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Abstract

Almost all of the deep results in Hodge theory and its
applications to algebraic geometry require understanding
the limits in a family of Hodge structures. In the
literature the proofs of these results frequently use the
consequences of the analysis of the singularities acquired
in a degenerating family of Hodge structures; that
analysis itself is treated as a “black box.” In these
lectures an attempt will be made to give an informal
introduction to the subject of limits of Hodge structures
and to explain some of the essential ideas of the proofs.

One additional topic not yet in the literature that we will
discuss is the geometric interpretation of the extension
data in limiting mixed Hodge structures and its use in
moduli questions.
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Outline of the lectures
I. Review of basic definitions; examples

• Polarized Hodge structures
• Mixed Hodge structures
• Limiting mixed Hodge structures

II. Period mappings and the first limit theorem
• Period domain D and its compact dual Ď
• Period mapping Φ : B → Γ\D
• Nilpotent orbit theorem

III. The second limit theorem
• sl2-orbit theorem in 1 variable
• Some applications
• Extension data in the limit mixed Hodge structure
• Chern forms of extended Hodge bundles

References†

†We will give only a few general references that may serve as a guide
to the literature and in which there are further references to the original
papers.
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I. Review of basic definitions; examples‡

I.A. Hodge structures

A polarized Hodge structure (PHS) of weight n is (V ,Q,F )
• V = Q-vector space with a lattice VZ ⊂ V ;
• Q : V ⊗ V → Q, Q(u, v) = (−1)nQ(v , u);
• F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC with

(I.1) F p ⊕ F
n−p+1 ∼−→ VC 0 5 p 5 n;

• Hodge-Riemann I, II (HRI, HRII) are satisfied.
For

V p,q = F p ∩ F
q
,(I.2)

(I.1) ⇐⇒ VC =
p+q=n
⊕ V p,q, V

p,q
= V q,p.

{F p} is the Hodge filtration and (I.2) is the Hodge
decomposition.

†For general Hodge theory [CM-SP] is an excellent source.
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(HRI) Q(F p,F n−p+1)=0 ⇐⇒ Q(V p,q,V
p′,q′

)=0 for p′ 6= n − p

(HRII) (−1)pQ(V p,q,V
p,q

) > 0.

The alternating of signs is important.§

Without the Q we have just a Hodge structure (HS) of
weight n

Example: X = compact Kähler manifold or a smooth
complete complex algebraic variety

• Hn(X ,Q) has a Hodge structure of weight n.

Example: ω = c1(L) for L→ X d an ample line bundle

Hard Lefschetz ωm : Hd−m(X ,Q)
∼−→ Hd+m(X ,Q)

=⇒ Hd−m(X )prim := ker
{
ωm+1 : Hd−m(X )→ Hd−m+1(X )

}
is a PHS where Q(u, v) =

´
X
ωm ∧ u ∧ v .

§We omit powers of i .
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Example:
• Q(−1) = H2(P1,Q) = Tate HS (weigh 2 and Hodge type

(1,1));

• Q(−k) =
k
⊗Q(−1).

Hodge structures are functorial for morphisms (may have to
use Tate twists to adjust weights).

Example: Y ⊂ X a smooth subvariety of codimension k

=⇒ Hm(Y )(−k)
Gy−→ Hm+2k(X ), Gy = Gysin

is a morphism of HS’s each of weight m + 2k .
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Example: Y connected and m = 0 gives the fundamental
class mapping

H0(Y )(−k) cl // H2k(X )

∼ = ∪
Q(−k) // H2k(X ,Q) ∩ Hk,k(X )

.

The map cl can be defined for any irreducible Y .

• HgV = V ∩ V n,n (Hodge classes);

• For the codimension k algebraic cycles
Z k(X ) := {Y = ΣniYi , ni ∈ Q} we have

cl : Z k(X )→ Hgk(X )

Hodge conjecture (HC) is that map is surjective (would be an
existence theorem).
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Example: n = 2m + 1.

• J = VC/F
m+1 + VZ is a compact, complex torus or

abelian complex Lie group (intermediate Jacobian).

• The complex tangent space at the identity

TeJ ∼= VC/F
m+1 = Hm,m+1︸ ︷︷ ︸⊕ · · · ⊕ H0,2m+1.

• Jab ⊂ J is largest sub-torus such that

TeJab → Hm,m+1.

• Below we will define AJX : ker(cl)→ Jk(X )
(V = H2k−1(X )).

• AJX ,∗ : TZ k(X )→ Jk(X )ab.

HC ⇐⇒ this map is surjective (also existence theorem).

8 / 64



9/64

I.B Mixed Hodge structures

A mixed Hodge structure (MHS) is (V ,W ,F ) where

• V ,F are as above;

• W` ⊂ · · · ⊂ Wk−1 ⊂ Wk ⊂ · · · ⊂ Wm = V is the weight
filtration with associated graded GrWk (V ) = Wk/Wk−1;¶

• the Hodge filtration induces a Hodge structure of weight
k on GrWk V where

F p GrWk (V ) = F p ∩Wk/Wk−1.

As with Hodge structures MHS’s are closed under all the
standard operations ⊕,⊗,Hom . . . of linear algebra.

¶The `’s can be negative.
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• a morphism (of weight `, which also can be negative)

(V ,W ,F )
ϕ−→ (V ′,W ′,F ′) is given by

ϕ : V → V ′ where

ϕ : Wk → W ′
k+2`

ϕ : F p → F
′p+`;

• the basic propery is strictness{
ϕ(W ) ∩W ′

k+2` = ϕ(Wk)

ϕ(V ) ∩ F
′p+` = ϕ(F p).

Using this one shows that MHS’s form an abelian category.‖

Example: X = complete complex algebraic variety
=⇒ Hn(X ) has a MHS with W0 ⊂ · · · ⊂ Wn.

Example: X = affine complex algebraic variety
=⇒ Hn(X ) has a MHS with Wn ⊂ · · · ⊂ W2n.

‖PHS’s form a semi-simple category.
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Example: For Y ⊂ X the Hn(X ,Y ), Hn(X\Y ), Hn
Y (X ), and

dually the homology groups have MHS’s; the usual exact
sequences (e.g., Mayer-Vietoris) are exact sequences of MHS’s.

Example: Hom(V ,V ′) is a MHS where

Wk Hom(V ,V ′) = {A : V → V ′,A(W`(V )) ⊆ W`+k(V ′)},
F p Hom(V ,V ′) = {A : VC → V ′C : A(F q) ⊆ F

′q+p}.
• Given a MHS (V ,W ,F ) set

I p,q = F p ∩
(
Wp+q ∩ F

q
+ Wp+q−1 ∩ F

q+1
+ · · ·

)
.

Then

Wk = ⊕
p+q5k

I p,q, F p = ⊕{
p′=p
q

I p
′,q,

I
p,q ≡ I q,p mod

(
⊕{a<p
b<q

I a,b
)
,

=⇒ I
p,q ≡ I q,p modWp+q−2,C.
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The I p,q’s give the unique decomposition of the MHS
satisfying these conditions.

The MHS is R-split if I
p,q

= I q,p. Associated to any MHS
there is a unique R-split one (V ,W ,F ′).∗∗

Example: For (V ,F ) and (V ′,F ′) Hodge structures of
weights n, n′ with n > n′

(I.3) Ext1
MHS(V ,V ′) =

HomC(V ,V ′)

F 0 HomC(V ,V ′) + HomZ(V ,V ′)

is an abelian complex Lie group Cm/Λ where Λ is a discrete
subgroup (thus it is a composite of Ck ’s, C∗`’s and
compact tori).

∗∗This is an algebraic, not a geometric (or motivic) construction.
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If V ,V ′ have weights k , k − 1, Ext1
MHS(V ,V ′) is a compact

torus whose complex tangent space at the identity is a HS of
weight −1 that may be pictured

(k − 1,−k)⊕ · · · ⊕ (0,−1)︸ ︷︷ ︸
F 0

⊕ (−1, 0)︸ ︷︷ ︸⊕ · · · ⊕ (−k , k − 1)︸ ︷︷ ︸
T Ext1

MHS(V ,V ′)∼=F
0

.

The tangent space to Ext1
MHS(V ,V ′)ab is contained in the

part over the red bracket (it corresponds to the maximal
Q-subspace of (0,−1)⊕ (−1, 0)).
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Example: For Y = ΣniYi a codimension k algebraic cycle in
X with support |Y | = ∪Yi and with cl(Y ) = 0, setting
dimC X = k + ` the dual of

· · · → H2`+1(X )→ H2`+1(X , |Y |)→ H2`(|Y |)→ H2`(X )→ · · ·

gives a class AJX (Y ) in

Ext1
MHS(Q(−k),H2k−1(X )) ∼= Jk(X ).

• ExtqMHS(•, •) = 0 for q = 2; there are no higher Ext’s in
mixed Hodge theory.
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• In (I.3) if k = k ′ + 2, then the tangent space at the
identity to Ext1

MHS(V ,V ′) is the quotient of a Hodge
structure of weight −2 by F 0 of that HS

(k ′,−k)⊕ · · · ⊕ (0,−2)︸ ︷︷ ︸
F 0

⊕ (−1,−1)︸ ︷︷ ︸⊕ (−2, 0)⊕ · · · ⊕ (−k , k ′)︸ ︷︷ ︸
T Ext1

MHS(V ,V ′)

.

The connected analytic subgroup S whose tangent space
is the maximal Q-subspace contained in the red is

S = (C∗)k .
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• In (I.3) if k = k ′ + 3, the picture is

(k ′,−k)⊕ · · ·⊕︸ ︷︷ ︸
F 0

(−1,−2)⊕ (−2,−1)︸ ︷︷ ︸⊕ (−3, 0)⊕ · · · ⊕ (−k , k ′)︸ ︷︷ ︸
T Ext1

MHS(V ,V ′)

.

There is no non-trivial complex subgroup of
Ext1

MHS(V ,V ′) whose complex tangent space lies in the
red.††

††The complexification of the real tangent space would have to be
closed under conjugation.
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I.C Limiting mixed Hodge structures

• sl2 has basis {N+,H ,N} where

[N+,N] = H H = ( 1 0
0 −1 )

[H ,N+] = 2N+ N+ = ( 0 1
0 0 )

[H ,N] = −2N N = ( 0 0
1 0 )

• irreducible sl2 module V (k) = Symk(Q2) has basis x iy k−i

where 
N+ = y∂x

N = x∂y

H = k − 2i 0 5 i 5 k

• the eigenvalues (weights) of H are −k , . . . , 0, . . . ,+k ; N
decreases weights by 2.
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• Any sl2-module
V = ⊕mkV

(k).

• Let V =
n
⊕

j=−n
Vj be a graded vector space

N : Vj → Vj−2

Nk : Vk
∼−→ V−k (Hard Lefschetz property).

(Jacobson-Morosov-Kostant). There is a unique
sl2 = {N+,H ,N} acting on V .

Example:
X = n-dimensional compact Kähler manifold

V = H∗(X )[−n]

N+ = ω = L

=⇒ there is {L,H ,Λ} acting on H∗(X ).
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Direct sums of the irreducible sl2-factors give the Hk(X )prim.
• Suppose now we just have a nilpotent N : V → V with
Nn+1 = 0, Nn 6= 0

=⇒ there exists unique weight filtration (now centered at n)
W0 ⊂ · · · ⊂ W2n = V{

N : Wk → Wk−2

Nk : Wn+k
∼−→ Wn−k .

We write Wk(N), or just W (N).

Jacobson-Morosov: There exists a non-unique
sl2 = {N+,H ,N}, W (N) is the weight filtration for any
such sl2.
• Given (V ,N)

sl2 -actions ⇐⇒ V ∼= GrW (N)
• (V ).

• A limiting mixed Hodge structure (LMHS) is a MHS
(V ,Q,W (N),F ) where N ∈ EndQ(V ),Nn+1 = 0, and

N : F p ⊂ F p−1. 19 / 64
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Example: Associated to (V ,Q,W (N),F ) is a unique R-split

LMHS (V ,Q,W (N),F ′), V ∼= ⊕Gr
W (N)
k (V ). Then there is a

unique sl2 acting on V with N(F
′p) ⊂ F

′p−1.

Example: X∗
π−→ ∆∗ = {0 < |t| < 1} is a smooth family of

Kähler manifolds Xt = π−1(t), t 6= 0, with X0 = generally
singular analytic variety

Xt0 X0

t0

T : Hn(Xt0)→ Hn(Xt0) is monodromy

T = TsTu Jordan normal form

Monodromy theorem: Tm
s = Id (eigenvalues of T are

roots of unity) and T n+1
u = 0.

Will sketch proof later.
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Theorem (Schmid): limt→0 H
n(Xt) = Hn

lim exists as a
LMHS.

Example:

Xt = γ
4

γ
3

γ
2

γ
1

δ4 δ3 δ2
δ1

= X0

= X̃0
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
Nδi = 0 i = 1, 2, 3, 4

Nγ1 = Nγ2 = 0

Nγ3 = δ3,Nγ4 = δ4

N2 = 0

ker N︷ ︸︸ ︷
ImN︷︸︸︷
W0 ⊂ W1 ⊂ W2

=

{δ1, δ2} {δi , γ1, γ2}

=

GrW2 H1
lim
∼= Q(−1)2

��

type (1, 1)

GrW1 H1
lim
∼= H1(X̃0) type (1, 0) + (0, 1)

GrW0 H1
lim
∼= Q2 type (0, 0)

In general on GrW Hn
lim the N has type (−1,−1).

22 / 64



23/64

Basic estimate: Suppose we have a family of PHS’s over
∆∗. For each t ∈ ∆∗ we have a PHS (V ,Q,Ft). For v ∈ VC
we have

v =
∑

p+q=n

vp,q(t)

and the Hodge norm

|v |2t,H =
∑

p+q=n

(−1)pQ(vp,q(t), vp,q(t)).

Theorem: v ∈ Wk ⇐⇒ |v |2t,H = 0
(
(− log |t|)k−n

)
.

Corollary: Nv = 0 =⇒ |v |2t,H = 0(1).
This result, which relates topology and analysis, is one of the
deepest results in Hodge theory. In the next two lectures I will
discuss how one goes about proving it and some of its
consequences.
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II. Period mappings and the first limit theorem
II.A. Basic model
• toplological, analytic, algebro-geometric

γX =

δ

= C/Z + τZ

= y 2 = x(x − t)(x − 1)

τ

δ 1

γ

w = u + iv plane

Im τ > 0

1

δ

t 1 ∞

γ
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As t → 0 we have

-

δ δ

δ = vanishing cycle

As t turns around t = 0 we have monodromy

(∗)
T δ = δ

Tγ = γ + δ
T =

(
1 0

1 1

)
,N =

(
0 0

1 0

)

• Hodge theoretic
– H1,0(X ) has basis ω given by

– ω = dw (analytic realization)
– ω = dx√

x(x−t)(x−1)
(algebraic realization)
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– period matrix

Φ =

(´
δ ω´
γ ω

)
=

(
1

τ

)
where Im τ > 0.

As t turns around t = 0, by (∗)

Φ→ Φ +

(
0

1

)
= TΦ.

• period mapping: H = {z = x + iy : y > 0} =

[
1

z

]
∈ P1

Φ : ∆∗ // {T k}\H
∈ ∈

t //

[
1

z = τ

]
,
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– analysis: as t turns around t = 0

ˆ
γ
ω →

ˆ
γ
ω + 1 =⇒

ˆ
γ
ω − log t

2πi
= h(t)

is single-valued on ∆∗; then by analysis

h(t) bounded =⇒ h(t) holomorphic in ∆

(∗∗) =⇒ Φ(t) ∼ exp

((
log t

2πi

)
N

)[
1

h(0)

]

– period mapping is approximately a nilpotent orbit.
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– Lie theoretic formulation: `(t) := log t/2πi

(∗∗) =⇒ Φ(t) ∼ exp(`(t)N)F , F =

[
1

h(0)

]
∈ P1

What does “∼” mean?

– H = SL(2,R)/U(1) has invariant metric ds2 = dx2+dy2

y2

and (∗∗) means

(∗∗∗) dH(Φ(t)), (exp(`(t)N)F ) 5 yβe−2πy .
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Note: Relation between t ∈ ∆∗ and z ∈ H

H // ∆∗

∈ ∈

z // t = e2πiz ,

|t| = e−y =⇒ RHS of (∗∗∗) is O(|t|1−ε), any ε > 0.

Conclusion: Above family of HS’s over ∆∗ is approximated
by a nilpotent orbit arising from monodromy.
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II.B. Monodromy and nilpotent orbit theorem in
general
• Period domain: Given (V ,Q, f p)

D = set of PHS’s (V ,Q,F : dimF p = f p),

G = Aut(V ,Q) = Q-algebraic group,

GR = associated real Lie group, acts on

D by F → gF , g ∈ GR

GZ = Aut(VZ,Q)

D = GR/H , H = compact subgroup.

• Compact dual

Ď = {(V ,Q,F ) : dimF = f p and Q(F p,F n−p+1) = 0}
Ď = GC/P , P = parabolic subgroup

D ⊂ Ď is open GR-orbit.
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Example:
D = SL(2,R)/ SO(2) = H ⊂ P1 = Ď = SL(2,C)/P .

Here Q =

(
0 1

−1 0

)
. For F =

[
1

z

]
∈ P1 we have

Q(F ,F ) = 0, iQ(F ,F ) = −i(z − z̄) = 2y .

• TĎ ⊂ ⊕Hom(F p,VC/F
p)

∈ ∈

{F p
t } −→ {dF p

t /dt ∈ VC/F
p
0 }

• Horizontal sub-bundle I ⊂ TĎ = {Ḟ p ⊆ F p−1/F p}
• Classical case: D = Hermitian symmetric domain
⇐⇒ I = TĎ.
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Example (non-classical): n = 0, h2,0 = a,h1,1 = b.

– D = {F 2 : dimF 2 = a, Q(F 2,F 2) = 0, Q(F 2,F
2
) > 0};

– Ω =

· ·· ·· ·
· ·

, HRI, II are tΩQΩ = 0, tΩQΩ > 0 where

−Q =

0 0 Ia

0 −Ib 0

Ia 0 0;


– I is tdΩQΩ = 0 (only for a = 1 does it follow from HRI);

– for a = 2 it is a contact system.
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Period mapping: B = complex manifold, Γ ⊂ GZ

Φ : B → Γ\D locally liftable, holomorphic and Φ∗ :
TB → I .

Example: B = ∆∗, Γ = {T k} where T ∈ GZ.

Monodromy theorem =⇒ T = TsTu, Tm
s = I , Tu = eN .

Passing to ∆̃→ ∆, t = t̃m we may assume m = 1.

Nilpotent orbit theorem: There exists F ∈ Ď such that

– t → exp(`(t)N) · F is a period mapping O(t);

– dD(Φ(t),O(t)) = O(|t|1−ε) for any ε > 0.
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II.C. Estimate using differential geometry/complex

function theory

• E → M is a holomorphic vector bundle over a complex
manifold. Given a Hermitian metric h in E → M there is
a canonical Chern connection with curvature form

ΘE (e, ξ) =
∑

Θαβ̄i j̄eαēβξi ξ̄j

where e ∈ Ep, ξ ∈ TpM .

• For E = TM the holomorphic sectional curvature is

ΘM(ξ) = ΘTM(ξ, ξ).
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Ahlfors’ lemma: If ΘM(ξ) 5 −1 for |ξ| = 1, then for ∆
with the Poincaré metric where Θ∆(ξ) = −1 a holomorphic
mapping

Φ : ∆→ M

is distance decreasing

dM(Φ(t),Φ(t ′)) 5 d∆(t, t ′).

Example: M = ∆; then this is the Schwarz lemma from
complex function theory.

• Using HRI, HRII the Hodge bundles

F p → D

have GR-invariant metrics. Their curvature forms have
special sign properties that have had many applications in
algebraic geometry (cf. [CM-SP] and [GG]).
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Example: The Hodge line bundle

L :=
p
⊗ detF p

has curvature form ω with

ω > 0 on I ⊂ TD.

For period mappings

ω(ξ) = ‖Φ∗(ξ)‖2.

Example: Using TD ⊂ ⊕Hom(F p,VC/F
p) there is a

GR-invariant metric on TD and there is c > 0 such that for
ξ ∈ I and |ξ| = 1

(\\) Θ(ξ) 5 −c .
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Corollary: A period mapping

Φ : ∆∗ → {T k}\D

is distance decreasing.

Proof of the monodromy theorem:
– Since T ∈ Aut(VZ), det(T − λI ) = P(λ) ∈ Z[λ];

– if an eigenvalue P(λ) = 0 has |λ| = 1, then by Kronecker
some λm = 1.
On ∆∗ the Poincaré metric is

dt d t̄

|t|2|`(t)|2
=

dr dt

r(log r)2
= d

(
1

(− log r)

)
dθ

=⇒ length(|t| = ε)→ 0 as ε→ 0.

In fact

length(|t| = ε) =
2π

(− log |ε|)
.
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– tn → 0, D = GR/H implies that Φ(tn) = gn · x0 where
gn ∈ GR

dD(Φ(tn),TΦ(tn)) = dD(gn · x0,Tgn · x0)

= dD(x0, g
−1
n Tgn · x0)

=⇒ g−1
n Tgn → H where H = product of O(k),U(`)’s

which gives the result.

Setting up the proof of the nilpotent orbit theorem:

H

��

Φ̃ // D

��
∆∗ Φ // {T k}\D

Φ̃(z + 1) = expN · Φ̃(z);
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– Ψ(z) = exp(−zN)Φ̃(z) ∈ Ď (unwinding monodromy);

– Ψ(z + 1) = Ψ(z) implies Ψ is induced from

Ψ : ∆∗ → Ď ⊂ Pm.

For any rational function f on Pm

Ψ∗(f ) = f ◦Ψ = meromorphic function on ∆∗.

Need to show: Ψ∗(f ) has no essential singularity at t = 0; i.e.,
(Ψ∗(f )(t)) has polynomial growth in 1

|t| .

• From this we obtain

F = Ψ(0) ∈ Ď

and then
Φ(t) ∼ exp(`(t)N)F

where (V ,Q,W (N),F ) will be proved to be a LMHS.
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• The idea is to show Ψ∗(f ) meromorphic is to

– use the distance decreasing property and
d∆∗(t0, t) = − log |t|+ C as t → 0;

– use the comparison between the metrics in D and Ď
near ∂D; for D = ∆ and Ď = P1

dz dz̄

(1− |z |2)2
on ∆,

dz dz̄

(1 + |z |2)2
on P1

=⇒ as t → 0 in ∆∗ the metrics are comparable up to a
polynomial in − log |t|.

– Let f ∈ C(Ď) be regular near limt→0 Φ(t) ∈ ∂D. Then
arguments extending the above special case show that
Φ∗(f ) has a most moderate growth (i.e., O(|t|−k)) as
t → 0.
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• Removable singularity theorem: If we have

Φ : ∆∗ → {T k}\D

where T = Ts (i.e., N = 0), then

Φ extends across t = 0 to have Φ : ∆→ {T k}\D.

Proof: The images of the circles |t| = ε give closed curves γε
in D whose length `(γε)→ 0. Moreover since the metric in D
is complete the γε do not approach ∂D. Thus limε→0 γε =
F0 ∈ D and Φ(0) = F0 gives the extension of Φ.

• In the geometric case the variety X0 usually has
singularities, and the condition of finite monodromy is
rather general (e.g., for normal surfaces X0 can have
rational singularities). Thus Hn

lim(Xt) is a pure Hodge
structure — its relation to Hn(X0) is of significant
interest.

41 / 64



42/64

Preview of sl2-orbit theorem. We want
limt→0 Φ(t) = LMHS (V ,Q,W (N),F ). If this is true, then
there is an R-split MHS (V ,Q,W (N),F ′) with
V ∼= GrW (N)(V ) and N uniquely completes to an sl2. This
perhaps suggests looking to approximate the nilpotent orbit by
an sl2-orbit.

Relation to the R-split MHS (V ,Q,W (N),F ′) Set

F∞ = lim
t→0

Φ(t)F ∈ ∂D (näive limit)

F

F ′

D

F∞ = fixed point of exp(CN)

acting on Ď

F cannot be on ∂D.
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III. The sl2-orbit theorem and applications ([CK1])
For applications a significant refinement of the nilpotent orbit
theorem is needed. Just as a nilpotent operator N ∈ End(V )
can be completed to an sl2, the sl2-orbit theorem gives an
approximation to the nilpotent orbit and hence to a period
mapping. The statement of the result is quite technical and
will not be discussed. We will

(i) give a geometric interpretation of the result;
(ii) discuss one basic geometric idea behind the proof;

(iii) present some applications.
• For D = ∆ ∼= H and Ď = P1 there is a standard variation

of Hodge structure given by
– for z ∈ H we take the weight n = 1 PHS (V ,Q,F )

where V = Q2, Q =
(

0 1
−1 0

)
and

F 1 =

[
1

z

]
∈ H (Im z > 0)
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– the group SL(2,R) acting on H gives

SL(2,R)/ SO(2) = H ⊂ P1 = SL(2,C)/P;

– there is a standard linear fractional transformation
(Cayley transform) on P1 that takes H to ∆;

– the VHS over H is acted on by SL(2,R);

for T =

(
1 0

1 1

)
= expN where N =

(
0 0

1 0

)

we have
{T k}\H ∼= ∆∗

∈ ∈[
1

z

]
−→ t = e2πiz .
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• An arbitrary period mapping Φ : ∆∗ → {T k}\D is
approximated by a nilpotent orbit

(∗) O(t) = exp(`(t),N) · F , F ∈ Ď

where T = exp(N)

sl2-orbit theorem: The nilpotent orbit is approximated by
an equivariant period mapping

H //

��

D

��
∆∗ // {T k}\D

induced by a homomorphism of Lie groups

SL(2,R)
ρ // GR

∪ ∪
SO(2) // H
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where

ρ∗

(
1 0

1 1

)
= T (ρ∗ = induced map on Lie algebras).

• Implication:

– any representation of SL(2,R) is a direct sum of the
standard representations recalled in Lecture I.

– the standard representation gives a weight n VHS, hence
any period mapping Φ : ∆∗ → {T k}\D will have
properties inferred from the standard ones.

This will then prove the existence of a LMHS associated to
Φ : ∆∗ → {T k}\D.
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Example: If Φ : ∆∗ → {T k}\D is a period mapping of
weight n, then

(N − I )m+1 = 0

for some m 5 n. The reason is{
weight of a

direct sum

}
=

{
maximum weight

of a summand

}
{

weight of a

tensor product

}
=

{
sum of the

weights of the factors

}
.

This gives the index of unipotency part of the monodromy
theorem.

Example: v ∈ Wk(N) ⇐⇒ |v |t,H = 0
(
(− log |t|)(k−n)/2

)
.

In particular,
kerN ⊆ Wn(N).

Corollary: Any invariant vector has bounded Hodge length.
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• Now let B be an algebraic variety, generally
non-complete, and

Φ : B → Γ\D

a period mapping with monodromy group

Γ = Φ∗(π1(B)).

Theorem of the fixed part: If v ∈ V Γ is Γ-invariant, then
the Hodge components vp,q

t are constant.

Proof: Using the curvature properties of the Hodge bundles
and the corollary

log |vn,0|t,H is pluri-subharmonic and bounded on B

=⇒ |vn,0|t,H = constant

=⇒ vn,0
t is constant (uses form of ΘF n).

Then v − vn,0 is constant, and we apply the same argument to
this vector to get vn−1,1

t is constant, etc.
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Application: Γ is semi-simple.

Idea: For an invariant subspace look at its Plücker coordinate
in ∧dV and show it is constant. From the theorem of the
fixed part the Hodge (p, q) components of the Plücker
coordinate are constant =⇒ invariant subspace is a
sub-Hodge structure.

• Where does the sl2 come from in the sl2-orbit theorem?

– nilpotent orbit gives y → exp(iyN) · F0 ∈ D = GR/H for
y � 0;

– want to lift this to a map

y → g(y) ∈ GR;

– any map to a Lie group is determined (up to fixed
left-translation) by pulling back the g-valued
Maurer-Cartan form ω = g−1dg ;
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– g = h⊕ h⊥

h⊥ =

GR

↓
GR/H

– apply this to exp(iy)N · F to get ωh(y)
– ωh satisfies three equations:

(i) ωh ∈ h⊥;
(ii) g(y) is a lift of exp(iy)N · F0;
(iii) z → exp(zN) · F0 is holomorphic.
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Setting

A(y) = −2g(y)−1g ′(y) = −2ωh

F (y) = g(y)−1Ng(y)

E (y) = −JF (y), J2 = “i” on h⊥

the conditions (i)–(iii) lead to

2E ′(y) = [A(y),E (y)]

2F ′(y) = [A(y),F (y)]

A′(y) = −[E (y),F (y)]

↔


structure

equations for

sl2


(These turn out to be the Nahn equations from mathematical
physics)
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The distance decreasing property gives

‖A(y)‖ = O(y−1) as y →∞
and with “some work” there are similar estimates for
E (y),F (y). This leads to

A(y) = A0y
−1 + A1y

−1−1/2 + · · ·
E (y) = E0y

−1 + E1y
−1−1/2 + · · ·

F (y) = F0y
−1 + F1y

−1−1/2 + · · ·
where A0,E0,F0 ∈ g give an sl2!

Application [CK2]: Let Φ : B → Γ\D be a period mapping
(weight = 2n) where B is an algebraic variety. Then the
Hodge locus

H := {(v , b, γ : v ∈ VZ, γ

= homotopy class of paths b0, b, γv ∈ Hgn(Fb)}
is a countable union of connected components each of which
is proper and finite over B .
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Corollary (informally stated): The subset of B where a
given v ∈ VZ is a Hodge class is an algebraic subvariety of B

• Sketch of proof:

B̃ Φ̃ //

��

D

��
B Φ // Γ\D

Hg(v) := {b̃ ∈ B̃ , v ∈ Hgn(Φ̃(b̃))}y
B

– VC/F
n+1 → B̃ is a holomorphic vector bundle F#;

– v ∈ VZ gives section σ(v) ∈ H0(B̃,F#);
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– Hg(v) = {b̃ ∈ B̃ : σ(v)(b̃) = 0}
=⇒ Hg(v) = σ(v)−1 (zero-section)

Q(v , v) = ‖vn,n‖2
H +

∑
p 6=0

(−1)p‖vn+p,n−p‖2
H (topological quantity)

‖v‖2
H = ‖vn,n‖2

H +
∑
p 6=0

‖vp,n−p‖2
H (analytic quantity)

=⇒ ‖v‖2
H bounded by |Q(v , v)| and ‖v#‖2

H .

Proof: |Q(v , v)| 5 C , ‖v‖2
H 5 C ′, v ∈ VZ implies at each

point of B̃ that v is in a finite set; thus the map H→ B is
proper and finite
(Q(v , v) = constant gives covering space of B and v ∈ VZ,
‖v‖H < C ′ =⇒ v in a finite set).
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For B complete this gives the result. In general we have to
extend the Hodge bundles to B and analyze ‖ ‖H along
Z = B\B (cf. [CK2]).

Example:

t ′n

tn

Φ(tn) = γnΦ(t ′n) for γn ∈ Γ ⊂ GZ

=⇒ γn = γ for n� 0.
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• What do the limit theorems tell us about the structure of
Φ at infinity?
Here Z = ∪Zi is a normal crossing divisor

Z B

Locally Z = (∆∗)k ×∆` and the limit theorems may be
(very non-trivially) extended to this case (cf. [CK1])

• For b ∈ Z ∗I the map

Φ0(b) = {associated graded to Hn
lim(b)}

is like the earlier period mapping where B = Z ∗I . Hence
we are interested in a fibre of Φ0; i.e., in a family of
LMHS’s where the associated graded PHS’s don’t vary.
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Example:

q p

p′

C̃

q′

C

(AJC̃ (p − p′),AJC̃ (q − q′)) ∈ J(C̃ )⊕ J(C̃ )

• the level 1 extension data gives a map

Z ∗I
//

��66666
AlbZ∗I

�������

Jab
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which extends to ZI

ZI
//

��3
33333 AlbZI

���������

Jab

Interpretation: AlbZ ∗I is a semi-abelian variety

0 // TI
// SI

// AI
// 0

∼ = =

(C∗)m abelian variety

and any morphism SI → Jab factors

SI
// Jab

Z ∗I

OO
Φ1

>>}}}}}}}}
// AI

OO�
�
�
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• The fibres of Φ0 and Φ1 (Gr(LMHS)= constant and level
1 extension data = constant) are (C∗)m’s (algebraic tori)

Example (continued):

q p

p′

C̃

q′

C

There exists f with divisor (f ) = p + q − p′ − q′. Using
differentials of the third kind there exists a cross-ratio
{p, p′; q, q′} ∈ C∗ that gives the level 2 extension data.
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Open question: Define the completion Φ2 as a map of ZI

to a toric-like variety such that we have compatibility on
ZI ∩ ZJ ’s.

• What about extension data of levels = 3?

Here as a result of the differential constraint imposed by
I ⊂ TD

the extension data of level = 3 is determined up to
integration constants by Φ0,Φ1,Φ2.

Example: The period matrices for VHS’s of Hodge-Tate type
over P1\{0, 1, 0} have as entries the higher logarithms `ik(z)
(these give the extension data in this example). The above
result becomes the classical result that the `ik(z) are iterated
integrals of log z .
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• Finally we discuss the Chern forms Pk(ΘF p) of the
canonically extended Hodge bundles.

Given the data (B ,Z ; Φ) where B is a smooth projective
variety, Z = ∪Zi is a reduced NCD, B = B/Z and

Φ : B → Γ\D

is a period mapping there are canonical extensions

F p
e → B

of the Hodge vector bundles over B . Using HRI, HRII over B
these bundles have Hermitian metrics with curvature matrices
ΘF p and Chern forms ck(ΘF p) defined by

det(I −
(√
−1

2π

)
ΘF p) =

∑
ck(ΘF p).
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Applications:
• If dim Φ(B) = dimB , then (B ,Z ) is of log general type;

• if Φ∗ is injective, then B is complete hyperbolic.

A subtle analysis of the singularities of the Hodge metrics and
resulting curvatures give that

The ck(ΘF p) are the restrictions to B of closed cur-
rents whose Lelong numbers are all zero and that rep-
resent ck(F p

e ) ∈ H2p(B).

The proof‡‡ essentially shows that

• the metrics along Z of the canonically extended Hodge
bundles have logarithmic singularities (norms of
holomorphic sections are O(− log |t|));

• the Chern forms have at most Poincaré singularities (they

are O
(

dt∧dt
|t|2(− log |t|)2

)
.

‡‡Cf. [GG].
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Especially subtle is that these bounds are not uniform in
sectors

t1,

t2

where the “O” becomes infinite but at a slower rate than the
width of the sectors; the Chern forms will be in L1.
Using this further arguments due to Vieweg and completed by
Kollár gives the

• Iitaka conjecture: If f : X→ B is a family where a
general Xb is of general type (κ(Xb) = dimXb), and
where Var(f ) = dimB , then κ(X) = κ(Xb) + κ(B)).
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