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Abstract

Almost all of the deep results in Hodge theory and its
applications to algebraic geometry require understanding
the limits in a family of Hodge structures. In the
literature the proofs of these results frequently use the
consequences of the analysis of the singularities acquired
in a degenerating family of Hodge structures; that
analysis itself is treated as a “black box.” In these
lectures an attempt will be made to give an informal
introduction to the subject of limits of Hodge structures
and to explain some of the essential ideas of the proofs.

One additional topic not yet in the literature that we will
discuss is the geometric interpretation of the extension
data in limiting mixed Hodge structures and its use in
moduli questions.
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Outline of the lectures
|. Review of basic definitions; examples

e Polarized Hodge structures
e Mixed Hodge structures
e Limiting mixed Hodge structures

Il. Period mappings and the first limit theorem
e Period domain D and its compact dual D
e Period mapping ® : B — '\D
e Nilpotent orbit theorem

[Il. The second limit theorem
e sly-orbit theorem in 1 variable
e Some applications
e Extension data in the limit mixed Hodge structure
e Chern forms of extended Hodge bundles

Referencest

TWe will give only a few general references that may serve as a guide
to the literature and in which there are further references to the original
papers.
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. Review of basic definitions; examples?

[.A. Hodge structures

A polarized Hodge structure (PHS) of weight nis (V, Q, F)
e V = (Q-vector space with a lattice V; C V;
e Q:VRV—=Q, Qlu,v)=(-1)"Q(v,u);
e FPC Fr~tC ... C F°= V with

(1) FPoF "™ S5 v o0<p<n
e Hodge-Riemann |, Il (HRI, HRII) are satisfied.
For
(1.2) VP = FPAFY,

+g=n —
(1) < Ve="d vra V9= yawe

{FP} is the Hodge filtration and (1.2) is the Hodge
decomposition.
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(HRI) Q(FP, F™P+1)=0 <= Q(VP9, V"' 7)=0 for p' £ n—p
(HRI) (=1)PQ(Vv™9, V™) > 0.
The alternating of signs is important.$

Without the Q we have just a Hodge structure (HS) of
weight n

Example: X = compact Kihler manifold or a smooth
complete complex algebraic variety
e H"(X,Q) has a Hodge structure of weight n.

Example: w = ¢/ (L) for L — X9 an ample line bundle
Hard Lefschetz w™: H9™™(X,Q) = H™™(X, Q)
—> HY " (X)prim = ker {w™! - HI="(X) = HT=™(X)}
is a PHS where Q(u,v) = [, w™ AuAv.

$\We omit powers of i. 5/64
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Example:
e Q(—1) = H*(P!,Q) = Tate HS (weigh 2 and Hodge type
(1.1));
o Q(—K)=HQ(-1).
Hodge structures are functorial for morphisms (may have to
use Tate twists to adjust weights).

Example: Y c X a smooth subvariety of codimension k
—  H(Y)(—k) &% H™2K(X), Gy = Gysin
is a morphism of HS's each of weight m + 2k.
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Example: Y connected and m = 0 gives the fundamental
class mapping

HO(Y)(—k) —= H(X)
2 u
Q(—k) H? (X, Q) N HY (X)

The map cl can be defined for any irreducible Y.
e HgV =V N V" (Hodge classes);

e For the codimension k algebraic cycles
Z5(X) :={Y =Zn;Y;, n; € Q} we have

cl: ZK(X) = Hg"(X)

Hodge conjecture (HC) is that map is surjective (would be an
existence theorem). 7/64
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Example: n=2m+ 1.

o J=\V/F™ + Vyis a compact, complex torus or
abelian complex Lie group (intermediate Jacobian).

e The complex tangent space at the identity
TeJ ~ VC/Fm-H — Hm,m+1 DD H0,2m+1.
e J,, C Jis largest sub-torus such that
Todop — H™™HL,

o Below we will define AJx : ker(cl) — J¥(X)
(V = H*7H(X)).
o Alx.: TZH(X) = J%(X)ab.
HC <= this map is surjective (also existence theorem).
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|.B Mixed Hodge structures

A mixed Hodge structure (MHS) is (V, W, F) where
e V F are as above;
e W, C---CWe1CW,C---C W, =V is the weight
filtration with associated graded Gr}" (V) = W,/ W3

e the Hodge filtration induces a Hodge structure of weight
k on Gr}Y V where

FPGrY (V)= FP N W/ W_;.

As with Hodge structures MHS's are closed under all the
standard operations @, ®, Hom . .. of linear algebra.
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e a morphism (of weight ¢, which also can be negative)
(V,W,F) 5 (V', W F') is given by
@:V — V' where
o Wi = Wi o
@ FP — F'Pte
e the basic propery is strictness
(W) N Wiy = o(Wi)
p(V) N FPH = o(FP).
Using this one shows that MHS's form an abelian category.|

Example: X = complete complex algebraic variety
= H"(X) has a MHS with Wy C --- C W,.

Example: X = affine complex algebraic variety
=—> H"(X) has a MHS with W, C --- C W,,,.

IPHS’s form a semi-simple category. 10/64
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Example: For Y C X the H*(X,Y), H"(X\Y), H{(X), and
dually the homology groups have MHS's; the usual exact
sequences (e.g., Mayer-Vietoris) are exact sequences of MHS's.

Example: Hom(V, V') is a MHS where
W, Hom(V, V') = {A: V = V', AW,(V)) C W, (V)},
FPHom(V, V') = {A: Vo — Vi : A(F9) C F7tPY.
e Given a MHS (V, W F) set
1P9 = FP (Wpﬂ,m Ft WyqinF™ 4 ) .

Then
W,= & [P9, FPF= & /p’,q’
ptq=k {P’ip
q
7”"’E/wmod< ® /aﬁb),
a<p
b<gq

11/64
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The [P9's give the unique decomposition of the MHS
satisfying these conditions.

The MHS is R-split if 1”9 = 9P, Associated to any MHS
there is a unique R-split one (V, W, F").**

Example: For (V, F) and (V', F') Hodge structures of
weights n, n’ with n > n’

}IOIIhc( 4 \//)
13)  Extypus(V, V') = |
( 3) X MHS( ) ) FO HOmC(V7 V/) + HomZ(Va V/)

is an abelian complex Lie group C” /A where A is a discrete
subgroup (thus it is a composite of C’s, C**'s and
compact tori).

**This is an algebraic, not a geometric (or motivic) construction. 12/64
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If V, V' have weights k, k — 1, Extyys(V, V') is a compact
torus whose complex tangent space at the identity is a HS of
weight —1 that may be pictured

(k=1,-K)@®---®(0,-1)B(~1,0)®--- @ (—k, k —1).
h g J/

-~
(.

FO

-~

T Extl g (V,V/)=F°

The tangent space to Extys(V, V/).p is contained in the
part over the red bracket (it corresponds to the maximal

Q-subspace of (0,—1) & (—1,0)).

13/64
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Example: For Y = ¥n;Y; a codimension k algebraic cycle in
X with support | Y| = UY; and with cl(Y) = 0, setting
dimgc X = k + ¢ the dual of

e —> Hgg_;,_l(X) — Hgg_;,_l(X, |Y|) — H23(|Y|) — H2£(X) —

gives a class AJx(Y) in

Extymg(Q(—k), H*7H(X)) = J*(X).

e Ext{s(e, ) =0 for g = 2; there are no higher Ext's in
mixed Hodge theory.

14/64
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e In (1.3) if k = k" + 2, then the tangent space at the
identity to Extyus(V, V') is the quotient of a Hodge
structure of weight —2 by F° of that HS

(K,—k)&- & (0,-2)a(-1,-1)® (-2,0)® - ® (—k, k).
N—_——

J

TV
FO N TV 4
T Extd e (V, V)

The connected analytic subgroup S whose tangent space
is the maximal QQ-subspace contained in the red is

S = (T~

15/64
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e In (1.3) if k = k' + 3, the picture is

(K, —K)@& 6(-1,-2)&(-2,-1)&(-3,0)& & (—kK).

~

e N J/
FO -~
T Extl s (V,V7)

There is no non-trivial complex subgroup of
Extyas(V, V') whose complex tangent space lies in the
red. it

" The complexification of the real tangent space would have to be
closed under conjugation. 16/64

16 /64



|.C Limiting mixed Hodge structures

e sly has basis {N*, H, N} where

NCNM=H  H=(39)
[H,NF]=2N*  N* =(83)
[H.N] = —2N N=(98)
e irreducible sl, module V(¥) = Sym*(Q?) has basis x'y*~
where
N* = yox
N = x0,

H=k—-2i 0<i<k

e the eigenvalues (weights) of H are —k,...,0,...,+k; N
decreases weights by 2.

17/64
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e Any sl,-module
V=aomVv®.

o let V = é V; be a graded vector space

N:V —>J \/sz
Nk Vi = V_, (Hard Lefschetz property).
(Jacobson-Morosov-Kostant). There is a unique
sl, = {N*,H, N} acting on V.
Example:
X = n-dimensional compact Kahler manifold
V = H ()]
Nt=w=1L
— there is {L, H,A} acting on H*(X).
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Direct sums of the irreducible sly-factors give the H*(X)prim-
e Suppose now we just have a nilpotent N : V — V with

N — 0, N7 £ 0
— there exists unique weight filtration (now centered at n)

W()C"'C Wgn:\/
N - Wk—> Wk_g
Nki Wn+k i) Wn—k-

We write Wi (N), or just W(N).
Jacobson-Morosov: There exists a non-unique
sl = {N*,H, N}, W(N) is the weight filtration for any

such sl,.
e Given (V,N)
slp -actions <= V = GrlYM(Vv).
e A limiting mixed Hodge structure (LMHS) is a MHS
(V,Q,W(N), F) where N € Endg(V), N"™! =0, and

N:FPCFPL,

19/64
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Example: Associated to (V, Q, W(N), F) is a unique R-split
LMHS (V, Q, W(N), F), V = & Gry ™(V). Then there is a
unique sl acting on V with N(F'?) C FP~1,

Example: X* & A* = {0 < |t| < 1} is a smooth family of
Kahler manifolds X; = 7r*1(t), t # 0, with Xy = generally

singular analytic variety
XT.‘O XO

to
T : H"(X;,) — H"(Xs,) is monodromy
T =T,T, Jordan normal form
Monodromy theorem: T/ = Id (eigenvalues of T are

roots of unity) and T/ = 0.
Will sketch proof later. 20/64
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Theorem (Schmid): lim,_,o H*(X;) = H
LMHS.

exists as a

n
m

Example:




N§; =0 1=1,273,4

Ny = Nvy, =0
N7z = 03, Nys = 04
ker N
Im N

N? =0 ’VV\ c W, < W
= 0 1 2
I I
{61,02} {6i, 71,72}

Cry HE = Q(-1)? type (1,1)

lim

GrlV HE =~ HY(X,) type (1,0) + (0,1)

Gry/ HE = Q? type (0,0)
In general on Gr?% H?  the N has type (—1,—1). 22/64
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Basic estimate: Suppose we have a family of PHS's over
A*. For each t € A* we have a PHS (V, Q. F;). For v € V¢

we have
v = Z Vp,q(1)

p+q=n

and the Hodge norm

|V|%,H = Z (—1)7Q(vp,q(t), vipq(1)).

p+q=n

Theorem: ve W, < |v[;,=0 ((—log [t])<=).

Corollary: N\v =0 = |v[2,; =0(1).
This result, which relates topology and analysis, is one of the
deepest results in Hodge theory. In the next two lectures | will
discuss how one goes about proving it and some of its
consequences.
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[I. Period mappings and the first limit theorem

[1.A. Basic model

e toplological, analytic, algebro-geometric

RS2

J

=C/Z+Z

=y?=x(x—t)(x—-1)

w = u + iv plane




As t — 0 we have

(@-

5 o
0 = vanishing cycle

As t turns around t = 0 we have monodromy

To=90 1
(+) =)= (%"
Ty=~+96 11 10

e Hodge theoretic
— HY(X) has basis w given by
— w = dw (analytic realization)
2 (algebraic realization)

T YT e

25,64
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— period matrix

¢ = (ﬁi) = (i) where Im7 > 0.

As t turns around t = 0, by (%)

0
¢—>¢+<1>:T¢.

1
e period mapping: H ={z=x+1iy:y >0} = [ ] c Pt
z

Ry — A

26,64
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— analysis: as t turns around t =0

|
/w—)/w—}—l = /w— Og_t:h(t)
v v v 2mi

is single-valued on A*; then by analysis

h(t) bounded = h(t) holomorphic in A

(%) = O(t) ~ exp <<|;gr,t> N) [h(lo)]

— period mapping is approximately a nilpotent orbit.

27 /64
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— Lie theoretic formulation: ((t) := log t/2mi
1
(xx) — O(t) ~exp(L(t)N)F, F = [h(O)] c P!

What does “~" mean?
— 3 = SL(2,R)/U(1) has invariant metric ds? = M
y
and (%) means

(%) doc(D(t)), (exp(£(t)N)F) £ yPe™.

28/64
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Note: Relation between t € A* and z € K

H A*
w w
z t = 6271'127 l

[t| = e = RHS of (xxx)is O(|t|'"),any € > 0.

Conclusion: Above family of HS's over A* is approximated
by a nilpotent orbit arising from monodromy.
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[1.B. Monodromy and nilpotent orbit theorem in

general
e Period domain: Given (V, @, fP)

D = set of PHS's (V, Q, F : dim FP = fP),

G = Aut(V, Q) = Q-algebraic group,

Gr = associated real Lie group, acts on
Dby F— gF,.g e Gr

Gz = Aut(Vz, Q)

D = Gg/H, H = compact subgroup.

e Compact dual

D={(V,Q,F):dimF = fP and Q(FP,F" ") =0}
D = Go/P, P = parabolic subgroup
D c D is open Gg-orbit.

30/64
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Example:
D = SL(2,R)/SO(2) = H C P! = D = SL(2,C)/P.

1 1
Here Q = 0 . For F = € P! we have
-1 0 z

Q(F,F)=0, iQ(F,F)=—i(z—2)=2y.

. TD < @Hom(FP, Vc/FP)
) v
{F?y — {dF?/dt e Vc/F§}

e Horizontal sub-bundle | ¢ TD = {FP C FP~1/FP}
e Classical case: D = Hermitian symmetric domain
— | =TD.
31/64
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Example (non-classical): n =0, h?° = a,h"! = b.
D ={F?:dimF? = a, Q(F2 F?) =0, Q(F? F) > 0};

-Q=| CHRI 1 are 1QQQ =0, 1QQQ > 0 where

0 0 |,
_Q — 0 _/b 0
L 0 O

I'is *dQQS = 0 (only for a = 1 does it follow from HRI);

for a =2 it is a contact system.

32/64

32/64



Period mapping: B = complex manifold, I C Gy

® : B — I'\D locally liftable, holomorphic and &, :
B — I.

Example: B=A* T ={T*} where T € G;.
Monodromy theorem = T =T,T,, T"=1, T,=¢e".
Passing to A— A, t=F"we may assume m = 1.

Nilpotent orbit theorem: There exists F € D such that
— t — exp({(t)N) - F is a period mapping O(t),
— dp(®(t),0(t)) = O(|t|*™°) for any ¢ > 0.

33/64
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I1.C. Estimate using differential geometry/complex
function theory

e £ — M is a holomorphic vector bundle over a complex
manifold. Given a Hermitian metric h in E — M there is
a canonical Chern connection with curvature form

Oc(e,€) = ) Ouz7easlié

where e € E,, £ € T,M.
e For E = TM the holomorphic sectional curvature is

@M(f) = eTM(f7 5)'

34/64
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Ahlfors’ lemma: If Oy (&) £ —1 for |¢| = 1, then for A
with the Poincaré metric where © (&) = —1 a holomorphic

mapping
. A—>M

is distance decreasing
du(®(t), d(t')) < da(t, t').

Example: M = A; then this is the Schwarz lemma from
complex function theory.

e Using HRI, HRII the Hodge bundles
FP— D

have Gg-invariant metrics. Their curvature forms have

special sign properties that have had many applications in

algebraic geometry (cf. [CM-SP] and [GG]).
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Example: The Hodge line bundle
L= &det FP
has curvature form w with
w>0on [CTD.
For period mappings

w(&) = e ()"

Example: Using TD C @ Hom(FP, Vz/FP) there is a
Gg-invariant metric on TD and there is ¢ > 0 such that for
¢eland|( =1

(59) O(§) = —c.
36,64

36/64



Corollary: A period mapping
®: A" — {TFN\D
is distance decreasing.
Proof of the monodromy theorem:
— Since T € Aut(Vz), det(T — Al) = P(\) € Z[];
— if an eigenvalue P()\) = 0 has |A| = 1, then by Kronecker

some \" = 1.
On A* the Poincaré metric is

dtdt dr dt 1
t216(2)> r(logr)? ((— log f))
= length(|t| =¢) — 0 as ¢ — 0.

In fact
27

(—logel) 37/64
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— t, = 0, D = Gg/H implies that ®(t,) = g, - xo where
8n € GR
dD((D(tn)y T(D(tn)) = dD(gn X0, Tgn ) XO)
= dp(x0, &, ' Tgn - X0)
— g, 'Tg, — H where H = product of O(k), U({)'s
which gives the result.

Setting up the proof of the nilpotent orbit theorem:

H—2>—->D
—
A*—={T*\D

O(z+1) =expN - d(2);
38/64
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— W(z) = exp(—zN)®(z) € D (unwinding monodromy);
- V(z+1) = V(z) implies V¥ is induced from
V:A*— DCPm
For any rational function f on P™
V*(f) = f o W = meromorphic function on A*.

Need to show: W*(f) has no essential singularity at t = 0; i.e.,
(W*(f)(t)) has polynomial growth in =

2]
e From this we obtain

F=w(0)eD

and then
d(t) ~ exp(L(t)N)F

where (V, Q, W(N), F) will be proved to be a LMHS. 39/64
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e The

idea is to show W*(f) meromorphic is to

use the distance decreasing property and

dp+(to, t) = —log|t| + C as t — 0;

use the comparison between the metrics in D and D
near dD; for D = A and D = P!

dzdz dzdz
5 on A,

1
SED) z on P

(1+12%)
= ast — 0 in A* the metrics are comparable up to a
polynomial in —log |¢|.

Let f € C(D) be regular near lim; ;o ®(t) € dD. Then
arguments extending the above special case show that
®*(f) has a most moderate growth (i.e., O(|t|™%)) as
t—0.

40/64
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e Removable singularity theorem: If we have
oA = {TFN\D
where T = T; (i.e., N =0), then
® extends across t = 0 to have & : A — {T*}\D.

Proof: The images of the circles |t| = ¢ give closed curves ~,
in D whose length ¢(v.) — 0. Moreover since the metric in D
is complete the 7. do not approach dD. Thus lim._,7. =

Fo € D and ®(0) = F, gives the extension of . O

e In the geometric case the variety Xy usually has
singularities, and the condition of finite monodromy is
rather general (e.g., for normal surfaces Xy can have
rational singularities). Thus H[ (X;) is a pure Hodge
structure — its relation to H"(Xy) is of significant

interest. 41/64
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Preview of sl,-orbit theorem. We want

lim;_,o ®(t) = LMHS (V, Q, W(N), F). If this is true, then
there is an R-split MHS (V. Q, W(N), F’) with

V = Gr"™(V) and N uniquely completes to an sl,. This
perhaps suggests looking to approximate the nilpotent orbit by
an sly-orbit.

Relation to the R-split MHS (V, Q, W(N), F') Set

Foo = lm O(t)F € OD (naive limit)

F/
F+ = fixed point of exp(CN)

N

acting on D

D F cannot be on 0D. 42/64
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I1l. The sly-orbit theorem and applications ([CK1])

For applications a significant refinement of the nilpotent orbit
theorem is needed. Just as a nilpotent operator N € End(V)
can be completed to an sly, the sly-orbit theorem gives an
approximation to the nilpotent orbit and hence to a period
mapping. The statement of the result is quite technical and
will not be discussed. We will
(i) give a geometric interpretation of the result;
(i) discuss one basic geometric idea behind the proof;
(iii) present some applications.
e For D =A = H and D = P! there is a standard variation
of Hodge structure given by
— for z € H we take the weight n =1 PHS (V, Q, F)
where V = QQ, Q= (_01 (1)) and
-1
F*= eH (Imz>0)
z 43 /64
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— the group SL(2,R) acting on 3 gives
SL(2,R)/SO(2) = 3 c P! = SL(2,C)/P;

— there is a standard linear fractional transformation
(Cayley transform) on P! that takes 3 to A;
— the VHS over H is acted on by SL(2, R);

10 0 0
for T = =exp N where N =
11 10

w w
L —  t=e?miz,
V4

44 /64
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e An arbitrary period mapping ® : A* — {T*}\D is
approximated by a nilpotent orbit

(%) O(t) = exp(((t),N)-F, FeD
where T = exp(N)

sly-orbit theorem: The nilpotent orbit is approximated by
an equivariant period mapping

H D
L
A {T}\D

induced by a homomorphism of Lie groups

SL(2,R) £— Gg
U U
SO(2) — H 45 /64
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where

10
Px (1 1) =T (p. = induced map on Lie algebras).

e Implication:
— any representation of SL(2,R) is a direct sum of the
standard representations recalled in Lecture I.
— the standard representation gives a weight n VHS, hence
any period mapping ® : A* — {TK}\ D will have
properties inferred from the standard ones.

This will then prove the existence of a LMHS associated to
¢ A" — {TKI\D.

46 /64
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Example: If & : A* — {T*}\D is a period mapping of
weight n, then
(N=Nmt=0

for some m < n. The reason is
weight of a | ) maximum weight
direct sum of a summand
weight of a B sum of the
tensor product - weights of the factors | -

This gives the index of unipotency part of the monodromy
theorem.

Example: v e Wi(N) <= |v|.n =0 ((— log |t])(-="/2).
In particular,
ker N C W,(N).

Corollary: Any invariant vector has bounded Hodge length.47 /64



e Now let B be an algebraic variety, generally
non-complete, and

¢:B—-T\D
a period mapping with monodromy group
=, (m(B)).

Theorem of the fixed part: Ifv € VT is T-invariant, then
the Hodge components v are constant.
Proof: Using the curvature properties of the Hodge bundles
and the corollary
log |v™®|;4 is pluri-subharmonic and bounded on B
%

t,H = constant

— /"% is constant (uses form of Ofn).
Then v — v™0 is constant, and we apply the same argument to
this vector to get v ! is constant, etc. 48/64
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Application: T is semi-simple.

Idea: For an invariant subspace look at its Pliicker coordinate
in AV and show it is constant. From the theorem of the
fixed part the Hodge (p, g) components of the Pliicker
coordinate are constant = invariant subspace is a
sub-Hodge structure.
o Where does the sl, come from in the sly-orbit theorem?
— nilpotent orbit gives y — exp(iyN) - Fo € D = Gg/H for
y > 0;
— want to lift this to a map

y — g(y) € Gg;

— any map to a Lie group is determined (up to fixed
left-translation) by pulling back the g-valued
Maurer-Cartan form w = g~ 1dg;

49 /64
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-g=hapht

Gr
bt = .
Ge/H

— apply this to exp(iy)N - F to get wp(y)
— wy, satisfies three equations:
(i) wnebt;
(ii) g(y) is a lift of exp(iy)N - Fo;
(iii) z — exp(zN) - Fy is holomorphic.

50/64
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Setting

Aly) = —28(y) '8'(y) = —2ws
F(y) =g(y) *Ng(y)
E(y) = —JF(y), J2="i" on ht

the conditions (i)—(iii) lead to

2E'(y) = [A(y), E(y)] structure
2F'(y) =[A(y), F(y)] <> { equations for
Aly) = —[E(y), F(y)] sl

(These turn out to be the Nahn equations from mathematical
physics)

51,/64
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The distance decreasing property gives
AW = O(y™") as y — o0

and with “some work™ there are similar estimates for
E(y), F(y). This leads to

Aly) =Aoy "+ Ay T4

E(y)=Ey '+ Ey Y2 4...

Fly)=Foy '+ Fy 2+
where Ag, Eq, Fo € g give an sl,!

Application [CK2]: Let & : B — I'\D be a period mapping
(weight = 2n) where B is an algebraic variety. Then the
Hodge locus

H:={(v,b,y:v eV~
= homotopy class of paths by, b,yv € Hg"(Fp)}

is a countable union of connected components each of which
is proper and finite over B. 52/64
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Corollary (informally stated): The subset of B where a
given v € V is a Hodge class is an algebraic subvariety of B

e Sketch of proof:

- Vg/Ftt — Bisa holomorphic vector bundle F#;

— v € Vg gives section a(v) € HO(B, F);
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~ Hg(v) = {b € B: o(v)(h) =0}
= Hg(v) = o(v)™! (zero-section)

Q(v,v) = |[v™"||3 + Z(—l)pHv”*”’”’pr_, (topological quantity)
p#0
iz = v+ > IvP" Pl (analytic quantity)
p#0
— ||v||?, bounded by |Q(v, v)| and |v¥|3,.

Proof: |Q(v,v)| < C, ||v||3 £ C', v € V5 implies at each
point of B that v is in a finite set; thus the map H — B is
proper and finite

(Q(v, v) = constant gives covering space of B and v € V7,
|v|jw < C" = v in a finite set).
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For B complete this gives the result. In general we have to
extend the Hodge bundles to B and analyze || ||y along
Z = B\B (cf. [CK2]).

Example:

d(t,) = 71,9(t)) for v, €T C Gy
= v, =7 for n> 0.
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e What do the limit theorems tell us about the structure of
® at infinity?
Here Z = UZ; is a normal crossing divisor

v

Locally Z = (A*)* x A’ and the limit theorems may be
(very non-trivially) extended to this case (cf. [CK1])

e For b € Z the map
®o(b) = {associated graded to H,(b)}

is like the earlier period mapping where B = Z. Hence
we are interested in a fibre of ®q; i.e., in a family of

LMHS's where the associated graded PHS's don’t vary.
56/64
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Example:

=
C

(AJe(p—p'), Alz(q—q')) € J(C) & J(C)
e the level 1 extension data gives a map

Zf — Albz:

\/

57/64

57 /64



which extends to Z,
Z — AlbZ,

N/

Interpretation: AlbZ; is a semi-abelian variety

0 T S Al 0
2l I
(Cx)m abelian variety

and any morphism S, — J,;, factors

SI - Jab

>

F——A
’ : 58/64
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e The fibres of ®y and ®; (Gr(LMHS)= constant and level
1 extension data = constant) are (C*)™'s (algebraic tori)

C
-
% 0
There exists f with divisor (f) =p+q —p' — q’. Using

differentials of the third kind there exists a cross-ratio
{p,p’;q,q'} € C* that gives the level 2 extension data.

Example (continued):
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Open question: Define the completion ®, as a map of Z;
to a toric-like variety such that we have compatibility on
Z/ N Z_/'S.

e What about extension data of levels = 37

Here as a result of the differential constraint imposed by
I C TD
the extension data of level = 3 is determined up to
integration constants by ®q, 1, ®».

Example: The period matrices for VHS's of Hodge-Tate type
over P1\{0, 1,0} have as entries the higher logarithms (i\(z)
(these give the extension data in this example). The above
result becomes the classical result that the ¢i(z) are iterated
integrals of log z.
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e Finally we discuss the Chern forms Py(©f») of the
canonically extended Hodge bundles.

Given the data (B, Z; ®) where B is a smooth projective
variety, Z = UZ; is a reduced NCD, B = B/Z and

¢®:B—T\D
is a period mapping there are canonical extensions
FPF— B

of the Hodge vector bundles over B. Using HRI, HRII over B
these bundles have Hermitian metrics with curvature matrices
©fr and Chern forms cx(OF») defined by

VTV o s,
det(l — <7> e/:p) = Z k(e[:p). 61/64
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Applications:
e If dim ®(B) = dim B, then (B, Z) is of log general type;
e if ®, is injective, then B is complete hyperbolic.

A subtle analysis of the singularities of the Hodge metrics and
resulting curvatures give that

The cx(©F») are the restrictions to B of closed cur-
rents whose Lelong numbers are all zero and that rep-

resent cx(FP) € H?*(B).
The prooft essentially shows that

e the metrics along Z of the canonically extended Hodge
bundles have logarithmic singularities (norms of
holomorphic sections are O(— log |t]));

e the Chern forms have at most Poincaré singularities (they
dtAdt
are O (|r|2(f|og|t|_>2>'
HCF. [GG]. 62/64
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Especially subtle is that these bounds are not uniform in

sectors
15)
1 1

where the “O” becomes infinite but at a slower rate than the
width of the sectors; the Chern forms will be in L1.

Using this further arguments due to Vieweg and completed by
Kolldr gives the

e litaka conjecture: If f : X — B is a family where a
general X, is of general type (k(Xp) = dim X}), and

where Var(f) = dim B, then k(X) 2 k(Xp) + &(B)).
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