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Introduction. The theory of quuntum electrodynamics which

is presented here is not in = completely saticfactory state.
However its presentation will bring out the difficulties, and
the improvements which will be made in the future will pro-
bably chenge some of the fundamental ideas but will not make
the whole theory completely useless.

Relativistic Form of the Hamiltonian Bguations.# Since there

is a well-defined method of formulating a quuntum theory fron
a classical tipeory expressed in Hamiltonian form, we shall
first put Maxwell's theory in a suiteble Hamiltonian form.

In ordinary mechanics we have the Hamiltonian function

d=H (p,q,t) which is a function of the géneralized coordin-
ates Ao Qp 5 enns Qg 2 tneir conjugate momenta B, P, ,‘... s
B, » and possibly =lso of the time t. “he equations of motion

are then expressed by the equations

ci?l’ = ?""j d'—fr = - .a-... Fr=1 2
dt apr H dt aq,. H }"o.N
and in general the time derivative of any function g(p) q)

of pr and qr is given by

dt ror & 29, op, °F, 29, ’
where [E,H] denotes the Poisson brackst. <This usual form of
the Hamiltoniun equation in which the time variable occurs in
4 specialized role must be modified since we wish to formulute
a relativistic theory. However we need oniy restrict ourselveé
to the special theory of relativity since we shull oniy deal
with atomic problems where gravitational effects are '
negligible .

¥P.nod. Direc, ann. L'Inct. nenri Poincures iz, 18 (19:9).



In u relativistic theory t must be treatea Qn the same
footing us the space cdordinates so we now consider t as
another generaldzed cooprdinuate wnd introduge -W «s its con-
jugats momentult. 4Yhen we huve the .dditional equution, using
F as u new daailtonian,

dt _ _ oF

dt ~ ~ ow g
uhd since the left side of this equation is unity, the new
Hamiltoniun F must be chosen so that ¥= H-W.
Furthermore the time derivutive of a more generul function
§(p,q,W,t) is,

o.'s:,f;{és@f - A} 2LaE ., oEaF

d = L dq,.3p 38, 87, } ot 3w = awat
and this will be a true eguution if

ot ~ ot .

or if + . W= H +const,

We cun then write

e lar),

where the subscript G on tne bruciet denotes this generaulized
forw of the Poisson bracket, ‘However in the future weg snall
deal only with this generalized form of the brucket and the
subscript will not be written explicitly. ,

In the ubove relution between W und H, the gohstant is
unimportant and cun be tuken to be zero but the esqu.lity sign
must be regarded with sowe reserv.tion. 7The equation must
not be used before the Poisson bracket is evulyated. This
results from the fact that the relution between W wund H is o
consequ-~nce of the equuticns of motion und the initial, )

concition. For this reason we introduce &« new syabol

T A B e < e B e v

T

A e e i e O B




Lad il

to distinguish between the ordinary equality and this re-
stricted equality. For .ny two function & ahd B, a4 = B
| if [4,8]=(8,8 and CxD if C and D are equal for the actual
motion but [c,g) & [p,g].
With this notation

W= H
The special role of t is still present since the Poisson
brackets‘express tne time derivative of the functions. In
order téfremove this, we replage it by «n arbitrary function

of «ll the variables T = T (p7q,W,t). Then

dg _ d& 4t dt
== Lz g A dt 7 _ dt
But since F % 0, the luast tera vanishes, and hence

7 g,
where
il F:% and  F' 0,

Our dynamical system is now cowmpletely syammetric in the
coordinates and the time «nd is specified by Fe, For the
relativistic theory of g single particle we way take for
its proper time s. For the case of several particles there
is no single function which is suitable, and our theory wmust
be generalized to the case where tnere are several independcnt
variables and we take them to be the proper times of each,
Sy 5 Sps 4. 0o ihe equutions of motion will then be
expressed in the form

3%;:: Lg’Fz] =12, ...

different values of 1 referring to different particles. Lach
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particle has & haailtonian th 0.
The condition for the compatibility of tae ubove equations
aZE’ _ a?i

35.35;  35;2%;
require that )

RERALA IR RALA
and using Poisson's identity we obtuin tne condition of integra-
bility

lglr,mll= Q.

Tnis must hold for ull &

we need
ﬁ],Fﬂ = A& number ,

The condition thut F.% 0 for &1l s; leads to LF,Fyl~ 0

showing that this number is zero.

We shall restrict the: vuariability of s;so that the
partfcle pqipts regain outsiue each other's light cones. Then
the eqUatioﬁ.[FL,F{]z:O need hold only for this domein. It is
clear thut this condition is sutisfied if we tuke a speciul
Lorentz frawe in which the suue btime coordinate is used for ull

tne particles.

The Humiltoniuns should be cuch that
dt; dx;
—“ 2z 0 - o S
dSJ’ dSJ' )‘0# L#/

The trunsition froa the wmuny tiwe theory 10 tae single
theory cun be wade in the following way. f4ihe F's are functions
of the x's una t's 6f &ll tne particles and we can unite
dg
OT;,Z ~z [i)xLFi.]

where

G

S since [5,%R]w [8,RIX;

[

X. =

t

Q
[ad



then if we put .11 £; =&
d§ v T
— ~ 2 L8, % F]= [&,F]
dt £
wnere FT = Z X; F..
Thus the usuzl non-relutivistic fora c.n alwuys be obtoinea
by tnis speciulization,

., Notation. We use Xu LO denote = point in 4-aimensiondl

[$x]

space-tine with M tuking tiie vwulues J, 1, &, 3, and choose
our units so th.t the velocity of light is unity. 41he
scalar product of two vector A na b in tnis spuce is

# M
written (4, B) so that

o Iu — — — -
(A,B) = A¥B.= A,B, - A,B, - A,B, - AB,
ena the relotion between uppsr nd lower indices are as

follows:

o _ - < 3
A=A, , A=-A  Al=-A, AP=-A,.

I%.-1s convenient to introauce tuhe 4-diwensionul generl-
ized deltu function A(x) whicn is reluated &oxe tne ordinury

delte f*n:tion by the relation

26()(2) for X, > O
Alx) =
- 2
"? S(X ) {-‘ov- x°< O
wnere  x% = (x,x) = xZ - (2. Since we cun write
8(x23) = 6{ (Xo=1x1)(xo+ 1x1)}
e—%;d & (Xo-1x1) for X, >0
= |
5ixy B8 (Xt Ixt) for x,< 0O

A{x) = ‘-;(-‘ {SCXQ—\XD - S(Xo‘*“lxl)} ) (&.1)

A(x) 1is Lorentz invuriunt. It hus the foilowing i.port.unt
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properties. Its Fourier transform is a .ultiple of itself,

since ffff A(x) e;;m’)”a’;q,a’x,clx,z dxy = 4w Aca)

und it satisfies the wave equation

g ) »f
DA\(X) = (a—;(‘oa -‘a_;('z —b_xaa 'axg) A(X) = O,
This can best be proved by applying the operator T on N (x)

written as the integrul over its Fourisr trunsforw. Further-

more AG=x) = = A(x)
and

aA(x)]
axo x0=°
us may easily b= verified frow the Fourier tr.nsformn.

= 4T 8§(x) 8(xy) 8(x,)

Fields sssociuted with an Electron.* Since our plun is to

formulute o theory of quuntuw slectrodynuanics frow « classical
yd . «

theory, our first object is tc cevelop un €Xact schewe of
clussical. equations based on xaxwell's und Lorentz's work.
In relativistic notuation the electric wnd mugnetic fields

are tégether represented by .n antisyrusetrical tensor
Fup = 28v . 2Au
' /‘ a x/./\ a XV
where AP is the electromagnetic potential which satisfies

the condition

.a..é/“ = Q0
ax,u
and the wwve eguution

A, = 47rj/u

4.1
where 2\ . ' )
- N L
‘ T axZ2 ax2  ax?  OXE
and J,u is the charge-current vector.

¥2 . n.al. Diruc, fTo. a0Y. £0C¢. 187 &, lay (Ludd).
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We eke the ossumption tu.t there ure no chierge wna
current =xce)t on the world line of charged purticleg, and

thut euch purticle with cnurge s gives rise to w churge-

«

current vector given by ¥
oo ;
o = ef Zu §(x,~2.)8(x,~2,385(X,-22)6 (X3~Z3)dls
- o0

Where ZV defines a point on « worla line and is a function
of the jroper time s wewsured wliong it. ine dot indicates
Gifferent;ation with respect to s. For « number of cliargea
particles ewch witn chuarg: C; «iid reluted proper time S;

we sum oVver tn. contribi’ions .rna obtuin

oC
Jo=Ze, _f% Z,; §06,-28(x,-2,) S(xy-25) 8 (4= 25) s,

This assumption of the coucentration of the cnwrge on a
point isjfather doubtful physically since it ameuns an infinite
density of chaurge but it is mwde for the suke of muthemctical
siaplicity. For othsrwise, it weans theat we either have to
consider w finite charge distribution wnich is very difficuls
to treut in « reluativistic wuy, or dussuwe the breakoaown of
duxwell's theory in the n-olg.bornood of the world line which,
us h@s been shown by Born, o«iso l:.as to gr-.t complication.
Due to these difficulties, very little progr=ss has been u.ae
with these modified thezories.

4 solution of (4.1) is the well-known Liensrd. Wischert

potenti.l, and for u single purticle it is

ev
A - ﬂ
ret (X) =
h /f‘e o x-z) luat t t (El'h)d
where v, = and ohd z, «Pe evualuateu ut the returde
m= 2 u ond 2,

point and this is inaicated by the subscript "ret" on A/u .



It caun be written in the fora of .n integral, thus
L0

A/WQ* = ef lx‘i“z‘S(xo—zo-lqu)ds

-0
wnere {(x-z)} denotes the length of the three-dimension.l vector,

or in terms of the four-dimensional delta function introduced
A =ef V/,A(X-Z)a’s

M ret
-0

the upper limit ensures that only the retarded vualue couies in.
For the general solution we have
A/“M - ;Af“"e* * A/A in (4.2

where the sumaation is tuken over the different electrons and

Ayin is « solution for free space, nemely
a L d
P DA =0 éﬁ.’j = 0.

e in 3 X

IXu
The subscript s for the generwl solution inaicates that it is
the usuul solution encountered in duaxwell's tneory, and is

inserted for future reference. describes the field

A,u in
of free radiation which urises from the purticles at in-
finity. 1If the sunuaation includea the contribution froum «lil

the particles in the universe, the A woula vanish,

pin
Since our fundamental equations ure cowpletely symmetric
in past and future, we cun define in the corresponaing wuy
o0
A,Madv (x) = - e[ Va Q(x-z)ds
S(Zor:xo)

where the minus sign comes from the difference in sign between

the cuses x,>0 und x,< 0O in (3.1), and we cen write



%' A/ui ady + A/‘°U+

45 an equotion which defines & Fro. (4.3)

P out
(4.4) we obtuin
Aﬂouf - ,Um ‘2 € f 'ﬁqi. A(X‘Z,:) ds‘. " (a4.4)

Fquition of uotion feor the flectron.® So fur we nove ais-

cussed the electromuagnetic fields produced by churged yorticles
wnich cove wlong . pre-cesign=ea worla line. Furtner conditions
«I'2 Necessary in order to a:ter.ine how the purticles move
under the wction of the fic.lus. Lorentz first obtuined un

aquation of wotion for el=zctrons, whicn cun be written

. 2 2 e _ac-e _ '(
my - = - = =
W€V, - vy, eV, { Fui/ + ) F ,e+}* (5.1)
others
is
S.nce tnis/u vector zquotli-n i1 c¢onsists of 4 equ.tions

P

but uctueally only & of the. .r. inacpendent. The reason

2

is th.t in our not.tion v® = ]

therofore .

(v,v) =0, (v,¥) +v% =0

ond the wultiplication of (5.1) o, VA .iikes s.ch tarm venisn

identicully, the left side aue to thne above relutions .nd tas

v
IM
is sufficient sinc. only & rsl.tions are necess.ery to deteraine

right side aue to the .nti-syunetry of F Rowever, tanis

the world line in 4-di.ensinu.l sp..ce-ti.e. Lorentz derived
equation (5.1) by considering the electron .s o finite

distribution of cnurge .nd in Lis tuzory it nolds only

*P.A.d. Diruc., pPro. noy,. SLoc. 167a, 149 (1938).
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upproxim.tely. actuclly ther. exist teras in nigner asriva-
tives of %ﬁ with resywct to s vhicn ced=nd on the porticular
assuiption aude roeg.ording the cnurge distribution.

The guestion therefore .ris=s as to whether it is recuson-
sble to ume tuls eguation ior o point electron. We shuell snow
th.t by using tne luws of cons=rvation ol energy «nd wowentui,
ond .auking one pl.usible .ssuwnticn equuation (5.1) holas
strictly for & point chcrge. In wazwell's theory we cun set
up « Stress tensor

T = FﬂaFud+;{"9ﬂuFo(,@Fdﬁ
whose divergence vonishes

?ZZY = 0
ax/u

It meusares tne rute of flow of energy «nd wowmentum «Cross o
unit surf.ce in spuce-tiae, und the divergence conaition unolds
cverywhérc except right on tne worla line of o churged purticle.
Consider o tubwe of r.aqius € .round . worlda line. € 1is
conciderea wuch smuller tnon tuoe

saysic.l size of un electron, s.y

. . -100
so.wzthing like 10 Cm. ‘'lne

rute of flow ol energy nd ..o-

L Ldw outb .eross ths surfoace of

L Lube in tne proper time in-

terval s, to Sb is

. Figur= 5.1 . ) i ) , _
#*For uie deriv.iion 01 Lals exor=2ssiol. meo-w Llr.c, 19c. cit.
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wnere

v v /{ v ,,‘} v
= B v 5 L Furet — F + S F
M H otn e y2 Fet M adv otners M ref .
If energy and nomentum «re to be conserved, this wust be
equul to the difference in the energy and momentum content
of the tube at these two tiuwes, suy

B (s,) = B,(sy)

/A
Hence- by meking the intervul infinitesmally sm.ll, we have
I e R c/B
5 =V, —ev, T = )
e e # M c/S (5.x)

Here it is hecessary for us to .i.ke Sode wssumption about B
since we cannot cuwlculate 1te vulue on wccount of the singu-

larity on the world line. By .uultiplying (5.2) by v# we

find
2
yHdBy _ 4, €
3 ds €
<nd hence the siumplest wssuwmption we can auke for it is to
write I
Then letting € = O in (5.2) we find thut k wust be of the
fora k= 1L ,f_-’_e -m ?
' 2 € -

and we obt.uin the equation of .uotion

mv, = £Y

M = €V, Ty
= F 1
¢V { A in (,uref ﬂadv)+2 Frm‘} (5.3)

Now tho difference betweun tie retarded and advunced fields
has no singularity on the world line und cctuwlly nus the
value

v _ vy - de 5 v -V
'L;nref Fu adv ’é’(V/‘V 4 V,u)
znd inserting this in (5.3) shows th.t it is identicul with

Lorentz's equation (5.1). The above'method of using =« tube



uround o world line and .pplying conservation of energy und
gomentunm thus gilves o new way of deriving Lorentz's equulion
which is justified even for the case when tne charge is con-
centrated on . point. ihis sethod is very powerful and nus
besn used to good «dvuntwuge by Bhabhw who ulso considered the
conservution of angulel wO..eNTUikL. ‘

The equution of wotion (5.1), however, nus the grave
objection thut it contuins a second dgrivutive of the velocity.
A4S & consequence tnare exist wore solutions of the eguation
than ure wctuzlly needed. 1hut is, there ure sowe solutions
which afe physically ccceptable .nd others not «cceplublie;
solutions, wuich we cwn cuall physical «nd non-physicel solu-
tions réépectively. an exaiple of . non-physical solution
is the cuse where u single electron with no in-going field
continuously uccelerates na flies off to infinity. In
classchl theory it is possible to distinguish between ohysicul
aznd non-physicul solutions but in going over to guuntum theory
it gives rise to &« fundasent.l aifficulty since there seews to

v
be no wuy of picking out the .d.issible solutions in guantua
theory. It is < puzzling f.ct that, though the equations «re
known éxperimentally to give correct results wnen the accelera-
tion is swall, the instubility shows up even for such cases.
Furthermore Bliezer¥®has shown thet there are no physical solu-
tions for the casz of «n electron woving in the fiela of o

proton, witn the electron bound to the proton; tu.t is, where

*C. J. Bliezer, Pro. Cumb. Pnil. Soc. 29, 173 (1943).



13-

the electron sgruls crouna tiwe proton .nd sventually fulls
into it. ‘fhere are physicel soliutions for the cuse where
the electron is scuttered by .. proton, but in cuses wuere
the electron sturts out with insufficient en-ryy it receives

un outward ucceleration froa the rudiction reaation wnd files

off to. infinity in « non-physical solution

g¢. 1he Wentzel Field. There exists o well-defined method

of going over from clussiczl mechunics to gquantud theory, but
in order to utilize tnils corr:spondence we .aust first put Lhe
classioai theory in Huuilvoni.n form. For tals purpose it is
conveniept to define o new elactromugnetic field which wos

first studied by Wentzel* .nd shown to be of greuwt lmportance

7~
for this work. We cull this field the Wentzel fiela wnd dis-

tinguish its potentiuls znd field variables by adding the
o e s : .
subscript W. It is aefinea by tne relation '

A/,w(x) = A, () + 2 e f %’(. Alx-z/)ds! (6.1)
where %J - $A(5” ’z’z,z(s’)uré the values of v wnd 2

*e

pin "
M

gt e afbitrer proper tiwes. The fields ore reluted to the

pouentiais by the usu.l relution
F_ - aAyw” a.—‘A..,“w \
From the foram of (6.1) it is clear that the Wentzel field

depends on tine electron points and hus o aefinite v.lue for
specific vualues of S; - nlso, using tae properties of the

A -function given in §5 w2 see luuedl.tely thut A}‘w satisfies
the wave equution

A Y Py s N (U'k‘)
%G, Went 1, Zeits. - £ Phys. €6, 479 (1932).
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oA % 3
and  e—MW o= Z:e.f v' < -z!)ds}
3%, =) ,‘ax#zl(x z!)ds;
¢S a
=~ e v = (x-2.)ds!
), e, AR
— : 5 d
=-Ze "2 Atx-20)ds]
¢ - 00 c/S‘:
= -2 e Alx-2z;) . (6.8)

mhese equations are to be contr.sted with those for the

Moxwell field &
OA,, = 41° A _ o
pH Ip A Xu ’

(6.2) shows th.t the Wentzel {ield cun .iweys be resolved
into waves truveling with the velocity of light, and (6.3)
that there ure longitudinal as well us trunsverse wuves,
though of course they do not pl.y .ny physical role in rudia-
tion.

. Considering the contribution of one electron to the
Wentzel field, we sec from (6.1) thoet there ure at most only

two vulues of g’ for wnich the integrond is not zero., If the

electron world field point x is outside the

line
N light-cone of s’ only the returaed
/'7"*""'79 A= Are-f value comes in wnd
"A‘adv
/ A w A re+ 3

/ - A . Y
if x is in the future part of thne

light-cone, the integrona is Jl-
' WouyS zero <nd A,= 0 ;
X, e
Aw’—'Are)/
A

Figure 6.1

if x is in the past p.rt of tne

o light-cone, both returdea und
W=




adv“ncéd .V‘ulU'::S co.i% in ' na Aw = Are+ - Aadv .
Thesa turase ¢ .o.s «re illustruted In Figure o¢.l.
Thus Ay i$ discontinuous .cross thne lignt-con:z but 1t still
s.tisfies tn: viwve 24U . Lo (S.¥) SVETyWaeTe.

For the cuse of sevor.l wlectrons, ws wentionsa in § &,
w- choose the proper tiwes such that thney .11 lie outside

euctl other's light-cone, th.t 1s

. c
{zz(s;)~zj(sj)} < O, CEj (6.4)

Then we h.ve the tares si.ple cuses: for x outside the light-

conesd of W11 ths el=ctrons

.AW=A;h +2A, :AM 3

T t ret
for x inside th- future light-con2 of il tn: =lectrons

«nd for x insiue th< post ligunt-cone of .11 the electrons

A=A+ 5 (A~ Arag) = A

A/ cret aut
Ther. «re, of course, otner cuses where the field polnt X

lies inside the light-cons of sow= ond outside those of other

clectrons.

Ons way of looking .t the Wentzol field is to consider
it .8 u field which is defined to be tae suxwell fiela outsiaz
tha light-cone «nd wupich is definea inside the light-cone by
thz condition th.t it s.tisfy the weve equuation (6.2).

We next consider the v.lue of the Wentzel field rignt
~t the position of un electron. Since the fieslu nus o singu-
lority there, we wust specify the puth .long wnicn we approwch

the point. For the value of th: fiela ut tue position of the



i~-th electron, we n.ve (i} for . ,.th outside the light-cone
of the 1-th elecctron

- iret

- < (with condition (6.4))
Aw Ain+.{ A
J

(1i) for . puth inside tne future light-cone

Aw = Ain 2{ ‘4 ret

(iii) for . p.th inside e 5.5t light-cone

Aw: Am + 2 A;re-f' + (A {ret+ A Odv) .
We see taut (i) contblns the usu.l Coulouib singularity
but (ii) wna (iii) do not involve .ny singul.rity, .nd nulf
the sum of (ii) and (iii) gives

' {
AW— Ain +2— AJ ret 2 (A"r¢°+ - A‘:adv)
JF L
which is just tune potenti.l needed Lo give the field entering
in the Lorentz equ.tion of xotion for tne i-th particle (5.3).
Hence if we use thz Wentzol ficld, the field ucling on

an electron cun be given o finite wund definite deuning.

Boguwtions of .iotion in Ho.dltoni.n Form.i We snoll now

express ihe eguation of motion in noxmiltoniun for.ua using the
generalized formulisa developed in §%. For suca perticic

we tuke tne H.omiltoni.n .unction ,// {

F, = ﬁé’lf‘n‘- [ { p; ~ ei/\(z’;,)} é’" ] (7.1)

«nNu we snull find frow the equations of wotion that F}cg 0.
The form of (7.1) is suggested by the simple vheory wnd it

%P w, birac, Quuntun Hiectroaynuaics. Coatd. Dublih Inste for

He
av. Stuulos A 1. (1940)
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1g of the same form as for*. one electron. The notential A(x)
is not defined as yet, and it 1s one of our tasks to find its
exact expressj.?n. |

The ayna'micrzl variables entering into our problem are

. (
/“ ) P for the particles, and A/“\x) for the fleld,
and we need the Polsson brackets between any two of them. ¥For

the narticle variables we shall make the usual assumptions
:'."7/'::."'1”,.«5:0- ‘3:' A):O

4 \-}¢ ¢

> . " - g
ol 7 ' fod A
i

7o ey v
ang in additio‘n we further assume that

[2:, 4,07 =0 [p,: A]) = 0.

2

There is nothing in the elementary theory to tell us what .{A,«.Au]
should be, and for the time belng we leave it undetermined.

AE
From thg g eneral equation of motion J?; = {g,r. }
which holds for any function Z of all the variables and the

above expreséi_ons for the brackets, we see immediately that
JZ, Ap.

ds =, ,(J' = 0 A ‘F

which tells that the variables of one particle do not depend

on the proper times of other particles. For (=j we have

da—-‘r i ,( oo
r—._ﬁ ._[_7;1_6‘:..;;.‘.1,&;“ (2 }[ s Pec
o JD —E—‘!\ )2‘,

f']'. lv' (
1

where 4, () 15 8 well-defined furc tional of the dynamical
variables A/“(x) and z, - We note that we get the
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usual connection between momentui und velocity for an electron,

pﬂz:m;%; -+ eEA/J(Zc)

The condition \/,“. VA, a2 @l lecwds to F«: >~ 0.

Furthermore @
d/-}“' . ey
JE:‘ [P/A«'_ 3 F¢] = ';"{:{pvé"" e, Av(zi)} [P’\;,,AV(ZL)]

= e, [ 2A7
and hence _
V "
mi’}/ui, = eV, (é—é - Q..'ﬂﬂ)
IxM  dx¥ ‘ (7.2)

.

We want this equation to coincide with Lorentz's equation,
and frem the result of §6 we sece that (7.2) will take the re-
quired form if we let

T A = 2 { A xen) + A, -0}

(7.3)
where A 1is a small tlume-like 4 vector which will ultimately
be nude tg tend to zero, thet is,

A >0 A—> O,

Also the condition (6.4) on the particle coordinetes has to

3

be sharpened to ( z; -Z; + >\)t"’ < 0.

This intreduction of A is mude for the purpose of insuring
tmt.the approwch to the position of the perticle in evaluating
the field is made along « periissible path, und it is importunt
that the limiting process A->Qis not wmade too early since
otherwise the potentiul becouwes weuningless. On the other

hand the theory is not relativistic with finite A since it
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gives u preferred direction for the time axis and only be-
comes relativistic in the end when A is made to vanish.

Now the Hamiltonian equations for the field gquantities
sre dAL(x)

s, T Ao, RT (7.4)
which cannot be evaluated since we do not know the Poisson
bracket expressions for the potentials. however we do Kno% what
the equations should be, and we caﬁ define the Poisson brackets

to give the correct equations.

We have from (7.3)
e dAetr g f Ay ) a/AM(x-,\)}

".dS‘: T2 dS; ds;
and using the definition (6.1) for the Wentzel field, we obtuin
dA, (x)

In order that (7.4) give rise to (7.5), we see that we wust have

[AFZX),/-\V(X')} = -E!;C]}W{A(x-x’-p,\) + L\(x—-x’-—,\)} ,
Phis cofupletes the schene of Poisson bruckets «nd the Hawil-
tonian forimlation.

Striﬁ%ly speuking, the roisson bruckets huave been aefined
so far only for functions of 2y Pis but it is peraissible to
define the Poisson brackets of the field quentities in this
way. For given any set of indepsndent dynawmicel variables
A, B, C,... we may postulate any Poisson bracket relations
between them, subject to the consistency conditions

[1A,8),¢c) + [[8,c1,A] + [{¢c,A1,B) = O

etc, 1t wust then be possible to introduce q's und p's so thet

K
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thas usual definition ol Poisson brucket holds, but as the
p's wnd q's .rc not needoed iu the theory there is no need to
introduce theon,

It 1. of sous interest to wention now we cuan pass frow

the wany-tiw: scheme to the one-tiue forw.lisia. <The gencral

equations

dE _

d-_.‘;‘; - [’%,f‘;_]
are equivalent to

g

- = H,

gz, = L& 3 (7.6)
where A7)

e ‘2:]3
H.= ~p, + e, A (2 + [mL"'Zr:{prL“eLAr(zé)g SRCK
This expression for H;i 1s obtuined fro. thct of Fy in (7.1)
from the conditions that Figgg sh.ll give HiX 0 und thut
Hj is lineur in p_, with coefficient -1. For then (7.6)
holds for g = z,. waich is sufficient to fix the inae-

pendent verisble .s Zz,; . Now putting «ll the tiues Z,;

equal to t, we have for g  indepenaent of the p, . end Zy:
dé

at [£>Zb "~] ' (7.8)

However; g uy involve ln. field quentities Aﬂ(xo, X915 Xy, XS)

at orbitrary points in spice-tiue, wna putting xg= t gives

an additional vuriction of Z’ with t. Ve then hove instecd

of (7.8) new cquation. of wotion

d§ _ 9, 3A,.(x)
o t - [E,?H;} + ZaA/)(x) at—"




—21)

which cun be written in th» form

dg
E{—‘E = [E) HT]
where —
Hy = % H. + H,
and HF is o« function of tne fiela vuriubles sucn that
- DA, (X
[A . (x) H:] = p ) for xo= t .
# ’ ot

Hp is the Huwmiltonian of the field in the usual one-tiws
. .. 1 s .o 3
formulcstion, und o e j ( £€+ HE) dV
[l ) B
in the linit X = O. Of course this onoe-tiwe for.ulction
is notv relativistic fora.

Gauge Gr.onsfor...tion. In the lust section we expressed the

equations of wotion for tue electron in Huxiltonicn for.., but

i

this procedure does not giv. us .11 the equutions which the
particle and field vuriibl.s s«ticfy. There ure, nuwuely, the

field equations

[:;AM -5 (8.1)
and

DA, (x) P

"a‘f;' = -7 Z e{AG-zen) + Alx=z,-2)} (8.9)

which cannot be derived fro.. the generl equuation of ..otion
since they do not depend on the proper tiuies si. 1hney wust
therefore be iwposed us exir. corditions .nd we must verify
thuat they are consistent witn tne equations of wotlorm.
First we cun readily ses taat [ A\ﬁ lhius zero Poisson

brucgLets with everything, since

[f’w/u(}()’ A (x)] = é.gﬂv{ﬁ(x-x’-p,\) +A(x—x’~/\)}

and therefore [DAM(X)) Av(x‘)] - 0 '
Ttas we caun put A (=0 without cuusing .ny difficulty
M



with the equations of .iotion.
The situution with (8.2) is sowewh.t different since its
Poisson bPhCKGtS with other voriubles do not wlways venish.

Writing (8 2) in tue foru R(x) =

aA (A) _
+ éL ‘\“ e;{;./.\()(wzi-i-)\) +A(X"Z£">\)}
. ¢
we can only have in the Huailltonien theory the weuker condition

with R(’)() -

R(x)y =~ O, (8.3)

To verify thuat, if (8.3) holds initiully it holds for all ti.ae,

we h.ve ;

[R(X))Pﬂ;‘e‘;A iz =" 35 & — {A(X—Z;-f‘)\)

+A(xya-x)}~-—e—~ﬂ{A(x ~Zan) + AX-z,-2) ]
[RIxXY,F.] = 0.

Thus R(x) is conbtgnt of the .otion und condition (8.3) is

and hence

consistent with the equations of zotion.
The fact thut R(x) is only A0 weuns th.t soue of slaxwell's
equations also hold only in the curly sense in the Hewiltoniun

theory. The equations
?..F..;"V + _2_;_'._5—’\/“ a...f")‘ = O
3xA oxY XM
still hold in the full sens¢, since they .re deducible directly

froi tne definition of the field

- 9A, 24,
MV T T T -

IxH  Ix¥ oo

but the equations ﬁ%%
“\
DF €4 334 .
5~bv = - . —4, =~y . function of the electron 0
fX/A r)X ox* O, OX vuriubles e

» <
hold only in the curly sense, since R
2°A Lo
a-——~r = CJ/AI,'= O N
X/Aax/‘ g {»“."‘u
but N

e e e

i o ek A= mmma
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but A curly equals a function involving z,

ox”a%#

Froa the general dyneauical point of view, the condition
/
Ra0 is on the suie footing us Fj = O. Now the F's give rise
to the equations of wotion :‘lf’ [g’;:]

4

ana hence we can have a siziler equation with R(x-f)
d‘é r - i
— = [&, R{x’)
d Tx) e .
where T is the variable cunonicelly conjugate to R. We shall
see thut this esguution generatss w gauge trunsfor.uation.
Considering infinites.ul tr.nsfor.ations, we have the

-~

difference bitween the new function & wnd tne old Z

E-— F’ = € [E,R(X')] .
p ' . (8.3)

For £ :tA/M (x) we huve
~ — e TA ¢ Nl = €2
A_/-‘(X) *A/ACX) = € [ Au) Rx e éa—;‘: [A/A\(X),Ayfx‘)]

¢ 2 LAG-x'er) + Alx-x-2)]

1
. € AX
o * s-g 03
_ oxM
where S(x)= -—C—EL{A(X—x'-a-)«)+A(x~x'—x)} = —.'.—{A(X Lxea)+4 (X-I-X—v\)}
Further 7 = z. =

-

gince R{x) does not depend on pi, .nd

~ Lo _ )

Feoo = /” = €[PM;>R(K)J"' *“GE’ CS_Z:'U (A(XLZ‘:-}’A)’FA(XI-Z;-}\)}
L 35(2;)

. 52/‘
Thus (8.3) generates the wost generul gauge trunsforaation

-
-

which preserves the condition U A}A(x) = 0. 4ll quantities

of physicul significeance have zero Polsson brickets with
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R(X{) for all x% or in other words are gauge invarisaiat, wnd
these conditions correspond to th: quuntities huving zero
Poisson.brackets with the FQSbeing constunts of the totion.
In perticular it follows froa [F; R)=0Othut the new Hauil-
toniun after o guuge trunsfor.ation is tne saue function of
the new variubles a5 tune 0ld Huiiltonian is of the old vari-

ables.

9. Eliwination of the Longitudinul Waves, There exists another

kind of & transformation wulch can be usea in eleéectrodynamics
to eliaincete the longitudinal weves. 1his trunsforaution is
sometii. ¢ also called = puuge trunsformation in the literature
but this is not ultogether correct. QWith the above definition
of/gauge'transforaation, the longitudinal waves cannot be
elininated since [A (x), A x)] # O |
und this inequulity iwust be preserved in the transforuaation
S0 thgt Ag cannot be brought to zero. <The eliwination of the
longitudinul waves is not relativistic, but it is of interest
in spite of this, since it effects u greut siuplification of
the equutions.

To cerry out this transfor.ution, it is convenient to
use the Fourier couponents ‘of Aﬂ(x) instead of Af(x) itself.
Thus we write

L chxy o —; (k,x) } d?k
Aulx) = [{Yt/uke + Ny € A (9.1)

1

where k 1is & vector such that

k€ = 0 ko > O.

}
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dgk is written for d%_ di.,, ak nd tue Ko 1o written in
: : % 7 - = 4o

the acnopipater since d®k/k, ls Lorentz inv.riant.

-

The reuson for the convenience of using the Fourier resolu-
tion is tgmt trne fi-ld v riwble:'ﬁﬂk .r: functions of tne
&-fold infinity of n whil-= AM(X) v functions of tne 4-fold
infinity of x wnd satisfy the condition E]/%M(X) = 0,
Froi the Poisson bracket relutions for tne AN(L) we
con reidily obtain corresjonding relutions for the 'nﬁk
[ﬂﬂk,ﬂvw]=70 .

- g y
inpéa)lyw] = - gai?kacos(k,A) 83 (k~k') i
and frouw H(X) 2 0 we have

) - i (k,z;)

— M — - { )
R, = k Mk = 572 cOs(k,A)%f e. e

-nd its ¢onjugute couplon

R
S

R, %~ 0.

We muge the following deiinition: For o particular k
veetor tuken lon, the X, direction, tn.t is for kuz (RO)U.O,&)
¥, -nd HS are defined .s giving rise to longitudinul w.ves
and N1 «nd Nz as uransvwrs@ w.ves., Lhus the 2ligination of tne
longitudinul waves wewns the <ii.in.tion of nound‘ng ana thus
the reduction of the nuuber of fiela vuariubles to w.lf of the
originusl nu.aber..

It is convenient to buila up the contuact trunsfor..tion
frow infinitesmul contuct transfor.aution since in this rora
the truansition to quentu. theory can be made directly. We
cnuructerize tne cont.ct transfor.ution by the variuble T

2,

*See appendix 1 for the derivation of this expression.

o,
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~

so that EdCh dynacical verlabls depends on it and trensorag -
d{7

according to — . 157‘ G J oL < v
- T K b
froa its initiul value °=g  to its finul value Z',

We choose GY to have the fora
. . 3
T .o [ r (k2 = -i(k,z; d k

G-‘: LJZ GJ-J)\nOKG - N eL

ok /(
ghen .
27 z, N =Ny |, r=12 3,
0/"2 / il Kk, z.)
= - = Sk AV e e T
J"C 47 ku %—- "

Sirme the left side 1s independent of T, we cun integrute this

equation  imacdiately «nd obt.in

. K
Tow = MNop — 7-2~%?! cos (k. A)Z ‘( ~i) (9.2)

. _\?' 3
d""od:’ - )4 L (/( Z; ) L(klz(_) d l{
-_— é l -+ Yl j
< d7T OK /\’
and substituting 1n the v*lue for n of (9.2) we have

-

.Cfffl' = - 2. {f 3’2:} o""k’z") 'h_ e—i(k’ } (iil.{
dT | R BEY ke
! < d3
+T§'2€£4 EJ'[COS(k X) cos(k,z -z _--/( ‘
o s (9.3

fne integral which occures in the second ter.a of (8.3) is a

su.a of integrals-of thne type 2 .

135 % for a2< O
fcos (a, k)( = o p ,
and using this result wn find or g~ > 0
~ (9.4)

dpo( | — /

(;"% = - C"‘; /AO(Zl} ~+ —;Té’ ) e.{...— g ___' = }
= e 12, -z; +>\l Iz, —z -

In the suwasation over j, tne t=2ra for j=zi has Vanlshed
since.A >0 and &1l teras for j # 1 reuain since z's have

been che.n so thut they wre il outside each other's light-
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cones. This vanishing oo 0t 2 - J  cerw is o very igportunt
feature drdising frow th. rotroag wion of the A -1liuiting

process.. Ferni tried to ...e &« siwilar theory without it

¢«

ana got an infinite ter.a which he hed to subtract out
arbitrarjly. Integrating (9.4) we huve
o ! [
e mee Ay v L e S e d o \
“ ‘(o{ v o s) 2 f-j‘-»—i eJ !zc_zj,.f)\g )z;_—Z;~>\i ’
Corresponding culculations for the other co.ponents of

p; lead' to expreszions wanich are slightly wore couplicateda,

and the whole result can be expressed in the form

. s
poé - écAﬁ(zi) = ;‘13‘ - __/_‘, £ E ., { '.....,w,-.'..... ...—-.....! -+ _.__._..,!._-——-_‘
LA ER - - — -
“ ik L, -J“""\l |r—"_ z, N (Q.b)
frans - {

e A(z)y=pt (= 1o, .
prc P < ‘) pr:l e»Ar { ) + p e‘j_,; EJ i

(Zi=2 090,02, -

?DJ..tn)lf.’} + gn‘"‘er‘/\r)(zo‘_'—z,,j—)\o)l(g.‘d)

PN jz; -2, - 23

«“

Thus when the Lauiltonian is expressed in teras of the new
vuriubles, the longitudiuul waves do not appeur at «ll. The
new terms involving the z's wilca can b: considerea as re-
plucing the longitudinal waves, do not seea to have any siwmple
physical significance in this for., but i1 we pass to the one-
tine foruelisa, we see thot they give just the Coulo.wb inter-
action encrgy in the totual haailtoniun. UMaking the transfor.-
ations (9.5) and (9.6) in the expression for Hy given by (7.7),
we obtain in the 1liuit D= @

H. = - pl -4 ";— GL 5 ._..éj_’:,-.“m

-

i 2 - _’1 transg . e
[mf e 5 (e e )]

-t .
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In this formulation we can just as w=ll leave out the teru

péL .nd toen the total Hesiltoniun is  Ho = 2 Hot H.
. &
i
- e, e roe 2 + 277
or = B NS T - rans ,5
H.= 2 —y + 2 im; +3_{pn e. A, (z.) +HF_
jei 12Z0-2; Pk : :

-d
It is somewhat surprising thet tnls theory, which is still
relativistic even tﬁdugh it no longer appears so, gives rise
to Couiomb interdciion wnich is a purely non-relativistic
concept.

Passage to the Guantwa Theory. 1In foruulating o gquantua

theory frow the classical theory which we have developed
above, the dyncmicai veriables Zui, Pui )IAA‘(X)
are uaade into operﬁtors satisfying couawutation relations
corresponding to the classicul Poisson bracket relations.
Also thé supplementary conditions which we have found neces-
sary to inpose for consistency of the equutions of ..otion aust
be reinterpreted.

In classical tﬁeory we n..ve thne conditions

2 .«
(Zi“zji‘A) < O L, ] = /,EJ... (’O'I)

which .ust be swtisfied by the z's, und this inequality is

u21so needed in quantuiz theory. Since the z!'s are now opera-
tors, {oe condition is to be interpreted in the representation
in which the wave function ¥(z,...) is diagonal in the 2's.

We consider the wave function to b2 defined only in the doualn
of the z's which satisfies th: conditions (10.1), If we go

to the one-time systea where uwll the Zoy 'S GTE equal, we can
puss over to any other representution, say where the aouenta

p's are diugonul, but in general we cannot do this with the



e
auny-tive froclisa.  ine pnyoicul interpretation of W {z,..)|
4s trie probubili'y density for the electrons to be ot a
Joint é ihkSpace-tige then holds with condition (10.1), und
this is r%éson;ble since .o olsturk.nce on the .casureuent of
one eléctron can influenzoe the .wousuieaent of another. It
conforus to our idea that disturbunces truvel witin tne velo-
city of light.
)
Ore wave equuation is provided by e.ch hwiiltonian Fj
«nd we hdve F;W =0 | (10.%)
the nuaber of wave eguations being squul Lo the nuaber of
ti.e varigbles; or wnot is the sw.e thing, to the nuuber of
electrons’prasont. If we wish to treut electrons with spin,
we .ust tuke for Fy the 2xporession
- . { P - ¢
/—: = °(6LLPOL“ 2 F—\.L(Z".“z% '{w(:_: N P, - e(,_A,,(z‘.)} + m; (10.3
instead of the classicul expression (7.1). The o's wre new
variables which describe tne new spin degree of freeaow, onu

the ti.e and spuce parts ars written sepurately in (10.2)

since it would not be correct to write it in tne fora of a

. 4-Gi sensional scelur proudct beceuse tihe of'sao not forw a

4-vector. For consistency of equations (10.%), we aust nave

22y R

— .y

9Z,;02,; Bzoj. 02, (10.4)

and this leuds to the condition
F, F; 1{1 = FF, 1// ’ (10.5)
70 derive tnese conditions und to see that they nold, we write

(10.3) in the fora

oL

FL = { Boi e.‘,Ao(z'-)} + 4’?()(?;{‘0}2_ - G’LA,,(Z,_)} + A M



F= b2+ H,

. 7y *
Then (10.4) leads to H. h. 2 = H, H X
und thié is ejuivalent to (10.5). 41he fact that (10.5) nholds
. is quite obvious since for i#j, «ll the operators in Fj ¥elel
'Fj coamute except the f£I2ld vugiubles and they coauute every-—
where except in the region. w distencs Afro. tne Jlight-cone.

- The extrz conditions A =0can be taken over unchunged
into the quantu theory, since they are consistent with the
comutution relutions. whe condition R(x) %0 'wi£h

R(x) = %%‘i"’ + é—}?ec{d(x—ziw\_) +A(X~Z;~>\)}
has to be intef}reted in éhe sense tnut we only consider wuve
functions which satisfy the condition R(x)M& = O (10.6)
P In generzl the rule for interpreting suppleuentary condi-
tions in going fro.. classicel to quuntuad theory is thuat A=0
in ciassical theory becoues s¥ = O in quantua theory. In
the for.uer the curly equsl sign .1z«ns We cannot fora the
Poisson brucket of & with arbitr.ry vuriables, wnd in the
latter we can only .aultiply the condition on the left by
arbitury op=ruators wnd still huve the equétion hold. <Thus
if X is any operator Xa¥ = O
put  AXY¥ is not necessurily = O
so thut [a,X]W.. is not necessarily = O

Further..ors, in quantua theory if there ure .ore than one

condition, say AW = O
BY =0

then we can deduce u third (4, B]JWi = O
\
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fro.1 aBW = 0 und BaW = O, and tnis .must not leud to «ny in-
consistency. Thers is no corresponacnce of this in classical
theory since a0 and Bz O does not necessarily iuply
wBlx 0

Now the wuve equations (10.2) are counted on the sa.e=
footing as suppleuentery conditions end we .ust verify thut
they «nd (10.6) do not leud to w«ny inconsistency. We have
already seen that the Fl's are consistent ;QOng theuselves,
and tne relation [R(x), Fi] =0

holds in quentu.: theory &s well s in classicul theory.

Finslly  [Reo, RG] = | 20w 942007 2 (A (0 AK])
. e Xm P oX] ax,,

oX.
~£(x-w+x)+uﬁ(x~f~k)g='0)

if
§

3
-~
iLJ

PN

“wonich coupletes the proof of the consistency of the equations
in quantui tneory.

We. wuke the definition thuat ¢ liwur operator which re-
presents a physically observuble quantity .ust be such thut
when it is upplied to an «llowed wave function it gives rise
to another allowed wave function. In other woras, if & is
an observuble, we nced to 1l.ipose tiae conditions fh@t for ¥

satisfying the supplesentury conditions AW = 0, BY = 0, etc.

AEVE = o BEW = O
and thus [A,Z1¥ =0, [B,E]¥=0 ,
or ‘):A':E] ~x O ] {B)Ejj‘ ~J O'

Thus when there exist supple ,entury conditions, the observable

LAust satisfy certuin conuitions.
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Applying this general result to our clectrodynuaic
theory with the condition R(x) 20, we sce that any observuable §
must satisfy the condition [H(x), glxo0
Since R(x) generutes s gauge trunsformgtion, the physical in-
terpreta:‘t'ion of this relation is tnut the observables uust be in-
variant ;to gauge trunsbrmpuions. '

e

Bracket Notation. We have now developed g consistent set

of eguations for the operators in quuntuu theory, .nd out
next step is to set up a representation for these operators.
We have ‘ulready done this for: the particle veriables wnd it
re ,ulns to do it for the field variables. We snull first of
Lall descrlb@ a2 systea of notution which is ..xost convenient
for descrlb:mg linear operators .nd vectors whose directions
define- the quuntul stutes.

."'The vectors corresponding to the quantus states ure de-
noted by the sy:abol 1x> which we shull call & ket-
vector. When it is operated on by o dynacdical verisble o
we write o 1x> . BEach vector has a conjusate il.uginary vector
und we write these in the for. <yl wnd call thew brea-
vectors. ‘hese can bz operated on by linear operators on
the right .nd we write the result <ylp .

A bra-vector <yl and « ket-vector x> have a scalar
product which is a nusber «nd we denots this by <ylx)> .
Siailarly the scalar product of <Lyl «nd oA kx> is written

<ylldx> . The ussociative end distributive laws of

algebr: hold for these guantities, und we huve the two axio.s
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AR in> = W Rln >
and using the commutation relation (12.2), we obtain
(H+R)YPRIRD> = il >

or MATHD> = (H=n) IR >
Thus if niwW'> #0 , then ﬁlH’)is 2 new eigenket of H

with eigenvalue H'-%.
Similar catulation withfyreplacea Dby ?l yields the
result that if WNIH'> % 0, then NIH'> is an eigenket with

. ot . co nd s . .
eigenvalue (H'+% ). <rus if B is one elgenvalue, tnen

H'-fh ,H-2% , .., end H'+H  , H'+v2H , ..

are all eigénvalues except wnen one of the conditions are not
satisfied. ' When AIH > =0 then NNIR'> =0,
or HiR'> = 0, HIH> = 0, |

and/thu‘s H = 0. Wnen AlIH'> =0 | ﬁ niH'> =0
and L' = ~ &’\ . However tnis Jatter equality can never

hold since we cun show that the elgenvalues of H can never be
’ f
negative. We have H'H I HY> = SHITHRIHDS
. ‘ o 7
- >
. =, h<Hinnlv' > = C,

gince . he right side is « prowdec of LHIn by 1its
complex conjugate. Thus tne eigenvalues of H are 0, 4 N 2h,
)'-o,h%ﬁ e ey OO,

Furthermore, if we have one eigenket, we can get another

2

-

by multiplying by n or 0 and in this way build up all

the eigenkets by a simple process. For instance, diet 10> ©be

the lowest eigenket: then nlo> = 0 und
"UO>,\Q‘2’|O>) ,.‘3},o>J . ,,Y\nio>, (12.3)

are all eigenkets. Aany general ket 1x> cun be written as

a sum x> = Z x " 1o>

so thut any stute of the oscillutogs can be expressed as a

oot T — T e SR W ek AR e g i e e g e we



power series in N . 1aus we cen sy tu.tl IxD is
represented by 5;: X qn = \Y(n) .
The wdvantage of using Foculs representation is that the
eigenfunctions ure power serles in N while in the orainary
tre¢tmen;c they «re Hernit: polynomials multiplied by an
exponentiat function.

The eigcnvectors given .. {1x.3) are not normalized,

.

but the ednst.nt cun ewsily be cclculatea. We take
Celo> = i
then
<ol A" " 1o> I><ﬁﬂan”{ﬂﬂik*”nnﬂ)‘0> = m<iolﬁﬂdnf”\0>)
so thut by continuilng the process
- £oin"M"1 o> = ! (lz.4)
and the ﬁ;rmulized clgenkeis are J::Tg QH\O> ,

Let us now find the reprecentatives of the brau-vectors.
They c;'umflot be obtuined by simply tuxing the cowplex conjugate
of the Ket-vectors since the aynemicual voriuble ¥ that fixes
tne regresentution is cowplex. We introduce Yf' gefined as
follows: ' V\“\C) = v o> for n 21 n'oy=0.
Tnis is sufficient to define ﬂ—' completly since wny Ket-
vector cun be expressed iinewvly in terms of the kKets
’1" o> (n= o, 1 , 2,3, ...0mus we have "\ﬂn. =1
put N ' o#d peciuse NN 10> = O .

V["' ig not a true reciprocul of Y bhut it is the nearest

toing to it since 1 wnilch h.s an eigenvdalue O has no true

reciprocal. With this dctinition we have
Lol " o> = oMoy = O for n<wm
glnce <o\ cnd nTTT1O> belong to different eigenvalues,
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<oln™"nMio> = <o) TTIo> = 0 dor n>m
from the definition of 1~ , und

Lol " aMloS =1 for nEm.
Therefore <oln™ 1s orthosonal to =1l the eigenkets except

n"lc> |, so it is the conjugute imeginary of "o
(except for a numerical factor), and the Loln"'s for il n
form & complete system of eigenbrus. T1hus we nuve for a
general bra-vector Lyl = <o) 2; Yo Yl“n and
<yl is represented by ;; ynrf" = Q).

Hence we see that every xet-vector is represented by an
ascending power series in N wna every brua-vector is rée-
presented by a descending power series in N . Finually the

scalar product of two genersal bra- and Kat-vectors can be

LY

Lylxy = <OLE x,¥nl0> = 2 Xuyn

/ .
written

=2~37-;£ 35 ©(n) V(n ?'-V—? (1£.5)
where the contour is tuken around the origin. 1lhus the
domain of N can be taken as Fock did as a unit circle around
the origin.

From the normalization factor (12.4) the length of a
ket-vector 1x>  has the velue <xix> = Z nl ixnta .
Comparing this with the scalar product (lz.5;\for<fy} = x|
we obt;in @ relution between the @eefficilents of the power
series Yo = nl X,

We sec again that the representation of a bra-vector is not
the complex conjugute of the representation of « ket-vector,

since our representation is not bused on real variables.
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It may be pointed out here thut there is some .ggymmetiy
in the representations of the bra- .nd Ket-vectors. The
relation ﬁ(Cﬁ> = O leuds to <oln = 0, and this means
that we cun add any ascending power series to ®(n) and writc

Kyl = <ol{ue v Y, M + YN " Yot Y v, e ]
without changing the value of <yl. This wrbitrariness,
however; aoes not exist in the iket-vector, and the reuson lies
in the fuet that N A =1 but nNAn %+ 1 . It is cleur
that inclusion of «rbitrary negutive powers series in \Y(n)
would wlter the value of the scalar product integral (12.5).
To express it in wunother way, uny state of the oscillutor
can be Qrittem x> &nd the ket-vector cun be normulized
to <(x[}<> =1 . It can be expanded in . power series in Y
and the probability that the oscillutor is in the nth stute
is given by P.o= nl 1x, 12 . (1%.6)

Doing the same thing with the bra-vector <yl, we huve
Pos = iypl©

. n ni
In the latter formulwa it is possible to let n take on nega-

*

tive va.ies since the result is still reasonable. Due to the

f
fact thut = = O for negative integers, we obtain R, =0

‘for these vclues of n. ihe saie procedure cannot- be done
with (12.6) since the n! occurs in the numerator.

also from the normalization condition for x> we huve
- -]

Z n‘.\xn\‘?: I

n:s e

which shows thut W(n) converges for all values of "1 but frou



the corresponding condltlon for <yl, we huve
< 4

& ‘Yn\ =1

‘Mo

which shows thi.t (P(q) nzed not converge for zny value of 1.
For this ressonW(n) is usually the more convsnient function
to work with. |

To find the representuation of the unit opsrator, we
write it in the foru <n'11In’pund we note thut it must satisfy

the condition 1 SN " Cs}n” } " !
= 6> =oviy = v

If we consider W(f) ws aeveloped in u power series, We See
immediately thut the equution will be satisfied witn
. ¥
> = 5 (X )

n:O
]

= ;{?':7\ , (1£.7)
Thus this reciprocal function repluces the 6-function in the
usual representation, and it is one of the good features of
the theory in uvoiding improper functions.

Furthermore, tns comautation relutions «nd all the

slgebraic relutions between N .nd Y arc satisfied 1f we

- a -
take N = J? and hence for the representution of N ,
we have tuas condition '

' . c§<qm1q"\ W(Y{') = d W(r\)
wnich has the solution .
‘ T e 1} (0_0 L8] q. oo
Vinin'> = 2
nz'd ﬂ_
r\H
("= n') (12.8)

lhls functlon replaces the Sl—functlon in tne usual theory.
Je note thut both (1£.7) und 1lz.8) cun have arbitrary

. " . . . "
terms of tne form =« q(ascendlng pJower saries in @y )
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added on the right-hund side so that the zbove expressions
are not unigue.
So fur in the developuent of the representations for
harmonic oscillator we have not mude use of the equation of
d

wotion. It is = = fn, Wl = (n

so tuet n q:€ft ’

The above represent .tions can still be used for other
Hamiltoniuns. The equation of .otion will be different énd
the above eigenvectors will not describe stutiqnury states,
but the'representution will still be & convenient one to use
if the hamiltonien and the observables of intersst are express-
able ws power series in p's and q's.

The generalization of the «bove treatument of one oscilla-
-
tor to the case of a4 systew of oscillators is quite straight-
forward. We introauce 1N and ﬁ‘ for euch oscdllutor wna
distingﬁish thea by wdeing .. subscript a. Thus the varigbles

are R, Mg » @=1.2,... «nd they sutisfy the commtation

relations
» Taly ~ Npla = O,
Ty = MeMa = 8., . (1z.9)
Tue ket vector for a generul stute is
x> = {power series in all the variables N, N, ,,}Kb
H
P BTN

where 10> denotes the ket-vector for the normal state with

- {5 ,
- &n‘.-:n, X“'nh’"' n\ d

R

all the oscillutors in the lowest energy level. If <{xix>=1

then the probability thet the first oscillator is in the
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state ny, tne segond in thoe stute nz,igtq,,”ls;given by

e
P = n“‘ Flz\‘-.. "(n.nz...\

i YO 4 IR

sssenbly of Bosons. W2 shall next consider a dynamicel sys-

tem composed of & number o1 particles of thne suuwe xind and in
which only symaetrical states occur. &uch particles we call
Losons. First we tuke one boson and introduce the buslc Kel-

(13.1)

vectors fai'> | ‘Q43>-> i'X3>', Do

which are normalized und orthogonal to each otner so that
<xMok® > = 5,y

Now if we .iave a set of u? bosons, the states of this systen

can be obtained by taking « direct product of ul of the basic

vectors in (13.1). Tius

2 1ASS TSy L T =l . (3 H(15.2)

However this xet-vector is not symaetric since any permutation

{

P of the numbers 1, 2, ... ,u  gpplicd to (13.x) gives a

new véctor. For instunce texing P =(1,%) gives
a E o~ ' K q
>t > o 1ah > = (e s K>

Now © is a lineur operator «na it cen be used as such. Le-
fining & symmetrizing operator

all perm,
we have (’3 3)

[}
p 2 ~ a PN
I O T S I R L
Lrm.,
and we see that S maxkes any ket-vector of the type (13.%&)
symaetrical. If the state a, b, ... , s are ull different,

the length of the vector (13.3) is unity, but if n; uewbers
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. a b
of the s&t o, X, ... ;Xq are =qual to o
. 2
and if n2 meabers are equal to etc., then
c_’ ¢ by 9 1
LaA%a® L ad ST o w2 oL,

So fur tnes nuaber of bosons in the systea wuas taken to
be a fixed number ul. We now want Lo generellze to the cuase
where this nuabuer can vary and then we snall be wble to treat
problems ol emission end absorptivn of particles. 1ue¢ basic

kets for this general casa are

1>, 1e®> 0 Stao! >, SlatePut> L, L,
Where the first ket describes the stute with no particles,

the secon” with cne purticlie, the third with two, ana so on.
L

Thus we can consider the number of bosons present as & dyna-
iuical variauble u, wnich n.s tne LigenVulues_u7: O, 1, 2, ...,
Therz is « coaplats corrcspondeiice botween the asseably
of bosons considered .bove und u set of oscillators of §1lx.
We suw that the lutter was described by dynamicul variubles

ﬂd, oo, una o generul stube wus representea by « ketu-

n,

vector of the forw I, n: ..., 1o

4

while .1 .sseuably of bosons was described by & series or

couponent wave functions
a b no,,h
> 1a®y 0 ST > Sttt > L
Ine two sets of kets are watlheuiusticully equivulent., Lhere are

s

tie sae nurber of each, ther: is o one-to-one corresponasnce,

and corresponding kets huve the sume length
2
) .

(‘ength = n n,i
if we a2 the identification

i 3 t‘
AT NGE L L oy = Sl xS LD

AR
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where th. n's are such taut n, is tne nuaber of ™'s on the
rignt equul to & » 2 is the nuwber of d's on the right

equal to X~ ete. Tnus w set of oscillutors is egui-
! P

valent to an wosewbly of besoas in the wutlhewaticul sonsae.

Rel.tivistic Representution of the Wave Funiction. We luve

seen in . § 10 thut tne pissws? fro. clessical theory to

quantun theory cun be muaw in & stroight-forwurd wunner, .nd we

introduced the wave function.¥ which is « function of the

coordinuates of tne electrons in o doauwin satisfying the condi-
. =

tion (z,~2;2X)Y < 0O,

IThe eliuination of tue longltudinul waves wWus carriec out in

classiculi-theory, but it was done in such o Jdunhner that it

could bz takon over to ths guantua theory without uny change;

only the interprotation wus wltered. Lhis procedure resurted

in the fuct tiwt only tne trausvsrse part of the ficld

‘e

,é\k (r=1,2 2) rsudnse, .ad its Fourier analysis
ff'r f/ }( ‘."l’ L(k‘!) d3k
A = (37 ¢ + c.e f T
. y, 1 R Ko
showed th%t qt’ has only two independent cowponents ﬂak
NG M Lucse I's satisfied tne cou.utution ralutions
— -— k ,
= -0 - k!
nok QOK - qak'qak gl COS(R'A) éé(k k')

By & trivial chunge in deJinition, this resul.t which holds for
corntinuovs variability of « cun ou. repluced by the expression

for k t.uking on discrexﬁiset of vdlues

kc . \ =t
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i3
(¥

where s, denotes ths uensity ol aiscrete points in K-spuce.
Since tne right nend side of (14.1) ic positive for ordinary
values of K, we can .uke un identification of tne m's occur-
ring in (14.1) wnd tnose of (1£.9) by .uluviplying the foriaer
n's by « nuucricel fuctor. 1n.t is, tne trunsvorse wuves in
quuantus electrodyna.aics ares cgulv.alent to wn «ssewbly of
bosons or to . set of oscillutors. With this representation
the wuve function is

\@(z,, 2., ... ,ascending power series in qf”él
This 1s tne most conveniznt representution to use in practical
applications, but its for. is not r2l.tivistic. For the aic-
cussion of Loreutsz tr.usfor.ctions wz wust introduce the re-
present..tion before eliwinating the longitudinul WaVessSy

In gelier.l the Fourlzr onulysis of tanz field gives

) L Lkox) d3k
‘/J"/u(x) = ({ Y]/uke + c.c. } 1—;

wher: we huve four N's for euch v.iue of £, which satisfy tne

coadautation relutions g ,

- . _ -' — My < b y 5
Q}xk ']*Jk’ nqu/uk - 4‘;{,‘3 ‘ko cos U"' A) ékk' E’k
For the 1, £, 3 co.ponents thne right siae is s=till positive

und we can & belore icentify taese g's witu Lhose of the
oscillator, w«nd obtain i the wave functiow wn uscencing power
series in Nys Rz ﬂg- For qo’ however, the right siae is
negative and tne identification cunnot be ..uce with R, but .ust

be .uade with Q. Thus the weve function will contaln an

ascending power seriec in aﬂk% qu i Qak; Qaa% but ug.in such

wave functions wre not coavenient for the discussion of Lorentz

trunsfor.antion.
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In order to o¥tain a sultable wave function expressed

in terms of F{k&, &ﬂ" ’?m’ 1}};&, we note the following:

2
1x> 1s a ket-vectorrepresented by ¥(n) T xgE XN XN+

or 1f we take the complex conj‘ugate represen‘tation, it is
X(AY= %o + x, 0™ e 2l A7
§imilarly, the bra-vector <yl s represented by

M) = v, + N =y, n .. :

or- by thé ocomplex oonjugaﬁ‘e representation |

-2

yo*y,:i + /21 aa 4 e e e
‘The déscending power séries 1n the complex conjugate representa-

tion for the ket-vector 41sg not qulte convenient and we make a

3

simple change. _
With 1x>  represented by ¥(n), -V.UX> is represented
by 2 but with 1x>  represented by X(N) , Nix>

21 )
s not represented by - g-% +» But we can obtain the desired

e P ! I{>) “4..1-
YL XY = o £ (1) Wwih) —
(\. ‘ 7 f.jﬁ'b ‘f ' z ' 9

result by noting that an
[}

yorin) 4 o P th)
\y}yl ‘X> q)’ '_.’.‘ '-',:' - {2‘7}_{' ' 13’1\ ﬂ ) \ij( )dn
‘The ladgt relation ghowg that it-ls fiore natural %o take the
‘D
répreséntation of <yl as q?(n,: Lf.%l.) rather than @(n)
Then the representation of <9H‘{ s - g.:.qf » Now taking

the complex conjugate of these results, we take 1x> to be

N - i
represented by X (1) = /f_’“.i and then Mix> 1s represented
~
by ~§)~)-(- .
In

Using the above result, we can set up a representation for

the wave function ds an astending power series in ¥ ., Ro, ka

£y

-and descending power series in !‘1% beginning with ﬂ;; o This

procedure gives for the wave fynction a new kind of tensor

e Ea

n=‘==u§~

wms mex  womm 3 msoms:
& - s

N o oEr e nw e s wt e s
D ISR TR TR x
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quantity which has heretofore not appez;red in mathematical
physics. For the sake of simplicity we redtrict ourselves to
one value of k and ignore the dependence of thé wave funotion

on the z's. [Then the wave function can be written

(«x('lo 1 ) ‘ n*stq l ‘ma]

"Af

where. n, r, s, % take in all i_itegral values from O to o0

-

The square of the length of Q is given by

. 5 ) % -
_ 2‘ v v S A
i~ gt et et et 82

arst nt
Now suppoSe we make a Lorentz transformation of the type
n, = a,v
H‘/“ M n
then ' T ¢ ( agce power series in VLJ n-x, 71; "l )
n:_:_'st nrs{' \aov ,zv)v\+u -
The factor 1n the denominator 1is
e * . , - ) o , , ‘-—n-t
a,’n’,) = (a1, + a,” 1, )

and may be expanded by means .of the binomial thcorem

G- P ) “"”‘ N f&SC- power serles 1n i’{ l‘}'} }
(0, N +-a, r}' I ’ .
(a,°Y. ) (and desc.’ power sgcries in R

’

4 7/ ’
{ asc. vower serles. in § = H, . ﬂs‘
Q= zz Cnrst HL

and asg. and dcsc. power series J

in 1‘10

Putting thig in Q, we have

The terms with non-negative powers of -?f:{f’ can ginmply be discarded
since N; is to be identifled with r.). of p67 and non-négative
powers of 71 can be ncglactedin X(‘Y—l) because positive powers

of ;:{ can De neglccted in X(fl) + The squarcd length for { given




above can easily be found to be invariant under a Lorgntz. - :
tranaformation. This was shown by Diraq* by considering an
infinitesmal Lorentz transformation? ' A

The cogificients*chrst of thc power series.inm R cam ha
laooked upan as a .new kind 5f tensdor quantity with an 4nfinite
number of compoaghtsy and 4t ls different from ordinary tensors

in that 1ts length squared is positive definlte, The name-

expansor has beecn suggested for these quarkitles.

Returning to the congideration of the wave funetion, we
ace that with the ipolusdon of the longhtudinal wavess; the func=
tion is an expanspor -for- cach k—~values Howevar, 'the eXpansors
which appgér here arc not-gengrai,ones, due té the occurrerice

of the supblementary‘conditions. In quantum electrodynamics

the fiéld variablcs satisfy the .condltipns .
oA
" oy f(z)
ax,

which, when, resolved in Fourler fomporients, are éxpressed by
the rélat%ons k“?Y“k fo bB(Zz)
and its cémpchwCOnjugato
;p« x nilz),
They provide the folloWing conditions dn ‘the wave funétlon:

,«7 - )Y =
(k" u )W ; . (1451)

Moy b =
(K* 9, - b)Y = 0, S, (142)
We have these. conditions for cach value of k, hut for the sake

of simplicity lct us consider Jjust one k-value. 4 solution of

%p,A.il. Dirac, Pro. Roy. Soc. Al83, 284 (1925).

e S o S TR M TR v bl NS0 iy i

E, Wl

- T A E

= o=

o et | gmgmoa Smeton Sgessm S saged

ax
Srsscmesetr = = S 7

=
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(14.1) can be-written : ‘ .

{ .

b‘m
“hers G.1s an aséending power: serics in Yy , Vs g, and

3 N : e Aay ¢
and /gty 21 ) is to be oxpanded as an, agconding power
" % ,_ub‘ - . ke ® i? -l Xy

géries in R 19 .Q? s G& and a dcscendlng power serles in ﬂo.

P o e o i

The condition of (14.2) can be written

é * | S Eand { % % it — y L . ¢
(k7 = b ) it G SO <
/\A 3 M- — ) * (14 4’)
(k1 b))
Now sincc ' ) Ty " £, .
M N PR -
. [k*i, - b, k V\V—b] CkERYgL =0, L
the ordgr of thu iactorspin (14.4) pan be interchangcd and ye

: {1 - k| ~ )
h!a' ve! * # - k.k r{ M h,b ) G ,.i‘.j.”:‘% Q 3 b3 P
or usinm the fact that *'l ¢ 0 o

&u aq'}w N Pes s . "
\w@e&¢~c dg-a &crtainhconstant factor determined by ‘%the commuta-
tion xrelatlions, wafhavbgw 4 - o /
¢ “*ﬁ - B VG = 0 . C
M .
. This equation can bc solved and the solution can be written
. " « A . f i , ‘ y ; s \
i the form -~ ~ o . T e
™ S =kt r/af"

) G = € R “ Giif" Spfe b T(1405)
gihere G, satisfics the” equation’ RS S - BT PR
T ok 9% Lo Pty oceare 4 (1446)

A @Xﬂ
and {s an agcendlng, poier serics in L Mz y Hz
& i o

The conditloﬁ (14.6) ot G, expressés the "fact that G, 10n¥olved

.

only transverse waves., ' N ' - 4

L g
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The expregsion for the wave function (14.3) displays the

relativistic form since (k“n b)Y is an 1nvar1ant and G can be

i
i
|
any ascendlng power seples in n, .0, , M, ! o To obtain l

the previous G, which‘%as an ascending nower series in L

-

G, My, Na only; we note that due to the condltion (14.]) i‘f |
any multiple of (k“1  ~b) can be added to & without producing any |

effect and, in this way all the negati&e powers o} no can be b
eliminated, . ) ‘ d

§
o®

Further, 1nstesd of (14:5) G can be written in the form

. glﬂ s .
(2 = ’l /c G, . .
where lﬂ has to be chosen g0, that 1, k" =1 » @ is thena.
“ . '
function only of the 1 s ortﬁogdnai to k. That is G, AnvqQlves ﬁ

n'" 's  togethier with (/"u ’but ‘che ‘latter can sgain be eli-

minated by expressthz.G, as a mul’ciple ot (k" - b ) I
We thus see that ‘we -¢annot uge all fne 1nformation at our
rd

disposal without ‘epeildirg the relativistle form of the wave func-
tion, elthough the ‘Anformation 1tesls is relativistic, 2

Solutlon of thé'Waﬁe*Equafion.-‘ We now turn to the'nuestion of ;

*

whether the wave equation hde any solution at alle The natural
procedure 1s to expand the wave functlon in powers of the eledtro- -,
nio charge ¢, and'it is well knqwn that thlg leads to divergence

already in the s econd order term.

[P pupe

In our dlsciigslon we follow enofhér procedure, and for the

sake of gsimplicity réstrict ourselves to the case of one electron.

i s it

This simplest case is sufficient f&r dur problem since the

difficulties which arige’ stem from the 1nteraotion between an

G A e A

electron and the field ¥hich it produces, and not with the fields
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produced by other electrons. Further let us suppose that the
longltudinal waves have heen eliminateds Then we haVe the wawve

equation

[4

. , tr i .
Py + Xpup, —e AT )+, m YW = {15.1)
where At’ is the transversé part of the electrofiagnstic potentid
and satisfies the condition

.Jr
N Lo (15.2)
c Xy
and the comnutation relations
fl 7(1'- ' _ln“{r" r‘_ ‘ . N
T4 (xy, A (x)1 = 511G, (x=x'+A) + &rg(xix -A)g - (15i8)
Here G is the transverse »art of ¢ ,A(x), its Fourler com-

ponents belng

. _ k. ke o
('Trs k T (q;'s T )Ak

s{o

where A, 1s a Fourler component of Afx),

Our procedure is to put

Atr(x) = M, (x) + N (x+xr} (1544)
where M~qna N are field variables with the following piropertlies!
They déseribe waves which are propagated with the wvelocity of
light, M and N satlsfying the wave equatlon

Og™M = 0O , ON = 0, (1545)

They describe transverse waves, both satlsfying the condition

QM,. - a;\,'
T T 16:8)

All the components of M commute with each other at all points,

and so do the components of N amohg themselvess

(M, Gy, M) = O, [Nx), N ()] = 0
; ’ (157)

Svcazzn ata

= e A & 2
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and the compoiients of M taken with those of N satisfy the com-

mutation r elations

LG N ] 2 LG, (ex) (15.8)
It 1s readily verified that the expression of A in terms of the
M and N}varlébles (15:.4) and the. commutationrelations (15.7)
and (15.8) give the recuired commutators {15.3) for the Yector
potential A, i

Next we define a new field B.(x) by writing

B,.{4) = M _(x) - N, {x=-na) . (1549)
Then any 8-variable commutes with any A-variable
[B,.Lx)‘!ﬁ\b(.&')} = O

and

. N { .‘ )
. [Bkix}. Bx)) = - i,\ G, (x=x'+R) + Gr‘.,(-\:mx’-w\)} -+ (T5.,10)

fut~

We note tha%'ﬁhe commutators for the Bls differ from those for the
Alg only by a differepnce in -sign. B8ince the Bls commute witlh all
the dynahica;'variapieg occurring in the Hamiltonlan, they have no
physlceael importance, and they can be considered as redundant
variablese.

Let us now considefkfhe role played by a redundant variable
in quantum mechanics. If we denote by q the essentisl variables
and by r the redundant vanable,we have a wave function V(g,r)
and the wave gquation involves only g and operators that
operate on g . ’

The wave funotion will Ye a solution for each value of r,
and in order to obtain physical results we must sum or integrate

over re. Thus the probabllity that the operator g have the
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vValue q’ is glven. by
S {lwia, ot ar

In fact a single wave Tunction corrégHonds to a Gibb'd énsemble

and not to a physlcal stdte., To be quits general we should
introduce a Weight factor f(r) in the intégrfation

f N’(q’;r)r’ Par) dr .
For the. sumé ‘wave -function, the physical interpretation is dif-
ferent for different weight factors.

The introduction of- the B-fleld brings in great arblitrariness
in our ¥Heory, «&nd it 1§ pérmissible X6 -set up hew supplementary
conditions as long aé" they satisfy the compatibility relations
and do not restrict the physicel sdlutions too much. We shall

impose the condition "

for ell x in the future '
O 1ight-cone of z . ° (15.11)

it

- NGO
These conditions are .compatible among thiemselved because the .
components of N comiute with each othery ‘dfid they are .compatible

with the wave ‘equativn, sinte, as 1s eabily verified

G, (x-2z) = O for (x-z) > O, '
There are” ro other compatibility conditions s?;ncs the longitudinal
waves have been eliminatede For z = - oo , We have N,(\)W =0
which. we may.write ag8 N () ~ 0
ahd from {15:4) and (15.7) this 18 equivalent to Atr(x)' ~ B ().
That 18, thé B-figld is fhée Inltisl value of thé K-field.
If we denote the Foubler components of A" by Y} and ﬁ and

those of Bby £ and ¥ , then initially

Mg |, 1=%% . <o (15.12)
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Now we have seen that the wave function in our theory can be ex-
pressed as an ascending power series in n , and 1ts dependence

on the B~fleld can be expressed as an ascending power series in

s

-

We have and not ¢ for this power serles since the ccmmuta-
tion relations (15.1Q) for the B-field have opposite slgn to
those of the A-fleld, Then the conjugates 1 and &  can be

replaced by ‘the derivatives
- P

q:c..—_
on ?

e =2
)

(- ZIv =0

?

o

(¢ -C=)W¥ = 0. (15413)

=Y

These equations show that the dependence of W an ¥ and € must

be pf'%he jdnm, ) ;
RV [+ 834 + U850+ ..

The genéfal,term ’f“ﬁé/;{{j in the power serles represents

a state witﬁ n photons in the A-field and n photons in the B-

fielde Thus the effect of the supplementary condltion

Nr(x)\l” = 0
1g %0 have the same number of photons in the A«field and in the

B-field initielly.

8ince the conditions (15.11) hold for all x in the future
light cone of z, we have N{z+2N)V¥Y =0 provided we
teke A 1n the future light-cones (l.e. A_ > O) and the wave

equation (15.1) redustes to

A{po-hﬂ,(pr~efﬂﬁzn+-dmrn}\y = O .
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But noy the l~fipld which 1 left in the wave equation commite® A
with all the varliables in the equation, and the wave equation ls
exactly the, same ag for an unquantized field theorye The equation
has a solutlion for any value of the initlal momentum of the elec-

tron, and. it can be written as a furc tlonal in the M-fileld
. -l‘g/('vla;;,ﬁ_g ’M(‘Z}\
wheire o, &nd @, are spin variables: The Wwavé funttlon 1s now

expréssed in a repregentation in whilch i is ajhgonsl . ’

The commutation rélations (15+%) and: (15.8) bétween the M-
and N-fields sliow that the vrelntlon between them ds gomewhat like
that between coordinates "and' thelir vohjugaté momerita, and the
N,(x) 1in the suppléntary conditions: T15:11) -ecan be con’éidéréd
as a sort of a differential operstor-fcting on the M-fields In
this way (15.11) msy’ be interpreted aa a cohditfoh which’ stdtes
that ¥ must be unchdnged under-d cdertain thange in -the M-fleld.

<

On acgount

Figure 15.1

B e I

. mmn mmmr mm mmm omm sy anayome ot g

e = o -

gy

s e m= e ey e e

—nar i
|



w54

of the £ act that &, (x) =0 for »° > O when Ng{x) ig ap-

rs

plied to Wiz, o, e M{z}) 1t refers to a change in the M~ -

s

field consisting of only waves in the, region outside and on the g
light~cone of x (shaded reglon in Fig, 1531).H Wlf% x in the )

future light-cone of z, the M-field in the past light-cone of, g |
(the dotted region in Fig. 15.1) 1s unaffected by this change. i
It is easily verified that the condition (15.11) holding for any

x in the future light-cone of z means that, any change.in the M-

P T )

S 2 =
N .

field, satiefying the first of equatloné {(15.5) and (156) -t~
and such that the M-field in the past light-cone 6f z'ls unaf-
fected, leaves W invé%iant. Thus (15031) means that_&'aepends
only on the lM-field in the past light-cone of z .w .

As mentioned earlier, if we have one solutlion of the.wave
equation, we can apply it to different physical situations Dby
choosing different weight factors. However the difflculty is
that the wave function W(M,) in which M is diagonal is not i
L suitable for ﬁhysical internretations It is necessary to transg-

4 i' form 1t to a-representation W71 %) in which-it appears as
} a power series in the M 's and €. 's  the various coefficlents
|

corresponding to various numbers of photons amctually present, + P

e

and various numbers of photons in the initial fleld.. But this

I provlem of transformation of the represeptation from W(M.) tei

R A e

W{N,¢) 1& very difficuly, and has not been solved yetes If one

I attempts to do 1t by using a power serles expansion in €& , the |,

gsame divergences which occurred in previous theories appear againe

——

There is the philosophical obhjection to the theory that

even for the simplest.problem of one electron with no ingoing




electromagnetic field, the mathematics 1§ exceasively complicatede
Thig probably indicates that the present theory 1s not the final
one.

Another difficulty which exists in the present theory lis
the séparstion.of physical solutions from the non-physlcale
A wave ﬂunctlog An quantum mechanics corresponds to a family of
classical solutionse In the one-electron problem,ymost of the
latter correspond to the tase of gelf--acteleratlon and are hence
non-physical, and the corresponding wave functlon glves finite
probability for emission of radiation even when there is no in-
cident wavee AipreciSe way of separating but the physical from
the nonnphysicél golutions has not ag yet been formulatede
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Appendix 1. Derivation of thc Polgson brackets between

Flrst we obtain the inverse of the Fourldér transférmation (9.1)
for AP‘(X) which is

, C Ok x) - ~ilk,x) ] o3k
= } e ~ —_—
Multiplying by o &% ( ®.X dcnoting a threce-dimension-
al scalar product) and 1ntegrat1ng over dsx, we obtain
k 2 )? B - Ko
X 3 - <- J LA,
) AJU.\ ) d°x = ” ,\_"]{uk + ']/u-th }

Differentlating this with respect to xp, Wec obtain

( aA (x) E; 3 l:k-QXp = .-:...ﬂ,_-,xo )
‘ 3 = ( (2 ) ; ‘ o ¥ A
J Ak, ¢ dx_c(;:'rr,{‘}ﬂk buow® )
From thecse two equationg we obtain Iy
~ckox, f o) Ckex .
- I ) + Nosto / - f_ ‘\ x‘. & 43
nf.«k'?(a )3 € J(“O LC)X,;,)A/U() q’X}

and we also check that the expression for Fl/uk obtained in the
same way colncldes with the complex conjugatc, of )‘i/uk above
which should bc the case for A (x). to bec recale

Now for the Poisson brackots, wc have

. - —z(k°x~.oxc)ff . D -
Mo = - — £ ° k=i = k “.
{ lfl’\},'}\}k] ‘:!.(2?\,.}6 C ( ° axa)( 0 +.L’E}X5)

- . ;; "‘4 -u
[ A, 72 (x)] e "3 o
Introducing newspacc~time coordinates defincd by X = x=x' Y= é(XM')

and inscrting the value [A/‘(x), A, (x)] = ;;-(}ﬂv{A(XH\) '-LA(K-A)}

- P, - q ol -k —-é_ .
we obtain [Muk,M,e] = é*; g ¢ kYo = 3 lhor ko)X, ((.l«~i9~)
‘(h-K').Y F L EeRX
(ks -~<~-)M ,\w\hu(,\_mﬁ T ey

G,

the integration over Y can be performed immediately and it

yields a g~function.

- . 9. oy ot ReXo FLA0X+0) + AN
[‘l,m'bu'] _8_(1‘;;.)3 BCk k') e j(ko aXc) 40X+ ) }

- =%
k‘

e d3x

.
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}fow the A-function has the intogral roprosentation

A(X) = ,{!T_. fﬁ"-"”"‘ sih K,

2my? ) ~-—}-{—°—3 K
so that iz
- ., M 3
fuh-i2 ) Axen e 42X
uX,
~B s  » —_ =
i (7, .2 \° (KAXN) + kX (X 4%,
:(21“';7—)3}‘,{ (.;\o"ta"‘}?” (4 sin K—o_........?__x—-—- d":“K d{x
’ . [+]
s Pi L ,,'}?‘X .
=4 | (k- —2—_) S, (K+k)e S Ky Xo+Ay) e
QX 3 X
° K, .
= 47 G_’:k.}\ (/( -’ 2“}'5 .j,”"? k, (X, + %)
v DXO, . .
! 6’“’ ‘.-« \ \ \
._._._L87rkaeckt\+ K, X+ A )
Henge
- . - . -L'Z\";’\ ~e koA
L’I,,k ,'TVK'] == g%‘:'-z Ky O3({k=-Hk') & “fe%e 4 samec torm

with X rcplaced by -A

=0 22 i 8, (k~K") cos () .
de )



