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I. Introduction

In the study of degenerating families of Hodge structures in the lit-

erature there are two complementary approaches. These are

Hodge theoretic: This is given by a period mapping

(I.1)HT Φ : ∆∗` → Γ\D

where Γ is generated by unipotent local monodromy transformations

Ti = expNi. We denote by σ = spanR+{N1, . . . , N`} the monodromy

cone associated to (I.1)HT.

Here, we are given a Q-vector space V and a non-degenerate form

Q : V ⊗ V → Q, and D is a period domain consisting of polarized

∗These notes are a work in progress and are not for circulation.
1
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Hodge structures of weight n given by a filtration F • = {F n ⊂ F n−1 ⊂
· · · ⊂ F 0 = VC} that satisfies the first and second Hodge-Riemann

bilinear relations (cf. [CM-SP] and [Ca]). We set G = Aut(V,Q) and

then the monodromy transformation around the ith coordinate axis in

∆` is given by Ti ∈ G.

Complex algebro-geometric: This is given by the Hodge-theoretic

properties associated to a projective family

(I.1)AG π : X→ ∆`

which has the local form (I.7) below of semi-stable reduction (cf. [AK]).

We assume that the restriction

π : X∗ → ∆∗`

of (I.1)AG to ∆∗` has smooth fibres and that the local monodromies

around the coordinate axes in ∆` are unipotent.

In what follows we will frequently use the notation S∗ both for the

domain of a period mapping Φ : S∗ → Γ\D and the parameter space

for a family of smooth varieties X∗ → S∗, and by S a smooth variety

containing S∗ as an open set where S∗ = S\T with T being a normal

crossing divisor. Then in (I.1)HT and (I.1)AG we have S = ∆`, S∗ = ∆∗`

and T = union of the coordinate hyperplanes in ∆`. We will denote by

Xs the fibre π−1(s) for s ∈ S and by X = π−1(s0) when S = ∆` and s0

is the origin. It will be assumed that X is connected of dimension d.

There are three main purposes of these notes. One is to compare the

approaches (I.1)HT and (I.1)AG. For 1-parameter families (` = 1) the

asymptotic analysis of (I.1)HT is due to Schmid [Sc], and the algebro-

geometric analysis of (I.1)AG and tight connection to [Sc] is carried out

in the basic work [St1].

For general families the asymptotic analysis of (I.1)HT was initiated

in [CKS1], [CKS2], [Kas1] and [KK]. Concerning (I.1)AG the direct

extension of some of [St1] is done in a number of papers, frequently

in the setting of logarithmic geometry; cf. [Fu1] and the references

cited there. There is an extensive literature centering around (I.1)HT,
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and there is also one centering around (I.1)AG in both the local case

above and the global case of X → S where X and S are complete

algebraic varieties.1 We shall not attempt to give here an account of

the literature, but rather refer to the references in the articles [C1] and

[C2] by Cattani for (I.1)HT and by Brosnan-El Zein [BE-Z] for (I.1)AG

which appeared in the recently published volume [C†] on Hodge theory

arising from the 2010 summer school held at ICTP in Trieste.

In order to carry out the comparison between the approaches to

(I.1)HT and (I.1)AG we shall need to review, and in some cases amplify,

what is known about (I.1)AG for general `. As will be explained more

fully in Section II below, we shall do this in two steps, labelled (A) and

(B) there. Step (A) consists of summarizing some of what is known

about (I.1)AG in the 1-parameter case ` = 1. Here we closely follow

the original work [St1] and the nice presentation in Chapter 11 of [PS].

We shall verbally describe the main conceptual ideas, the point being

to prepare the way for step (B), which is to explain how the analogous

formulation of the conceptual ideas enables one to know how to take

the technical steps that are needed to extend the theory from the 1-

parameter case to the several parameter case in (I.1)AG.

As second purpose of these notes is the following: In the setting of

(I.1)HT Deligne predicted from the results that hold in the `-adic case

using the Weil conjectures three remarkable properties of monodromy

cones (cf. [CK] and [CKS1]):

(I.2)(i) the weight filtration W (N) is independent of N ∈ σ;

(I.2)(ii) the compatibility of the weight filtrations among the faces

of σ;

(I.2)(iii) the vanishing of the Koszul homology groupsHp(N1, · · · , N`;V )

in positive weight (purity).

1The penultimate story here is the Hodge theory of maps and the decomposition
theorem (cf. [M], [dC] and [dCM]).
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Regarding (I.2)(i), given a finite dimensional vector space E and a

nilpotent endomorphism A ∈ End(E), there is a unique weight filtra-

tion W (A), central at zero and characterized by

• A : Wk(A)→ Wk−2(A)

• Ak : GrWk E
∼−→ GrW−k E is an isomorhpism for k = 0.

Each N ∈ σ then has a weight filtration, and (I.2)(i) says that these are

the same for all N ; thus, one may set W (σ) = W (N) for any N ∈ σ.

Regarding (I.2)(ii), given a vector space E, a filtration W0 on E,

and a nilpotent endomorphism A that preserves W0, we denote by

GrW0
k A ∈ End

(
GrW0

k E
)

the induced endomorphism. Then a weight

filtration of A relative to W0 is a filtration W of E such that

• AWk ⊂ Wk−2,

• W GrW0
k E = W

(
GrW0

k A
)
.

The notation W GrW0
k E means the filtration on GrW0

k E induced by W .

There is at most one such W , and we will be interested in the situation

when W = W (A). Taking the case ` = 2 in (I.2)(ii), compatibility

means that W (N) is a weight filtration of N1, relative to W (N2). In

general, there is an extension of this to a general σ and its faces (cf.

[CK], (3.3) on page 113).

Further Hodge-theoretic properties of (I.1)HT that are proved in

[CKS1] and are here stated in the case ` = 2 are

(I.3)(i) for each s2 6= 0, the limit of Φ(s1, s2) as s2 → 0 gives a limiting

mixed Hodge structure Φ(s1, 0), and when s1 varies this gives

a variation of limiting mixed Hodge structure in the sense of

[SZ] and [E-Z];2

(I.3)(ii) for ∆λ = {(s, λs) where λ 6= 0,∞}, the restriction Φλ of Φ to

∆∗λ gives a 1-parameter case of (I.1)HT, and the equivalence

class of limiting mixed Hodge structures given by the limit of

Φ(s, λs) as s→ 0 is independent of λ;

2In these references the notion of variation of mixed Hodge structures is dis-
cussed. Here we are adding the additional conditions that we have limiting mixed
Hodge structures; these may readily be included in the theory developed in loc. cit.
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(I.3)(iii) the limit as s2 → 0 in the sense of [SZ] of the mixed Hodge

structures Φ(s1, 0) exists as a limiting mixed Hodge structure

and its equivalence class is equal to Φλ(0).

In the picture below the limit in (I.3)(i) corresponds to ∆s2 , that in

(I.3)(ii) to ∆λ, and that in (I.3)(iii) to ∆s2 followed by ∆s1 .

↓
←

↓

∆λ ∆s2

∆s1

Figure 1

One may informally say that the best results that can be defined are

in fact true.

To establish some notations and terminology we recall that a mixed

Hodge structure is given by (V,W, F •) where W is an increasing weight

filtration on V , F • is a decreasing Hodge filtration on VC, and where F •

induces on each GrWk V a Hodge structure of weight k. A limiting mixed

Hodge structure is given by a mixed Hodge structure (V,W, F •) where

W = W (N) is the weight filtation associated to a nilpotent endomor-

phism N ∈ End(V ). A polarized limiting mixed Hodge structure has

the additional data of a bilinear form Q with N ∈ EndQ(V ), and where

the polarization conditions (2.2) in [CK] are satisfied. Finally, two lim-

iting mixed Hodge structures (V,W (N), F •) and (V,W (N), F ′•) are

said to be equivalent if

F ′• = exp(λN) · F •

for some λ ∈ C. We note that equivalent mixed Hodge structures

induce the same Hodge structures on Gr
W (N)
k V , and also on the 2-step

mixed Hodge structures on Wk(N)/Wk−2(N). The equivalence class of

a limiting mixed Hodge structure will be denoted (V,W, [F •]).

Finally there is the issue of identifying the limiting mixed Hodge

structures in (I.3)(i)–(iii) in the algebro-geometric case (I.1)AG. In

[Fu1], the methods in [St1] are extended to show that
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(I.4) the groups Hn
(

Ω•X/S(log Y)⊗ OXs

)
give mixed Hodge structures

for each s ∈ S.

As will be discussed below, these are limiting mixed Hodge structures

that will be naturally identified with those in (I.3)(i)–(ii).

More precisely, there is a mixed Hodge structure (V,W, F •) where

VC = Hn
(
Ω•X/S(log Y) ⊗ OX

)
and where the Hodge filtration F • is in-

duced from the bétè filtration on Ω•X/S(log Y) ⊗ OX . The Q-structure

on VC, i.e., the Q-vector space V with V ⊗C ∼= VC, is somewhat subtle

to define. A very nice approach to this, using logarithmic structures,

is in [St2] and is used in [PS], [Fu1]. These methods may be adapted

to the several parameter case as presented below and, since this is not

directly relevant to the central points we are seeking to make, will not

be taken up here.

To complete the second purpose of these notes we need to first show

that these mixed Hodge structures are limiting mixed Hodge struc-

tures and that the properties (I.2)(i)–(ii) and (I.3)(i)–(iii) hold for

them. The essential point in (I.2)(i) is to compare two filtrations

W and W (N) on the space Hn
(
Ω•X/S(log Y) ⊗ OX

)
. Here W is the

filtration induced on this space by a filtration (VIII.9) on the com-

plex of sheaves A• given by (VIII.3) and that is quasi-isomorphic to

Ω•X/S(log Y) ⊗ OX . This filtration in A• then induces the filtration

W on Hn(A•) ∼= Hn
(
Ω•X/S(log Y) ⊗ OX

)
. The other filtration is the

monodromy filtration W (N). Under the assumption that (I.1)AG is a

projective family, an argument using the full strength of the Hodge-

Riemann bilinear relations gives that W = W (N). This proves that

(V,W, F •) is a limiting mixed Hodge structure, and examination of the

argument then gives (I.2)(i) in the case (I.1)AG.

As for (I.2)(ii) in the algebro-geometric case, we suppose that ` = 2

and set X(s1,s2) = π−1(s1, s2). Referring to Figure 1 above, the fam-

ily over ∆s2 gives a limiting mixed Hodge structure with weight fil-

tration W (N2). Call this family (V,W (N2), F •(s1,0)) =: V(s1,0). Then

GrW (N2) V(s1,0) is a variation of Hodge structure over ∆∗s1 with monodromy
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logarithmN1. Thus on GrW (N2) V(s1,0) there is an induced action GrW (N2)N1,

and it has a monodromy weight filtration W (GrW (N2) N1). On the

other, on ∆λ there is the monodromy logarithm N = N1 +N2, and the

result is that W (N) is weight filtration of N1 relative to W (N2).

A third purpose of these notes is this: Letting s = (s1, . . . , s`) denote

a point in ∆∗` and s0 = (0, . . . , 0) the origin, in each of the cases

(I.1)HT and (I.1)AG, there is an equivalence class of limiting mixed

Hodge structures associated to the limit of the Hodge structures as

s → s0. In the case (I.1)HT this equivalence class of limiting mixed

Hodge structures is polarized by the nilpotent cone σ.3 Denoting by

X = π−1(s0) the fibre over the origin, in the case (I.1)AG there is

defined a subspace

(I.4) Ts0 ⊂ TX Def(X)

where Def(X) is the Kuranishi space parametrizing the versal germ of

deformations of X and TX Def(X) is its Zariski tangent space ([Pa]).

Here, for simplicity of exposition we are assuming that the natural map

Ts0∆
` → TX Def(X) is injective with image Ts0 . We will see that

(I.3)HT Ts0
∼= σC =: σ ⊗ C

and that, setting Y = π−1 (union of the coordinate hyperplanes in ∆`),

(I.3)AG Ts0 ⊂ Ext1
OX

(
Ω1

Xε/∆(ε)`(log Y)⊗ OX ,OX

)
.

Here, Xε is a 1st order neighborhood of X in X and ∆(ε) = SpecC[ε]

where ε2 = 0. Using the identification (I.3)HT, in the open set

T o
s0

= {ξ = ΣziNi, zi 6= 0} ⊂ Ts0

each point ξ determines a mixed Hodge structure (V,W (σ), F •ξ ) where

F p
ξ = F pHn

(
Ω•Xε/∆(ε)`(log Y)⊗ OX

)
.

3This means that the bilinear forms Q̃k defined in [CK] by Q and each N on

the primitive spaces (Gr
W (N)
k V )prim satisfy the first and second Hodge-Riemann

bilinear relations. We note that the primitive spaces (Gr
W (N)
k V )prim and bilinear

forms Q̃k depend on N , even though W (N) is independent of N .
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Implicit here is that given ξ ∈ T o
s0

, there is a 1st order deformation

Xε → ∆(ε)` and the Ω•
Xξ/∆(ε)`

(log Y)⊗OX may be defined in terms of ξ,

a point that in the ` = 1 case appears implicitly in [Fr1] and explicitly

in [St2]. When ξ ∈ σ this is a limiting mixed Hodge structure that is

polarized by the cone σ. With these notations, the 1st order variation of

the limiting mixed Hodge structure is induced from the natural pairing

(I.4)AG Ext1
OX

(
Ω•

Xε/∆(ε)`
(log Y)⊗ OX ,OX

)
→ EndLMHS Hn

(
Ω•

Xε/∆(ε)`
(log Y)⊗ OX

)
.

Whereas the usual differential of the period mapping at infinity loses

some of the information in the variation of the extension data in the

limiting mixed Hodge structure, the refinement (I.4)AG captures the

variation in all of the extension data. For example, in the curve degen-

eration

δ1

δ3

δ2

= X

with the three vanishing cycles δ1, δ2, δ3 above, all of the 3-parameters

in the extension data are lost in the traditional differential of the period

mapping at X ∈ M2 the Deligne-Mumford compactification of genus

2 curves. It was in seeking to understand this phenomenon, and put

it in a form amenable to the computation of examples, that led to the

paper [GG] and to these explanatory notes as an accompaniment to

that paper.

We will now explain some of the terms and notations that appear

above.

• The local normal form for the map (I.1)AG is given, following [AK],

as follows: in a neighborhood U around each x ∈ X, there is an

embedding

U ⊂ Cd+k × Ck
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and index sets I1 = {1, . . . , i1}, I2 = {i1 +1, . . . , i2}, . . . , Ik in {1, . . . ,
n+ k} and {j1, . . . , jk} ⊂ {1, . . . , `} such that (I.1)AG is given by

(I.7)


xI1 = sj1

...

xIk = sjk .

Thus the fibres Xs ∩ U over sj1 = · · · = sjk = 0 are

(I.8) Us = U1 × · · · × Uk × U0

where Uj is a normal crossing variety in Cij−ij−1 , and the parameters

U0 are an open set in Cd−ik . The number k of local factors is described

by

k =

{
number of factors in π(x) ∈ ∆` that are

over the origin in the corresponding disc

}
.

In order to simplify the notations, we shall usually take j1 = 1, . . . , jk =

k in (I.7). In fact, one of the problems in expositions of the subject

is that the multi-index notations may obscure the basically simple lo-

cal geometry. This issue is at least partially alleviated by the use of

divided power Koszul complexes as in [St2].

In the appendix we will describe the various log complexes that ap-

pear, including Ω•X/S(log Y), locally in terms of the normal form (I.7)

above.

• As noted above, Def(X) refers to the Kuranishi space for the defor-

mations of the compact analytic variety X [Pa], and we shall use the

identification

(I.9) TX Def(X) = Ext1
OX

(
Ω1
X ,OX

)
of its Zariski tangent space.

We remark that the formalism of logarithmic geometry provides an

alternative setting for the theory, especially in the study of (I.1)AG (cf.

[A†] and the references cited there). As noted above, this setting is

especially convenient for defining the Q-structure on the mixed Hodge

structures constructed from de Rham type complexes (cf. [St2], [Fu2]

and [FN]).
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Regarding (I.1)HT, there is also a formalism of logarithmic Hodge

theory (cf. [KU]) which leads to extensions of period maps

(I.10)


Φ : ∆∗` →Γ\D
∩ ∩

Φe : ∆` →Γ\Dσ

where Φe is a morphism of log-analytic varieties. Here, settingTj = ∆j × · · · ×
j

{0} × · · · ×∆`

T =
∑`

j=1 Tj = coordinate hyperplanes in ∆`,

we have that Y = π−1T is a normal crossing divisor in X. Then with

the canonical logarithmic structures associated to a normal crossing

divisor in a smooth variety, (X,Y) → (S, T ) is a morphism of log-

analytic varieties. Moreover, setting

Bσ = Dσ\D

from [KU] one has that Γ\D has the structure of a log-analytic variety

with slits and

Φe : (S, T )→ (Γ\Dσ,Γ\Bσ)

is a morphism of log analytic varieties.

In part because some of the audience for these notes are people who

work on (I.1)HT from a complex analytic/geometric perspective, we

have decided to give the exposition in a more traditional framework.

II. Outline of the algebro-geometric approach

As was mentioned above, for ` = 1 the analysis of the situation

(I.1)AG is originally due to [St1]. Since then there have been a number

of works building on [St1]; we mention especially the presentation in

Chapter 11 of [PS] (where part of the discussion is adapted from [GN]).

In recent years some, but not all, aspects of the theory have been

extended to the case of (I.1)AG for general `; cf. [Fu1]. In presenting the

theory it may sometimes be the case that the notations may not make

transparent the central geometric ideas. This is especially true in the

case of several parameter families where multi-multi-index notations



7/29/14 APPROACHES TO LIMITING MIXED HODGE STRUCTURES 11

appear. Of course, something like this is necessary for the detailed

proofs.

What we shall attempt to do in these notes is the following:

(A) Give a summary presentation of the case ` = 1, explaining verbally

the key steps;

(B) Explain how each of the key steps in (A) may be extended to

the case of general `, and give an outline of how these steps may

be carried out in the case ` = 2. This case captures the essential

features and where the notations are less complex, but even here we

shall not give the detailed calculations. Here in greatly simplified

form the main points are

(i) the results of the ` = 1 case extend to the case of a global

product

X1 × · · · × X` → ∆1 × · · · ×∆`;

(ii) the theory is based on standard natural “local to global” tech-

niques, and locally the case of general ` is a product of the

` = 1 case.

Although there are a number of subtleties along the way, we empha-

size that there is nothing particularly new or original in what follows.

The purpose is to give an exposition of (I.1)AG in a way that enables

us to connect as directly as possible with (I.1)HT.

We now list the key steps in (A) that will be carried out below.

Step one: Localization to X. We are seeking to describe the limiting

mixed Hodge structure (V,W, F •) associated to X
π−→ ∆. For this one

needs the Q-vector space V , weight filtration W , and a Hodge filtration

F •. One thinks of

V = Hn(Xs,Q)

where s is a “general point” of ∆∗,

W = W (N),

where N ∈ End(V ) is the nilpotent transformation given by the log-

arithm of monodromy and W (N) is the filtration associated to this
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nilpotent transformation, and

F • = lim
s→0

F •Hn(Xs)prim

is a to-be-defined limit. As previously noted, the issue of the Q-

structure is an interesting one, one that however is not directly rel-

evant to these notes. Here we shall mainly deal with the C-structure,

referring to [St2], [PS] and [Fu2], [FN] for the Q-structure.

Following [St1] one defines

(II.1) VC = Hn
(
X̃∗,C

)
prim

where

X̃∗ //

��

X∗

��
H // ∆∗

is obtained by passing to the pullback of X∗ → ∆∗ under the universal

covering map H→ ∆∗ given by

s = exp 2πiz, Im z > 0.

With this definition it is made precise what is meant by the cohomology

of a general fibre and the action of monodromy, as induced by the deck

transformations in the above diagram, on that cohomology.

We introduce the notation, used in [Fr1],

(II.2) Λ•X = Ω•X/∆(logX)⊗ OX .

We will see that Λ•X depends only on the first order neighborhood of

X in X; i.e., on a vector ξ ∈ TX Def(X). The first step consists in

establishing the identification

(II.3) VC = Hn
(
Λ•X
)
.

The Hodge filtration will then be defined by

(II.4) F •V = F •Hn
(
Λ•X
)
,

where the right-hand side is the filtration on hypercohomology induced

by the bétè filtration

F pΛ•X =
{

0→ Λp
X → Λp+1

X → · · ·
}
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on Λ•X . We will see that scaling ξ by ξ → λξ induces the change

F • → exp(λN) · F •.

The eventual conclusion will be

• the standard picture X → ∆ in (I.1)AG in the case ` = 1 defines

an equivalence class of limiting mixed Hodge structures;

• the data (X, ξ) defines a limiting mixed Hodge structure (no equiv-

alence class).

Having defined the vector space and the Hodge filtration, the next step

is

Step two: The weight filtration and E1-term of the weight spectral

sequence. We will first note that the näıve filtration induced on Λ•X
by the standard weight filtration WrΩ

•
X(logX) given by “5 r dxi/xi

terms” does not lead to a good answer. One reason for this is presented

in [PS]; below we shall give another heuristic reason. The key insight

that arises in [St1] is to consider the first sequence

0→ Ωp
X/∆(logX)⊗ OX

(II.5)

ds/s−−→ Ωp+1
X (logX)⊗ OX → Ωp+1

X/∆(logX)⊗ OX → 0

that arises naturally when one interprets the regularity theorem for the

Gauss-Manin connection (cf. [De1] and [K]). Then replacing the first

map by the inclusion

(II.6) 0→ Ωp
X/∆(logX)⊗ OX → Ωp+1

X (logX)/W0Ωp+1
X (logX)

leads to Steenbrink’s double complex

Ap,q = Ωp+q+1
X (logX)

/
WqΩ

p+q+1
X (logX)

with commuting differentials d′ = usual d and d′′ = ∧(ds/s). Continu-

ing the sequence (II.5) leads to a quasi-isomorphism

Λ•X → A•
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between Λ•X and the total complex (A•, d′+d′′) associated to (A•,•; d′, d′′).

Simple numerology, given below, then suggests the definition

WrA
p,q = Wr+2q+1Ωp+q+1

X (logX)
/
WqΩ

p+q+1
X (logX)

for the weight filtration W for the mixed Hodge structure (V,W, F •).

Via Poincaré residues the associated graded to the weight filtration

is a direct sum of Tate twists of the complexes(
(ai)∗Ω

•
X[i] , d

)
(cf. [De1]), and consequently the WE

p,q
1 -term of the weight spectral

sequence for (A•, d) is a direct sum of the groups

(II.7) WE
p,q
1 = ⊕H i

(
X [j]

)
(−k)

where i, j, k run over an index set determined by p, q, d = dimX, and

n where the spectral sequence abuts to Hn
(
Ω•X/∆(logX)⊗ OX

)
.4

Step three: The sl2× sl2 action and construction of the limiting mixed

Hodge structure. Given a nilpotent endomorphism M ∈ End(U) of a

vector space U , as noted above there is an associated weight filtration

W (M), by convention centered at zero and with the defining properties

M : Wk(M)→ Wk−2(M),

and for k = 0

Mk : GrWk
∼−→ GrW−k .

A grading element Y for W (M) is given by a semi-simple Y ∈ End(U)

with eigenvalues in Z and with

Wk(M) = ⊕
`5k

U`

where the U` are the eigenspaces of M . It follows that

[Y,M ] = −2M.

4One of the main difficulties in expositions of the theory is in the book-keeping
of the indices that appear. Here we shall try to explain the conceptual ideas which
then indicate how the correct indexing may be determined, referring to [St1], [PS]
and [Fu1] for the details.
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By the Jacobson-Morosov theorem such a grading element always ex-

ists and we may uniquely complete M,Y to an sl2-triple (M,Y,M+).

Conversely, such an sl2-triple gives a grading element Y for W (M).

The use of such sl2 triples is very common in Hodge theory. Ex-

amples include (i) the structure of the cohomology ring of a smooth

projective variety Z where U = H∗(Z) and L = c1(OZ(1)) is the Lef-

schetz operator and the grading element is determined by the direct

sum decomposition H∗(Z), and (ii) the analysis of (I.1)HT by Schmid

[Sc] and Cattani-Kaplan-Schmid [CKS1] using the sl2-orbit theorems.

Especially in the presence of an invariant bilinear form, the decompo-

sition of U into irreducible summands yields very rich structures.

In the ` = 1 situation (I.1)AG where X ⊂ PA is a family of projective

varieties, there are two commuting nilpotent endomorphisms

N,L ∈ End(WE1).

The direct sum decomposition (II.7) gives canonical grading elements,

and it was noted in [GN] and used effectively in [PS] that this gives

commuting sl2’s acting on WE1 as morphisms of Hodge structures and

commuting with the differential

d1 : WE1 → WE1

of the weight spectral sequence. The spectral sequence degenerates at

WE2, and on WE∞ = GrW V we have an action of commuting sl2’s.

Exploiting the very rich consequences of this structure leads to the

results in [St1] that (V,W (N), F •) is a polarized limiting mixed Hodge

structure.

We now turn to (B):

Step four: Steps 1–3 above for the case ` = 1 are given by pass-

ing from local to global using hypercohomology of the complex Λ•X =

ΩX/∆(logX) ⊗ OX . The Hodge filtration is the usual bétè one. The

weight filtration is described in terms of Steenbrink’s quasi-isomorphism

Λ•X → A•,
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and as we shall see below the monodromy operator is induced by the

projection

ν : Ap,q → Ap−1,q+1

in the bi-complex A•,•. In case X is locally a product of normal crossing

divisors, Λ•X is locally the tensor product of the analogous sheaves on

the factors of the tensor product of the factors. The point now is to

check that steps two and three above together with the description of

the monodromy operator extend to the situation where we have only

locally a product of normal crossing divisors. Not unexpectedly, the

most involved part is to show that the filtration on VC = Hn(Λ•X)

induced by the tensor product of the weight filtrations on the A•i ’s is

well defined and agrees with the filtration W (N) on VC. For example,

(II.5) is replaced by a filtration on Ωp
X(logX)⊗OX , monodromy comes

out of the d1 in the associated spectral sequence and (II.7) becomes

0→ Ωp
X/S(logX)⊗ OX → Ωp+`

X (logX)
/∑̀

i=1

Wi,1Ωp+`
X (logX)

where the notations will be explained below.

More subtle is the argument for (I.2)(i). Using the notations from

the introduction, because of the elementary result that if we have

nilpotent endomorphisms Ai ∈ End(Ei) where E1, E2 are finite di-

mensional vector spaces, the weight filtration on E1 ⊗ E2 given by

λ1A1 ⊗ IdE2 + IdE1 ⊗λ2A2 is independent of λ1, λ2 ∈ C∗, at first one

might suspect that (I.2)(i) should hold in this generality. But the re-

sult is a Hodge-theoretic one whose proof is the algebro-geometric case

(I.1)AG, as in the Hodge-theoretic case (I.1)HT, requires the full use of

the Hodge-Riemann bilinear relations. It is here that the conditions

λ1, λ2 ∈ R>0 come in. Similar considerations hold for the proof of

(I.2)(ii).

As a closing aside to this section, there are three algebro-geometric

phenomena that may arise in the situation (I.1)AG when ` = 2:

(a) the Ni are the nil-negative elements of commuting sl2’s action on

V ;
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(b) the Koszul cohomology groups Hp(N1, . . . , N`;V ) vanish for p 6= 0;

(c) the weight filtration W (Nλ) = W (N) for all Nλ =
∑`

i=1 λiNi,

λi ∈ C∗ (and not just λi ∈ R>0).

These phenomena are related; e.g.,

(a) ⇒ (b), (c),

but the exact relationship among them is as yet not understood. For

example, there are obstructions that commuting sl2 action on GrW V =

WE∞ lift to commuting sl2 actions on V . It seems that these have not

yet been computed.

III. Localization to X

We consider the standard situation (I.1)AG

(III.1) X
π−→ ∆

when ` = 1, and we want to construct from this data a limiting mixed

Hodge structure (V,W, F •) that reflects the limit of the family of Hodge

structures

lim
s→0

Hn(Xs,Q).

With the definition

(III.2) VC = Hn
(
X̃∗,C

)
,

localization to X means the natural identification in [St1]

(III.3) VC ∼= Hn
(
Ω•X/∆(logX)⊗ OX

)
.

We will not repeat the argument from loc. cit., but will make some com-

ments with an eye towards extending this identification to the general

case.

(i) One way of viewing the underlying geometry is via the Clemens

retraction map [C]

X

��

r // X

��
∆ // {0}
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which gives that the inclusion X ↪→ X is a homotopy equivalence and

leads to the specialization or collapsing map

rs : Xs → X.

It is the analysis of this map, together with the monodromy transfor-

mation

Ts : Xs → Xs

with which it homotopy commutes, that from a classical Lefschetz-

style approach leads to the limiting mixed Hodge structure (loc. cit.).

Although we will not follow this approach here, we mention it because

the above picture extends to the general situation (I.1)AG (personal

communication from Herb Clemens). Thus with the same definition

(III.2) for V it is plausible that the identification (III.3) will extend to

give

(III.4) VC ∼= Hn
(
Ω•X/∆`(log Y)⊗ OX

)
.

(ii) If one thinks of the period mapping (I.1)HT in the case ` = 1 as

given by a variation of Hodge structure over ∆∗ consisting of a vector

bundle V∗ → ∆∗ with connection ∇, then because the monodromy is

unipotent there is the canonical Deligne extension [De1] to a vector

bundle V→ ∆ where

∇ : V→ V⊗ Ω1
∆(log 0)

has regular singular points, and where the logarithm N of monodromy

is given by 1/2πi times the residue Res{0}∇ of the connection. In the

case (I.1)AG one has the identifications

V∗ = O∆∗
(
Rn
πC
) ∼= Rn

πΩ•X∗/∆∗

and

V = Rn
πΩ•X/∆(logX).

For the Deligne extension there are two types of frames defined in a

neighborhood of the origin:

(a) single-valued holomorphic frames fα(s);

(b) multi-valued horizontal frames eα(s).



7/29/14 APPROACHES TO LIMITING MIXED HODGE STRUCTURES 19

The latter are defined for s 6= 0 and satisfy ∇e(s) = 0.

Setting `(s) = log s/2πi, these frames are related by

(III.5) eα(s) =
n∑
λ=0

Aβαλ(s)`(s)
λfβ(s)

where Aβαλ(s) is holomorphic. Given the horozontal frame eα(s) and

coordinates in ∆, there is a distinguished choice of holomorphic frame

defined as follows. Analytic continuation of eα(s) around s = 0 trans-

forms eα(s) by the monodromy matrix T = expN . Then

fα(s) =
∑
β

exp(−`(s)N)βαeβ(s)

gives a holomorphic frame relative to which

(III.6) ∇fα(s) =
∑
β

Nβ
αfβ(s)

ds

s
;

i.e., the connection matrix is N ds/s.

The reason for recalling this classical material is two-fold. One is

the introduction of the complex of sheaves L•, introduced in [St1] and

perhaps suggested by (III.5), whose sections are of the form

ω =
∑
α

ωα`(s)
α

with ωα being a section of i∗Ω•X(logX) where i·X ↪→ X is the inclusion.

In loc. cit. it is shown that

Hn
(
X̃∗,C

)
∼= Hn(L•),(III.7)

Hn(L•) ∼= Hn
(
Ω•X/∆(logX)⊗ OX

)
.(III.8)

The isomorphism (III.7) is first obtained by using the standard isomor-

phism

Hn
(
X̃∗,C

) ∼= H∗
(
Ω•
X̃∗

)
,

and then localizing the right-hand side along X ⊂ X by restricting

to discs ∆(ε) of radius ε and letting ε → 0. The right-hand side then

becomes H∗
(
k∗i
∗Ω•

X̃∗

)
where k ·X̃∗ → X is the composition of X̃∗ → X∗
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and the inclusion X ↪→ X. Then (III.7) follows by establishing a quasi-

isomorphism

L• → k∗i
∗Ω•

X̃∗
.

The isomorphism (III.8) is obtained by showing that the map of

complexes

L∗ // Ω•X/∆(logX)⊗ OX

∈ ∈

ω // ω0

∣∣
X

(III.9)

is also a quasi-isomorphism; here ωi
∣∣
X

is the image of the natural map

Ω•X(logX) → Ω•X/∆(logX) ⊗ OX .5 The composition of the isomor-

phisms (III.7) and (III.8) may be thought of as expressing the Clemens

retraction mapping in terms of holomorphic de Rham-type complexes.

The second reason is that the discussion in (ii) extends to the case

of general X→ ∆` in (I.1)AG, where now (III.5) is replaced by

eα(s) =
∑

λ=(λ1,...,λ`)

Aβαλ(s)`(s1)λ1 · · · `(s`)λ`fβ(s)

and (III.6) by

∇fα(s) =
∑
β,i

Nβ
αifβ(s) dsi/si.

Combining (III.7) and (III.8) will give the desired localization (III.3).

The necessary local considerations needed to establish the extensions

of (III.7) and (III.8) will be taken up in subsequent sections.

Historical remark: Let Y be a compact, complex manifold, Z ⊂ Y

a normal crossing divisor and U = Y \Z with the inclusion j : U ↪→ Y .

As Grothendieck pointed out in [Gr], in their paper [HA] Hodge and

Atiyah proved what essentially amounts to the natural isomorphism

H∗(U,C) ∼= H∗
(
Ω•Y (logZ)

)
.

5As explained in [St2], this quasi-isomorphism depends on the choice of an iso-
morphism T ∗0 ∆ ∼= C. Such an isomorphism is given by a coordinate s on ∆, and a
change of coordinates s′ = f(s) scales the quasi-isomorphism by f ′(0).
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This was based on the quasi-isomorphism

(III.10) Ω•Y (logZ) ↪→ j∗Ω
•
U .

The main points here are

(i) the complex Ω•Y (logZ) is intrinsically defined;

(ii) if Z is given locally by z1 = · · · = zk = 0 in Cn, then for the Stein

manifold W = ∆∗k ×∆`−k we have

(III.11) H∗(W,C) ∼= H∗DR(W ) = H∗DR

(
Γ(W,Ω•W )

)
;

(iii) the left-hand side of (III.11) is H∗
(
∆∗k,C

)
, and the right-hand side

contains the subspace Λ∗{dz1/z1, . . . , dzk/zk}, which is isomorphic

to the left-hand side.

Basically, using

(III.12) dzki = kzk−1
i dzi

all but the terms having only dzi/zi’s for 1 5 i 5 k may be eliminated

in H∗DR

(
Γ(W,Ω•W )

)
.6

When instead of U ⊂ Y we have the situation

X̃∗

��
j : X∗ ⊂ X

then instead of differential forms with coefficients in j∗(OX∗), i.e., func-

tion having poles alongX, we have to adjoin power series in log s1, . . . , log sk

to obtain the complex L•, and then the top row in (III.9) is an analogue

of (III.10). Then the relation

d(log si)
k = k(log si)

k−1dzi/si

will be used to elliminate all the log ski ’s for k 6= 0, thus leading leading

to (III.8).

6The Grothendieck algebraic de Rham theorem [Gr] is treated in detail in [E-ZT].
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IV. Filtrations on the complexes

Each of the complexes

Ω•X(logX),Ω•X/S(logX)⊗ OX

introduced above has two filtrations, a Hodge filtration and a weight

filtration. We will now describe these.

The first of these, the Hodge filtration, is the same in both cases. It

is the “bétè” filtration, given for any complex (C•, d) by

F pC• = {0→ Cp → Cp+1 → · · · };

i.e., we truncate {C0 → C1 → C2 → · · · } by simply setting equal to

zero the Cq for q < p. It is motivated by Hodge theory, where for

a smooth complete variety Y the Hodge filtration F pHn
DR(Y ) means

“= p dzi’s in differential forms representing cohomology classes.”

For Ω•X(logX) the weight filtration is informally described by

ϕ ∈ WkΩ
•
X(logX) ⇐⇒ ϕ has 5 k dxi/xi’s.

More precisely,

WkΩ
•
X(logX) is the image of Ωk

X(logX)⊗ Ω•X → Ω•+kX (logX).

We recall the description of the associated graded. If X = X1+· · ·+XN

then for each index set I = {i1, . . . , ik} where 0 5 i1 < · · · < ik 5 N

we set XI = Xi1 ∩ · · · ∩Xik . This is a complex manifold of dimension

d− k together with a map ak : XI → X. Setting

X [k] =
∐
|I|=k

XI

we then have

ak : X [k] → X.

The iterated Poincaré residue map gives an isomorphism

(IV.1) GrWk Ω•X(logX)
∼−→ Ω•−k

X[k] [k].

In coordinates, if

ϕ = dxi1/xi1 ∧ · · · ∧ dxik/xik ∧ ψ
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then

Resϕ = (2πi)kψ
∣∣
XI
.

For the complex Ω•X/S(logX) and its restriction to X there is what

might be called the näıve weight filtration induced from the Wk’s just

described. In contrast to the situation for Ω•X(logX), when combined

with the Hodge filtration the näıve weight filtration does not lead to a

mixed Hodge structure7 (cf. the footnote below and the discussion in

Chapter 11 of [PS]). As may be expected from the above discussion, the

weight filtration on Ω•X/S(logX)⊗OX will be induced locally from the

weight filtrations on the local normal crossing divisor case using (IV.1).

Thus the crucial case is the weight filtration for Ω•X/S(logX)⊗ OX .

Here the basic insight is due to Steenbrink [St1]. It originates from

the observation that there is a natural identification

(IV.2)

Ωp
X/S(logX)⊗ OX

∼= coker
{

Ωp−1
X (logX)

θ−→ Ωp
X(logX)

/
W0Ωp

X(logX)
}

where θ is the map given by ∧(ds/s) (cf. (II.5) and (II.6) above). An

intrinsic proof of (IV.2) is given in [St1], and also in Chapter 11 of [PS].

We will give a coordinate argument that illustrates the mechanism.

This coordinate argument will then be used in Section VIII below to

suggest what the extension of (IV.2) to the general case of X → ∆`

should be.

For X→ S locally given by x1 · · ·xk = s, we first lift a local section

ϕ of Ωp
X/S(logX)⊗OX to a section ϕ̃ of Ωp

X(logX)⊗OX , and then we

extend ϕ̃ to a section of ˜̃ϕ of Ωp
X(logX). The composite map

ϕ→ ϕ̃→ ˜̃ϕ ∧ ds
s

7One reason why the näıve weight filtration on Ω•X/S(logX)⊗OX does not work

may be explained as follows: Assume that the limit lims→0H
n(Xs) may be defined

as a mixed Hodge structure. For simplicity of explanation take n = d = dimXs.
One may expect the mixed Hodge structure on Hn(X) to appear in the limit. For
this the weights are 0 5 w 5 n. On the other hand, the cup-product

Hn(Xs)⊗Hn(Xs)→ H2n(Xs) ∼= Q(−n)

should exist in the limit to pair lims→0H
n(Xs) to a Hodge structure of weight 2n.

Thus in lims→0H
n(Xs) the weights should run from 0 to 2n.
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is the one from the left-hand side of (IV.2) to the right-hand side. For

any other lifting ϕ̃′ we have ϕ̃− ϕ̃′ = ds∧ψ, and when we extend from

Ωp
X(logX) ⊗ OX to Ωp

X(logX) and take ∧ds/s we will have ˜̃ϕ ∧ ds =˜̃ϕ′ ∧ ds.
Somewhat more subtly, if we have a local section ψ of Ωp

X(logX)⊗OX

and take two extensions ψ̃ and ψ̃′ to a local section of Ωp
X(logX), then

we have ψ̃ − ψ̃′ = sγ where γ is a local section of Ωp
X(logX). We thus

have to show that

γ ∧ ds ∈ W0Ωp+1
X (logX) = Ωp+1

X .

We recall that for I = {i1, . . . , i`} we write dxI = dxi1 ∧ · · · ∧ dxi` .
Then γ is a sum of terms

dxI
xI
∧ λ

where λ is holomorphic. Now

ds =
∑
j

x1 · · · x̂j · · ·x` dxj

which gives

ds ∧ xI dxI =
∑
j 6=I

x1 · · · x̂j · · ·xk dxj ∧
dxI
xI

.

For each term in the sum we have I ⊂ {1, . . . , ĵ, . . . , k}, so that the

numerator cancels the denominator and the whole expression is holo-

morphic.

Once we have (IV.2), and using the fact that, for a vector space E

and non-zero e ∈ E, the complex (∧•E,∧e) is acyclic, what is suggested

is to define a resolution

0→ Ωp
X/S(logX)⊗ OX →

Ωp+1
X (logX)

W0Ωp+1
X (logX)

θ−→ Ωp+2
X (logX)

W1Ωp+2
X (logX)

→ · · · .

This in turn suggests defining a double complex (A•,•, d′, d′′) whose as-

sociated single complex gives a resolution of the complex
(
Ω•X/S(logX)⊗
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OX , d
)
. For this, following the notation in [St1], we define

(IV.3)


Ap,q = Ωp+q+1

X (logX)
/
WqΩ

p+q+1
X (logX)

d′ = usual d

d′′ = θ = ∧ds/s.

Then (IV.2) has the following consequence:

(IV.4) The map θ̃ : Ω•X/S(logX)⊗ OX → A• given by

θ̃(ϕ) = (−1)pθ ∧ ˜̃ϕ∣∣∣
X

is a well-defined quasi-isomorphism.

The Hodge and weight filtrations are then defined by

• F pA• =
⊕
p′=p
q=0

Ap
′,q;

• WrA
p,q = W2q+r+1Ωp+q+1

X (logX)
/
WqΩ

p+q+1
X (logX).

(IV.5)

To give an heuristic explanation of how we may arrive at the weight

filtration in (IV.5), we first note that in the vector space Hn
(
Ω•X/S(logX)

⊗ OX

)
it is difficult to see how any direct local residue-theoretic con-

struction on Ω•X/S(logX)⊗OX will lead to weights in the range 05w<n.

The only geometry here resides in the normal crossing variety X to-

gether with the class ξ ∈ TX Def(X) that gives a smoothing of X to

1st order and provides the data to be able to define Ω•X/S(logX)⊗OX .

As observed above the inclusion

0→ Ωp
X/S(logX)⊗ OX

θ̃−→ Ωp+1
X (logX)

/
W0Ωp+1

X (logX)

suggests completing this sequence to a resolution of Ωp
X/S(logX)⊗OX

whose terms reflect geometric information beyond that given by simply

completing (II.5) to a resolution of Ωp
X/∆(logX) ⊗ OX . This leads to

the A• = ⊕Ap,q above. The issue then is what weight filtration should

be put on the Ap,q so that in the abutment of the resulting spectral
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sequence the higher cohomology groups of the normalizations of the

strata of X will appear?8

To answer this for any ` one may define

(IV.6) WrA
p,q = Wr+`Ω

p+q+1
X (logX)

/
WqΩ

p+q+1
X (logX)

and then compute the resulting weight spectral sequence. One knows

a priori that

• GrWr A• ∼= ⊕(ak)∗Ω
•
X[k] [−j] where j, k run over an index set

determined by the choice of ` in (IV.6);

• by the general results in [De3] the spectral sequence will de-

generate at E2 and will abut to Hn
(
Ω•X/S(logX)⊗ OX

)
.

If we then require that the weight filtration on the abutment should

be (at most) length 2n and be centered at zero, then essentially by

inverting the calculations in [St1] one may solve for ` in (IV.6) to

obtain ` = 2q + 1.

V. Monodromy weight filtration

in the 1-parameter case (I)

Having determined the filtration (IV.6)

WrA
• = Wr+2q+1 = Ωp+q+1

X (logX)
/
WqΩ

p+q+1
X (logX)

that may be expected to induce one of length 2n on Hn
(
Ω•X/S(logX)

⊗ OX

)
, we now ask for a map

(V.1) ν : A•,• → A•,•

that induces the action by monodromy N on Hn
(
Ω•X/S(logX) ⊗ OX

)
.

We have noted earlier that N is induced by the connecting map in the

long exact hypercohomology sequence associated to

(V.2)

0→ O•−1
X/S(logX)⊗ OX → Ω•X(logX)⊗ OX → Ω•X/S(logX)⊗ OX → 0.

8The subtle point here is that although ξ ∈ T 0
X Def(X) is sufficient information

to define Ω•X/S(logX) ⊗ OX , it is only in the quasi-isomorphic complex A• that

includes higher order information of X in X that one defines the weight filtration.
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At this point there is the standard mapping cone construction that

will give the mapping ν in (V.1). Before explaining this we will give

an heuristic argument to show that, up to a constant,

(V.3) ν is the natural projection Ap,q → Ap−1,q+1.

The reasons are

• Since ν preserves the total degree we should have that

ν : Ap,q → Ap−k,q+k

for some k;

• Since ν is supposed to be of type (−1,−1) acting on Hn
(
Ω•X/S(logX)

⊗ OX

)
, we should have k = 1 so that

(V.4) ν ∈ F−1 EndMHS

(
Hn
(
Ω•X/S(logX)⊗ OX

))
;

• Finally, as a check we should also have

(V.5) ν : WrHn
(
Ω•X/S(logX)⊗OX

)
→ Wr−2Hn

(
Ω•X/S(logX)⊗OX)

)
;

this is indeed satisfied by ν given by (V.3).

Informally we may describe ν as follows:

• locally in coordinates, recalling that Ap,q means we mod out by terms

having 5 q of the dxi/xi’s, ν kills the terms with exactly q+ 1 of the

dxi/xi’s and is the identity on the rest;

• when we pass to GrWr A•,•, in any local coordinate presentation of

X ⊂ X this has the effect on Ap,q of picking out the non-zero terms

with exactly r + 2q + 1 of the dxi/xi’s (note that this non-zero con-

dition restricts r to −n 5 r 5 n);

• from this we infer that on the individual pieces in GrW A•, ν is either

zero or the identity;

• thus when we pass to Hn(GrWr A•), on the individual summands ν

will either be zero or the identity, depending on the particular indices;

• a consequence of this will be that, when the indices are worked out

we will have almost tautologically that for r = 0

(V.6) νr : GrWr A•
∼−→ GrW−r A

•.
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As noted in [St1], this relatively easy result is far from sufficient to show

thatW (ν) induces the monodromy weight filtration on Hn
(
Ω•X/S(logX)⊗

OX

)
.

• another consequence is that there is a natural grading element for

the nilpotent operator ν on WE1, and consequently ν is canonically

part of an sl2 action on WE1 (the terms will be explained below).

We now review the mapping cone construction to check that ν given

by (V.3) will, up to a constant, induce the cohomology map in the

exact hypercohomology sequence of (V.2). The cone construction is

expressed by the diagram

0

��

0

��
Ω•−1

X/S(logX)⊗ OX

��

θ // A•−1

��
Ω•X(logX)⊗ OX

��

η // B•

��
Ω•X/S(logX)⊗ OX

��

θ // A•

��
0 0

where B• is the total complex associated to the double complex B•,•

with

Bp,q = Ap−1,q ⊕ Ap,q

and with differentials

d′(ω1, ω2) = (dω1, dω2)

d′′(ω1, ω2) =
(
θ(ω1) + (−1)p+q+1ν(ω2), θ(ω2)

)
.

The maps

η · Ωp
X(logX)⊗ OX → Ap−1,0 ⊕ Ap,0

are defined by

η(ω) =
(
ωmodW0, (−1)pθ ∧ ω

)
.
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The above diagram is commutative, and because the top and bottom

horizontal arrows are quasi-isomorphisms the five lemma shows that η

must also be a quasi-isormorphism. After passing to the exact hyper-

cohomology sequence, the connecting mapN from the left-hand column

corresponds, up to a constant, to the map induced by ν in the right

column.

In summary, the conditions that ν should induce N and the cone

construction force, up to a constant, the definition (V.3) of ν.

It follows that the map induced by ν on Hn
(
Ω•X/S(logX)⊗OX

)
shifts

the weight filtrations Wr =: Wr(ν) down by 2, i.e.,

ν : WrHn
(
Ω•X/S(logX)⊗ OX

)
→ Wr−2Hn

(
Ω•X/S(logX)⊗ OX

)
.

On the other hand, as will now be explained and identifying ν with N ,

there is a canonical filtration W (N) on Hn
(
Ω•X/S(logX)⊗OX

)
defined

by the nilpotent endomorphism N , and the main result is that

(V.7) the filtrations W and W (N) coincide.

This means that not only is
(
Hn
(
Ω•X/S(logX) ⊗ OX ,W, F

•)) a mixed

Hodge structure, it is of the very special type of a limiting mixed

Hodge structure. Here we recall that as mentioned above a limiting

mixed Hodge structure is given by a mixed Hodge structure (V,W, F •)

together with a nilpotent endomorphism N ∈ F−1 End(V ) such that

W = W (N) is the monodromy weight filtration associated to N .

In addition to the property that N(Wr) ⊂ Wr−2, the crucial so-called

Hard-Lefschetz property for defining the monodromy weight filtration

is that for r = 0

(V.8)

N r : GrWr Hn
(
Ω•X/S(logX)⊗ OX

) ∼−→ GrW−rHn
(
Ω•X/S(logX)⊗ OX

)
.

We have noted the elementary fact that this result is true at the WE1

level. Much more subtle is that for projective families it holds for WE∞.

Digressing for a moment, recall that associated to any nilpotent en-

domorphism N ∈ End(V ) is its monodromy weight filtration W (N).

The usual definition is that, if Nn+1 = 0 but Nn 6= 0, W (N) is the
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unique increasing filtration Wk(N) centered at zero and of length 2n+1

that satisfies

(V.9)

{
N : Wr(N)→ Wr−2(N)

N r : GrW (N)
r V

∼−→ Gr
W (N)
−r V.

For the purposes of these notes, we will use the Jacobson-Morosov

theorem to complete N to an sl2-triple (N, Y,N+) in End(V ) where

[Y,N ] = −2N

[Y,N+] = 2N+

[N+, N ] = Y.

(V.10)

The Y is then a grading element for the filtration W (N). Recall that

this means that Y is semi-simple with eigenvalues {−n, 1 − n, . . . ,

n− 1, n} and corresponding eigenspaces Vk ⊂ V and where

Wk(N) = ⊕
p5k

Vp.

The choice of N and Y satisfying the first equation in (V.10) uniquely

determines the N+ in the sl2-triple. Moreover, for any other such choice

Y ′ we have

Y ′ ≡ Y mod ker(modN) ∩ im(modN),

so that the grading defined by Y ′ leads to the same filtration as that

defined by Y .

We have noted above, and it will be further discussed below, that

for the weight spectral sequence there is a canonical grading element

associated to the nilpotent endomorphism N ∈ End(E1). Thus the

monodromy weight filtration W (N) on E1 is canonically split, and we

then have a canonical sl2-action on E1, one that will be seen to commute

with the d1 of the spectral sequence.

VI. Monodromy weight filtration

in the 1-parameter case (II)

For the standard picture of X → S of a 1-parameter family where

S = ∆, in the previous section we have defined

• a mixed Hodge structure Hn
(
Ω•X/S(logX)⊗ OX ,W, F

•), and
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• a nilpotent monodromy operator N ∈ End
(
Hn
(
Ω•X/S(logX)⊗ OX

))
with the properties

N(Wr) ⊂ Wr−2,

N(F p) ⊂ F p−1.

We want to show that

W (N) = W.

For this it is necessary to establish the second of the defining properties

(V.9) of W (N); that is, we must prove the Hard Lefschetz property

(V.8).

This property will not hold without further assumptions on the stan-

dard situation (I.1)AG when ` = 1. Perhaps the most natural of these

is that the family X → S is projective; i.e., we have X ⊂ PA with

the Lefschetz class Ls = c1(OXs(1)). We set L = L0 and note that L

induces the class of an ample line bundle on the normalizations X [k] of

the strata of X. Noting that

(i) the Ep,q
1 term of the weight spectral sequence is given by a direct

sum of the groups

(VI.1) H i(X [j])(−k),

where the indices i, j, k that appear depend on p, q, n, and d;

(ii) L operates on the E1 term and this action commutes with d1;

(iii) the action of L also commutes with the action of the monodromy

operator N (which we have seen is either zero or the identity on

each factor (VI.1) in E1)

what is suggested is that we decompose the E1-term under the action

of L and see what this gives.

More precisely, we have already observed that N is part of an sl2

acting on E1, and the same is true of the action of L on each H∗(X [k]),

with suitable Tate twists on the individual groups. Thus one may hope

that L is also part of an sl2 acting on E1, so that we may have a pair

of commuting sl2’s acting on E1 and commuting with d1. This is the
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approach taken in [GN] and with an exposition in Chapter 11 of [PS].

We will say more about this below.

One additional point. From the earliest days one has known that

many of the deepest results in Hodge theory require the 2nd Hodge-

Riemann bilinear relation, especially the positivity of the Hermitian

forms. So it will not be just the irreducible sl2× sl2 factors, or bi-

primitive decompositions of the E1 terms, but also the non-degenerate

bilinear forms on those pieces, that should come into play. In fact, this

is the case in the original proof that W = W (N) in [St1].

The main difficulty in implementing the above general strategy is in

the book-keeping of the complicated indices that enter. This is very

nicely organized in [GN] and [PS], as follows. Using now real coefficients

so as to have the operation of complex conjugation, we set

Kijk = H i+j−2k+n
(
X [2k−i+1]

)
(i− k).

Then, recalling that dimX = d and that we are considering a mixed

Hodge structure (V,W, F •), the E1-term of the monodromy weight

spectral sequence is ([PS], page 273)

E−r,n+1
1 = ⊕

k
K−r,n−d,k =⇒ VR.

The differential d1 in the weight spectral sequence is given by d1 =

d′1 + d′′1 where the differentials are maps

• d′1 : Ki,j,k → Ki+1,j+1,k+1

• d′′1 : Ki,j,k → Ki+1,j+1,k

and are described by

• d′1 are the signed restriction maps on cohomology induced from the

maps X [`+1] → X [`];

• d′′1 are the signed Gysin maps on cohomology induced from these

same maps.

We note that

• d1 : Ki,j,k → Ki+1,j+1,k+1 ⊕Ki+1,j+1,k

and that d′1, d′′1 and d1 are all morphisms of real Hodge structures.
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There are additional maps on theKi,j,k induced from the monodromy

operator N and Lefschetz operator L. Both are also morphisms of real

Hodge structures. In terms of the Ki,j,k we have

N : Ki,j,k → Ki+2,j,k+1

L : Ki,j,k → Ki,j+2,k(1).

This implies that on the bi-graded complex

Ki,j = ⊕
k
Ki,j,k,

for which the cohomology of the associated single complex gives E2,

that N has bi-degree (2, 0) and L has bi-degree (0, 2).

All together one has a very rich representation theoretic structure

on E1, from which using the standard representation theory of sl2× sl2

one infers a double primitive decomposition

Kr,s =
∑

N iLjKr−2i,s−2j
0

with symmetric positive definite bilinear forms

Q : K−i,−j0 ⊗K−i,−j0 → R

derived from the usual ones giving polarized Hodge structures on the

primitive cohomologies on the normalization of the strata of X. Using

the diagonal action of the sl2× sl2 on K•,•’s, these in turn lead to

symmetric and positive definite bilinear forms

ϕ : K•,• ⊗K•,• → R.

The final step is to use ϕ to define the adjoint d∗ of d and Laplacian ∆ =

dd∗ + d∗d and use the representation theory of sl2× sl2 on End(K•,•)

to show that

ker ∆ is an invariant subspace of K•,•.

This leads to the basic result (V.7).

Remark: One cannot help but be struck by the several uses of “finite

dimensional harmonic theory” to prove deep results, such as the one

above. One such is Kostant’s theorem [Ko] on the n-cohomology of

irreducible g-modules, where g is a semi-simple complex Lie algebra
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and n is the unipotent radical of a Borel subalgebra (cf. [Ko]). The

other is the purity result in [CKS2].

VII. Localization to X in the several parameter case

Conceptually the steps are analogous to those from [St1] in the 1-

parameter case: Starting with the situation (I.1)AG

π · X→ S

where S = ∆`, and where around points x ∈ X = π−1(s0) where X is

locally a product of normal crossing divisors and a space of parameters,

the mapping has the standard local normal form

(VII.1)


xI1 = s1

...

xIk = sk.

Then there is a diagram

X̃∗

��

k // X

��

X
ioo

��
S̃∗

j // S {s0}
i0oo

where X̃∗
k−→ X is the composition of X̃∗ → X∗ and the inclusion of

X∗ in X. Similarly for j, while i and i0 are both inclusions. The

group Z` of deck transformations acts equivalently on the left-hand

side of the diagram and ei = (0, . . . , 1
i
, . . . , 0) induces the monodromy

transformation expNi on Hn(X̃∗,C).

We recall the steps in the localization to X:

(i) Hn
(
X̃∗,C

) ∼= Hn
(
Ω•

X̃∗

)
;

(ii) Hn
(
Ω•X∗

) ∼= Hn
(
X, k∗Ω

•
X̃∗

)
;

(iii) Hn
(
X, k∗Ω

•
X̃∗

) ∼= Hn
(
X, i∗k∗Ω

•
X̃∗

)
.

These steps are the analogues of (2.4) and (2.5) in [St1]. Geometrically

in step (iii) we may shrink X to X by restricting to a product of discs of

radius ε and letting ε→ 0. This is an analytic analogue of the Clemens

retraction mapping [C], which is topological.
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A central question in understanding (iii) is:

What does the sheaf i∗k∗Ω
•
X∗ look like?

The mapping k is induced from j : S̃∗ → S given by

si = exp 2π
√
−1zi, zi ∈ H.

Shrinking S to {s0} means taking |si| < ε and letting ε → 0. The

sheaf i∗j∗OS̃∗ is supported at s0; intuitively it consists of functions

f(s1, . . . , sk; log s1, . . . , log sk) that are Laurent series in the si and

power series in the log si. On X̃∗ the sheaf k∗i
∗O

X̃∗ consists of func-

tions f(x, log s) where x = (x1, . . . , xd+k), log s = (log s1, . . . , log sk)

and f(x, s) is a Laurent series in the xi where i ∈ I1 ∪ · · · ∪ Ik, a power

series in the remaining xj’s, and log s is a power series in the log si.
9

Then k∗i
∗Ω•

X̃∗
are differentials

(VII.2) ω =
∑
I

fI(x, log s) dxI

where the fI(x, log s) are as above. Here we have used (VII.1) to ex-

press the dsi’s in terms of dxj’s. If we only have differentials of this

form without the log si’s, then we are essentially in the same situa-

tion as in the original paper [HA]. The stalk of the cohomology sheaf

H∗(k∗i
∗OX̃∗) would then be the tensor product of the exterior algebra

of the logarithmic differentials corresponding to the product of the nor-

mal crossing divisors given by the factors in (VII.1). For a closed form

ω with coefficients fI(x), this comes by expanding fI(x) in a power se-

ries and subtracting off exact forms to eliminate all terms except those

in which fI(x) has a 1/xi factor for i ∈ I. In this way we may reduce

ω to a logarithmic differential.

Putting in the log si’s implies that we introduce the relation

(VII.3) dsi/si =
∑
j∈Ii

dxj/xj,

9An argument, not given here but which is essentially the same in [St1], gives
that we may assume f(x, log s) to be a polynomial in the log si. Here we recall
the expressions (III.5) for a section of V→ ∆∗` relative to a holomorphic frame for
V→ ∆` that was discussed in Section III.
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so that we effectively are in the space of relative differentials. Beyond

the situation in [HA] what must be proved is that we can reduce any

closed form to eliminate positive powers of the log si’s. This is done

using

d(log si)
p = (log si)

p−1dsi/si.

When there is only one factor in the local product (VII.1) the essential

calculation occurs already when we are in Ck+1 with the equation

x1 · · · xk = s.

If

(VII.4) ω =
∑
I,j

cI,j(log s)j dxI/xI

satisfies dω = 0, then we must show that inductively we can reduce by

exact differentials of this form to one where no positive power of log s

appears. If ∑
(log s)p dxI/xI = (log s)p

∑
I

cI,p dxI/xI

is the term with the highest power p > 0 of log s, then from dω = 0 we

infer that (∑
cI,p dxI/xI

)
∧ ds/s = 0.

This implies that the term in parentheses is divisible by ds/s = d log s,

and we may subtract an exact form to reduce p to p− 1.

For a closed form

ω =
∑

fI,j(x)(log s)j dxI/xI

we again consider the term with the highest power (log s)p. Then con-

sidering the equation

dω ≡ 0 mod(log s)p

we are in the same situation as in [HA] and may reduce by exact forms

to have constant coefficients so that ω has the form (VII.4).
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For the locally a product situation (VII.1), the essential case is when

we have two factors given by equations

x′1 · · ·x′i = s′,

x′′1 · · ·x′′k = s′′.

Then we consider forms

ω =
∑

cI,j,I′,j′(log s′)j(log s′′)j
′
dx′I/x

′
I ∧ dx′′I/x′′I .

We may then first successively reduce the positive powers of log s′ by

exact forms as above, and then do the same for the positive powers of

log s′′.

VIII. Filtrations in the several parameter case

We are seeking to define a mixed Hodge structure (V,W, F •) where

VC = Hn
(
Ω•X/S(log Y)⊗ OX

)
.

Here the mapping X→ S has the local form (I.7). The normal crossing

divisor is Y = Y1 + · · ·+ Y` where locally Yi is given by si = 0.

We have fixed an ordering of the discs, so that S = ∆1 × · · · × ∆`

where ∆i has coordinate si. Letting Ti = ∆1 × · · · × {0} × · · · × ∆`

and T = T1 + · · ·+ T`, we have a mapping (X,Y)→ (S, T ). The Yi are

globally defined divisors in X, and thus in Ω•X/S(log Y) the subcomplex

W i
kΩ
•
X/S(log Y) of differentials that have 5 k dxi/xi’s from the index

set Ii is well defined.

Although X is locally the product of normal crossing divisors Ui and

a parameter space U0, this is not the case globally. In this regard the

situation is analogous to the 1-parameter case of X → ∆ where the

mapping is locally given by

x1 · · ·xk = s.

Then the central fibre X is only locally a normal crossing divisor. A

simple and standard example that illustrates this is when X is an
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irreducible nodal curve

p2p1

In order to keep track of the book-keeping in the Poincaré residue and

Gysin maps it is necessary to introduce further notation that labels the

inverse images of the nodes in the normalization of X. If we have ω ∈
H0
(
Ω1
X(log(p1+p2))

)
, then for each of the pi there are two choices of the

values of Respi ω, and one needs a notation to distinguish between these.

There is a similar situation for the Gysin maps H0(X [2])→ H2(X [1]).

From the theoretical point of view, one may apply further base

change to X → ∆ to arrive at a situation where X is globally a nor-

mal crossing divisor with an ordering of the components. In the above

picture the central fibre becomes

X2 X3

X1.

This is the usual procedure and is preferable from a theoretical, but

not necessarily a computational, perspective.

In the several parameter case of X→ ∆` similar complications arise.

We have assumed an ordering of the factors in the base space so that

the components Yi of the crossing divisor Y = Y1 + · · ·+Y` are globally

defined. Additional notations are needed to keep track of the fact that

even though the local factors Ui of X are well defined, the irreducible

components of Ui depend on an ordering of the indices that label these

components, which does not have intrinsic meaning. Such additional

notations are introduced in [Fu1]. We shall not try to summarize them

here; rather we shall work with the local situation (I.7) and remark

which local constructions have global meaning. In fact, to simplfy and
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keep at the forefront the essential geometric content, we shall assume

that

(i) we are in the case ` = 2 and X has the local form10

x′1 · · ·x′k′ = s′(VIII.1)

x′′1 · · ·x′′k′′ = s′′;

(ii) we shall suppress the signs necessary to do the book-keeping of

the various restriction, Poincaré residue and Gysin mappings;

(iii) finally, when no ambiguity seems likely we shall omit the pullback

mappings of differential forms.

Because of (i) we are in the case where an open set in X is

U = U ′ × U ′′

and where U ′ and U ′′ correspond to the two factors in (VIII.1).

Setting X′ = π−1(∆′ × {0}) and X′′ = π−1({0} × ∆′′), we may use

the identification

(VIII.2) OX(U) ∼= π′∗OX′(U
′)⊗̂Cπ

′′∗OX′′(U
′′)

to locally take the tensor product of Steenbrink’s constructions in the

1-parameter case and see which of the resulting constructions have in-

trinsic meaning.11 Some care is needed to make this work, and it seems

preferable to first go to the basic principle underlying the construction.

Due to the localization discussed in Section VII, the basic local object

is Ω•X/S(log Y)⊗ OX whose hypercohomology gives the complex vector

space VC for the to be constructed limiting mixed Hodge structure

(V,W, F •). As we have noted, it is possible to directly define the evident

Hodge filtration on it, but for both geometric and formal reasons it is

not possible to directly define a weight filtration on Ω•X/S(log Y)⊗OX .

Among other things, there is no similar exact sequence to (II.5) that

10In the introduction we used the notation (s1, s2) instead of s′, s′′. Here we use
the latter as we find that it may make the calculation less cluttered with indices.

11Note that the completed tensor product is over C. We are thinking of power
series in (x′i, x

′′
j ) as a completed tensor product of power series in the x′i and x′′j

separately.



40 M. GREEN AND P. GRIFFITHS 7/29/14

leads to the Gauss-Manin connection. Rather as will be discussed below

a spectral sequence construction is required, and this does not seem

to immediately suggest a resolution of Ω•X/S(log Y)⊗OX in the several

parameter case. Following the steps in the argument in the 1-parameter

case, one may proceed as follows:

(i) Given a local section

ϕ =
∑
i

α′i ∧ (dx′i/x
′
i) +

∑
j

α′′j ∧ (dx′′j/x
′′
j )

of Ωp
X/S(log Y) ⊗ OX , any two local lifts of ϕ to Ωp

X(log Y) ⊗ OX

differ by a

ψ = β′ ∧ ds′ + β′′ ∧ ds′′.

Neither ψ ∧ ds′ nor ψ ∧ ds′′ is zero, but

ψ ∧ ds′ ∧ ds′′ = 0.

This suggests that our resolution of Ωp
X/S(log Y) ⊗ OX must start

with Ωp+2
X (log Y)/(something).

(ii) We then lift ϕ to a section of Ωp
X(log Y) ⊗ OX and extend this

locally from X to X to obtain a section of Ωp
X(log Y). The differ-

ence between any two such extensions is of the form s′γ′ + s′′γ′′

where γ′, γ′′ are sections of Ωp
X(log Y). Then in contrast to the 1-

parameter case ds′

s′
∧ ds′′

s′′
∧ (s′γ′ + s′′γ′′) may not be holomorphic.

For example, in the first term

−ds
′′

s′′
∧ (ds′ ∧ γ′)

the logarithmic poles along U ′ are cleared by the same argument

as in the 1-parameter case, but those along U ′′ may remain.

(iii) We may intrinsically define

W ′
k′Ω
•
X(log Y)

to be the forms that have 5 k′ dx′i/x
′
i terms, and similarly for

W ′′
k′′Ω

•
X(log Y). Since these descriptions are in terms of the loga-

rithmic differentials along each of the global divisors Y′ and Y′′,
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they are well defined. From the above we have

There is a well-defined injection

Ωp
X/S(log Y)⊗ OX → Ωp+2

X (log Y)/W ′
0Ωp+2

X (log Y) +W ′′
0 Ωp+2

X (log Y).

This leads to the

(VIII.3) Definition: Ap;q
′,q′′ = Ωp+q′+q′′+2

X (log Y)
/
W ′
q′Ω

p+q+2
X (log Y) +

W ′′
q′′Ω

p+q+2
X (log Y).

Then the above inclusion becomes

(VIII.4) Ωp
X/S(log Y)⊗ OX ↪→ Ap,0,0.

We may use the formalism suggested by (VIII.2) to define a reso-

lution of Ωp
X/S(log Y) ⊗ OX . Namely, to use notations that will make

more transparent the constructions, over the open set U = U ′×U ′′ we

set Y = Y′ + Y′′ and

Ω′• = π′∗Ω•U ′/S′(log Y′),

Ω′′• = π′′∗Ω•U ′′/S′′(log Y′′)

Ω• = Ω•U/S(log Y).

(VIII.5)

Then we have

(VIII.6) Ω• ∼= Ω′• ⊗ Ω′′•.

On each of U ′ and U ′′ we have the bi-complexes A′•,• and A′′•,• as in

(IV.3) for each factor, and in each case with resolutions Ω′• → A′,• and

Ω′′• → A′′,• by using the corresponding total complexes. We then set

(VIII.7) A• = A′• ⊗ A′′•

and use (VIII.6) to obtain a resolution of Ω•.

To check this with (VIII.4), we set

W ′
q′ = W ′

q′Ω
′•
U ′/S′(log Y′),

W ′′
q′′ = W ′′

q′′Ω
′′•
U ′′/S′′(log Y′′).

Then a local coordinate calculation gives

Ω•/W ′
0 +W ′′

0
∼= (Ω′•/W ′

0)⊗ (Ω′′•/W ′′
0 ),
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and in general

Ω•/W ′
q′ +W ′′

q′′
∼= (Ω′•/W ′

q′)⊗ (Ω′′•/W ′′
q′′).

This checks that (VIII.4) is the initial term in a resolution

Ω•X/S(log Y)⊗ OX → A•

where A• is the total complex associated to the complex given by the

Ap;q
′,q′′ in (VIII.3). We note that locally

(VIII.8) Ap;q
′,q′′ =

⊕
p′+p′′=p

A′p
′,q′ ⊗ A′′p′′,q′′ ,

and the total complex is

Ar =
⊕

p+q′+q′′=r

Ap;q
′,q′′ .

We will next discuss the differentials, and after this the weight fil-

tration.

The differentials on A•;•,• are induced by

• d : Ap;q
′,q′′ → Ap+1;q′,q′′ is the usual d;

• δ′ : Ap;q′,q′′ → Ap;q
′+1,q′′ is ∧ds′/s′, and similarly for δ′′ = ∧ds′′/s′′;

• δ = δ′ + δ′′;

• D = d+ δ : A• → A•+1 is the total differential.

In other words, with the local identification (VIII.7) the above differ-

entials are induced from those on A′• and A′′•, with the understanding

that we take the total degree in the first factor as indicated by (VIII.8).

The Hodge filtration on A• is induced by taking F •A′• ⊗ F •A′′•; it is

preserved by all of the above differentials.

The weight filtration on A• is also locally induced by taking the

weight filtrations on A′,• and A′′,•. Explicitly,

(VIII.9)

WrA
p;q′,q′′ = Wr+2q′+2q′′+2Ωp+q′+q′′+2(log Y)

/
Wq′Ω

p+q′+q′′+2
X (log Y)

+Wq′′Ω
p+q′+q′′+2
X (log Y).

We note that passing to GrW kills δ′, δ′′ and δ; thus, on GrW the induced

differential is just the usual exterior derivative. This suggests that,
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omitting indices,

WE1 = H(GrW )

should be related to the de Rham cohomology of Ω•-complexes on

smooth projective varieties.12

Here we run into notational issues. If X were globally a product

X ′ ×X ′′ where

X ′ = X ′1 ∩ · · · ∩X ′N ′ , X ′′ = X ′′1 ∩ · · · ∩X ′′N ′′ ,

then we would have

(VIII.10) GrW ∼= ⊕
(

(a′i′)∗Ω
j′

[X′i]
(−k′)

)
⊗
(

(a′′i′′)∗Ω
j′′

[X′′i ](−k
′′)
)

;

the induced differential would be

d0 = d′ ⊗ 1′′ + 1′ ⊗ d′′

and WE1 would be a cohomological mixed Hodge complex. As in the

1-parameter case when X is only locally a normal crossing divisor, we

must use additional notations to label a choice of an ordering of the

local irreducible components in the local product decomposition of X.

This is carried out in [Fu1]. The general conclusions are the same for

the several parameter case as for the 1-parameter one:

• the spectral sequence FEm for the Hodge filtration degenerates at

FE1;

• the spectral sequence WEm for the weight filtration degenerates at

WE2;

• the associated graded

GrWr Hn
(
Ω•X/S(log Y)⊗ OX

) ∼= WE
n−r,r
∞

is a pure Hodge structure.

12More precisely, GrW A• is a sub-complex of a direct sum of the de Rham com-
plexes on smooth projective varieties, the “sub” reflecting the matching conditions
as discussed above.
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And from this, taking into account that we are referring to [St2], [Fu2]

for the Q-structure, we have (cf. [Fu1], Theorem (6.10))

(VIII.11)(
Hn
(
Ω•X/Y(log Y)⊗ OX ,W, F

•)) is a mixed Hodge structure.

IX. Monodromy and

polarized limiting mixed Hodge structures

Here there are significant differences between the one and several

parameter cases. The geometric reason is the obvious one: there are

partial degenerations of the general smooth fibre corresponding to the

faces of the monodromy cone. Along each face we get a variation of

limiting mixed Hodge structures in the sense of [SZ], and when we take

the limit at a boundary point of that face we obtain a further degener-

ation. The purely Hodge theoretic aspect of this is given in [CKS1]; in

these notes we shall discuss the corresponding algebro-geometric pic-

ture. For this we need the strengthening of (VIII.11) stating that we

obtain a polarized limiting mixed Hodge structure. For this monodromy

enters in an essential way.

The first main observation is that the constructions in [St1] of an op-

erator on A• that commutes with the differentials in the multi-complex

⊕
p,q′,q′′

Ap;q
′,q′′ and induces the action of monodromy on Hn

(
Ω•X/S(log Y)⊗

OX

)
extends to the several parameter case. Thus we define

ν ′ : Ap
′;q′,q′′ → Ap−1;q′+1,q′′

ν ′′ : Ap;q
′,q′′ → Ap−1;q′,q′′+1

ν = ν ′ + ν ′′

(IX.1)

to be the projections. Because Y′ and Y′′ are global divisors on X, the

above are well defined. In terms of the local product structure where

Ap;q
′,q′′ = ⊕

p′+p′′=p
A′p

′,q′ ⊗ A′′p′′,q′′

we may write

(IX.2) ν = ν ′ ⊗ 1′′ + 1′ ⊗ ν ′′.
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Then because of the commutativity properties of the corresponding

operators in the 1-parameter case, we have that

all of d, δ′, δ′′, ν ′, ν ′′ mutually commute.

The next step is to identify the actions [ν ′], [ν ′′] and [ν] = [ν ′] + [ν ′′] in-

duced on Hn
(
Ω•X/S(log Y)⊗OX

)
with that of the monodromy operators

N ′, N ′′ and N = N ′ +N ′′.

As in the 1-parameter case, the action of monodromy is given, up to a

constant, by the residues of the Gauss-Manin connection acting on the

fibre at the origin of the Deligne extension of the bundle Rn
πCX∗ ⊗OS∗ .

In the 1-parameter case the ingredients in the above identification are

(i) the identification of N as the connecting map in the exact hyper-

cohomology sequence of

0→ Ω•−1
X/∆(logX)⊗ OX

ds/s−−→ Ω•X(logX)⊗ OX(IX.3)

→ Ω•X/∆(logX)⊗ OX → 0;

(ii) the resolution

Ωp
X/∆(logX)⊗ OX → Ap,•; and

(iii) the interpretation of the connecting map on hypercohomology in

(IX.3) in terms of a mapping cone construction using the com-

plexes Ap,•.

In the several parameter case the situation is a little more involved.

For step (i) the exact sequence (IX.3) is replaced by the filtration

Wk

(
Ω•X/S(log Y) ⊗ OX

)
induced by the images of π∗Ωk

S(log T ) ⊗ OX

in Ω•+k
X/S(log Y)⊗ OX . The Gauss-Manin connection is then given by

(IX.4)

E0,n
1

d1 // E1,n
1

∼ = ∼ =

Hn
(
Ω•X/S(log Y)⊗OX

)
// Ω1

S(log T )⊗OS,s0 ⊗C Hn
(
Ω•X/S(log Y)⊗OX

)
where the top row are terms in the spectral sequence arising from the

above filtration on Ω•X/S(log Y)⊗ OX .
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For step (ii), we have the resolution

(IX.5) Ωp
X/S(log Y)⊗ OX → Ap;•

of Ωp
X/S(log Y)⊗OX by the total complex associated to the double com-

plex Ap;q
′,q′′ . What must be done to carry out step (iii) is to interpret

the differential d1 in (IX.4) above in terms of the resolution (IX.5).

Rather than give a detailed calculation we shall give the conceptual

ideas, and for this we shall use the shorthand notations (VIII.5) and

(VIII.6) together with

Φ′• = π′∗Ω•U ′(log Y′)

Φ′′• = π′′∗Ω•U ′′(log Y′′)

Φ• = Ω•U/S(log Y)

and

Ψ′• = π′∗Ω•∆′(log o′)

Ψ′′• = π′′∗Ω•∆′′(log o′′)

Ψ• = Ψ′• ⊗Ψ′′•

where o′ and o′′ are the origins in ∆′ and ∆′′. Briefly, Φ′• and Φ′′•

are the log-complexes on the factors U ′ and U ′′ of U , and Ψ′• and Ψ′′•

are the pullbacks of the log complexes on the disc factors ∆′,∆′′ of ∆.

Thus we have

Ω′• ←→
{

span of the dx′i/x
′
i modulo

∑
dx′i/x

′
i

}
Φ′• ←→ {span of the dx′i/x

′
i with no relation}

Ψ′• ←→
{
ds′/s′ =

∑
dx′i/x

′
i

}
.

We then have

0→ Ψ′•−1 → Φ′• → Ω′• → 0

0→ Ψ′′•−1 → Φ′′• → Ω′′• → 0
(IX.6)

where each row in (IX.6) corresponds to (IX.3) over the respective

factors U ′, U ′′ of U .

For the first step, the spectral sequence referred to above is the one

associated to the filtration of Φ′•⊗Φ′′• by the sub-complex Ψ′•⊗Ψ′′•.
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If X → ∆′ × ∆′′ were globally a product X′ × X′′ → ∆′ × ∆′′, then

the differential d1 in the spectral sequence (IX.4) could be expressed in

terms of the connecting maps in the exact hypercohomology sequences

associated to the exact sequences in (IX.6). This is not the case, but

will become so with the additional data locally labeling the irreducible

components of X ∩ U ′ and X ∩ U ′′.
For the next step, we consider the resolutions

Ω′• → A′•

Ω′′• → A′′•
(IX.7)

whose tensor product gives the resolution Ω• → A•. The connecting

maps in the exact hypercohomology sequences of (IX.6) may be ex-

pressed in terms of a cone construction for each of the rows in (IX.7).

We may then use this in the first step to express the differential d1

in (IX.4) in terms of the projections ν ′ : Ap;q
′,q′′ → Ap−1;q′+1,q′′ and

ν ′′ : Ap;q
′,q′′ → Ap−1;q′,q′′+1. When this is all written out we obtain the

following conclusion:

(IX.8) Via the weight spectral sequence for the complex A•, the mon-

odromy operators N ′, N ′′ and N = N ′ + N ′′ are given by the induced

actions [ν ′], [ν ′′] and [ν ′+ν ′′] = [ν] on Hn(A•) ∼= Hn
(
Ω•X/∆′×∆′′(log Y)⊗

OX

)
= VC.

Because of this we shall drop the notations [ν ′], [ν ′′] and [ν] and shall

simply write N ′, N ′′ and N . For the weight filtration Wk(VC) we have

N : Wk(VC)→ Wk−2(VC)

which for k = 0 gives

(IX.9) Nk : GrWk VC → GrW−k VC.

The main result is then

(IX.10) Assuming that we have a projective embedding X ⊂ PA, the

maps (IX.9) and isomorphisms.

At this point the proof is an extension of the argument in the 1-

parameter case given by [GN] and in chapter 11 in [PS]. In the ` = 2

case there is an action of sl2× sl2× sl2 on the WE1 term of the weight
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spectral sequence and whose nil-negative elements are L = o1(OX(1)),

ν ′, ν ′′. As discussed above, with the framework we have established the

essential content of the calculations occur already when X→ ∆′×∆′′ is

a product X′×X′′ → ∆′×∆′′. For these, one uses the tri-primitive de-

composition of VC as an sl2× sl2× sl2-module and the Hodge-Riemann

bilinear relations and construction of an algebraic Laplace operator as

in loc. cit. Here the essential point is that in the product situation one

has ∆ = ∆′ ⊗ 1′′ + 1′ ⊗∆′′; i.e., there are no cross-terms.

X. Algebro-geometric interpretations of

properties of the monodromy cone

and limiting mixed Hodge structures

In the introduction we listed the properties (I.2)(i)–(ii) of the mon-

odromy cone and (I.3)(i)–(ii) of the limiting mixed Hodge structure

(V,W, F •) that are consequences of the Cattani-Kaplan-Schmid the-

ory in the Hodge theoretic setting (I.1)HT. There we noted that in

the algebro-geometric setting (I.1)AG these properties were proved by

Deligne as consequences of the Weil conjectures and the comparison

between `-adic and ordinary cohomology. In this section we will dis-

cuss how these properties follow from the complex algebro-geometric

description of the limiting mixed Hodge structure in the several pa-

rameter family case. With the theory that has been developed above

the basic ideas behind (I.2)(i) are the obvious ones:

(a) the identification VC = Hn
(
Ω•X/S(log Y)⊗ OX

)
;

(b) the quasi-isomorphism

Ω•X/S(log Y)⊗ OX → A•;

(c) the interpretation of monodromy as arising from operators de-

fined locally on the complex of sheaves A•.

The properties (I.2)(ii)–(iii) and (I.3)(i)–(iii) deal with relations among

faces of the monodromy cone. They may also be derived from the

theory developed above, but for this some further considerations are

required.
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We begin with a discussion of (I.2)(i), the independence of the weight

filtration W (N) of N ∈ σ. This basic result together with (I.2)(ii) are

due to Cattani-Kaplan [CK] and they provided the gateway to the

subsequent analysis of limiting mixed Hodge structures in the several

parameter (I.1)HT case ([CKS1], [Kas1], [Kas2], and [KK]). In this dis-

cussion we shall take the 2-parameter case and shall use the notations

from Section VIII where we have

X→ ∆′ ×∆′′

with the local description (VIII.1). In terms of the definition (VII.3)

of the multi-complex Ap;q
′,q′′ whose associated single complex is the A•

above, the monodromy operators N ′, N ′′ and N = N ′+N ′′ are induced

from the hypercohomology spectral sequence from the operators ν ′, ν ′′

and ν = ν ′ + ν ′′ defined in (IX.1).

With the notation

Nλ = λ′N ′ + λ′′N ′′, λ′, λ′′ ∈ C

we shall prove the following basic result relating the two filtrations on

Hn
(
Ω•X/∆′×∆′′(log Y) ⊗ OX

)
that arise from the local filtration Wr(A

•)

and the global monodromy filtration W (N):

(X.1) For λ′, λ′′ ∈ R>0 we have

W (Nλ) = W (N).

Proof. The argument is a little subtle. Setting νλ = λ′ν ′ + λ′′ν ′′, on

the complex A• with Hn(A•) = Hn
(
Ω•X/∆′×∆′′(log Y) ⊗ OX

)
there are

defined

• the weight filtration Wr(A
•) given by (VIII.9),

• the nilpotent operators νλ : A• → A• that satisfy

(X.2) νλ : Wr(A
•)→ Wr−2(A•).

Given a finite-dimensional vector space E ′, E ′′ and nilpotent endomor-

phisms A′ ∈ End(E ′) and A′′ ∈ End(E ′′), then we have the elementary

observation that for λ′, λ′′′ 6= 0

(X.3) W
(
A′•⊗Id′′+ Id′⊗A•′′

)
(E ′⊗E ′′) = W (A•′)(E ′)⊗W (A•′′)(E ′′),
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where Id′ and Id′′ are the identity operators on E ′, E ′′. From the local

tensor product description A• = A′• ⊗ A′′• one might then initially

suspect that (X.2) should hold for all λ′, λ′′ ∈ C∗. This is false, as we

shall see below by example.13 Thus, the condition λ′, λ′′ ∈ R>0 must

enter for global reasons.

We first note a further elementary linear algebra fact. Given a finite

dimensional vector space E and commuting nilpotent endomorphisms

A′, A′′ ∈ EndQ(E), we have (cf. (1.7) in [CK]):

(X.4) If the conditions

A′ : Wk(A
′′)→ Wk−2(A′′)

A′′ : Wk(A
′)→ Wk−2A

′)

are satisfied, then

W (A′) = W (A′′).

From (X.2) we have

Nλ : Wk(Hn(A•))→ Wk−2(Hn(A•))

for any λ′, λ′′. Thus, using (X.4) it will suffice to show

(X.5) for λ′, λ′′ ∈ R>0 we have

W (Nλ)
(
Hn(A•)

)
= W

(
Hn(A•)

)
.

This is the basic result relating the two filtrations W and W (Nλ) on

Hn
(
Ω•X/∆′×∆′′(log Y) ⊗ OX

)
. Its proof consists in observing that the

same argument for (IX.10) that was given for N = N ′ + N ′′ works

for Nλ provided that λ′, λ′′ ∈ R>0. Indeed, the eigenspace decompo-

sition as complex vector spaces of the sl2× sl2× sl2 acting on WE1 is

unchanged if we use νλ = λ′ν ′ and λ′′ν ′′ where λ′, λ′′ ∈ C∗. If we want

the decomposition of WE1 as real vector spaces, then we need to have

λ′, λ′′ ∈ R∗. But it is only for λ′, λ′′ ∈ R>0 that Hodge-Riemann II

is satisfied, and this is crucial for the proof. We shall not write out

the details here, but rather we shall explain why the calculation should

work out.

13In case X = X′ × X′′ → ∆′ ×∆′′ is globally a product, by (X.3) this is true.
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If we have a product situation X′ × X′′ → ∆′ × ∆′′, then we may

use the calculations in Chapter 11 of [PS] and [GN], together with

the standard Clebsch-Gordon decomposition of the action of an sl2 on

the tensor product to deduce (X.5) in this case. One point to note

in carrying this out is that F pA• = ⊕
p′+p′′=p

F p′A′• ⊗ F p′′A′′•, so that

we are not in strictly a tensor product situation. These calculations

relate to the action of sl2× sl2× sl2 on the term WE1 of the weight

spectral sequence and on the differential d1WE1 → WE1 as a map of

sl2× sl2× sl2-modules.

In the general case the situation is similar to the product one consid-

ered above with the additional notational complication that involves a

labeling of the local irreducible pieces in the local product of normal

crossing divisors. We shall not write out the details, referring to [Fr1]

where similar calculations are carried out.

Remark: For VC = Hn
(
Ω•X/∆′×∆′′(log Y)⊗ OX

)
, from (X.4) we have

N ′, N ′′ : Wr(VC)→ Wr−2(VC).

However, thinking of VC as the cohomology Hn(Xs,C) of a general

fibre of X → ∆′ × ∆′′, in Figure 1 of the introduction the weight

filtrations W (N ′) and W (N ′′) on VC reflect quite different geometric

phenomena involving the limiting mixed Hodge structures that arise as

Xs degenerates to the two axes. Concerning Nλ where λ′, λ′′ ∈ Q>0, we

first note that the weight filtration of a nilpotent endomorphism does

not change when we scale the endomorsphism. Thus we may assume

that

λ′ = n′ ∈ Z>0, λ′′ = n′′ ∈ Z>0.

When we apply the base change

s̃′ = (s′)n
′
, s̃′′ = (s′′)n

′′

to the family X → ∆′ × ∆′′, for the new family X̃ → ∆̃′ × ∆̃′′ the

general fibre is the same but the logarithm of monodromy is now N is

now Nλ. It might seem plausible geometrically that one might show
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from this that the weight filtration W (Nλ) is independent of λ. But

this is not a topological result; Hodge theory is required.

We now turn to a brief, informal discussion of (I.3)(ii) in the ` = 2

algebro-geometric case. The basic idea is to first note how the result

in the case of a product X′ ×X′′ → ∆′ ×∆′′ may be deduced from the

isomorphism

Hn
(

Ω•X′×X′′/∆′×∆′′

(
log(Y′ + Y′′)

)
⊗ OX

)
∼= ⊕

p+q=n
Hp
(
Ω•X′/∆′(log Y′)⊗ OX

)(X.6)

⊗Hq
(
Ω•X′′/∆′′(log Y′′)⊗ OX

)
that results from the local isomorphism

(X.7) (A•,W ) ∼= (A′•,W ′)⊗ (A′′• ⊗W ′′)

where A′•, A′′• are as above and W ′,W ′′ are the respective weight fil-

trations. Using the identification (X.6) we have that

W is the weight filtration ofN ′⊗Id′′ relative toW (Id′⊗N ′′).

Implicit here are the assertions that W (N ′′) = W ′′ and W (N ′) = W ′,

and finally that W = W (N ′ ⊗ Id′′+ Id′⊗N ′′).
In case X → ∆′ × ∆′′ is only locally a product (VIII.1), we do not

have (X.7). Once we choose an ordering of the irreducible components

in each of the two factors in the local product (VIII.1), we locally have

(X.7). What is globally defined are the filtrations W ′ and W ′′ on A•

and where the filtration W on A• is described in terms of W ′ and W ′′ by

(VIII.3) and (VIII.9). Also, we may intrinsically define the complexes

(A•, s′ = constant)

by setting s′ = constant in the definition (VIII.3) of A•. Effectively,

we are restricting A• to the disc ∆s′′ in Figure 1 in the introduction.

Then the groups

Hn(A•, s′ = constant)

will vary with s′ and form a variation of limiting mixed Hodge struc-

tures over ∆′∗. The associated graded to this variation of limiting

mixed Hodge structures gives a variation of polarized Hodge structures
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over ∆′∗ with monodromy logarithm N ′. The local identification (X.7)

together with the facts that W ′ and W ′′ are globally defined and that

on the corresponding hypercohomology groups we have

• W = W (N) on Hn(A•);

• W ′′ = W (N ′′) on Hn(A•, s′ = constant);

• N ′ preserves the filtration W ′′ on Hn(A•, s′ = constant);

• the weight filtrationW (GrW
′′
N ′) induced by the action GrW

′′
N ′

of N ′ on GrW
′′ Hn(A•, s′ = constant) is the filtration induced

on this space by W

gives the result (I.2)(ii). The details of this will be provided in a later

version of these notes.

XI. Deformation theory and

limiting mixed Hodge structures

For the situation (I.1)AG which has the local normal form (I.7) around

the central fibre X, in the case ` = 1 and where X is a global normal

crossing divisor it was suggested and partially established in [Fr1], and

then proved in [St2], that

(XI.1)
the limiting mixed Hodge structure depends only on the 1st

order neighborhood of X in X.

More precisely, in the case ` = 1 the family (I.1)AG gives a tangent

vector

ξ ∈ TX Def(X).

As shown in [GG], in terms of ξ we may define

• a complex of sheaves (Λ•X , d) where in case there is a family X→ ∆

(XI.2) Λ•X = Ω•X/∆(logX)⊗ OX ;

• sheaves Λ̃p
X where there is an exact sequence

(XI.3) 0→ Λp−1
X

ds/s−−→ Λ̃p
X → Λp

X → 0.

The complex vector space for the mixed Hodge structure is

VC = Hn(Λ•X).
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The Hodge filtration is induced by the bétè filtration on the complex

(Λ•X , d). For the weight filtration the connecting map in the exact

hypercohomology sequence of (XI.3) gives the monodromy operator N ,

and the weight filtration is given by W (N). Although the arguments

in the literature seem to require that ξ be unobstructed, i.e., there is

a family X → ∆ with tangent ξ, proof analysis shows that this is not

necessary.

The analysis in these notes shows that

(XI.4) the statement (XI.2) remains true in the several parameter
case.

More precisely, there should be given a subspace

T ⊂ TX Def(X)

with the properties that T ∼= C`, and that any ξ ∈ C∗` is to 1st order a

smoothing deformation. In this situation we may construct the several

parameter analogues of Λ•X and Λ̃•X , and then the above constructions

of the Hodge and weight filtrations will go through to define these

filtrations on Hn(Λ•X). The Q-structure may be defined by extending

the arguments in [St2]; cf. [Fu1] and [Fu2].

Finally, we observe that intuitively the deformations of X may be

thought of as composed of two types:.

(i) deformations where a component of the singular locus ofX is smoothed.

For example, X might be a nodal curve and the deformation smooths

some, but no necessarily all, of the nodes.

(ii) deformations of X where in the local product of normal crossing

divisor situation (I.7) one of the factors is smoothed.

Both types of deformation occur, and we shall give an interesting ex-

ample of the first type.

Example: This is the example in Figure 1 in Section I of a genus 2

curve degenerating to one with three nodes. With the choice δ1, δ2, δ3
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indicated there, the monodromy matrices will be

Ni =

(
0 N̂i

0 0

)
}2

}2}

2

}

2

where

N̂1 =

(
1 0

0 0

)
, N̂2 =

(
0 0

0 1

)
, N̂3 =

(
1 1

1 1

)
.

For Nλ = λ1N1 + λ2N2 + λ3N3 with the evident notation for N̂λ, we

have

N̂λ =

(
λ1 + λ3 λ3

λ3 λ2 + λ3

)
,

det N̂λ = λ1λ2 + λ1λ3 + λ2λ3.

This can be zero if all λi ∈ C∗; e.g., if λ3 = −λ1λ2
λ1+λ2

. Thus W (Nλ) is not

independent of λ when all λi ∈ C∗ (or even λi ∈ Q∗). The conditions

for Nλ to be positive definite are
λ1 + λ3 > 0

λ2 + λ3 > 0

λ1λ2 + λ1λ3 + λ2λ3 > 0.

This is is a cone σpol, which is not polyhedral but does, of course,

contain the quadrant where all λi ∈ R>0.

This is also an example where X is not a global normal crossing

divisor, and so we must use additional notations to do the computation

of H1
(
Ω•X/∆3(log Y)⊗ OX

)
in terms of the normalizations of the strata

of X. Here

X̃ = X [1] = P1 q P1,

X [2] = {z1, z2, z3} = the three nodes.

We have the exact sequences

0→ OX → (a1)∗OX[1]
diff0

−−→ OX[2] → 0

0→ Ω1
X[1]

(
logX [2]

)opp → Ω1
X[1]

(
logX [1]

) diff1

−−→ OX[2] → 0
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where diff0 = difference of values, diff1 = difference of the residues, and

Ω1
X[1]

(
logX [2]

)opp
are the forms with opposite residues at the nodes.

Then

VC = H1
(
OX

d−→ Ω1
X[1]

(
logX [2]

)opp
)

and for N = N1 +N2 +N3

kerN = imN ∼= H1(OX) ∼= H0
(
OX[2]

)
/H0

(
OX[1]

)
,

V/ kerN ∼= H0
(
Ω1
X[1]

(
logX [2]

))opp
.

We have written this out to give an indication, in this very simple

case, of what one needs to do to treat the case when X is only locally

a product of normal crossing varieties.

Appendix A. Local considerations

In this appendix we will collect some known results concerning com-

plexes of logarithmic differentials and of relative logarithmic differen-

tials. We will use the following terminology and notations:

• X will be a normal crossing variety, which we define to be a d-

dimensional complex analytic variety that locally has an embedding

in Cd+1 defined by

(A.1) x1 · · ·xk = 0

where x1, . . . , xd+1 are coordinates in Cd+1;

• Xk will be the locus of k-fold singular points, which in terms of (A.1)

are defined by

x1 = · · · = xk = 0;

• X [k] denotes the normalization of Xk with the corresponding map

ak : X [k] → X.

Remark: It will simplify our notations and in the end make no essen-

tial difference to assume that globally

X = X1 ∪ · · · ∪XN
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is the union of smooth compact complex manifolds Xi that intersect

transversely. Then

Xk =
⋃
|I|=k

XI

where I runs over subsets of 1, . . . , n+ 1 and

XI =
⋂
i∈I

Xi.

We note that X1 = X and that

X [k] =
∐
|I|=k

XI .

• X will be an (n+ 1)-dimensional complex manifold on which X ⊂ X

is a normal crossing divisor;

• X
π−→ S will be a proper mapping to the disc S = {|s| < 1} which is

locally given by

(A.2) x1 · · · xk = s.

The log complexes and complexes of differentials that will be defined

are

(i) the log-complex Ω•X(logX);

(ii) the relative log complex Ω•X/S(logX);

(iii) the Kähler differentials Ω•X , and in caseX is d-semi-stable ([Fr1])

the abstract relative log complex

Λ•X ,

which has the property that, if there is a mapping X → S as

above then

(A.3) Λ•X = Ω•X/S(logX)⊗ OX .

The point of (iii) is that Λ•X may be defined purely in terms of a 1st

order smoothing deformation ξ ∈ T 0
X Def(X).

The way to think of this is that locally ξ defines the s in (A.2). In

a different set of coordinates x′i = uixi where ui is a unit, we will than

have

(A.4) u1 · · ·uk ≡ 1 modulo s2.
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We will return to this following a discussion of (i), (ii), (iii) above. In

each of these cases we will give the generators and relations in local

coordinates; the conclusions that are drawn will have intrinsic meaning.

We now turn to the local formulas for (i)–(iii).

(i) Locally the ideal of X and ideal of the singular locus Xsing = X2 of

X are generated respectively by

• f = x1 · · ·xk and the

• fi = x2 · · · x̂i · · ·xk for i = 1, . . . , k.

Then Ω•X(logX) is the OX-module generated by

(A.5) dx1/x1, . . . , dxk/xk; dxk+1, . . . , dxd+1.

Intrinsically, denoting by Ω•X(∗X) = j∗Ω
•
X∗ where j : X∗ → X is the

inclusion, the complex of meromorphic differentials with poles on X is

given by

Ω•X(logX) = {ω ∈ Ω•X(∗X) : fω and fdω are in Ω•X}.

There is a weight filtrationWqΩ
•
X(logX) of Ω•X(logX) by sub-complexes

where, for an index set I setting

• xI =
∏

i∈I xi,

• dxI = ∧
i∈I
dxi.

WqΩ
•
X(logX) is generated by the

(A.6) dxI/xI ∧ ϕ

where I ⊂ {1, . . . , k}, |I| 5 q and ϕ is holomorphic. We may describe

WqΩ
•
X(logX) verbally as “the forms with 5 q of the dxi/xi terms.”

The Poincaré residue map

GrWq Ω•X(logX)
∼−→ (aq)∗Ω

•−q
X[q]

is defined by the map on the form (A.6) given by

dxI/xI ∧ ϕ→ ϕ
∣∣
XI
.

As a consequence, we have for the cohomology sheaves

(A.7) Hp
(
Ω•X(logX)

) ∼= (ap)∗CX[p] .
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(ii) The relative log complex Ω•X/S(logX) has the same OX-generators

(A.5) and with the defining relation

(A.8) ds/s =
∑
i

dxi/xi = 0.

By (A.4), a local change of coordinates in X leaves (A.8) unchanged

modulo the ideal (f) of X. There is an exact sequence of OX-modules

(A.9) 0→ Ω•−1
X/S(logX)

ds/s−−→ Ω•X(logX)→ Ω•X/S(logX)→ 0.

For the stalks at the origin of the cohomology sheaves of the complex

Ω•X/S(logX), denoting by {u1, u2, . . .} the span of elements u1, u2, . . .

in a vector space U , we have

(A.10)
H0
(
Ω•X/S(logX)

)
0
∼= C{f},

H1
(
Ω•X/S(logX)

)
0
∼= C{f} ⊗ {dx1/x1, . . . , dxk/xk :

∑
dxi/xi = 0},

Hp
(
Ω•X/S(logX)

)
0
∼= ∧H1

(
Ω•X/S(logX)

)
0
, p = 1.

(iii) The Kähler differentials Ω•X are an intrinsically defined complex

on X. Locally, Ω•X is generated as an OX-module with generators

dx1, . . . , dxd+1 and defining relations

f = 0, df = 0.

We thus have the exact sequence of OX-modules

(A.11) 0→ OX → OX ⊗ {dx1, . . . , dxd+1} → Ω1
X → 0

where g ∈ OX maps to g df = g(
∑
fi dxi).

The sheaf of Kähler differentials is coherent but not locally free. In

fact, for each x ∈ X we have

(A.12) Ext1
OX

(
Ω1,OX

)
x
∼= OX,x

with the sequence (A.11) giving a generator cx.

There is a natural restriction map

Ω1
X → (a1)∗Ω

1
X[1]

whose kernel τ 1
X consists of the torsion differentials generated by the

ϕi =: fi dxi
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with the defining relation ∑
ϕi = 0.

The Kähler differentials arise in deformation theory via the identifi-

cation

TX Def(X) ∼= Ext1
OX

(
Ω1
X ,OX

)
.

Via the local to global spectral sequence for Ext, we have

Ext1
OX

(
Ω1
X ,OX

)
→ H0

(
Ext1

OX

(
Ω1
X ,OX

))
,

and the condition that ξ ∈ TX Def(X) be to 1st order a smoothing

deformation of X is that the restriction maps ξ → ξx be surjective for

each x ∈ X. In this case ξ defines an s in (A.2) that is well-defined

modulo s2 under a change of the local defining equation of X. Then

as noted there we may define a complex Λ•X of OX-modules that for

any family X→ S gives Ω1
X/S(logX)⊗OX where ξ corresponds to the

tangent vector d/ds ∈ TX Def(X).

Returning to the discussion of (i), the exact sequences

0→ Ωp
X

ds/s−−→ Ωp+1
X (logX)

ds/s−−→ Ωp+2
X (logX)→ · · ·

give

(A.13)

0 // GrW0 Ωp
X(logX) // GrW1 Ωp+1

X (logX) // GrW2 Ωp+1
X (logX) // · · ·

∼ = ∼ = ∼ =

0 // Ωp
X/τ

p
X

// (a1)νΩ
p

X[1]
// (a2)∗Ω

p

X[2]
// · · ·

where Ωp
X is the sheaf of Kähler differentials on X and τ pX is the OX-

subsheaf generated by the torsion differential τ 1
X .

As in [Fr1], using the hypercohomology of the double complex of

sheaves

Lp,q = (ap)∗Ω
q

X[p]

leads to (A.7). More relevant for our purposes, one may ask for the

interpretation of the associated graded for the weight filtration on
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Ω•X/S(logX) induced by the weight filtration on Ω•X(logX). Using (A.9)

and (A.12) we find that

GrWp Ωp+q
X/S(logX) ∼= coker

{
(ap−1)∗Ω

p

X[p−1] → (ap)∗Ω
p

X[p]

}
.

This suggests that this may not be the correct definition of the weight

filtration for Ω•X/S(logX).
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[E-Z] F. El-Zein, Dégénérescence diagonal I, II, C. R. Acad. Sci. Paris 296

(1983), 51–54, 199–202.



62 M. GREEN AND P. GRIFFITHS 7/29/14

[E-ZT] F. El Zein and L. Tu, The algebraic de Rham theorem, in Hodge Theory,
Princeton Univ. Press, Princeton, NJ, 2014, pp. 66–114.

[Fr1] R. Friedman, The period map at the boundary of muduli, in Topics in
Transcendental Algebraic Geometry, 183–208, (P. Griffiths, ed.), Prince-
ton Univ. Press, Princeton, NJ, 1984.

[Fr2] , Global smoothings of varieties with normal crossings, Ann. of
Math. 118 (1983), 75–114.

[Fu1] T. Fujisawa, Limits of Hodge structures in several variables, Compos.
Math. 115 (1999), 129–183.

[Fu2] , Mixed Hodge structures on log smooth degenerations, Tohoku
Math. 60 (2008), 71–100.

[Fu3] , Polarization on limiting mixed Hodge structures, 2013,
arXiv:1305.4811v1.

[FN] T. Fujisawa and C. Nakayama, Mixed Hodge structures on log deforma-
tions, Rend. Sem. Mat. Univ. Padova 110 (2003), 221–268.

[GG] M. Green and P. Griffiths, Deformation theory and limiting mixed Hodge
structures,

[Gr] A. Grothendieck, On the de Rham cohomology of algebraic varieties,
Publ. Math. IHES 29 (1966), 95–103.

[GN] F. Guillén and V. Navarro Aznar, Sur le théorème local des cycles in-
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