the old status quo renaiplace.
We shall say that a voting ruherks satisfactorily on a domairng if
it satisfies the Pareto property, anonymity, llAddransitivity ono .2
Just as Lemmas 1 and 2 characterize when rank-entieg and
majority rule work well, Lemma 3 tells us when umaity rule with an
order of precedence works satisfactorily:

Lemma 3: Unanimity rule with order of precedengeworks satisfactorily

on domaind if and only if, for all triplegx,y,z} with

R,
(33) L

y

Z

and any ordering® andR’ such that

20 For discussion of this voting rule in a politissiiting see Buchanan and Tullock (1962).

% There is an obvious sense in which to waatksfactorily is a less demanding requirement than to work
well, since the former imposes only IlA rather thangtrenger condition, neutrality. Note, howevegtth
working satisfactorily requiresxact transitivity, whereas working well ontyeneric transitivity.
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(34) L
Yy VA
VA X
X y

R andR" do not both belong tal .

Remark: Lemma 3 implies that, for unanimity rule to bansitive on
domain, only one of the six strict orderings of a triple of altetiva need
be missing from the domain, for each triple. Unaty rule is, therefore,
transitive “more often” than majority rule, whicbrfgeneric transitive,
requires the elimination of two orderings (one freath Condorcet cycle).

Proof: Suppose that, for some trigley,z} satisfying (33), there exist

R andR’ inO satisfying (34). Consider profil@ such that

5-103) [33

y
z
X

X
y

BecauseRy and voters front to 1 prefextoy,

we have
(R
Ry
(35) ,
y
Similarly, we have
’
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But because everyone prefer® x, we have

LG

V4
X
which together with (35) and (36) contradicts travisy. We conclude that

if (34) holds, then aecessary condition forF; to work satisfactorily om

Is that eitherR orR" be missing fron .

Conversely, suppose thgf doesnot work satisfactorily ono .

Because this voting rule always satisfies Paretongmity, and IlA, there

must exisf x,y,z} satisfying (33) and a profile” such that either

F.(R)
(37) .
y
Y4
X
or
P (R)
(38) .
V4
y
X

Suppose first that (38) holds. Then, from (33),nnest have
zR™(i) yr™(i) x for alli 0] 0,1,
which contradicts the hypothesis thak (R”)z. Hence, (37) must hold.

Then because, by assumptioRr,z, we infer that
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(39) zR™(i)x for alli 00,1 .

Becausexry, (R”)y andyFy (R")z, there must exist andi” such that
(40) xR™(i") y andyR"(i") z.

But (39) and (40) imply:

RD(i') and

< XN
X N<<

Hence, when (37) holds safficient condition forFg to work satisfactorily

on O is that not botlR andR" belong tal .

Q.E.D.
We can now establish our second major result:
Theorem 2: Suppose thdt satisfies tie-break consistency. There exists a

strict orderingRr, such that on all domains whereF works satisfactorily,

FU

r, Works satisfactorily too. Furthermore, if thesesea domaini” on

which Fy works satisfactorily and profilg on 0" such thatF (R) = F (R),
then there exists a domain on which F; works satisfactorily buf does

not.
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Proof: Given voting rul&, let R. be the corresponding “tie-break” ordering
prescribed by tie-break consistency. Choose @ sirileringR, consistent
with R, i.e., letR, be a strict ordering such that, for aly 00X

(41) if xRy thenxR.y .

Conside{x,y,z} with

(42)

N % |0

and suppose thatworks satisfactorily on domain. From Lemma 3Fz.

works satisfactorily o provided that wheneveR andR' are two strict

orderings such that

(43) R and B :
y z
z X
X y

then not bothR andR" can belong tal. Thus, to establish the first assertion
of the Theorem, it suffices to show that if (43)ds) eitherR orR" must be
missing from0O .

Suppose to the contrary thRtR' 00 . Consider the profil®k onO

such that

(44) R=

From (41) and (42) we have
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(45) xR YRz
(although the rankings in (45) may not be stri¢fence, from (44) and (45),

tie-break consistency implies that
(46) xF (Ii) yF(f{)z
But because everyone i preferszto x, the Pareto property gives us

i

V4
X

R)

which, together with (46), means thefR) is not transitive, a contradiction.

Thus the first assertion of the theorem is indestdidished.

To prove the converse, consider profiteand domairm® such that

47) R isonO’

(48) Fr, works satisfactorily om”
and

(49) F(R)#Fg (R) -

Choose a paifR.,0} ) and alternative$x., y. ) to solve

(50) maxdg (X,y)
subject to (47) - (49) and

(51) xFg (R)y andyF (R)x .
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Such a maximum exists becauséand, are finite. Because.Fg (R)y:,
y-Rx. implies thatx.R(i)y. for alli. But this would mean th&t violates
the Pareto property on; sinceyr (R)x—implying that we could take
0'=0% to complete the proof. Hence, assume that
(52) X-RYr

Let R, be theopposite of R, i.e., for allx, y

xRy if and only ifyR x .

Let z be the alternative just below in orderingRr, (if y. is the lowest
alternative inR,, the argument is very similar). L&t be the ordering that
coincides withR, except thaty. andz. are interchanged. Finally, |& be
the ordering that coincides witR, except that. andy. are interchanged.

It is a matter of straightforward verification tbexk that, for all

RO{R.,R,R} and allx,y,z, if

N< % |0

then we have neither

(53)

xXN< |0
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nor

(54)

< XN |7

which, from Lemma 3, implies tha; is transitive on
0y =0¢ 0{R, R R.RY .
We know, from (41) and (52), thatR.y.. There are two cases.

Casel: R
Xe = Ve

Becausex.Rz , (41) implies that

(55) A

Consider the profile

oo [08) 1
R, Ry

From (55), we have

(56) xFF(Rl)zF

From the Pareto property, we have

Finally, from the Case | hypothesis, we have



F(R)

(57)
Xe = Ve

But combining (55) — (57) we conclude tl‘l%l(tRl) IS intransitive, and so, if

Case | holds, we can take=0% to complete the proof.

Casell:

E e

Or. (XF!yF) =0Or, (yFlXF) :%,
then from (52) and the Case Il hypothesi$R. ) and R (R.) must rank

x. andy, differently, contradicting (51). We must therefdrave either

(58) O, (X2 ¥e) > s, (Ve o Xe)
or
(59) O, (X2 Ve ) <Or (VeoXe)

Suppose first that (58) holds. Becaurse works satisfactorily oy, , we

can assume th&tdoes too (otherwise, we can take=0¢ and we are

done). Hence, iR is a profile ond} such that

(60) Or (% ¥e ) = O, (% Ve )

anonymity and neutrality d¥ imply that
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(61) YeF (R) %
Let R, be the ordering that coincides with, except thaix. andy,

are interchanged. One can verify mechanically fibraall RD{RD R,.R.R }

and allx,y,z, if

N< < |

then we do not have

(62)

xXN< |0

Hence, from Lemma Fr, works satisfactorily onﬂﬁh :{ R,R.,R, F}TF_&} :

and so we can assume that the same is trbe bllence, ifR is a profile on

ﬁ‘;ﬁ satisfying (60), we can infer (61). Consid@r such that

[O’%) [%’qu (XF’yF)) [QRF (XF!yF)’1:|
R, R, R,

Becausey, (%..Y:) =0z (X.Y:), the above argument implies that
(63) Ve F (R?) %
From the Pareto property,

(64) F(R)

F

Yr
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Furthermore, becausg, (x.,z.) =%, x.R-z. implies that
(65) x.F(R*)z
But (63) — (65) contradict the transitivity 6 R*) , and so we can take
0'=0% when (58) holds.
Finally, assume that (59) holds. If there exjgts: and a profile

R on ﬁ‘;h such that

(66) Or(Yr 2 )= B
and
(67) zF(R) e ,

consider profileR® such that

(0.0, (% ¥)) [ae (% .¥¢) G, (% Ye)+B) [ae (%Y )+ B.1]

R®= L
R, R, Ry

Becausen, (y:,z )= 4, (66) and (67) imply
that

(68) zF(R)y:

Becausen,. (%, e ) = 6. (%Y ), We have

(69) Ve F (R) %,
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Now, o (%.z)=ds_ (X.Y:)+ B, and so because,y., andR. were chosen

to solve (50) — (52), the fact that

R (R7)
X ,
ZF
implies
F(R®
(70) ( )

But (68) — (70) contradict the transitivity 6fR®).

Thus assume that, for i< and profilesr onO} with

(71) Or(Ye.2)=8
we have
(72) ¥-F (R)z

If there exists50(0,4) and profileR on} such that

(73) Or (XF ' Zr ) =0
and
(74) z.F(R) X,

then consider profil&R* such that

re=109) [o
R,

EPL
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From the Pareto property,

F(R')

(75)
Y

From (71) and (72), we have

(76) y-F(RY)z .

From (73) and (74), we have

(77) zFF(R“)xF :

But (75) — (77) contradict the transitivity 6fR*). So we conclude that, for

all 50(0,4), if R onO}, satisfies (73),

then
F(R)
78 — 7
(78) x

Finally, consider profileR* such that

RS = (005, (%1 %)) [0, (%% ).1]
R R,

From the Pareto property, we have

(79)

Becausen (%, Y- ) = 0s (%.Y:), We have
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(80) Yo F (R°) %
Finally, becausey (x.,z ) <%, (78) implies that

F(R°)

Xe
Z

(81)

Now, (79) — (81) contradict the transitivity 6f R°), and so we can take

0'=0%.
Q.E.D.
7. Future Work
We have assumed throughout that voting rules naiistfy
anonymity; this is part this is part of the defiont of “working well” or
“working satisfactorily.” But in practice there amany circumstances in
which voters are deliberately not treated equalby,should they be. Think,
for example, of the way that Federal bills are pdsa the United States—
senators, representatives, and the President eaehviry different voting
weights. This suggests that it is worthwhile exang what becomes of our
results when anonymity is relaxed. Now, if we wiereompletely eliminate
anonymity as a requirement, nothing resembling Tdmadl would continue

to hold; instead, dictatorship (in which a single voter’s preferences

determine social preferences) would now be the matgtst voting rule,
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since it satisfies neutrality, the Pareto propeatd transitivity on the
unrestricted domaini, .

However, it seems useful to explore what would leappwe
replaced anonymity with the weaker condition ofingtbloc
responsiveness.

Voting-Bloc Responsiveness on O : For anyv 0[0,1] with x(v)>o0, there
exist profilesR andR' on0 such thatr(i)=R'(i) for all iOv but

F(R)2F(R).

In words, voting-bloc responsiveness requiresekiaty bloc of
voters of positive size can sometimes affect tlogasoanking. The
condition is clearly satisfied by any voting rute fvhich the Pareto property
and anonymity hold. But it also holds for many fasmonymous voting
rules, such weighted majority rule, defined asofo: Given a positive-

valued, Lebesgue-measurable functioon[0,, F* is weighted majority
rule with weight w, if for all alternatives, y, and profilesr, xF"(R)y if

and only if
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Analogous to Theorem 1, it can be shown (see Daagum Maskin, 1998)
that if a voting rule satisfies the Pareto propangutrality, generic
transitivity, and voting-bloc responsiveness oromdin O then, for anyw,
F* also satisfies those propertiesion We conjecture that the converse

holds too. That is, if, for all, F(R)# F*(R) for all R on an open set of

profiles on a domaim"” set wherer" satisfies these four properties, then
there exists a domain’' on whichF" satisfies all the properties, dtidoes
not.

Another interesting extension to consider is sgjigteoting. It has
long been known that there is a close connectitwédsn the problem of
defining “reasonable” social preferences on a daroépreferences and that
finding voting rules immune from strategic manigida by voters (see
Maskin 1979 and Kalai and Muller 1977). Becauseénaxe assumed a
continuum of voters, sincere voting is automaticabmpatible with
individual incentives. But the same is not truedoalitions (voting blocs).
We conjecture that counterparts to Theorems 1 arahde derived when
independence of irrelevant alternatives is replaaéd the requirement that

a voting rule be coalitionally strategy-proof.
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Appendix

Lemma 1 For any domaird, FF satisfies neutrality o if and only if
guasi-agreement holds an.

Proof: Assume first that quasi-agreement holdsslonWe must show that
FR satisfies neutrality om. Consider profileR andR' o] and
alternatives, y, w, andz such that

(A1) xR(i)y if and only ifwR'(i) z for alli .

We must show that

(A2) xF ™ (R)y if and only ifwF"° (R') z
and
(A3) yF™ (R') x if and only ifzZF*° (R')w.

If, for all i, xR(i)y, then because® satisfies the Pareto property, we have

FF(R)

X
y

RO ’
and F—(R) ,
W
VA

in accord with (A2) and (A3). Assume, therefotgttif we let
I, ={i\xR(i)y} and 1, ={j\yR(j)x}
and

L ={iwR ()4 and 1, ={j[yR(j)W |



thent,,1,.1,, and, are nonempty.
We claim that
(A4) Ve (X) = Vegy (Y) = Vagjy (¥) = Ve (x) forall i01, andjOl,.

Now, (A4) holds because if there existil . andz0 X such that

R(i)

< N X

then quasi-agreement implies

m foralliJl, and m forall jOI,.
X y
z z
y X
Similarly, we have
(A5) Ve (W) = Ve (2) = Vi) (2) = Veyy (w) forall i01, andjOl;.

But from (A4) and (A5) and the definition &f°, we obtain (A2) and (A3),
as required.
Next, suppose that quasi-agreement does not hadimainO .

Then there exist alternativ&sy, z and ordering®k,R 00 such that

(A6)

N< X |0

and



(A7)

XN<|;Q

From (A6) and (A7) we have

(A8) Ve (X) = Ve (Y) < Ve (¥) = Vi (X)
(A9) Vi (X) = Vi (2) > Vi (2) = Vg (X)
Choose
Do) 24
R R

Then from (A8) and (A9)

(A10) F(R)

N X<

But, by construction, we have, for all
xR(i)y ifand onlyif xR(i)z
and
yR(i)x if and only if zR(i)x.
Thus, if neutrality held we should have
yF(Ri)x ifand only if Z=™ (Ri)x,
which contradicts (A10).

Q.E.D.
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