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Group Theory and Spectroscopy

by

Giulio Racah r

These lectures will treat the applications of group theory to prob-
lems of spectroscopy end nuclear structure. While developing the mathe~
matical tools for this purpose, we shall occasionally forego the elabora=-
tion of a rigorous proof. In such cases, references will be quoted,

Lecture 1, N

GENERAL NOTIONS ON CONTINUOUS GROUPS

$1. Continuous Groups and Infinitesimal Groups.

We start with a set &f n variables x; (i = leesn), which may be re-

garded as coordinates of & point in a certain space. Consider now the set

of equations i

2; al,...,ar) (i=l...n), (1)

xl= fl(xl,o..,x
o
in which the af appear as & set of r independent parameters. Omitting

indices, we shall write this and similar relations in the form
= . = 1
x f(xo,a) or X = 8.x (1)

These equations define a set S of transformations, depending on the para~
meters &, which map the vector X onto x, Ve shall assume that the fi have
all the required derivatives, and that the fi depend essentially on the pa-
rameters, i.e, that no two transformations with different parameters are the
same for all values of X s 80 that r is the smallest number of parameters

needed to specify the transformations completely .and uniquelye.
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The set of transformations f is said to form a group if it obeys
the fpllowing two conditions:

i) The result of performing successively any two transformations
/of the set is. another transformation belonging .to this set, Formally, if

x =‘f(xo;a) and x'= f(x;b) then there exists a set.of parameters P such’ that

- o = Sop(asb) (2)

xt= £(x;b) = £(£(x_,8)5b) = £(x 50) = £(x_; p(ash))e  (3)

ii) Corresponding to every transformation there exists & unique

inverse, which also belongs to the set: Given equation (1) there exists

P

s parameter a such that x = £(x;8),

The uniqueness of ® is guaranteed if the Jacobian of the transfor-

. , %
mation does not vanish:

Of

o,

#£0 (4)

Transforming X, onto x and then -inversely x back to X s we- obtain
acoording to i) a transformation which belongs to the group and is charac~
terized by the set of parameters a,e Since the transformation depends on
the parameters in an essential way,the a, 80 constructed cennot depend on
the particular value of the parameters from which we started, The trans-
formation f(x,ao) is -called the identity.

S8ince it imposes no restriction, we shall take:

a‘o’ =1 (p = Lewor)s




r is called the order of the proup. (Note that this usage is different from
that found in the theory of finite groups,)
We also remind the reader of the following definitions:

‘A mapping of one group onto another is said to be homomorphic or a homo-

morphism if it preserves the operation of group multiplication, We call
such a mapping an isomorphiem if, in addition, the correspondence between
elements of the two groups is one-to-oms, Since the combination law of the
transformations (1) is given in terms of the parameters a, there can be
trensformations torréespornding to different values of n which are homomorphic
or even isomorphice

A group of- linear transformetions which is homomorphic with & given group

1s called a representaticn of thié'grogyo

The fundamentael idea-of"'Sophus Lie's theory of continuous groups

is to consider not. the whole of a group, but that part of it which lies near
P
the identity, consisting of the so-called infinitesimal transformations.

Thus, instead of the finite displacement of a point under a transformstion,
we consider the application of successive infinitesimal displacements « we

think of a generalized velocity field describing the motion of a péoint from
its o;iginal position X, to its final position x..

We have now two equivalsnt expressions for xg
a) x = f(xoga) or b) x = £(x50). (5)

Corresponding to these we can reépresent in either i@ two ways a transfor-
metion,as a result of which the new components of x differ infinitesimally

from the old ones - by differentiation of (5a) or by introducing e parameter



of infinitesimal size in (5b): .

x +dx = f(xo;a. + da) or x +.dx = £(x, Sa)

or (employing the sumnmetion convention) . . .
éx = ________bf(xo,a) da” or dxX = i@f_______(x;a) 6&6". (8)
o o
Qa \ Oa a=0

The last may be written

dx’= uijx) A , uijx) = -b—f%%éﬁ) (1)
a 7 a=0

t

which defines the "velocity field" ui_(x) ‘mentioned above, In the notation

of (2) we may write -

a + da = Cp(a;&.)a

Since it follows from(2) and (5) that Cf(a;o) = a, we have
= .

a,+da:=a+ m Sat°
. M b=0

Thus, da is a linear combination of Oa:

e
daf = g(a) &Y, )13(&) = -a_ib%ﬁ) . (8)
b=0

Solving for 59., we geot
6a” = }\(fza) dal’ (8!)

vhere
)\}“:1 » leos )\;-)*%=6;o ~ (9)
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From (6), (7) and (8') we get the first fundamental formula:

o4 T ’
" -a_b(x) )\P(a.). (&)

If u'is to represent the.velocity field of a -transformation (1), equation

(A) must be completaly integrable, i.es <it.must be capable of admitting

solutions-with n arbitrary constants X The integrebility condition

0% %t . > “ -
NCEY WY
(435 B3 1) -
and, using (9), this gives - .
) %—.-r - g.i.} = o () o (10)
. b 0xY - v et -
P
where ) N o t " : ,“
B T

1

Since u is independent, of. a, differentiation of (10) by af gives

T
._?f.)_:l’_(f_). ui=D.
B T T

.
But the a's have been assumed essential, so that by (7) the u's are linearly

independent, hence the cts are independent of a. Equation (10) is

&

i
¢ § Ou Y bu - T i
X 6}{5’ Yy bxj °xv Y% (3,)




and from (11)

b)\'t é)\t YR
aao-e i x Ao Ao P2

(Bl) is a necessary condition on the velocity field if the latter is to
generate a group, and (Bz) is a corresponding restriction on the manner din
which the atfs combine,

An infinitesimal “transformation on the x induces od any function

~

F(x) a variation

aF (x) =-§£-dx = 6 ul B_x?' = 7 x_¥ (12)
where _
x_= b (x) & o ()
T ozt

(lZ)/shows thet every infinitesimal trensformation of F(x) is genmerated by
& linear combination of the .operators X which are called- the infinitesimal

operators of the group S. From (Bl) it follows that they satisfy the

relation
xexo_- X X o [xexo.] - °P$X-c . (14)

Evidently
Po_t:- - co_(:: . (Cl)

Substituting (14) into the Jacobi identity
[[X\"X X1+ [fX X ]X]*[DECXIX I=0

we get



c M Ve P Vg Po V. 0. (c

po S T o G T g Sper 2

! We have shown that equations (¢) are implied if thé el form a group.

. . .
% That the convérse to this statement holds -is the content of the three fun~
damental theorems of Lie, which we shall -not prove, They state that

I, If there exist fly x* setisfying (A) then they form a groupe

I, If there exist u's satisfying (B,), then there exist A's,

determined within isomorphism, which satisfy (Bz), so thdt

equation (A) is integrable, )

III, For every set of o's satisfying (C), there exist u's satisfying
(Bll).

We shall write ar infinitesimal trensformation of the group: S in

the form Sa = 1 + 6A°—X°_, where Ga” is an infinitesimal quantity defined

to bs of the first order, If we combine two such trensformations, wo get
~

= p Oy £ P - o
8.8,= (1+ 6a,x(o)(1 + 8% _) L+ be. X(’ 8a Xy s
where the first non-vanishing infinitesimal terms have beer retained, Thus,
to the operation of multiplicatioh in § corresponds additioh in the 4infi-

nitesimal group of S, If thé Pirst order quhntities vanish, we have to con-

sider quantities of higher order, But the second theorem of Lie implies
that in-this connection-we need 'never go bgyond the sécond order of infini-

tesimals - i.e; we have only to worry about commutators, which are exprossions

of the form SaS S;l 8;19 and t6 ask ‘that the corresponding infinitésimal

b
operator of the second order, 6&9550—[XPX0_] be contained in the lirsar

manifold of infinitesimal operators,




§2. Parameter Groups and Adjoint Groupss

On vomparing (8) with (7), we see that a close. formal analogy exists
between the functions p.end u. In fact, the @ (asb) of (2) which comnect
the parameters according to the composition law of the group may themselves

be considered as defining a grovp in the same way as does (1t)s

a'® = ©P(asb)

This relation can be regarded as a mapping of the a onto the a' acoording
to a transformation whose parameter is bs We shall prove that these trans-

formations form a group Pl’ which is isomorphic with S and is called the

first parameter group. Indeed, if a? =,%?(a;b) end a" = (at;c) then

a" = P(P(azb)ie) = P (a;P(bse))

where the last equality follows from the associative property of the trans-
form;%ions fi. We thus see that the }aw of composition is the same for the
first parameter group end the original group of transformations fi.

The analogous group of transformations on the argument b of Qp(a;b)
is called the setond parameter group PZ' Pz is enti-isomorphic with §;

that is, it is isomorphic when the factors are teken in the reverse order,

But since (xy)-1= ynlx-l and since a group contains x-l if it contains x,

the two are in fact isomorphic, Let a (or c¢) be a trensformation belonging
to the first (or second) parameter group. Let the operation of Pl trans-

form b into bt= @ (b,e) and lot the operation of P, transform b! into

b" = P(c,b?)s Then it is clear that

b" = Cjo(csb') = ?(ca(f(b:a)) = ?( P(c.b),a)5n
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hence every element of P1 commutes with every element of on

The‘Pﬁs are the velocity field of P, (see equation (8)), and they

define the infinitesimal cperator
d
A= 18(a) — . (15)
RS AW

Correspondingly, in P2

. B,C=Fg(b) 5% (16)

Another operation which it is useful to consider is conjugation:
Given an element Sé of 8, to every element Sb of the group. there corresponds
an element Sb'= SaSbS;l. The operation b -—2 b' is a faithful mapping of"

the‘éroup onto itself which depends on S&sand which is callbd conjugation
‘of 8. by Sao Consider now the set of conjugations obtained by letting Sa
run _through all the elements of Ss These conjugations themselves constitute

e group of transformations, parametrized by the paremeters of Sa’ but not in

general isomorphic with S. It is easily seen that isomorphism between S and

the group of conjugations holds if and only if the identity is the only ele-

ment of § which commutes with all elements of S,

If we regard the relation xi= Sax as a coordinate transformation, it

is well known that the effect of operating with S, on & function of x! is

given in terms of x! by the operation of the conjugate of Sb by Sa acting

on the same function of x:

' - 1
Spax! = 8,8, % = (8,x)

b

The conjugation gives the change in the parameters of an operation if this
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operation is considered in the new systém.of coordinates x!., The advantage

of the group of conjugations over the parameter group is that the conjugate
element S S S;l is infinitesimal if Se is infinitesimal, irrespective of the
magnitude of S, e

If in the first system of coordinates Se is expressed by 8, l+¢ epxe,

5 then, after the transformaticn with 8, the same transformation S will be
expressed by 1 + £.a'e Xé s and hence

e‘exé = ofx (17)

i '
“ The group of transformations 6®—> o © 15 called the adjoint group. We wish
¥ to determine its infinitesimal operators, produced by transformations Sa in

the neighborhood of the identity."With Sa= 1+ 6§°—Xc_and SP= 1-+£Xb we

have -

sa-(sss 1~ )s =(1+[5ax03 EX])(1+€X)

S =1 + Xt =8 3
: &% " % a%0"a 5q

¢

or
, Xt -%X sdx =8&Ix,x1=c % &% ,
} e e e a[O"e] g
by (14)s From (17), we have

}I de® X.= -ef dx? = of cpggarxd

,F or

| det = of o 'V6;°—. (18)
; . po-

|

r If Ec- are the infinitesimal operators of the adjoint group, we find by

w comparison of (18) with (7)mand (13) that

!%
13’ E = of ce;gb-f . (19)
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§3, Subgroups, simple and semi-simple groups.

&) A group is Abelian if all its elements commute, It follows from

the correspondence between commutators an&\équarg brackets that for an Abe-

lian group all square brackets, and consequently all structure constants,

vanish:
T
oecr 0 (20) .

b) A subgroup of a group S is a subset of elements of S which sa-

‘n

tisfies the group postulates, Thus, if Xl, Xz, voey Xp are the infinitesi-

-

mal operators of a subgroup, the structure constants of the group must sa-

tisfy the relations
, <
c =0 (g2 = p, T>D)e (21)

¢) An invariant subgroup, H, of & group S is a subgrpup,of S which

contains dll the conjugates (images) of its elements. Thus, with Sn' it
/ -
contains stnsxl for any Sx in 8o If so, it also contains the -commutator

S_S S"lS"1 Thus, the sQuere bracket connecting an infinitesimal element

Xnx a
of H with any infinitesimal element of S must belong to He If Xl’»Xz"°"Xp

are the infinitesimal operators of an invariant. subgroup of §, the struc-

ture constants of S must satisfy -
T <
%00 O (e =ps» T>p) 522)

d) A group is simple if: it has no invariant subgroups besides the

unit slement,

&

e) A group is seimi-simple if 4t has no Abelian invariant subgroups

besides the unit element.
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The distinction between groups which have Abelian invariant guhgroups
and those which do not have such subgroups is important, because Abelian sub~
groups, though apperently easiest to deal with, can actually be most trouble-
some from the point of view of representations, as the following example will:
show:

We consider thne group of rectilinear motions in one dimensiom, in
which the transformation x! = x + a followed by x" = xt+ b is equivalent to
x"= x + a + b, This group ¢an be represented by square matrices of the

second rank, in terms of which the composition law just given would read.

Howevef, none of the matrices of this Earticplar representation can be brought
to diagonal form'by a similarity tngnsformatiqp. This ?eculiqr behavior is
clo;;ly related to the Abelian property., Indeed, as we shall show later,
semi~simple groups never exhibit it, Moreover, the physical applicetions

in which we shall be interested will require the use only of semi-simple
groupe. We shall therefore from this point on restrict ourselves to the

study of semi-simple groups. To this end, we must have a criterion for their
identification.

Such a criteriocn can be formulated very simply in terms of a sym-

metriocal tensor of the second ragk which-we construct from the ¢ ;F:

geo_= CPS? ccﬁﬁx R (23)

If the group is ssmi-simple, then necessarily,




det | g o #0 (24)

For suppoge it possesses an Abelian invariant subgroup, the indices of

whose elements are denoted by "é, T, ess o Then,

’ - e Ko A . b
F ‘et Tp
. P 5 .

= c C— by (22)
f)\ P
g

=c o by (22)

pA op o |
=0 by (20)

That the condition (24) is sufficient as well as necessary has been shown

"

by Cartan,

We can use the tensor 511, to define a relation of orthogonality be-

tween contravariant vectors or to form new tensors by lowering of indices.

’

As an example,

G

c = o 25
poa” “po B g (25)
and this new tensor-is totally ‘aa.niisymmetric’, for by (23)‘,
c = ¢ Lo Ve B B
Joo’)\ po- ’B’)ft AV
T, V, M T, v, M
Cop%p A T g e ad. W (0)
’[; v‘,. }); [ ’E, - }1 .
co_}l c?,c ey’ * c)“? ST by (Cl)

The last line has the desiréd property, since it ig invariant under cyclic

permutation of the indices and is, by construction, skew in P and o .
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If the group 8 is semi-simple, then Cartan!s criterion (24) implies
that we can form frqm g c_the reciprocal tensor ch.which can be used to
raiee indices and define orthogonalify between covariant vectors,

As an example of the foregoing we consider the group of rigid motions
in three dimenﬁion§; consisting of rotations anrnd translations, The infini-

tesimal rotations are generated by operators Lj (3 = 1,2,3) -satisfying
[Lle] =11, ete, (26)

snd the infinitesimel displecements by operstors P L4g P, = L5, P5= L6

l=

which commute among themselves but which satisfy
[L1L5] = iLg etes

go that the only non-vanishing structure constents are

~ c 3 ¢ 1 c 6. o 4. e °- c 2, c 5. c 6. c 4 i
12 23 15 26 34 33, 61

plus a corresponding list given by (Cl)a For the %Pc‘we find
B11% E2” Bzg™ * » Buy” E5p” Beg™ O By O (p Ao

The determinant det g o_vanishes, as required by Cartan's criterion, since
the trenslations form an Abelien invariant subgroup,
If we consider only the group of three-dimensional rotations, de-

fined by (26), we find that it is simple and that the metric tensor is

%w_ﬁ 2(5’;)0__ (27)
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liecture 2,

CLASSIFICATION (F THE SEMI-STMPLE GRQUPS.

§1. The Standard Form of the Infinitesimal Group.

In 6rder to obtein a standard coordinate system for the set of in-
finitesimal operators of a semi-simple group we consider an eigenvalue
problem of the form

- [AX]=pxX (28)

where A is a fixed arbitrary infinitesimal operator A =naP%p while X = xp Xv

is an eigenvector corresponding -to the eigenvaluezp » Using (14) we can

write (28) explicitly as -

. an c f x X
Since the infinitesimal operators are linearly independent it follows that

e

~ ’C \) .
f v =0 . (29)
From (29) we get the secular equation
T T
det(al %y " 6v )=0 (30)

If there exist r linearly independent eigenvectors, they can be
used as a basis for a coordinate system in the r-dimensional space. How-
ever, generally, r linearly independent eigenvectors may not exigt if the
secular equation has degenerate roots, Usually, in physical problems,
conditions like herm@ticity or symmetry of the matrix insure the existence
of r linearly independent eigenvectors, But for semi-simple infinitesimal

groups Cartan has shown that if A is chosen so that the secular equation (30)




] 7=

has the maximum number of different roots, then only'f = 0 is degenerate;
and that if £ be the multiplicity of this root, there are corresponding
to this root A linearly independent eigenvectors Hl’ seey HJL which commute
with Bach others A ié called the rank of the semi-simple group. (Since
A commutes wit; jtself, the rank of a semi-simple group is at least one. )
We shall use latin indices 1, voo £ for the coordinates in the sub-
space of dimension./e, spanned by the Hi’ while Greek indices A ceee V)
will be employed for the-r- A dimensional subspace which is spanned by the
eigenvectors E%koooooE‘) corresponding to the non-vanishing distinct-roots
A ees ¥V o For the latt;; indices the summation convention will be sus=-
pended., The three indices‘P, o ,T will be used to refer to the whole

r-dimensional speace,

The basic vectors Hi and Edkare defined by the relations

[AR]=0 . (1 =1 seeeved) (31)

[AB] =B (32)

Further, since A is an eigenvector of (28) with eigenvalue zero, it can be

written in the form:

A= ;A (33)

We shell now discuss the commutators of H?'s and E's, in order to obtain

information about the ¢ a?" First, from Cartan'’s theorem, we have

(B, B ]1=0

Second, we consider [HiEc&]‘ To do this we write

[A[E,E,]] + [5,[Ea]] + (B[4 K]l =0.




By (31) and (32) this is
[A[HiEd\]] = d\[HiE‘*]. (35)

Thus [HiEo\] is an eigenvector of (28) belonging to p = ok, end since these

eigenvectors are not degenerate, we must heve

T T
[HE, )= & E,, or o '= o(isd\ . (36)
From (32), (33) and (36) follows that
K= Al Ay (37)

From here on the letter ok or the term "root" will be used to denote either
the form (37) or the vector with covariant components X 3 in the j ~dimen-
sional spacee.

Finally, to find [Ed\Ep]’ we form

g

<
[AlB, Bq 1] + [B, [B,41] + [E, (4 B, 1] =0
By (32), this is
= + .
(4B, B,y 1) = (A4 ) [B B, ] (38)
Hence [EoL Eﬂ’] belongs as eigenvector to the root X+ 3 if A +@3 is a root,
and vanishes if ok+{5 is not a root, If d.-!—{’_, is a non-vanishing root, we
shall write
ok +
R = = .
[dEﬁ] N‘*("’ Bap O Wp A NM> (39)
Ir {5= ~ A then evidently we have
_ i
(B B = 0o By o (40)
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and for the rest,

%;=m (TH&+p) (41)

We shall now show that if o\ is a root, then -k is also a root.
This is done by forming the tensor 8,1 The restrictions (36), (40) and
(41), when applied to (23), give

% i Atp i -
g =c .0 + E o c +e, T a., (42)
AT ol TR AE-o. oc(s 1;¢+(5 Ao Ti

But by (36 and (41), each term om the right of (42) exists only when T= - o,

sq@ that

B = O (T#-a) (43)

Thus, if -~ A is not a root, Cartan's criterion (24) for the semi-simple

groups is violated. By & suitable normalization of Ed\we may set
\

g“-mn 1 ? (44)
//
and we can order our basis so that the tensor &, o is written in the form
od =g ('(l
Bix 3 0
:
0600000000000
;(01)
= ¢'10 0
i o
s 0

Since-det gp - is the product of the elementary determinants, it follows
from (24) that

det g, A0 (46)

Further,

(47)
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It may be noted that the 8y defined by (47) has & non-vanishing determinant

only if the vectors okl span the entire A ~dimensional space, will be

Eix

used as the metric tensor for this epacs.
Using the inverse tensor we can now establish the following useful

identity:
i ik o
L= k
ik

= € ©°p 0’\_caby antisymmetry in subscripts,

ik o
= 8 o, by (44)

ik - g1
=g & 3 A by (36), (48)
so that (40) can be written as -
[E, 8 1= ol (49)
oA e o 1

i
where the oki are the contravariant components of the vectorok s Collecting

(34), (36), (39) and (49) we have for -the standard forms of the commutation

relations
(B; g1 =0
{HiE‘*] = OLiEd\ '
(50)
[EcL Eﬁ] = Not(; Eo<+(5 when o&+(5 is a non-vanishing root
i
[E, E] = &« H, .

As an example of the foregoing, we cen take the operators of rotation

in three dimensions, generated by Ll*"* Lz, LS such that

[z, L2] =ilL;, etes (51a)
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If. we take A equal to Lg, the two relations

i

[Lgs L, $11,]= T i) (51b)

show that Ll ¥ § 1, are eigenvectors corresponding t& e =21, Use of the

2
normalization condition (44) yields
L.+1L L.-1iL
Hy= Lys Ee-t. 2 p.o=1 2, (51c)

YT

§2. Properties of the Roots.

We shall now prove the following

2(*3)

Theorems If o\ and [3 are roots, then ) is an integer and (3_ 2( )o\

(rey
%
is also a root,
/This theorem is to hold for arbitrary oA and /3 » but we shall start
by restricting {E'to be some root, a), such that GK*-X is not a root, Ac~

cording to (50) we can generate a set of operators

(B, Byl " NayEea = E'X-ox
[B. E%-&l=E}-2&

(] . [ 4 L] L L d ° e L L L ] * * L ]

(B By _ged = Bp o(541) ot (52)

where the primes indicate that, for the moment, we are not interested in the
normplization of the E@). Since there is only a finite number of*E(Bs this

process must eventually stop after, say, g steps. Thus

* lle use the notation (oL for the. scalar product A, 1.
& P 1
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]

PNy

(E 0 (53)

...o\EX'-gok ] = Eé-(g*'l)cl N

According to (39), may be obtained again by an equation of the form

By-dan

[Eo\ E’y-(;j-t-l)o(] = Fj+1 E;} - ok . (5¢)

In ordér to evaluate the coefficients Pj +1 Ve eliminate from (52)

E!
¥ = (J+1)o
and (54), thus finding

(E!

FntBega” "B ga BB 30 - (B [ B, 1]

N CHENEEN

by Jacobits identity,
- LB g NH] * PGB 1y
by (50) and (54).

The use of '(50) and (52) gives at once a recurrence rel tion for the Pyt

-
)zj"’ln )15+ (d‘X) - J(d\d)° .,(55)
This relation holds only for j’-> 1, as o is not defined by (54); however,

the preceding argument shows- that (55) can be extended to hold also for

J = 0 if we define

P, =0 ’ (56)
From (55) end (56) we obtain immediately
pym ey - A (wa), (57)

It follows from (53) and (54) that )ig-!-lz 0, whence we Have

(R y)=%e(Xx), (58)
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where g is, by definition, a non-negative. integer. Introducing (58) into
(87) we get

(il
Py _.-2.(;5_.-3:__)_. (hak)s (59)

»

If (& &) were zero for some root o, this root would, eccording to (58),
be orthogonal to every root. But, as the roots span the entire ,Z ~dimen-
sional space, this would contradict (46). Hence we can write
o g = 22¥) (60)
C)
and we have proved that if o\ and X ére roots and A+ X is not a root,
then there exists a string of roots,
Y s 3= ol ...,X»M&Z Y- 8Rro (61)
(ol A)
which is invariant under reflection with respect to the hyperplane through
the origin perpendicular to the vector (s To return to the Theorem which
is to be proved, we (,note that for any root /3 , there exists s?me integer
i z 0, such that (5+ j& 1is & root but [+ (j+1)A is note We can now set

(5 + jR = Y in the above discussion, so that the string (61) can be written

(g"' J&k, (’_)"‘ (j"l)d\p ceny /5 9 ooy ﬁ - ko (62)*

(J+k=g),

-

and as

2(hfp) = 2(Ay) - 23(4k) = (g = 23) (4at),

2(%f3) is an integer, and (5- 2(ep) A is contained in the string (62).
(ko)
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In (39) we introduced a set of cqefficients Nak/}’ but we have yet
to see whether some of them may not vanish, This we can do with the aid
of the Theorem just proved. Assuming thet with o\ and /:5 » ok-l-/% is a root

wa evaluate

(E N

..ogEy\-o-ﬂ] = {E-ogEX -(j-l)o(] = -0(0(+/’.}EY-:]0‘\.

With this we form

N_J\M(s[Ed\Ex_j&] - Ndpm_o‘w(sz*.x_(j_l)ok
= Jy EX_(J._I)&, by (54).
Equations (59) and (62) now tell us that
AU (o), (63)

Nok/AN-ﬂ\ asp™ Py T2

and from this it is evident that No& ;( 0 if « +/$ is & root and therefore
>, 7 F
J= 1l
It follows from this that if A is a root, 2 o cannot be ome, since

oA

integer k, since if it were, it would determine a string which would con-

E, commutes with itself.- From this, ko cannot be a root for any positive

tain 2 L as an element, Hende, eny string containing zero has only three

elements A , 0, =K .

We take now L linearly independent roots o&,(L), ‘seay gg( ’e) as

the basis of & new coordinate system in the A wdimensional space, and exe

press all other root vectors as linear combinations:

L
B2y ) (64)

k=1 'k
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Multiplying (64) by %) and dividing by (d\(l) 1) ), which was shown to

be different from zero, we get

(P d\(i)) £ . (d\(k)ag(i))
(@) Ty k(R 1)

3

Using the fundementel relation (602 we deduce readily that the new
covariant components bk must be real, rational, and even, by a change of

scale, integral numbers.

This shows that for a suitable choice of the Hi the o&i are real,
and this implies that Bix is a positive definite matrix, since for any(real)
i
x
2
Bk xt xk=§ (x)* 20, (65)
A

Hence the A -dimensional space has an ordinary Euclidean metric,

’

~

434 Tho Vector Diagrams,

The graphical representation of the root vectors is called a vector
diagrames Schouten derived restrictions on these diagrams from which all
simple lLie groups cen be founde The complete classification (already found
algebraically by Carten) was obtained using this method by ven der Waerden,
who showed also that to every vector diagram corresponds only one infinite-
simal Lie group, Since the roots belong to a lattice which is invariant
under a group of reflections, Coxeter's construction of all fiqite groups
generated by reflection leads to a third method of clessifying the simple

groups, We shall here sketch the method of Schouten and van der Weerden.
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Suppose we have two roots, o\ and o and let be the angle be=~
’ g

tween thems We saw in the preceding section that

(h3) = & m(rne) = & n(pp), (66)
where m and n are integers, From this we get
2 (d\%)z mn

cos” Cp = L =— : (67)

(%o ) A(2)

and from this we see that gg can have only the values Oo, 300, 450, 600,

and 90°, From (66) we deduce that the ratios of the lengths of the two vec-
tors are '\/—S—for 300, “\/~2‘£or 450, 1 for 600, and undetermined for 90°.
For 0° we know already that A = [j .

We want to construct every p:)ssible veotor diagram which satisfies
these conditions and those obtained in §2., As Cartan has shown that every
semi-gimple group is a direct product of simple groups, we shall be interssted
only in the diagrams of simple groups, We shall therefore not consider dia-
grams which can be split into mutually orthogonal parts, since evidently
every such part corresponds to an invariant subgroup.

It is easy to see that the only possible two-dimensional diagrams
ere the ones drawn below, They are labelled by the letters which are tra-

ditional from Cartants thesis; the numerical subscript denotes the rank of

the group.
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e shall now generalize these diagrams to £ dimensions. In what
follows, we shall denote by o, & set of mutually orthogonal unit vectors.

A« The diagram A,, above, may conveniently be regarded as con-

pa

elsting of all vectors of the form e,- ek(iﬁk&l,z,s)o Generalizing to £

dimensions, A is formed from £+l unit vectors 3, by forming the ,E(Z-*-l)

£

T
differences &= Oy These will lie in the plare :% xi= 0. Thsre are
L (L£+1) vectors, and adding to this the rark, which is the multiplicity of
the ;'oot zero, we see that the group is cf order (/€+1)2~lo

B/ﬁo We can generalize B2 in £ dimensions by constructing B{ Lout
off all the vectors 2 o, and # o % o (isk=loect)s There are 2,@2 vectors,
and the order of the group is Z(2.0+1).

c

0° Another possible generalization of Bz,, however, is to construct

ell veotors of the form + Ze, end ¥ o % e, (i,k=lcaad)s For L=2, ¢. differs

i 2
from B2 only by rotation through 450\3 For X > 2, these diagrams are different
7

from the B, » CLhas the seme order as Bgo

.D/&. For £ > 2, the diagram consisting of vectors % s > o
(i,k= 1,.44) represents a simple group, which we shall c¢all D, ., There are
2 £(£-1) vectors, and the group is of order J(2/-1). For K =2, this con=

struction gives only two orthogonal pairs of vectors and is therefore not

simple, It may be noted that by a rotation of the axes given by
2" °3" °4)

o) = Heg= % o5 0,)

1
el = ‘2‘(61- 0y~ o5t 94)

el = ;.33‘—(61+ e
(68)

fa—l—
of = &(ey* o,* o * o))

the vector diagram A5 mey be brought into coincidence with Dso



ven der Waerden has- shown that apart from these.four classes of
simple diagrems there are only five poasible simple diagréams. One of them
is G,3 the others are the following:

F Thig diegram consists of the wectors of B, plus 16 more vectors

4° - 4
%(t eit 82: est 94)0 There'are 48 vectors and the group is of order 52,

E6 cdonsists of the vectors of As,'the‘vectors 1\ﬂ5‘é7, and all the

vectors

te, fe, e, &e4 6, te.) #

S

where in the first fraction we take three_signs positive and three pegative,
There are 72 vectors and the group is of order 78,

E7 consists of the vectors of‘A7 and all the vectors <,

%(tel i-ez 1-63 1-64 ies 196 ie7 1.68))

L4

where we take four signs positive and four negative, There are 126 vectors,

e
-~

and the group is of order 133,

Eq consistd of the vectors of Dg and all the vectors

-

te, e, tog fe, to. te. to, 18.),

Z\}&-’

with each sign occurring an even mumber of times. There are 240 vectors,

and the group is of ‘order 248,
The simplest realizations of the groups characterized by the vector

diagrams s Dy, are the classical groups, i.e. the special

A C

/6, /6, Z

linear (unimodular), the orthogonal and the symplectic (complex) groupse
For the full linear groqp‘in AL +1 dimensions we may choose the in-

finitesimal operators




Xik= X aﬁ » (i,k“l.oo L"'l) (69)

: with the commutation relations

5 x, -6 %X, . (70)

(X1 %] = Oen™ Osr¥imc

But the full linear group'is not a semi-simple group; the operator Z de
commutes with every operator of the group, and the Abelian subgroup generated

by this operator (1.6, the subgroup of the dilatations) is an invariant sub-

groupe
In order to have a semi~simple group we have to réstrict ourselves

to the unimodular subgroup (or 'speciael! linear group) in L dimensions,

-

Then the xii are no longer infinitesimal operators of the subgroup but should

be replaced by

i
Xis = %43 " 75T JZX;};] , (897)

s change ‘which does not affect-the commutation relations (70). These operators

correspond to the diagram A ,&if we meke the identification

X}, 8H

i1 ;0 . . (71)

o= o)

Although we have .£+1 operators Hi » only £ of them are linearly independent,
owing to the relation -

f—t-l

H. =0, (72)

=1 1

For the orthogonal group in 2.4+l dimensions, which leaves the quadratic

form )& y
E xkx-ka xi + ZZ xkx-k )
k= -L k=1 7

D A
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invariant, we may choose the <infinifes:§mal operatorsa

i 9 k ' .
XikJ -inﬂ X a:k - X &é:{ F) (i,k’ 0’ il,oao,i‘ ,e)’ (73)
¥ s . i
with the commutation relations . -
[xxk mn 6k+mxln- Skmxim- 6i+mxkn+ 51+nxlan' (74)

whete 6q is one if g=0, and zero otherwise, These operators correspond to
the diagra.m BL if we identify .
X557 By»

£

For the symplectic group in 2.0 dimensions, which leaves invariant

the anti-symmetrio. bilinear form

Z( "' kk):

we may choose the infinitesimal operators

e

i 4 90 k k 0
Xik= X_kia E" x &—_-E + & x g—_-i- ’ (i,k” "'l,.oo,-/e)’ (76)
X
with the commutation relations
m n m n
l.'X:‘kamn] = & 6k+mXin+ € 5k+nX:Lm+ & <'S.i-l-mxlcr.l'* & i+nxhn ’ (77)

where €9 ig +1 if q is positive and ~1 if q is negative, These operators

correspond to the diagram C , if we make the identification

L

X =H

g THy o XgF Bzo,t0,) (i,k > 0). (78)
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For the orthogonagl group in: Z[ dimensions, which leaves the quadratic

form %- invariant, we may choose the same 1nfin1teslmal operators as

in B/e;, with the same pomznutatg.on relations, except that now i,k ;‘ Oe

These operators co;‘respor}d to, the diagram D ¢ if we make the_ same identifi-

cation as in 'BZ o £ on N 2,3 I
v\‘; sk
N P IS L A O |
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Lectures 3 and 4

THE REPRESENTATIONS OF THE SEMI-SIMPLE GROUPS,

§1. Representations and Weightse.

A group of linear transformations of a vector space R which is

homomorphic to & given group is called a representation of this group.

The dimension, N, of R is called the degree of the representavion, If

s and 't are two elements of the group, and U{s) and U(t) the corresponding
matrices of the representation, then U(s)U(t) = U(st), Iwo representations
U(s) and V(s) are called equivalent if there is & constant matrix A such
that

A U(s) &% = v(s)

for every element s.
A representation is reducible if it leaves a subspace Rl of R
~
invariant, If this is the case, the matrices of the representation can

be given the form

(79)

where A. is a matrix whose dimensions equal that of Rlp If the repre-

1
sentation leeves invariant two subspaces R1 and R, such that Rl+ Rz'= R,
then the representation can be written as
A 0
1 (80) |
0 A2

We sey in this case that the representation is fully reducible, or

decomposable,
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A Lie group is determined by the r infinitesimal operators end
their commutation relations, Similarly, a representation of a Lie group
is determined if we heve r matrices, D , which satisfy the equation

DD-DDE[DD]ac’ED. (81)
p o op p o po- T <
In particular, we may ask for a standard representation with matrices H,
aend E‘*which satisfy the relations (50). These same letters, which de-
nc;ted infinitesimal operatora in the previous work, will in this leoture
consistently be used for the corresponding matrices.

Let u be a vector in the space R such that

Hu=mu (=21 e d)e (82)

Thus, u is a simultaneous eigenvector of the A matrices Hio The set of
eigonvalues m)j00e,m 73 are the covariant components of a vector in the
>

/e-dimensional spaces We shall call this vector the weight of w; from

now on the £ -dimensional space will be called the weight spacez Evidently,

u is also the eigenvector of the matrix )\lHi corresponding to the eigen=-

value

Am) = A'm, . (83)

A weight will be called simple if to it belongs only one eigenvectoro
The existence and various properties of the weights will now be
proved,

Ae. Every representetion has at least one weight.

Proofs Hl has at least one eigenvalue, say m, 3 let Rl be the sub~

space of R spenned by the eigenvectors of H, belonging to m s Since




~34=

H1H2u = HzHlu = mlﬂzu, it follows that Hleﬂl Rl' H2 hes at least one eigen=-
veotor in its invariant subspsace Rl' Continuing the process, which 1s
possible because every matrix has at least ome eigenvector in every in-

variant subspace, we arrive at the subspace RLwhich consists of the

simultaneous eigenveotors of H,eooH, corresponding to the weight mﬁ(ml....m;6 Yo

100t

Be A vector u of weight m which is a linear combination of vectors

v of weights m(k), all different from m, must vanish,

Proof'sy We form the matrix TT/\I(Hi- mf(Lk)) and let it operate on
k
the equation u = Z Uo Since all H commute, each factor annihilates e
k
term in the sumes Since the )\i are arbitrary, the left hand side is elso

‘
.
]
H

| 4
I

zero only if u vanishes. -

C. From B it follows that vectors with different weights ars

linesrly independent, so that there are at most N different weightse

De If u is a vector of weight m, then Hiu and Ed\u have definite

weights, m and m+ respectively.

i

Eoku we have

HE&ua[HiEd\]u+Ed\Hiu=(o(i+mi) By U o (84)

i

Eo. If the representation is irreducible the Hi mey simulteneously

be expressed in diagonal form.

Proof:s Sterting with a vector u having a definite weight, we con-

| Proof: For H,u this is an immediate consequence of (50)o For
sider the space R1 spenned by all possible products




cos Ex E(& E, s (85)

each of which, according to D, has a definite weight, Evidently, §9R1= R1°
Thus, since the representation is assumed irreducible, Rl coincides with R,
and the vectors (85) span Re If we select from them as a basis N linearly

independent vectors, each is an eigenvector of all Hi’ which thus have been

diagonalized,

Fo For eny weight m and rootd , E%EE&%- is an integer and

m = E%g%;}% K is a weight,

Proof: The proof is analogous to the proof of the Theorem of §2,
lecture 2, except that the weights are, in general, not simple, while in
the previous case Cartants theorem enabled us to assume that all non =
venishing roots are simplees We shall point out only the differences in

tie proofss

- Tie start out from a vector u, of weight m such that m+K is not

a weight, and form the series of vectors

ul= E-O(uo 2 u2= E-d‘ul, sed o

The relation

B U1 Pty 0

(86)
which, because of the possible multiplicity of weights, is not as evident

as its counterpart (54), may be proved by inductions. Assume (86) to be

true for a certain j-lsy then

Eokuj'*l: E‘* E—o\uj

i
= IR, B u.+ E E u.,=co H.u.+ B u
L Jug 5F PiBe a1

A T -ATA ] i

= [(d\m) -j(OfO()]uj+ }lj j'




L =36~
E Hence (86) is true for j if it is true for j-1, -and we-have.
}1j+1= (o&m) - J‘(dd\) +}‘lj ] (87)

corresponding to (55)e But Poo 0; by Dy since m+o\-4is not g root, and
therefore (86) holds with j+i = 0 and ;.a:°= Oo The rest of the proof parallels

that of the analogous theorem for the rootss ~

Gs By projecting the space R moduli uo,.,...,ug in a space of

-
-

N-(g+l) dimensioms and by repeating the seme considerations &s in F, it

X 2(A m) .
' may be proved that m arid m = o) A have the same multiglic;.tya _All
' possible weights belong to & lattice which is invarieant under the group S
generated by the reflections with-respect to the hyperplanes through the

origin perpendicular to the roots, Weights which can be obtained from

one enother by operations of § are ocalled eguiyalent ard have the same

e RV TR AR T R T

multiplicitye
: In the group A ,we have (dA) = le -8 ‘2 = 23 hence g weight
: P o 1 %k »,
= m - > . k- sk O -
m =-m e, + My, dee By 419741 (88)

? must satisfy the condition -that 2(m°(‘ei- ~ek))h/z =“x§11-7 m_ be “an-integer and,
‘5 . :
: in addition, that Lol

Z m =0, .(881)

1=l ’

M —

- * T Tl
which follows from (72). Therefore the m, are fractions with denominator

A +1 which differ by integerss  According to F and G, a weight equivglent %o

n is .
w (m,=- = = oe :o i'" . ;
me (mg~ m)(es o)) = met vee + MmOt eee FMOT 00 Wyy10ps1?

hence the group S is the group of permutations of the components of me




In B, we have, in addition to the condition that m = m be an

p 2
integer, thé further condition that 2(m . ei~) be an intégére Therefors

the components of any weight €re either dll integers or all halfaihtegers,
The group-§ is the group of permutations bf the compcnents with any numbetr '
of changes of sign.

In C /ﬁthe edditional condition is that 2(iie2e i?/4 be ah intéger, and

therefore all components are integers, The group S ie the’ same s in ;N

£z

In D ,we find :that both my= m and 'mi-l-‘mk are integers, Therefdre

L
the weights are the same as in B 5 3 but the group-S is ohly the' group of

permutations of the components with anh even number of” chenges of sign.

Py o+

82, The Classification of the Irreducible Representations,

-

We shall introduce a convention according to which the weights of
the representations can-be ordered, A welght (mlo..m 19 is said-to be po=
si?tiv; if ‘the first noh-vanishing -component is positive. Ohe Weight is
sald to be zx_f_L_g;i_l__e_x; than another if the difference- between them is positive.

A weight i5 calléd dominant if it is higher than its equivelefits.

Theorem 1, If & representeation is irreducible, its highest weight

is simple,

e

" Proofs Assume that the vector u, bélongs to the highest weight, m(o)a

According toD of §1 it is sufficient to prove that every vector of the form

cooEd EX E/sEd\uo (89)

which is of weight m(°) can be written as kuo, where k is a constant., We

shall show, in addition, that k depends only on the series ok,{z, ’ 5), § ceo




and on the weight m{®), It is clear from D that .e.+§ + Y+ +A = 0o There-
fore at least one of the roots must be positive, Let us say that ¥ is the
first positive root (from the right), Replacing EX E{& by E/i- Eb’.
80 on until Ea,acts directly on L and remembering that 1«?5, u = 0, we obtain
a sum of terms with fewer matrices E than (89) but still of weight m(o)°

Continuing this process until there are n(: more operators of positive weight,

we arrive at a sum of products of Hi acting on Uy, and these are finally

converted into a polynomial of the components of m(o) multiplying ue The

—
£

coefficients in this polynomial depend, evidently, 'only on the set of roots

KL, (5,3) 20, oes, 8nd not on the particular representation,

r~ Theorem 2. Two irreducible representations are equivalent if their

-~

-

highest weights are equal,

Proof: We distinguish the twa repregentations .D and.D! by using
~
unprimed quantities for :Drand primed 'ones for D', Let U end u; be the vec-

tors of the highest weight 'n'r(o) »- Which is assumed to .be the same for both

D and D!, and‘construct all possible vectors uj= ...E-X E(A“Eo( u, and odrres=
pondingly ua = see E‘a, E'ﬂ EY u(')o It was shown in D of §1 that these vectors

span the whole .space gnd- that' each has & definite weights +Thé equivalence

of the two ‘reﬁrese’nt’ations will be proved if we show that to any linear
relation which exists between the unprimed vectore there corresponds a linear
relaticn with the same coefficients between the correspondirg primed vectors,

Assume there is a relation
Xlul'l' quz"' eso = 0 $ (90)
-

x

then, using ‘the same coefficients ¥ e can construct a vector

1#!

+ [EX Eﬂ ] and




Y1U1. * Y U Feeee =W (907 )

The vectors w! for all possible relations (90!) form a subspace R} of R',

and it is easily seen that R} is an inveriant subspace under the operations

of the group, Since D! is 3.ri'educ;ible we must have R]" = 0 unless R]'_ consists

of the whole space R's. The last al@ternitive is excluded sinoce u") cer=

-

.

tainly is mot in R]. For if wi= ul, according to C of §1, the left-hand-

1
side of (90) contains.bnly vectors of weight =P o¢ THeorem 1 ‘would then

lead to ® relation - v P .

' ¥yt Y skpt eeee KO

which however, is incompatible with the corresponding relation

-

-

.,Xlkl.'. szz“‘ cese "’ Ow .
derived from (S0),the k being thé same for the two representations.

The connection between highest weights and irreducible representa-

tions is completed when we show that there exists ey irreducible repre-

as - P

¥ E

. - £ i
sentation which has any dominant weight as its highest weight. Indeed,

y Caxrtan has proved that

: (A) For every simple group of rank £ there are ¢ fundamental
o (1) (2)

dominant weights L such that if a dominant weight L is given,

[ X X XN J L

it is & limear combination R +
S e - - Lag’_Z % L(i) e (91)
i=1 * :

Yo [ * . <3 =
”f E P & A= -

with non-negative integral coefficients;

(B) There .exist .£ funddmental ‘irreducible reépr ésentdtions:
rLoeT . s o 2 : e = 1 Do s
s Bps 0005 B /Lwhlch have the fundamental weights as their higheat weights.,

>
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Since it is easy to see that’the weights of the Kronecker product
AXB of two representations are all the sums of one weight of A'and one
weight of B, the Kronecker product represgntation
G = 81X BX ese XBox By ees X aes (92)

xlatimeq x, times

has as highest weight. exactly the-wejight.Le & will, .in general, be reducible,

but one of its irreducible constituents will have L as its highest weighte

Cartan proved (A) and (B) for every simple group separate]yo We
) '1 -

shall here sketch as an e xample the proofs for the groups %@ and BXL'
2"’

AAC' The components of & dominant weight satisfy the relation

> > > * -
Ll < Lz = see = %ﬂ+lP If we assume as fundamental weights

<

(1), £ 1 1
L $ m“,ﬁ"m ©ccoed :E‘T‘T
(2), L1 £ 2 -2
P H I_-;l- 5 2-;1'9 71 evsve A+l (93)

® ¢ @ ¢ & ® o & 9 & ¢ © 0° o s ¢ o o &
.

“ -

L(‘Q) 1 1 L ....:_’.(‘
4 Z"‘l » F_T s OS¢ oo £+1 ] £+1

-

it .can be verified that .(91) .is..setisfied by setting

Ki = Li" Li+1 . (94)
The fundamental representet ions corresponding to the highest weights (93)
are the linear unimodular group in £+l dimensjons itself and the transfor-

mations induced by this group cn the antisymmetric tensors of rank 2,5...56.

* (Chevalley, Compte. Rend, 227, 1136 (1948) has given a proof of the whole
theorem which doés not make use of the particular structure of the
different groupse.
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It may be shown that a tensor of rank f in the L1 dimensional space
- " .

r

which has the symmetry definhed by the partition (fl, f2° esey I:Z*-l) with
. & = w 4

2+l

z by = f is a basis. of the. representation whose highest ‘weight has the
i=1
f .

components Li= f*i- y £

B yx 'The"‘%ompbnents of & dominant weight satisfy the relation
1,7 1,7 e TL ., 2'0s If we taks as fundamental weights ‘
- % o & ~,
L@( 1’) [ a‘%‘ P % o L] L] ? % .
L(z )\‘: } 0 0 ¢« o ¢« O . .
L( 8 ) 1 1 ;l- 0 Q o o 0)_ a ( 95 )
e . N ol T SR * o ™ x k -
. . o . . . ° . [ . -
ek 7 ’e § * v . [, -
. . L( ): 111 . v 10 .

1dt is easy ta see-that :(91) is satisfied by setting

- x. = 2L ‘
1. R (96)

g = Ly Iy (1 >1)s

]

- .

The fundamental reprssentations -corresponding-to the highest weights (95)
are the doublesvalubd representeat ion of degree 2’8, the orthogonal group in
24 +1 dimensions, and the transformations induced by-this:group oh the anti-
symmetric tensors of - rank 2;3sce%6 L1,
. . -
It may be shown that & tensor of rank f with vanishing trace in
the 2.{#1 dimehsional space which has & symmetry defined by the partition

(fl"'f,e , O, ses O) is the basis of the representation whose higheBst weight

has e¢omponents L= £ 1°

» el -
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§3s The Problem of Full Reducibility.

Having classified the irreducible representations of a group,we are
in a position to classify all its representations if we know that every
reducible representation is fully reducible, i.e. decomposable into its
irreducible constituents,

Tt is well known that the representations of finite groups are fully
reducible, and that the proof of Ehis is based on the possibility of sum-
ming overﬁall elements of & group representations For continuous groups
the enalog of this summation is an integration fo; which, however, the
question of convergence arisess Woyl has proved that if we impose some

particular reality condition (this is called the unitary restriction) on

the coefficients ef of the general infiﬁitesimal element o X? of a semi-
simple group, the group is restricted to a subgroup for which the integra-
tions coqyerge end full reducibility may be proved, It follows from the
full reducibility of any infinitesimal representation Dl"°Dr that the
general element ePDP is fully reducible even if the e® no longer obey the
unitary restriction. The representations of every semi-simple group are
therefore fully reducible,

Under the unitary restriction the linear group becomes the unitary
group, and the orthogonal group becomes that of real rotations. Weyl's
proof involves integration over the entire groupe A purely infinitesimal
proof of the full reducibility wds given by Casimir for -the' three<dimen~
sional orthogonal group~03. He oonsidered the operator*

2 2 2
G-Jx+Jy+Jz (97)

% Hereafter, to avoid confusion, we shall use J_,J_,d instead of L,,L.,L
(see pe20). oy 177ems
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which is known to commute with Jx' Jy’ end Jz.‘ If the representetion is

irreducible, then Schur's lemma states that G is of the form

6= A1, ($8)
where )
A= 3(31) (=0, 30 Logs see do (981)

If the representation is reducible, and has for example two irreducible
constituents, the infinitesimal operators may be brought to the form (79), -

so that G can be written

Mok
G = , . (99)
0 Al

/
If A ;1 A, then by application of the trensformation

-
Y
T e A=A (100)
o 1

e
we obtain

0 Al
The same transformation also decomposes Jx’ Jy, and Jz, since they commute
with Ge The decomposition fails if A= N s but in this case the two irre-
duc¢ible conatituents of the representation are equivalent and full reducibili-
ty mey be proved by quite simple con,s;iderationsq We shall see in the next
section how this proof may'be generalized so as to apply to any semi-simple

group.
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§4. Casimir's Operator and its Generalization,

We have seen in §2 thet every irreducible representation is character-
ized by its highest weight L 3 (LjeeoL l)o But in the group 0“3, J is not
only the highest value of m, L.e, the highest eigenvalue of Jz for the given
representation, but is‘a.lso connected with the eigenvalues of G, which are
common to the whole basis of an irreducible representation. The connection

is one~to-one, since it follows from (98') that

~

1
=2 /\"'7_,‘- “F

but only the upper sign gives a j which is a dominant weight,
The generalization of G for any semi-simple group was given by Casimir,

who introduced the operator

¢=efx x_, (101)

¢

which comfutes with every X'G 1

[0 xg) = &7 [x, % 1+ f7 0, 2 1%,

= (ce,c’\-!- o’\te) X X =0
by the antisymmetry of the structurs constants. The eigenvalues of G may

be calculeated if we use the standard basis and write

ik >
G=g Hin+§Ed\E-ok' o B0 (102)
Let L be the highest weight of an irreducible representation and u be a vec~-

tor of this weight in the space Ro Then Emu = 0 for positive roots =« , and

6u=gfLLu+ 2 [E E_Ju=[(LL)+) («L)]u (103)
< Py

where Z denotes summation over positive roots orly. By introducing theé
o

.&0




S

vectors

R=3%> & (104)
A+

and

K=L+R, (105)
we cen write for the eigenvalues of G

A=1% + 2(r 1) = K*= B%, (106)

It is easy to see that while a highest weight determines an eigenvalue
of the Casimir operator, the converse is not generally true, and the fact is

not surprising as we caennot expect that the single number A is gufficient

to determine /e numbers Li'

Casimir used the operator G in order to extend to any semi-simple
group his proof of full reducibility, but was unable to apply it to the
cases where inequivalent representations belong to the same eigenvalue of G,
The latter case was treated bf van der Waerden by the use of congiderations
entirely foreign to Casimir's original approache

Another way of doing it is to generalize Casimir's operator by con-
structing a complete set of operators which commute with every operator of

the group and whose eigenvalues characterize the irreducible representations.

A possible generalization of G is provided by the operators

of, o« ol
xlx?%.,.x%

oty ety

with
(32 /33 ﬁl
= 0 (¢] e » o C s

Xd‘l Fpeer iy Yy
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But these still do not suffice, since it is found for example that for
irreducible representations contragredient to each other and inequivalent,
they have the same eigenvalues,

We therefore examine the conditions imposed on a general function of
the infinitesimal operators, F(XP) » by the requirement that it commite with

every operator of the group:
[XO_F]- =0 (107)
It is well known that this expression can be written as

t 08 _ tAy JF ., T AQJF

[XO‘X bX’C o A OX’U AC T

where the products XA W/c)xt ere suitably ordered., Comparison of this ex-
pression with (19) shows that the funotions satisfying (107) may be con-

structed from the invariants of the adjoint group, which are characterized by
~

B, F(ef) -0, (108)

by substituting ef for XQ and ordering the terms,

By applying an operator F which satisfies (107) to any vector of the
space R of an irreducible representation we obtain, acocording to Schur's
lemms, Fu = A u, where A is independent of the particular choice of u,

If the vector of highest weight is chosen, we find from §2, Theorem 1, that

A= P(L) Ly eee Ly) & P(L)e (109)

In order to characterize the representation we need A operators of this kind

such that the system of equstions

Ay = 9i(L) (121 e k) (1008%)
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Yes rnot more than ond solution L which is a dominant weight. To prove the
existence of such & set of operators it suffices to prove that

A) If we express the A ; o8 functions of K instead of L, the functions

’\1 = £, (K) (110)

are inveriant under the transformationsof the group (8) defined
on page 36,
B) For any simple (or semi-simple) group there exists & set of L
{polynomial) invariants of the adjoint group such that the product
of the degrees of these polynomials equals the order of (8)e
According to A), the system (110) has, together with a solution K, any
solution SK (which means the vector o’ti'bained from K by en operation S of the
group (S)), and according to B), the number of solutions exactly equals the
number of vectors SK(*');/?‘t?}?:esystem (110) has only one solution which is a.
dominant vectore Also (109') has only one solytion L which is a dominant

vector, because if a solution K of (110) is not dominant and is lower, say,

than 8K, then also K =R is not dominant, since
K-R<SK-R<SK-SR=S(~I§~R)e

Wo: shall. prove A)by making use of the properties of thé whole group,
since it has not been possible so far to construct a proof which uses only

the infinitesimal group, In any répresentation,. (5) reads
w(§ ) U(a) = U(a + da),

As the D e of (81) are the infinitesimal elements of the representation we maey

(*) From the definition of R it follows easily that no SK coincides with K,
end therefore no two SK coincide,




'write this as

S (gl 6o le)siue™) Vs) = (abuaT+ p T 8] 8) vy (8)
% e e

!

= (al0(a” )| ) +)1e°°8a€ B--E-:-c-.(qlv(a°')l 8)e
Comparison with (15) shows that
A (alu(a” )| 8)=3(qlD [t)(tlU(a )] 8),
\ Tt ©

where A_ is the infinitesimal operator of the first parameter groupe Con=-

~

sequently for any function f(XP) we have
f(A(,)(qw(a"') [ s)= g(qufwe)lt)(-tlu(a"') | s). (111)

In particular, if f(Xe) is F(XP) satisfying (107), then F(D?) is diagonal

according to Schur's lemma, and we get

-

F(Aexqma"‘)ls) = A(alu(a)|s), (112)

so that each matrix element of the representetion is an eigenfunction of F(AP)-
Tt follows that the trace of the matrix (q|U(a’ )|s), which is called the
charaoter,‘7L, of the representation, is also an eigenfunction corresponding
to the same eigenvalue. Since the trace of a matrix is invariant under simi-
larity transformations, it follows that the character is not a function of

the individual elements of the group, but rather of the classes of conjugate
elements, The classes of a semi-simple group of rank AL depend on {Z.para~

meters; by choosing them as a suitable set <f}°.. Q?I, Wbyl* has given &

general formule,

» Reference (6), pe389
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K (L) = %—’é—i— ’ (118)

unitary restricted
for the characters of aYsemi~simple group, where K is defined by (105) and

© . i(sK), Y
f(K)'Z;_ & e 3 ¥, (114)

68 is plus or minus one depending. on the ‘parity: of the element S.
If we now apply to K an operation S, the character is left invarient
except for a possible change of sign ; hence the eigenvalue (110) to which-

1

the character belongs as eigenfunction is invariant under the. operatioms of

(8)o QeE.D.

As an example consider the group of rotetions in three dimensions, Rge

Any element of this group can be obtained by a similarity transformation from

the diagonal matrix with eleffients e‘lm(f(- Ains A ) wherse ¢p is an angle

of rotation around ea properliy chosen axis. Thus, Cj) is a function of the

-

clasg “&nd the character of R3 is

i eim;,a AURY LD

m= =L ei% - e-i{‘

s (115)

which is the value given by (114) where k = J+% ,
In order to consgtruct invariants of the adjoint group we construct

the determinant

2\ = dot(q|e® , ~ols) = det a_ (116)

13

where ¢ is an arbitrary number and (gl De | 8) an arbitrary representation,

The determinant -is an invariant of the adjoint group, for
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Oa
AN [oJAN s
S~ A

Pe ¢cz%” (alDy le) =
ST baqs

of Z AN [(qalD It)rtID ls) - (q|D It)(tID |s)] by (81)
gst aqs 9 9

i 0L [laggr @ Bg)bIDG10) = (3D, +038,))

: I A
- §£ = [ag4(tID, 1) = (alDyIt) oy ]

ZA L (HID ls)—ZAS (alD_ %) =

ZQ; ii~a-polynomia1 in ¢, and evidently the coefficient of each power of
¢ is separately an invarjent., That this method yislds a set of invariants
which satisfy thé .conditiong stated in B) is shown separately for each simple
group in reference (14)..

In conolusion; we can now state that for every semi-simple group there
existe e set of A functions Fi(x?) which ‘commute with .every operator of the
group and whose eigenvalues characterizg the irreducible representaticns,
They constitute the extension to every semi-simple group of the operator

(97) for the three-dimensional rotation groupe

§6o Miscellanequs-Problems,

Finally, we know a number of general properties of the irreducible re-

presentation of 0,, and we want to see to what extent they may be generalized

3’
to all semi+simple groups.
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_le The dimension:of an irreducible representation is 2j+) for 03.
By calculating the value of (113) foor the identity element, Wéyl has found

that the dimension of any irreducible representation is given by

T—E {+§) 3 ) (117)
oA (& R) ‘

2, In 03: the- eigenvalués of 'Jz are -non~degerierate and hence -suffice
to label the basis of -the representaticns. The ndtural extension of- the
ei'genv’al(xes‘ of J , &re the weights,but in general they are rot -simples 1f
Xm is the multiplicity of the weight m, Weyl has’shown that the charecter

of the representation has the form

X Zy,,;f ‘Fj .- (118)

go that; the coefficients. of the Fourier expansion of expression (113) give
the mult}pli‘citiea. - T e

If the multiplicity is different from unity we.need some additional
operators: k(X 9)’ ell commuting with -each ‘other and with Hi,uwho’afe'" eigbnvalues
will enable us to distinguish the different eigenvectors of & given weight;
we must first find out how many such operators will be needed,

If the basis is chosen so that no;, only Hi but also k(X ) are diagonal,
then by setting f(xe) ‘- k(K?) in (111-) we obtain ™

k(o )al 0™ )le) = ky(al0(a” e) (119)

where kq is the eigenvalue of ]:(XP ) Gorresponding. to" the row g§; then

(q}U(ao. ){8) is en eigenfunction of k(AP) corresponding to this eigenvalueo-
Similarly by ¢onsidering the second parameter group it may be shown that

(al U(a?— )Is) is also an eigenfunction of k(BP) .corresponding to the eigenvalue
ks'




S e

=5Qw

In order to identify the functions (q!U(go-)|§) of the r paremeters

completely, we need & set of at .least r commuting operators acting on these

N

parameters. x

We are already in possession of the AL comuuting operators F (Ap) =

2*)
= Fi(B )o Hence we still need —2— operstors k(x ), in order to have --2-&

operators k(A P) and the same number of k(B, )e- However, A such operators

e
k(Xe) ere already known to us; they are the Hi themselves, Hence for ‘the set

of commuting operators to be complete we need at- leas'g to construct -—-g—f’-

-

operators k(Xe Do

. r- 3,8
In the particular case ofthe group Oz ==3— = 0, and it-is weéll

known that the operators J, ‘and Jz‘ Torm the domplete set. The problem of

finding the complete set of operators k?xe)’ hds so far been solved only for

- >

some types of simple groupse
3. Explicit construction of*the irreducible representationss The
~
representations of the infinitesimal operators of 0y are tho diagonal matrix

J z and the matrices Jx * in whose only non-vanishing matrix elements ere

- k]

given by
3 by

Gmaily £10l3m-\[Gear DFem. (20

%

™

In the general cass, the correspohding formila should be

(L M+ & k;h)!‘E*ITL u kghj) - £(L MO(k‘((lh) ,}‘Efl))-* ()

but as long es the k(h) are not known it is imposiible to give an explicit

form to the function £,  Later oh we 'shall present-gome special methods for

i

*) The structure of semi~-simple groups assures that this number is always
an integer, ’
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do‘lﬂ?&g{sﬁgomp 1 partjculap ceses in whioh we are jntepested,

4, Decomposition pf the Kronecker preduct
In O thip is dane by the Clebsch-Gorden series;
CNE— v o -

a9,
Dy x D) w S D) taez)
. J= 'Ja"h!g, .

In gereral w§ hivé sée¢r that
20 x 9l » UM By s i sy

put we wers nbt in a position td sdy Anything about the otler terms of the
setiss, The coefficients in this series have been givei; by Brsuer and Weyl”
by using the characters of the representaticns,
But this is only thc: first part of the problem, since we not only need
to know which irreducible roproaentafiona are contained in a Kromecker product,
P N

but we also want to calculate the matrix which actually decomposes the

i ~Kroneqlsr product, )

For Oy this problem has been solved in several different wayag, :

The olassical Clebsch~Gordan method exploitl the homomonphism between
5 and the-ugimodular group in two dimensiong (whict{x 38 the basis of spinor
cajoulus), but thisw &a applicable only to thig partiouler Que and is
not oepable of generaum*on. Wigner solved the dame prodlen by pertorming
integrations over the whole group, but actua.lly it is sufficient to consider
the infinitesimal represemtation, as will be indicated here,

The transformatjon cWW} ﬁ fmlmglJM) are de-

fined by the relation

* Reforence (13), pe229.
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m" m," (" my "y ) (amy "9 13y Imy *)+(mp" sztijz;rlmz')} (my tmy | 920)

o ystt
(g"ul gz inl JM) QIJ,, .

-

Matrix multiplication of this equation from the left by (m1m2| JUM") gives

Z ismll Jlx: i jly‘ ml')"'.(mz‘jzx: 1 Jzy mz' )}‘ (m]:'mz"lJM)

¢
ke
= ). \ Y
‘ Z_M:.'(mlmzlJ ICRU PRI AT
whick, using (120), becomes the recursion formulas -

» ¢

(my[ 3y p2 L3y 1my¥1)(my ¥ mzzm)+(m2|52x: 135, mp% 1)(my mp¥ 1] 3u)
= (oM % 1lo 2. inI\IM)(mimzlJM‘i' 1)e (124)

If we take the upper sign and set M = J, we see th?t the right hand side
vanisheg ‘and we find a set of equations which det;rmines the different
(mlmz[JJ) apart from e common factor whose absolute value is fixed by nor-
malizetion and whose phase is fixed. by, the convention. that (j1 J-jllJJ) be
real and positive, [Taking now the ,lower sign we obtain (mlmzlJZNhl) from
(mlmziju); hence by & tladdert procedure starting from Mthwe'get ell the

transformation coefficients.

This method would probably be the one best suited for extension to the

other groupa'provided the right .hand sids of (121) were known explicitlys
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§6s The Full Linear Group and the Unitary Group.

We saw.on P.29 that the full linear group in k dimensions (as-well as
its unitary subgroup) is not semi-simple, But, since 1t is the direct product
of & semi-simple group with an Abelian group, the full linear’ group shares
many properties with the semi-aimple groups, including the possibility of
bringing the commutation relations to the standard form (60) and all the
results of* §§ 1 and 2, It is mleo clear from p.29 that,'as the unimodular
and not with X!

i il
defined by (69!); the components of the weights are now always integers, and

condition is omitted, I-Ii has now to be identified with Xi

the relations (72) end (-88!) which were obtained for the unimodular group do
not hold for the full linear groupe -
It can be shown that a tensor of rank £ in the k-dimensional space which

has the symmetry defined by the partition 27 & (fl, £,5 oee, fk), with
- ‘

f=sf.+¢

1 2+ .0.+f

k

is o basis of the representation whose highest weight has the components f 1*

We may conveniently illustrate e partition 2 by a Young diagram such

as the one at the left, consisting of f boxes in

k rows, the 1th row containing fi boxes.

*
A partition 2. is said to be dual to I if

its diagram is obfained by interchanging the rows

*
PN and columns of 2 .

In particular, the partition

f.l+}+...+, +w

£ k-f

!

?; which is possible if k z f, charaoterizes a representation cﬂ.f of degree (?)




whose basgis is'formed by the totally antisymmetrical tensors of rank f, .
The irreducible repr esentations of the full -linear group do not de~
oompose if we restrict the group to its unimodular subgroup, but the re=
presentations which belong to the partitions (fl,....fk) and
(fl+ e; £t €5 eos,y £t e) become equivalent,
ﬁ All the properties which we have stated for the full linear group hold

also for its unitary subgroup.

Blbliopraphy.
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Lectures 5 and 6 . T f N

£%

THE EIGENFUNCTIONS OF THE NUCLEAR’SHELLS- &

»

§1. Introduction.

If we wish to calculate the energy levels of a system of many particles,

the faot that we oanno% solve directly the Schrodinger equation for the many-
body problem foreces us to proceed by suooesaive approximations. ?
7
In atomic speqtroscopy we assume that in the "zeroth approximation“

every electron moves independently of the others in a oentral field ‘which
is the superposition of the fields of the nucleus and of the mean field

produced by the other electrons, In this approximation we may essign to

-
v:_' . -

every electron four quantum numbers n.l:m ?l 1 a8 the geroth order energy

depends only on n and £ , the eleotrons appear to be distr1buted in different

‘!

shells, eogh characterized by a pair of values nf. Such a distribution is

™

called a configuration.

The next step is to take as a perturbation the interaction between

* '34 -~ N ~ - ’.hi 4
electrons in shells which are not closed, neglecting in first approximation
the matrix elements which connest different configurations,

It is well known that applied to atomioc spéctrpécopy this method gives

good resultse, It is also well known that the theoretical arguments for using

? ~

this method in nuclear spectroscopy are very weak but that there is on the

-y
32

other hand some empirical evidenoe that the nucleons also are ordered in
shellss, We shall not, however, discuss here the validity of the nuclear
shell model,

It is the purpose of the remaining lectures to show some applications

of group theory to the classification of the levels of a nuclear shell and
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to the calculation in first appi'ox;/.mation' of the ‘perturbation energye

As is customary in dealing witH probléms of spegtroscopy we shall use

g v

the gtandard notation of reférénsé 16,

oo
= - B P P
% x ] -

§2¢ The Coefficients of Fractional Parentege.

-~

-

If a shell ocontains ond particle, the quantum’ ntmbers m.m, M desoribe

L
the state’ completelye. If a~shell contains two partiples, ons cep-uge-the

quantum numbers m(}) gl)xhé}zmg )m‘gz)mf:") or, alternatively, T S L Ml‘ MS ML
of which the: second: scheme is the~more-useful; since-it diagonalizes the:
endrgys the transformation; leading from the one:of the&e Bchemes. to .the .
other is given by the’ Clebsch=Gordan” coeffioientss-. A further advantage of
the second scheme is that in i'b"the states are either ,symnetrical or anti-
symnetncal, depending on the parity of T + S. + L; the exclusion’ principle

simply _removea the states for which T + § + L is even, without changing the
b3
- Lk k! -

+ '%
soheme, . v L

If we. add tq the allowed states. of 22 e third {-pertiole, we_obtain
# A A T R B

a set of wave funotions : e i ,
" N w A Mo v %

‘W(,Zz‘(ru?’)s("lz)x.(’lzy)f,é ,"r;s LMy M M), Tt v (a28)

-

Y -
£

which are in general antisymmetrical only with respect %o the first two _

particles, but not with respect to the third, If to (3325) we apply the
> % " - B 2 -

transformation
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!

- Z e/ -(/E:/ZZ(T(%)S(ZS)L(ZS) s T8 LM M M) |
T(za)s(a?,)L(‘zs)qy‘ ‘ t ) 8 LMy Sné(!u.f_

o3, 3 & (r'%)), 2| 3 0%,k 2605 slE 35203, 5)

"%

(L, L2182y, 122?42, 1), (126)

- o
oy

we see that in the expa.nsi':on appear ‘some “terms v;h}fcﬁ will be ;§m;e%riéa1
rather ’thanvé.n'l‘:isymnetrical {n the last two paréfcies.

fThe eigenfunctions of the configuration Z‘v’«, which have to be anti-
symmetrical 14 'all ‘three pérticles, span a subspeos of the s'pa.o; spenned by

thé functions (I125) and will thus be linear combimations of thems

]
-

S TsL) . - 22(2(12)5(12);112Yy 5 g 1y
y(,ZSOLTSL) T(IZ)S(IZ)LCIZ)W(‘ (T 8 L ),f)T L)

rd

-(zz(T(lz)sélzjn(’lﬂ)l, TS Ll} Barsn. 5 )

We have omitted M, ﬂé ML from 'the notetion because they play ng role in the
transformatioﬁ; c&.éié%inguishes indepen&ént states 6} 113 wﬁ&dh have ;ie
same values of T S L. The notation (‘})is a reminder that this transformation
matrix is not squeare, since on the left side we have all states which are
ant{symmetrical in (1,2), while on ‘the righé‘we”héké'oni; those states which

aresantisymmetricaf'ln (I,2,3f. The coefficients of this linear combination

are called coefficients of fractiopa]:’ ‘parentage or, for short, c.fepe

If (127) is to be antiasymmetrical in 9.11j three particles, this requires
thet when (126) is substituted into (127.), all those goefficients which belong
to forbidden wave functions shall v;nish, and it is easy to see that the

necessary end sufficient condition for this is
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12) %;—) oy 330, 1133 @y o

N -

o3, 33, 8133 1B, s>ui £Z<L‘2‘”’)>. n{££({1%)p, e
CeRnl18)5(12)Q22)y pp s 1 [} fPun s L) =0 (128)

when T(23)+ 8(23)+ L(ZS) is even.

This system of equdtions contains all the information we need for the
configuration ,Es, since the number of independent solutions for givem T S L,
which. are distinguigshed by the parameter o , is the number of allowed states
of this kind, and since we can also use the c.feps to calculate the inter-

aotion energy for these three-particle states:

2

Lixrsnlellarrsty = 32 (L% s 1 Ar)s(2)12)y, g
L(12)g(T), (12)

g(r(12)g(12)(12)y ( 125(12)5(12),(22)y ¢ v g |} B LT L) (129)

E(T(lz)s(lz)L(lz)) is the interaction enmergy for the two-particle system, and
the factor 3 enters becauge there gre three pairs of particles in the con~-
figurations

The extension of these methods -to a shell which containa n particles
is in principle immediate. We start from a shell with n-~l particles, for which
we suppose the cefepe to be calculate@. Then

V([f’xr SL) = Z V(zn‘l(mlwlslx.l),(, TS L)

4 T80

-(,Zn“l(oclrllel)/l, rsuld 2T sL)  (1%0)
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where, analogously to (128), the. cefeps satisfy the system of equations

d_iT:Z—-;Ll(TZ, 34 (), T, 1S, & (1), 8)8, 2(8))% 8)

(L, £4(L1), L] L1y )y L')(ln'g(acaqzszr,z)zl, 1981 2 A 2,8, L)

(AP 18 1) Ly T 8 L[} £k s E) =0 ' (181)

for every value of Té, Sps Ly and Tt+ 8%+ Lt even, o7

The interdction energy is given by

Pars LIBl L2 s L) = —ch&a 'ET - (LPxT S L{’ﬁ-l(lellel)f’ TS L)
el f s «T,° h 3 ¢ s A
1 115

s e 57 A s L YoM 15,1004, T8 LF L s L),
(132)

Although this procedure has been used successfully to calculate all atomic
conf‘igu;ations d” and the configuration fs, it Lecomes extremely laborious .
for the higher oo'nfigura.tionh; and it is at this poéint that group theory comes
to our aid in the following three ways:
a) The hitherto unepeoified variable oA will be replaced :by a set of quantum
numbers which is almost complete, The choice of these quan'bt:x;l nurbers, suggested
by group theory, will greatly ‘8implify the éalculations.
b) The cof+ps Will be caloulated without the use of the cumbersome equations
(131)e ¢ 3

c) The summations in (132) will be simplifieds .
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§3s The Classification of the States of ‘Zn.

The states of a single particle in a given shell are characterized by
' the set of quantum numbers m,.m My There are 4(2.£+1) independent states

to which correspond the 4(2/L +1) eigenfunctions jzf(m m, m, e If we have m
particles in the pame shell, the configuration hes (4(2’6 *1)) )independent anti-
symmetrical states to which correspond- the eigenfunctions ’\}/(,ﬁ [7), where I
is a set of quantum numbers which mey assume ’(4(21;1)) different values.

If we oonsider the ﬂf(m,c m, m ‘E)“as the basis vectors of the 4(2.L+1)-
dimengional space of the states of & single particle in a given shell, the
'\/(,Cnr‘) will form a complete set of antigymmetrical temsors of .renk n in

this space, This means that a unitary transformation

e

ﬂf!(m‘ m! m-) = Z ﬂ(m m ) o (mt}n m, 3 ny, m! m' ) (~l53)
mmm,

on the f 's'will induce in the '\}/'sd:he transformation

Y(LR) = ;ww‘“ Yy (. (134)

The V(z@np) are therefcers the basis of a representation Uﬁ'n of degree (4(2ﬁ+1))

of the uaitary group U a(2 441)? characterized by the partition

nel+rl+l+ 400 +1+ O"'O"‘ooo + 0.,

In order to obtain a set of functions W(,ﬂnf’ ) which will make ths
matrix of the perturbation energy as mearly diagonal as possible, we have to
restrict the group U4(2 2+1) to its largest subgroup under which the pertur-~
bation energy is invariant, If- we a.ssume that the interaction between par-
tioles is central and charge-independent, this group is the group of three

independent rotations in the coordinate space, spin space, and isotopic spin
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spaces If we proceeded in this way, which is ‘treditional in the application
of group theory tc quantuin mechsnics, We should dbtain the gioup theoretical
definitions of only the 8iX.quantum aumbers’ T S L M, MS Mi'.

But sirbe We want to obtain ‘a more nearly complete set of quantum numbers,
even though they may not be: go‘ba" Efuaﬂtunf aunbers, we shall rather: carry out
the transition from U, 2(2.2 +1) ‘to Ry XR X Ry by successlve steps, e shall
therefore impose successive Testrictions on the ‘group U a(2.L+1 )*to obtain sub-
space‘s of the (4(2i+1) )=dimensional space of the representation Uen which will
be invariant: with respect to different subgroups. ﬁesé éubepa:“ceé ere charac-
terized by the highest weights of* the representations to which they belong,

and these highest weights will be our new guantum numbers,
H oo
We shell start by considering thedsubgrcup of U4(2£+1) which consists

x
W

of .those transformations ‘(133)  which are of the form

- Ey

o) B ) Y (g B )T gy ) (199)

- ok
.

with Y and ¢ waitery; +hie subgroup is the girect product U X U2 If we

Ul
denote by 96 the irradusible repreqentacﬂons of‘ UZ! 1 and by JE.' those of

ﬁ"l, the -drreducible reprcsentations cf U el it) will ‘be the- Kronécker products

4 21 1
ex % (130

Every irrediicibls represeh"l‘aﬁ on ‘ef ,?2 l\is & reducible rspresente-

-

tion. cf” U4X U2,€+1

« ¥ -
of decomposition is somewhat-complicated, but for tHe particular case of the

and breaks up Ihto represontstions (1%6)s the geheral law

reprefentation dZn it is very simple: only those representations (136) appear

in the decomposition of cﬁn for which T1s S*, the partitien dual to .o,

S AR TN

o *Ju&!’.n.rq«;{
r(\h irn“y\ - '\W -y
A R s g, RN
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and every representation of this kind occurs only once., Sipce the Young
diagrem whioch illustrates the partition 2. has not more than 2.4+ roiys‘, the
length of a row in.the diagram of " cannot exceed 2.€+l, Similarly, the
length of a row of 2. canuot exneed four, ’ .
If the elements of the basis of fzseare characterized by a set of
quantum numbers © and -those of Agfzby" a &3 /N, the elements of the basis é& ~
f‘i’l* X %Zwill be characterized by the sét 8 A, and the mtates of L™ by
the set 2.6 N« '
As a seoond“step we restrict Uy 941 to “tHé orthdégonal subgroup Ry p1

which leaves -invariant the bilinesr symmetric- form

__(137)

4

ST ) fm) d(-m,)
- m oum
RN S iy

L » T T T
Ry rin has R, &s a subgroup bécause (137) is.proportional to the eigénfunction
of the-S-state of £ 2, which is left invariant by -Rg. Let the ifreducible

e
representation of Ry p4q "Whode highdst weight is W be. &Wm’m Ry g 417

~ & ES

ﬁf;as Z;; by B - ) (158)

The possibility that we may have bW > 1 gives rise to & running index /5 to

S

. .
number the equivalent representations, but in practice /5 takes on only small
values, (For the states d=, by S2.)
The next step of the reduction-is to restrict ths orthogonal matrices

"E(m Ly m/}) to the particulai matrices belonging “to -the-représentatien °9/Z bf Rso

When this iz done, every ﬁw becomes a representation of R, and will in general

3
decomposé as . >

'ﬁ%h - {;; o, 9; , (139)

-
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where I .is thd highest weight of 8% L Ir °;> 1, enother running index X

distinguishes the various‘gL belonging to a given L. We have thus arrived

[ ¥

at the following scheme:

1;/({“29/5 WXLML) . . (140)

For the nuclear configuration d s C, 18 never la.rger than three, but for higher

L

values of A it is expected to be much larger. In the particular case of the

configuration £2 we may avoid such large values-for X if we. avail ourselves
%

of the fortunate coincidence that. when/g = 3 there exists another group, con=~

tained in R, and confaining the representation @ 5 of R which is a realization

7 3
of Gz and may “be uaed‘. to introduce a new subclassifiéaition.#

In order to complete the scheme (140), we must now perform an analogous
reduction for U4. If we restrict it to its unimodular subgroup, we obtain the
semi-simple *grc:up be;.onging to the vector diagram As,'-whiclri we-hmve seen to be

. o P . :
the same as D3. Therefore the unitdry unimodular group in four dimensions is

#* . ‘}, %y & ¢ & &3 s i 4
isomorphic with R,. Applying to 2. = [/\l, /\2, /\3. /\4] the ttransformation (68),

- - o
-

we obtain as highest weight of the representation of RG

P = A 2 AN, e BN = Dgt A=), P BN A= N+ Ve (242)

This tremsformaetion,introduced.by Wigner, .corresponds to oonsidering-instead
of the unimodular unitary group in four dimensions the homomorphic group R6
which is the group of rotations in the ‘gix-di;nenmsiong; space of the spin and
isotopio spin, . P

From RG we go on to the subgroup 33 X RS by restricting the transforma-

tions Y of (135) to those which are of the form

* See reference 23 , section 4, subsection 3,
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M (m,r; 3 m,'c m;) = X’*l-(mf 3 ml ) """Xé(ma;‘ m;) . _— (142)

L - - o

- In this subgroup the reprosentationa s* may be decomposeds

"“?Z}"fa ,j/PP'P" "L s DBy

In case e".l?S> 1 we have to introduce & new running index o\ ; this gives us

finally a scheme for the wave functions of the entire shell

te

2

y/(,tniow S My My AWy LM (143)

Except for the presence of the running indices « /5 (Y s we have found & complete

set of quantum numbers, a.nd we have achieved the first of the three purposes

& v 4. £l L]
-~ < w - =

set forth in §1, !

t ' & - . ¥ N e

'1 ‘ CE

§4e. The Factorization of the Coefficlents of Fractional Parentage.

=

Thé wave functions on the right of (130) transform according to

-

B o S
(/Q X ,)213 that on the left tra.nsforms according to cﬂ ] Thus 4t is eovident
that the c.f;ps are a.rectangular part of the matrices which perform the de-
composition

rﬁf‘ ><</Z =4 eeans T (144)

- The calculation of these matrices is simpllfied by the following con~

siderations:
We have seen that if a group g has a subgroup h,"'e.n irreducible repre=~
sentation” UA(S)‘“ of g will 'ingeneral be reducible in the subgroup h, consjisting

of elements te Let us assume that the matrices UA'(t) have been reduced:

(pBDB] U, (%) ]F'B'b*) = (b ] v (t)fbr) $ (145)

s

i




where B specifies the different répresentations of h, b denotes their rows
and columns, and ﬂ; is a running index distinguishing equivalent irreducible
repreae?tations. The Kronecker product quX ”UA2 of two irreducible repre~
sentations Al and A, of g oan be completely reduced:

U XU = o0 (146)
N N L

by a similarity trensformation with a matrix

'S
oAl

(4 4;Bydys Ap AsBobs] A A kA BD) -(147)
where the parameter <A is‘a running index-which enumerateé the Afs whenever a
oy is greater than 1 in (146), We shall now astate without proof’.= & corollary
to Schur's lemma which will enable us to express this maj:f;ix in & simpler way.
The matrix elements of the transformation (147) are th; products of the
matrix elements of the transformation which reduces the: Krénlecker product

~

Ug (t) X Uy (t) in h and coefficients which are independent of the b's:
1 2 -
(A A 1Bybys Ay Ai,Bb,] 418,448 b)

- (Blble‘bzl ByB,B b)(4) /3By Ay [32132] l}%Azo( LY B)e (148)

2

If we take the representation of (ﬁn in the schemeé (143) and apply this lemma
to each subgroup of the chain which was constructed in the preceding section,

we can bring the matrix which reduces the direct product (144) into the form

* For the proof see reference 23, section 3.
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~58=

(LY °“1T131MT Ms (31 1y1L1ML i tnm m, T« 8 Myl PWY L U ) =
- (1l & n Tlér ly) (5, & m 5,3 8 My)e (B4 T 85(2] & 3| < 1 8)e

-(LluLlmeJle!L My )e(Wyy Lis (1)L] WyL)e

f@ pys IWIZ AW T £02]) £7 52), (149)

whers the. symbol (1) means W= (1 O ¢se ‘0) and [1] means 2, = (1 0" see 0]e
This expression as it stands is not exactly the c.fsps, since the wave func-
tions on the right hand side of (130) contain already the M-dependent factors

of (149); hence we have

(L7 s oty pi0) L 18 L LT spwyL) =

= (2 10805 (1] 3 312 T 8)(w y, Ly (1L 1wy L)
(2 o (1)1 Zam) (2™ 5 20 4550, (150)

Thus the problem of calculating the ce.fepe is reduced to the separate
calculation of the different faotors which eppear in this equationy but before

we solve this last problem we have to develop a new mathematical tool,
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§Sa The Algebra of Tensor Operators.

The algebra of vector operators ;nd of their representation by
matrices was developed by Gﬁttinger and Pauli” and- is- presented in
standard form in Chapter III of Condon and Shortley (reference 15).

The possibility of extending it to tensors was_indicated by Eckart and
Wigner%*. We shall outline it here following reference 21, § 3, where

the problem is treated by the standard methods of Condon and Shortley.

We define an 1rredu01ble tensor T(k) of degree k to be a set of
2k + 1 quantities T( ) ~k £ q &£k, which under rotations in three-

dimensional space transform like the 2k + 1 spheriéal harmonics of

degree k. If the operators Jx’ Jy’ JZ operate on these quantities,

we have
(k)_ (k) = o m(kK)
p J, T g = T a (kq\JZlkq) =qT a (151a)
(0 210 1= 000y g Tl lkq) =l s a+ D) 1%
151b)
If the T(z) are themselves operators, the left side of (151) must be
replaced by commutators - ‘
(k). m(¥) = o (k)
7, 180218 (il lq) = g0 X (152a)

[0 = 05 T(};)] = T(z)-: L (kafalg ¥ inJ kq) =fk 2 q + 1)(k T 9 Ta;):r 1L

(152p)

Zelts. fur Physik, 67, 743, (1931)

* See reférences 17 and (18,
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As in vector algebra, it is possible to define many kinds of
tensorial products, Guided by the example of the vector addition law in
quéntum mechanics we shall define the tensor product of order K by the
equation

k)  (n)
Q " q7a, T 9 a, (& q; ky aik ky KQ), (153)

1

and it is easy to verify that this satisfies (152). Ihe.uniﬁarity of the

Clebsch-Gordan coefficients permits us to solve this equation

(k) (ko) _ (X)

According to the definition (153) it would be logical to define

a scalar product as X(g)ti Howeyer, it is traditional to define as

-

~
scalar product the quantity

~ e avae e oat

@ g =z 0@ vl s EET R as

An example of this formula is the addition theorem for spherical
%

- - -

harmonics
Pk ZCOSLVXiZ) = ?E&%‘I i (_)q Y&q (gicfi) Yi -q (e QFKZ)’ (156)
where ”
cos£~ﬁ12 = cos 01 cos 92 + &in Ol sin~92 cos (Cfi -Cfgéi (1561)
If we represent the components of a tensor T(g)in the scheme.

o jm and write down (152) in the form of relations between matrices,

(152a) tells us that the non-vanishing elements of (é(jm\T(gnx’j/ml)
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satisfy the selection rule m - n = qwand (152b) reduces to (12h) if
R PR
we replace (X ,jm!T(lé) }o(j )ml) by (3'm kq\j’kjm). Since (124) was
/
sufficient to determine (3 o kq‘j/kjm) apart from a normaligation

factor, we obtain

/ 3
o am/2%)| o3'n"y = as"n'al 3w, (157)
with 4 independent of m and q. ‘

In order to bring out the symmetries of the Clebsch-Gordan

coefficienté, it wil]l be convenient to introduce the notation
(Jlmlazmzl J{3m) = (-)9 * RETET V(i dpds mym, - m) (158)
where

-

P V(abc;o(ﬁé) =S°k"ﬂ Xé(abc).

5 c —-X+ z [(a +h)i(a ~)i(b +3)i(b ~A)i(c +¥)i(c =¥ )t]
* %z zl(a + b - c -~ z)l(a -o(~ 2)i(b +3=z)i(c ~ b +o(+ 2}1 »

e (c~a —ﬁ”+ z)t , (159)

and _‘.L
A(abc) = [ (a + D —(z)i(g : g ; ‘;3%1&(‘0 + c - a)L . (160)

The v(abc;cxﬂzf) thus defined have the symmetries
W(abesBY) = ()7 y(bac; Bu}) = (-)** v(aobi Y8 ) =

(161a)
= (4% y(oba; YR = () Wloavs Yo 2) = (-)2° V(beas B

and

V(abe;oyBY) = ()2 F P F O vave; - =B -Y),  (161)

and they vanish if a, b, ¢ do not satisfy the triangle inequality, or
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if one of the numbers a -g\o(‘ s b -Vﬁ\ , C, -~ \X‘ is negative,

Further, they satisfy the orthogonality relations
1] Yogeo _ 1 .
oy TRt v (abe 805 = gt Oug g&’ or 0, (162)

c22§(2c + 1) V'(abcp(}GX) V (abe; k13! X) = %0('0(' %3/3' or 0, (163)

the zeros occuring if any of the above conditions are violated by the

parameters on which thete is-no summation.

In terms of the V's thus defined, we write (157) as

@ gl hegm) = (93 2 @l e®locgvaseg ) . a6
This equation divides the physical properties of the tensor, whichare
described by (cx_j “T«(k) ”0( tjt) from its georetrical properties-as

described by the Vis.

As an example of the utility of this separation we calculate the

matrices of the scalar product (155) and find out by (162) that

(o jm | (T(k) . U(k))iwj'm') =
AM AN

(165)
. Il 3 °
1 - . k a4 v k .
g R R RS L ] ) PERNCE o i,
which is, as required for a scalar, diaponal in j and m and independent
of m,
In the practical applic-tions, the most important scalar products

are those in which the two tensorsoperate on different parts of a system.
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(Examples are ~le.‘~]¢‘2, describing a coupling of the orbital angular
momentum of two particles,’ Py (cosaJ12) expressed by (156), or

? 4
ML.g , in which spacé and épin functions belonging to the same system

(k)

AN

are coupled), If 3\(1{) operates on part 1 of the system and
operates on part 2, then expressed in the scheme 0(1 X 2 jl 32 im,

-

such a product i8 . ) -
(0(10(2 31 J'2 Jm ] (Efk) o ka)) ‘oglto(,z'-j-fl‘\.jxav‘ilmml) =

— 5y (.ya (k) '
A (3y320m | 3ym3pmp)(yym | 0 |y 1y im0

C dgmy | U ‘“é'jz'mz’)(Jlf“‘l’ge'me'] 3! 3pl3teD)e (166)

VIith ('158) and (164), this involves sums over the products of four

Vte; it is found in gemeral that

) e 0 ¥ (st ) v (ats 400 ¥ (o) =
ﬁX&C( e+¢+f+d~-D

= (2 55T W(.abcd; ef') geg S

s é
Ex’ (167)

where i
W(abed; ef) =A(abe) A(cde)A (acf)A (baf),

2 a+b+c+d+1 =24
9-2(') Ia+”b-e-z7%(c+d-e-thZa+c-f-z)t(b+d—"f’-'— z)lg
ezl (e+f-a=-d+2)i(e+f=-b=-c+2)} (168)

Using (167) we obtain for (166) the expression




(g™ "‘2132jm" (Efk) ‘ H«(k)) locqsy 3y 35 3'm) =
= (91 327 3 a N e oy 5 ety 3,00 ez -

The gepmetrical interpretation of this formula is the following,.
]‘fx(kZ\is 2 2k-pole moment whose average (expectation value) in the
Airention op 1 s 431V pp—— "
lirection of jl is (& l‘jl" T ” 0(131)/ \/23;_4- 1 and similarly for
&(k) with j2, then the diagonal elements of their scalar product are
riven in the limit of large ‘jl and 32 and small k by the =roduct of these

A 2\
average values with Pk(gl,jz) where 313, is the angle betwgen jl and NP

indeed, the asymptotic value of (-)jl +J2 "_3 W(313231323 3k) in (169)
is just equal to P, (J1J,) /ﬂ'zjl + 1) (23, + 1),

P

pz
Also, the W*s have many symretries,

W(abcd; ef) = W(badec; ef) = W(cdab; ef) = W(achd;fe) (170).

__:(_)e+f-a- (_)e+f..b_

d wW(ebefiad) = c‘-ﬁ!(aefd; be) .

The Wts are useful also for expressing in the schemeo(jljzjm

thz components of a tefisor which operates on part 1 or part 2, The

(k-) are

matrix elements of T a

{ .
(ouljzjm’T(‘;)lu’jl'jzj'mﬁ= 2, (i3 3mm,).
™M™

. . NI A Wi
ROSRY L(q)loul m, ) (Jlazmlmz‘ 31dpd m )3
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using (16L), (167) and the orthogonality relations of the V's, we get

(613, 3,3 le® N’ 313,37 =
_ o ) ‘ (171)
= (0 e+ Der 1) (g el 3y 030,55 300
Analogously forlyfk)
~ (313, M0 odsy3,37) =
) (172)

Y } oy, ‘
= (%328 g T 1 D). N0 o w3585 510

The geometrical interpretdtion of (171) ahd (172) is the same 38 ‘that of
(169).

A further use of the Wt's is to express the transformation

connecting different schemes of parentage:*

(3350120350 3 315333 (3,500 =

- o _ (173)
= J(23;, + 1(2py + LW(I1dp I 335 Iyp3p3)-
In general, every quantity which is invariant under- rotations
in three dimensions and therefore does not dépend on the choice of
axes or on m can be expressed in terms of the double-barred matrices

and the Wis,

§'6. Tensor Operators and Lie Groupss

In lecture L we were not able to construct the matrices which y

decomposé the Kronecker product of -two representations because we did

-

3%

Refe 22, Zqu. (L) .
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not even possess a comple‘r,e' scheme, except, of course, in the case of the
group 03. Now that we have a nearly complete scheme? the way is open to
a further attempt. But the scheme we have achieved is hot that of the

weights, in which the H, are diagonal, but it is a new scheme charac-

i
ter1z1ng the physical problem, and one in which T S L MT M M are
diagonale Together with the diagonhality” of ‘the Hi we' have al§o lost
the selection rules for the operators Eg( ; | it is, therefore,
convenient also to change to a basis of the infinitesimal operators

of the group which fits the new scheme better., ~We shall seg that suth

a basis can be given in terms of an appropriate set of tensor operataors,

]

Let us consider’ the unit tensor operators defined by

¥ 3

f, [0 a k) -S Sl (17h)

e
which connect only states within the same shell., The matrices of
#

these operators are, by (16L)
('gm Oc)i/ém') = (- ) Ta V(/g/(k - mm'q); (175)

for every value of k there are 2k + 1 matrices of this kind with 2/(,+ 1
rows and columns; since V vanishes for kY 2:& , this gives a total of

(28 + 1)2 matrices for edch /Z.

-

It is easy to verify that the tensor product of twd u's, as

defined by (153), is given by a tensor X which satisfies
’ N . .
AN [y = Rkt gt v (klﬂsz,; L) ,

and hence

X(g)'“" (~)krke¥ meT W(ky /ng Zs ZK) uéK) , (176)




e

e

while the commutator of two u!'s is given by

(k) (ko) _ I, \kq+kp=K - /. (X)
[Bgrt Ugp2'] = '%Kg-(-) e K ¢ 1 ~W$k}/€~1§2’( ; sz(klkZKQlqulKZQZ)uQ
. (177)

- T L

where the prime on the summation j.ndicatgslt;l;xat, owing to.the symmetries
of the Clebsch-Cordan coefficients,.the sum is to be taken only over

valueg of K for which k; + k, = K is odd. (177) is of the form (1k)

PP

and hence defines the structure of a Lie group,

In virtue o£ thé orthogonality relations (‘1‘62),é1ghe (2 ,‘g"' l)2
matrices (175) are linearly independent, MSir}ce; the*}‘i_’ are of degree
2 z + 1, they form a linearly complete set of maprj,cgs of this degree;
it follows that the structure defined by «(177) is that of the full

linear group.in 2 Zz + 1 dimensions and of its unitar:y_' sg;.bg:x:oup U2 l +1°

<
For a systenm of n particles wé can define a set ofz"u(-‘E)'
(i =1,2 ;c..dn), each .operating on one -particle, and we can construct

i

the symmetrical tensors - : .

+ -

U‘(k) = g ugk) (178)

operating on the whole system, It is evident that the g(g)also satisfy

the commutation relations (177). The matrices of the U(g)in the scheme
A T w

(143) will therefore be the ‘representations %Z of the infinitesimal

i
operators of U2[/' +1°
From (177) it is also seen that commutators of tensors of odd
degree are linear combinations of again only such tensors; hence, the

tensors AI'VI\(k) of odd degree are the infinitesimal operators of a subgroup
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of the group UZ/{', +1° It is easy to see that this subgroup 1s

the orthogonal subgroup R2 L + 1Wth.ch legves invariant the bilinear
form (137), the eigenfunction of the S-state of /z?' 3 indeed the

matrix elements (z&zLM lLU(g)l zst) vani'gh‘ according to the triangular
condition unless k = L, and vanish for odd L because the two states have
different parity. The ma'bricc;s/ U(g)with odd k in the scheme (143)

will: therefore be the represeﬁ!tatfiohé('g‘wi of the infinitesimal operators
Y - W
s .

. $
of By f, 1, ’

- » + "
* . et + : e ‘;&

According to (16L) the problem of the construction of the
representations of R2 /g 1 and U2 'Z 1 is reduced bo the construction
of the double-barred matrices q‘f‘ }sﬁé‘yik__) gafagd“the problem of
constructing the factors (W]_XlLl; (i)ﬂ'WX‘L) and (Zlﬁlwl; [1](1)‘ Z‘.BW)

of (J}S,O)' is reduced to the construction of the similarity transformation

which decompose$s these matrices for odd and :éven k respectively.

§ 7, Calculation of the Coefficients of Fractional Parentages

In order to calculate the factors (Wllel;(l)»UWXL) we have

to construct for every odd k ¢ 22 the matrices . -

on Y r Aol oy 1 Ly, (179)

[

(k) _ (k) (k) . » :
where U*"" =U"7" + u o This .can, be done by using equations (171)
. (k) ple 1
and (172) if we already know (WZL.XI Lﬂ_” I{l ” Wlk\ll'l e The trans-

formation matrix which decomposes (179) is (Wlx lLl; (1)8‘ W KL).

ey

If we are not interested in thé matrices o_fm

per se but

only in these transformation coefficients, it is sufficient to choose
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one particular odd value of k > 1, e.ge, k = 34 k = 1 does not serve our

purpose becausetgfl) is proportional to L and is therefore already
AV,

diagonal in our scheme,

As an example we shall calculate the coefficients

((20)Ly5 (1)alwL) (180)
for the configuration dn. We first construct
N I
@ 1) o8 &1y (181)
for which, using (174), (171), (172) and Table I, we obtain the
matrix
T
T, ] P D Py G .
S 0 0 0 0 0
P§ 0, o 0 \/;f: 0
g D: o 0o =8 0 '.3-@” (182)
v ‘e 7 — 7
F. 0 4% 0 *J% 0
Gl; s) ' 0 3‘5-6 0 BE
l 7 T
which decomposes by rearrangement of rows and colums into matrices of
the form (WL'{U(B)(lWLI):
(003l e® [ ooys) = lol
() tho® 'y =7 ° le/s ~
cc2oyz u@®) l 20yr/y =0 |~ &7 310/7
6 |3Jio/7 38T,
where the identification of the values of W to which these constituents
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belong has been made by the use of the branching laws as explained

in detail in reference 26,

Now it is possible to obtain by the same method

I
(20yry aull v + w | 2opr; 'y (18L)
but we shall see that in order to calculate (180) it is sufficient

to know the last row of (18L) which is
((20)aaz | v3) +.4C)} (2o)L1' a'y . (185)

By the use of (183)and Table II we obtain (185) as the sum of

A = ((20)GdT ”U:P) I (20)LidL')

—

. and
5 = ((20) a1 u® || 20)e @ ):

P e g
I'.{s P D F G'| D F__ G H I
(395 I3 J13° 333 [ 13 26
39 1 0 2
S D A 7 5o JI 13 55
o =B [o1 -1 [2%
B o 0 0 0 0 o Nz V5 J‘B -
39 13- _ I8 [3Bo ¢ 26
A+B o.‘o 0 = T 0 =g |5 0 3]}; (1851)

It is possible to deduce from the branching laws that

?)(20) XE(10) decomposes intoB(lo) + %(21) + %(30), and that to

these three representations belong the statés D, PDF G,ﬁ, and S ¥ G I

respectively. Hence, the transformation matrix which decomposes (18L)
&

by bringing it into the form

AR U R (186)




-
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will have the structure

s P D F G D F G H I

(10) D #*
A
) * #*
(21) | F " % x
G ¥* %* ,
\H i : i (187)
()1
(30) L #* v
G 3 5 3%
I 1

where the stars qenoﬁé the non-vanishing matrix eléments which have

to be calculated, It follows from the form of (187) that the row (30)I
of (186) is obtained simply by multiplying the row "(185), which has the
elements (185'), with the columns of the transpose of (187). The
selection rule which follows from the requirement that (186) is to be
decomposed, in conjunction with-all the-available -6rthogdnality :and
reciprocity relations, permits us to determine, apart from arbitrary
phases, all elements of the matrix (187). They are contained in

Table IIT.
i

By reciprocity we mean the relation

(WXL wlxlx,l;/{) \/ it oy (Tt (“"’1\{11‘1‘ WXL;/K) (188)

2L + 1 gwl '

where &y and &Vl are the degrees 'of .the representations and x is a phase
which may be chosen arbitrarily‘for every pé&r'W, Wi but which is

indépendent of the L's, This relation is proved in reference 23,
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equation (L46); since its proof is based on the fact that the
identity representation appears in the decomposition of@ W x%w,

such a relation does not hold for the unitary group.

The calculation of

(zawlz, A5 (11L) (189)
(2)

can be carried out in an analogous fashion, using U

rather than
,953).\ The result for the configuration d? is given in Table IV,
For the coefficients of the spin functions, corresponding to the
passage from R6 to R3 b3 R3, the infinitesimal operators of the two
groups R are [ ¢ ,T ,T‘g and6_, &., 6_; the infinitesimal
3 " x Yy s

operators of R6 are, in addition to these, X?I{ =:h§é 6;; which form
a tensor, or better a double vector with one foot in the isofopic-

spin space and one in the spin spaces The construction of the

matricés

% 18l xll % y7ysy) (190)
and the decomposition of the corresponding Kronecker products can

be done in the same way as before.(For n = 3, see Table Ve

T"or the construction of the coefficients

(dn z:Hin e 2[1]) (191)
the calculation is based not on the properties of Lie groups, but

rather on those of the permutation groups, nh. The result, which

we give here witheut proof, is very simple:

(Kn p) \-Kn"lzl; )= = /221 (192)
&2
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where gs is the degree of the representation of m which is
characterized by the partition Z. The sign depends on the
choice of sign made for the other coefficieﬁfs. Forn =3

they are given in Table VI,

W




TABLE TI. W(2L2L'; 23).
’ L
S P D F G
T P S -
1
s | o 0 0. = 0
J35
el o o 2 L o
507 Jd70 J210
plo {2_ L 43 =1
s B
.l 1 3~ 3 a1 -
35 J70 382 w5 wls
c o -1 -1 -1 -
Jzio iz wls 42
TABLE II.
Lt —) F G H I
W(k6é2Lt ;23) =L =7 0 0
Ja21o 9 10
W(LELLt523) | —i =27 =7 iz
32310 33410 33J15 33165
W(262L1;L3) =1 ==L L. =8
1210 3 {110 l165  J7i8
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TABLE III. (WL|W,L;; (1)d).

i (&) o T
1 [
e M 0 \
n, _B_N ﬂ\Wonmu ~l~.5 l.,{—rb ,7_1“ Mh:.b o o
¥ . T * ——
. i { 1 A
o— - —— JINTS S —— -———— — O.
t K
- . .
O Y —
I~ (=) ~ a ~t o~
b o
Ty |
m/m\ 4! o —t o o
i
~.. S SRR NN S U 4. - e e b ]
13
~ —
= !
’ 0 (=) ay Fry =] A =] = © = v RO H
.|
sl B I I S A‘
~— Lam) x
_ \m/ o - 2 o (o)
= ASAR B = < - )
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$[1)(1)) for &

TABLE IV, (zw]zlwl
<
~ h [11] [20]
0 (11) (00) (20)
3
W N
[111] (11) 1 0
8 -7
10 1 1
[210]
(21) 1 0 1
oo | [
[300] 0
(30) 0 1
TABLE V. (2 T8}Z,T.8,; (15 ) for n = 3.
z; | [20] [11]
(PlPiP]'_' ) (111) (100)
2¥(@PrEY N\ (21 + 1,
N@s; + 1) (1) (33) | (13) (31) |
\S’ ) .
(2T + 1,28 +\1
22) 1 i
» ( = 5
{300] 0
333
222 (L) 0 1
22) -1 1 =1 =1
( = [z 2 12
{210] (2L) 0 1 1 0
233 |
zezy (L) 0 1 0 1
f111] ! L .
11 -1, 22) 0 = =
22 E)t ( J2 ry




~37=

oz v, (P 2 /Ezzl; f[l])-

-
[11] [20]

b

(1] 1 0
-] L

210 —— ——

[210] = iz

[300] 0 1
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.Lectures 7 and 8.

THT CALCULATION OF THE 'ENERGY MATRIX.

§ 1. The Interaction of Two Particles.

Since the interaction natrix for-n particles is éalculated
according to (132) in terms of that for n - 1 particles, we must
start by calculating the interaction energy for two particles.

Let us first assume for simplicity that there is an ordinary spin- -
indenendent interaction (Tigne: inte:actioq),.given by

J(rlz)ﬁz J ( J}g,f rgv; 2rl?2 costgilz )_between‘thg_twq particles.

‘Je can expand this in Legendre polynomialsof gbsogﬁlzg

-~

J(r12) = ﬁ I\ (f;,r2) PdeoSlQ 12) (193)

so that, by the addition theorem (156); they can be expressed in terms
of scalar products of tensors:

- (k). (k)

where

O [y ey b

1q TPk ¥ 1 qu (gi(‘Fi) : (195)
is the qth component of C(¥). . ' - !

mn L
The matrix giving the interaction of twd particles is in

general

(ng £ yny A, 12t ] 3o ) n L yan) =,
t = z: ('e «€ LM‘ (c(k)o c(k))lflf IM)Fk (196)

-2 (- b Ay - Ao L, ) .
Pw(e1(2{1€231k)ﬁ&

r




<
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where the coefficients B are given by

AR V/ENCNENE o ICOR RCAR IR € ()

¥

which is called the generalized Slater integral.

It is interesting to note that the classical Slater integrals,
2
which were defined for J(rlz) = ;—- are decreasing functions of. k.

12
But, if instead of a Coulomb interaction we have a short range

interaction, Fk may no longer decrease with k. On the contrary,
it is easy to see that .for J(r12) .=§ (I?-—%) which is the

limiting case of short range interaction, one has

F¥ = (26 + L)F°, (198)

-

For the particular case in which we are interested, of two

particlés in the same shell, (196) reduces to

B2rloe, )| L2 =;i PN DA . (199)

If, instead of a Tigner interaction we have some lkind of
exchange interaction, the sign of this e£§ressioniﬂas to be changed

for some values of T, S, and L.
,f‘ .

§ 2. The Group-Theoretical Classification of the Interactions.

- Wl

_ The general formila for calculating the energy matrix for a
system of n equivalent particles was given by (132), but since the

o ts stand for a set of many quantum numbers- which may assume many
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different values, the summation of (132) is very long and has to be
¥

split up into a set of independent smaller summations. This is made

possible by the factorization of the c.f.p. and by a similar

factorization of the energy matrix which we shall discuss now.

We have seen in §5 of Lectures 5 and &6 that there is a
relation between the Cleb§ch-Gordan coefficients and the matrix
elements of the components of the irreducible tensor operators.
But the relation (152), which is a property of the group R,, may

be generalized to.any other group if we adopt the general standpoint

of Eckart and Wigner,

If G is a group whose irreducible representations X have rows
and columns charac%erized'by;(', and T(L1()) is an operator which has
the same transformation prqperties with respect to the group as the
elemeﬂ%k» of the basis of the representationf{lof G, then, in analogy
to (157), the matrix element (X']g'jo§I19>ZJ X?(z will be proportional
to the matrix element (X)Xt | X?(_.QLA) of the transformation which

decomposes the Kronecker product X x ). 1In the particular case that

G is the group Uh(2'€-+ 1) and X iSJQh (ef. p. 62), we have

-
[ e

o pr e | £2Ty = copndy DA M0, (200)

and, if we assume forJQ% and £} the scheme (143), this matrix element

may be factorized according to (1L8).

Since a central and tharge-independent interaction is a scalar




=02

with respect to the three-dimensional rotations in coordinate space,
spin space, and isotropic-spin space, it follows that the energy
matrix is diagonal with respect to T S L and is indeperdent of

MS ML, as is well known,

~

Unfortunately, the interaction is not an irreducible tensor
operator with respect to the group Uh(EJZ +1) and to its subgroups
which were used to classify the states offﬂ Ve shall, therefore,
as a first step decompose the interaction bperatoy into a sum of”
interactions which are components of irreducible tensor operators,
and then calculate the energy matrices of these pariicular interactions,
using (150) and the factorization which follows from (200) and (1L8)

to simplify the summations (132).

;n general, the interaction operator will be a tensor of some kind
which is reducible with respect to Uh(24ﬁ +1)° and, if for the time

being we limit ourselves to a spin-independent interaction (Wigner or

2

s, .y ch s
Majorana), it will be a scdlar with respect td Uh and a tensé? with

respect to U24€ + 1.

In order to identify the irreducible parts of this tensor,
we start by considering an operator which operates on the space

coordinates of a single particle in a given shell, Since it has to be

-
o

a linear transformation in the 2/8 + l-dimensional space, it will be a

tensor of the second rank with one covariant and one contravariant

~

index, It was stated on p., 55 that the components of a (contravariant)

2
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vector are the basis of the representation}ﬂ{

[lo '0!000!0]3
analogously, the components of a covariant vector are the basis

of the representatnxxxﬁ{[oo R, 1]5 hence the components
of a mixed tensor of rank two are the basis of the reducible

representation

%[10 ......03"‘%[00.......0—1]’ (201)

x

which decomposes intoiﬁg[o .,.....O]'kgf[lo veeened0,= 1]° (This

decomposition corresponds to separating the trace from the

traceless part of the mixed tensor),

The interaction between twg particles is expressed according
to (196) as a sum of products of operators’ operating on the two
pafﬁ;cles, and willz therefore, belong to the bagis of the reducible

representation

(%[o e..0] *ﬁ[lo vee0 =17 % (% [0 +es O] +ﬂ[10 cee0 - 170 (202)

of U2’(,+ 1.

If we decompose the represéntation (202) into its irreducible
'components and adopt a scheme in which W and L are diagonal, as we
did in § 3 of Lectures 5 and 6 for the classification of the states,
then; since the interaction is a scalar in the three-dimensional space,
it will appear as a linear combination of the different pasis

elements which are. classified as S-states in this scheme.
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_ S:'anej/g[l0 ves0] and %[O 00l = 1] ‘are in R3 the representation
§3 ’E,’ (201) is the reprcsentation bﬂxD,@ which decemposes into
24 : {
z ob , and it follows that in the basis of (202) there are 21, + 1
L=0 L
independent invariants with respect to R3 which have various tensorial

characters in U2'K-+-l and R2 21+'l' It may be shown by the branching
laws that two of them are invariants, also, with respect to U2€ +1

and R2 ﬁ +1° One is still an invariant with respect to R2 £ +1°
but with réspect to U2£l +'1 it belongs to the representation with -

highest weight [20 ... O = 2]e¢ The other scalars are, in the

scheme (1L3), of the following kinds: [20 ... O - 2] (22) s,

[20 ¢os O = 2] (L0O) S, [110 4sp O =1 =1] (22) S, [110 ses O = 1 =1] (1111) S

The decomposition of the interaction (196) into its -irreducible
parts may be made in a general way based on .the fractional parentages of
the different representations, as was done for % in reference 23,
§ 6, 1, but we shall consider_here only the configurations 4% and

follow a more empirical method.

()

Any kind of spin~independent interaction will be rep-

resented in the d2 configuration by a diagonal matrix

(@l 200 | Pry = (M) (203)

and e have to calculate f(h )(L) for the different irreducible
parts into which the interaction (199) decomposes. The result is

tabulated here:




Interaction ) States of d2
Tensorial \ .
Name Character Zs (11} {11] [20] [20] [20]
We (11)  {11) (00) (20), (20)
z i L L: P F S D G
E@x) [00000] (00) S 1 1 1 1 1
5 (B) [00000] (00) S -1 -1 1 1 1
E(X ) {2000-2] (00) S 0 0 -1 1 1
E(E) [2000-2] (22) S 0 0 0 -9 5
£ [m0-1-1] (22) s -7 3 0 0 0
!

)

This table was obtained .as.follows: according to Schur's lemma f and
f(ﬂ’) have to be constant for state:s }:elpnging to the same value of I;

any linear combination of them has this property and the choice is
determined only by considetrations of simplicity., f(p mst be constant
for stat€s belonging to the same value of W; moreover, according to (200)
and in virtue of the orthogonality of the transformation matrices, f(X )
has to be orthogonal to Both i‘(o() and f%) (if we -consider every value of
L with its (2L + 1)-fold degeneracy) e f (€) and f(\s‘) must be orthogonal
to f@), f(g) and f(X)- and, in iaddi'bion f(t) has to vanish for & = [11]
since ﬂ [11] does not appear in the decomposutron of thé Kronécker
product ﬁ [11] %[2000 - 2] and f(Tl? “has to vanish for £ = [20] because
’ﬁi [20] does not appear in the decomposition of the Kronecker product”

3

' [20] x (110 - 1 - i]g (Thede selection fules are the analogs -

for sz/ +1 of the trianrular conditions for RB).
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2 J
The perturbation energy E(L) of the configuration d~ for an 3
ordinary (Wigner) interaction may be obtained from (199). In order
to avoid the appearance of fractional coefficients we introduce the

standard normalization*
%=F%F2=¥A% %=FWML - (20L)
and write for the energyee(-
E(S) = F, * 1L F, + 126 F),
E(P) = F, + 8 F, - 8lF,
E(D) =F, =~ 3T, +36 F), ’ (205)
E(F) = Fo=TF, - 9Fh

‘B(C) = P, + N Fy + F)

.

yd
These results may be expressed in terms of the irreducible jinteractions by

g =50p 4 (- L s 4 B 530 SEQ())(F we) 13 @) 3Dy,

.(F2 - SFh). (206)

The corresponding expression for the Majorana interaction is obtained

by interchanging EQX) and.E(/z) and changing the sign of Em:

v,

(Fy - 5F)). (207)

—

* Reference 15, p. 177,
** Reforence 15, p. 202,
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§ 3+ The Calculation of the Energy Matrices,

When we go from d2 to dn, the summation over the different

pairs of particles can be carried out very simply for the interactions

E¢X) and E9&D:

‘<zk E(’S{ =‘5’Z'n(n - 1) (208a)
1
. (zk ES(C) =M (208b)

where M is the eigenvalue in the unperturbed: state of the llajorana

operator and can be expressed as a function of the partition

= A Ay ApA*

)

M= A\ - 1) ANGWEE) +"/\3(/\3 -5 A, AL =D 1. (209)

“We can also obtain iﬁ‘k E§§) in closed form by using the Casimir

operator for the group”RS: it follows from (106) that for RS the

H
eigenvalues of this operator are

g(Wy = w:l(wl +3) + WQ(WZ +1), (210)

so that in particular,
g(00) = 0, g(10) =L, g(11) =6, g(20) =.10. (2101)
We can therefore write

5 =Fre - 2520)1 -7 £ + T8 (211)

* 1. Rosenfeld, Nuclear Forces, Amsterdam, 1948, p. 211, Eqe (1h).
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b g

and then find for dn

E_:(Lé) %(g(w) - ng(10)] ..5. (4&) & E(°<)

ik K
g
= Lg(W) -~ U+ 4 n (n - 25). (212)
In a similar way it is easy to see that
2®) 45 = 1w+ 1y Fen, (213)
so that also for n d-particles,
2 @8 1) = 1w+ 1) e, (21L)

ick
The calculation of the energy matrices for the interactions E(E)
and E(\S ) separately has to be made by the use of (132); actually,

owing to (21k) it is sufficient to calculate

P X jf z (E(‘c‘) - Eg) )» (215)
i<k

which will be of the form

r \ ’
d&Rw le\d"z Wt VL) = .2 . (BAWIA 12 tw')(w} (YYrL)|wr), (216)
@yl ez gm g = o3 5 avlaglaprmol Topgol

Although from (148) one might expect the factorization on the right hand
side to be a complete one, this is not so because (1L8) did not
represent the most general case. It contains the implicit assumption
that in the decomposition of UBl X Uﬁz the representation UB appears
only once, and this was actually the case when UBz was a representation
which had as its basis the states of ome p;}ticle in a given shell,
However, now that UB is the representation to which the interaction

operator belongs, viz.§5 (22)* e need (148) in its most general form,

*The proof is the same as that of the well known formula
4‘
1k (,éi'»igk) =7 [L(L +1) - ng(/( +1)]e

_‘.y(r
Tteference 23, 3.

S -
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and this still involves a summation. The number of terms in this
summation, r, equals the number of times that,ggw,appears in the
reduction ofﬁw, x ﬁ (22)8 8nd it féllows from the branching

laws that it can never exceed three,

Introducing (216) and (150) in (132), we obtain

- (dnzﬁwXLl x| azgmmt X'L) =

- z (iinz \’dw - ?zlq;d[l‘]?(z@kw‘zl[glwl; (L3¢ XLlWlX'lLl; (1)a)
Zlﬁlﬂlwlwlz{lg 1 81
1 ~T ! ol ety
. (24 Blwll A fl’ 2, ﬂlwl)(wltyf(,z{l Kl .Ll)\ Wl) (217)

. (7 XiLl; wal ' X’L)(Zlﬂi W (11 z/grwr)(dn'}zl;d[ljldnz).

e
We perform at first the summation

Kj( ' (v KL\WIXILI; (1)d)(wll {/éX]&iLl)l wi)(vix i L ; (1)a)ur X L) (218)

which, owing to the tensorial properties of the ¥ wil1 be a linear

combination of the (W H}( (2 | we) with coefficients that are

independent ofXX' and L:

5.122:{ " (W B'L\wl ks (1)) (7 ‘Pﬁ( N1 Xix»ji)lwi)(wix'lr.l‘; (L)alwty’ Lzm')
=§ (w] XS(WIW;.SJ.) \ Wt)(wl \33(6 K'L)(w').

When the (W] ‘I’S (5’ XrL)lwr_) are now, in order to obtain the coefficients

of the linear combination, it suffices to perform the summation (218)

for only a few valucs of X)S/i‘ and Le

el o T T

T T
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Then we calculate

(zﬂ,_wl yS (zl)\z/f, ) =ﬁ,1?3iW£v‘figl (zﬂml 2y 15 [1] (1)) »

G AWl ap] Zl/gik“I;_)(YVIXf g e wn) BRIl 52 (219)

-

and obtain finally =

(zﬁWlAS] zAW) = H‘f_ﬁ ~§ (dnz’ldn"lzl; [1](1))2(2@\%[ yS (zl)l zﬁlrwv). (220)
i .

In the particular case of a.g-dn%eréctiéng‘wﬁich 4s the limit of
forces with very short- range, it .follows from (198) and (204) that F, = SFh
venishes and, therefore, the energies of the Wigner interaction may in this

particular case be expressed in closed form:

='I5r’ F_ [a(n +3) + b - g(W)] (221)

by introducing (208a), (208b) and (212) into (206), Further, Wigner

and Majorana interactions ‘become “equal for a gLinterauticn.

Even if the interaction is not-a g-function, but is still of short
range (compared with the dimensions of the nuclei), as is the case ‘for
nuclear interactions, the most important contributions to the energy come
from ng), 5 and E(g?,’and‘the lowest levels are those with the
smallest values of g(W)es These levels belong to W = (00) for even
nuclei and to W = (10) for odd nuclei. Since 33(00) XEB(zz) ==§3(22> and
&3(10) x§%(22) ::§8(21) +§9(22) +§9(32) it follows that for W = W' = (00)
or W = W' = (10), r vanishes in (216), i.e., for the levels belonging to

these values of W the diagonal element of X vanishes, It must be

kgﬂmm -

!
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remembéréd here -that the W &re not good quantum numbers; however, they
are fairly good quantum numbers for short range forces, so that it is 11
possible to calculate the lowest level of a configuration«dn without j

calculating the matrix of X, ‘

§ s+ Spin-Dependent Interacticns. : .

As in our previous discussion, we shall limit ourselves to

the d" shell in discussing spin-dependent interactions of the
Bartlett and Heisenéérg tyﬁes, although the method is applicable to ﬁ
any nuclear shell, In addition to the five spin-independent irreducible

interactions tabulated on page 953 we have now five which depend on the

spin and which may be obtained in the same manner:

Interaction States of d2 ]
Name  Tensorial Character 33P ;lP 33F llF glS ~1§S 31D 13D 3L(}BG
3 5w L |

E("‘L) [11~-1~1] [00000] (00) 'S 0 0 0 0 1 -1 1 -1 1 -1
E(e) [200-2] [00020] (0O) "S! 1 -9 1 -9 0 0 0 0 0 O

E(X') [11-1-1] [2000-2] (00) "Si 0O 0 0 o0 -1 1 1 =1

1 -1!
5 €) [11-1-1] [2000-2](22)"8! o o o0 O O O -9 9 5 -5
| !
| 5(5) (200 2] [110-2-1]@2) "S| -7 63 3 <27 0 O 0 0 0 O |

In this table 7' characterizes the representationgiz, of Uh and 2

characterizes the representationj%;

of U5 to which the interactions belong. J
|
J

'E A1



~102-

The Bartlett and Heisenberg interactions must now be expressed in

terms of these interactions, and it is easy to see that

1 t
vy + vy =2 B (7, +3(F, + 9F))] A, + ;) + 5€) (5, - 58),) (222)

Vg = Vy ='§(E(Q) + 2890 . 2E96))[F0 - % (F, + 9F))] - %.(EGS') + 129y .

B
« (F, - EFh). (223)
It is also easy to show that
2z B =s(s+1) - (T +1) (22L)
ik
and
% @ ) -l y=se+n e 430 (@=L, (225)
i¢k

] t
The calculation of the energy matrices for the interactions E(Ké), E(E ),
t
and ECS ) has to be made by the methods used in the preceeding section

for the interaction X.
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