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CHAPTER I

l ' TENSOR ALGEBR#

*

i 1. The n-@iménsional Point space enfi-doordimate. transformertions.

“Soordinste Bystems. At the start of this.wdrk we will be

concerned only with local properties of our space. Hénce we only neefl
a portion of the ;pace coverable By a slngle coordinate system, whith
we define im the following mahner. Tet ‘)27 be a point sét and E -the
n-dimenstonsl munber space. ) will' de said to be an nedimensional

space if there exists a one -t o-one co'i“respondence between the points

of‘?) and the points of a subset S of E_ where S is ‘the interior 6f
an n-dimensional 'topological sphere. Any such-one~tv-tne correspond-
ence will be called a coordinate system of; 9()

d m-S:}:st'éx;ls. I]e’cl"(lP (P) be any real point function défined
over T Then, in.’ ahy one coor'dinate system, ?7 (P) is a-function
cil?(xl, ,‘.. , X,) of the coordinates (X)., Up to this point there is

no notion of cont‘inuity or differentiability of a fu‘ncti,o;f@(?) de-

fined over T We now define, in tHe following manwer, functions

@(P of class CP / O, vee , m, for a given m = 1. We chose a

) definite coordinate system (x). A Tunction P (P) defined over W

( is said to be of class Cfin ’r = '4;0 < m, if and only if f{P)

as ?’ Xy see s X ) in the (x) system is ot” class C/ *, . According

i - vy
! ind + -

;-a.“......----—_—M.—---..--u,-—.-.--.---._-p_--—.. e ons e o o o o0 T e e Y B e e it e e B i 2

A function of real variables is sai@ to be of class Ct if it
possesses all continuous derivatives up to and incliding those of

otder %. A c;ontiﬁuous function is said to be -of class C°.

I‘ -------- -~ b - - - - s e Y D s o e B Wt U 0 03T e ol g T o - S ot e e s




to this definition the following property holds:

2s

the totality of

functions ﬁﬁ (P) of class C# 1tn J? coincides with the totality

of functions ?9 (xl; e xn), of c¢lass C/o in the (x) system. Any

coordinate system which posseses the above property will be called an

m-system. Thus an m-system (x') has the property that ahy function

of class Cf in a” ;, ahd only sucﬁ a funétiong is of class Cﬁ as a

functioh in the (x'j system, Oé./a 4 m.

- . Consider any two m-systems (x) and (x').

Since (x) and (x')

are both in one-to~qQne correspondénca with T’ they are .in one-to-one

correspondence with each

x!
1

(1,1)
X

other, and we can write

= 5 = xf
x] (xl, cew :x:n) xf(x)
i (xJ'_. cee x;l) = xi(x')

where x{ and x, (x') are single-valued functions. From (1.1) we-get

~the identity

A

’ ¢
(laZ) Ii

= x{ (x(x'))

*

%he x:.'L as functions of the x! are of class ¢™ in the (x’) system, and

i

v ¢

hence of class CT in the (x) system, and likewise the X, are of class

¢™ in the (x*) .system.

(1.2) getting

(1.3)

Hence

Therefore, since m 2 1, we can differentiate

i

K
£ S‘:ﬂ

=

X{;"B )

———

'a.-.

Xp 0O X

beS i

»
-

{ .
1 =350 5%

and, since the determinants are continuousy

EACTI

o
©

ngzﬁk\ =0,

»



w
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»

i.e. the Jacobians of the tramsformations (1.1) exist and are diffevent
from zero,

Ve might note here that the transformetions between m-5ystems
do not form a group, sinte we have no rule of ‘combination of the transe
formation from (x) to (x') and the one ¥rom (x") to (x").

2. Scalars and Vectors.

Scalar. A scalar at a point P is defined to be a real number
q) assigped to P. Using a particular coordinate system, the scaler

might be written as -
(Xl, F ] ] xn, ¢) =4 (X‘,’ f),

erphasizing the fact that n + 1 numbers are necessary to determine the

* " s

; y /
scalar at a point, If (x{, vee x!’l, cf) is the game scalar in another

coordinate system, the law of transformation is obviously
i

-

(2.1) x} = x}(x), 502 ? .

\

Contravarisnt Vector. By a contravariant vector at a point

P(xl,_

1
(-Xl eer g Xng ;\, se § A

coordinate system (x) into eny other system (X)

e xm) is meant a set of 2n numbers in each coordinate system,

7 ¢
) = (x4 ﬂ )y which transform from any one

accor@ing to the law
(2.2) ' = a(' '\“ - DX‘I ZK
. x; = xi x), / 5")'(“

1 7 , i
The quantities A/ M ’) A which ocecur in (x, Al) are called the




4,

components of the vector (wrbh respect to the x coordinate system)s

e shall usually write a B8 the designation for the vector (%4 Ri);
An- enalogous designation will apply to termé tQ; be defined later. One
can easily show that if one starts with the tompohents vf a comtra-
variant, véctor (7(/ R‘) in the (x3 system, gnd transforms from

the (x) system td ah (x') system and from the (x') system to an {x?)
s8ystem, the components a”"’ resulting are the vomponents one would
obtain py trapsforming directly from the (x) system to the (x) sy‘sﬁem,

Thus we see that the definition of contravarignt vectors is free from

contradictions.

4,
3

. If the componerts of a coﬁ‘%rafrarinnt vector are Zzero at &
point in a particular coordinate system, ise., if they arg. ,
(xl, sy 1 X s Oy mes 0) then by (:?4.2) 3:}’16}{ gr;a zero ab the point
ip all coordinate systems. This vector will be gcallegd ?l;e tontras
variant .zero vector at the point (xl, eee 3 X ), Iif x,x() and

, .
(x,/,( are contravariant ‘vectgrs, “(x, ;‘ ‘l'/i is also; if {x, A )
i5 a contravariant Vector and -0~ ;'Ls a séaldr, (ky OF a ) is a tontra-
varient vector.. .. Also (X, 3‘)& }4) (ﬁﬁ,H‘ (2 A) and the megactme
(x,)m ﬂz ) of -a vectar [x, JI ,.) ‘8xistde * These refgﬁ_lts show that thé
set of all contravariant, vectors at a point form & 1inear vector sbace.
A set of cantravariant vectors A}/X,' R % at a v;c;int

will be said to be linearly dependfent if a set of scalars a,b, ... , ¢
not all zero exists such that -the .following relation between the come
ponents of the vectors,

a f\L-eru‘-l— et Cy¥i=o,

holds for al} i, Otherwise the set of vectors will be said to be



! : 5

{

; independenty Notice that, since the components of the contravariant
. zerq vector are unchanged by cootrdinate transformetions, the notion
of linear dependenge .or independencc does not .depend on the choite

; of coordinate systems In ?” there are n and only n linearly in-

‘

dependent contravariant vectors-at a voint, Take ih a particular

: t
coordinate system, n contrevariant vectors ‘3 at a point such that,

H
i for their components a P .

\ 1
J’r?\—

- -

t
-
>J3

»
.
-

x 0D

ES

1
A
T

.

SRR

€

- -

14

11 . ..
{ Then a a = 0 if and only if a, = 0, and the n contravariant

o

¢
vectors a are linearly indepenlent. Consider any other contra«

I

. <
~ variant vector 71‘ et the seme point. Since ‘a‘ \. # 0, the set of

equations : ‘ '

| AL =

i has 4 unique solution a

¢ ¢
I «.» and 7"‘ is 1inearly dependent on the a .

Any such system of n linearly indepehd.nt oontravariant vectors at a

.

point is called a contraveriant n-Bein at the point. . ’

3
i . -

Covariant Vectar. By ‘a covariant vecetor at a point P is

i meant a set of 2n numbers in each coordinate system,

-

i (X5 ove X ;\1, vee ;\n) = (xh, A

1

)»

. -

f'a which transform from any one- cogrdinate sistem.«(x‘) into any -other (x')

accordipg to the law

-

/ .
(2.3) xtsxi(x), A: = %&7(”- ;\5

i i 3 P




6.

As in the case of contrdvapriant veltors we can show
1) that the definition of covariant véctor is free from contradicticn,
2) that at each point of ?37 the totality of covariant vectors forms

a linear vector snace, &) that linear dependence or independence is
d i ‘

-

unaffected by coordinate transformations, and 4) that st esch point
b4

oI"a: there are n and only n linearly indevendent covariant vectors,

3

any such set of n covariant vectors at a point bBeing called a co-
‘1; ",,,'

variant n-Bein.

4

An alternative definition of covariant vectbr is contained

in the following. Consider 8y ;\ i. where ;tl are the componehts of
an arbitrary contravariant vécton a'ls and let the a; transform in

such & way that ai /[ 1 is &an invariant, i.e.,

v ai ﬂ i,w; é.]'- A' in

Then . D / K
w A SR

s

3
for any A ; hence

5

/
g = 83 .7(1«

-

5
al L3

so that the &y ate the ¢omponents of a cdovariant vector, The in-
variant form a 7}i is called the inner product of the covariant

vector (x, ai) end the contraVariant vector (x, H ).

Adjoint Beins. To any particular {contravarient or co-
K3 - s *
variant) n-Bein at a point we can assign a particuler (¢ovariant or
contravariant) n-Bein at "the same point in the following manner.

Let a[ be a covariapt n-Bein at & point. There exists a contra-

variant n-Bein /;31“ such that




(2.4) (S'xﬂ (i.ronecker deltas) ’

for, if (2.4) is considered i = 'oarticuiaf coordinate system, for ‘

eachﬁ we..gan "solve the n-equationy’ unlque]_xi for /{/\ since ,I/ P # 0.

By this a set of n contravarmn“t "yectors 4 a‘g,. that noint) "fs. de=~

A

fined. The so defined set /M vnll solve (é,ﬁ) n any coordinate
system, (in a unigue wqy). because (2,_4 - are- invarient xelations. Hepce
. ¢ . . {
{: . £ avs: "
the solutions of (2,4) / //l,/l , form . coptravariapt, n~Bein,, l)}/eg‘ ], # O
According to the lemma to be proved gme%iageiy the definihe relntion-~

ship !‘(204) ‘hé&y be written eos

£ A P
?\? l‘:‘;S
At p =S
, '_‘x'\ . - ~ e

Any péir of n-Beins at a point satisfying {2.4) or (2.4') will be gell-

*

ed adjoint n-Beins.

(2.4')

£ ES i & -
Aetma ; If | by b - 5“ ‘ e e s
t = 5 e
hen a:[{,i pl{d gij At W . w & M
Proof: - Tet aK*l I’J = Cij"
Thén ™ b o CE
,€1 aKi ki~ i i .
b £ ¢, , -
.2 &K.@ X5 clj’fpﬂ;; . P B
b, =c..b,, ’ ¥
» 5 w‘of.]m Wiy "El,"} » ¥ ¥ o
. Dy = C,.H,,
e, {1j EII, L3F 2}1.’* . Y
- ) (Eij-? ?:'i-j) hﬁi‘;: Cio
] .
By hypothesis ‘bf.i‘ 7“0;, . hénce
~ N e ¥y s
s F e ¢ .
c,, = N ¢ =,
iJ 513 Q‘ E. D.




8.

3. Tensors.

By a tensor Tm,gx "Qp gt a point P we medn the totality

of doeffiélents of an invariant rultiliheer form

-

lJ %i’fu? P
(2.1) Ton ... d(. f‘:'ﬁ'-‘y@f LA

in several-arbitrary co- -and contrsvariant vectors et P. The upper
indices will be called contravariant the lower covariant. As aid

e-J

example, we see fhat the Kroneétker delte, d‘é_ s is-a tensor at any
point of T ; for ) . ’ )
) ' .
S pee =T

which 1is a;l invariant formi, Apother example of a tensor is the pro-
duct of a number ‘of contravariant’ ind ‘covarient wectors. The order
of & tensor is the sum of the number of contravariont, afid ‘the number
of covericnt indicés; two tensors-dre said to be of the same kiha
{f they have ‘the same number of:;onti'avarianv' and’%he Same ‘number of
tovariant indi;:‘es.‘

Vle cen obtain the law of transformation’ for corpoients of
a tensor from our defimtion, in t¥e Pollowing manne¥. Let BI be the
components of a .tensor, ;\ and /!- the components of cOn"tr'wvariant
end covarient vectors in the (x) system: end let ﬁli{' m'c,nd f be
the components of the same entities in fhe (X) system). Then accords

ing to our -definition of a tepsor,
{

v i -~ {( FK

(
. K T 9 — :
Since R =, %ﬁ%ﬁ. R ] -and /f_ = —'—% /‘? we have
5 2 ;-

)
EES

)

J

S

oy R R



i

(B -T, &2y pumo

J R SP-F ¥ .
for arbitrary A end (J . Hence we have
11 =R, 02X X
Dy = Dy 3 3%
J X;ﬁf- 7¢, )
the law of tFansformation -of ¢ tensof ,of "the second order. The law
of transformation 6f e generdl temEsr -1y~ ~ e
L b3 * E4
(3.2) Ty 1{7“ = T;‘zi;_ﬁﬂ1>.l(ﬂ «‘B,Z_(_“ _.:@}_’;_A .
1735 1 250X PX;;‘N;B?(M Dk, « . .
w 7 hR]

I

An slternative definition of tensor may be given if $érms of this

e ~ oy

- 3 5 o5 B3

*

18y of transformation -

The gonsrel tonsdF ecannot be writtep as the product of o

.
* £ 3

set of contravariant and GOVai"iaﬁtf've’ctors,Ibut 1y fcan;be. wrikten ns
the sum.of sudh ‘products in a wny-indicated by the following oxzmple,

and- let -?a(‘jan‘a‘ /;é K be 'ﬁwcs

Lot Bl; be o genoral bensar+of ordef twoj
n-Beins at the point in question.’ Considern &

[ S

. ) L5l
3 5 Nt
(343) B = Q‘P/g“%g

where the b“i"g are scalars to be determined by (3.3)., (3.3) can be

w o

rewritten as *

S’ Pua Mk " %k »; .
(3.37) Natie S "“""RZ alerian . .
SK P " 5

i
Singe ‘7\ \-—‘ 0, the se¢ond sct of (3%.3') ¢an be uniquely solved for
3
C(d K sinte V&LK' # 0, the first set of (5.51‘) can be uniquely
solved for b;xp‘ . This process has Bedén. carried.out ih a prrficular

-



q 10,

¥

m system, but becausc of the invariance of (Z.3) amd {%.3') the-re-

e

sults hold in ull m systeims. If particular; if ;‘ ahd )\,(K are-
adjoint n-Béins, we Reave, using (2.4),

I

i

" > . 1 ,;lw, .
1 The following are i the fundamontaI olgebrnc OpLI'E‘th"lS with
I; PRSI
It £ensors. ‘ - -

; L 3 L e ("

1 1. Additich. If T °1 ¥ wnarut ¥ . arc ten-
.:) B o Kt'l . KI\, . "Kt.rvi/L

sors of the same kind 2t the ¥ame .point, T ;"«" - °",3'-;. s U ¢ /i

: 1° " Ko ‘V\.,---K/,,

H is & tensor of the sdme Rimd.nt” that puint. The indicated s@dition

menns the additioh” of correspbnfing .components 1t the BEmo m-systent,

, h,‘-..hp

two ‘tensors at the same point’ "'* ‘ah ls e T ‘5 534
'K)‘H F K’i P

2+ MultipliSation, Tf T ‘5 . ‘f’b* en-§ 37 s pre
~"1s e tensor at that point. ‘ o
|

' . !
«'LJ' "rbs

S boz}trn‘ction. IrT Stefa

p o -

is a mixed tensor then

v
o o
.

; i . ’-' is a tensor tpo.
1 Q:f JP"’\jPﬁ Ja J{‘,«]K)P‘F1 .“\)[L ¥ A s -

o 5

|

|

]

s " 1 - ¥

: : . _T_ ('ﬁ L‘ﬂ’;\*‘ L’“f' s 1“£M@»1Kt‘rr\-r1 4 3
This is easily seen by repreSentiig the tentdr by mesns of & Bein and

‘ ; .
2 & &

its adjoﬁn};. ° * o ) v oa
z “ - = & s " !
i 4y Fiked perfutation operation: Let *tri‘ Li be coVariant
: ¥ TR P 129
: lor contraveriant) tenSor end put “ ’
j ' J-l Fon lr iai » ong i-;o( T
B
where O(,‘ *+r X, is a fixed permutation of 1, ... , T. Then

-

):
i
;
! .




11.

. :J ' e ii K 2
T
Tgking for O(-a‘) S O()L all permutations of .1, ..v , T

. is a term of the same kind as t. .
i, ees i i, ... i
1 T 1

T

we get n! tensors of the same kind. The sum of them is a symmetric
tensor. The same sum with @ negative sign attached to those members

of the sum produced by an odd permutation is an anti-symmetric tensor.

4, Vector spaces at a point R,

Definition. A set of vectors (of covariant or contra-
variant kind) at a point P. form a limegr yector sbace at R if the
set is closed under addition, and muttiplication by scalars.~

. We have alrgady seen the existence of an n~dinensiongl

- .-

vector space at a point P, Vle can consider vector subspaces at

P of lower dimensionality. As an exampley all vecto;-s/(g(a ahich
. iK - i . . .
are solutions of t i = 0, t7 being a given tensor, form a

iK

_vector space. 1f f| t* ]| is ef rank’r the vector space thus de-

fined is of dimension n - r. As another example, all vectors
{OK such that t°% O",i = fﬂK, tiK being & given tensor and Ovi
-an arbitrary vector, ;f‘o;'m a vector space.
Consider a vector space V at P. V has a dimension lgss

1

than or equal to n. For take a vector AQ., from V. Either V
equals the totality of {z:ectors X, Ai or £here exisuts& another
vector AZ in Vv 1.nhich is not in the totality (X, 34 .« Then as
before we can consider the totality of vectors (X4 }\1 -+ (XZR?. and

continue, arrivihg after r steps, r £ n, at a stage where V equals

L e o L




iz.
the totality of vettors O(/lAi + "“(“xn;'\a . Then V is of dimen~
sion r £ n; such a V of dimehsion r may be written as V(r) f
c0ntravariant’, V(i') if covariaht. It can easily be shown that the
dimensionality of a vector space is uniquei
Let V(r) be an r-dimensional ¢ontravariasnt vector space
at a point P. 'The totality of all cotariant vectors /4 normal to

; H iy
each vector of V(r) igea (ﬂ" R = 0, A&V(r),- form a covariant

~

vector space V( #) of dimensionality n - . V(n-r) will be said

N~
to be notmal to V('m); conversely, to each covariant vector space

3

V(p) there exists a normal contravariant vector space yle-r),

e

-

5. Cam onical Representation of a Symmetric Tensor tiK of Rank r.

In the following work we bear in mind that only vectors
or tensors at a fixed poimt P of 7/ will be considered. We start
with the following

1)
{
Lemma, Let a and M(‘)‘X“Vla cve , t,be twWo sets of

t vectors such that

&L/ﬁi =0 ; & &F}/ d/ﬁ:@‘“fﬁ

(5’1) [ Y
?\ f/ti x 0 ot Mot summm €a )
-8 x ’ »% i

Then each set of 4 vectors are independent.

A °
If we assume AD( 2&\ = 0 and multiply both sides of that

equation by /p&z we get, using (5.1), A% = 0. “In the same way

‘B“ /°/<LL'= O leads to B, = 0, and the lemma- is proved.
{y(n-1)

As a consequence of this the vector space {S defined

by




-

13,

(5.2) j; /ﬁ4_ =0 //7 1,

-t
has d.lmensmn n - %, The vector spaces E.C} )of dimension n - ¢
and of d:.mens:.on t have no vettor in common other
L (n t)
than the zero vector, for if’ ?; ’3& ‘ {‘: then
Ama} )UL ﬁ~l, ..us,t;‘andhenceAa': 0, =1, wue 4 .

(n-8)
Hence any vector (at P} is eXpressmle as.a sum of a vector of {7;}
) ~{\ (ty
'szrid a vector of {1 }

Now let a synmetric fensor t’i‘K of rank r De givern, ) By

the rank of ? tensor tix is meant the rank of ﬂ tﬂ,“ « The vector

i (m) K ; :
space {e } defined by tiKe = 0 is of fHimension n « r. ({This
proves the invariamce of the rahlk of a %p‘nsors) Assume we have ton-

1 .
structed t < r contravariant vectors. Z(\ SX= 1, ey, tJ such that’

Lk
£5473) tiké{ % -——O} IX};&(/%/ Df}ﬁafl_j Jt

L AX ol not s d.
tin& & a"O/ pon Sume

K
/&(f tiK& . 4

According to the lemma the t vectors /Ai and the t wectors ?\{ are
I :

o
both linearly independent. The equations y
\ »
}A\? O (iLKA§ o\)o( Lo b
n-)
define an n - t dimensional vector space which has no vector
. E ’/\L {t)
in common with the vector space —1 ; M 28 h g - Henice each
vector Y at P can be represented by
- , s(n-t) -

(5.0 v=tirAd T Gl
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Now obviously

(-t N
A=A
because }‘.D/}; QL: O for 9‘: [ { é i }(1‘-4) . We now show

that there exists a vector//( A ii } _such that tiK/M/"L # Oa N

If this were not the case,
L3 N . “ K S
ey = 0
Lo L: L (df\‘-t)' * '
for all /(/(/ vt € g » Which.would yield
1 "'a ] F
tin&‘vK OA
But this last equatioh can be written gs
L[, K "‘) =
e ¥ +A4) =0
and hencé; since "ﬁK +rh }\K is a general v(ecto)r of W we have
x, - L ,h_,t
. t
- tﬂs}A"e 0, /,L‘C {‘g} ,
and

(-t o (n-2)
o e oY

(5.5). eand {5.8) give

Z’r\ '.h.)

Y I

and hencen -t =n - r, t = r, in contradiction to the assumption

. 4 ap-t
t <r. Thus there exists a vector ﬂ £ :g § such that

: Lt
t, % ?\ 0
AR fpq4 2a ) 0,
. . H
and we have oroved (5,3) for A /0( =1, see 5, bt + 1.F
d v

el o s A2 e ot S s B > e 0 b e s Sk e e AP A e e e @ e i e - =0 - o - B0 o e e e e e SO i s e s e e i

* This method of obtaining e canonical Tepresentation is a con«
structive method and not a mere existénce vroof. For this step we

. ot (MTt
show here how to construct a vector ‘e ft } such that
tinlfK # 0. Take a vector /U\z such, that N
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/MZ £ ig‘ }(’n’t) but f/{é &’ {e::}(’“’}j Then tiK})‘i # 0, ’and

there exists a vector G~ such that ¢, I\t//{i O‘y # 0. Split O"K

(n
into the Sum of a vectér of {g} and.a vector of

{A A} 0 =Y'§-£ﬁ{}i )a(z-fl,"',t ¢ Then tm//\i &40,

i K , .
Hence either t,, ')A }J\ or tnglylsﬁ is diffefent from zero or -if

’

X
both an, tero, t, (/u +V‘){7Jl +v) # 0, Ve cah thew ;talke/”‘l equal
toj/(_ ) vior )M, < ‘V" -4é¢ording to ‘whick of the e;bove pGssi

>

bilities are true.

-q—““--eﬂ-“?‘..‘w-~—w— --.---‘A—I-qp,-ﬁ—--.-;————‘--ﬂ.— e o o il e gt —‘—‘—b_\““-v

L
iie can procced 4n this manner mtil we get an raBéin &

. {y (n-n) :
for which (5.3) holdss Then-if § is defined by /&(i g ;,‘0/

X=1y eeo , T, We have

(-n..)b £ }.(‘r\ 7O

. yln-)
0f course then tiK . = 0 for en‘y },M @ « Agdim the two
. (n- h) () . .
Yector Spaces { } /* . ﬁ have ndé véc¢tor in common
1 *

othex; than the zero vector, and hence we can complete the r*Bein

L
ees 3 Ty by adding tQ 13- ¢ r independent vectors of

(11-/1 n-ny -
{‘g } 9 to form an n-Boin, For this n-Bein

A u l, ’i" ) n, (505) hOldS fOI‘ Q( ﬂ = ) eh» g I‘, but
0& / : .

tix a % =0 if X or F > B,
Let ’V‘: be the -adJoint Bzin to » Then from
- 4

P2
e(tf\a)

(5+7) X . ti X pa P

Al
13
Y

we get

14

%W ik

By multiplying the vectors

{tﬂ{ =ty 2((" YK# o :11 RN N, (not summed on &)
X
—V

" ‘hﬁ')
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5,8 t... =+ Y, Vo X=1,s.., (ot summed

the so-called canonical form for syrmetric covariant tensors of the,

second order, i

If t is of clags Cc ’[4-‘-727-1 in some neighborhood Y/i(P)

/ A
we can find vectors Vé (in (5.8)] of class C‘-a in 2){ [ W/(P)a
-od ¢
: L
We shall first assime that the ‘a‘ ipg X =1y ¢ogy bty are of class

* / Y / 4
CF’ in a /Of _ W(P) and then prove that in a?]ﬁ Zﬂ‘the t}}}j

is also of class C r . The /0/35 in

L pl ‘
“5\-9) /41? =*O} oc; ly see ¢ t,,.

1
are class‘0P in WZ Let }/M. lio ng L, eee o by i 1, vee 5, &,

/f 4 t
in a w @7 Wetcaln 'then solve (5.9), expressmg g /'g
t

'n
“inearly in terms of g t with coefficients of ¢lass Gf

I ’
in V But at P ,
I3 K
b A ;1 x0
y K98 14
and in ?/Z ;
3 o
(5‘10) A ia i = l’coo’t’ j = t+1‘! édoe ¢ n,
tH ey )
i £ 4
where the coefficients aj are of ¢lass-C in w + Then, for a
i y/ L
U C U, the vector fiela given in F4 by (5.10) for constent
t+14 R’ﬂ .
R ' will have the property

i+ / 7 t314

e

K i1 ttl
R =0 ’ D(‘—‘l, ees 5 bty
41 .

~e

together with /&(;‘
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Hence there will exist a 777(P) such that in it all -
A" = 1y 4es , T, are of class OF e In the same Way the n ~ r
vectors al , = T ¥ 1, «&s , n, tan be chosen such that in aﬁcw
they are of class C'5 &+ Thus the n-B eina =1l eee 4, n, and

accordingly the adjoint n-Bein ZL o Will be of ¢lass C"a in 57/7 .

Conversely, if
—__//1 /b(k u" ly‘pu‘c-,.r,f

where /b/({i’ is an r-Bein, then t iK is of rank r.

Proof. . The system of equations % .- fK = 0 is equivalent to the

- {1
systém of equations /oft'k f % 0,05 1, w¢¢ 5 Ts Since -the latter
has n - r independent solutionsy -the former mist also have n « - ine

dependent solutions. Thus t,. is of rank r.

If we 'have any two canonical representations'.of t

. / * ’
At i"../g’:(‘ L'fp/((,K end tiK = L‘/&‘ﬂ/é"f&' -the equations

flf'=0 e ;
M= ]

define the same vector spacd { } « This follows from the above

ik?’

X
proof, :since,:according to it, (0&} 'is also given by tiK/ = Op»

o pude U e

since their normal spaces aré equal.- We than have

(5.11) i =o/5/3/‘//}b , }O‘P;j‘éf o

6.+ Dofinite ,L‘semi;dqfinife and_indefinite symmetric tensors of the

Hence we havo

gsecond order.,.

’

K >
t K(O f = 0, .for arbittary /L then the canonical




takes the form

represcentation of tiK -

(6.1) tig = Z‘; ‘g(/,'( , Gl =1y o.o 4 T.

Conyeérsely, if til”f’has the ropresentetion (6.1) then

¢ K R\ >
| tiz:(ﬂ/g ——Z(V{D)
=nd indeed the equality holds only if Z’ f =0, QE_ 1, v4s , Ty

for which t, I,{O/’ >0 (<o) if

A symmetrlc tensor ¢
l YT TR iK

/ # 0 is called DOSl'tlve (nogative) deflnlte. A positive (nogative)

definite tensor is mlw.ys of rank n.

, ' ¢ Ky
; A symmetric tansor ’ci,, for which tip ’ﬁ =0 (é» 0),
i g i Fia T p 3 +

( _
wheTe, the oquality mey hold for a (0 # 0, is_called positive (negative)

semi- defmlte. A semindcfini:cq tonsor will be of rank r < n,

T

Any other symmetric tensor tﬂ, will be called indefinite,
x LA . A - ] - —_—

In a canonical representation of an indefinite tensor, both plus am

1 minus slgns will oscur as coefficients,” J

J
i
‘.
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I
“’ CHAPTER IT

Tensor Analysis

7+ Covariant Differentials of Vectors.

In the discussion of tensor algebra we were chiefly conctern-
ed with tensors which were defined ét a single point, P+ We now shift

our Point of view end consider quantities which are defined as functions
1 4

|

|

¥ “

|ﬂ of. the ¢oordinates, x, of our spacey, The set of vectors }R (x) which
] are defined for the various points of our space is calleqd a contra-

|

' varisnt vector field. Similarly we may .define covariant vector fields
|

and tensor fields. For convenience these will simply be called vectors

and tensors.

- For the present we consider a curve xi(s), (0L s& 1] where

1(;3) are ctontinuous functions having continuous first deritvatives; ige.

they are of g¢lass Cz, Along this curve we have defined a one-patrameter
f? family of vectors, )&i(s)‘ where }jl(s) are glso functions of class cl,

Now the law of transformaetion of this vector field is

>
[\
t
&
ey
°
S

(741) ‘ d e

—
-

where the )ths and ):'s are understood to be functions of ss In order

that }1 may be of ¢lass ct as a consequence of our assumition thab 2&1

3 ARc
is of class C%, it is necessary to assume the éxistence of ~—j~¢¢ «
) ont o

That means that in defining our m-systems we must take m P/ 2. It is
clear that this mssumption is at} that is required to enable us tp speak
of vectors and tensors of class Gln

N

The differential of W © in the x coordinate system may be




defined by -

O N

(7.2) A=k

Jo
whele dx,k are the components of a displécement along the cturve. TFrom

(7.1) we see that its components in the x system are given by:

e 0,;1. 5 ()2’;9 P
(7.3) Ax T, o™ & & b,
' Pre dn? P ¥

Begause df the final term, this is not the law of transformaticon uf a
vector under gendral transformations of ¢oordinates. Only for linear
transformations doves this term ¥amishys giving the tehsor ::elsgt“iog.‘

It is highly desirable; therefore, that a new type of diffs~
erential i;e defined such thet -the djifferential of a vector is mgain =
vector, In order to accomplish this we must add some new element of
structure to our space. This may be done ip meny different wayse We

“ehoose the, fo.;L’iowing method because of its simplicity, .and shall give
a more logical procedure in a few paragravhs. To start with we ine
troduce into our space a fieid of independent covariant vectors,ﬁ{.i(x),
(i,= 1, s¢¢ , n) whoSe components are of clasg C's TFor example we

k)

can choose,.«"«',i = & in the x cpordinate s§stem. This i8 & constant
" .

A
Bein in the given Zoordinate system, but is-not necessarily so in any
other systems., With respect to;}&%ﬁ; we define the adjoint Bein (see
‘ , ‘ - e the §
)y E (x) « We observe that this dpfinition Implies that the X
&, . >
are also funetions of class Ci.
In terms of tHis Bein we can represent our given vector
= .
field ) {s) by the equation

: Mrade X 35

(7:4)




|
| g

D]
i

[
{4
I
[

! 2l.

where >\ (s) are sealars of class cl defined by
A

(7.5) } (4) e /d) A (=),

*

From (7.5) we may define another set of scalars, namely ot %‘(s) as the

® e

ordinary differentials of the >‘(s )2

’tj i
d*x
whers the )'s and & 's are understood to be functions of s. This en-

ables us to define bur new type of d"iffere'ntial.

. oo
Definitions The covariant differentisml 9 %“is definmed to

be . . P

R v ~ L .
(7.7) A5 (fdé)'é{_ '

Substituting into (7:7) from (7.6) we have that

~ S =~ < a""’o’i ‘é . .Z‘
(e SN Tl AF f — }\ .

A #

it

" ¢
From the fact that E ¢ AL v we sce that

w o ﬁiA% -

v O . § < } .
o) §C A _ 24 ey, ,,
A : a %

o P I “

We define new quantities f“ Kj by the relation
S ¢ 9%n Lo 2%
(7.20) e ’§ s T
ol ’3‘ dayi ot )

And hence we write (7.8) in the final form, .

T SO S CR A S 0

<
Alternative Definition of 9k . The Bein which was
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original}y introduced appears in (71} only in the expression, ;:j
Henc¢e it is a natural generalization of our defini¥ion to define the
covariant differential by (7.11) .where r lij are .now sertain fyncetions

of the coordinates whose law of transformafion is yet undetermined. The

’] rik are Bybje¢ted to the condition that,?-ﬁ must Be .a coutravariant
E | vector for Ao of cless G* but ate otherwise prbitesty, This condie

L1 tion has for its analytical expression:
T .6 é 3 ";t I /e i= 575 9
(7.12) ) T T4, X ""2 &

Substituting for 4 )‘ * from (7:3), for )\k from {7.1); and for dJ—CJ

.;i ‘ - NP
\ [‘ ] from d%Y = ‘2.2‘; ax 0 , we have that:

dx? .

C);’ZL. 3 > -‘: V0 f— # —1— &
| ;;7“ LA d’x”"'x % » ad d’kﬁ k dx 8 “
| S 0E fgxn e NP
] — a%*(&k #3 5 OT

T onras %;gx 1# Mz Tles ()ax

And since }“\P and dxq are quite arbitrary, the law of transformation of

|
|
2 [ 3
3 ’ the § 's is:

i B ‘x‘.‘-’ : 6 Ly
2 ¥ =<, T d«yv‘ -, d,{{
1 (7.1) ~omaore, a0 T o ey |

Ak We may take theFL 's to be arbitrary functions in one coordinate system,

¥ “ o

end define their components in any other system by (7.12), Then (7.11)
S r——— Y gy

-

L Aach

’ ; , defines a "COVaI'la"lt dlfferential" Wthh is a contravarlant vector.
1
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Geometric Objectss The setond method of defining { legds

us to the notion of a geometricrobject at a point Py If 1) a get of
I nimbers is defined ih one coordinate -systemy £) gorregponding sets of
{' ‘ umbers are defined in any other sysiem by some defipite law of trinse
3 i; formation, énd 3} this law is transitive [iie. the transformetion
5‘ x =¥y «%- g gives the same result as x %> 2], the totality of the
génsors are obvious exemples of such objects, and it is casy to see
‘ ] that the / 's g:’sven' by our second definitidn are “aIE‘5 db}ects; In

numbers so defined is called & geometric object at P«  Vectors andg
i this case (7¢14) is the law of transformation and it is evidently a

ki

i transitive one.~  Hence we may speak of | = ob’jetts.

iy A shorter defimition of a ",géome‘bric” ob ject-is the followingy

'3 definite lew of transformation betiween any two coordinate systems wmd
P
‘.

! . + e &
I ‘ If in any coordinatc system = certdih set of nmumbers is given with a
\' 5 if their transformation law is consistent, then ‘the &t of frumbers de-

»

fino a geometric objects
The question naturally eriSes as té the relation of the two

definitions of t"he coveriant differential, From (7.10) the law of trans-—'

i N

. 3 .

This law actuelly turns out to be {7.14), and conseguently the £ gk

formation cen be computed por ths [ k'ae“ft‘iﬁézd “by means of the Bein.

so defined are the components of & r-—o“bjec"t. The second definition

of the differéntial thercfore includes the first. ‘It is possible %o

show by a metloll to be given Tater that the second definition is in

|!
I3

|13 fact more general than the first. Hereafter the .covarinnt differ-
|

i
11 ) P R
1 ential will be taken as defined by the second method,
i Tae { «objects have a number of properties in addition to

their law of transformation which distinguish them from tensors. In
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particular it has no meaning to speek of a 2Zaro r-object:. For even

if all the components of a f:uuobjwect ZI:O zero in one toordinate systetn,
it does not follow thst they sre zeto in all coordinate systems. Fat™ther-
more suppose thet we have found two obje{:tsx, 'k and f‘i K’ Subtract-

ing (7+11) from.

- - : i L2 2
(7.15) ,;cf?}:" = Lpe +Fg JRE A
we .see that

P NI T Sr] G
7.7016) {rgaé‘ffg»é) )\z?;&? € - /‘(‘9‘3&( ...,49} i

4 & vector,
+

Hence '*i'b_follqiﬂs_ that { F“;k - fi? ;&) is & tensora fThis remdlt shows

thet the most general [ -object’ is obtained From a.partictlnr 4 "’Sk‘

by gdding a completely arbitrury Ty . From $his £act cnd the existe

-erice of %' particular U (derived from-the Beih) it follows that there

cgn be no ,c_ontraaictiion in the trahgformtions laws defipingrobject"é'.
It mlso follows from thJ’jS that if a riobjec;t} is symmetric in its lower
indices in one coordinzfs system, it is symmetric in all systems. Thus
we may "speak of a "symmetric r-object".
Turther tharacteristics of “the algebra of ‘f—objeéts are
1) addition of F i . &nd Ti dses not gits a-f Yeobject; 2 O‘J‘”
‘;

is not a- ;‘_-SBgebf, whete '0‘ s ' séaldgr; 3) af’l wb( l is

a F -object if é-ﬁ- b =1 4) if r pa is =n ) +bbject, s¢ alst is

| ;p’ We can write, moreover,
E
“ i - 1 ‘ i - i
(7.17) [’“‘“ = i,_pq f & & 1 _pg h{*qp
pq 2 - . 2 B “

=

The first term.6h the right is n SYImne‘tricf-o,bje;c‘t and the second term
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p——
is a tensor, Hence any / -Bbject is the sum of n symtric‘/:object*

and a tensor of the third order.

Theorem: Corresvonding to. any. point P therc exists a co-

ordinate system in which the components of a given 1 -objéct are &1l

zero at P,
Proof: Let P have coordinates ati in & given x &oordinate

system. The required transformatiomw is asSerted to be

-y -,

(7.18) N R SIS Y B N T

First we note -that the Jacobian J 5/%% 1 at P. Consequently there
exists a npighborhood of P within ‘which (7.18) defines a coordinste trans-

format ion. Furthermore it follows that l[' ; q Are zoro at P, For sub-

stitute (7.18) into (7.14) and evaluate.at P.anocting that ab P .
kS
Xl . '
- . Jx
¢y ¢ ¥ 4-.2—- = d’.‘

dvy"d-y?’:[,‘_:' F,f‘pﬁ ) dx>/p A

The result ig that | ;q)= 0.
. p ‘

§ 8. Covariunt DifferenrtialAs of Tensors,

Definition. The cofarient differential, 9 T, of a tensor

T is defined by an opersator /‘9 which satisfies the following require-

ments: & . .
%
o

I. /97. is a tensor of thé same kind as T.
11. ¢ ='d 7, if © is any scalar.
EIL» /& >‘i =4 ,\i + f ::'j-k )‘7 -ﬂ;ck, where )\ 1 is any contra-
vs{riant vector.
Iv. /-9 (T +V) = ,:9.(T) +A9(V) , vhere T and V are any two

+ s

tensors of the same kind.
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V./9 (TV) = (/9‘1’)\/ + T(AQU), where T and V are any two
tensors., ” '
VI _Z ,49( 2 k) , where i and k are any two in-
< dlces, one contravarlent and the other coumariant,
This may be read to mean that the operator ,49 and
the operation of contraction are commutative.
On the basis of these properties, we shall now find a unique
3

expression faqr /9 T. First we consider a given, covariant. vector /Q,c-
t

' 3
and observe that >‘L/4;i is a scalar for every c¢hoice of )\ . Hence
Fal
% o .

a8 a result of II
& . 3 (,'
x9(>*",«.) ,=OC(>‘,/¢<€)
b e - H )
Because of V and VI this may be written as:

(9 5, & NlFu) = (S =, e 8o, )

.
From this it follows that >‘ ?\’ﬁ A is an ipvariant for all contra-
variant vegtors ) i and hence }M“(if it exigts) is a_vector. Sub-

stituting for ,(9)‘ from III we haye:

)«‘)ﬂ I N, ly’%-x (Fx,) s /acx ) +woe/¢

(8.5) (&

or N 4 ) s
o 9 AL ;oo k)0

(8,4) N ( g T T4 T T )

Because this holds fox any ’Vector }L , it Tollows-thab
Wi rol e, 4%
88 Py = Ly, ~T % -

Going hack with the expression i‘or«fgy“({given,by (8.5) we obtain (8.4),
@
(8.3), and (8.2) thus showing the vector quality of,«ﬁ,&.as defined by
. . (A

(8.3).
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It is- immediatcoly evident that ,(9 s applicd to %4(1_' satisfies condi-
tions I to V, and that VI has no mcaning in this case.

To extond this result to a tensor of any kind, lot us re-
present sn arbitrary tcnsor by Tllci : where il is o typical contra-

veriant index and kl is © typical covariant indox. By meking use of

. i . .
~n n=Boin % snd an n-Bein jﬁéfl’ we ¢r1l express our: tensor in the

form:
ilo-- (..'
= T N o Ay
8,6 Ty . X ¢ ')
( ) kl.,. ] &(""/3 o ™, 5, /gl
/
vhere T, ... g ..., oTe scalars,  Now :Dnlng to (8.6) nnd usc assump-

tions II, -III, IV, ~nd V end oquation, (8.5)s The result is:
‘ Cem g €0 ¢ )
L ] o - f. ! - w! z R 4
BT g < 07’74 o ¥ 7é,~~- Fojz 5% +
(8.7)

L o~
_ £ ) e s
‘ 7;4 L Q‘z ka 5

In the right hend side of (8.7) there is a term like the sccond one

corresponding to each contraverient index in T'l’
l S0

a minus sign likc the lnst term written nbove for each covarient in-

, and ~ term with

dex in T 1 .°** .,

k e 0

1

Caroful consideration shows that 11 the conditions I-VI

cro actuslly satisficd by the definition (§.7). First we observe that
I is satisficd, i.e. /9 T is «~ %aensor. Then at =ny point P we choose
n coordinate system in which the f" ?k at thet point are zero. In
_this coordinate system we sce that ,<.9 T = 4T at P. Hence II-VI nre

satisficd at P becausc of the rules governing ordinary dlffcrentlols.

But since 49 T cre tensors, these reletions II-VI must hold at P in
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any coordinntce system, so that -our- é}qfix;ition fulfiils »1l1 ouf requircs-

,i 1 ments. .
| s «
i
l § 94 Covariant Derivatives
1 \ 3 M o ’ .
I : Supposc now that T;; are defined throughout & neighborhood
! “e T % ¥ - -
“ ?{.(P). »f our space as functions of 74 -4 Then v
I_ . &T L
. (9.1) d Tll( = gy
i’ f é)“x ﬁ - *
! | Combining (9.1) with (8.7) we h-ve that
i o .
I .
. i i .8 -
.: (9.2) .\ ,&Tk = Ay 4% vhere 2
I 1~ i
i et y s i p el ke - .
| ] (953) A= c)TKi (e -1 kT
R q . Z
s

. From (9.2) we, sge thnt A‘qu-q arc the &dnpdientd of & -tensores We shall
i Write this nd T« end cell- it the covarisnt ddrivati¥e of ™. Co-
| . k
; 3 kiq
E! 1 arinnt diffefentiation will wegularly be defoted by placing a-sémi-
| 1 colon before the index of differcntidtion.e -e * w‘»
A
| 3 . -, .
]
I 4
I
I3
! k] : ¥ 2 e
3
i . & J""‘ % -
i A
i « "
31 * = r A F
i Al P 1 o
1
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e _ CHAPTER 1IL

- €]

Riémann Spaces.

onpes

§ 10. Introduction.

We have previously introduced two kinds of strudture by

means of which iht“was ;possi‘ple to define covariant differentiation.
? , The first of these ‘was the constructiion of an n-Beinj and the result-
| ing space has beep called a "space of absolute parallelism". This
i Space was of importance in an attempt to establish e unified field
! theory. The second kind of structure was g%ven vy a / ~objert.
- s % 4 ,
A space in.which-a /?-obje"c‘f: is ‘c'fe,f*ined is E:alazed 8 sp;'c'e» with an
i ] "affine cohnection”. ] .
The most important .space- withra structure is fhe Riemenn
/sgape, Hierew there is defined in each point a symmetric-positive
« definite ten§orj ik'Qf- class . e where .~ 7/1.3 Some of the
lj.z following discussion will hold eyen it ”gik is fot positive definite
' provided the determinant g,,. # 0.. We shall pot, consider this
case. )

il " JAn order to def}ne covariant differeptiation in this space

l 3 we first. must ggéfine a, /‘a-pt};;je_tcg if. such an object exists, We re-

.j quite this.object Yo satisfy: . -

! l) ;‘gik',"T = O %
2 s s % - forwevery stilar ¢ ‘e
%) ?;1;3 i3 v

This second hssumption is equivalent to tHé requiremeht that the
] [ -object be symetric in its lower indicés. We how consiliet 'a
definite coordinate system and write the first assumption in the

form:




(10.2) C)..g__._"é‘f‘ i gy ¥ % B and
J ot ~

(10.1) dﬁ 4. rlr &k rir i
I

We may also write:

O9ac '
(10.3) ‘i) r vk Bpi " ik g r C

- *

Teking {30.1) + (10.2) - (10.3) end using the symmetry of the [ 's,'we

have N
0
-7’ q?c 5) :
_~ x ¢ x

el

The right hand sides are often denoted by [ri,kj, which are called
the Christoffel symbols of the first kind. Finally we can solve

{X0.4) for[‘ik and write:

q -1 _ak - . ={q
(L0.5) ir =5 8 Lrlﬁk] i r}

where-{iqrévare the Christoffel symbols of the second kind, We
dbserve that’the)_-gr given by in,ﬁ}wabtually'satisfy'(ldflr,'and
that these quahtitfes aPé uniquely determined by (10.l) for the given
coordinate system. Let their components in any other ¢éoordinate
system be given by (7.14), thus de%ining a | -object. Since (10.1),
réspecttively gik;r = O;are invariapt equationsy they. will be satis-
fi;d by the [ 's so defined in any coordinate system. Since the
solution of (10,12 ts anique in.any coordinate system, our definition
of the r'—obﬁect does not depend op the origingl- system chesen for

our definition.
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Raising and Lowering Indices. Because .of the relations

(10.6) it E N /\k e Ay

there is g one-to-one correspondence between covariant and contra-

variant ¥éctors ih a Riemefin space. Hencé we may speak of a
"vector" and of its "covariant" and "contravariant" cofporrents .
The process illustrated in the fikst of (10.6) is calle%‘"lowering
an index" (the index i), end the second of 110#@) 4llustrates
"raising &n index". This process may Ye applied to all orders

2
i

of tensors;  for example in

i 0
(10.7) Tie = 852 Ty

the ifndex j has been lowered. Care should be taken to specify
where the lowered index is &olappeé;.( THUS we might have written

s~
(10.7) as

(1008) T , = gj‘e Tk -

*

Either of these is correct, but not both at once. A more caraful
notation would write {10.7) as:

a dot indicating the position to which the index is to be lowered.

L

§ 1l. Metric Propérfies.

¢

Length. The length. of a vector is defined to be




‘L=4.ygik )}}k = m) It is always Teal since g is

positive definite.

Angle. The angle between two vedtors }‘ and ¢ at the

same point, ig defined to be:

‘ | ¢ - ( A
-t g{%é >w /%ém . o -/ bt )\ -
(11.1) & ha= @ — . — _
e V T | [ X I/u/-
Mo eese | M
In order for this definition to have meaning’we must show that

1 (Z>) ¢

.
m Voo S/ We suppose A and 4 to be independent, hence

1

%

for all ol-anfl (3 not both zero . s e
& ,fog}c * f?/«_ ‘ f Q < » 80« - :

Ze s (% a)t“r#/?/w"),(“ }"é#ﬂ%‘f) >0 , O
w3 AN) F2u g (A m) + L eered 200
In order tHat:this Be the. cases the discpimpinant of the above form
must Ve feghtive. This gives the desired result,
From this definition it follows that two vectors are nor-
mal if 'lgﬂf{ *’i.&}f,k = 0. This agress with our‘pre¥ious Hefinition

whieh required -that )x i/«(l =.0, «

Normalized Beins. Consider now an r-dimensionsl vector

space, Vr' We can always span this by a "normalized Bein", i.e.

+

a set of r uhit, mutually orthogonal vectors. ‘First choose one

vector, say /\ i. Divide it by its length and write

>l\"‘ = ‘Z: ~ :
ré?a_‘b-,\“,\/’

This is the first Yector of ouf Bein. If # = 1, wé Have fiflshed;

Otherwise there exists a second. qutor’}uli independent of >'~i. ¢
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(2 e ac) N5 -

¢ ¢
where we are looking for U such that (V>,‘ +* e Jis normel to >'« C

Consider -

-

; The result obviously is that ’ é
‘ & - (‘
R SN

R ! . Y

This defines p°¢ = (V‘ 5,‘“ "4-/“_. ‘) whicl}_ is not a zero vecgtor.
. < ¥

Dividing it by its longth we Have }3 *.  Tf # = 2 we have finished;

. P <
otherwise there exists a third vecfor L/ ¢ in Vr independent of >;‘ )'>:7.

e

Next consider ' | ] . )
Zealo X rp f“"")%é:o >0+ Fiavid =0
24(0 +—p/\ H/)/\Ji 0 Pv.;‘év‘?«zé {

T

and pr‘oceéd with ‘7“>‘ - P >‘ ¢ *‘ vV s befo;c to-défine éc .
Eventually exactly r veetoirs will be determincd, and these form
t/he required r~Bsin., (Bein: because any-sgt of normglized vectors
are ipdependent vectors).

£

We can do this same thing in ‘the space Vn p -whiech is nor-

mal to Vr' The result is that the combined normelized Beins form

a normalized n-Bein which spans the entire space. We can repre-

sent the metric tensor by means of this Bein thus;:

i

(11.2) ; € = B >~ ; )‘ 4

g*ﬁ ’u G
whére ' .
e N2
(1105) «88 ‘—. gik QL E‘

since the adjoint of 'a normslizéd Bein is the Bein itself. But

from (ll.é) we see that g = (™ , and so
LE ot )

(11.4) &\ ZZ"- Z:/a
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Thus we see fga*t the problem of obtdining wu normglized n-Bein is

equivalent to that of obtaining the canonical representation of

8ik*
Projection Tensorsand Projedtions We may write

(11.4) in the fqrm:

\

|

|

t

t

i3 .

' “'S’féé\ /2+£ %%
o oAt .
whefe, the first summation is over the Bein which spans Vr and the
second summation refers to vﬁ-'-r' T..e projection tensor Wlth re-
m_ B
space to v? is défined to be 7):.'-/3, ~ 3‘ S* and the ‘
|

projection tensor with respect to Vn r is deflnéd to be .
ey -

ﬁ q;ik/e 5_ /SLL‘ zé .i Hence

e /

8w T Pix
3 o~ 1 kS - »

From this it follows that p. ik is inﬁepepdent of our thoice of
normalized Bein spanning Vn’ For suppose p.kls defined by another

B ein inth, the Bein in Vn-;' remgining the same. Tuen

8ix ~ Pix T %k . ‘. .o
SO that plk = *_:}_K' Foo.

: ~
1 b is called the progecmop of >\ in V ‘provided that
: (. N ,
i 1) 1If >~ 3" = ¢ ., then “)/tls normal to Vr.
|
NG :

If such a vector g};\‘f: exists it is unlque, for suppovse

£
-+,

}‘: = ﬁ < 4L vV € - whers. . ismnormal to 'Vr and
also . S ;<

SEED SRV
|

where y'° is normal to Vr

give two projections. Then
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(A= X7) s (v end)

Multiplying by &, ( > 4 >kf end summing we have:

gj_k().."‘ }\__")( };\‘é é) o

L L
since }_\‘ and >\ lie 1nV and ¥ and l/‘ are normal to V..

e

From the assumptlon that gik is positive. definlte it i‘ollows that

4

% ‘I
. )\" = & ' i.e. the projectl‘c'm is unique. A unique projection
does not exist for ah indefinite metric tensor.

We now show that such a_pfojection exists.  For mul-

-
By kY

tiplying (11.6) by )\ k we have

e k .k
(11.7) >\ = Py )\ ¢ gy g>\,, . .
e

-

N 2 Ong N
/Now Pig ), >\ /),; and congequently is a vector

of Vr. Similarly q;, )‘é is a vector of V p» The result is

that m)\.i Pik )\k "qlk }\é

Ry
If. a vector space is defined &t.each-point .of g curve or
or a neighborhodd, the totality of the wector spaces. is called a

vector space of- class gp provided that at each point the vectors
. : —r N

are linearly dependent on a Bein, each wector of which is a function

of class C P ‘in the ‘neighb‘orhood. By considering the discussion
given above it is clear thdt- a véctor—-space of class C"° ;b&r; bé
spenned by a-normalized Bein of class C .p . Ind-then from {11:5)

-and (11.6) it follows-that the projectidn “tersor of: this vector

space -is & function of class C A,
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12. gpecial Tensors and Invariants.

) i <

Fitst we consider 4 set of r vectors )i (K=1, ..., r) and
oK

write 85k >° >fe= ( & [3). We observe that (X ) is a scalar, and

3

=
hence that the determinant/(%(? )/ is one alsos Yoy if the >~. are
K-

independent vectors, it follows that /(bL B)/is positive definite..  For

take any numbérs IJO( (not all zero) end form

az.1) (oL 3) vy f = = % } }% «p 8
S Ak (>‘ “)( 3\{3 )_

But this is greater thgn zero since /g / is positive definite and
since ( >\“ vV ) are not all zero betaule of the- indepehdence of the
>\ . Since thlS holds for any V (not all 2ero), it follows that

K- -
[ (~ /33’ is positive definite. Hence we ¢an write (x ﬁ) §0( § &

(T=1, ... , T). Taking the determinafits of both sibes-e have that
B ) L]

P

/(Mﬁ)/ = I Eo( / > 0. Thus the determinant of any pogitive de-

ER—. Sy

finite form 1s greater than zero, #nd in particalar this holds for

g =‘/g“(3 } . 3
L - . oL
If, however, the )\ are not independent, there exist L
WK . L
(not all zero) such that >‘“‘ p = 0. 'Fop these ' ® 1t follaws that
v ‘?‘ & “ 2 ¥
=®
(12.2) Ke)v*=a . .

and herees that [ (™ [3)2# 0

Therefore / (’g “é)f), ¥, the equalify holding wheh and
— - =

only when the }: are’ dependerts The gquaré 'foot of the ¥alde of ‘this

deterniinant is called- the -volumé of the "parallelopiped" defimed by the

<
2‘\ .The ’Y) tensor: Let '7') é"l g:a . z?}f be defined to be+ I if the
indices il, . te in are’ an even ‘petmutaticn 'of the-natural Aumbery
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1, wes , n, to.be ~ 1 if iL? Cre iﬁ are an odd permutation bf the

natural numbers, and to be zero in any other case. Then it follows

that
— 4 A5 o
(12.3)4?‘. P 9_?1_1 a’x}__ Jx
P . o ¢ JF = | dx
0¥ - ,
where 5?: is the Jacobian of x with rGSpect to X. Also we have
that a
- 7<
: : o5
X . )
If we. assume that ;f:' 0, this shows .that o
¥,
19,11 - 3 & .,
(1228) Ve 52
1)‘27& ) £
From (12.3) and (12,.4) we have that: B .

(12.5) #Yi?:aﬁzl,,,. L -r-v;: g e, |

s - -
. ey g R E
v
which shows that +l & ’7;2 th0, % ‘is a, fensor, for transformations of
1 11.' )
cnordinates with positive Jacobians 5 =
Orientation: This restriction.:on $he- sign -of the Jacsbian
suggests that we separate our.class of m=systems into two sub-glasses.
The m-gystems of cdach subelass are to transform into each other by
means of transformations with positive Jacobians, but the transforma=
tion from any system Qf the first class.to any system of the second
class or vice versa is to have a negative Jacobian. It is evident that
this subdivision of our original class: of m-EXStéms is“exhaustive and
unique.
A point set which is endo@ed"With the set of m—sfé%ems be~
longing to eitheér of these sub-classes is called an Moriented space”.
We mey say tHat the first sub-cleds gives a positive orisntatiom, and

the second sub-class gives a négative orientetion, but these terms are




38,
merely relative and might equally well have been applied in the re-

.

verse order.

YA
In an oriented spacé let us consider an n-Bein }x « Then

(8
vz - < C;'jt
e

(o S &*14

sy

Since fthe Sche is oriented we see that the sign of the determinant of

we have:

~

en n-Bein is unchanged under allowable coordinate transformetions.

“

There is no question concerning the possibility of orienting
a spate covered by a single coordinate neighborhbod, for we have just

shown how to do it.  However, we shall heve occasion to consider spaces

*

which are covered by a number of neighborhoods. Each of these neighbor-

3
hoods can be oriented in the manner we have deséribed. The whole spage

e -~ i

+

will be called "orientable" if the orientations can be so chosen that in

the intersection of two neighborhoods the transformetions from the co-

.“h

ordinate systems of one neighborhdod to the g¢oordinate systems of an-

ks e

other neighborhood have positive Jacobians. Otherwise %he spatg is

non-ofientable.

Length of a curve. Consider a curve of class Cl: xl(t);

a » ; N
0%+t £1. Then the lemgth of this curve from a to b (for 0 &a <b €1)

Y "dXdXO{/t .
k dt dt *

¥

is:

The number so defined is an invariant of the gurve and the set of ellow-
able parameters.

Volume of a space. The wvolume of a Riemann space,’Rh, is




]
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defined to be

V= f+‘/g\ dxl oo dX
R
s}
In any other coordinate system the volume is

v = f{-{g:d‘i'cl...d}n .
R
n

It can'be proved that V = -\.T—, i.e. the volume *i's an dinvariant of the

space, but this proof is too lengthy to be given ‘Here.

13. Subspaces.

The n-dimensional space,?j” ‘with its associated m-systems
Lef. ”_§ 1) is a topological space: its nelghborhoods aré just the
maps of the neighborhoods in S. (We recall that S is the topological
sphefe of En which corresponds to J~ , thus defining a éoordindte system).
Any &ubset N of ¥" may be made a tovological ‘spale by
taking its neighborhoods to be the intersections with ”H( of the
neighborhoods of . Such a subset ’ﬁ{, of ¥ will'be called a.

surface, element, (subgpace) of dimension r provided it satisfies certain

further requirements:

I. Dimensionality: M, is homeomorphic with the interior

of an r-dimensional topological sphere in the Euclidean r-space.

11, ml-f.?xs’cems: by means of this mapping, .a class of allow-
able coordinate systems ¥, ».¢ , ¥, (m, -systems, 1 é;ml £ m) are in-
troduced into W(r ., as was dome for § in § 1, That is, LP ®)
will be of class ¢¥ at a point P of U¥(, vrovided it is of class ct

as a function kP (yl, eee » ¥,) of the y's of some selected coordinate
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system, etc.,

These coordinates y will hereafter be known as perameters,
to distinguish them from the coordinates (xl, cee xn) of the same
points considered a3 elements of ¥ . Because of I, we cén speak
of functions on VI{, of class ¢  in the partmeters [p & m]. Now
any function on § , insofar as it is defined at points of m,. , is
a function of the y's as well as of the x's. It is therefore desir-
able to impose some regularity on the connectjon between the parameter
and coordinate systems, This is done by a final postulate on

III Parameter-coordinate relations: a function of class

c? in the x's of §” at a point P of m‘, shall be a function of

class C® in the y's of “h,»,v unless e >m1, in which case it shall
)

be of class C —.

~ In particular the 'coordinates x of & are functions xi(x)

of class Cm at each point of /m v o By virtue of the correspond-

ence

(¥y5 eee v ¥ ) e P('n]r) —> (x;, .v , x))

we may consider them as functions xi(y) over ’Vm . Because of III,

then, the functions

(13.1) x; = xi(yl, vee yr_)

(which give the so-called parametric representation of rm‘, ) are of

m. isk
class C l. But conversely, if the xi(y) are of class C l, the postu-

late is surely satisfied. Hence III is equivalent to the requirement

m
that the x's oh U%(, shall be of class G- in the y's.
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. 6&}
Theorem: The rank «@\F oft the matrix l) ;{:aqﬂ * at a given
point P of (ml’ is independent of auy .special choice aof. coordinates

(x) or parameters (y).

e e o o o b i e 2 e 0 o e e o i o R 0 P R N L e

In $his section Greek indices have the fangé 1 ... ¥ , and Latin

the range 1, ... , n, upless otherwise indicated.

e e i o 2 e e o e o o i i B B o B0 R s o S B s 2 oS i o e et e e e e B - - g - o = == -
This follows direttly from the equations .
= = ] ' - -8
¥ . X' ox* 2y Y WPE-FA-F -
— e g T
ng‘ > xX 816'3 aﬁf‘ . avg‘ oz RN 5%

for since the rank of a product. of matrices dennot exceed the rank of
any factor, we have simultaneously Qé a 5 ,G{ < ,g{ ' |
In ad8i%ion to the rank ,Q{ of the Jacobian just considered,
there are other propetties of qﬂr which are not dependent on the choice
of parameter and coordinate syit?m& and which therefors have a geometric
-

meaning. TFor example, at a point P of m‘, we have tensors of
such as )RL (whith behave like sealars under pafameter tranSf:ormations).
Similarly we have tensots of Q’T(}- such.-as Vv, (which behave. like
scalars unded ‘coordinate trensformations). We elso have products

)i‘V@ of vectors of § by wsctors of ’ﬁ'({, " ~i.'e'., geometric
objects which are cofariant vgefgrs. for transformations of parameters,
and contravariant véctors for coordifiate treansformations..

-

Tengent vectors. A pérticularky importent example of

this latter kind of geometric object is afforded by, the guantities

¢ .
2%, whose law of ‘transforfiation is

Iy
_l = po e - T
(13.2) d3X . dx 2k dx' _ a:a‘g 2
UL 330 2% oy

For a fixed set of y's, they sre seen £o be Y coftratariint
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i
vectors 9-3‘, 5 9‘"“} Yoo dx' ~ in & » defined at each poimt.p
6‘3 o a%r
2 B
t

of fb’ﬁ,. . We call hem contraVarlant t“ngent Vec‘tors to the sub-

Space at P,

- e -
Consider now the vector space : %_z.( }P'“ From the second
. : oM
set"of equations (13.2) and from the carresponding relations
o ' -8 ;
@__X__L = 2 —-—H)LL‘ x ¥ "
E)}a .9 c)%
it is clear that { ,b_z,} 2x* } » OT in othér words, that
Ry oFe

the tangent vector space_at.P is independent of the né}'érﬁetevization
of ,37'(;— % This affords a second prOof that ,ﬁhe* dimendidnality of
this vector Space, namely, the rank ’G{P ! H, y -18 ot daffecteq
by transformations of coordinates or. qu,ramewters.“ But béfore Sayitg
anything more precise ebout this dimensionality. we.must 8istihguish

5

between two types of points Qf M-F%g : ‘»

Bl

Regular and singular points, Let P( V) be a point bf m,,
bx .
and let the rank ’QP be s, Because of “the ‘eontinykty of 3 s+ an
- '
S~rowed minor of ug—-a} which dogs not vantsh E:31 P(y) remains diff-
erent from zero throughout some neighborhood /U((’b&) O P{y). Thus
the rank at any point of this 11( (y) is certamly no‘c less than' s,
though it may be greater, We make the followmg deflnitiom
A point P. .MM, is regular-if and only-if there exists
a neighborhood ’U( (P) throughout thich the rank of Dt is cone
€ \ e !C\)"Sd —
Stant; if no such neighborhood exists, then p is singtila;',
——— - 4 - ¥, Fy i
Since the rank (R is invarisnt, this definition doss

not depend on Any.partitul a® system of coordinstes or parameters,

The set of vogilar points" of fr(ﬁf(,, is open (with respect

to mr }o For if P is a regular point, and )U( P) ié a neigh-

borhood in which @ has the constant value t, then any point
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P.¢ V[ (P) has a neighdorhocd W[ () C VL (P) thronghout which
Q\. =, Thug every point qf ’U( (P) is regular.

On the other hand, the set of singular-points of mr_con-

tains no open set; more than this, the set of singular points is

nowhere dense in ‘Y, . We first observe that if et a point of m,_

the rank ﬁ has its maximum velue ¢ , then that point cennot
be singular. Now suppose that @ is singular, and that @Q = g,
Any neighborhood 'U( (Q) must contain a point Ql for which Qa’é S +1,

Either Ql is regular, or any w (Q'l) c (Ul (Q) contains a “Qz for which

,@Qa 25+ 2, Proceeding in this way, we must ultimately find a

It

point. P = Q € "U( (Q) which is regular; for the rank »Q[Ql increases

at each step, and yet must remsin # r . “Hence any neighborhodd of a

singular point contains a regular point and therefore an open set of

3
- -

re g\/xlar points,

The following two examples mey .serve to illustrate the

-

notion of regular and singular points of subspaces

3 .
, X, = ¥, i =1, ...5,
i b .
(a) ’"m : [y <1
r x, =0 K= F+l, wese ., 1
All points of the "planes" v, = 0 are evidently singular,
7 = § =
(b) W, . X3 T 2% 1=1, et lzy <1
X = 0 K = r+l-, ALK T Y n‘.

X

There are no singular points.
’
Note that both .Mr and ’YT(: contain exactly the same

points of g s but that they are different -subspaces, in the sense

5
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that no allowable transformation of perameters ¢an send one into the
‘other. The class of parameter systems (ml-systems) associated with
/ - ? "
(n'(ris thus completely distinct from that associated with mr ; for
the regularity or singularfity of ady point is a ‘notiod which is inde-

pendent of the choice of parameters within a particular class of

xdl-éjrstems. There is of course the tre.nsform;tion

[ 3 . = 3 ,
- Za % Yy iy Yo T \JEOL ‘3‘113 "qu <¢-l
!’ . - " -
between ’n(r- end ¥, ; but this is easily.seen to.be jrregular
S
at all singylar points of (mr' N

We ure now in a pogition to prove the

Theorem: The tangent vector spact at a vregular point P

of ’N{r hes the ‘dimpmiion 3» .

To do this, we need only show that if P is regulsr, then

- Q{ I Q_!fn. T « .
P ‘3"5' b= B Suppose therefore that Po is regulsar, and that

@P = %, After renumbering, if necessary, the x's and y's, we
[} B

may assume that

“5_’_‘} e T T S
.c)a&"‘t.# ! ’ !

/
throughout some nbd (UUPQ). Consider the functions

'371 =xi(3.fl, e s Yy ) 1 =1, yee , ¢

(13.3)

§K =YK K=t+l, -...r;

~a
where the xi{yl, cee s ¥y ) are those- in (13.2). The Jacobian i—%,,l
/
is 4ifferent from Zero, throughout 'U( (P&)y The Dini theorem then,
!
assures us of the existence of a neighborhood 'U[ (p,) C Ul (®.)
throughout which (15:5')“‘ gdefines an allowable transformation of para-

meters, Thet is, if we desfgnate by fU'( (yo) the Topological sphere
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in the arithmetic y space of which fUL (PO) is the map, and by ’U((yo)

the corresponding neighborhood in the ¥ space, we are certain that

-

U () W (y,) < VT, .

In 'U( (PO) thé new.parameters y ere also an mix-system.

Introducifig the notation X; . for the épace coordinates of

a-point of /U'( (PO) expressed in perms bf the parameters y, i.e.,

a »
(13,4)

-

~t
we h&ave Q}}%%,B: t. - For this rank is invariant under transformations

~ i .
of parsmeters. Hence any (t+l)-rowed minor of ﬂi}f—“ ” vanishes through~

d
out U( (PO). E

Tonsequently ths equations *

3¢ 2y 29
i oo . L v ~t
a~M aﬁl a%
\j b -vll‘
7 ¥ 2% L, .. X
(13.5) 5%1( e,,é‘: }){gt, =0 K =t4l, .us , k.
N ot ~t
éth QJL L X
a{&v'( a{gl ‘a‘—at

are satisfied by ¢ = ij for 3 =1, ves , N

But since (13.3) has an inverse, we have

¥, = x5y (T, e b v T = EE 11, e, b

i i i
~ L ". ~ 0
so that gﬂ’ = 8, [t=hu,t ; 0=/, ..,r] and equations (13.5) are
actually

K=t+l, LI ¥ ’r‘ »




From this we conclude that each xj(y) is a function of at most
Yys ees s Vyo

Unless t = Y N, we are thus led to a contradiction. The
homeomorphism 'U( (;0) > 'Tf( '(Poy implies that distinct points
(frl, cee §r'r ) in ’U( (?O) are mapped into distinet points P of

’Uf(Po). Yet if t < r, it is clear that the distinct points

“~

s * . "
(Y0 oo s T_y0 ¥5 )y (9g5 oee s ¥, s ¥7¥) must give rise to the
same set of coordinate values (x) 4in (13.4], and so to the same point
in 'U( (13) .

Thus result, togefﬁer with the observation -that if QP
is ¥ then P is J;'egﬁiar,’ enables us to restate our previcgus definition

of regular and singular'points:

. \ t
A point P of mt is regular if gnd only if Q ilg"’gq
A point P of  is singular if end only if 6{“%%"’541* .

I,

L

Note: the definition of surface element includes the

cases I = 1 (curves) and r = n {open sets in ¥ )




Subspaces given parametrically.

If .a_subset ), of ¥ is definef by equations of the
form
(lﬂznea s xi = xi‘(yl) F NN ’iy'r)‘ *
'(where”the xi(y) are single-valued functions of class ¢ [ e =
end the y's range over some démain A in EI;)”', it does not follow
that >’ is an W{rs—elemen,tx, even. if /A is & topological sphere
and Q{ ” =T throughout,‘the domain. For the essential 1-1 cop-

e

Ainuous correopondence between Z and A will in general break

down in varioys regions. .

We will now show, however, that if, at_a pornt Pb(yo)* of
_________ A - ————— g e A L e —— e e S oy
* The notation P (y) means that wé have chosén a°particular .one

of the seversl images that P_ may have in AN

‘—‘%——q-----'—k*——‘ ________ i o o 4 e N e 4 B . e e P s 0w O e 2 PR,

l is v, there is brsubset 'ﬁ%gﬁ'_ Z , con-

r—ur-u--vm,

Z ;the Tenk of “

A&
taining P_, which is & (regular) ’3?(‘_ -element. -Consider the
functions
’ ~ » DA N " . i"iw;,‘%
yi =x“ (y]:, e ,’yr) q = ‘, LI ] ,I‘

wherd the *¥s of {13.6)vhave beeh ropwnbered in such a way as to

have

o

g—’-‘—e} #9Q,. Byithe .Dini theo¥em $his’ gstahlishes & homgo-
K , .

moxphism betwedn € heTkaly. dvhere-heighberhodd Y[ (v,). in the

y-gbate, ‘ahd a heighberhood Q)( ( 2) 4in the V-space. We now haVe

a set of funétions . -
X, =794 ot =L, en g e
ol ol ’

(15.'7) i
xK o x;( :(V;('S;)”)’ Tk o= r*‘l‘ R Y n

which map ’U( (y,) into e stbset /m > P of 2 . Since the
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x!ts dre single-valued continuous functions of the y's, and the y's

are single-valued continuous functions of the Sr;’é‘, it follows that

U (F) — T

But it is clear from the first of (13.7) that the x's of any point

P € m uniquely determine all the ¥ 's; hence
W — ”UT(":XO)
W[V Gy <> Y v,)- -

The sutrface element shus defined is said to be a regular

and finally

mk -element; for all its.pointd are regular.

Subspaces given implicitly. Let 2 be an open point

set (of B ) over which there ig defined a system of n - r scalars

(70'( (Xl, oo y Xn) K"I“"l,% ese 4 NI o

In 2, let the ‘f 's be of class ¢f [1 € P £m]; and let the

rank of “g-(—pl"“ be n - r throughout. If P* (of coordinates x’{) is
X

a point of 27 , can define a subset m.) P* by the n - r

&

equations

(13.8) m . F& —~(x.l, ¥ ‘)Cn) = ‘H;(x) - (PK(X*) = 0,

Under the conditions just stated, we have the

) of '37( has a neighborhood

Theorém: Each point P (xo

(in ’H( ) which can be so parameterized as to become a regular

element of class cf

Proof¢ We may asbume that iat Po(xo) . 2
i -
i@.’)‘%O sk = r+l, ... , n.
oxj !

Then the Jacobian of the transformation defined by means of P
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additional functions Fi" nemely

Fi=‘xi * l‘=l, see i,I‘

K FK (Xl, e h 9 Xn) K = I""l, see g n

(13.9)

]

F

is different from zero at Po(xo) . Consequently there exists a neigh~

borhood* U(x ) and a neighborhood U(F ) (F, = X, 3.e;F_ = X_;
0 o} ol ol

o oxr
F =0 ; o9 3 F_ = O) which are mapped homeomorphically on one
o I+l o
---------------- df-———..--—-—--\--—-----—-—-’-—----.-—--------—--——-‘--{--——-—

* . We shall use U(P), U(x) to designate neighborhoods of ¥ or of
the grithmetic n-sbace, and V[ (P), V[ (y) to designate neighborhoods

of W or of E_. By definition V((P) = uENA N

another by (13.9) and its inverse

; xi=Fi i=1, ..., r

X, (F

Hj

b

K eve , F) K=pr+tl, ... , 0,

1’ n
In thg corresvonding neighborhood U(Po) of ¥ we now have F-coordinates
as well as x-coordinates: -
U(PO) > U(xo) =y U(Fo),
and the F-coordinates are also a \0 ~-systems Passing t6 m y e

have a neighBorhood 'U( (PO) defined by the relationg

(Fiy «ee » F) € U(F) U NS
UL { ; ° e R

F, =0 K =r1+l, evo ,n 7 /)

~

. Of course, this Qf((‘Po‘)h may not be

the interior of a topological sphere, But

; a U(F) C U(F,) can always be Tound, the in-
tersection of whose map with m has the desiréd

F property. For example, there exists an € such that ff(F) defined by




50.

-~ L 2
« U(F) ; vZ(F, -F )7< €
] =t °

lies entirely withih U(%“) . The corresponding. ’U( (I;) = U(%’) s ’Nf(

e

can then be parameterized by

Fy = Va d =2, 0., T
VR j F,.=0 T K= r+l, ... , n
~ )
- A va € Vlty): Sy, -7 )% < ¢
Changing back to the %x-coordinetes El:’;.’g) , wé hz;ve »
(13.10) = _ Xu = ¥ A =1, ceuy T
qu((Pb) ' {XK= X, (yl, see yr,‘o,“... s O)f

5
-

This is easily seen to be a regular m";element ,,9.2,_”9,1&3% € oo

As is clear from the form of (12.10), we might have teken the

a *

parameters Va to be some r of thg original x's, say Ky s ooo 4 Xg
1 a r o

gubject only to the restriction that at P,

\*Z-‘fi.l,¢ 0 fok = el ie,m
J

* » N -y * /
Suppose then that we have any two points Pd 4 PB of m , Whoss m,,

neighborhoods /UL (PO( ), ’U'( (Pa ) ere described by the respective sets

of, perameters (x ) and (xﬁ;. ) (i=1, ... ;7). Suppose further

8 3 P

that the two neighborhoods intersect.

. . . P,)
Then in tHe intersection, any xat is e‘, ) 8
- ) ‘ . S
a function of XB, »oove s Xgo ofr ‘ 1
- §
class ¢ & (for this ig trie of all the x's), ahd converselys ‘Hence :

-

The transformation of ‘parameters 4in tﬁbﬁinfersac‘tion of any tWo:w of t’}ie'

above OF(, -neighborhbods is of clhss cf .

Pseudo-regular transformations., Let P.’%o -a singular voint-
" ’m‘ % &
of en ’b’Z(r ~-element of” class’ C . Any transformation of parameters

(1-1 and bicontinuous by Zi’e’finition) which is defined throughout some
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neighborhood ’U'((lz) in W’_will be called pseudo-regular, provided the

functions
~ ~ &
y = ¥(¥) y = yiy)
.
are of class C ' at all regular points of U (B).

It may be possible to find a pseudo-regular transformation

/
which will transform an m;e,lement containing PO into an mr (nec-
essarily different from ”Zr } for which PO is regular. In this

case P, is said to be a pon-essential singularity of ml, .

If P is any regular point of 'U(-(PO-), there is 2 neighbor-
hood 'U((-P) < ’U((Pu) which is a regular 'n{,_element. The character
of such a surface element is unaltered by a pseudo-regular transfor-

mation,

14. Vectors defined, on subspaces.

P Tangent vectors. Let P be a regular point of an /mr in a
general space . At P we then have an r-dinmefisional tangent -vector
space ’T.],: 4{ g.%-;} whose clements
(14.1) v = %‘&;t X

°"

we shall call (contravariant) tangent vectors (in ¥ ) of the mr ,

3
The r quantities /1 appearing in (14.1) will hereafter be

S

L
known es components of the tangent vector A with respect 1o m‘, .

~ &
Under coordinate transformations these l behave like scalars,
i ‘
for the A and g—-l: o are contravariant vectors in ¥ . But

ol
under parameter transformations the l are contravariant vectors of

ni ¢
U, , since the A are scalars and a—’-f—g’ are covariant vectors

23

under such transformations.
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- Ed .
The following direct demonstration of the transformation

o
law of the A brings out a feature which will be of importance later
on when we come to discuss singular points.
- _
If we define l in any y-system in té&érms of their values

(14,1) in some fixed systemjy-ise. s~ .
- 352 39 N
A= 2 A- -
)
we have a set of A ‘'s satisfying the requirements
) o

2 = ézs; ¥ - ax )
a,"'& aa .

. 1 X" . T
but since l‘[ S:'Sa is of rank r, the in each parameter system
are uniquely determined. A similar argument shows the scalar
~ot
character of the A undeér coordinate transformstions; we ses at

@ oL
once ‘that the definitions R = ;1 ih all coordinates systems, is
consistent and unique.
Projection., To each covarisnt vector ,“-,‘. of ¥ , defined at P £ /a?()—

-

. ~ a0 .
there corresponds a covariant vector /.,(d of MT,. :

¢ T,
(14.2) @3‘—'3 Moo= HPw
' 313 .

(Note that this holds For any covariant IUL;_ *, Whereas the correspondence

¥

t o
A A discussed in the pre®eding paragraph is tonfined to

contravariant tengent vectors).

The M,  derived from M by means of (14.2) will be called
. components of the projection ot /vt.,_ on the tangerft-Spat:e »;’ of
mk at P. For we shall sece that when ¥ is a Riemsnn space, this
definition agrees with that previously given for the projection of a

vector upon a vector spaces
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The relations (14.1) and (14:2) are the only ones of that

type existing hetween vectors of W and vectors of mr at points§

P& "mr 3 unless W has additional structure.

-

15, Subspaces of a Riemann space /R'ru"

i
Tensors of Wr and R, at..regular points. Let A |V be two

vectors of ’:]« at P. ( ’:7, i's r~dimensional). Their components in

’mr are given by

i . $
t L o J 2]
(15:1) A= é—z‘—q A v o= é——ie v
aaﬁ a»k
The combination -
15,2 — = = o B
(15-2) %” a«a‘* a«?f‘ / .
v

defines in WI’ a symmetric covariant tensor of second order:,

At a regular point, g)qﬁ is positive definite. For it

is clear that

.l , ‘. d 6
(15.3) ?’LJ ll VJ = ydB Y

whence . .
& \B t ] -
ydelk ("%Lil’i)’ao
. ¢
The equality holds only for l = 0; but in this case we have; from
) . L o
(15%1) and from the Tact that ‘the rank of ”%—’%H is ry, that ;\ = 0,
Thus a regular /n(r be¢omes a Riemann space /ﬁr of

class ¢ ; whose fundemental metric tensor is given by (lszz);!that

is, a.Riemann .space .irdduces a Riemann metric in its sub-spaces.
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Moreovér we see from (15.3) that tangent vectors can be

&

measured equally well By their mf‘ components and the me'cric"ten._sor
Yo

Lowering indices in 'R,n and. in |- produces the covariant

componénts )ri ,Ad. of tangent vectors. These arpe related by equations
s
obtainable from (15.1) by multiplication with gij b—l—ﬁ ,. hamely
- P - a’\a )

8 :

= Yus A= 7\3
avA .

‘Now (15.4) will define covariant components }\,3 in Wf‘ .

quite independently of whether X 5 ere tcovariant compdnbnts of &

tangent vecjor 6T not. ‘Suppose then fha%*’%?i '#€ "such- an arbitrary aector,

wf

A 5 . .
end thet its ‘U, -comportents are 7y . ~ It {s natural to ask viat
tangent vector pi has the contravariant %‘(r ~components 8 = T g)d 6 .

» ‘

We shall show. that p_l is the projection of ﬂi upon the tangént space

% ta
’\7' « JFor by hypothesis we have

I~

o

(15,5) mdanf—%d » T =}j Wﬂ;phé—gﬁm N

The first of these equations cah be written
* %

e e L2 -

Therefore ﬂj - p'] ig normal to A:l , SO that pj is the projedétion of

o

7 (or 'rTJ) in ’7— . This justifies the terminology used in connection

Hence

with (14.2).
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We shall make use of this result to obtain & formula for

K

the projection tensor .pL of the tangent space ’?— . For from

the chargeteristic property of plk we, have

so that

T (by 15.5)

a4 .

K é.vé a‘f 64-6

for arbitrary T Hence

K

L 4 o8
(15.6) plR . X QX y

The formula (15.6) for p'® is of gourse obtainahle directly

from the definition ( § 11) of the projection temsor of "71- . Let

point P Efn(k
- \)olB = )q )6
)Y 2 4

Then the corresponding tangent vectors

' o
T
y oy 4

3 o

us represent \f“s by a normalized r-Bein A (¥ =1, 4¢0 , T) at a
4 v

|

|

' are a normalized r-Bein in fﬁm (15.,5) spanning A4> « Hence by defini-

tion of the projection tensor we have
i . , 1 ‘
VO D U T AP T T
v v 3 a«&" v o EPY 3y

Tensors at singular points. If P is a singular point of m,

]
a tangent vector 2 at P will (by definition) still have the repre-
sentation (14,])
) " q
o= x4

a?)d
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) &
But the mr-cémponents .1 are now determined only to within an addi-

tive %, satisfying _
s et

* %x %d - O .

o - >4

Consequently (14.1) ho longer imposes a definite transformation law

upon the lg under change of parm_q'e%ers: However, if we define

2 -

X" %o be a contravariant vector of U9, , this definition will

at least be consistent with (14.1).

%

A ) bx az
At a singular point the tensor Yqga = %‘55 qg——a is only
positive semidefinite. Its rank t is equal to that of aé__zé_d” . For
- £ 4 a s
we have - 16
. of o
2x A =0 7 Yo 2 =0 .
a d
P .
R k1 “ W P s ¥
and .~ " b o(,;’" .
3 8
%58 QX 1 oy

A covariant surface vector, (i, at a 'singular voint may

have no corresponding space-vector IJ»;_ , ahd may have no contra-

variant -components * . IA fact, néither of the sets of res
’-

lations 7 . ! £

a . -
PRI aC S *‘.3,9«:(}(5 M =

-
¥
P
4%
b
1l

@

g

L % . o~
i

. Y t
‘/A’A% :wo.. v,

is consistent unless

It is clear from the above rémarks that at a singular point

. 8 -3 4 L -
we cannot definé & tensor; 9 . in Buch a way that’ y %3: 5(5. We
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; AR
| can however obtain a set of quantities \) having many of the desired
properties by,using the projection tensor of /7/
, [ \K
tK . ’
p " = %»}: ( T =1’ s e 9 ~t)

e b L
( zr a normalized t-Bein spanning /57, ). Since each ;}L’ is ex~

: L
pressible as a linear combipation of dx , the equations

. oy*
LK > XL S 1’{ o8
Y 3%
are surely consistent. These equations will not, however, define

T a8
k)da uniquely; for if yo satisfies (15.6), sd also does

Y- o B a QP
. o=\ foxt? (V= 14%+1, vc0 s T)
9. . )0 "—-v % *

To find the relation between the covariant and contravariant

K N
y 's, we multiply both sides of (15.6) by the tangent vector %“3319: .

-

-

or
K « 8 B\ _
1 g—lé($)de Y-8 ) = O
whence 46 .
8
B
93{@- 9381;«-86 5+ g-e % . V= t+1, cee X .

Thus multiplication of Ao\ = Yag 'RB

Y A= (85 + e D) A% = 2+ B

/
whi]B multiplication of )\" (plus any /%(') by \)(5’(- leads to the unique

v éoy
by 9 yields

result

Yae 2 = Gone 2+ DF) 1= Veae V*H Al = (50;5* ge %u)).‘
= )B
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Existence of essential singularities.

That an ’Vf(r element may have a singularity which is not

removable by a pseudo-regular transformation is shown by the following

example:
x = t2
b 4B jel <1,
s
This is an Qﬂqka, regular at every point N

but (0,0), @s is easily verified.

Assume that e paramet rization N
x = x(u)
¥y = y(u)

has begn found such that (0,0) and a neighborhood of (0,0) is reguler;

then both ‘—;% ancr"%% must be continuous at (0,0), end at least one of them
must be ‘different from zera; Ir %%] # 0, the equation x = x(u)
" -7 {0,0)

can be solved for u = u(x), i.e., there i$ a neighborhood of X = O in the
one~-dimensional x-space which is homeom;rphic with a neiéhborhood of
u=u in the u-space. The ‘varametrization

X =x

y = yl{u(x)) = £{x)

"Q

is then allowable in = neighborhood of (0,0), and leaves this voint re-

gular. Similarly if -%%} *# 0, the patrameterization’
(0,0) -

x = g(y)
y=75
is allowable.

But either of these two cases leads to a contradiction. For
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the first implies
X & X

y = :’X;Q/i‘

which.is plainly not 1-1 in a neighborhood -of (0,0) and the se¢ond gives

) x = yB
¥=v .
which has a discontipuous derivetive %—;-at (Q,0) .

Hence the assumption that there exista a transformation t = t(u) ,
u = u(t) leading to a regular parametrization must be in error.

This argument epplies equally well to an mr element of any
dimensionalitys In general, to prove” that a point P ¢ W{\. is an
essential singularity it is sufficient to show that no - . neighborhood

’U'( (P) has a regular parametric representation in terms .of any r of the

space-coordinstes.

16. The extended absolute differential.

We have already noted the possibility of introducing mixed
$ensors at a point P of & subspace mr . Any such fensor can be re-
garded as the set of coefficients of an {nvariant multilinear form which

may have both space and $urface vectors as its arguments:

qt . _ ai . B 1
Tajy - p= Te Fa¥'p o't
(We do not exclude the case where only Latin of only Greek indices appear) .
From this representation it 'is clear that the rules for addition, ‘multi-
plication, and contraction (p. 10) hold equsally well for ‘these more gen-
eral tensors. (Two mixed -tensors are of ‘the same Kind -if'tHey are alike

in the number and position of their Datin wnd Greek indicées -separately;

and contraction is permitted only on indices having the Same range. )

\
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Mixed tensors can always be expressed uniquely in terms of

¢
a pair of independent Beins, the first ) >)':'. (¢t =1, ... , n) spanning

t ¢t
the enveloping space, and the second (,3)«) wy (Y=1, ..., r) spanning
- . MR

the subspace.
m .
Ir mr is a regular subspace of class C [ml 2] lying
in a Riemann space R.,, . the Christoffel symbols f}" i formed from the
y's exist and are continuous. Let Tei_f‘:: be a tensor (of class C')

defined along a curve y* = y (t) (of class ¢*) in U0, . By adjoin-

ing to I-VI of § 8 the further postulate
o o —~ e y
IIIY X = A+ L A dm&

and by making use of the Bein-representation of T

we obtain, in much

the same way &s before, a unique expression for _;a' T satisfying all

LR

the postulates of the extended set. The general method of formation

of the absolute differential of a mixed temsor is indicated by the follow-

ing example?

b ‘ I R n el v
ﬁﬂd’— CQ-"ld + [ N Ax . :[;\vn',,d/»a

Lok

Covariant derivative. If l]; is defined throughout an en-

tire neighborhood ’U( (P), we may write

t _ [ dng R T ¢
D ny (5‘%6+q"n°‘a’§e”[;ehf~)£3

s

Since dye is an arbitrary vector, its coefficient is seen to be a

t
tensor )"(d'(_ ; we shall call this coefficient the covariant de-
7

Lt
rivative ﬁf’la . For a tensor Tij’ of class C! (only Latin in-
" — 3

2
dices) througviout a neighborhood U(P) of /H,n_, the covariant deriva-

DT,

tive Ly has already been defined in §9. However, suppose
xk

that U(P) contpins a peighborhood U (P) of W(r. In V[ (P) we _
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can write
= DT f - ["3- ’T' )
DTy = ( o LT ig &’5
-~
ﬁ..._.-.’Ll é—x—Ko 5@/'6&
2 xI( 6136 .
By definition, then of /% , We have
- 2)46&.
la K
DTy Tiie = DT Q_&é
/%136 ’ Q?K (\18
Setting T =8 i leads to the result that -
(16.1) _@_gt‘i = 0 ol
DaS ; :
t . = QX" - | i
Theorem: If !14_ £X° , then 1‘14_5 18,10& . This follows

immediately from

2 L ol Sk
/31'\ - _,a__._'g- -+ _L—; éxJ oX FQLF[; ’a__zf
- 8 K T & a
Dy gy 0y 2y 2y
and from the symmetry of the [' 's. .
i &
“ Theorem: The (space) vector Qo(B is normal to the tan~
Lt S : ;
t
gent space é—%g ’
o
For since 8 4 ]413 ¢ = 0, differentiation of
L
g. . 9X 53...._ = )AB gives
ot oyP
. j "‘
(16.2) . 1 q‘ __ + c_)_& o) - .
H T g8 3 1 ee g
t 3
Set g, . | QX = . DThen (16.2 copes
O8¢8 = ~ Og¢n
And from the preceding theorem . -
Cpvr 7%z
Thus . .
Ooes = — G'aeei = T Caa

that is, a cyclic permutation of the three indices produces a change in
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sign. Consequently

!

]

1
Q

G;“B == G;ect - 0730((-"“
s6 that
¢ a .'\
. . QX =
83 Naye Sy o
Consider now a tangent véctor'l?l" of class C' defined along

a curve of class C' in W(r. :

)

Taki;lg the absolute differential of both sides, we find that

C_oaxt A8
(16.3) DA = oo + nm}ﬁ} 00/‘3

The first term on the right is again & %angent vector, while the second

L
is normal to 17— . Thus /%/\ will not in general belong to the

o L
tangent space.* But with respect to the projection 2/1 we have the

; o
Theorem: For any (differentiamble) vector A of 7]{’_\ the
- o ’
components of the surface differential D A are given by the surface

-

Y
components of the orojection upon # of the space differential ’

L
where /] is the corresponding tangent vector. In brief,

i
Y

i { o
COA = 2x D :
. a‘ad, N
g e s o e et @ e e W e s S e s S 02 O s e o e e ol g e e e e e g e e ot . 4 A G2 O e s T e S D - - - g
* * .
This shows that we must distinguish between the space differential,

e

= 5

. . 4%
b A , end the surface diffefential /%/1 of the corresponding W" -
. . 13 i " .
vector. However ince g, . = = g = 0, there is no corres-
» & Bijsk & ik 8i5k ’

ponding distinction between differentials of covariant and contravariant

5 HECR o
representations of the same vector; i.e. if b A = €l , then b}‘ =P

e = G oy A G B D " s e W e Wk S A B e i s i 0 G S > e U o s o G et e T G R T Y e R s e e T ok ok " e e e S A ot T o B o e e

»

This theorem leads et once to a certain geheralization of the
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T a5l Y
:sﬂ e
B s M

concept of absolute differential. For let V be any t-dimensional
vector space of class C! defined along some q(};in 2:{,”. The
tensors of Vt will be sums of products of vectors of Vt' It is casily
seen that the set of tensors of ¥, is closed urider the fundemental

algebrai"c operations of p. 10. But the cfii‘feren‘tial ,C{) T"' of a diff-

e
s

erentlable tensor of V will not in general belong to V % However,

if we take the projection* of s T"' on Vt’ we have a differentiation

s ae

. process under which Vt is closed.

* i * o0
£S5,

s a tensor at Pe'ﬁ(,_ (8 need not belong to 7,) then
. 4, 4§y
as far as Letin indices are concerned it has an n-B ein representation

Si e

jk K] —(tué ud‘o) V /&) '. .
) m ] i
Then by definiticn . .
i LR & ] == « . \.
Sik o T (e ) Y A P ,
7 - M (t) (::_) (_4_’_'_’
~The definition does not depend on the b"hoi:c:e"f'of‘ $he n-Bein, ° =

-,—.--w—--.—-—..a-u..—-—..---..—-—_-—o—-p-————---—....-—---—-Q--—---——i---——-r—-fi‘-_---.-.—

As examples of such vebtor spuces ue have the mormal and

2.12),

when -considered as a Space vector, Ts' no:;ma]f t0 /7- at a point Pc‘]’r(r.

“odculating spaces of_en ’37/2’,_ . We have seen’ that nd (3

. A . .
We thus have a vector space {l’ta,ﬁ} (which does ngt depend on the
4

choice of parameters in /n(" ) ‘which we shall call thé first

%

normael space of /M(r at P.

- o
* P

Repeated abSOlute dlffere‘ntlatlon gnms rise to new invariant

Vector spaces {n-&. a: 93 Cee ete, Let ys adopt the notation
- T ete, The space will be called
AJ = { } j:a {'74»7,4 Ithass b /:Zl K1 °

it

the X-th osculating space of ml" at P.

v
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L

s

w ?'; is in genefwal, meither symmotric in x f
(385 ) goneTet, v p
! N -~
nor normal to . _=-(y" 7' However
P4, { Lt‘l ) &g‘ 43‘ .
~ .{ 1 “J -
\,",13 720\ (“P ) ,31}) b [ 2 . o
The set of vectors of .23 Wwhich are normsl to \1,1 will clearly
~
be g vector space. It will be called the second ngrmal space a{g .
—
In general the space of vectors of J, o Sous which are
~ ® i p‘; "\;’ _..{34‘ 2
normal to .J, 9 defines the K=th hormal sbhce .7 B A
DN k . //i"/ { 4y

f"zm,,f,_, -

17. The Frenet formulas.

* Ye now develdp some of the propérties of a.one-dimensional
subspace of 0?,,1 - a curve. The &¥alogous thedréms for- sghspaces
of higher dimghsion will hot be given here (cf. W. Mayer; Transl: Amer.
Math. Soe. 38 (1935), ‘p. 267).
- We suppose that m Z 2 (the space CR:,L is of class at least
2), and that the positive definite metric tensor g*ijo) is of class cl‘
Let
xi=xi(t), a<t<byv
represent a regular 6}}"1‘ of class 02 (given parametrically), thut
is, a curve for which dzxi/dtz is continuous and dxi/dt # 0.
If we make a change of parameter s = s(t), the quantity

"dxi dx ]
1) Ta% at

-

(the metric tensor du"-F‘ = /” of the subspace; cf, (15,2)) is multi-

plied by (dt/ds)g. Hence to find a parameter s for which

(17.1) - S

we must set
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(or else the negative of the radical may be taken, unless the curve is

5

oriented). Thus for any a < to'< b
t

[ & e
F = 7 u\l ¢
(17,2) | s(t) , W’v"gij e ,(_1_{,1 it + const.,
T’O

and so s(t) is determined up to an additive constant and & choice of sign.,

-

Conversely, mince.ds/dt has a constant sign and d2s/dt2 is ¢ontinuous for
a<t<b, s =s(t) is ah allowable chahge of parameter. Finally we ob-
serve that the set of "arc-length ﬁé}ametefs" (cf.;flz) defined by (17.2)
is independent of the particular parameter t, because arc-length is in-
variant under change of parameter. O;; result ig that (17.1) is
characteristic for é;c-lengtp parameters,

- We assume now that the curve

X, = xi(s), . ay <s <"bl

is. referred to an arc-length parameter s. Of coutrse the xi(s) are still

of tlass 02. We denote thé tangent vedtor By
gl - dxi
. ds °

t >t s
Then % (s) is of class gl, and, by {17,1) =% is a unit véctor, In
i . .

Iy , LY

succesgive steps n -~ 1 other «unit- vedtors % {S)y ees , i

v

{s) will bve

constructed - if certaip ¢onditions mre fulfilled ~ forming together with

t
a normalized n-Bein. " "

#

By absolute 8ifferenttation with respect to s we ohtain from

‘
Kol 0 g m ” - g -
%” the ¢ontinudous vector

-
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- y 2
3 : 3 a
(17.3) 2 - v " ng} it s dxy, -iq i
z Iy ds® (P 2 ds gs
Differentiating (17.1l) we have '
. J
h y >- . "“" = ) -
%155 */Qf
so that 4 is normal to il (this was alsSo proved in the preceding
kS t
section).
- ‘The relation
a4 FTTRTET ,
P p Yy g
determines a scalar -ﬁr' (s), the "first curvature", as plus or minus
v ’ “
the length of % . That is, the sign of I, 2, i& as yet unde-~

termined, except of course where l/fy = 0, At this point we exclude
from consideration the set of (closed) sub-intervals ol the parameter-

b'd
interval a; <s < b, throughout which i/f3 vanishes identically.
P ;
The eguation

)
Fe oz

n

e

(17.4)

[N

defines a unit ¥vector

P

up to sign, wherever 1yfﬂ #:0 (assuming’that

such points exist). If 1/ p = 0, ik is gs yet- completely. undeter-
4 2

mined.

t of the

Suppose that in a certain sub-interval ai'< s <Ibl

original paremeter-interval it is possible, by making one of the two

Lt
choices for t  where l//:‘ #'0 end makihg any choice at all of f

l.

"

as a unit vector Where‘l/,% = 0, to define, {s) so as to be a cdon~
y ;

P

tinuous functiom of s,* (For example; if l/F; # 0 at a certain point.

* If such a continudusg fundétion i (s) axlsts, it; is unique except
2

Nt

for a change of sign. This follows from the fact that if lim % (8)

&P,
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+

exists, where s approaches s, through ¥alues for which l/lo, # 0 and

either chojice is matie for E,L at.'each of these values, then the limit

is unique up to sign. z

such a sub-interval can obviously be constructed about that point.) Then

o};— (s), with its sign fixed now by (17.4), will also be continuous for
t .
ai1< s < bi, since.it can be expressed in a neighborhood of each value

of- s as the guotient of a continuous: compongnt of SD by a continuous,
non-vanishing component of i{ .

In the general case the "first normal" ‘i,( (s) does not
possess a derivative, and our constrgc"t‘ion stops here., iBut %.f We'

. 3 :' hd
assume that the given curve is such that § (s) is of class Cl in some

interval 8y <s < b2,~ ve can proceed to the next step.

[
- Differentiating E (s) absolutely we obtain a continuous
/d, z: / Q o

veector t*} ¥4 .  Again, because § is a unit vector,

g&' ‘/} \t [
1}1 /17 4  is normal to 2 ¢ but it need not he normal to 'g .

gi ] " g b/
Let ; denote the projection ( § 11) of é/fxxb onto the
) N ¢ Lo
normal space of & and % . Then 1/0‘; /&&L is the sum of
. & " -

i x
S and a vector in the space spanned by %  and i ; that is,
3 t A

J ¥
.. v.: . $ At o+
17-2) H4 'A'%f * A : {3

.

?
Multiplying by ‘;a and surming with respect to i, and

~-

N v “ . ;, @ g
using the fact that is normal to “ty’z? //1},4- , § and g s
L

N €

we find thet A, = 0.  Similarly if ‘we multiply by %, end sum we

obtain
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»

176 A =¢.
(176) 1 ?“‘&A

24
#

Aot
Differentiation of the identity %;% : O yields
’ . 1 3

Since 1/‘?;/4/% = )ZL = Z‘//D‘ , (L7.6) becomes
. i t {

Ar=-— 4.4 = -1

1 f E’c 2 ng

Consequently {17.5) reduces to

¢ z
(17.7) Z%_z_, = 1+
]

!
fa A

The last relation shows that

WV W gty

(s) is continuous through-

4 [Y
It is normal to % and § , but it

out the interval a_, < s < b_.
e 2 ¥

need not be a unit vector. We therefore normalize again by setting
t

Loy
—_st ' o

[NV, )

(17.8)

7 g‘
where is a unit vector and
3
! -+

/ i gJ
Y A
Jol 4 4 3

Here we exclude all sub-intervals of a, <s< bz throughout which l//u)_

WY

vanishes identically.

Once more we suppose that by making one of the two possible

[3
choices for i where l/fz # 0 and any choice where l/f‘L 0, it is
3 .

. . 3t . . )
possible to define 4 (s) as a continuous function of s in a certain
3

{

sub-interval aé <s< bé. Then (17.8) will determine 7;‘ (s) as a

continuous function in the same interval. Beyond this we cannot go.
¢

in general. We must mete the fresh assumption that % (s8) is of

1 .
class C; then we can continue as before.

The equations (17.4) and (17.7), or rather
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SE

. A A a
(17.9) T % an
o E‘t S I ¢
NN T UL, S DR
(17.10) T 5 § I § ,

are the first two Frenet formulas. The general formula can be written

&

= =
B

S ) e e et ke e et s i _
# ; |

_yia Ly
f‘v]d-l ﬁ’ R

A —. e ek e

¢
‘td-_. l, 2, e , 1,

1 t

(17.11)

2 s
“91.\1
>

t

'
i

with the convention that l/)Oo = l/f’n = 0 (i.e., when o = l the first
term, and when &= n the last term, is to be omitted). The vectors

«EL’ Et‘ E‘, I g {the tangent, the first normal, the second normal,
'

eee 5 the (n-l)SJG normal} constitute a normalized n-Bein, the "moving
polyhedral"; and the scalars //9, , ’//D’,‘ y e l,./; m-, 8&Te called

)St curvature

the first curvature, the second curvature, ... , the (n-1
of the-given curve., The formulas serve: to express the absolute deri-
vatives of the 5" with respect to arc-length,i:n terms of the vectors
of the n-Bein, Of course not all of the n formulas will hold for a
Ziven curve unless our successive assuuptions with respect to the
differentiebility of the E‘ (s) and the non-vanishing of the curvs-

tures are satisfied,

The theorem which we are nroving may be stated as follows.

< ,
Suppose that we have a normalized k-Bein, k = n, of vectors %7 (8)y vou
NN , .
2 {2}, and a sot of k - 1 secelars ;,f/,’ ) see l/jp‘g_' y Satisfying

(17,11) for o =1, ... , k - 1. The vectors are to be of class Cl
and the scalars are to be continuous, in an interval a, <8< bk' Then
we can construct a continuous unit vector i normal to =all the

+1

preceding vectors, and a continuous scalar l/fk , which will satisfy
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(17.11) for % = kK. [The new vector ahd gcalar will be defined in sub-
intervals :3.}'c <s < blzc specified below. (If ¥ = n we merely show that

(17.11) holds also for ™ = n).

Proof: The absolute derivative ’V 1}4. is continuous
throughout the given inte.rval. L?:t l’fl; regresent its z)hrojection
on the normal space of %t, vy EL (if ¥ = n no normal space and no
projection exist). . Then there is a representation of the form

7&2 Ave . eal y b
kot

If we multiply by &; ( X = L, «4v. , k) and sum, we obtain

A = %.‘, et
[~ 4

o

. : . s 23§
In virtue of the identities 95; -
o

NS S |
-~ JA' 7 | "
For &« = k this shows that A = 0. By the o Frenet formula
(o =1, «.s y k=2) 1}25;//1},4, is @& linear sum of é; e ,éi , &nd so
-1
A = e < A = Oo Finally-)
H k-2 J 3"
- — 3/ &-l 3 - -—-L-.
-— " —— L)l s .
fe =4 4 A '/gi jJ‘I‘"
Consequently o ~
.r,p & | ¢ '
Y RS + &
~ ¢ 'T, f)f;—ﬁ k"l Aff
> v
s0 ths A,' [s) is continuous. :
+]
Let $ 720 j ¢
e A
i :k+ i ,/0-& j{"‘t
e’t
where l;:: is a unit vector. Let &f» <s < bj be any sub-intervel
8¢
no segment of which is filled by zeros of 1/ Fa and in which é}
< +

can be defined so as to be continuous. Thon l/f)ﬂ is continuous, and

the k'® Frenet formula holds.
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As for a sub-intervel in which l(fﬁ = 0, (17.11) is correct
with « = k if we leave off the last term. The Frenet equations of a
curve whose kth curvature vanishes identicslly are ¥ in number instead
of n, aﬁd the moving polyhedrzl is a k-Bein instesd of an n-Bein,

The theorem just proved applies to perhaps every curve for
which the Frenet formulas can have significance, 'but for o given curve
it would be rather hard to decide from the theorem just how many of
the formulas hold along its various arcs. We now proesent a shorter
derivation of the formulas which is good for o more restric?gd but more
simply defined class of curves.

Tﬁeorem: Lzt the clgss m of the space be at least 2, and
let gij be of class Cl. Let x, = xi(s), a<s<b be a regular curve
of class Cz, referred to an arc-length parameter s. Suppose %héﬁ the

succesgive absolute derivatives

‘ L2 ks

H g . [
(‘ ’f})"; . C«'l;z : ';,}& ;’({ A ; q’,ﬂx L H . t,
i7.12 T T e R Y
J2) Sa e At T S R ) R

exist and are continuous for'a < s <b, where k is sofic £ixed integér
= n. Let the first k:of these derivatives be linearly-independent
throughout the interval, but cssume thet the (k+1)5" derivative is.
linearly dependent on the others in the wioie interval (if k = n this
is necessarily the case). They there will exist a normalized k-Bain

b A '\_" ;o
? (8)y eue % (s) {where 5 = vgﬁii*¢ } and a set of scalars
o (8)y een 5i~ (s) which satisfy equationms {17.11) for £ = 1,...,k
PR g -
h

(the final term in the kt equation being cmitted). The ve@tors are of
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class Cl and the scalars are continuous for a <'s < b.
(1t shou:.; not be supposed that 4 Xi/ds , £or cxample, must
X
exist beceouse ---( \’ exists — indeed a curve cannot be of class
Ha
c® Fx e
C* in 2 space of class 2. The formula for X, / 8 was given in
(17.3) 4 and it is obvious that o sum can possess a derivative when
neither summand does.)
As on p. 63, let :7‘ denote the one-diménsional vector
space {1}?( /Jif1 spanned by the tangent, :] the two-dimensionsal
12,
osculating space {1}'7( /1},4 '1}75 /‘Va;d- .} ees o ,J;z-‘-,& the k-dimen-
& -~
sional osculating space {1}7(;/1/%4, y ,1}' X;/fl}}d"} » Evidently
eqch of these is a nroper subspace of the following ones, and the last

“0" k;.' e

one contains 'I} X; /VQ .
.
Let i = 'I/ng/JA« » and let 5 be the unit vettor in

' S ke
the dil;e;:t ion determined by projecting 7(;/ A onto the normal
space of Ul--‘o(—n s X =2, ... , k (the projection does,not

o el
vanish, as 1}'75‘-//1/04 is not contained in :],,, -1 ). Since

« /J « ~

1/Q7<;, A , avector in J,... 4 , is the sum of its pro-

ﬂ1
jection onto ’\j, ey (C J,. .q) end its projection onto the nprmal

space of jl‘--o(-q , the latter projection must lie in :7“._« .o Thus
ii g! , . ing
5, a5 constitute a normolized o ~Bein spanning [ i 9
A = l, ses kc

The vector spece :7,‘,,0( is of ¢lass C {; 11). Hence

its projection tensor, and so the projection tensor of its normal space,

o« o
are of the same class, By hypothesis 1} X;/l,}/lf (=1, wsy.s k)

1 Jq //0 =
must be of class C., It follows that the projection of X /v
L

onto the normal space of :7,._ , and therefore the unit vector

A

< el-y
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determined by that (non-vanishing) projection, are of class Cl.
3 9, . .
Now a , as a vector of P e , 1s a linear com-
o N &
bination of the basis 7}'95;/1/&/4, y eee 7}7‘;/7&«4— , With
coefficients nccessarily of class Cl (this is seen by solving for

* AL
the coefficients). Differentiating, we find that Jz/if,& is a

of ¥
linear combination of 1}27(;,/#»4* y ees 7} \ /Va/‘“ﬂ , and so

I~

it lies in <, . .. 44, (or for o = k, in J

‘
S 4 :
. ] — N A 2 .
117.13) — = y (xp) % ) d‘-:,...,,&)
1/"/4' B=1 g '

where the coefficisnts { o(ﬁ ) are necessarily continuous and ’

(o(P ) =0if f >+ 1. It remains to be shown that the coefficient
i

matrix ”("([3)“ _ has the special Frenet form.
L
Since the 5 form a normalized k-Bein,
- c -
<

¢ €. =g
(17-14) < gl ap
Solving for ( o(F ) 4n_ (17.13) we find v

/ ’}é :i"

(=p) = 74 ¢
From (17.14) we have ' | |

i ,.=..z‘z_}l§*.~, SN

i:@b Y ' « 1 ' '

A

I

Thus ( o f:. = '/’or ), and the umatrix- “ (= (3)/ is Skew-symmetric., x
As \KB} = 0 for {_’ > & + 1, wo must have (o(?
for o > (3 +1 , th.t is, for {3 < & - 1. By the skew symmetry,

(o(ﬁ ) = 0if o = 13 . Hence the only coefficients- not proved
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o

to vanish are (12), (23), <.+ , (k-1 k) and their mégntives (21),

ver 5 (kK k-1), If we weite 1/py  for (& ot+l), ok=1, ..., k-1,
we hgve the required relations (17.1L), ‘This completes the proof.
Wle may add thet no one of the curvatures l//;l y eee l/f&-n
}o& 1}0(
vanishes ot any point (while l//Jl! = 0}. For the ccoefficient of 7 X‘-/ A
¢ .
in the. expression for i (which is also the coefficient of
o "
oL+ oy ¢
1} Xt./‘l},d, in the expression for J-é ,/'I/u'.«fL ) is not zero, since

Z‘ is not in 3 e =g e Hence 7}%‘/1}/4— is not'” inﬁ?ﬁ' i , and
! < l.c-o(

-4
(e ot +l) # 0 for o < k. * ¢
‘ .
The vectors % and the Bcalears l/f,(‘* which we have con-~
ot .

structed are unique; in the sense that any other vectors and stalsars

’ t
satisfying the same Frenet- relations 'a"flﬂ having % =+ dxi/ds would
be identical with thesc except for certain chenges of sign (for in-

L
stance) it § , l/fd,, and l/de are replaced by their nega-

tives the equations are still sntisfied). This egan be shown by goe«
ing “through the equatidns in order, Alsc, if &nothet aré-length
parameter s = X 5 '+,const. had been used; the -quantities obtwined
would still hcove been the same up, ‘cpa,sigia.. -

In = z?-pace of clgss at least nt*l, with gij" of clnoss ‘Cn—«,, the

absolute derivatives {17.12) will certazinly exist and be continuous if

" .
o
the curve xi(s) is of cless. Cn+l.~ Indzegd, 1;92’;7/ 1},4« will besof

cless clo*i)- , and if-the other hypotheses of the theorem are

-

satisfied the proof shows that -é will be of class e also,

N
2* is of class ¢%F*® y),

X =1, ..., k (as .a matter of facf
The curvature 1/ p_ will be of.class ¢ % , o = 1, o3, k-1,
J

These statements remasin true if n-is replaced by any integer not small-
N 1
er than k. h .
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18. -Determination of & curve by its curvaturés and initial polyhedral.

We have seen that any curve in the space ﬁ,\ satisfying cer-

tain general conditions determines, at least up to sign, a set of k-1

THA

continucus curvatures, where k is gome integer = o, We shall prove
the following converse,
Theorem: Let the space be of class at least 3, and let g, |
¥ e o 1]

be of class Cz“. Suppose that ) o

e
(s), oo e )Y, a<s<b

f’ ./ojgls

are any continucus functions no one of which vanishes identically in

(18.7)

any sub-interval of a < s <b. Let xz be & given point, let

¥

t t s
%o NN )‘;;o be any normalized k-Bein at ‘x‘.l", and take any
]

a < E < b. Then there exists a curve

(18.2) x, = x.(8)

of class Cz, having s as an arc-length parametef, and fefined in some

-

sub-interval of a <s <'b sbout &_, which has the functions (18.1) as

curvatures, which passes through xz for s = So’ antt for which the

> M4
moving polyhedral takes the position &o at s = so‘. Any other

curve with these properties will coincide with (}lBE',.Z) in the common

interval of definitiom, _

Proof: Consider the system of (l+k)n differential equations

imiam

. v
[ -2,

‘ d?’cz{t}?éq;.

/' ds PY
(1e.3) < 3 ? g { ‘
d3i ,{1 +_-L.
ds Zp q} f} A 1§ f’-lé !
R R R R R I
at Nt

[o7]
n .
f\—\

PR NI §
pq}%, fA-:é—l )
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in the (l+k)n unknowns xi(s), %t(s), ey El (s)¢« This system
is in solved, or normal form (we have been careful to write %q in-
stead of dx /as) The right members are continuous for any x5 in
the topological sphere which is the coordinate system, any i what-
ever, and any a < 8 < b. They are of class Cl in the g and the
xi,,becéuse the gij are of class C . *Consequeﬁ%ly we chn apply the
fundamental existence theorem for such .a system of differential
equatiohs.

According to this theorem there exists a set of functions
xi(s), ék (s) of class Cl satisfying the equations, which are de-
fined in SOme "sub-interval of a < s < b about sb, and for whlch
xi(so) = xg and i (s ) = i; +~ Any two sets of such functions
are identical in their common ‘interval of defihition.  (We note
that the special form of the first equation implies that xi(s) is
of Class Cz).

The existence fheorem applies. to a fixed coordifate system.
But if we now assign t6 the gij"xi’ Et , IKP“ and s their usual
tensor béhaViof! the solutions xi(s), Esjé) in ofie QOOraihate system
will transform under change of coordinates into thé solutions in any
other. TFor if we repla;e %q by*aX /ds and transpose, equations

(18.3) become dx, /48 = i followed by. the Frenet equations, and

each equation then has the invariant form, vector = vector.

L
If we knew that the E (s) form a normalized k-Beln all
along the curve xi(s), not merely at so, we would now have the

theorem. For then s is an arc-length parameter since dx,/ds is &

unit vector, and the other conclusiops can be drawn without diffi-

culty.
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Hence we -must show that the scalars

(18.4) Jém z é‘m %;M

keep the values i% which they have when s = so. Calculating from

(17.11) we find that

AT 4T pE Y
J'q’p . 7}5‘-&_ 7}2 Z + };..___P_,— =

«

T da a8 SR |
| . 1 N 1 - S .
(" ﬁ:—‘i z) i P g )% & * ( P ‘i . ? /’6 6%”) EL '

-

o~ ! of =

#*

Thus

4T - . .
(18.5) “4=e - _ LT 4 L [ I i Ny

T T S R S S A CE R

If we think of the;% as independent“varfhbles3 fiSﬁS)
is again a system of differential equations in normal form, and thé
right members satisfy the conditions of thé existence theorem for

e
a<s <b and ;% arbitrary. Now it is easy t6 verify that’

c% (s) = «‘g , a<s<'bis m solution of (18.5); for
(-3

-

Y SR S S
j’,‘_,‘«—o(} +f°( 4 @ f’p-f gt o ﬁp G4 o )

<, F =1, .44 5 ko But then the existencs theorem asserts that
the solution {18.4) must éqilal dé "as far as it i5 definéd, and this
is what we had t6 prove. ; i

The totality of ¢urves in R, obtained by integratisn of
the Frénet equations for all possible choices of the cirvatures l[ﬁ«
in (18.1), will be found to coincide precisely with' the %oéaiity of

curves for which the Frenet equations can be derived accordiﬁg to

the first procedure explained in é 17. In other wérds, our first
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derivation of the Frenet equations and the result of the présent
section are a theorenm end its converse, at least when gij is of ¢&lass

Czo &

19, ~Coordinate spaces.

Before going further we wish to define a clgss of spaces
of a more general character than the space X; , to which almost all
of thée preceding work applies without much change, By géfinition Z;
was homeomorphic to a euclidean sphere, but‘a "coordinate space" (we
still call it Kv ) can have a fairly arbitrary togological structure.

%

To begin with, 5~ is a (gonnected) ﬁauﬁdorff”bpapé.

"
That is, K; is a sét of element® called points, and to each point
there correspond -certain sets of vpoints called neighborhoods satis-
fying the well-known Hausdorff axioms, In effect, the axioms en-
ablé/us to define open sets, limit ‘points, continuity and similar
notions of point set theqry..

Let P be dny point of bf; . Wo hssume “that there
exists a certain neighborhood of P, U(P), which is~homeomsrohic to
the interior of a topological sphere in n-dimensional\mﬁmbefgsbace
Eh. We call U{P) a Ycoordinate neighborhood" of P, bébause co-
ordinestes xl, cee X, ¢an be carried over from the voints of the
topological sphere to the corresponding points of U(P)s Of course
for each U(P) this can be done in ‘infinitely many ways, depénding
on the choice of the topological sphere and of “the homeomorphism.

Now corresponding to each U(P) ‘in 5:1 let a definite

choice be meds of a topological sphere S in En and of a homeomorphism
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between S and U(P). This assigns = fixed coordinate system to each
coordinate neighborhood.

Two coordinate neighborhoods which have common points in-
tersect in an open point set. In the intersection there is defined
a coordinate transformation

x§ = x{(x oo xn) or x, = xi(x', cee 4 X'

1’ 1 n

We assume thet it has been possible to make the choice described in
the preceding paragreph in such a way that the functions xi(x) and
xi(x') in every such transformation are of class Cm, wheré m is a
fixed integer 2 1. Just as in § l it can be shown that this is
equivalent to requiring the concept "function of class cfon (de-
fined in an open set) to be independent of warticular coordinete
neighborhoods for F < m,

- Any homeomorphism between an open set in n-dimensional
number space and an open set C%, in a:l gives rise to a "general
coordinate system" in ol . If the transformation of coordinates
to ewery U(P) intersecting X is of class le both weys,where

<
m, = m, we speak of an “mlpsystem" in 6%, . Ir m = mwe have an

m-system or & "coordinate system". Again, the ml-systems can be

characterized by the property of prescrving class for functions of

elass ¢/ s }P =m.

The coordinate space or "coordinate manifold" 'Kl is sald

A

to be an "m-space" or to be "of class m". Evidently a single
Hausdorff space may give rise to infinitely meny distinct m-spaces

(distinct in the sonse of having different totalities of coofrdinate

systems).
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20, The Riemannian Space with Congruence Transformation.

. . m . .
In a Riemannian space Rn of class C let us cousider a point

transformation
P <>Pt,
This may be written as
(20.1) x_,'L = xi (xl, een ‘xn),. x, = Jii(xi,,«..,xﬁ), i =1,eee,n

where x and x' are coordinates in ¢oordiniate neighborhoods 0/ (P) and

W/(P") respectively. This transformation will be called .a congruence

e,

- % - o~

of transformation for a change of coordinites, i.e. if

‘\ By (x') X - D 2'7( Bpql®) )
(20.2) Dxp D X4
" o ___._F A * = !‘ .
gik(x) 5 xS Xq gpq(*x k

. By a geometric figure is meant a poiny get in R.n: with a set of

tensors defined at its points, If F is a geometri¢ figure in %,(P) we
then transform it into a corresvonding figure F' in W(P'T under (20.1)
in such a mamner that the components of the tensors associated with F will
‘bransf9rm under tl}e congruence transforma“cigq (Zo,l)was ifﬂit were a co-

ordinate transforma{ion, But according to (20.2) the mebrigc tensor g,

ki

will also transform as a tensor under congruence transformation. Hence
* PR - -

any invarient of F considered as a simultaneous invayiant of the figure

£3 a3 o
-

gnd the metrical tenSor will equal the ¢orresponding invarient of F'.
- « 1 &

When this last statement is true F and F' will be called congruent..

Theorem. If any geonfetric'!figull‘e F and it¥ transform F' are

congruent (in the above sense) then equations (20.2) hold..
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»
’ g

# L
‘To show this, také two contravariant yectors ;\» and /1" as

functions of x. Then

&4y (XF R (/“k = Bh(x'). n é/’(lk

gik(x);l/& 8’-1"(1)9’7( FEXK /L(

2 2
BZF>7(7 gHO{)

Obviously the set of all congruenée transformations form a

But

Hence
[ 4 1 ] ==
gik(x )

group which is called the group of motions, I general this group neet

have only one element, the identity.

Remark. In some cases we congider only transformations which

— »

transform some particular subspace of the Rh into a congruent subspace.
As an example, consider the Euclidean torus,. aud the. group. of all rota-
tions about a point P of'it for a restricte?l ngighborhdod of it, There

exists no rotation for the whole space.

21. ZFuclideah Space.

The Euclidean n-space E is defihgt’to be a Riem?nninn n-space
Rn which can be covered by a single coordinate Msystem (x), -co< xi<+ oo ,
in which gik = S i1k Such a: -coprdinate system i% gal-ledp‘, a rectangular
Cartesian system. Not only one guch sys?.hem will exi'st in an En but a set

of them, the transformation between any two such systems, (x) and (x') being

" | BT =
(21.1) x{ aikxk-hbi, aikaij ] é’kj.

In faet,




DX D X ; -
gik(x) ) X?. :g?éy T OikBip. ®q ~ aJ'.paiq - 5—iq - giq_(x')'

Obviously (21.1? may be considered as a tongruence transfor-
mation, and thus under it any geometi‘it:' Tigure is tran§fomed into.a
congruent one.,

Theorem. The group of congruence transforpations (21.1) con-

tains one and only one transformation which transforms a .given normalized

n-Bein et a point P into a given normalized n-Bein at a point Q.

We have to solve. {21lil) and ¢
No distinction need be msde between co- and contra=variant indices
. K
when decling with rectanguler Cartesian coordinates since §L-= S"K‘i .

(f,:::m )”'——-S,x
SV%L «ﬂ)gép /5

Multiplying (21.1') by {5 we get
X

JN

21.2 s = , B
( ) QlJ' §;L" DT

R

from (21.1) and the fagt that P transforms into Q, bi cq'n be found, From

(21.2) we get

— e e .
& 4 By =§;‘§JK§:J ;J ,-:..ZS:L?;K = SZ"K )

e

thus the tronsformation cbtained is n congruence transformastion,

-y
=

Theorem. B, a given set of curvatures f“(55/0(= L, «. k,
oy 7 !

functions of s, an nre is given up to a congruence.

Proof. Let C and C' be two arcs containing points P .and P'

respectively, which have identical curvetures as functions of the arc

’
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length s;
C; xi(s,)", 0 < 8 T a,
Ct: ‘X}(u), Oésé"a,
xi(’o) =P, xj(0) £P.

By the preceeding theorem a congruence (3) will exist transforming the

/
k-Bein gi gt P into the corresponding '§Z at P!'. (If k <n there
X

will exist an infinity of such congruences). Tris congruence will trans-
{
form C into an arc C" having the same /4(53 gnd the seame initial values
%

at P' as C'; Dby a preceeding result C' and C" will coincide.
I

o

|
Theorem, If F{(""(s} = 0 the arc given by the /%‘{5) .

X =1, oo , k, will lie in a k-plane, T By a k~plene is meant a

k.

k-dimensional subspace of E,,1 given by linear equations in the rectangular
Cartesion coordinates of En‘ First we integrate the Frenst equations in

en Ek ysing rectangular Cartesisn coordinsntes to get & curve xi(s),
e P3

3

[4
g‘ (¢), ©X=1, «so , Kk, i=1, <. , ko  Then x,(s), i(sﬁ,

o / *
. . et .
AK=1, tes , Kk, 1 =1, ¢es , 1, where xi = O/ j = 0 for 1 = k+1,
X

ese 5 N, Will satisfy the F.eanct equntions

in the E_ .  Since fg‘g‘:ig‘g‘;g'“ € (=17,

1 x g T&p | / x
is a normalized k-Bcin end hence the ﬁ:‘ﬁj are the curvatures of the

arc in E . Thus there exists in E_a curve with (—?:7;5: X = 1,...,k,

'] N
as curvatures which 1lie. in a k-plene Ek“ Zny other curve C having these
curvatures can be obtained by e congrucnce transformation. Such a con-

gruence trensformation will transform the EK in which the first curve

Ve od
lies into a k-plane in which C will lie, ~nd the theorem is proved.
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2

Remark. The theorems of thid section are %rue for spaces

of constent curvaturc, but becsuse of the lack of rectangular Curtesian

coordinate systems, the proofs ere more intricate.

-



CPAPTER IV

-

_ PARA_LEL DISPLACHMENT .

22, Prm1Tel Displacement of Tensors in a Riemennian Space,

Let T(t) be ony tensor defined along an arc C(t) given by
. L 7
x, = xi(t), a=t=h, '
£ o 2, e
Lot T(t) a2zd C(t) both be of class C ,/0 = 1, and gik(x) be of class

T o~ .
C l,'J 2 1. Ti.on ~49 T, written symbolically =as

iy “h b

/\&Tszi rT dX,

is o tensor of the same kind as T which is defined alohg C(t) and is

*

~ ' - ’
of class C' , 77 being the smaller of/"-l and " -1, 1t AT =0,

T is scid to be a tensor which is parallel-displaced along Cl{t).

The system Ay T = 0, 1.,

Pd

-
daT a”
(22.1) T S e

¢

*

is a system of ordimary differential equutions in the normal form, with
T =5 unknowns. Bi:cause the Livechitz condition holds we can state that

there exists one snd only one solution @iﬁ) with given initial vualues

i~ Bl *

£

nn

T(w) for a=1t = b, Hence the

- -

Tneorém. Ii -. tensor T{:) 1. given ot some point a of 2

curve C(t) or class 2 1, thqu will exist a-unique pﬁral;el—displﬁch

» N
tensor along C{t) hnving T(a) as initial values,

*

- -

i
Since /d T = 0 is inverient under coordinate transfor-

o -

metions the set of coordinate systems chosen to cover C(t) is immaterial.

As excmples of parallel-displaced tonsors we mention the

following: Byy glk; gi = ;; qo, n constant scular; any tensor

identicelly zero; and, as will be seen later, ﬁ§r7(i ., in an
1Y
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oriented Tﬁ .
n
The following statements are immediately obvious:
a) If T and S are tensors of the same kind which are parallel-displaced
along C(t), T + S is such a tensor.
b) If T and S are any two parallel-displaced tensors along C(t) then

T 8 is such a tensor,

c) If T? **'* is g parcllel-displaced tensor along C{t) then the con-
."

tracted tenéor T i

*** is such a tensor,

s ee

Let T ﬁq; «+s o T (£)be T tonsors of the seme kind which are

parrllel-disolaced along C(t) and let z

” T (to) = 0 for sdme to end some

set 2o not all .zero. From (a), (b} snd the foeb that,¢Qa°‘ = 0 for

constant ay , we see that o, T (t) with constant n, 1s a parallel~

displaced tensor slong C(t) which is the .zero tensor at to. Since
the Zero tensor clong C(t) is a perallel-displaced temsor and since 1t

and t) heve the same initi~l values nt t_, the two are identical

$

a, T
2!
end

2y T (8) =0
clong C(t). Hence the

Theorem. If parsllel-displaced tensors of the same kind are

linearly dcpendent at some point. tHey are linenrly degendent at all voints,

-

( 1 L
Let A and//AL be pmrallel-displaced tensors along a curve
o . . ) . i k.
C(t). Since gik is prrellel-displaced, 99 = Bix A /L( is parellel-
displaced; hence d 19 = 0 and CP is constant, Thus lengths and

sngles of parnllel displaced vectors are constant.

‘

Bocause of this, a normrlized n-Bein will remain a normel-

ized n-Bein w®uder parallel displacement. Iet ;%i(t),CK = l,..,,n;
o

-
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be such a parallel-displaced normalized n*bein along C(t) such that
* ¥
{ éa (to)‘ > 0 for sopme to.,’ Sl,nce ‘é{ L(t)’, is cO‘nstgnt,

! ;\,i(t)‘ >0 along C(t). "e" have previously seen that, in an oriented

T{ n,

eqi,in == g . - . 3
I P
Au. 3

¥

hence Vg 71 jy "1+ 1, 18 perallel-displaced dlong G(f):
n
Let T be a parallel-displaced tensor along C(t). At
Jo

to it can be expressed in terms of the above Qarallgl—d.isplaced n~Bein
12 ..

A’ (%) end its adjoint n-Bein A7)

o A

4
i« ¢
(22.2) P o A at t_,
Jovs 4Ry RN J ©
o P, .
The right side of this equation, for constent o‘.';i.j(" o ‘Will be a
parallel-displaced tensor of the same kind as Ti} *** with the same
initial values at to. Thus (22.2) holds, with constant o .T/3

for any t. Bv- (22,2), theh, the study of parall®l-displaced tensors

H

. "t
reduces to thnt of parallel-displaced vectors. For vectors a

and ;\ ; the equations for parcllel displacement are

. . {oaF

i

23, The curvature tensor,

-

; . ‘ -
Take a }7[2 element lying in one coordinete sy‘stem,& which
mey be defined by
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X, = xi(t, E ).

Let a contravariant vector ?’(‘(t, € ) be defined at each point of ,

& ax: fx 2al 24f 44
7?7@. Let atjg%jm)—é—r" € . end STOE

exist and be continuous, w Then
} R + L(i- L/“s a P_D xq
21 t Dt - rg - oF and

4o (t) = 2 (%%‘H;"ﬁ%%) FT 3 o  5) 32

3 -
-

-0 LI, PP AN - PRUR ST VAL,
— Séot "f'é‘il?g“é‘ﬂ St zi*ﬂ,c,aﬂe_fé.’%
Aty ~Laaﬂ9754rr*zr”'ﬂ‘9 ”2?94
HHRaW ‘Hm;? Y rs 18m t o€

g Jwﬂ‘;ﬂny‘h-,é P Ak DX
mh g gt =R 5

EY

N T AL A
(23.2) /P\qu .,,5—;1 —§T§:+Eﬂrf1 [;q‘r;K .

We can always find an ;7 f 7 element and a_vector Q.P(t‘, € ) such that

QAp D Xp P .
SE' S € and a assume , grbitrary values. Herce, since

the left side of (23.1) is a temnsor, _ﬁl

,1s a tensor, called the curva-
pkq —

ture tensor.

24, Fields of Parallel Vectors in Non-analytic Menifolds in the Large.

This section will consist of a reprint of a forthcoming paper
by W. Mayer and T. Y. Thomas which Y;ears the same-title as does this

section,
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Let ;77 be & coordinate manifold Sf 6lnss Cl. We

assuquto be connected in the topologicel sense and to admit an affine

-

o
connection L with components Lf3X . avhich &re of cless ¢® as functions

%

Z
of the coordinctes of ;avr . Evidently we must have s = r - 2 from

x

the equrtions of transformntion of th%,components of the connection L.

In the following paper we shazll consider the question of the

- » ¥

existence of fields of parullel vectors defined over open point sets in

?kkfg. This problem has been previocusly diséussed under the wnnlytic

g

hypothesis by T. ¥, Thomes, Fields of Parullel Vectors in the ;?rge,

Compositio Mathemectica, 3, 1936, pp. 453-468. .Indé%ﬁ cone of our ob-

jects will be to exhibit the essentisl differences between the anslytic

L .

»nd non-snalytic cases end to indic-te why the rlgebraic charceteriza-
tion obtained under the analytic hypothesis can probebly not be extend-

. . r
ed to the ccse of coordinzte menifolds of eless G
e . - - -

~

24»1. It will be sufficient to assume for our purpose that

-
i -

"

71 +1 vhere M is the dimensionality

of ;Z??/ . "

Analytically we are concerped with the existence of splu-.

2

the above integer s is 2

+ %

tions of the system of linear partisl differeontial equ-tions which de-
fine the éie;d of pgrellel vectors in ;anf » But our discussion will
apply likewise to n~ny invariantive system of linear equstions in 777’
with the x coordinates of ~75h7 as independent varisbles end with un-
knowns which may be scalars, the components of t§n§ors, etce In
oﬁher words our methods are repre.entetive of the treatment to be applied

to this general category of differential equations defined over the

menifold 7e?7’ . We sholl define reguler points in the follow-
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ing manner.. Consider the set of equctions

(=) Mg
) &k
' 5 Dy, S

wesssvrersessssvsee e
%

M_cx .
o 5 Jj/‘f)’fé:u”)gﬂ:‘o

where the B's denote the components of the curvature tensor rmd its
successive covari-.nt derivatives., A point P of :%77/ will be said

to be regular with respect to the systemE6 + eee * Et vhere t‘é‘n-lig

-

there exists a neighbdrhood U(P) in which the rank of the matrix M of
the B's of this system is constent. All other vpoints of 77/
will be sr-id to be gingular with respect to this system. By this de-

* [3 L

finition it is obvious that the regular points form anvooen poiht set

and 1t is easily seen that the singulcr points are no where denge. To

prove this last statement we observe theot if P is & singular point any
neighborhood U(P) conteins & point Q such thet the ragk of M at&é is
greater then the rank of M =t P, In fact there exists a neighborhood
U'(P) ¢ U(P) in whicll the rank. of M is at least cqual %o its renk at
P . If U'(P) did not contein a point Ql st which the rank of M is
greater thin the rank of M at P then P by definition would be r regular
point. If Ql is n regulér point the proof is complete., If Ql is a
singular point then by the above argument U(P) considered as & neigh-~
boqhoéd of Ql will contain = point Q2 such that the rank of M at Q2 is

grecter than the rank of M st Ql' Continuing we obtein a finite

sequence of point Q., QZ’ Q,s o in U{P) such that the rank of M at
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at Q,o( is greater than the renk of this matrix at Q'O( e This
sequence must contain a first voint Qm which 1is regule;r since a point

at which the renk of M is n is necessarily regular. Since Q 1s re-

ha

gular there exists a neighborhood U(Qm) _ U(P) which consists
entirely of regular points. Hence the singular points are nowherc

dense.,

Let us denote by Rt the set of points regular with respect

to the system Eo + oage t Et fort = 0y .0.. , 1 ~ 1 apd. by S, the corres-

¢

ponding sets of singular points., The points of the interssction
R =rRN & A R,
will merely be said to be regular, A point of 7}{ not” in the set

R will be said t0 be gingular. Defioting by & the set of singular points
(44
inpthis set is the logicel ‘sum
S o= [a . . -
. o bo * ul t. oeew Tt SIf«l' £
b
Since the intersection of a finite number of open poin} sets is open

it follows that fP\ is sn open point set. Also S is nowhere tdense
since it is the sum of a finite number of gets each of which is nowhere

dense. To prove this let P be ~ny point of S end U(P) any neighborhood

3

of P. Then there is a neighborhood 'Uo [ U(P) composed entirely

-~ -~

of points of Ro since So is nowhere dense. Agoin there is a neigh-
- K3

e

borhood Ul _ Uo such that U, coniains only points of R, and so only

1 1

s

points of R Finally we get o neighborhood U _ containing only

k]

l" u“'—c

1

points of the intersection of R y R , R , 1., of R,
o n-1

24.2, e shall now show that if P 'is o regular point in

% the set of equations E_ is linearly depérident on the -set

Eo taige + En-—l at P end in fact that there exists a neighborhood U(P)

-

of reguler points in ,77’7 in which one can find equations with
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continuous cocfficients éxpressing this devendence.
Case T. If all the coefficients B of the set of cquations
E are zero at the point P then these coefficients vanish identically
o

in some neighborhood U(P) since P is a regular ooint in ;%77/, .
Hence in U(P) the cocfficients B of all the eguations EL’ cee » B
will vanish cnd the above statement is therefore valid.

Case II, Let E_ for t =1, ... , n-1 be the first set of

equations possessing the property that it is linearly dependent on the
set E + ... +E , at P. Then the ranks of the matrices of thé
O -
systems B+ ... + B end E + ... + B, will be equal at P. Call
o t-1 - t
this renk T. Since P is a regular point there will be a neighborhood
Ul(P) in which the matrices of the above systems have the constant

rank r. Any T independent equations of the system Eo * oeee T Et—l

at P will be independent in some neighborhood U(P) Ul(P) ahd
rd

in this neighborhood U{P) we can express the set Et linearly in temms
of the above independent equations with coefficients which have the
same properties of continuity and differentiability as the coefficients
of the set E .. Hence we can find tensor relations of the form:’

1) -
These equations may be taken to represent the fependence of the

set Et on the above T independent equa%tons of the system Eo + oee * Et—l
in the coordinate system under cofisidetration, those A's which do not ’
correspond to these r independent equations having the value Zero.’

To obtain these relations 1in any coordinate system we have merely to

‘transform the A's as the components of tensors as indicated by their

indices’,

O e . T - " T > s e o s S i e B S el G B B T N Ty Pt A A Bt P Tk b 2P NP S W AP T e R A P S P Y -
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lS‘t 11" ,',s

X
(24.1) B/*M,Sf“gf?:/ hﬁimst/"Fﬂ 1T

Sz

valid in U(P) and having coefficients A continuous and with continuous
partial derivatives to the order n - 1 inclusive. By covariant 4iff-

erentiatioh of these relations we see that each of the sets of equa-

tions Et+1’ oo s En can be expressed linearly in U(P) in terms of
the set_Eo + L. + Et-l with continucus ccefficients.
Case III. The set E  + <.. + Enrl(contgins n independent

equations at P. Then the set En is evidently dependent on the set
Eo + .a. t En-l at P. Since P is a regular voint the rank of the

matrix of the set Eo + oaae * En—l wild be n in some neighborhood'Ule).
As in case II the set En will be linearly dependent, on the set

Eo + 4w En—l in some neighborhood UgP) < Ul(P) and the co-
effici;ﬁts of the equations expresqing this dependence will be con-
tinuous functions of the coordinates in this neighborhood.

?ince one of the above three cases must occur we, see that
for any reguldr point P in 7EVT there)gxists a neighvorhood U(P) in
which the equations (24.1) for t = n sre valid with cont%nuous co=
efficients A. This neighborhood U(P) can of course be taken to be
a neighborhood composed entirely of regular points in ?6n/ .

In the following tHé above property of regular points in 11

is the only one of which use will be made. A singular point in w

which also possesses this préperty will be called a noh-essential 7

singular point in C%V( . All othet singular voints will be

called essential .singular points. Obviously $he set composed of
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all regular and non+essential singular points in ;777' is open and
its complement; i.e. the essemtial singular points in j%’f are

nowhere dense.

24,3, Consider the open set R of .regular and non-essential

singular points in 777/ . By the component of & point P of R we mean

ki

the greatest open connected point set in R which gpptains the point P.
‘Je "denote such a component by X(P). If Q g:, K(P) then obviously
(Q) = K(P). Thus the set R is divided into a finite:or infinite
number of componsnts K(P) with boundaries composed of essential singu-

lar peints.

3

Let C(t) for O £t £ 1°be a continuous are (continuous map
of the unit interval) in a particular component K(P). ﬁlong this arc
the set of equations Eﬂ can be represented linearly in tefm$ of the

e

set Eo + seo + E with coefficients (components of tensors A) which

Ly £

= 1 (irrespective

n-1
.
are continuous functions of t in the interval O

of coordinate transformations). To prove this take any value of

I’ <

t = t' which will then correspond to a point C(t') of the arc. Since

3 3 » 3 I3 /
C(t') is a regular or non-essential singular point in f??’ there

'

exists a neighborhood U € R in which the équations

& -1. };11—1..,15 h
(24.2) =
jsﬂ/g)l)gb“}sﬂ 57.—;0 AAH/’ng“SﬂB/A pgTaTs

are valid with A's which afe coﬁginuous functions of ‘th&- coordinates.

“m

From the fact thdt the arc is a continuoué map of the unit interval

there will be some t<interval containing t' whose map lies entirely
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in the neighborhood U and for this t-interval equations (24,2) will
hold with A's which arc continuous functions of t. Corresponding

to any value of t = t' such that O é’t' é‘l there exists an interval
containing t in which the above statement is true. The whole interval

0 £y £ 1 can .now be-covered by a finite number of thc above t-intervals

N Nm corresponding to increasing values of the variable t. Ve

l, s e e ’

shall now construct from thsse m represéntations (24.2) of the

equations E_ a single continuous representation valid for the entire

HN s

interval O t é’l as above stated,

Consider two successive t-intervals Np and N§+l and let

t and ¢ where t >t be two values of the variable ¥ lying
P p+l p+l P - _
therval z
in the intersection N /\ N . Obviously the entire,t_ =t = t
_ P p+l + AP
lies in the intersection. ‘Je shall define a representation (24.2)

of’En in this intersection which will continue in a continuous. manner
the representation:of En in Nb from the right and the representation.

P . P = 4
of En in Np+l from the left. Denote briefly by Bn Zi A B and

Bn = ZE: A B the above representatidns in the intersection N§ (] Nb+l

with respect to a single coordinate system covering this intersection.t[f
. . . . . L 2L

F(t) is any continuous function of t in the -interval tF =t = tp+l

then Bn = zz- [(1-F)A + FAJB will give a {continuous) representation

of En in the interval. We Iave now merely to choose F(th = Q and

F(t

p+l) = 1 to0 obtain the above continuation of the reprcsentation

of En. By procecding along the intervals N, ... , Nm is

succession we obtain the desired representatiocn for the arc C(t).
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24.4. ¥e shall now show that any solution .vector §

of the system EO + e t En-—l at any point Q of a particular com-

gonén‘i: ‘K(P) will result in a solution vettor 5’/ at any other

point Q' of this component by paralle1 displacement of the vettor

g at Q along an arc of class Cl lying in X(P). Let C(t) where

P2 \ , .
0=t él be the arc joining ¢ to Q' so that C{0) = Q and C(1) = G.

By this parallel displacement we will obtain a-vector ‘g (t) on

the arc C trith co,mponents §0(('t) o class C’, On C(t) put
x _ gl

Sy = 5" Prex

Sas.= S BRsy s
it Yl S T

—

3

(24.3)

& .77 Tonaa
Sﬂdéim%_if g ,\B#p%gﬁ)“c 577_1 e

By invariant differentiation of (24.3) with respect to t we obtain

/

. A

! 4 71;..7 ' XN . S

D SpyS S pereTs 3" o dxT
AT R

where use has been.made of the -continuous represdent,a;:ion (24.2) of

En along the- entire arc G(t) in writing the last set of these equations.

Since the laft members of (24.3) and 8 = O are splutions of the above

system having the same initial values it follows that these twg

S TR TR R TR T A R T e




solutions are identical (uniqueness theorem).

Due to the fact that the nroperty of dependence or inde-
pendence of vectors is invarirnt under marallel displacement it
follows from the above result that the rank of the metrix of the

systen E o+ eeo # E is constant in each component K(P). As a

n-1
tonsequence a non-essential singular point is a regular point with
respect to the system Eo + ..e + En-l' We shall now prove coaversely
that if P is a regular point with respect to the system Eo + oeelt En-l
then P is either a regular noint or a non-essential singular point in
C}777 . By hypothesis the rank of matrix M of the system Eo+.;.+En_l
is constant in some neighborhood Ul(P)' Let the rank of M be r in
Ul(P). Then there exists r independeﬁt equations Epy 4 «». "EO(q-

~

in the system EO + vee + E such that an rth ordered determinant

n-1
D formed from the coefficients of these r equations will not van-
ish in some mneighborhood U(P) < Ui(P). At any regular point Q
in U{P) the system En can be expressed in terms of these r independent
equations by means of a definite (i.e. the same for all points Q) set
of equations T Tﬁxzﬁgﬁ
5,02 = Y o) Fory (&)
with coefficients which are rational functions of the coefficients
of the equations E:CK' and En.end having denominators depending only
L

on the above determinent D. Since any poimt in U(P) is a limit of
regular points @ it follows that the above equations hold -for all
points in U(P). This oroves the above statement.

To sum up we now have the following result: Any

regular or non-essential singular point i85 & regular point with .
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respect to the system EO + e T En—l and conversely any point which

z

is regular with respect to tpis system is either a rcgular or non-

essential singular point. In other words the get of regular and

non-essential singular points. is- identical with the set of regular

-

points with respect to the gystem EO ¥ o.. * En-l

As a by-product of the above we obtain ‘the ‘further result

that the vector spatéd defined at the points of K(P) by the solutions

of the system EO 4 eae t En-l are parallel in the sense thét the vector

H

space at any point of K(P} is carrizd into the vector space st amy other
point by parallel displacement along any arc C{t) joining these points.,
In particular if the rank of the matrix of the system E_ + ... + En_l

is n-1 at any point of K(P) parallel displacement. of the solution vector

E; of %0 +oaee En-l 4% a point @ ¢ K(P). to any other point of
this égmponént will result in a solution vector of this system which is
determined to within a factor depending-on the arec of displacement.
Under this latter condition a single field of parallel vectors will ex-

ist in the component K(P) for the case of a Riemamn space since length

of a vector is then invariant under parallel displacement.

24.5. Let P(t, € ) be the continuous map in a component
K(P) of the unit square O 2+%1, 0% € %1 such that 2(0, € )
and P(1, &€ ) are fixed points ¢ and Q' for al% values of €& , ise.
each €& -arc joins the points Q and Q! /e assume that the local

representations x X (6, & ) of this m#p with respéct to.any coordinate

system have the following cojtinuous derivativests
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2D2x*  9x"
L OF ) D€ ) thc( DCDl‘

Hence > € =0 at §Q and Q'. By parallel displacement of an

arbitrary (but fixed) vector Eg at Q along & +arcs of the above

mep P(t, € ) we obtain a vector distribution § (t, & ) defined in
. X .

the unit square such that the componernts E; (¢, €& ) with respect

to any local x coordinate system aré continuous and have the fol}oWu

ing contlnuous derivatives

25 g% Fs (;Bi‘i“)
St , DE 15F€ o€ ot

as follows from the existence theorem for differential equatidhs. By
using only the above derivatives we can deduce the following invariant

e s~

relations

ot o
PARE ,_/(QAP xXDX
T AE) gt Sgbéﬁ
We now observe that the second term in the left member vanishes since

o 4
/1}7;5;/42}f z’ is equel to zero by the parallel displacement. A

necessary condition for the existence of a field of parallel vectors

N

?; (x) in the'.component ¥ (P) is that the rank of the system.EO+...+En_l
be less than n in this component. Assuming such a rank for this

system let us choose the initial values of the components of'the

above vecto%Aat Q to be a non-trivial solution of the system

E + .,. + X

o n-1° Then, by the .result of§2M“4 yhe right members of

the above relations will vanish along all & =arcs., Hence these re-

lations reduce to

(24.4), j‘% Ayé =5t W€ ’}’Lpb/;ré .
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Since

(24.5) ,J] ,.E_ L F
Mu/&e DE+ ’5

g
and since 5"’6' and %—ZE beth vanish at § we have ozchat

/1};/1/6 is equal ‘to zero at the point Q. glnceJ"“ =0~

€ £rom
is a solution of (2%.4) having the ‘séme initis&l values it follows/\'bhe

existence tHeorem for ordinary aifferéntial equations that /&—E van«

ishes along any E ﬁ-arc. Hence in pérticular these derivatives van-

ish at the point Q°'. Then from (24.5) it folldws that o=
- X
vanishes at Q' because %% vanishes at this péi’nt. We have

now proved- that we arrivé 2t the same vector g at the*point Q' by

parallel displacemsnt of any solutiom vedtor g Sf the system

E + oo+ X

o o1 8t Q along ény € -arc off*thé map P(¥," & ). -

€ *

&4.6. As s consequence of thé above result it will Folldw that
in ‘eny commected "dhd simply <onnected -open -point set 3 contuined in any
comporent K(P) the :'pa'rallel ‘displacement of ehy sflufion vector §
of the system E_ + ... + E_, €t a-Point Q to any other point Q' of 0
will be independent of“the path of thé displacement ‘and Mence*will give

rise to' a field 6f" paralliel vectdrs f(x) in” 0. va”iously the class

of the componetts of the vettors E (x) is one E;réa%:(:ér than that of o

the components of the” cohnection L.
% « ¥ ox
A netessary condition for the existence of a field of’
parallel vectors E (x) wier 77/7 18 that the system Efo+...+iln 1

shall posseSs a nonstrivial solution amt any point of 777 and this

-
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condition can be expressed by the venishing of the resultant system
/F%‘i of the equations E_+ ... + E , over ’777/. If now con-
verselyfT§4.= 0 over 1277/ a field of parallel vectors will exist

in the open point sets O in any componefrt ¥(®). In particular if

all the components K(P) ih ;brz' are simply connected z field of
parallel vectors will erist in each of these components, but it may
not be possible to choose these fields so that discontthuities will
‘not arise at the essential simgular points in 7377 , i.e. a2t the
boundaries of the various components K(P). wWhether or not the space
;knf is itself -simply- connected appears ta be without &special sighi-
ficance in this connection. Here ariges one of the essential diff-
erences in the problem of character};ing spaces ndmit%ing g field of
parallel vectors under the non-analytic and analytic hypotheses. For
in the” adalytic casé the condition Rl = (0 i5 both necessary and‘suffi—
cient for the existence of a (continuous) field of parallel vectors
over a simply connected space (Tﬁomas, loc. eit.), Thus it epvears
that in a space ’;677{ of. class ¢¥ the various components K(P) in

play the same role es that Sf the entire space in the analytic case.

An investigationqof the problem of charmcterizing spaces

of class Cr admitting one or more continuous fields of parallel vectors
whieh thus involves the consgruction of necessary and sufficient condi-
tions for the removal of possible boundary discontinuities would be of
interest but will not be donsidered here. In this connection it mdy
be observed that if R. represents the set &f all ‘minors 6f order n-l

2

which can be formed from the metrix of thé coefficients 'of the system
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B o+ eee E _; then R, =0, R, # 0y i.6. &t least one of the minors
of the set Rz does not venish gt any point, over 777 i§ a set of in-
vari-nt conditions which are sufficient %o jnsure the non-existence

of essentiel singular points in 77?( . Under these conditions there
will exist only one component K(P) and if 977 is further more simply
connected there will exist a Pield of parallel vectors in 77’/ :
Analogous conditions can of course be given for the existence of more

B

then one field of parallel vectors, in 777 '

-

25, Remarks on the above paper. 1., Ve shall now give an ex-

ample which shows what may happen 'if we consider a space (or =m single
component of one) whith is not ‘sim;ly‘ connedted., y
Let us consider thdt portion of" thé Euclidéan |
planp-*bounded by the Fays 0X and OR but éxcluding
the origin O. The folar coordinates
x = r dos f; 0 S1¢$O(
y=rsin79;o<;r & P X

can be @sed to describe -this space. Also let us identify the points
{ ‘P ,7) and ( f +0N ., T); ise, identify each point on OXwith that
point on O R, .which is.nt +hé same. distance from the origin. e
are thus really conSidering one mappe of a cone with the vertex re-
moved, - a space which 1s not simply tonnected.

It is clea? that any -point of this space is contained in
some neighborhood in which we call "in:troduce rectangular cartesian co-
ordinates, for which we have 8iy = Sik" Thus we see that in any

such neighborhood there are two independent narallel vector fields.
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Now consider any point Q ahd the vector )‘L at Q where components
are (1,0) in the local cartesian coofdinate system at that poiﬁf. It
we displace this vector by parallel displacement along any closed
curve not passing entirely around the cone, it is clear that the
final vector again has the compOnents?(l,O) in the original coordinate
system. ) For a curve, however, such as Q P Q (which cannot be shrumk
to a point) the result of this displacement is the vector (cos x °,
- sin X ). Thus we see that parallel displatement is not hecess-

arily unique in non-sifmply connected spaces even when the curvature

tensor is identiecally zero.

P

2. 4As a further remark we ‘recall that in the treatment
of the above .paper it was necesxar§ to assume that the 8y had deri-
vatives to an order at least as high 'as the n+2nd. The problem of
parg;lel fields, however, can be stated when the gik are merely of
class Cl, Hence there remmins open the question of the existence

of a parallel field of yectors under this less restrictive hypothesis.

Such a treatment would involve entirely new methods, and in parti-

cular could not make use of the curvature tensors

s

26. Locally Fuclidean (FIat) Spaces. A space ?{" will be call-
ed "locally Euclidean™ or "flat" when Rijkg

A consequence of the definition is that the matrix of

= 0 at all points of.Qfﬁ.

E, *+ <ont B (§ 24) 1s of renk zero in 7¥¥  end hence that there

exist n fields of parallel vectors in any simply connected portion of

it. We now prove tHe
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Theorem: To every point P of a locally Euclidean

Lazorem
space, ’r , (m = 3) there corresponds a neighborhood U(P) £ ?’7
within which there cén. be introducéd rectangular cartesian co-
ordinates.

Proof: Sints the space is 1dcally E uclidegn, we can
choose a normalized n-Bein in any simply connected region contain-

ing P for which
I

(26.1) ~ <>°\" . a(é?, & /-— 7 \

-
-

ok 4 D %, i ¢ Dr ~
Furthermore these '\ | are of tHe same C-class a§ the. g, , which
[
()

we fiow as8ume’ fo be of class 02. Prom the symmetry of I’_ in (26.1)

it folléws that

A
o 2«\) ¢ o >\
(26.2) ——— = ()
a/x k ——-____’__’ ”
¢ e !

Consequently the equations

of”
(26.3) 3‘ (7‘) : (1, X =1, ... , 0)

0
‘ (qA)

are integrable in the above simply connected region U(P
. x - h
We now may introduce the coorditiate transformation x = ﬁxl cee %)

in U(P); for it is clear that the Jacobhian

0% [\ |
/3,’)(/-/(}:;':‘/ . %O;nU(P)

Under this transformation our normalized n~Bein becomes:
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-«

4

(26.4) S:L: «).'____1_2_‘/:‘ \>\k = )é &é - g

(ot) D

which shows that the x system is rectangular Cartesian. We note
thé& X = Qﬁ (x, «es X_) are of class C5 since . are of ¢lass

q “ l n - 91)‘- *
Cz. Hence this protess will in general, send m-systems intdo m-systems
if g;, is of class m - 1. Furthermore the restriction of this
theorem to neighborhoodsU(P) is essential; for angﬁntine cylinder

(locally Euclidean) can not be covered by a single cartesian co-

ordinate system.

A

27, The Tensor of Parallelism:, We shall now consider the in-

tegration of the equations:

(27.1) y ,49 }Lé

dlong amr arc CPQ of class Ql. . (?he argument also holds for a con-

B
pe

tinuous arc composed of a finite number of pieces, each of class Cl.)

We assume m = 2 and that the;gik are of cla8s Cl’threughoﬁt the space.
. : i _ i

First we consider a single coordinate system and put /—-jk = - //\ 3k

i
Then we may write (27.1) as:

(27.2) Ahl = Ab NS

or-
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< 1 ® 4 \ 3 X
27.3) @ = AN (p) + (R) (R) ax* (R)
( )N S A X

\ 4
where R lies between P and Q. But for >s (R) an analogous
formula exists, amd proceeding step by step in this fashion we ob-

tain: -

(27 14) )j(P) ?3 Coq)

where

~

¢
| . . . Q"
~ 1+ 1 k 1 k Jl k
(27.5) ?03' (CPQ)-- éj IP /\jk dx + fp/“jlk d%f/ljkl dxl
P

f A s dx»f A gk, o f/\iizdx“

B
It can be shown that this series converges uniformly anng CPQ .

Henee we may multiply (27.5) by /t P ax¥ and integrate term by term.

We obtains

1.6 f G A e 03 (0 - J7

Multiplying by ;\ J (P) and using (27+4) we obtainy

(27.7) )f; AR A S, ® e = \Pra) - AP()

which shows that (27.4) does actualiy_ represent the solution of (27.3)
and of (27.2).

We now consider the case
where the arc lies.in a number of

coordinate systems. For example
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AT — N
take P Q R where P Q lies in the goordinate system I and Q R in the

system II« Then we have
. .
W@ = Mie) @3 (o)
in the system I. And also that )
PNAEIEIE SO ZR - (N

in the system II. Now

andl so we have that at
h -
3 i OF k
NE) @iy (S ¢ o

SURA D

From this discussion we see that ¢ Q,) is a geometric

14

(27.8)  NE®R)

object defined as a function of the arc, that it is a contravariant
vector at Q and a coveriant vector at P and of scalar character for

all other points of CPQ" It mdy thus-be said that it transforms

Y3 o e *
like a product £  (Q) O\j (P) under coordinate transférmstions in

.

U(P) and U(Q) respectively. .ol

In this treatment we have derived Sﬂ ) from a

PQ
Riemann metrié, but now we can dispense with this metric énd merely
introduce tensors ¢ 1§(CPQ,) having suitable properties. By this

means we introduce a certain structuré into the space; 1i.é. it be-

comes a spade with dparallelism. Aﬁlohg the dxioms whigh snch a

¥

¢ ?(CPO) must satisty are the Tolldwing:
/)

1) To rny vettor )\’J at P, >\ ?j 1¢ 2Q)

defines 8 vector at Q. Thus the sum of two

vectors transforms into the sum of their transforms.
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2) Trensitivity:. -
i i i
%1 (Cpp) ?9 5 (Cpg) -7 (Cpq) -

g . ?9 _ i . .
?k(QPQ,) QP) S This last
jmplies that [P 3{ ¥ 0.
If we consider curves CPQ, which may be differentiated
. v
.at least once with respect fo fheir pargmeters, and also vectors

5t class C', this theory may be Somewhat elaborated, Let P be &

-

fixed point and R(t) be & varialbe point om a given cutve CPQ;«’
1

Thaen (27.4) becomes

(27.9) N tm(s)) = ZACENY \NE @ .

Differentiating (27.9) we obtain:

(27,10) - ~9—-:-x—5—é3-(-§—)-)‘— & ‘i(fk( R(t }.k(P)

o

P : kgm
- ,ggt) ”,)\ (P)

where r i(t) ere thus defined. These- f lj;”ar‘é. functiond.

of the cufve and of V. Again we mmy abstract and assume only
that such functiens -I -are given. Then as for (27.2) a series
like (27.5) may be constructed which defines a ? dlic(CPQ) such
that {27.9) is an integral of (27.10). The /~ 's - tius d8ter-

mine the same structure in the space as the ¢ ; 's doa

%
o

-~
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§'28. Extremals. An extremal of a space, Rnl is a curve xl(t)
for which:
2
(28.1) s

poa bl
¢ dxi < .
Since the tangent vector to the curve, 3 =3 0 Ve may write (28.1)

as
i ¢ 4J9,§ “
ax™_ ] .
(28.2) == 3

ST
Thus an extremal is a curve which may be so parameterized that its

tangent is parallel along the curve. A first integral of (28.1) is
axt
€ix % dat

/LSL QE} k

ax-,. .
o & i ) =0

If this constant 1s unity, then the pafameter giyés the arc 1ength

(28.,3) = const., for

of the curve. Also for definite t-intervals there is a unique ex-
tremal passing through a given point of the space in a given direction.

Now let us consider -a regulér’??z/L element imbedded in R,

whose parametric equations are xl = xi (yl-ut. yr), the functions be-
ing of class 02. A curve yX {t) is also a curve xl(t) in the Rn,
and we have the relastion

i i r
(26.4) ' dx gy

at  JyrT dt .
Differentiating (28.4) we have:
2 . 2 ’
(28.5) X 2x ’(931—1;+ ‘dy® ay ®
. 12 3y % Nepdt at
’ Ap 2,

where we have written '7; = . (Compare $ 16). It

3 o%;%o%? G -
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WHS proviously demonstrated that, for fixed valued of {X and o,
¢ . :
’)7 ® B ‘are the components ¢f a contravariant vector which is nor-
mal to 772/1 . l
Let ‘5— be the first curvature of the curve in the Rn

'
. L N «
and let 3 be the tir8t unit normsl. Aso let VL and ’7& be

< 1 2
the cotrresponding quantities in the ?77/? « Then (£8.5) becomss:
¢ ol o
(28.6) (a) dx ’b o« iﬁﬂ £ 5
_ = o, A+ Y -
7 # o &,

-
We now define an extremal of )77/1 Yo bg a curve for which ﬁ_- 2_1 = 0;
£ # ol .t_

é’; = 0. From (28.6) it follows that for an extremal

) e

of 79{4, » the first normal to the curve (in Ifn) is normal to 7??'71'

o

i.e. -for which

A lgo if a curve of 7744 has its first.normal (in R'n) normal to

771/{, then the curve is an extremal of ???4 .

-

1%

§ 29. Geodesic Subspaces; "Planes", Definition I. A subgpace
Eal

is said to be geodesic at a point P if every curve of the subspace

iy X a .
passing through P and having &\:()at P also has "2_}_‘ = 0 at

S r* SFe?

P. .

From this-definition it follows from 28.5) that 11; =0

s
at P when the subspace is geodesic at P. . The converse also holds,
and hence we have: Definjtion II: A subspace is said to be geodesic
s

at 4 point P if ”7«@= O at P,

Planes, Definition I, A subspace which is geodesic at
each point is called a "plane", This definition is equivalent to

the following one:
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*D‘efinitﬁion Il A subspace ¢ontaining any extremal of which it con-

tains an element (point atid ‘direction) is a plane,

To prove the equivalence of these two definitions we first

(2

suppose that we htive a plail‘e according to Definition I; i.e. ’}70;8 =0

the T
in the subspace. Then (28.5) shows any extremal of the subspace is
an extremal of the Rn. But gince there is a unique extremal in R,

et any point in'a given diréction, we see that Definition II is ful-

filled.

3

Conversely we suppose that Definition IF is fulfilled.Then
(28.5) Iolds for any extremel of the RI‘; which ¢ontains en element’of
the plare. TFor such a curve ‘each term on the right hand side of

(28.5) must vanish; wand since this is"true for every such éxtremal,

< P
™ follows that ’)1 2@ = 0 in the subspace.

-
-

- ‘e now discuss a third &pproack ‘to the subject of. planes.

= 0( * % s
Stppose that a "vector /\ is defined at a point P of a plane. Then

-

B

it satisfies

C D .-
(29.1) >\L B <)7(e< >‘

- "~

Now displace this vector along a curve' of the plane by means..of parallel

displacement with respect tor the plane,* This shows theat .
‘ J = ¢ B, < o e
- e ) c —

. )
Hence the displacement is also pargllel with respect to the Rn‘ But.
since fhis latter displacement is unique, our plene has the property
that any vector of it remaips- a vector of ¢t after parallel dis-

placement with respect to Rl. Hence we make:
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Definition III: If g subspace has the property that any

vector of it remains such a vector after parallel displacement with
respect to Rn’ then- the subzpate is a plane.

To show that this definition includes definitions I and
II, we note first that it permits us to apply (29.2) for displacements
whezc'e,49‘>~c.= 0. Since. this holcs for all such displacements, it
follows that 7] ;G"' 0; 1i.e. I is fulfilled.

From (29.2) we observe that a vector is diSplacedﬁparallelly
with respect to ‘777/1 if and only iT the growth, 459 x; , 18 normal
to 7%34. éuppose~then thet we have fwo subspales ;k?Q and 7%(;/
which are tangent alopg a cyrve. Since an increa__seAS >~C which is
normal to one of these is normal to gﬁe other also, parallel dis-~
placement along the curve 1s the same for the two spaces. If we
cons¥er ordinary two dimensional surfaces, l;t one of these tan-
gent surfaces be a "developable" surface. ‘Then it may de "rolled
out" on tb a E uclidean plgne- and parallel vectors along the curve
become parallel in the Euclidean sense, This was Levi-Civita's

approach to the problem of parallelism.

r

As further .remarks concerning planes, we sthte the follow~
ing. If, for any point of an Rg, and for any r-element, the geodesic
subspace is a plane, the space Rn is of constant curvature. A
space for which this property holds for a, single point is called a
éhur space., A discussion of these spaces is given in Mayer "Lehrbuck",

Chapter VIII,
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CHAPTER VI

s

Normal Coordinates.

§ 30, Let 'E:x be a coordinate manifold in which there is
defined a symmetric [ -object ( §7). To simplify the discussion we
shall assume the [ 's analytic.
The condition that a vector éfé be parallel-displaced along

an arc x- = xl(t) is

d\fb + Jf:~~l dxk =0
at Sl dt ‘
. - dxl
If the arc has the property that ifs tangent vedtor I is parallel-dis-

placed along it, i.e., if ) 3

2.1 O <
ax +i~'lg]—cg—}£=o"
ate

30.1
(0.1) kT ax

then it is called a "path". We seek coordinates™ in terms-of which the

_________________ i e oo e i e e e ol s St A e V2 e o . ' el e B e e . e NS A e G s oo S oy i S o o S e oy o ol D
cl ¥ P .

These :.will be "affine normal coordinates'; c.f. T. Y. Thomas:

equations of such paths are linear in the parameter.

Corresponding to any initial point PLx 2 on and any initial

i . ,
direction %% =.§ ; there exists a unique solution of (20.1), which may

»

be obtained, by successive differentiation and substitution, in the form

i_ i, ot k21 bood ¢ .3
(50.2) X = '_X'O +S o 2' (r)g g lJ P)'c go go t - s d .

{The séries (30.2) can be shown to converge in somerU(,(xo) provided the

expansion of the [ 's vossess a dominant function.
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Let us now set § -t =yi ¥e obtain

, N S ik L
(30.2) x X+ - 51 .[: P 3y l

XAF

t ¢
‘since 2% ] = §, the relation (30.3) may be inverted, giving rise to
a1ad P 4
an allowable transformation of coordinates. throuyghout some (Lﬁ(xo). The
curves .
i_ el
=3

g
(o}

are the vaths (30.2) referred to y coordinates, a ifact wiich becomes evi-
dent on changing the y's to x's by means of (30.3).

The y coordinates thus obtained will be called normal coordinates,
They are completely determined by theqx system from.which they are derived
and'by the point P(xb), their origin.

Theorem: For any point P there exists a neighborhood /LT (P)
such tiat P can be joined to any & t?hﬂka by one and ohly one path lying
within the neighborhood.

We haVe'Enly to éet up normal coordinates y at P. Any “cube"
‘fi{'< a which is contained in the region covered by the normal coordinate

-

system will then serve as the required neighborhood. For if Q has coordinates

vy = q", then the”(unique) path

clearly satisfies the conditions.

We next investigate the effect on the normal coordinates of

¥

transforming the underlying System X. Consider a path through P hav1ng

-

the initial direction represented by f? in the x system anéd by _§
the X system. In the corresponding normal coordinate systems y({P,x),

y(P,X) this path has the equations
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yl=§lt, -}-l;'.}:gjt
resnectively. Now _—
-y 2
& &x. . o
- oxt IP
so. that for each point of this path
=J _ BXJT i, . i']" i

But sipnce every voint [in a surbably restricted neighborhood of P] lies

on some path through P, the relation

P )

. . s . -3 .
- ) X
(30,4) el v (e = S53 }P )

o

must hold in an entire neighborhood of P.
Suppose that under transformation o normal coordinates the
_{1 ts of the x systém becdme:'C”'s._" In the y system the: paths through

the origin are solutions of !

24 § . X
a“y i oay) 4yt
2 % o 0 ¢

Since yl = _9;1 t is such a path, we see at.once ‘that C;;k g‘l §Nk = 0, and

eonsequently C:,;k y‘] yk = (O, along any path. This 1‘ela£ion must therefore

hold identically in y, for each point in some neighborhood lies on a path.

Theorem: A necessary and sufficiént condition that the y's Ve

&

normal coordinates is that

i3k
(30.5) Cjky y = 04'

The necessity of the condit‘ion has just been demonstrated. To

prove the condition sufficient we shall show that when (30.5) holds there
exists a system x for which the y's are normal coordinates. Consider

the differential equations

“‘ ? .\‘.:!Yf e
(30.6) Oy QX7 = SA s TS 2 x% dx

-——-.u—». - e

3 %»6 aﬁf
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where the [ 's are arbitrary (analytic) functiohs of their arguments.
On miltiplication by yjyr the left mémber vanishes by hypothesis, so

that we& have
SO ol YU PAR DRI
\c)‘é"c)‘a Fr ot A", /

A9
Under the initial conditions xl = pi, @J, = 8(11, y = 0, the series
oy ¥
golution is found to be
i § 1 gl X
X = p +y “—2.!'_‘._ (P) ny Tem @ []

which is identical with (3Q.3), the relations which we* hat’e teken as de-

&

fining normal coordinates.

- - x*

§ 3l. Alternative treatment. Ve may take as our 8efinition of

normal coordinates at P with respect to a given x.system the inverse

fumctions y(x) of the functicns x(y) determined by the equations

. ( A iy o oa ) tuf - o
' 3 J K =
‘8?363} ‘ o QB@ a%? '% 4

é? Si’dﬁzo

For as we have just seen, the relation between the "y's and the
x's must be of the form (30,3), so that the equations of the paths in the
¥y system become yi, = _§ it.

Moreover, transforming the x's into X's sends the corresponding

y's into y's standing in the relation {30.4). For we shall have

T (x) — oy [E = 8 and
- Bt ol - -
(31.2) 3’ Z*n% Y c* d s a_:?j
. ’ 0% A" JK
B" 4 % 23 3*87 oY
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Slnce) }7! 0 we see from (21.1l) and the transformation law {30.6) of
vgif
the [ 's into C's that Cp q‘y = 0. Hence (31.2) implies

S

, PN Yo7
o9 (a‘g&ggg Tk a‘%’& 2" )NA 4?)

We now recall that from the nature of y(x); ¥(X) we have

6~L Qx -

—_:-%K = - é

() X P 5% K l Fd

.. -1
} = la t é.!‘_, ox’ } = 9X ] = a,

0“‘ dX K oxi c)«&?r P
q

But yl = aq y* is ea511y seen to be a solution off

so that

Ax

initial conditions

a- yp = 0
ol

so that it must be the solution y =3 y) resulting from the relations

7= ¥(x).,x = x(x), x=x(y).
Finally, the theorem that 6;1{ 79 S'rk = 0 chdracterizes the ¥'s
as normal coordinates follows from this second definition. For let us

determine normal coordinates y for such a system Yo We must solve

2~L . ~ K *

-3
ﬂ’“:%” T :% a:%' L
(a%% Sy av(x@ %" Wy
L ) . L -
= 0 < = § =0
IR "R T
Under the above hypothesis, y = ¥ is an obvious solution, so that 1.:he ff's

are themselves normel coordinatés.




DR L L 1L I

11i8.

§ 32, Identities for Riemann Spaces.

We now suppose that the [T 's of the foregoing discussion are
Christoffel symbols formed from the metric tensor gij' In normal co-

ordinates let the g's and [ 's become

i dhyy . ah o h;
e R U LT
1] 1]y J J 2 c\,\% a.‘aJ a,\al,
k

Since }hu} # 0, the relation Cjik yjy = 0 then implies
3K

. e ) & Q

é\?}’ dﬂaf' ) k: /U(\) a

We know that along a geodesic (path) in a Riemann space the length of

(32.1) (91 a..ﬁ!“ -9 5k

the (parallel+displaced) tangent vector is constant:

dxj dxk

gij 3t at = const.

”

W hen expressed in normal ccordinates, where _yl = §lt along a path, this

relation becomes
Qj > k = == [6) j k :
h.k(y) IS é const. hJ,(< )§ § .
Consequently ,
j .k i _k
(32.2) B () yd v = nlo) ydy

(because each point y is on a path).

\
We can in fact prove more, namely that

. (y) .k _ . (0) _k
(32¢3) Bl ¥ :pik y

-

and that this identity characterizes the y's as normal.

For suppose the coordinates are normal. Then differzntiation

of (32.2) yields
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N

© M yIy* + 2n

b g
. - 2nley vl =0
ir? R ¢

:
<

Riplacing the first term by its value from (%2,1) and cancelling the

factor 2, we obtain .
J K j j
(32.4) Shyeyly +n,, v’ - n (0)y’ =0 .
S je it
ojf

Now along & geodesic consider the expression

- : = k ) int 2l 1
- K o~ « _ , LA _EL A -4, 0 !
.?—-’...‘:'ek ’K% ‘S + i}x‘ewK § ha }l‘ek(o) g - dt . ILK 4‘8 ‘Z!{k (l _"
54

d

Tne left member vanishes for t # O becayse of (z2,4); but since each
of its terms i5 continuous in y, aAd hence in t, 4t vanishes also at
t = 0. Thus i?==l{eK yk - h,ﬁ?‘yx'ia a sdlution of the differential

= 0. . And since it evidently satisfies the initial con-

equation L
4 at

dition (,-9(0) = 0, we heve by the wnicity theorem

K. e K
how ¥ =m0 ¥

along any geodesic, and therefore at each point ¥y«
Conversely, suppose that (32.3) holds in some coordinate system

Y. Then by differentiation wc get

a.i k Rl # (O) = O .

é)YY

Multiplying this in turn by yJ and y“e, and using~£32.3)’we obtain the

respective equations

(32.5) Ay v yd = 0
- H
5‘61
(52.6) dhye vy * =0 .
d)%A i k &
Returning to the definition of the C's, -we have at once that C;} i y =0,

so that the y's are normal coordinates.

Aain, cither of the identities {32.5), (32.6) characterizes
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the y's as normal coordinates. For if the ¥'s are normal then we have

et U etk A

both (22,5) and (32.6). Conversely, suppose (32.5) is true for a system
i _ il ‘ o
y. Teke a curve y —.§ t, where the 5 s are constants. Along

this curve
ATl e h, e ] derg’e”

The right side must variish for t # O (z2.5). By continuity it vanishes

clso at t = 0; so thet by the unicity theorem for such differential
s K K
i = 0 .
equations, hQK [ h{d{ € Hence
k . k
= U
hpd™ = B v

on any curve yl = é?it. But sinéé any noint in a suitably chosen

neighborhood of y = 0 lies on some such curve, we have (32.3) and the

coordinetes are normel.

Simitlarly, suopose (32.6) holds. Then zlong any curve

[}

yoo= éf‘t we have

£ Kal
O)Q‘ef"J = 2 £7°6°8
o
7

Repetition of the preceding argument leads to the result that

Ny, A hel"b) ¢ y¥=0.

Differentiating as to yJ

O ik yluX 4 ¢ ah o waut=o0
e S AT T :

Since the first term vanishes by hypothesis, -we agein heve (32+3).

, we obtain

A finel important, though not characteristic, property of
normel coordinates, velid for affine.spaces in genercl, is exprecssed

in the following
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Theorem, At the origin of normal coordinates the co~
efficients of affine connection are zero.

For as we have secemw, albng any path G?Eﬁﬁ?j §’k = 0,
But at the origin the g”s are arbifrary; so that the vanishing of
the polynominl c;;o)gjpg ¥ for al1 §'s implies the vanishing of each
coefficient,

In a Rismann space we have the
Corollary. At the’brigin of normal coordinates the first derivatives
of the metric tensor vanish.

This follows from the idemtity

T
: - e

. ¢
Q4 P 7 .

§53. Extension. Ve are familiar with the protess of obtaining new:

tensors from a given affine tensor T by covariant differerntiation. A
second method of constructing tenseors widl not be degeribed s that of

extension,*

=
*
————————————— o o G e o o S o e B e g o o e e Y S i e g e e B e e e b e e e e i B iy e

T. Y. Thomas, loc, cit., €22, Explicit formulas for oxpressing

various extensions in terms of thé[q's will be .found in § 3% of that

_c-o.g".j

‘Tet 2 tensor T with comﬁonents}T; bt (x) ih an x co-

ordinate system beédime fi“" J(y) then referred to the corresponding

Cvee B

normal cocrdinate system y erected at a noint P(xo). With eqch x

system and the (fixed) point P we associate the numbers
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NS L d .
i 't Y j (x5)
\ . k.~..,¢,,pl...p

aqﬁ?“" qa r p

These will form a tensor. For beginping with an X system, we are

T

l LN j P
K vee L has corponents

led to a normal coordinate system ¥y, in Which T

t related to the t's by the rule

n

. - L

T8 v b o= 1 eel ] d ._.aﬂ_%

tu .'.V-(Y) _tk "'42 (y) a L ) Ay
K 7

But because of (20.4) the derivatives on the right are constants.,

Therefore
L] t

sty o Y b_f%sg_«%ﬂrg_%ﬁ’ aubr
ah...onkr 34 vk..aa@* dub  dRTond ot

And since .a__-%t'{ é..’.‘. } , We have, on evaluatiod-at P,

— . 3 - — S

7S e v (x) St e 3 X)) 53 53 x€r
U ‘e v’ql e qr k. e pl ':‘" Pr S;L. s c)f"?
LN j

The tensor T , which can be defihed as above for each

""L ,pl LI p'I'

point of the space, is called the r-th extension of T1 cee

. LR J ﬂ
Note that although the first extension of a tepsor is the

same as its covarient derivative, its higher extensions and higher de-

rivatives are not 'in general equal, Nor does the first extension of the

p *

First extension give the second extension. For example, in a Riemann

space the second covariant derivative of gij venishes because the first
does, but the second cxtension gij X need not be zero. Finally,
,k .

the r-th extension of a tensor is symmetric in the adjoined indices;

the repeated covariant derivative is not..

E)
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In a similar fashion the derivatives of

§ 34.

the ["*s, evaluated at the origin of normsl coordinates, will serve

Normal Tcnsors.ﬁ

to define tensors A? k4 .2 knowm as ﬁormal,tensors:

‘r,«L

\
JRW
c)'v\ c\ﬂg r

and 17.(;) vecome C(y) =and ¢(¥) in their respective normal

i (xo)

A =
Jkﬁju.ir (

For if Iﬂ(x)

coordinate systems, we have
i

) 25

L

thoe second derivotive term in (31.2) vanishing because of (30.4). The

P

Gerivatives on the right =are. constants, and the argument just given

for the tensor charecter of extensions applies at once.

-~

35, ”Reglacement. A tenser T is celled an affine tensor differential

invariant®* of order r of its components

o iy o B o " - A o T s P s G St oy S A o B D G e 2 s " S Oy S i R S M T AP O S B S50 S B S e D e St e e S i T el S S S s o S S

* The notion can be extended; c¢.f. T. Y. Thomas, loc. cit. ¢ § 11,
39, -
) S Plj
e e - S
(35.1) L O il TN oty u} )
" Sx& - Axfr. dxbr

are functions of the .fq's and their derivatives, to the r-th order,

such that ecch retains its functionel form under transformetion of co-

s

ordinates. Transforming (55.f) to normal cocordinatds gives
t
1 vue Joad Y C t
T Clipr v oo © = $ee " i 5
k .., L( jk? ’ 1 "“‘Q ) - TAA. .'U"( YT “_f)_!:w E
Ay - +
é:ﬂ,...afx dx . oxt

e s b S
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Eyaluating at the origin (the derivatives on the right then become

S 's) we have

i 2o j i 1. e i -—"" .l'
(35.2) Ty .‘.L(O’ A, ._,) Ty ev g <'L.nu 3y e )
n : i
dx
This proves the . . P

First Replacement Theorem. Any effing tensor differential

invariant may be represented in the rorm. (35.2), where the ["ts are re-

placed by O; and the derivatives of the _,’; 's by the corresponding nor-

e

mal tensors.

S

For example, the curvature tensor {23.2)

+

. . ot r ‘_L
B;kl = —ngl - ° r’x - %_fse I 1”_2 - ﬂf@ QT_K
ax C)XK JK

may be written

- : i _ i i
Bkl T A7 A o

A metric tensor differentiel inveriant..of order r is de-
fined by the Droperty thgi its components

j-r .0 k P
(35.3) 1 oeeem 1j’ ““%H —"%‘5 )
“ "oL"... '
retain tHeir functional form under transfopmrtion of coordinatos. When

expressed in normal coordinates end evaluat:d gt the origin, the com-

ponents (35.3) mre.equal to

Jae k ,
(35.4) L. (gijw), 0, TR R €15, Xy wen 1{r) .

This gives us the

Second Replacement Theorem: Any metric tensor differential




e e i A A A

125,

invariant may be put in the form (35.4), where the g's are left un-
altered, their first deri%ati?%s.aremreplhced by O, and their higher
derivatins 50 over into the corresponding extensions (also ealled-
nonpal tensors).

As a consequence of this theorem we, see that there is no

netPic tensor differentihl invariant of ordagr oneg.

-~
e

%6, Completec sets of identitles. The normal tensors play an

‘important role in the determination of complete sets of identities in

the compouents of tensor invariaznts. (A sgt of idéntities is said to
be complete if it furnishes fll ths algebraic conditions on the com-
pdnents;} As ¢n illustretioh’ of the méthods which mhy be employed
(ef. T: Y. Thomas, Chap. VI)we shall *determine a -cotiplete set of

identities for the curvature tensor.B?kl = - R%kl off an affine space,

We first derivéd certein identit'ies of the normel tehsor

A?kl' "Sirice the A'S are 4érived frém symmetric [ 's, they must
be symmetric in their first fwo lowedr: indices. Again, the ssries

expansion for the [7 's e¢xpressed in normel coordindtes gives

» -

‘ i i X-XH ¢
I ;k(x) — C:;k(y; & cﬁm + ’.,_~_~u<> AT e
0

whence the relation C?k yJ yk = 0 leads to
i NI S | .k 1
Cjk vy =0 = Ajkl YV 4 cea o

Thus. the cyclic sum of the A's on thcir three lower indices vanishes,

Lenma. The seat



i1
(26.1) Apa = Aenn

R T T T

e N e A

i R
(36.2) B * Mg * B = 0

constitutes a complete set of identities inm the components of the first

normal tensor A.-

e b Ak ’

For corresponding to any set of numbers A?kl gatisfyihg -the

cbove identities we may construct the functions . . ;
E N R | T -

Cik(yy Ajﬁl ¥ e E

Evidently ¢t - éi and by (36.2) - 13
b1 S . i

i3k _ . ;

Cig ¥°F = Os 1

The C's will therefote serve as cqmbogeﬁt§ of s symmetric affine connect-
jon.in & system of normal coordinates’ y. For this éonnection the num- 1.

bers,A:;kl are Seen %o be tha»componenfs of the first normsl tenscr at

r B ; 1

the point y = O. Thus any identity between the components of a gen- i

eral first normal tensor can bé satisfied by -= set of numbers subject
only to ¢énditidns (B6.1) and (36.2). <
If we now use the replacement theorem to express the curvax

ture tensor in theé -form

i _Ri i
(26,.:) Bjkl = Ajkl - Ajlk
we have at once
d _ i
) #
and ¢
i b i A
(36,5) Bjkl + Bljk + Bklj = 0 .
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the latter being a consequence of (36.2), Moreover we have
i i i i i i
Bir * Bejr T Ay * Akjl " Ak T A
= 2Al -
2hia le Aklj

i

- BAjkl .

Theorem. The identities (%6.4) and (36.5) constitute a
complete set for the components of the curvature tensor of an affine
space with a symmetric sffine connoction.

Let 5% be any set of numbers satisfying (36.4) end (36,5),

jk1
Define numbers AJkl by the relation
~i ~i ~i
Shna T By * Bga

These A's will satisfy (36.1) and (36.2);

~1 P T ~i
Ale =B j * Bl T Bkq1 T By T

T T A < N+ S SR S SR
BlAn " A5 T Mg T Bkt Plge t Bras t Brar * Byne Y PBiyy < O

On the other hand, the A's uniquely determine the B's from which they

were derived:

R T ST S S
3(A5 = Aj1) = By * Begy - Byne 7 B
T R
B Skl (B kg B )
=3 B: .
jk1

Consequently we can construct a connsection C§k = K;

g’s will be the components of the curvature tensor at y =" 0. The

1 . ;
Kl ¥y~ for which the

o~

B's, subject only fo (36.4) and (36:5), will therefore satisfy any

identity which holds for all curvature tensors derived from a symmetric
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affine connection,.
A similar argument leads to the

Theorem; The identities

Biski = “Byin T Pijx

Bijikn * Biagk * Bikay T 00
constitute a complete set of identities in the components Bijkl of the

curvature tensor of a metric space.
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Gradient Vector Pields.

3
37. Condition for a vector of class gf to be a gradient. Let K

- n

be an n-dimensional ccordinate space of class Cm, withm 2 2 (§l9). Con-

s . . . . / .
sider a covariant vector ai which is defined and of class C in an open sct

Din 0 .
n

Suppose there exists a scalar f , defined and of class ¢~ #n D, whose

gradient is ai:

o @
(37.1) =z oa,
¢ Xy
Then evidently
(37.2) da 93

vz,

It is easy to show thac for any vector a..l the left member of (37.2), the "curl®

of 8, is a skew-symmetric tensor Tij' Thus if ay is a gradient, its curl

must vanish.

If ai is the gradient of Yy it is also the gradient of ¢ + const.

77

For if P and Q &re any two points of D,

Conversely, if a; is the gradient of « amd of <« , then oz
/ ’

is
constant, provided D is connectel,

and if we join them by & curve of class C 1lying in D, then along this curve

't becomes a function of class ¢ of the parameter t. Since VS x =0 i
S
v (Q).

D, we have . '7‘//',/.t - éy//c)')f‘- : 9(#_' /df=q and so ¥ (P) = Thus; a; is

the gradient of a scalar in a region (a connected open set) D, then the
scalar is determined up to an arbitrary additive constant.
simply connected region, and if

Finally we shall show that if D is o

the curl of a, vanishes in 2, then a, is the gradient of some scalar gv de-
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fined throughout D.
Let P0 and Q be any two points of D, and let E and ' bs any two

curves of class Cl Joining P, to Q in D. We wish to prove first that

Q.

Id

{ / & dx.
(37.3) j 3 x; dt (z} = i)

P, a

has the same value along E as along E'. (It should be observed that a; x§
is an invariant, and that (37.3) is invariant under any change of the para-
meter t.)

We assume (but see § 38) that it is possible to draw 2 continuous family
of curves P = P(t, ¢ ), 0£%21, 0£¢€ £1, lying in D and having the
following properties:

a) P(t,0) is E, P(t,1) is BE'.
b) P(0,€) = P,
¢) The derivatives ?;x;(t,e},/é r . 97‘;(/(',6)-/‘/35 , and 317(;({',6)/’95 d€

rd
exist and are continuous.

s P(ly € ) = Q for each & ,

Then the integral (37.3), taken along the curves of the family, be-

comes a function J(€) of € . That is
|

J(€) = j ay [x(t, € 7], B’Ziit'f.) at, 0 $¢€ &1,
[2)

To prove that J(€) is constant, we show that J'(c) exists and is zero for
each € . We merely indicate the steps, however, since anothér proof that a
vector is a gradient if its curl vanishes will be given later, in § 40, (It
will be seen that we are using a standard calculus of vdriations procedure

hers, The integrand is a; xi » the REulefr vector

a: o( 4

< 7

——X — e = [} —
)(J )Li c( (C'(J) Xi C'lJ..'l:‘li.j a = O,

and hence every curve is an extremal.).

e e e S S S R S




Briefly, then, we have

]
9
Jrie) - 5 (g x}) ds,
| z de i*1
J'{e) = (3 o3 Brzjx:+a§>:i'

LY

Inticrnting the scoond term by parts,

(no other tecrms appenr, bectuse o, - E)XQ//Qe

bracket term vanishes, sincce é:ﬁ/’bé = 0 for % -

f 3 3\ \ N
J{f) = ((Oai_._'._f_:igx‘li_‘) at.
N P
% J Lj J X3 ¢ €

As curl o = 0, we¢ sco thot J' (€)= 0, and so J(0)

the value of (57.3) is thc same for 2ll curves of

joining PO to Q.
Lot bthis common valus be denotcd by

fixcd. That isg,

(o]
r

(37.4) 9' (Q) -~ ) oy dxi
’,.

where we are free to take the intogral 2long any curve of cl.ss C .

casy to show now that -

) dt.

!

}J" - Bx' .rs éx'
i xb idt . Q.Y+
o

11—
L ¢

ig an invariant). The

O and ¢t = 1. Hcaco

= J(1). This mcans that
]

class ¢ lying in D =nd

@ (@), P bcing thought of 2s

It is

posseeses &4 grodicnt, which is a.

In f2ct, for a given i, sclect & curve which at @ has the dircetion

of the xi oxis.

Q'. Th.n

? (@)~ e (a

Q O
+3 )
&

By thce theorem of the mean,

Follow this by & segmint of the Zs 2xis lcading from @ to
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) ~ % (q)

“xi(Q') xi(Q)

K ai(Q“),

where Q" Is on the X, axis botwecon Q and @', Toking the limit as R —~» @,
we obtain. (37.1).

We have now completed a proof of the following thcorem.

Theorem: In order for a covariant vector ai, defined and of class C'
in a simply' connected region D, to be the gradient of o scalar @ of class

Cz in D, it is necessary and sufficient that

hai _ BEJ.J = 0
ij 0%y

at each point of D. 1If this condition is satisfied 55 is determined up to
ad ditinve
an arbitraryﬁ constant.

We may add that in a simply co‘nnected region D, curl a = 0 is negessary

&
and sufficient for ,( a; dx; %o be independent of the curve of class Cl
PO
joining Po to @ in D. Indeed in any region the two problems, when is a; a
-~
gradient, and when is 58._ dx independént of the path, are completely
i i

equivalent, even if a; is merely assumed to be continuous. For if &y is the

gradient of ?) s then

Q Q p
(87.5) Sai dz; = f ax; = Jd? = pQ) - p(r)
?0 £ P’)

for any curve from P, to Q. That is, if a; is a gradient it is the gradient
of jai dxi » the integral being independent of thc path. Conversely, if
the integral depends only on thc endpoints, we see as in the rroof of the above
theorem that its value (P, being fixed) is 2 point function whose grodicnt is
a,.

1

38, A modified proof. There is onc objection to our proof of the

theorem above: the family P(t,€) wos cssumed difforentiable in ¢), whoreas
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the statement that D is simply connccted merely implies that some continuous
family P(t,€) exists satisfying 2) and b). No doubt differcntiable families
also cxist, but this seems never to have been proved. Therefore we shall
modify our method so as to avoid the assumption.

Given a fixed point PO, let U(PO) be a coordinate system covering Py
which is the image of a convex region in n-dimcnsional number space. TFor

2 Gefines such

instance if PO has coordinates xio, then 2:(21 - Xy < r
a U(Po) when r is sufficicntly small.

1f Q@ is any point in U(BO) ,» and if E and E' are any two curves of
class Cl lying in U(Po) and joining P, to Q, a family P(t,€¢) having the pro-
perties a), b), ¢} of §37 can be dravn in U(PO). In fact, let E and E' be

: - " < :
given by x; = xli(t) and x; = x2i(t), 0 £+t £1 respectively. Then

xj(t,6) & (1 -€)x,(t) + €x4(t) , 05s%1, 04£€¢£

1 2

describes such a family.
The theorem of the previous section applies without question to U(PO):
if curl a =0 in D, there exist scalars §> defined throughout U(Po), having

a; as gradient there. In fact we have scen that the formula for these scalars

is
Q,

(38.1) ?7(Q) = J/ai dxi + const. y
PO

the integral being taken along any curve in U(PO) from Po to @+ We must show
that these locally defined scalars ¢ can bo pieced together so as to form a
onc-valued point function throughout D.

The fact that this is possible depends on two properties of the local
scalars 97

A} In each U(Po) the function ?>(Q) is unhiquely determined when its

value at any single point of U(Po) is arbitrarily assigned. This is obvious
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from (38.1).

B) Suppose that a U(Po) and a U'(Pé) have a point R in common.
Denote by [p’ﬂ Ui} R the component (maximal connected subset) of the
intersection U/ U' which contains R; this is a region consisting of those
points of the intersection that can be reached from R by continuous arcs lying
in the intersection. Then if a scalar ?9 corresponding to U and a scalar ?/
corresponding to U' have the same value at R, they will have the same value at
every point of [U N U’] R’ For if S is any other point in the component and

E is an arc of class Cl joining R to S and lying in the intersection,

g(s) - ¢ @® = ¢(s) - ¢@ =

m k__f"'\‘.
3
[
-

and s0 @ (s) = @ (s).

Using properties A and B we can show that there exists a scalar %
defined throughout D, which in any U(Po) coincides with some one of the ?'s
correéﬁonding to that U(P,). Then a; will of coursec be the gradient of \%
at every point of D, and this will fully establish the theorem of the pre-
vious section.

As the method to be used applies just as well in certain other situ-
ations that will arise later, we shall present in thc next section a more
general "monodromie"” theorem than the one actually needed here. The following
lemma will be necessary.

Lemma.: Let E, given by P = P(t), 0 £ t £ 1, be a continuous curve in
a Hausdorff space. Suppose that to each point P of E there corresponds some
open set U(P) containing P. Then & finite number U;, ... , U of the scts u,

P

and a set of intervals a; £ % & b, (i=1, ... , P; 83, =0, bp:: 1) having

T4 a i = - T
R I e e e R el S L

can be found such that the arc of E corresponding to the ith interval lies in

U, .
i



Proof: TFor cach valuc of t let a U bc scleceted cont~ining P(t). Then
for cach t the image of some closcd interval centaining t in its interior still
lies in U, beccusc E is continuous (hcrc and in the followving wc omit the
modified statement necessary if t = 0 or 1). A finitc number of the open
intervals derived from these by dropping the endpeints suffices to cover [O, l@,
and hence the corresponding closed intervals cover [O, ii in such a way that
each t is interior to some one of them. The finite number of U's in vwhich the
images of these closed intervals lie obviously covers I. {(The argument shous,
indeed, that the continuous image of any bicompact space on a Hausdorff space
is bicompact (i.e., possesses the Heine-Borel property).)

Let 2a; ¢ % < b; Dbe a longest interval containing a = 0, out of the
finite number. Next choose as aq 2% 7 b2 one of the intervals containing bl

in its interior, for vwhich b, is a maximum; then as>a;, or else the first

2

interval viould not have been a longest one. Next take a3'; t ;,bs with

ag < b2 < by and bz a maximum; as before, ag i bl' It 2y _Ab1 we

shorten the new interval, moving a; to the right so that bl( a5< b2. Con~
tinuing in this way, we eventually reach a bpt: 1. Moving ap if necessary,

we have the required construction.

39. A general monodromie theorem. We consider a Hausdorf{f space H

which is locally arcwise connected (i.e., each neighbourhood of a point P
contains some nsighbourhocd of P any %wo points of vhich can be joined by a
continucus arc lying in the former neighbourhood). A region in H is easily
shovm to be arcwise connected.

Theorem: Let ;f(P) be a many-valued point funotion.defined in a
simply connected region D in H. Suppose that each point Po of D lies in a

certain region U(P_ ) in D, in which the function §(P) is separated into a

0
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set of single-valued functions g=(P) each defined throughout U(PO). That is:

A} Given any value of §> at any point in U(P,), there is just one of
the ¢ 's of U which takes on that value at that point. The value of a ¥ at
any point is one of the values of %’ at that point.

Further, suppose the funotions rrooan be continued locally, in this

sense:

B} 1If two distinct regions, U and U', have a point R in common, and if
a ¢ of U and a p; of U' have the same value at R, they have the same value
at every point of the component of the intersection of U and U' which contains
R.

Then the conclusion is that the functions ¢ can be continued so as to

produce a scparation of ii into one-valued functions all over D. In other

words, therc ¢xist one-valued functions ?3(P), defined throughout D, which in

ach U(PO) coincide vwith some one of the ?"s corresponding to that U(PO) .

Such a (P) is uniquely determincd if its valuc is assigned at one point as

-2

any one of the values of @ at that point.
(The component of U :) U' contzining R is readily shown to be the rcgion
consisting of those points of U "\ U' which can be joined to R by arcs in U.MU').

Proof: Let P, be any fixed point in D, and lect ;T(PO) be any one of

tA
=

A
the values &'(Po)‘ Draw any continuous curve E in D, given by P(t), 0 £ % 2

from PO to an arbitrary point @ in D.

Cover E by a finite number, U U_., of the given regions U(P),

l ? vt p

in the mammer described in the lemma., Select any p-1 parameter values :

Bys ees s B,y Such that ay, %t e by (3 1, ..., Pl

Let ¢,(P) be that ¢ of U whose value at By is P (P,). Next let :
@, (P) be the oz of Uy whose value at the "transition point" Py = P(tl) _
is ¢1(Pl). Then 4 is the ¥ of U, for which QS(PZ}:' ?L(Pg), and so on

Y



-

to 9%(P) defined in Up. We set @ (Q) egual %o y%(Q), and ve must show

that this determination of §; does not depend on the arbitrary elements in the

construction.

nAN

For this purpose vie define a one-valued function f(t), 05t <1,

as follows:
e(s) = @ [2(e)] e gt£v. (121, ..., Dl

0f course f(iL) is defined in two ways when 2541 £t % bj (§~1y ave » P11,
but there is no conflict, since the image of this interval lies in the com-
ponent of Ujﬂ Uj+l containing Pj‘ As @, and §;., agree at Pj they agree at
every point of the component, by hypothesis B).

Now surpose that we have another determination of §; (@) along the same
curve L by means ¢of regions Ui s een s Ué , intervals [a&, bk] (k 1, .., a),
ete. We must show that f£'(1) = f£{1).

We have f'(0) = f{0}. Il £ and ' «re not equal for all values of %,
there exists a cut value 0 ¢ T £ 1 such that f(uv) = £'(t) for 0 £ ¢t < T, but
fis)=f'(t) for some T .t £ T + €, € being arbitrarily small.

Now T is an interior point cf scme [a biJ and also of some

i’
[ ‘- Al . . - s . 3 »
[ak , bkj , and P(T] is an interior point of U; and of Ul. Let & <t <{3
-
be an open interval lying in [ai, bi] and in [ak R bé 1 and containing T.
Its image lies in the ccmponent of U () U' containing P(T). As Q; and 9?7
i Tk ‘ £

agree fer X<t ¥ T, they agree also for T é t <1?; hence £ = ' in the latter
interval, and this is a contradiction. Therefore f'(1) = f(1).

Finally, il(Q) must be proved to be independent of the curve E. Let
L', given by P(t), 0% t € 1, be another curve from Po to Q lying in D. Be-

cause D is simply connected there exists a continuous family of curves P(%, € )

inD, 0%t $1, 0.€ %1, vhere P(t, 0) is B, P(t, 1) is E', P(0,¢) is P_,
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and P(1,¢) is Q. Tor the curves of this family ?(Q) is apparently a functicn

-~

of €, §(Q,c¢« ). Our object is to prove that f;Ol (Q, ¢ ) is constant vith re-
spect to € ,

Let ¢, be any fixed value of ¢ , and dencte the corresponding curve by

E0. Let Ul' oo s Up be any one of the sets cf regions covering E° that ve

have used to define %(Q, €,). We denote by V,j the component of Ujﬂ Uj4'l

which contains the arc P(t, €_J, ajgl_f'-. t < bj (3 =1, «o. , £-1).

Let an > O be taken sc small that for every € - 7{ o w < €7 7(’

+
AN

the point P(t, € ) lies in the above U, vhen a, £ ¢ ¢ b, (i=1, ..., p), and

inV.vhena, .* t2b. (j=1, ... , p=1). Such 7.'s exist because P(t, e )
J J"fl J L

is continuous and p is finite.
The same regions Ui and t-intervals fai, bi] can ncw be used to

I

s y/
determine 99 (Q, ") aleng any curve I of the family for vhich €7 < € < 66’7

Let P, = Plt.,¢. ), a

5 50 Ce . L D, (3 -1, «o. , p-1) be a sequence of

JiLEty Ry

transition points along I;O, ané let Pl", N

o1 be similar points along

E". Then P,j and Pj" both 1ie in Vj‘

y
The functions (P and Y:Of Ul , With which our constructicn starts along

E® anq uv respectively, are tne same, as both are determined by the given
~ " i
¢ (Po}. Next we see that ¢, and §, cf Uz are the same; for @, agrees \.ith

¢, {or \P“ ) at Pl"’ hence throughcut V hence at Pl' Thus STA and '70Z have

l’

the same value at Pl and therefore coincidce.

Evidently we can repeat this argument until we have the recsult that

I

(;!. = 501 . This shovs that @ (Q, €.) = ﬁb(Q, € ) for every € in the inter-

~

val (C_,J? ’ 60+7l ). Covcring {:O, l:} by o finite number of such intervils,
ve see that ¢ (Q, 0) - Ja {a, 1).

). Consequently 9’ {Q) is the same whother
obtainel from E or from L', and so our construction yiclds 2 single-vilued

function @ (Q) defined throughout D.

Exemsmmme o

izt F———



123

It has still to be proved that such a 9!" (P) has the property asserted
in the theorem,

Let U be any one of the given regions and let P bec any fixed point in
U, We say that the ¢ of U for which ?(P) = E;)(P), will be equal to § at
gvery point Q of U. '

To prove this, draw any curve E' from PO to P in D. Because U is con-

nected, a second curve E", lying in U, caon be drawn from P to Q. Let the

curve B' 4+ E" | consisting of E' followed by E", be called E.

Let Uy, ¢ee , U be, as usual, a choin of regions covering E'. It
1 p_]_

is easily seen that Ul' cse o Up-l’ Up = U can be used to cover E in the re-

quired fashion. Let Pl’ see Pp_2 be the transition points along E'; the

remaining transition point, from Up__1

A% Pj (j =1, vsw , p=1) the value of sp gives the value cof ?JH , by

our construction; and it 2lso gives the value of sb y &8 we see by thinking of

to U, can be taken to be Pp—l = P,

the curve as terminating at Pj.

is the q? of U defined above. By definition, SD (Q) is given by r;) (@}, and

Hence P (P) = @ (P). This implies that 9,
~

this is what we had to show.

As to the uniqueness of %5 : let ’9;/ be any function in D which in
ecch U coincides with some ¢ of that U, Taking any Py in D, let (f) be the
function which our construction provides if we start at PO with the value

~ 7 ~ ~ 7
q) (Po). We assert thcot 9’:: and. ? are equal ot every point @ in D. Iu fact,

22

g

considering the construction for (@), we see at the first step that ﬁ

L

~ 7
and 9 coincide in Ul' since both must be equal to (P' there, In purticular,

~ ~ / ~ -
P ()= @ (P, ). Hence @, must be the @ of U, which § and © reduce
> ~/
to in U,. Therefore ® (92) = @ (Pz). At the last step we find that
ladl A

“Qt

(Q) = 9) (Q), q. e. d. This completes the proof of the theorem.

It may be emphasized that ncthing has been assumed about the character
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of the range of the many-valued function j§ (P)s 1In fact the values of %
need net be real numbers, but can be clements of any set whatever. The only
regtriction on @ , it will be found, is that the cardinal number of its
velues at one point of D must be the same as at any other point. In the
application in §38, @ would be the function which assumes every real value
at every point of D.

The one-valued functions 9) m2y not actually be given, but some construc-
tion or operation may be defined such that when a value of q; is selected at
a point, & function ¢ is uniquely determined in any one of the regions U con-
tgining the point. For example, the determination of 93 may depend on solving
o system of differential equations, the choice of a value of @’ corresponding

to 2 choice of initial conditions.

40. Conditien for a continuous vector to be a gradient.

H\o
=
A

We return $4 the coordinate space 3:1 of §37, but now with m
Lot a, be a covariant vector which is continuous, but need not possess a
derivative, in a simply connected region D. Tue problem can still be pro-
posed, to secure necessary and sufficient conditions for ai to be the gradient
of some scalar 9) of class Cl defined throughout D, but of course‘the answer
can no lenger be given in terms of curl a.

At the end of § 37 we showed that a, is a gradient if, and only if,

a

(40.1) _r { a, dx,

1
has phe same value for all curves of class C 1lying in D and joining any

two given points P and Q. Instead of Cl we can say Dl (a curve of class

1

D" is a continuous curve made up of a finite sequence of closed arcs of

class Cl), for the curves of class Dl include those of class cl, and on the
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other hand the argument based on (37.5) applies with a simple modification
to a curve of class Dl.
0
Let Xy be coordinates of a point PO of D in some coordincte system.

A region in D defined by

will be called a coordinate cube about PO, with the symbol B(POL.

1f for every cube B in W the integral (40.1) has a2 constant value
for 2ll the curves lying in B and joining &any two given points of B, ai
will be 2 gradient in each B and hence in D. This is established by the

ressoning of §§38 and 39.

Let P ond Q be two points in 2 cube B, and let i{ s eas 3 in be
any permutation of the integors 1, eve , T Consider the curve of class

Dl lying in B and joining P to Q, which is obtcined by starting ot P and
first varying xL' alone, from its value at P to its value at Q; then varying

I

i, similarly; and so on to X, There are ni (or fewer) of these
"broken lines" between P and Q.

If the value of the integral (40.1) is the same for all of the n!
broken lines between any two given points in B, a, will be a gradient in B.
For the point function g‘(Q) defined by the common value of these ni integrals
has the gradient ai. Indeed it will be found that in the argument following
(37.4) no more freedom in the choice of curves ig necessary than these nl
broken lines afford. (As a matter of fact the n broken lines corresponding
to the n cyclic permutations of 1, «.. , 1 would do just as well.) £ course
once a; is known to be'a gradient in B, it follows that ‘j a; dxi is

Endependent of the path for all curves in B.

Let r, s be any two distinct integers from 1 to n, and let P and Q
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be two points which differ only in the coordinates xr and Xg. If for every
two such points the integral is the same along either of the two broken lines
joining them, it will have a constant value along the n! broken lines be-
tween any two points. For if iy, ... , ip ’ ip+l s ees s iy is the per-
mutation describing one of the latter lines, it is clear that the integral

does not change when we pass to the line described by il, ces 3 ip+l’ ip
i, And it is easy to show that any permutation of 1, ... , n can be turned
into any other (e.g., into 1, ... , n} by successive transpositions of
ad jacent numbers.

Let P and € be two points that differ only in X, and xg. The closed

curve which is obtained by following one of the broken lincs from P to Q,

and then the other one back from § to P, will be called a "coordinate rec-

i

tangle", or if fxr(P) - X (Q); = !XS(P) - X (Q)i s, & "coordinate

r 8

squere". Our result so far can be stated in this vay: ai is a gradient in
D if,/and only if, j ai dxi vanishes around every coordinatc rec-
tangle in every cube in D. (At cach step the condition for ai to be a grodi-
ent is being replaced by o weakcr one, hcnce the necessity of the conditions
is obvious.)

1f the intcgral vanishes around squares, it vonishes around any
rectangle. PFirst, this is true for rationol rectangles {i.e., rectangles
whose sides are commensurable, "sides" referring to the absolute viliues of
the xr and xS coordinate differences). Such rectangles can be cut up
into squares by suitable X, and X coordinate lines, and it is seen in the
ususl way that the integral cround the rectangle is a sum of integrals around
the component squares. Tne assertion then follows by a simple argument for
irrational rectangles 2lso, since they can be cpproximeted by rational ones.

It will be convenient to speak of the points of 2 cube as though they
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were identical with their image points in number-space.
Let P be = point lying in or on the boundzry of a square of side ¢ .

("square" hcre refers to the two-dimensional object). If for erch point P

(60.2) f"‘li dx;

c?

-3 0 as ¢ - >0, .

then the integral will vonish ~round any square. 1o is understood thaet the

squzre of side ¢ is to be pcrmitted to shrink down to P in uny way, so long

as P never lies outside of it. Toe integral in (40.5) is taken cround the

squarc of side c.

To prove this, consider a given square of side cl, and lct Il be
the value of the integral oround it. Divide the squore into four equal
squarcs, each of sidc ¢ = ©Cy / 2, by the two lines joining the midpoints .
of opposite edges. Let 12 be the value of 2 numerically largest of the four

integrals around thuse four squarces. Sincc Il cquals o sum of integrxls

- we e e x o ow

around the sm2llcr squares,
{ | < |
|1y ~v41121.

and consequently

[ Il‘ Z ; Ig! k
c,? - c22 .
That is, thc absolutc valuc of the quotient of intcgral by arca does not
decrcasc whon we pass from the lorger squarc to the smaller onc.

Tyvidently we can form & ncsted scquence of squarcs converging %o a
point P which lics in 211 of them, such thzt thc absolutec valuc of the above
quoticnt is ncver loss than ‘Il ’ / clz ., Since we orc supposing that ‘
(40.2) holAs, I, must be zero. .

Wwhat we have proved is this:

Theorcm: In order for 2 covariant vector ai which is continuous in
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& simply connectud region D to be the gradicnt of & sczlar of class Cl in
D, it is necessary and sufficient thot for any sequence of coordinatc squares
lying in on¢ planc ond converging to a point contained in all of thcm, the
quotient of J.ai dx around a square by the arca of the squarc should
terd to zero. If this condition holds, the scalar is dctormined up to an
arbitrary additivc constant.

The condition nced only be verified in some dcfinite set of coordinate
cubes covering D, as the proof shows. (It may actually be an invariant
condition at cach point, but this docs not scem to be obvious. )

tl : :
th and s coordinatcs of thc corucrs of a square b., in

Lct the r
order,

(x_ % ), (xr 1 ey X ), (xr-k c, X, + e} , (x

r s X+ c).

r

. . . th th .
Thce quotient in (40.2) can be writtcn {only thc r and s coordinates
bcing given cxplicitly) as

¢
_ingTugw,xs)—aﬂxﬁm,xgc)—:%b% ,x#&)+a§x#c,x§t[]dh
e
0

By the theorem of thc mcan, this is

ar(X£+0, xs) - ar(xr+ B)Xch) - as(xr R xsﬁ-e) +-as(xr+-o, xsﬁ-Q)

c
(40.3 )
vhere 0< B <e.

1f tho first partial dcrivatives of a, cxist {m é 2), (40.0) is a ,
difference quoticnt of a diffurentiable function of t: . E
él&rﬁt,%+6)-&#ﬂ}6,%+th 05t Zec ( @ fixcd).

)

Henee it equals

. ” N 7
(40.4) 9 a (= +6, z+0) g, (x +6, x+6)
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vhere 0< & <e.

If a, is of claas Gl, the limit of (40.4) as ¢ 0 and
0 0
(xr . xs)-%- (x X ), cxists and cquals

dag 93y
9 %, PER
gvaluated at x°.

"
Gl

Thercforc in this case what we have is

new proof of the
thcorem of § 37 .

It can bc shown that if the first derivatives of a

ay is a gradient.

i exist and curl a=0,

In fact somcwhat wcaker conditions suffice (sec Saks,
Qhcorie de 1'Intégrale, p.243).

The method of this scction can be extended to treat complotely in-

tcgroble systems of linear differential equations, and to yield o gencralization
of Stokes' thsorem.

CHAPTER VIII

ANALYTIC FUSCTIONS IN TJO DIMENSIONS

41. Conformal Ricmann Space.

A
Lct B‘n be an n-dimensionzl coordinate manifold of class C°, m

2 1.
A

Supposc that at each point of D'n there is given a peoncil of positive definite
symnetric tensors

(1.1) {) gjk}

A
dcpending on an arbitrary pesitive scalcsr factor >\ . An h with this struc-

turc is called a "conformal Riemann spoce™, or simply & "conformal space'.
we denote it by R.

T..e parameter >\ should bc thought of as indepcndently arbitrury at
cach point P of R.

If we moke a definitce choice of 2 one-valucd point
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function )\(P) in R, not neccssarily continuous, (41.1) defines a single

tensor )\(P) (P) throughout E. If this is interprcted as a metric tensor,

835k

R becomes an ordinary Riemenn spoce (perhaps with a discontinuous mctric).

Thus o conformal space might also be defincd as & cliss of Riemann spaces on

2 single coordinatc manifold, the ratio of any two of whosc mctric tensors

(compmred in the same coordinatc systums) is on arbitrary positive scalar.

Othcoryise stated, o conformal spoce is 2 Riomann space whosc metric tcnsor is

given only up to a positivc factor. For instancc, the ratios gjk / 811

might be assigned in some definite sct of coordinatc systems (note thas guﬁ£ 0).
Considcr an oricnted conformzl space R; that is, one in which the

Jacobian of coordinctc tronsformations is always positive. Let gjk bc any one

of thc tunsors (41.1) at o point of R, and write g for the dcterminont !gjk! .

If we replace gjk by :A gjk (A » 0), g is multiplied by ))L. It follows

thot

(41.2) ij — 85k

= S
Ve

n
(where g is the positive n¥h root of the positive quantity g) 1s the scme

for all thc tensors of the pencil (41.1). This object ij, which is uniquely
determined at each point of the conformuzl spoce, is termed the vfundamental
conformal tcnsor" of the space.

T1¢ conformal ftensor ij is o r.lotive tensor of w.eight —Z/n; that is,

its transformations law is

L]
e

———

a:xh 9 xl'§45 X

G, G j
Jk h ¥ - oy =
2%, 2%, )%

Phis follovis from the fzot that g is 2 relative scalar of wicight 2.
(By definition, 2 "relstive tensor" of wecight p obiys the ordinary

tensor tronsformation low, but with the (positive) pth povcr of the Jacobian
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of the old variables with respect to the new ones inscrted as 2 factor in
the right mcmber: This law is consistent. In 2 non-oricnted space further
definition would be necceéssary when p is not an integer or a froction with
given odd denominator, but ve shall not be concerned with thot case.)

It is cvident fron (41.2) thot the deteminant G = {G is cquol

jk
to -+ 1, and thot ij is positive definite.

Convcrsely, consider an oricnte? coordinate manifold in which there
is given a positive definite relative tensor ij of veight ~2/n cnd deter-
minant 1. Take an arbitrary pousitive relative scalar ;L of weight Z/n.

The product

(41.3) 85k = /,c G31c

is a positive definite tensor defined up to an arbitrary positive scalar
factor {the ratio of two//t's). Moreover,

i _ /G

- T = .
n i ‘), -
%‘ G JE

ﬂ’ g

(4

since G = 1. Consequently an oriented conformal space can equally well be
defineld in terms of its pencil of metric tensors )\gjk or its conformal
tensor ij. Either one determines the other, by means of the inverse re-
lations (41.2) and (41.3).
For any one of the metric tensors 83k there is the corresponling
. 'k
contravariant gJ defined by
Jk L= (1
£
If gj, is multiplied by , g9° will be multiplied by 1/ A . For Gy there
is the contravariant relotive tensor ij of veight 2/n, defined either by
.

Jk o =
(41.4) G Gy y

) T 0
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or by
(41.5) EEEY glk ?jvg“ .

In a Riemann spnace ve can spelk merely of a vector without specifying
whether o covariont or contravariant vector is meant, since the covariovnt
components of the vector determine uniquely the contravariant components
and conversely. But in o conformal space the covariant (contravariant )
components of & given contravariant (covariant) vector change by the same
frctor ;X (1/ A.) as the covariant (contravariant) componcnts of the tensor

g Phe same rule holds for the lowvering or raising of naun index on any

jK°
tensor.

The conformal invarizuts of o geometrical configurction cre simul-
taneous invariants of thc tensor gjk and the sct of tensors =ssocisted with
the configuration, possessing the additionzl property of remaining unchaonged
by the introduction of the factor :X (e do not necd zn excet definition
here). A conformal invariant is at the same time a metric invaricnt in czch
onc of the Riemann spoces obtained from the conformal spzce by meking o choicc
of 2 gjk‘ For examplc, the cosinec of the .ngle butween two contravariant
veetors is o conformal invariont; on the other hond the length of & non-zero
vector is o Riemann invariant but not a conformal invariant.

If we are given o Riemann space, we can associale with it & conformal
spacc simply by multiplying the given mctric tensor by the zroitrory factor.) .
By & conformal invariont of the Ricmonn space is understood & conformal in-

v~riont of the associtted conformal spacc.

Conformal mapping of n-dimensional Riemonn spoces. Lct P€—~> P'  be

1

. corresponicnce of class C° between on open sct A in 2 Ricmann space R and

cn open sct A' in o Riemann spzce R'. Take any pair of corresponding points

P and P', let U bc & ncighbourhcod of P in A covered by coordinctes x, and
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denote its image in A' by U'. Tuaen thce same coordinctes x can be introduced
into U'; we may call them x' there, so that the correspondcnce between U and

U' is represcnbted by x = x'. Let the components of the metric tensor of R

in U(x) be given by gjk(x), and let ggk(x') be the metric tensor of R' cxpressed

in o' (x'). Tucn if = relation of the form

(41.6) gjk(x) hond jX(x') ggk(x')

always holds 2t corrcsponding points P ~nd P', A cnd A' arc said to be mapped
confermally on each other. If?;\iil we hove o congruencc, or isomctric
corrcspondence.

A geometrical object (i, T} defined ot P is said to be mupped into
that object of the scme kind (x', T'j at P' for which the components in the
' ecoordinates arc thc same os thosc of (x, 7] in the x coordinstes. Under
a conformal mapping conformal invoariants arc not changed in value. In par-
ticular, orthogonal vectors rcmoin orthogonal. wec shall show converscly

thot if the correspondence between 4 cnd A" is such that cvery pair of

orthogonal vectors ot o point of A arc carricd into orthogonzl vectors in

A', it is a conformal mipping.

Proof: By definition, thc imnge of = vector ot P whosc componcnts
in thc x coordinstcs 2re aJ, is & veetor at P' having the some componcnts
2Y in thc x' coordinates. By our assumption, gjk ad b = 0 implies
g' ad bk'::O, where g., 2nd g' are the componcnts of the two metric tensors

ik Jk jx
in thc x and x' coordinatcs ot P ~nd P' respectively. Helding 2 fixcd and

s

varying b¥, we find casily that

£1 .7 road = A(e . j.
( ) &1y — A (a) g, 2

Let ¢ be any vector at P not orthogonnl to ad. By the provious step
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k
Maltiplying the¢ first of these relations by ¢ ond the sccond by a¥ and sub-

: trocting ve have

LA = Ae)] egeed o = o

Henee :k(a) = :\(c) . As (41.7) now holds with the sams fuctor .A for aY

e

and for any vector not orthogonal to aJ, it holds for some n indcpendont
veetors. Consequently g:jk: A gjk’ and the mapping betiwveen A wnd A' is

conformal.

Complex Tensors.

In ony ccordinate space, o geometrical object vhose components are
taken from the field of complex numbsrs and which obeys the ordinary tensor
transformation lau is called a complex temsor. (It is understood that all
coordinate systems are still to be real.) The operations of additiou, mul-
tiplication, contraction, and index permutation apply to complex tensors just .
as to real ones. The linear vector space spannel by a number of complex
vectors at a point consists of all linear combinations of those vectors with
complex scalar cocfficients. In a space with a (real) affine connection, the
invariant differential 1)lT of a complex tensor T is definel by the same for-
mula as for real tensors. Many other properties of real tensors carry over
in the same immediate way to complex tensors. we shall use such properties
below without mentioning them explicitly unless they do not obviously hold.

The real and imaginary parts of & complex tensor are real tensors of
the same kind, because coordinate tronsformations are real, The invaricont
differential of a complex tensor can be obtained by differentiating invari-

antly the real and imaginary parts separately; this depenis on the fact that
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the affine connection is assumed to be recl.
A tensor will be understood to be rexzl unless it is stated explicitly

that it is complex.

42. A-vectors.
In an oriented 2-dimensional Riemann space, there exists a skev-
symzetric tensor 7? having the covariznt and contravariant components
P
NE

(42.1) 7"‘? = {é’eq(g and ,74(3:

respectively, where g = I go(F}

€ = €&

11 22 —
— — 12 _ 21

1z - -

cll = g2 = o,

Thot 7?"({3 is a tensor follows from the fact that g is 2 relative scalar of
weight 2, and from the easily verificd identity

dxy Oxs Ox |

95 3357, = bt

which shows that € is o relative tensor of weight -1. Similarly €

f
xp

(with the same numerical components os GO(P is 2 relative tensor of weight

—

of
+ 1, 2nd hence ‘YZ P is a tensor. From the relation

Gisgo(} gﬁszeﬁ )

which may be werificd just s above, it follous that 72

p

an”? i

117 “QNF are in
fact the contravariant and covariant componeonts of & single ‘7 tensor. Fin-
ally, it is easy to check that these components satisfy the cquation

(42.2) '72‘,(),7?(33/:: 55

From now on we deal with an oriented 2-dimensional conformzl Riemann

space § 41) Yor thu purposes of this and the next s<ction, R need only
be of class 1.
Corresponding to each of the ordinary Riemann spaces associated with

R there is an 'Tz tcnsor. When g is changed to A g"‘@ , )20‘@ and )—I‘"@

¢

Fr i et e e -
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~rc multiplied by >\ and 1/ >\ respectively.

Consider the equation
(42.3) (7(“{34- r e°F) gd:: 0
for the dctormination of the complex scalar k and the complex covariant vector
QO( . This equation is conformal, that is, invariant under replacement of
g ‘XP by A g(x6 . The condition on k that there exist a non-zero vector Z
sutisfying (42.3) is that the dcterminsnt lvz‘x‘g + x g“Ffzo. Expanded ,
this condition becomes

kgll rl/g + kglz s

-y1l/g + k &=l k g% g

Henee kz_": -1, so that k is one of the two complex numbers 4 1.
Let X = +1. Then the matrix of the system (42.%) is of ronk 1, and

these esquations definc at ocny point of the space R a one-dimensional complex

veetor space {iq%. Wc call the vectors of the space {g‘& » "A-vectors".
Thus by definition an A-vector is o covariont complex vector obeying
1 oP)3
(42.4) (37 +ig 4= 0
Ir €, and C are any two A-vectors at a point, they both satisfy
(42.4). MNultiplying the cquation for i by ég and the equation for C by
v
gﬁ and adding, we obtalin
xf
42.5 % é =
( ) g « g 0,
: «f
since ’)'Z

orthogonal. In particular, an A-vector is orthogonal to itself.

is skew-symmctric. Hence any two A-vectors at & point are

If we set % = é , WC have
@
. FyL b, = o
(42.6) g « g 0
An A-vector is thus of zero length, or "isotropic", and cannot be rcal un-
less it is zero. Putting % = L in (42.4), where and
ST M LY ( ), where M v

are real, wve find
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o x = p
(42.7) 7? /6(0( - 2 Vq—oy
NV T E /“o&'o
as the conditions for an A-vector.

These two equations are not independent. If we solve either of them
for /u, tve obtain the one equation '
(42.8) M =T 77°<(3 F z//

(in solving the first we use (42.2), and for the second ve note that
g MF—— o« _ ). Any ordered pair of real covariant vectors
yo U =N =7 ey s
and 7/ at a point vhich satisfy (42.8) will be said to be "conjugate [/M,V]"-
Hence a complex vector g :./u + Y is an A-vector if, and only if, the
” o« X
recl vectors /u, and 3 are conjugate [/U.,V].

Another iaportant set of conditions for an A-vector is derived as
follows. Put % =pF (7 in (42.6). This equation breaks up into the
first two of the equations

r.xp dﬁ
a = .
42.9) (v) g*f =
az.9) (o) g™ u 1= 0

)
—_ 2
(c) /ul‘!/l /"(27/1 Z 0 . :
The third is found from (42.7) by multiplyin~ by +/g 7/‘3 :
[
o 2, = _ - o ,
(42.10) € T MgV = Y, /{27/, ,.1/““? 3«?7/“7/,320,
Thus a conjugate pair of vectors must obey (42.9). Furthermore, (42.10) '
shows that the ineouality sign holds in (c¢) unless 7/ = 0, in which case :

/M. = 0 also, in view of (a]).

o3
g

Conversely, let AL and V Dbe two real vectors obeying (42.9).
’

equation (b),
(-4
(/[,(,d)'l/ = 0. \
’ o

Now (77“{3 VF}V 0. )
Agsuming that V?f 0, it follows that/ulo‘: k’)?o(?'z/? (it V= o,/u,.-so).

Substituting in (a) for/u. , we have .
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2 § 2 S 2 o
%y 97?«,)(7/;77@57/ :}‘77%1{/7??8.7/ = A V),V‘y:: %

] )
so that k2 — 1. PFinally, from (c),

xp B Yy -
€ /“’o(vp ""J} 72 /ﬂi"?ul'y Vf? *\%@V'gyﬁéo.

> 4 - - N f — "
Hence k £ 0, which means that k 1 Thus /(,(a(__. }?O(P—Z/F, and the two
vectors are conjugate [/M)Y/] .

The results of this section can be summarize& as follows: any one of

the three conditions (42.4), (42.8), and (42.9) is necessary and sufficient

—— — ——— - St

for the:: complex covariant vector i“:/u.o(f— A ‘V“ to be an A-vector, or

what is the same thing, for the real covariznt vectors and 7/ to be con-
is /u L0 be con

jugete .
Jusete [ /u)V]
Condition (42.3) can be thought of as stating -~ sort of principal
O(ﬁ o(P
axes problem for the two tensors ’)2 ani g . From (42.9), ve see
that the vectors of a conjugcate pair have equal lengths ani are orthogonal.
TPhe A-vectors are one of the two families of null vectors at a point,

selected by the choice of the root k=+1i in (42.3).

43, A-functions and analytic functicns.

Let f::?-}—i\f/ be a complex scalar which is defined a.nd of class Cl
in some open set D in the conformal space R. The real scalars SD and 'f/
are then of class Cl in D also.

The complex scalar f is said to be an #A-function" in D provided

the gradient of f is an A-vector at every point of D. Hence an A-funcfion £

is characterized by the equation
B ;i g%f o 0
(43.1) (mT+49 ) Sx.
: D2f _ 9 v
1rr=priy, FH=2F 4 1 2L . Hence £ is an A-function
axO( 97(3( a.xoc

provided the gradients of its real and imaginary parts are conjugate

[grad ? , grad Y/J . Thus the condition for an A-function may be given as
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P e e

(43.2)

29 _ Fy oY
_é—;z;-; —")?O(P? aXJ/

These are the generalized Cauchy-Riemann equations.

-

As we have seen, another forn: of the condition for f ::-?44-‘{ to be

an A-function is

#3909 - g*fav 2% «639 Y _,
IXu dXp AXg dXg IX o 9Xg )

(43 .4) 3‘!&9“?_2_%_3_:&20_

a )(l a >(1I. 9 Xz —3 x’ -
1t vas observed that the inequality sign applies in the third relation,

(45.3) g

except when grad f = O.

A coordinate system in an open set D will be called "canonical" (or
isothermal) if at each point of D the components, in that coordincte system,
of the metric tensors satisfy the relations
(43.5) g1] = 8gp ond 8y, = 0 (or gll - g22 — g% = o).
Tvidently this holds for all the tensors of the pencil (41.1) if it holds for
one of them; that is, it is a conformal condition.

Let ? and k// bs two real scalars of class Cl in D. Suppose that

(45.6) _D,ff._ai_%f-_af—>o
D X' a X 2 [#} 'X:_ B 7('
throughout D, and furthermore thxt to distinct points in D there correspond

distinet points 90) ¥ in the nmumber plone. Under thsse circumstonces
@ ond \// , in that order, can be introduced os coordinates in D.
Theorem I: Let @ and 1)4/ be real scalars of class Gl in an open set

D, which can be introduced in the given order as coordinctes in D. The

scalars @ and W/ will be canonical coordinates if, and only if, ¥+ i\k
is an A-function in D.
Proof: Since (43.6) holds by assumption, (45.3) becomes the condition

for ?+ L‘\y to be an A-function. But (43.3) is exactly the condition that

wvhen we transform from any coordinates Xy Xo to the coordinates ? ' "f/ s



the new components of the metric tensors shall hove the form (45.5). This

is obvious from the transformation law of a g&ﬁ . Hence the metric tensors
assume the canonical form in the ?7,}V coordinate system if, and only if,
¢+i,y/ is an A-function.

An A-function f :g)+iy/ such that ? and ‘\]V can be introduced in the

given order as coordinates in an open set D, will be called a "complex coor-

dinate" in D. The gradient of f then cannot vanish at any point of D, by
(45,6). The real and imaginary parts of a complex coordinate are canonical
coordinates.

Theorem II: The totality of A-functions defined in an open set D

adiitting a complex coordinate, coincides with the totality of cnalytic

functicns of the complex cocrdinate in B.

Proof: Let z=x+ 1 X be o complex coordinate in D. Thern X,

and xz are canoniccl coordinates in D, so that (42.5) holds. The condition

(45.2) for o complex scalar £ = ?%Piy'of class Cl in D to be an A-function,

therefore reduces in these coordinctes to

d oY
P A SRS AR kA
X, d X, X, X,

(since nov 8 = 8, = l/gll). But here we have the ordinary Cauchy-

Riemann equations. These, as ig well known, express the condition for an f
of class C1 to be an ordinary analytic function of the complex variable z
in the open set D (or rather in the image of D in the xl, Xy number plane).
Consequently o complex scalor f which is an A-funetion in D, when expressed
in terms of - complex coordinite z, is the same thing as an analytic function
of z.

Corollary: Let xj, Xs be cononical coordinates in an open set D,
cnd let xl’, xz' be zny coordinntes in D. Then xl', xz’ +ill be cononical
coordinates if, ond only if, xl' + 1 X' ig an onclytic funetion cf x;+ 1 X

in D.
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!
In foct, the conditicn for xqi' , ¥o! to be canonical coordinates is

thaot x1'+i.x2' shall be an A-function, adcordinq to thcorem 1. By theorem II,
this is the same as stying that x;' + i xz' is an anclytic function of the
complex coordinate xl-+ ixg.

Theorem III: If the gradicnt of an A-function f docs not vonish 2%
o peint ¥, therc cxists some neighbourhood U(P) in which f c2n be introduced
as o complex coordinate.

Proof: Since grad f(P) 7% 0, (43.6) holds ot P, by the remark
folloving (43.4). Hence<¢ )yV con be introduced os coordinatcs in some
U(P), in virtuc of the implicit function theorem. By definition, f is then
c complcx coordincte in U(P).

The comnection between J-Functions and anolytic functions may be
stated as follows. An A-function is an,; complex point function whose
gradicnt is a certain kind of complcx vector (A-vectcr) -— this definition
is indepcndent cof particular coordin.tes. aAn JA-function becomes ig.analytic
function when it is expressed in tcrms of another A-function as coordinate.
Thot is, the rclation between two .i-functions (the second of which, sy, can
be uscd as a coordinate) is that the first is an analytic function of the
sceond. In the case of the ordinary complcx plane with conformal euclidean
metric, it would be corrcet to say thot the property of being an JA-function
is characteristic for an anclytic function (in the ordinary SCNse ) waen €x-
rresscd in general coordinates of class Cl.

Lot £ and z be two A-functions, anl suppose that grad z 7E 0 at a
ccrtain point P. The gradients ot P of f and z are A-vectors. As the A- '

vectors at a point form & one-dimensional complex vector space,
N4 2
2f _x 2% at P
~ / - )
2 X g O X
where )C is a complex scalar. The interpretation of :K is readily found
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by introducing z as a complex coordirate in a neighbourhood of P. The above

equation then becomes

oy L ux

BX, - ? Dxl
Either of these relations states that
X = daf at P

dz
(af/az = J £/dxy = O£/ Jix,); that is, the factor X is the derivative
of the analytic function f(z) of the complex variable z = Xl + 1 Xg - Thus
the derivative of the analytic function f(z) appears in general coordinates

as the ratio of the gradients of two A-functions.

44 . Conformal Spaces and Analytic Manifolds.

From now on the oriented two-diuensional conformal space R will be

assumed to be of class at least 2. The conformal tensor

(44.1]) G = F g
Iy z
1 F V?,,?‘zz - }lz

is to be of class C~. (Spaces of class 1 could be also considered, under

the assunption that G “‘F is of class Cl in some g¢oordinate neighbourhood
of each point.) I. terms of the conformal tensor the condition (43.5) for

a canonical coordinate system becomes

(44.2) GO(P = S“F )

An A-function was defined as a complex scalar of class Cl with an
A-vector gradient. Hence when an A-function is introduced as a complex
coordinate, the transformations tc the allowable cocrdinate systems given
in the definition of the space R will be of class Cl, but need not be of
cless Cz. Ti:is does not mean that a ccmplex coordinate cannot be used in
a space of class 2, but only that in using such & coordinate we must keep

in mind that properties which depend on second order differentiability of

coordinete transformations may be lost in transferring between the complex

layer-Thomes
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coordinate sysﬁem and the allowable coordinate systems.

For example, the conformal tensor is of class Cl in the allowable
coordinate systems, but after a general coordinate transformation of class
Cl it would be merely continuous. As it happens, in this pcrticular case
no differentiability is lost with & complex coordinate; on the contrary, the
components of the conform.l tensor then reduce to constants, therefore actu-
ally to analytic functioms. For we have seen that with a complex coordinate
the metric tensors take the canonical form, which means that (44.2) holds.

So far nothing has been said about the existence of non-constant A-
functions. For this we shall refer to a paper of L. Lichtenstcin, "Xonforme
Abbildung nichtanalytischer Flachenstucke" (Abh. K. Prcuss, Akad. Wiss. |
1911, pp. 3 - 49; see also Bull. 4Aedd. Sci. Cracovic, 1916, pp. 192 - 217,
and the references there to E. E., Levi and A, Xorn)., In this psper .it is
shown that under the prescnt hypotheses there axists for each point P of the
space R a neighbourhood U(P) in which canonical coordinctes ?>) v/ of cluss
¢l can be in?roduced. Then ?)+ Z.y/ is an A-function with non-vanishing
gradient which can be used 2s 2 complex coordinate. We may thercfore state
this theorem:

Local Existence Theorem: Let R be on oriented two-dimensionzl con-

formal space of class Z; 2, in which the conformal tensor (de is of

class Cl. Any point P of R has a neighbourhood U(P) ~dmitting o complex

coordinate z. The tronsformations from the allowable coordinate systems of
R to a complex coordinate system are of class C' .

{(As a matter of fact Lichtenstein's result is that if G“F is con-
tinuous and satisfies a Lipschitz condition or mercly a Holder condition
in some coordinate neighbourhood of each point, then there exist canonical

. 1 "
coordinates of class C whose derivatives satisfy a Lipschitz or Holder con-
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dition respectively. Perhaps under our stronger hypothesis that G“F is of .
class Cl it can bg provel that the canonical coordinates are of class C .

The local existence theorem can be shown to be cquivalent to this
statement: in 2o two-dimensional Riemann space of cless ;_ £, for which the
rotios E;“P /\[5' arg of class Cl, every point has & neighbourhood which can
be mapped conformally (§4J) on an open sct in the euclidenn plane.)

If two of thc complex coordinate neighbourhoods in R interseet, then
in the open sct D which is the interscction either complex coordinztce is an
anzlytic function of the other. This follows from the corollary in § 43,

A coordinate manifold of two dimensions is said to be "enzlytic in
the strict sense" if, when two of its allowable coordinate ncighbourhoods
U{x) and U(X) intcrsect, the coordincte tronsformation is such thot x)+ixg
is an analytic function of the complex varicsble El-k iiz (and zl-+ i§2
is an analytic function of xl-+ ixz) in the intsrsection. (This of course
is more thzon roequiring Xy and xp to be rcal analytic functions of El' Ez,
which is the condition for & monifold analytic in the ordinary sense. )

Theorem: By taking the complex coordinate neighbourhoods covering
the space R as new allowable coordinates, we can obtain from R a coordinate
manifold analytic in the strict sense, which we may call S. Iz 5 the confor-
mal tensor Go(p has the constant components 3«9 . An A-function in R
is characterized in S as a complex scalar which is an analytic function of
each complex coordinate in its domain of definition.

The last sentence is a consequence of theorem II, § 43. The other
statements have already been proved. .l

A conformal space R thus gives rise to an analytic manifold S. Con-
versely, any antlytic manifold is associuted in this vay with some conformal

space:
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Conformal Metrization Theorem: Let S be any manifold analytic in the

strict sense. Then S is necessarily oriented, and if we define the conformal
tensor G“P to have the constont components 3«‘9 , S becomes a conformal
space of the type R considered above. Morcover, the anclytic manifold ob-
tainabls froh this conformal space according to the previous theorem, is S
itself.

Proof: It is readily shown from the ordinary Cauchy-Riemann equations
that the Jocobian of each coordinate transformation is positive; henee S
is oriented, The definition Go;ﬁ = 3u8 i consistent; this again follows
from the Cauchy-Riemann cquations by substitution in the transformation law
of G“P on page 146, with n= 2 (or else we can argue that analytic
coordinate transformations preserve canonical form in a metric tensor).
Therefore S docs become a conformal space. Finally, the allowablc cocrdinate
systoms of S are ovidently canonical. Hence by theorems I and II, é 43, they
are the complex coordinste systoems of S. This proves the final assertion In
the theoren.

Briefly statcd, what we have shown is that tho study of A-functions

in a conformal space R can bu reduccd to the study of analytic functions in

an cnalytic manifold 5. If one werc tc toke the subject of ocnolytic func-

tions in an analytic manifold as a starting peint, the above work would be
interesting partly as a solution of the problem of characterizing the analytic
funetions when they are expressed. in general coordinztes of class Cl‘
Ordinary function theory begins by studying analytic functions in
a special analytic manifold, a sphere covered by two coordinate systems, z
and é . The z-coordinate is carried onto the sphere by the usual stere-
covere, The amlbire qfﬁ%&wﬂmyﬂffw’xﬂgvurMLpll.7%x§‘¢mﬂ¢hmﬁ

ographic projection from the complex plane; it,covers the =" ™3 gphere ex-

cept for the south pole. It is defined by é = l/z in the intersection
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of the two coordinate neighbourhoods, and by é == 0 at the north pole.

45, The Laplace Equation.

Let S be the analytic manifold associated with the given conformal
space R, as described above. That is, the allowable coordinates of S are the

complex coordinates of R, and in 8 G_, = é So far as the rest of this

x@'

chapter is concerned, we can work just as well with any coordinates in S

9 .
which arc of class C with respect to the allowable coordinates of 5. Ve
shall use the symbol S' for the space of class 2 derived from S by allowing

. . 2 X .
these coordinate transformations of class C . Tren in 8', G 5 is of class

1 e .
¢* and A-functions arc of elass C . Wnat follows in this chopter is under-

stood to be with reference to S'.
Let f be an .~function deofined in an open sct D. At cach point of

D, f obcys (4%.1), which can be written as
. o R 04? e
“ 4 v N P 0
(&5.1) \e + ;‘, (_7 ‘! ZB‘XC‘

in view of the definitions (42.1) and (41.5). (For any covariant vector i‘x
)

s . of 4
(€ + 4 G )i 4 1s o contravariant relative vector of weight 1.)

Differentiating (45.1) with rospect to x4 and using the foct that

>3

¢ ! is constant and skew-symmctric, we find that
p BT %

(45.2) g’__,__ ( : f:._.‘...«; = O
a)\q (.).y‘,(/

T.is is the gencralized Laplace cquation. Iu o complex coordinate system

o F = §°f

, and then we have tho ordinary Laplacce eguation

2
PR 3%
[w) [«
(45.3) = + Tz o= 0
3 X 3 X, -
N ~ 1@ F g .
(For any covariznt vector ﬁ of class C°, =—— (G g ) is 2o
> DX o g
relative scalar of weight 1. This con be proved direetly from the trons-
oo
formation law of the relative vector G ° §§ . A shorter proof can be
o
given using the known cxprbss1on — Q{é ) for the divergince i .
2

> af axo(
of the vector , = 5 W1th rcsacct to a metric tensor g . which

i
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is loocally of class G .)
A real {or complex) point function which is defined and of class C2
(as to 8') in cn open sct D, and which obeys thc gencralized Laplace equation

at every point of D, is called 2 rezl (or complex) "potentical function'. A

complex potential function is nothing more than thc sum of o real potential
function and i times another recal potential function.

Wo saw above that an A-function £ = ? + 4 'd is a complex poten-
tial function. Hence ¢ and \// are real potential functions. Iu particu-
lar, we can say that in an arbitrary open set D, the imaginary part of an A-
function is a real potential function. Waen D is connected ond simply connec-
ted, there is the following converse.

Theorem: Let Sl/ be o real potential function defined in 2 simply
connected region D. Taere exists in D unother real potential function p
such that ?J + 4 \y is an A-function in D. This ? is unique except for an
additive constant.

Proof: B, definition, \]/ is of class 02. Hence the covariant

vector

W = rav _ o P
(45.4) «= Mg ¢ 3 Xy xp Iy g
is of class Cl in D. According to the generalized Cauchy-'Riémamre‘q;g;;.ﬁiogs
(43.2), vhat we have to find is & real scalar t’Z) of class Cl (i f&cﬁ;-~02 )-'
having the property that 3?/37‘« = @, ., ™Tuct is, the condition

on (P is that its gradient shall be a . Now
a .
2y _ ¢ 2 (gPr2t)
Wultiplying by €%
R KL TR LT L L(G("’.?_t) -0
Bys 0X, BX, QX@ ij ?

gince \I/ is a potential function. Thus curl a vanishes in D. Using the

theorem of § 37 we conelude that there exists in D a function SD of class

Cz, unique up to an additive constant, having the grodient a " as required.
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In a simply connected repion, therefore, 2 real potential function

is the same thing as the imaginary part of an A-function. Instead of

imaginary part we could also say real part, for the imaginary part of an
A-function f is the real part 6f the A-function -if, and the real part of f
- is the imaginary part of if.

Leo \f' be a given real potential function in a given simply connected
region D. Tue A-function f -_;? -l—,l.)l/ in D which has y/ for its imaginary

part is dctermined by the formula

Q
(45.5) (@) = £ng Gﬂlgwi; dx, + comel, |

° td
where PO is any fixed point and ¢ is a variable point in D, and wherc the
integral is taken along any curve of class ol {or Dl, by § 40} from P, to

Q in D. For it was proved in § 37 that f a dx, + const. is the
P°

function whosc gradient is Qg e when & is a gradient. In the antlytic

of

of
manifold S, in which G"‘F - 5 F ; (45.5) becomes

Q
- QY Y 5
(45.6) ® ()= ( =L ax; - L ax, ) +  conmst.
{ X, Bx‘

-4

46, Two Integral Theorems.

In this section we consider an open set U in the space S5' covered
by a single coordinate system Xl' x2. Qur first object will be %to give
a statement of Gauss' theorem, without proof, in the form in which we
shall use it.

In the U(x) coordinates 'GO(P is of class Cl. Hence we can ob-
ta'in a metric tensor g“P which is likewise of class Cl in these coor-
dinates, for instance by giving the relative scalar /u.. in (41.3) the con-
stant value 1 in U{z). Such a gu{s is %o be understood in the discussion
below. (We can think of U as a Riemann space of class 2 with a metric

1l
tensor of class C .)
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Let E, given by X, = X (¢), 0%5%

o 1, be a simple closed curve

i

of class Dl in U such that the tangent vector dx. /dt is never zero.

Let u be the open set in the x,, Xq number plane which has U as its image,
and denote by e the pre-image of E in u. We assume that the interior of
e lies in u. The image in U of the interior of e may be called the in-
terior of E (with respect to the fixed coordinate system U(x) ).

Let P be any point on an arc € of E of class Cl. There are two
unit normal vectors to £ at P, which are negatives of each other. Con-
sider an arbitrary oriented curve F of class Cl, which starts at P with
& non-zero tangent vcetor amd is normal to & at P. Tae unit tangent
vector to F at P is onc of the two normals to & . Now it can be shown
that if P is not an endpoint of € , just onc of these normals, the

*inwoerd normal™, has the following property: for every F which has this

normal as its initial tangent, some initial arc of F lies entirely

except for in the interior of E. 1e "outward normal", which wi e
( t for P) in the interi f E. The "out 1", which will b

denoted by n°<, is the negative of the inward normal. Some initial arc
of any F whose initial unit tangent is n°‘, lies in the "exterior" of E
{i.e., in the complement in S' of E plus its interior).

Tuus at each inner point P(t) on & there is defined an outward
normal n® (t). This unit vector n°((t) can be shown o be continuous
in t at every inner point of £ . Moreover, it can be proved that at
either endpoint of & , n°‘(t) has a limit which is one of the normals
t0 € —~— we define it to be the "outward normal™ at that endpoint.

A particular one of the two unit vectors normal to n® — we call
it sd — is now selected by requiring s, - ing {or n_ + isg ) to be
an A-vector. That is, so‘ is determined by

(46.,1) s = -f)?“'g g(q nr.
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This relation shows that sd (t) is continuous along each arc £ of E
1
of class C™.

As s% is a tangent vector to the curve E, we have

e (£) = oft) Hulb)
dt

Along each E arc the factor c(t), being the ratio of two continuous
non-zero vectors, is itself continuous and not zero. Hence it does not
change sign on any one € arc. It can be proved that ¢(t) actually has

a constant sign 2ll a2long the curve E (this is immediate if T is of class
-Cl, or if E has just one corner; if T has more than ohe corner, an argument
can be given which depends on rounding off the corners and then using the

result for the curve of class Cl which is thereby obtained).

The function +
s(t) = |25, o0st%1,
c{T)
e (]

1
is continuous and monotone a2long E, cnd of class C on each £ arc.
Hence s is an allowable parameter for the curve E. We have

—_— = 6 ———~ = 8

ds dt dt at

That is, the introduction of s as parameter mokes s the tangent vector
to E. As s is & unit vector, s is an arc-length parameter.

The result can be stated in this way: when the arc-length
parameter s is introduced on E as described above, the tangent vector
8% = dx«/ds is a unit vector, and the unit vector n % which is the
outward normal is determined by the property that n_+ is, is an A~

vector.



167.

The form of Gauss' thcorem {or the divergence theorem) which

we shall need is as follows.

Let El, cee 3 gp be a finite number (perhaps zero ) of non-

intersecting simple closed curves of class Dl lying in the interior of
T, such that no one of them is in the interior of any other. The region
which is the interior of E minus the curves E and their 1nter10rs

\
(3 =1, vos » P Wlll be called D. . ,‘.\

. , ) AR ) ’/
L X XN ,x ' Y/ /,/ ){(
' -><. ) p ré"/ ]
:>( 4 . //

//X)f/\y’)/‘/x;\/ Xxy)(,\.};

Let io‘ be a vector which is of class ¢ in some open set con-

of
taining D and its boundary. If we take the covariant derivative i ’F
oL
of i with respect to the metric tensor g“@ , and then form the

scalar i ;% 0 we have the "divergence" of E, , abbreviated div £

It is continuous in D, and it has the well-knovn expression

(NE &)

div 2

"\g 3:»:

The theorem is that -
(46. 2). f'( dive - B dx, dx, = j %dnﬂds - Z. idnuds.
In words: the integral of the dlvergerel:ce of i over tﬁc area of D
equals the integral of the outward component of i (outwerd from D,
that is) along the length of the boundary of D. 1t is understood that
for each Ej' nc( is the corresponding outvard normal amd s 1is the associ-
ated arc-length parometer as previously explained. The integrals on the
right arc taken in the scnse of increasing s.

Instead of (46.2) we con write



[~ 4 ol
(46.3) 5[ 231;— (V& Z )dxl dx, = S ‘E n,ds,
D % 8

where B is the boundary of D, with the proviso that minus signs are to

be placed before the integrals along the curves Ej (if there are any).

The theorem has been stated for a real vector i , but it is also

true for a complex vector, since it holds for the real and imaginary
parts separately.

(It may be recalled that the proof is given first for a triangle
whose sides are straight lines in u{x), by direct integration; then for a
simple closed polygon, which is divided into triangles by interior dia-
gonals; then for a single curve E by approximating it with simple closed
polygons; and finally, wvhen there are the inner curves Ej’ by means of

cuts which reduce the problem to the previous case. )

Let f and h be two A-functiohs defined in some bpen set which

contains D and the curves T and E; which are the boundary B of D. An
dh

BXN
is of class C , and so it is a vector i to which Gauss' theorem

A-function is of class Cz in U(x). Hence the complex vector f —=

applies.

The divergence of f é_—< vanishes at every point of D. For

The first term on the right is zero- beczuse any two A-vectors at a point
are perpendicular to euch dther, and the second term is zero because the

A-function h satisfies the Laplace equation (45.2).
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By (46.3),
J f dp o
ggmpf{b‘ n, ds = )f;—-—lqn ds = 0.
3 dx
B8 yp 8 X
Now by definition of s, n,+is, is an A-vector. As aky'axa is also

an A-vector, we have

ol - 3 X ) o
(46 .5) é—g h1+-is“} == ——E-n + i dn s = 0y
Xc‘ BXD( DXO(
Thus
d o
(46.6) f—=3s ds = O.
of B BX‘,(
But s = 1is the tangent vector dx, /ds along the curves E and E . Con-

J
sequently the rosult takes the simple form

(46.7) ffdh = 0.
B )

Special parametcrs s werc used on the curves B and Ej to derive
this formula. But the value of ['f dh around any one of the curves
does not depend on what parameter is used (provided the integration is
alvays performed in the sense determined by the s parameter). Hence
(46.7) holds with any allowable parameters describing the curves of the
(sensed ) boundary B. It can easily be shown that instead of interpreting
dh as %%~dt, we may think of Jrf dh asg the limit of a sum of proiucts
f*Ah in the usual fashion of complex integration.

What we have proved is essentially a form of the Cauchy integral
theorem, at least when U(x) can be assumed to bs a complex coordinato
neighbourhood, with the coordinate z = + ixy. For f(z) 2nd h(z)
are then simply any two functions which arc analytic in D and on its
boundary. If in particulor we take h(z) to be z itself, our theorem states
that j f(z) dz = 0 for any analytic f(z), and this is exactly thc
Cauchy ;Ztogral theorem for the closed region D+ B {(or rather for its pre-

image in the z-plane). On the other hond, the present theorem is in
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reality not more general than Cruchy's. For dh/dz, and hence f dh/dz,
is an analytic function of z., Consequently, by the Cauchy theorem,

_f (£ 38 ) 4z = 0. Tnis is the same as (46.7), since ah — dh dz

dz at dz dt
B

0f course we might have taken Cauchy's theorem for granted and then
derived (46.7) as indicated above, for the case that U(x) is a complex
coordinate neighbourhood. This would really have been enough for our pur-
poses.

By making use of the theorem of § 37, we can show very easily that
if £ and h are two A-functions in & simply connected region not necessarily
lying in one coordinate system, then j-f dh vanishes around any single

1
closed curve of class D in the region, even if the curve has double points.

)
For fi—-b- is a covariant vector a  of class Cl, and
x -
Y o ak «6h J F _ «psk 2f _
since dh/dx, and Qf/‘gx , being A-vectors, are proportional at each
bal dag §
point., That is, = 0 in thc region. Now the theorem of ¥ 37
dxp T I

wag proved for a real vector ai, but it follows that it is true for &
complex vector as well — we have only %o apply the theorem to the real

and imaginary parts of the complex voctor separately, to se¢ this (the
scalar @ and the arbitrary constant mentioned in the theorem are of course

now complex). Hence a  is the gradient of somc complex scalar F (and

dhn
X o
vector). Around any closed curve of class D~ in the region

Ifdh‘:‘-ffa@—ﬂdxdz(—a'—gdx = de:’aO,

we may add that F is an A-function, since its gradient f —= is an A-

1

q.e.d.
The result expressed in (4q.7) might now be derived without any

appeal to Gauss' theorem, by making cuts in the usual way. More essential
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usc will be made of Gauss' theorem to obtain the noxt rcsult, which is
closcly related to a formulo of Green.

Returning to thc region D bounded by 3B (the curves E and Ej)’ vie
consider an A-function f = y+,4:,*f/which is defined in an open set con-

° 1
taining D+ B. Tne real vector ¢ S»g- is of class G . Tu calculate its
&

divergence we may replace both f and h by 50 in the identity (46.4). Siuce

(P is a potential function, the second term on the right vanishes, and so

‘I’ — Fa? 2P
”g?? - 3%, bxﬁ

By Gauss' theorem (46 2,
2 o
(975 5217 4 = [3Tg55 mede

We write this as

(46.8) [qp_g_fnds..ff 2% 99 4.

Xy I%p
where da = -,} dx dxz, to emphc.swe that we are dealing with an integral

over an area.

Just as in (46.5) — (46.7) we have

29« ¥ 2F “+-~n) =0,
(a n """d')*"( 9 Xet

32 4 2N i
(axq YA 3 (h _+'L’d’ Ao D J X
0P m™ — ¥ 4~
= = -4
-21 Q X axo( ﬂ(/x)
—‘—a s o ——
Dxun Ao ““‘3'3\5;7&2‘& - 0(50

Consequently the result becomes

o [9dy = [[§772222 e

9 X E)’x(,
(Since Y — ,{,51) is also an A-function, (JD and t'l/ might be replaced by

¥ and —-? respectively in this formulcw.)

As to the interpretation of é(? d/‘f’ , the paragraph following
(46.7) can be repeated here almost word for word.

If we haod started with the real potential function g) alone, not
necessarily given as the real part of an A-function, (46 .8) would have

been the final result. Of course if SD is defined in some simply connected
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region containing D+ B, a conjugate potentizl \.[/ will exist by the theorem
of the previous secction, and then (46.9) holds as before.

Since the integrand in the right member of (46.9) is non-negative,
the double integral vanishes only if the integrand is zero throughout D.
This requires that grad SD = 0, or that sD is constant in D and hence in
D + B. If @ 1is cons‘t‘;a.nt, so is "f’ and therecfore also f; this follows

v

from (43.2) with P and-v\}/ intcrchanged. Consequently

(46.10) f ¢ dg >0, and equal to O if, and only if, £ = P+eL
B

is constant in D ond on B.

A similar conclusion can be drawn for the le ft member of (46.8)
even when \i/ docs not cxist; the condition for vanishing then is that
97 = const. in D + B. In particular we caon say that a potential function
in an opecn sct containing D+ B, if it vanishes on B, must vanish throughout
D.

Summary: We have a region D bounded by a set B of simple closed
curves of class Dl, E and Ej,, which are oriented by a definite process
that has been explained above. The entire figure lies in a single coor-
dinate system U(x) of the space S', as illustrated on page 167. For a
pair of A-functions f and h defined in an open set containing D + 3B,
we have the result that _(f dh = 0. TFor the real and imaginary parts
? and \// of a single §~function in such an open set there is the for-
mula (46.9) for Bfgodiy'/ ; from this (46.10Q)is deduced.

The first rcsult is obviously conformal, since it does not depend

on a go(p altogether, The second, when written as

o dy =[[ P2 22 du da,
D

B Ix, 2>><€13 !

is seen to be conformal also.

)

(It is intercsting that Gauss' theorem is redl ly conformal, provided
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we btate it for a covariant vector i

c( . o(xo‘r
{fﬁ:( Fie)df’"l“ RN ]/%M;tv ,:ﬁ dit

To avoid mentioning unit vectors and arc-length, we have replaced n by

any vector Nc( having the same direction, and the s parameters by general
parameters t. The integrals on the righ? are to be taken in the sense of
inercasing t.)

The theorem about J'f dh has meaning .and is true in any coor-
dinate systems covering D + B, even if they 2re only of class cl. Thus it
is a theorem in the original space R, &as well as in S', As for (46.9),
its left member may likewise be evaluated in any coordinates. The right
member has a value which is independent of @ ordinates, at apy rate so
far as single coordinate systems are concerned which cover the entire
region D, But (46.10) holds with the same generality as (46.7).

Probably the results can be extended, with suitable definitjons,
to any region having the shape shown in the figure on page 167, even if it

does not lie in one coordinate system,

CHAPTER IX

RATIONAL FUNCTIONS

47, Triangulation of the space,

At this point we assume that our two-dimensional manifold is connected,
and that it is bicompaet (i.e., given any infinite number of open sets covering
the space, there exists some finite selection from them which still covers the
space). It is then necessarily compact; for each point has some compact

neighborhood, and because of the assumption of bicompagtness the entire space
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is the sum of finitely many of these neighborhoods and hence is compact. It
is not hard to show that requiring the space to be bicompact is equivalent to
requiring it to be ccompact and separable,

From here on we operate only with the complex coordinate systems;
that is, we restrict ourselves to the space S as defined in the second theorem
of §44. The remainder of our work, therefore, may be said to be concoerned

with an arbitrary connected, bicompact, two-dimensional coordinate manifold

which is analytic in the strict sense. We may assume that the complex co-

ordinate neighborhoods are connecteds They will be called simply "coordinate
neoighborhoods" henceforth, and the spaco S will be referred to as a "surface',
If U and U' arc any two coordinate neighborhoods, they can be joined

by a "chain of neighborhoods"., That is, therc exists a finite sequence

Ul’ vees Un of coordinate ncighborhoods, with Ul = U and Un = U', such that the
interscction of any two consccutive neighborhoods of the chain is not empty.

If this wero not the case, we could form the set A of all neighborhoods joinable
to Ul by chains, and the set B of all other nocighborhoods. The points of A
and B would constitute a pair of disjunct open scts whosc sum would be the
whole surfacc S. This is impossible, sincc S is connccted.

The surface S can bec trisngulated. We shall say what this moens and
indicate the proof,

A “triengle" in S is a closcd point sct which is homeomorphic in a
given way to somc euclidean triangle. The torms "intorior", "edge", "vertex",
etc., arc defined for the triangle in S, by means of tho homecomorphism, from
the corrosponding parts of the cuclidean trianglo.

Suppose that we have a systom of triangles on § with the following
propertics:

a) Eech point of the surface belongs to at lcast one, and ot most a
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finito number, of triengles., More dofinitoly: cach point appears in at least
onc trienglec, ecither as an interior point, as an inner point of an edge, or as
a vertex. If a point appecars in o cortain one of those threce categorics in one
triangle, it docs not appear in a differont category in amother trianglo. An
intorior point bolongs to just ono triangle, an immer point of an cdgo to just
two triangles, ond a verbox to three or moro triangles.

b) If two trienglos intersect, their interscction is either a singlo
edge or a single vertex,
Under these circumstances the systom of triangles is said to be a

"triengulation" of S.

The sct of triangles having a given point P as & vertox con be ar-
ranged in cyclic order in such a way that each onc has an cdge (ending at P)
in cormon with tho following one. This can be proved from tho fact that S is
two~dimensional.

It can be shown that cach point of the surfacc has some ncighborhood U
which is contained in a finito number of triangles. The total number of tri-
enples in o triongulation is therefore finite; if it were not, we could sclect
a singlc intorior point from cach triangle, and the resulting infinite point set
would have & limit point since S is compacts This is impossible, becausce at
most a finite number of points of the sot could onber the above-mentioncd neigh-
borhood U of the limit point.

To obtain a triangulation wec procced as follows. cch point P of the
surface is contained in some coordinate neighborhood U, described by o complex
coordinote z. In U we draw any simplc closed analybic curve E with non-
vanishing tengoent vector, whosc interior lies in U and contains P. (That the
intorior of E is in U, is to be undorstood with reforencc tc the z-planc, just
as on page 165. We may for instance take E as the image of a sufficiently

sme.ll cirele in the z-plane about z(P).)
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Thus to each point P of the surface S there corresponds a curve E.

The interiors of all the curves E obviously cover S. Since S is bicompact, a
finite number of these interiors can be found still covering S. Let Ej
(3 =1, eses Q) be curves which have these interiors.

It can be proved that two analytic curves such as we have used, inter-
sect at most a finite number of times, if they do nct coincide. Hence two
distinct Ej's cither have a finite number of points in common or do not inter-
sccts

It is possible to show that those arcs of Eos wees Eq which have
points interior to El’ cut the interior of El into a finite number of rcgionse.
Some of theso regions may not be simply comnected, or may not be bounded by a
simplc closed curve. By drawing suitable simple arcs across such regions, we
can derive a further subdivision of El and its interior into (closed) rcgionms
cach of which is homecomorphic to a circlo plus its interior. The auxiliary
arcs drawn herc and bclow can bc assumed to be of class Dl with non-vanishing
tongent.

Next we comsider that part of the interior of E, which is not interior
to El' This, it can bc shown, consists of a finitec number of rcgions cach
boundcd by arcs of El or Ez or both. Each such region can bo treated in the
samc way as the interior of El’ so that it is subdivided into polygonal rcgions

(homcomorphs of closcd circles), Thon the part of E, not proviously consid-

3
cred is cut up in a similar way, end so on to Eq' The final stop is to select
e singlc point P in the intorior of cach polygonal rogion, and by drawing arcs
from P to suitable points on the boundary of the region, to offect a subdivi-

sion of 8§ into triangles as reguired.

What wo obbain in this manncr is in fact a "briangulation of class ptn,

That is, ocach trienglec lies in some onc ccordinate systom, and its throc cdges
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form a simple closed curve of class Dl with a non-zero tengent wvector.
By the process explained at the beginning of §46, an orientation can
be assigned to the boundary of each triangle. Moreover, if Tl and Tz are the
houndaries of two triangles which have an edge £ in common, the orientations

of Tl and T, along € will be opposite. For consider en inner point P of £

ot «which, €

Adoos not have a cornecr, and let F be an oriented curve starting at P with a

2

non-zero tangent vector Noc which is normal to €&. If somec initial arc of F
lies in the interior of one of tho triangles, that arc has no point interior
to the other triangle, since no point of the surface is interior to two tri-
anrles. Conscquently if ﬁx' has the dircetion of the inward normal to one
triangle, it has thc direction of tho oubward normal to tho other. The tan-
gent vectors of Tl and T2 aro therefore opposite ot P, and hence along £

This rcsult shows that our oricnted surfacec is at the soame tine an
orientable manifold in the topological scnsc. It may be reecallced thet the
steps involved werc thesc: +To orient the triangles we cmployod A-veetors; the
latter werc dofinced by mecans of the 77 tonsor, whosc cristence doponds on the
fact that all coordinatec tremsformations have positive Jacobions.

Given eny finite sot of points on the surfacc §, the triangulation can
be made in such a way thot all of thom cre interior points of the triangles.
For overy curvo in the comstruction con be drown so cs to avoid an assigned

firite number of points,

If T and T! arc two triangles of a triangulation, a "choin of tri-

1

anglos" T Tys Tos eee, T = T! can bo found such thet cach member of tho
choin has at least a vertox in common with the following onc. For if we take
21l tho trianglcs that coan bo reached from T by chains, their points mey be

shown to form an open sct. Similorly the points of the triangles not rocch-

able from T, if there wero cny such, would form an open sct disjunct from the
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previous one. As S is connected, this cannot happen, and so the second set

is empty.

48. Definition of rational functions,

An A-Tunction on the surface 8, it will be remembered, can be defined
as a complex point function which is analytic in terms of the complex coordi-~

nates =- or "local parameters", as they are sometimes called.

We shall be interested mainly in A-functions whose domain of existence
is as large as possible. The maximum domain however, which would be the whole
surface S, is ruled out by the following theorem, which in the case of the com-
plex sphere is Liouvillet's:

Theorem: An A-function which is definod over the entire surface is a

et s sttt

constant,

Proof: Let £ = ga+ iy be such an A-function. Consider //1;9(1{9y}
taken once around each triangle of a triangulation of S, the trianglecs being
oriented as at tho end of the preceding scetion. The total integral is zero,
sincc in ovaluating it we inbtograte just twice along each cdge of the triangu-
lation, once in cithor dircction. On the other hand, (46.10) holds for the
integral around oach onc of the triangleos (D represonting the interior of the
trisngle and B its boundary). It follows that the intogral around coch tri-
angle vanishes, and hence £ is constant throughout any one triangle. Then £
must be constant on any chain of triangles, and consequently on the entire
surfacc.

Another proof can be given which uses more of plane function theory,
but does not depend on Gauss's thcorom. As S is compact, the absolutc value
of £, which is a continuous recal function, recaches a maximum at some point P,

Let U be a coordinato neighborhood of P. It is well known that a function
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which is analytic in a region in the plame, cannot have a maximum modulus at
any point of the region unless it is constent. Hence £ is constant in U.
Next, if a function enalytic in a plane region is constant throughout a neigh-
borhood of some point in the region, it is constant in the whole region.
Therefore f is constant on any chain of neighborhoods starting from Us. Thus
f is constant on S.

It may be romarked here that a similar result holds for potential
functions:

Thoorem: A real potential function which is defined over the entire
surfacc is a constant,

Either of the two proofs just given applies herc with little chenge.
(To use the method of the first proof, we would have to note that by the scen=-

tence following (46.10) we have

a
14 / T’ At z0
@ 5X0< ) Gd\ Nx/\/ﬁ - J

and O only if Q) is constanm in D+B.

Here N is any vector in the diroction of noc, and the integrals arce teken in
the sensc of incroasing te This form of the left mombor of (46.8) is clearly
independent of spocial metric tensors and arc-longth paramcters,)

The domeins of enalybicity of the A-functions to be dealt with below
will be tho ontire surface S minus a sot of isolated points. Instcad of "set
of isolated points™ we cen say "finite set of points" without really losing
any generality, for ;n isolated sct on thc compact spacc S whosc comploment in
S is opon (as o domain of analyticity is by definition) is ncecssarily finite.
Functions of this sort do exist et lecast whon S is the complox spherc, as we

knowe.



180

It is necessary first to-consider the behavior of a function which is
enalytic about an isolated point.

let f be a function which is given as amalybtic in some region D, and
suppose that D includes a deleted neighborhood of a certain point P (that is,
a neighborhood of the point minus the point itself). . Let U be any coordinate
neighborhood of P, with a complex coordinate z, Let z = 0, say, correspond
to P. (When a particular point is under consideration, we shell usually as-
sume for simplicity's seke that it has the coordinate O in whatever coordinate
neighborhoods we use. This is to be understood in all that followss)

Expressed in terms of z, f is an ordinary enalytic function f£(z) in
the intersection of D and U. Comnscquently f has a Laurent expansion
(48.1) £(2) = eee ™t a_lz-l +a k ezt azzz + eney
which is valid in some deleted neighborhood of z = 0., According as the num-

ber of negative powers of z actually present in (48,1) is infinite, finite, or

zoro, £(z) is said to have an essential singularity, a pole of order m (where
g " is the lowest power of z that .appears in (48,1)), or & rcmovable singu-

larity at z = O.

Now which one of thosc types of bechavior f exhibits at P, does not
depend on the particular coordinate system U(z)» For if wo take another co-
ordinatc system U!' with a complex coordinate z', the transformation of co-
ordinates from z! to z is represented in some neighborhood of P by & power
series
(48.2) z = c,zt + ¢ z'z +

[ ] 1 2 ®00y
with cq distinet from zeroc. In the corresponding deletoed neighborhood, 1/%

is an analytic function of z'., Since
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we see that 1/% has a Laurent expansion of the form

-1 1
z

(4843) =d_jzt 4 Ao+ dE H g

1
where d__l = l/'cl # 0. The Laurent series for f in terms of z! cen be obtained
by substituting (48.2) and (48.3) into (48.1). It is clear that if a lowest
power of z appeers in (48.1), the seme power of z' will be the lowest in the
series for £(z')e Moreover if the series for f£(z') has = lowest term, then
(48,1) must have one, by the same argument applied to the inverse transforma-
tion from z to z'. Hence if (48.1) has infinitely many negativc powers, sSo
has the f£(z') series. Thus £(z!) has the seme kind of singulerity at P as
£(z).

This fact gives us the right to speek of an A-function f as having an
essential singularity, a pole of order m, or @& removable singularity at a point
without regard to what coordinate system the function is expressed in.

If £ has & pole of order m at P, its Laurent series in terms of a co-~

ordinate z has the form

a
(48.4) f<Z)=;-Inﬂ+ "'+ao+aIZ+ seo o

It may be remarked that the value of & _n varies with the coordinate system,
Only the non-vanishing of & has significance,

Suppose that, contrary to the above, f is givon as analytic at P.
Let its power series oxpansion about P be
5+ gzzz + o ceoy

1

where of course a_ is £(P). Assuming thaet f is not constant, there will be

(48.5) £(z) = o, * &

a Tirst non-zero coefficient, e, after ao'in (48.5). The A~function £ is
said to have an ao~place, or simply an 8, of order m at P. Just as above,
using (48.2), we seo that the positive integer m does not depond on the per-
ticular coordinate z.

At o pole an A-function is said to have the value o©, If the pole
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is ol order m, we speak of an oo of order m.
By the "number of times" an A-function assumes a given value &g (which
may be 00 ) is meant the sum of the orders to which it assumes the value at all

its ao~places.

The class of functions that we shall study are the "rational functions"

on the surface S. A rational function is defined as an A-function which is
analytic on the entire surface, except for poles — necessarily then, except
for a finite number of poles. When S is the complex sphere, these are the or-
dinary rational functions.

By the "order" of a rational function is understood the number of
times it assumes the value oo . From the first theorem of this section it
follows that a rational function which never cquals oo is constant, in which
casc it is said to have tho order O.

No valuc cen be assumcd infiritely often by o non-constunt rational
function. For if £ is rationel, and il it equals o, on infinite number of
times, it equals a at an infinitoc number of points., These points have o
limit point P which is not a pole, since in the necighborhood of a pole the
modulus of f tends to infinity. Thus f is analytic at P, honce constent in a
neighborhood of P, hencoc constant over S by an casy application of the chain
of neighborhoods argumecnt,

However, there is thc following mch stronger result:

Theorcm: A non-constont rational function of order n assumes ocach

complex valuc ecxactly n times.
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Proof: Let f be of order n> 0. By definition, f equals ¢co n
times., It will suffice to prove that f equals zero n times. For then if
a is any complex number, the function f—ao will still be a rational function.
of order n, and will likewise equal zero n times. That is, £ will equal &y
n times.

Lel a trisngulation of class Dl be constructed, no edge of which
passes through any one of the finite number of poles and zcros of f,  Consid-
or a typical triangle T, lying in a coordinatc system U(z). Lot Pj
(7 =1, «oe, m) bo those poles and zeros of f which arc contained in T.

Referring now to the coordinasto systom U(z), we draw m mutually ox-~
terior cireles, El’ ooy Em, about tho points Pj s centers, ecach circle lying
in the interior of T. Lot the circle El’ for examplc, be given by
(48.6) X, = r cos t, x, = T sin t, osts 2w,
where z = Xy + ix2 and r > 0. The rogion inbterior to T and exterior to the
cireles is of the kind discussecd in §46. As a motric tensor in U(z) wo can
take gap = 5“ﬁ

Tho curve

X =r + %1, X, = 0, 0€ !
is normal to El at thc point t' = 0, and it mey be shown thet it is initially
cxtorior to El' licnee the unit veector (1, 0), which is thc initial tangent
to this curve, is the outward ncrmel n°< to the eircle at the point (r, 0).
The unit tangent s% to El et this point determincd by (46.1), is the vector
(0,1). From this it follows that thc circle (48.6) must bc oricnted in the
sensc of incroasing t to havc tro sonsc given by the s parcmotor of $46.

Vo now apply the thcorom cxprossed in (46.7), replacing the £ thore

by the rceiprocal of the present £, and h by the present f. Thus we hove

(48.7) %f- = fdffdz dz = O,
8 g
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where B consista of the boundary E of the triangle T and the circles Ej’ these
m+l curves being oriented according to the s parameters of §486.

Suppose first that f has a zero of order p at P, . Then we can set
zP. h(z),

where h(z) is anelytic and distinct from zero in and on the circle E;.  Sub-

i

f

stituting for £, we find that
dh
_f-?r J z T
The second term on the rlght vanishes, by (46 7) as applied to the integrand

l/h in the region interior to El' As for the first term, we have
2

dz -sin t + 1 cos % . r _ .
IT f oost-.kisin'bdtﬂljdt—‘z‘rrl'
C‘ 0 [

Consequently
[df__ ,
E —f— 27Tplo
/
Similarly, if f has a pole of order q at Pl'

f%—f' = "Zqu'

c
Thus wo have the result %hat

fdf f ~2mi(Fp -3 _a) =0,

whore > P 1s the numbcr of times that £ = 0, and » g is the number of times
that £ = 0O , in the triangle T. A similar oquation holds for cach triangle
of the triangulation. TIf we add the equations for all the triangles, the in-
tegrals along the edges E cancel, Thus we find that the number of times that
£ = 0 over the surfacc S is tho samc as the number of timos that £ = 0O , and

this was what we had to prove.
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A point P at which a rational function f assumes a finite wvalue more
then once, is characterized by the fact that df/az vanishes at P, z being an
arbitrary local paremeter. This is evident from the power series expansion
of T sbout P, since the coefficient of the first power of z in the series is
the value of df/dz at P.
In the case of a non-constent rational function f, there carmot be
more then a finite number of such points P.  Otherwise they would have a
limit point P_. Let U(z) be some coordinate neighborhood of P . In U(z),
df/ds i% emalytic except perhaps for poles. As df/ﬁz vanishes at an infinite
set of points having a limit point in U(z), it must venish throughout U(z).
Hence f must be constent in U(z). This is impossible, since f cannot assume
e value infinitely often,
| A point at which a non-constan# rational function assumes & value

(which may be 0Q ) m times, where m > 1, is called e "critical point of order

m=1" of the function. It follows from what we have just seen that such a

(S

function has at most a finite number of criticel points.

49, The separation of n-valued functions into continuous one-valued functions.

We shall need the following general theorem:

Theorem I: Let H be a commected point sot in a Hausdorff spacc H',
and let K be sny Heusdorff space. Let F bec an m-valued function defined over
H, whose velues are points of K; that is, to each point of H, F is %o make
correspond n distinet points of K.  Supposo that it is possible to separate F
intc n onc-valuod continuous fumnctions, Fl, etes Fn’ cach of which is definecd
throughout H, Then this con bo done in only onc way.

Proof: We mey consider H as & Housdorff space in itself, with noigh-

borhoods which are tho interscctions of H with the neighborhoods of H's  The
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s.ace H is connected, and continuity of a function in the space H is equivalent
to continuity in II considered as a point set in H'.
Wo have to show that if F is separatcd into n one-valued continuous
functions F!, eee, Fﬁ, then theso are identieal in some order with Fl,...,Fn. l
1 ’ it
as Fl. We shall prove that H1 is both open and closed. As H is conneccted, ﬂ
this means that H1 either coincides with H or is the null sct. Evidontly .

Let Hi denote the set of points of H at which F! has the same value

this amounts to soying that if one of the primed functions agroes with onec of

the unprimod functions at & single point of H, the two functions arc identical.

As the two scts of functions do agreo in some order at sny sclected point of i
E, they must agree in that order throughout H, and the theorem will be estab-

lished.

That Hl is closcd is immediate: if two continuous functiors agroe at

a sot of points, they agrec at sny limit of thosec points, because the value of
eithor function ot tho limit is deotermined by the common valucs at the points
approaching the limit.

It romeins to be shown that Hl is open. Lot P be o point of Hl’ and
lot Ql’ cees Qn be the n distinet points of X which are the images.d P under

Fis eees F respectively. Lot V., es., Vh be noighborhoods of Ql, cves Qp

l’
respectively, such thet Vi doecs not intorscct any onc of V2, sees Vﬁ.

Since Fl is continuous, thore oxists a noighborhood Ul of P whoso

ime.ge under F1 lics in Vi. Similarly thorc oxist ncighborhoods of P which we

o1 wees U, ond U, such that FZ(UZ) C Vos wees Fn(Un)  V,, ond Finale

ly Fi(Ui) @A (note thet Fi(P) = Q,, booouse P is in Hj)e Lot U be o ncigh- '

call U

borhood of P cortaincd in all of the neighborhoods Ul’ eses Un’ Ui. O0f course g
Flm) ') Vs eves Fn(U) Vv, and Fi(U) < V. Wo sssert thet U dis in H,

which will mcan that H, is open.

1
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For let P! be any point of U, and let Qi, esey Qﬁ be the images of
P! under Fl, veesy Fn respectively. Then Qi, e, Qﬁ lie in V., sees Vn re-

spectively. As Vi has no poimt in common with any of the other V's, Qi is

the only one of the points Q' which lies in Vl' Now the image of P' under

Fi mist be one of the points Q', and it must lic in Vl' This identifies the

image as Qi. Thus Fi and ?1 have the same velue at P', and so P! is in ng

that is, U is in Hl'

Ry combining this result with that of §39, we obtain a theorem which

This completes the proof of the theorem.

is fundamental for our purposcs:

Thoorem II: Let H be & Hausdorff space which is commected, locally
arcwise connected, and simply comnccted. Lot F be an n-valucd function de-
fined over H, whosc valucs arc points in a Hausdorff spacc K.  Supposc that
cach point P of H lics in a region V(P) in which F can be separated into n onc-
valued continuous functions. Thon F can be scparated into n onc-valucd con-
tinuous functions cach defined throughout H.  The scparation of F into such
functions in H is unidques

Proof: Since H is comnccted, the separation of F into continuous
functions in H, if it oxists, is unique as a conscquencce of Theoraom I. (In
fact, the scparation in any onc of the regions V is unique, for the same rot-
son.) Thoreforc wo have only to prove that a scparation of T throughout H is
pessiblo.

Considering the statcmont of the theorem in §39, we sce that the onc
thing to be settled is that the scparation of F in the regions V can bc con-
tinued locally.

Lot V and V! be an intersccting peir of these regions, snd let W be

any componont of thelr intersoction. The separation of F into n onc-valued

functions in V, snd the corresponding scparation of F in V!, must both produce
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the seme separation of F in the component W.  This again follows from Theorem
I, as W is a connected point set and all the one-valued functions in question
are conbtinuous in W, Hence the separation of F oean be continued locally, and
the theorem is proved.

Briefly, the point has been this: in the theorem of §39 as applied
to a finitely many-valued function @ , 1f we suppose that the one-valucd func-

tions into which § is locally separated are continuous, it is suporfluous to

assumo that they can be continucd locally.

50 Mapping of the surface S onto & sphore,

Assuming that there cxists a non-constant ratiornal function f of order
n on the given surfacc S, we are going to show that S cun bo represonted as a
Riemarm surfacc of n leaves.

Let Z dencte the cordinary complex sphero. Instead of calling the
two coordinates on the sphersc z and Q , &8 woe did at the ond of 844, we shall
usc the lotbors £ (which thoreforc has two moanings now) and 9?

The function £ scts up o mopping of S onto Z:, as follows; to a
point of S at which f has a finite value, we meko correspond the point of >
at which the coordinatc f has that veluc. To a pole of £ on §, we makc cnr-
reospond the point 9) = 0 (the north pole) of > .« Thus we have a mapping of
the entire surfocc S onto the entire sphere Z.

The mapping is n to 1 (that is, each point of >  has n distinct
points of S as pro-images) excopt for a finite number of points of Z, the
imagos of the oriticel points of f on S. Thosc points of Zwill be denotod
by Trj (3 =1, eees N). Each point 7Tj has fowor than n pre-images on S,
including at loast one critical point of the function f.

If wo toke a point of S at which £ is finite, thc mapping cen be ox-

prossed in somo neighborhood of the point by a powor seriocs such as (48.5), in
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which z is some local parameter on S. As for a point where tho funetion
egquals oo‘,the mepping con be expressed in some deleted neighborhood by a
Laurent scrios. But to give tho mapping in a complete neighborhood of such a
peint wo must uso the coordinate ® on the sphere, instcad of the coordinate
f+ Tho function ? (z), definod by P = 1/f when £(z) is finite but not O,
and by (¢ = 0 when f(z) = 00, is readily proved to be analytic, with a zero
of order p whore £(z) has a pole of order pe Thus the mapping of § onto »
is onalytic at every point of S.

Of coursc tho coordinate 99 can be used to describe the mapping, just
as woll as f, whonover the imago point is not the south polc of the sphore.

For that matter, any allowable complox coordinate could be used, throughout its
domein of definition, on the enalybtic manifold which is the sphere z::. How=
evor, wo shall prefer the coordinete f except when the image point is tho north
pole, in which casec @ may be ecmployed. This emphasizes the fact that wo are
thinking of the complex-velucd rationel function f(z), rather than of the anal-
ytic mopping of the surfacc S onto the sphere ji::which is induced by f£(z), al-
though the two concepts arc equivalent.

Going back to the surfaco S for a moment, we consider a peint P whicws
is not @ pole or a critical point of the function f.  Thon df/dz does not van-
ish ot P, or what is the scme thing, the gradient of the A-function f does not
vonish ot P.  Roferring to Theorem III of §43, wo see that £ can be introduced
e.s o local paramoter in some neighborhood of P.

If P is o pole but not a critical point, the function ¢ (z) defined
above is analytic at P, with dsp‘/dz % 0. Henee 1/T (which symbol reprcscnts
0 ot o pole of f) con be introduced as a local paramctor in somo noeighborhood

of P.
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Now let P be a critical point of order m~l, but not a pole. Then in

some neighborhood of P we have

n

m m+1
(5061) £(z) B, * BT tE 2 + esey

where & 7’ O. Hence

- m
f-a =z (am +a g2t ces)e
Let
w(z) = Bt BTt eees
so that w(o) = & 7{ 0. Consider w as an independent complex variable. There
exists a one-valued function of w, % , which is analytic in a neighborhood of
W= e and whose mth power equals w.
. m . . e - . . ..
Since -V@— is analytic in w about w = e and since w is analytic in z
about z = O, (z) is analybtic in z about z = 0. Let
B/ = 2 B

This function of z is eanalytic in a neighborhood of z = 0, and its mth power

i

equals £ - a . Its derivative does not vanish at z = 0, since W # 0.
Consequently -I{/i-’:_a;‘ can be introduced as a local parameter in some neighbor-
hood of the eritical point P. If we call this local paraumeter z!', we have
(50.2) £(zt) = a_ + g™

instead of (50.1). '

Finolly, let P be a pole of order m > 1., Then —W can be intro-
duced as a local paremetor in some neighborhood of P.  This follows from the
provious case if we consider 9? (z) instecad of £(z) ond recall that ? (z) has
o zero of order m at P.

Thus we have shown that about any point P of thc surface S there ex-
ists a locel parameter z! (depending on P) in terms of which the mepping of S
onto Z becomes particularly simplo. If P is not o critical point, the map-
ping is given in some ncighborhood of P by

(5063) £ =gzt
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w.er P is nct a pole, and by
(50.4) 95 = z!

when P is a pole. If P is a oritical point of order m~l1 the mapping is given

(5045) f=a + 2!
when P is not a pole, and by
(50.6) @ = 2™
when P is & pole. Except in (50.%), z' has the value O at D.

Tt is obvious from (50.3) and (50.4) that any non-critical point on 5
has a neighborhood — in fact, any ncighborhoos in which the coordinate z' can

be used =~ which is homeomorphic %o its image on E .

51. The space S as & Riemann surface,

The inverse of the mapping of S onto Z will be denoted by i‘—l.
Under f—l, gach point of Z which is not one of the points 7T1, aevy 7TN goes
into n distinct points on S, no one of the latter being a critical point.
Bach o1 the 7Tj gocs into fewer than n points, including one or ore critical
points.

The symbol Z - T will be uscd for the space obtained from the
sphore S by doleting from it the points Ty eees WN'

Lot Q be any point of Z- T, and lot Py (k =1, «co, n) boc the n
non~critical points of S that correspond to Q. We have scen that under the
mapping of S onto Z, each P].c hss a neilghborhood Uk which goes homeomorphical-

ly into its image, & ncighborhood Vk of Q. Wo take the U, so that no two of

k
them intersect.

Let V be o noighborhood of Q contained in Z - 7T and lying in all

of the V,. The image of V in Uk’ undecr the homeomorphism between Vl-' and U

k Xk?
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will again be called Uk' Thus each point Q in E:: - 77 has a neighborhood
v(Q) whose image under f_l consists of n disjunct neighborhoods, the new Uk’
to each of which V(Q) is homeomorphic. Therefore in any such V neighborhood
the n-valued function fﬁl is separated into n one~valucd continuous functions
by the n homeomorphisms.

Suppose now that N, the number of the points 7Tj, is zero or one.
Then the space EE: -~ JU is simply comnccted. Hence Theorem II of §49 applies,

and we conclude that f-l can be separated into n one-valued continuous functions

throughout the ontirec space E - 7T Thesce one-valucd functions, cach definec
ovor E - 77 , will be called Fl’ eeay Fn.
Each of the functions Fy (k = 1, ess, n) maps the space > - T hom=

oomorphically onto & portion of the surface S,  The part of § which is the
image of > =~ T wunder F, will be callod 8.

The relationship which Fk sots up betwoon 2{: - 7w eand Sk is an anal-
ytic homeomorphism; that is, it is cxpresscd about eny pair of corresponding
points by sctting a local paramecter on one surfacc equal to on analytic funmec-
tion of a local paramcter on the other. This is evidont from (50.3) and
(50.4). It follows that the local paramecters on > - 70 can be introduced
into Sk’ end vice versa. For instancc, f can bo taken as a local parametor
throughout Sk (except perhaps at a single point of Sk’ where the functiom f
may have a simple pole. This happons when the north pole of the spherc is not
cne of the points ﬂ'j, and thorefore lics in E:: - 7T ).

As the functions Fk constitute o scparation of f—l over EZ: - ﬂ’) the
situation is this: tho ontirc surface S, excopt for e finitc number of points,
appcars as the sum of tho n regions Sk’ each of which is wnelytically homeo-

morphic to E - 7T . The cxceptions on S arc the critical points and all

othor points at which the valuc of £ is the same as at somo critical point.



193
Inocther words, if the points which correspond to the TTj are omitted from S,
what remains is divided into n regions in each of which the range of f covers
Z - 7T exactly once.

We have said that the above holds for N< 2. Suppose first that
N = 0, so that f has no critical points, end > =~ T is simply the sphere
> . Then n must be 1. Otherwise the: entire surface S would be the sum of
two or more regions each homeomorphic to a sphere, and therefore each both -
open and closed. This is not possible, since S is connected.

Thus when N = 0, S is topologically equivalent to a sphere, and f is
of order 1; that is, f assumes each complex value, including 00 oxactly onco
on S.

Two anelytic menifolds are said to be "ossentially identical" if an
snalytic homeomorphism can bc set up between them; for then théy are isomor-
phic W%ﬁh regard to topological structure and with regard to totality of co-
ordinate systems. Our roesult may bc stated in this way: if thore oxists on

the surface 'S a non-constant rational function f which has no critical points,

‘thon S is ossentially idontical with the ordinery -complex z-sphere, and the

analytic homoomorphism betwcen S and tho sphero can be made in such a ‘way that
f appoars on the spherc simply as 4he function z.

The condition that £ ghall have no critical points is cquivalent -to
the condition that f shall bo of order 1. Wec havo scon that the first condi-
tion implics the second, and conversoly, if f is of order 1 it can have no crit-
icel points, since at a critical point somc valuo. is assumed at loast twice.

The case N = 1 is not possible. For let Py, eces P, (r < n) ‘be the
points of S which corrcspond to Trlq and suppose, for instance, that Py is a
eritical point of order 1, while PZ’ bess Pr are not critical points. We ‘can

find r disjunct neighborhoods, Ul’ vees Ur’ of these respective points on S, all
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going into a single neighborhood V of 7Tl in the following way: U2, ceny Ur

are homeomorphic to V, and U, is & circular neighborhood of P, with a coordin-

1 1

ate z' such that the mapping of U, onto V is pgiven by

1

(51.1) £ = 7T1 v zi?

(or if 7T_ = 00, the form (50.6) would be used), Now f—l is separated into
1 ) T

n homeomorrhisms throughout E._ - ™., hence in V - TU.. This implies that

1’ 1

- P. onto V - 7T., described by (51.1), can be separated in-

1 1 1’

to bwo homeomorphisms. The familiar properties of a mapping of the simple

the mapping of U

type (51l.l) show that this cannot happen.
Finally we outline the treatwment of the general tase, in which N> 1,

Let C be an oriented simple arc of class Cl joining the points 7T1, o TTII
ir ordor. |

Every sufficiently small circular ncighborhood of an imner point of C
is divided into two parts by C, one part on cach side of C. Let one side of
C be called the right side, and the other the left. Denote by zz:‘ the topo-
lorical space which is obltained from.:z::- T by changing the neil, hborhoods
of points of C to be those parts of the small circular ncighborhoods referred
to above, which are on the right side of C or on C, but not on the left sidec of
C. Then ZE:' is simply comnected, and in fact all the conditions of Theorem
II, §49, are satisfied. As tefore, it follows that f—l scparatles into n hom-
comorphi sms throughout zz:','which we call Fl’ esey Fn'

Now the scparation of f-l by the Fk, along eny arc of C betwecen two
successive points Tf) is the only scparation of f-l irto continuous functions
which is possible along such an arc. This follows from Theorcm I, §49, as
applicd to the arc considored as a spacc in itself.  Purth.rmorec, if we had

]
defined E by rejecting the right halves of neighborhoods of points on C in-

stead of the left halves, the conscquent scparation of f—l would have agrecd
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with one actually obtained, throughout Z ~ ¢ — agsain by Theorem I, §49.
From these two rerarks we draw the conclusion that along eny given arc of C be-
tween two successive points TU each of the Fk possesses boundary values with
respect to arproach from the left, which are the values of the same or another

F, along the whole of that arc.

k

Tet Cl’ ooy CN-l denotc the successive arcs into which C is divided
by the points 77, To each Fk there corresponds another one of the Fk’ name-
1y, that which has the values of the former as boundary values along Cj' Thus
with cach C,j therc is associated a permutation Pj of the subscripts 1, «.v, 1
of the Fk.

The product pjpg}_l is a single permutation which we may Supl.0sC SCp=

arated into cycles.

Lot §~1, «.s, > . bo n copies of the sphere > . We dofinc e

1

sirgle spacce E-' to be thc sum of the _2' .l' with the following modifications:

a peint on E X which is on Cj has as neighborhoods the neighborhoods which it
\

would have on E , together with what would be the left halves of these ncigh-

vorhoods, but on E k instcad of on ‘;.-k’ where kl is dorived from k by pJ.

A point 71' on E ; is idortified with the similar point 7(’ on EM 2"—' seves

where (k, /g , Th, «es) is onc of the cycles mentioned above. A sinsle neigh-

borhood of 7'(j consists of a sufliciently small circle about 71'3., counted on

> X! > 2 s D s eess with its left halfl, however, rcplaced by the loft half

of the some circle on > . 5 > 7. D ot e e
1 -1 "1 _
By mcans of Fk the points of '_>_____" which ccme from S‘] - W are

mapped onto S. The mupring is a homcomorphisms It can be extended so as to
1t
include the points of 2 which camc from the 7T 's and still be continucus,
n
in just one wey. The oxtended mepping is a homeomorphism of the whole of E

onto the whole of S.
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The local paraneter f, or where necessary 1/f, or QYf—ao, or Q/i;?l

"t . 1t
can be introduced onto ? from § by oiwe homeomorphism; Then E is an an-

elytic manifold which is cssentially identical with S.

Now tre construction of :E:? was simply that of an ordinary n-leaved
Ricmann surface of an algebraic function over the complex sphere :Z:. Conse-
quently if on the surface S a rational function f of order n can be found, then
S can be identificd with an n-lecaved Riemann surface over the sphero of complex
muwbers £. Wo may think of S, if we wish, as wrapped around the f-spherc EE:
so as to have the shape :E:f, in such a way that tho n (or fower) points of S
at which the function f assumes o cortain valuc £, all lic above the point of
:EE: corresponding to that numerical valuc f.  Above cach peint 7T on :{::
thore would lie at least onc critiecal point of the function £, of some order
m=1, and such a critical point would appcar on :E:? as a winding-point of m
leaves.

If F is any algobraic function on the ordinary complex spherc of z,
the Riemann surfacc of F, with z or 1/2 or an eppropricte root of z-a  or l/%
as local parsmctors, is an cxample of the typo of surface § wo have been dis-

cussing. Or. this surface P and z arc oxamples of rational functions in our

SCIiSCo.

524 Algebraic rolations,

Lot £ ond h be any two rational functions on S, the ordor of £ being n.
Lot Pis eees Pn bo the n points of S at which £ takes on a givon value, and lct
hl’ covs hn bo the values of the function h at thesc poirts. It is understood
that in the case of a critical point of order m=l, m of the P's stand for that
point, and tho corresponding m valucs of h aro identical.

Lomme: Any symmetric polynomicl P(hy, «.., h ) is o rational function

of £ on the sphero ? .

S
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(A rational function on the sphere is the same as a rational fumction
in the ordinery sense, namely, a quotient of polynomials.)

Since P is symmetric, its value is determined by the value of f, and
hence it is a one-valued function of f. ILet &y be sny regular point on the
sphere, bubt not the infinite point. The h.j will be given by Laurent series in
f-al in some neighborhood of 8y the series having at most a finite numbe? of
terms with negative exponents. This is because f~al is a local paramecter in
neighborhoods of Pl’ eoey Pn. Hence P is given by a Laurent series in f-al
in the neighborhood of 8y

Next let a, be & non-regular finite point; <that is, a point on the

1
A
sphere above which E has at least onc winding point.  Supposc for oxample
that thore are two winding points abovo 8y of orders r-l and s-l, where r+s=n.
Let z, and Zg be local paramcters about those winding points, such that f is
r _ 5 .
1t % end f = a; + Zg. Then in the Zy

neighﬁ)nhood h is given by a Laurent series h = Ll(zl) with at most a finite

given about them respectively by £ = a

numbor of ncgabive expononts. Similarly h = L2(z2) in the Zgy neighborhood.

Let €l and € o be primitive rth and sth roots of unity respectively, say

621T1/r and 627"1/8.. In the different points %y, c 1290 eees é;-l

zl of the

z. neighborhood:f has the same value, and hence corresponding values of h will

1
be given by the series
= = - r-1
hl - Ll(zl)’ hz Ll(glzl)l L LN O ) hr Ll(el Zl).
Similarly we have

~ - - s~1
b= Lp(25), B o= Lo(€025), eves B = Ly(€, T2,)

at the s points in the Zg neighborhood at which f has the wvalue al+z§.

let © be the least common multiple of r and s. Put é't = zi = z;
t t/r t/s
(thus @~ =f—a1). Then z) = g / and By = o] /,and h'.L’ ""hn are

2;i/fb

all equal to Laurent series in & . let € be e If wo substitute €§

for ¢  then &, is multiplied by ét/r and Zy by et/s’ or 2, is replaced by

1
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€z, and z, by €222. Also, f-a, is unchenged. But the change of z, into
E'lzl merely permutes the hl’ cse, hr! and the change of z, to ehzzz permutes

h h . Now P(hl’ cees hh) has a lgurent expension in ¢ with at most

rel? *Ct?

finitely many negative exponents, say :Z:?ﬁ d'j. Since P-is symmetric, this

series remains uhchanged in value when O  is replaced by . € & . Hence

bj E‘j = bj for each fixed j, so tha£ bj = O when j is not a multiple of t.

Thet is, P equals a Laurent series in powers of Gf‘b, or in powers of f-al.
Similarly we could prove that P has a Laurent expansion in powers of*

1/f about the point &) = 00 on the f-sphere, with a finite number of negabive

powers.

Hence'P(hl, cees hh) is a function of £ on the spherc having only

poles as singularities, and therefore P is a rational function of the complex

variable f, as the lemmsa assefted.

Let R(f) denote the field of all rational functions of the complex
variable f.

Theorem I: Let f and h be any two non-consfant rational functions on
the surface S, the order of f being n. Thore exists a pulynomial P(H, £) in
the letter H with coefficients in tho field R(f), irreducible in R(f), such
that P(h, f) = 0 if, and only if, h and f are a pair of values of theso func~
tions at & point of S. The degree of the P(H, f) obtained is a factor of n.

As before, let hl’ ecey h.n be the values of h at the n or fewer points
ot which f has a value f. A polynomial Q(H, f) which vanishes for pairs of
values of h, f coréesponding to points of the spacc and only for such pairs is
defined by
(52.1) Q(#, £) & (H-hy)(H-hy) ... (H-h ).

This follows from the lemma just provod, since the coefficients of Q are sym-

metric polynomials in hl’ esey hh‘
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Let Q have the decomposition

Q(H, £) = PiPy vee Py
into irreducible factors Pj(H, f) which we may assume to have leading coeffi-
cients unity., For all but a finite number of values of £, the coefficients
of the polynomials Pl’ soey PN are finite. Using only valucs of £ for which
these coefficients are finite, it is possible to find for cach fixed J an in-
finite set of number pairs h, £ which cause Pj(h, £) to vanish. (For we can
solve Pj(H, f) = 0 for H.) BEach such number pair mekcs Q vanish and thercfore
corresponds to at least onc point of S.. Thus Pj vanishes at an.infinitc num-
bor of points of 8. Now Pj(h, f) is a rational function of position on the
spacc S (the rational functions on § form a ficld). Hence Pj(h, f) vanishcs
idontically on S, and consequently it vanishes for every pair of valucs h, £
corrosponding Lo & point of S.

k

(P, P_) oboys & lincar rolation
K'm J

Let P, and Rm be any two of the Pj's. Their greatest common divisor

(52.2) (PkPm) = AP, + BP_,

k
whorc A and B arc some polynomials in H with cocfficients in R(f). As Pk and
3m arc irrcducible and have leading cocfficionts unity, thoy are cither cqual
or relatively prime. Theroforc if they are not cquel, (PkPm) is simply a ra-
tional function of f. Since Pk and P, venish togethor for infinitcly many
pairs of values of h, f, (PkEm) vanishes for infinitely many valucs of f.
Put theon (PkPm) rust be identically zoro, which it is not. Henee Pk = Pm.

This shows that

Q, £) = [py(H, D)1,

and if r is the degrec of Pl’ n = rN. Thus Pl is a polynomial P(H, f) with

tho proportics described in the thcorom. That is, the polynomial Q formeod in

(52.1) is cither prime or a power of & prime; and P cen be token to be Q, or
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if Q is not primo, to be the prime factor of Q.

If for a singlc value of f the numbors hl’ ceay hh arc &1l distinect, -
Q must be prime. Conversely, if Q is prime the hl’ evos hn are all distinct
except for at most a finite number of values of f£. For if Q has a multiple
roct for a certain value of £, the greatest common divisor of Q and dQ/aH vean-
ishes for that f and that root. But the greatest common divisor is simply a
rational function of f, and vanishes for at most finitely many.f's. Hence if
Q is prime, hl’ esas h.n are almost always distinct.

If £ and h are such that Q(h, f) is irreducible, h is said to be prim-

itive with respect to £ (we need not write H instead of h any longer to make i%

clear when we are thinking of Q as a rational combination of two independent
complex variables), This haﬁpens for example when the order n of f, which is
the degree of Q in h, is & prime number.

Tn view of what was seid above, we seec that the condition for h to be
primitive with respect to f is that the n values of h corresponding to a given
value of f shall all be distinct, except for a finite number of values of f.
Thus if f is primitive with respect to h, and if we exclude a finite numbor of
points of thc surface S, then to distinet points out of those which remein,
there correspond distinct number pairs (h, £)a Therefore h ig primitive with
respect to f. This justifies us in spoaking of £ and h as a "primitivo pair",

Theorcm TI: If £ and h arc a primitive pair of rational functions on
the surface S, then any rational function on S is equal to a rational combina-
tion (in the ordinary sensc) of f and he

let £ be of ordor n. A set of n rational functions h(l), asay h(n)

arc said to bo a basis with respeet to £ if the determinent

a3
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is different from zero for at least one value of f,

The EE&SE.T(H) of eny rational function H with respect to f, is de~
fined to be Hl * oeee t Hh, By the lemma proved at the beginning of this sec-
tion, T(H) is rational in f.

The square of D ig given by

o = IT(h(j)h(k))l.
As each trace is a rational function on S, D2 is also. Therefore if D2 ven-
ishes for infinitely meny f's, it venishes identically, Hence if h(l),...,h(n)
are & basis with respect to £, D vanishes for at most a finite number of values
of f,

A rational function H such that T(Hh(j)) =0 for j =1, ees, n, is

identically zero, TFor if

thij) *open thr(lj) = 0 (G = 1, eeer n),
then H1 = ees = Hﬁ = 0 whenever D f Oe As the h(j) form a basis, H vanishes
for almost all values of fy The rational function H, vanishing infinitcly of-
ten, must be zero,

Now suppose that g is an arbitrary rational function on S, and thot
h(l), seey h(n) are a basis with respcet to fo  We shall show that g oquals &
lincar combination of the h(j) with coefficients which are rational in f:
(52.3) g = R ey o r®@) (e)n()

In fact, the R(j) are determined if wo multiply by h(k),

O NONGNON
and take traces: ’

(52.4) 1(gn¥)y = ZR(j)T(h(j)h(k)) (K =1, eeus n1)s
/ J

(The n vt.lucs of R(J) corrcsponding to a given value of f are all egqual becausc
R(J) is a function of f.) Since D2 7’0 the last set of equations can be

solved for the R(J), and the lotter will bo found as rational functions of f.
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because all the traces which appear in (52.4)'are rational in f. Finally, the
R(j)(f) thus found will obey (52.3). For

[ (g - ZR'(j)h(j))h(k)] =0 (X =1, eou, n),
and as-noted above, this %eans that
6 - SRORE - o,

To prove Theorem II it sugfices to show that a set of n rational func-

tions of h can be found which form a basis with respect to f. The first n
powers of h are such a set: h(1)= 1, h(2)= h, eeo, hzh)='hp-l. For in this
case D is the Vandermonde determinant, which equals‘7]—(hj - hk)’
(3> k; 3,k="1, vee, n)a Since by assumption f and h are a primitive pair,
D does not vanish identically. fherefore 1, h, ...,‘Hn-l are & basis, and the
theorem is proved. In fact we have shown that eny rational function on S may
be expressed as a polynomial in h of degree less than the order of £, with co-
effic;cnts which are rational in f,

Of course the expression

S
which we have obtained for g is not unique. By means of Q(h, f£) = 0 it may be
trensformed in diffcrent ways.

The final theorem in the group is this:

Thoorem III: ILct £ and h be any two non-constant rational functions
on the surface S. There exists a polynomial F(h, £), irrcducible in the pair
of variables h, f, which wvanishes over S. The degree of F in h divides the
order of f, and the degrec of“F in £ divides tho ordor of h. Any irrcducible
polynomial in h and f which vanishes over § is cqual to F up to a constﬁnt fac-
tor,

Consider the polynomial in h, P(h, f), which mey be obtained according
to Theorcem I: .
(52.5) P(h, £) = h' + ir-l il -A-ci s o

r-1 Bo
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where the Aj and Bj ere polynomials in £, P is irreduciblé in R(f), P vanishes

over Sy and ¥ divides the order of £+ We may :supp6se that A’j‘ B'j- are reletive~

1y prime’s

Doncte the least commop multiple of Buags ¢4¢5 B o by Be Then the

polynomials in f3
B/BI“" ¥ e d, B/B0
are relatively prime.

Now
(5246 pp = Bh® % A-I‘;‘_lhr‘1+ vou + KT,
where A3 = AjB/ij is 8 polynomfal in h and £¢ This polynomial is irreducible
in its twé variaebless F6r if BP can bé factored, not both of the factors can
contain h: otherwise dividing by B, we should have 2 fac"céri‘ng of P with re-
spect to h, whereag P is {rreducible as & pélynomial in h,

The obher possibility i& that BP equald & p€lyhomial in £ times e
pqiyng;nial in £ end h¢ Td that cage the céefficiemts By Al s deeq Al in
(5246) have a common fadtors That is, B and thé AJB/BJ hate a commoxi factor.,
As the B/Bj ‘are relatively primé, at least one of them, say B/Bf’ ‘doe¥ hat have
that fagtor's Then the factol divides Ala Asg AI is prime to Bl' the factoy¥
does not divida B,+ But it aivides B, and therefore also B/Bl' “This is con~
trary to the suppositions Honde BP is irreducibles

Since P vanishes gver S, and #intc BP i8 a rational functidén which
vanishes at any rate where B does nét heve & pole, BR.also vanishes over S.

To shaw that BP san be taken as the F(hy £} in the theorem, we need
only prove that the degree of BP in f divides the order 'of h,

If T is an ifreducible polynomiak in h and f, and If wo arrange P ace -

fording to powoers of hi

w Aot
P C_bh + seon "‘ Cé’
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then ?ybt is irreducible as a pélynomial in h with ceefficients in R(£). For
suppose that

B/o, = 9,Q,,
where Ql and Qz are polynomials in h of lower degree than P. Let Ul end U2 be
polynomials in £ which are cammon multiples of the denominators of the coeffi-
cients in Ql and Qz respectively. Then in

U,U,F = €, (U,0,) (U,Q,)

there appear six polynomials. As P is irreducible it must divide one of the
three factors on the right. Since all of the latter are of lower degree in h
than P, this is impossible.

let BP be arranged according to powers of f, and let B*(h) be the co-
efficient of the highest power of f in BP. By the above result BP/B! is ir-
reducible as & polynomial in f. Furthermorc it vanishes over S, and its high-
est coefficient is unity.

By Theorem I there exists a polynomiel T(f, h) in f, irreducible in
R(h), venishing over S, of a degrec dividing the order of h, and with leading
coefficient unity. Sihce BP/B‘ end T are both irrceducible, zero over S, and
of loading coefficient unity, they are identical. This is scen by cxactly
tho seme argument as the onc bascd on (52.2), with BP/B', T instead of Prs Ppo
Honce the dégree of BP in f divides the order of h.

In the same way it is seen that if any polynomial with the propertics
described in the last scnmteneo of Theorem III is divided by the coefficient of
its highest power of £, T is obtained. Consoquently the most gencral poly-
nomial with these properties is found by multiplying T by the least common mul-

tiple of the denominators of its coefficients. This disposes of the unique=-

ness clause in Theorem III and completes the proof of the theorem.
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let £, h be a primitive pair of rational functions on S, f being of
order n. We have seen that there exists gn irreducible polynomial Q(h,f) of
degree n in h, with coefficients in R(f), such that
(52.7) Q(h,f) =0
when, and only when, h,f are a pair of values at a point of S. Except for a
finite number of points of S, distinet points have distinct pairs of values f,
h. It cen be shown that if we start with (52.7) defining h as an algebraic
function of f, and construct the n-leaved Riemenn surface for h over the f-
sphere in the way in which it is ordinarily done, we will obtain precisely the
surface S or Ei’? Thus S is really an algebraic Riemann surface (assuming the
existence of a primitive peir), as was remarked neer the end of §51.

If £ alone is given, and not h, it is still possible to find the form
of S as & Riemann surface over the f«sphere. This is just what was done in

/.

§§Sd/and 51. Thus the Zi-/found there and the Riemenn surface of (52.7) are
the same. An implication is that for a given f the Riemann surface is inde-
pendent of the rational function h, provided h is primitive with respect to f.
However, different choices of f can lead to different prescntations of § as a
Riemann surface.

Suppose that f,h and f£',h' are two primitive pairs on 8. By Theo-

rem II,

r
Rl(f',h') Jf' Ri(f,h)

(52.8)

n
1

(£
¥

Lh
where Rl’ Rz, Ri, Ré are rational combinations of two variables. If in Rl we

replace £, h' by Ri(f,h), Ré(f,h), the result is a rational expression in f and

Rz(f' ,ht) Lhr Ré(f,h)

h. As this expression equals f for the infinite number of pairs of values f,h

corresponding to the points of §, it equals f identically. Thus R}, Ré are the

inverse expressions to R,, Ry, and conversely. Hence (62.8) is a birational
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transformation in the plane of two complex variables, carrying the algebraic
curve represented by (52.7) into the algebraic curve Q' (h',f') = O, where Q'
is the irreducible polynomial satisfied by h', f' on § according to Theorem I.

The ordinary development of this entire theory is the reverse of that
explained in the present chapters The usual starting point is an irreducible
polynomial F(h,f) in the two complex variables h,f, of some degroe n in h.

For cach value of f there are in general n distinet values of h. Locally on

the f-sphore thesc valucs are separated into n continuous functions. A Rie-

P

mann surface 2 /is constructed on which these soparatcd funmctions join into a/
/

singlo one-valued continuous function h (with poles). About each point of

this function has a Leuront expension with finitely many negative powers, in

terms of £, or exceptionally in terms of l/T or a root of f or 1/T. If we

h g //
think of f or 1/% or the appropriate root as local parameters on Z. we arrive

Ve
at an enalytic manifold on which f, h are a primitive pair of rational func-
tions. That is, the situation at the end is that which we took in this chap~-

ter as given to begin with, and vice versa.

CHAPTER X

INTEGRALS

53, Topology of the Surface S

Tt will be necessary in the remainder of our work to take into ac~
§Z§£; the spieicl tdpological forsi of th. connceted, oricnted, bicompact sur-
face S, With respect to this we merely state the well-knovm result, referring
for the proof for instance to Seifert-Threlfall's Topology.

The topology of S is determined by the valug of a non-negative inte-

ger p, the genus. If p = O, S is homeomorphic to a sphere. If p> 0, § is
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homeomorphic to the interior and boundary of a plane polygon :rr.of 4p sides,
who8e perimeter [ has the following identifications of points.

First, all of the 4p vertices represent a single point P. Second,
the sides are labeled in order 8y bl' =ey. -bl; &g b2’ ~8,, —bz; cee}
ap, bp' -ap, =b_« The points of &y taken in their order witlr respect to the
positive sense of description of !ﬂ are identified each with one point -of “8y
the latter being teken in order in the negative sense along =2, The notation
83, "8 jndicates this. Similarly, as a point travels clockwise along bl' the

1

seme point travels counterclockwise along‘-bl; and likewise 8o ~8n3 ese}

\
|
bp, --bp are "opposite pairs"., Each opposite pair can be thought of as a cut

in the surface S, starting and endipg at the same point P.  When these 2p cuts
are made, S opens up into the form of the polygon _777
; Given a simple arc on S, the 2p cuts can always be mede in such a way
that-no one of them intersocts the arc. Furthermore, thc cuts may be assumed
‘ to be curves of class D1 onn Se

The genus coen be calculated from a triangulation of § by the formula

(5341) K --Ofl + 0(2~= 2..";,[:,
where fﬁo, Cli, 012 aro respectivoly the numbor of vortices, cdges, and tri-
sngles in tho triangulation. Tho gonus is independent of the particuler tri-

angulation (we shall have a proof of this fact in §58). Homeomorphic surfaces

have the same gonus, and conversely.

We can now derive Very easily an interosting relation between the

order n of o non-constant rational function f on S, the gehus p of S, end the

-
points of 2 ).
p

Conside S in the form of the Riemarm surface ZZ with respecct to f,

sum w of the .orders 'of all the tritical points of £ (or of all the winding
which is constructed out of n sphoreg dver the spherd’éi as explained at the
I
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end of §51. Take any triangulation of :E: such that all of the points 77 on
Ei_ appear as vertices (the points % are those above which the winding points
of :z:”are situated), For this triangulation Gfo - 5(1 + 0(2 = 2, since the
genus of the sphere Z is 0. P

Repeat this triangulation on each of the n spheres from which :Zj
is made. The result cen be seen to be a triamgulation of Eiidi Now each wver-
tex, edge, and triangle on - appears n times on Zi/t once for each sphere,
with this exception: a vertex 7 on :Ej above which there is a winding point
of order m=l (i.e., of m lcaves), is identified on m of the spheres and there-
4
fore gives rise to onec vertox.on.fi instead of m. That is, a vertex on :Z:
v/

below a winding point of order m-l goes into m~1 fewer vertices on :Z:‘Ithan if
thore were no winding point. Consequently the value of a(o - c(l + 0{2 for

r

2? is n times the value for :Z , or 2n, less the sum of the orders of the
d 4
winding points of P 5

or wo By (53.1),.
2 -2p=2n - w,
or w=2(n+p-l).

The formula shows that w is always even, and that it is the same for

all functions of o given order on a surface of given genus.

54, An Existence Theorem

The truth of the following theorem on the existence of potential
functions defined ovor the entire surface except for prescribed singularities,
will be assumod. For the proof reforence can bo made to C. Neumann's Lecturos
on Abelien Integrals, socond edition, or to Weyl's The Idea of the Riemann Sur-
face.

Consider a complex coordinate neighborlood on S, covered by & co-

ordinate z. Let C be a simply comnected rogion which togother with its bounda-
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ry lies in this z mneighborhood. Let M be a closed 'poiht set lying in the re-
gion C. In our work M will be either a single point or a simple arc.

Let F(z) be a function of z which is analytic in C=M and which has &
certain kind of singularity at M. For us this will meen, when M is a point,
that F(z) has a pole of some order at M, TWhen Mis e simple arc, with end-
points a, end a,, F(z) will be some branch of log[(z-al)/(z-az)]. (The latter
function does have distinet brahches in the z plene when a simple arc joining
8, to a, is removed, )

The imeginary part {4 of F(z) is & real potential function in C-M.
The existence theorem states that a real potential function ‘,1,/ can be found
which is defined over the entire surfece S except at M, and which within C-M
differs from \”/l only by -a real potential function (Il/_?_ which has a removable
singulerity along M (i.e., Y, is a potential function in C~M having limiting
valués along M such that if the latter are uscd to extond the definition of
W, toM also, ‘f/a becomes o potential function in the whole region c). In
other words, if the given L,’/I ) which is a potent'io.l function in C-M, is modi-
fiod by the addition of & suitable \}Jz ; the latter being a potential function
throughout C, thon the sum l,’/l ++ t/fz can be extended to be a potontial func-
tion \,’,’ over the whole of S-M. Or another way: if a 'potential function is
given locally with & singularity of a cortain type, = socond potontial function
cen be found which has tho same sihgularity but is defined over the entire sur-
face, and which differs from the first, where they are both defined, only by &

potential funetion without singuloarities. Or most briefly: o singularity of

a cortain type being nssigned, there oxists a real potential function ‘// hav-

ing that singulerity and no other on S.

Both \f/ and lj)’z are uniquely determined up to the seme additive

/ /
constant once \//l is given. For if we find other functions k/f’ and y/z with
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the same properties as Y/ and l//,_ , then
/ /
= =
Vo=¥i* Yoo IR ST S
within C-M, and consequently
/ /
s = -
¥~ y’ ([/2 y’z
’
in the same region. Thus Y - Y can be extended to be & potential func-
/
tion in C. But q/- ¥ is then a potential function over all of S. By
. s
the second theorem of §48 ¥ - ¥ is constant; and S#z - 972 evidently
equals the same constant.

The existence theorem spplies in a similar way to the real part of

F(z).

55, Definition of Integrals

To explain the sense in which the term "integral® will usually be
used_below, we may as well go back to & more general space of the sort contem~
plated in §37, since the definition applies quite directly in any such space.

Lot aj be a real or complex covariant vector of class Cl in a region
D of en n-dimensional space, such that curl aj = 0 in D. Let D' stand for an
arbitrary simply connected sub~region of D. By the thoérem of §37, aj is the

gradient of some scaler point function dj in D', so that

0y —
(55.1) 2¢/Ix; =
Also, é? is uniquely determined up to an additive constant by the formula
&
(55.2) i; Q) = f ajdxj + conste,
|
2]

where P, is & fixed point in D! and Q is a variable point. We can say thet
@5 is determined when its value is assigned arbitrarily et e single point of

Dt.



T -

211

If on the other hand D' is & non-simply connected sub-region of D, &
scalar @ with the above properties may or may not exist.

Now the scalar (§ is called an integral in the given region D. of
course @’ only becomes a determinate scalar point function after a sub-region
D', and a value for 4? at some point PO of D', have been selected arbitrarily
(and perhaps not even thep, if D' is not simply connected).  But no matter

r
what choice is made for D! and for Hf(PJ), the gradient of é@ at any given

point is always the same, being the value of aj et that point, Thus the in-

finitely many different scalars represented by the letter é@ have in common
the gradient aj.

The cssentisl thing about an intogral is perhaps its gradiont, rather
then the scalars which have that gradicnt. But it is convenient to have the
name "integral®™ for the set of scalars.

Let aj, aé, ees be a finitc number of gradients (i.ee, vectors with
vanishing curl) in a region D, end let ¢, ¢!, «ss bo an equal number of com-
plex coefficients. The linear combination

Aj = oaj + c'aﬁ + eve
is again a gradient in D. If F, 45, %’, «+s are the integrals corresponding
respectively to Aj’ aj, al, see, WO writi '

F=c @} + c'f@ T see o

-

In any sub-rogion D' in which i@, gy, eee have doterminations as onc-valued
scalars, F also has such a determination, and the last relation holds to with~
in an additive constant. This cxplains what it moans to say that a linear
combination, with complex cocfficients, of intcgrals in a given region is

again on integral in the samc region.
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Consider again a real potential function ‘jj which id defined on the
whole surface S except at a closéd point set M, such as was discussed in the
last section. According to §45, in any simply connected sub-region of 3~M
there exists another real potential function 93 which is conjugate to (l/'
so that 9& + 1 &}/ is an enalybic function. The conjugate potential @ is
determined by the formula (45.6), snd its gradient is given by the Ceuchy-
Riemann equations (43.7). Evidently in our present terminology @ ig an in-
tegral in the region 8-M. We may add that & + iy is a complex integral L

in the same region. In any simply connected sub-region of S-M we have the

formula e
(65¢3) L(Q) = a[' dx ¥ oonst f 4 — :.Q-———- )dx *+ ponste
XJ J
P

as in (55.2), and ‘:?Lt has already been mentioned that
(5544) ap/Ix = dyp/Ix, | 3?/&%2: ~dyp/dx, .

Let S be represented as a polygon 77- with a boundary /‘7‘ (If the
genus of S is zero, no polygonal representation is necessary; we may think of
7_T a8 identical with 8, and of 1!“? es the null set. The x‘nodificatio‘ns which
are necessary in the following discussion when the genus is zero will not be
mentioned whon they are casy td supplye)

As noted in §53, we can assume that r and M do not intersect, so
that M is in the interior of Tf Let M! be a simple arc of class D:L which
lies, cxcept for its ondpojnts,in tho interior of JT -, and which has one end-
point on M and the other at the first vertox of F (iece, the vortex which
lies betwecen the twe sides -bp and al). The simply comnected region on S ob-

tained by deleting [ » M and M* from S, will be cdlled. D',
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In the region D! the infegral L is an analytié function with the

imaginery part ?J) uniquely determined except for an additive constant. Now
L is/given by the integral of {\)L/‘ "55:1 . *axj, as statéd in (55.3). Because
of (55.4) and the fact that I is a petential function throughout S-M, the
gradient 2 L/ a xj is conmtimious in S-M, and im particular on (ﬂ . Thus the
integrand for L is continuous not *only.in DTt, but also on the part of the
boundary of D! which is (ﬁ. from this it cen bs shown easily that L has a
uniqﬁe limiting value at each point of the boundery (ﬂ) and that these boundary
values are continuous. The only exception is the first vertex of [j. There
L has two boundary values, corresponding to approach from the two sides of M!?,
It is understood that we aré now thinking of ?rr.as‘a plane polygon without
identifications of points of'its poundary. '

The wvalues of L along [ ' mAy be calculated by means of the line in-

-
tegral (55.3) teken along {“ as well as along-curves in D',

4
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The value of I, at a point of 8y minus the value of L at the coxres~
ponding point of =8, is called the jump of L. across a4 Or «a&,4 Or &Crogs the
cut -on S which 8y and -8y represents The amount, of the jump does not depend
on the particular point selected on & and =83 for if another point is bteken,
the difference of the values of L at the two points on & is equal to the dif-
ference at the two points on “Bqe This is because the two differences are
given by the integral (55.3) along a; between the two points on &y, and elong
~aq between the two points on =8, respectively; end the integrand is the same
in both casos, as the gra&ien’c ::} L/ (\..xj is known to be one-valued throughout,
S=M.

Thus the jump of L across 0, may be calculated by (55.3), or as we
may write it, by f&L, taken betwoen axry two corrosponding points on By and
“0qe Let us take the two points which are the endpoints of bl’ and integrate

equals j‘dL taken clock~

1
wise along bl. If we adopt the convention that integration along F is to

-~
along b, Then we see that the jump of L ‘across a

be performed counterclackwise, we havo the formula

3

(5545) Jump of L noross e, == de along b, 3

where 27 = 1, weas Pe For the above evidently holds for any one of the Y
[
sides of |
In e similar way, but meking use of the fact that f dL along -a,,
is equal to = { dL along a, ,we ;find that
(5548) Jump of I, across b, = fd‘L. along &,
Thus the 2p jumps or periods of the integral L may be evaluated by
means of de taken along the 2p cuts in the surface S. The jump across an

e, cut is found by inbegroting along the corresponding b}, cut, and vice versa.
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Just as above it may be shown that L has continuous boundary velues
along each side of the curve M!, the endpoint of M! which is on M excepted.
Furthermore I has & jump across M' which is constant all along M'.

We have been spesking of L as an integral in S-M derived from a real
potential function sp by means of (5543). But even if L is any integral
whatever in S=M, real or complex, all the remarks that we have made about the
cxistence of definite jumps across the o, , the b], )and Mt still hold. 1In
fact our arguments were applicable to any such integral.

Let G and H be any two real or camplex integranls in S~M, and consider
their determinations (up to additive constants) as sealars in D'. Wo wish to
evaluato bedH token oround iﬁ,“ At the first vertex of fﬂ, G may have two
#istinct valucs, and H likewise, but that will not affect the value of erdH.

To bogin with, )

~ . \ fi ~ [ ) [
(55,7) [L.,_O/,/—/ = 7 (/ +2 J + / +
;1 Y=y Q‘V' 1%/ "a"y ‘;«éj )
GdH being supplied behind, the integral signs. Now
(5548) {/ + [ = // - !f
4 v . J
CTe e ey

+

@
where the last integration is meant to be performed clockwise along =8 . Let
G end G reprosent the values of G at corresponding points of 0 and -, Tro-
spoctively., As the gradient of H is the ,same at corrosponding points of 8y
and ~a,, Wo may replace the second member of (55,8) by

{ (6" - ¢™)an.
v
i Ccl
But G' - G~ is the constant jump of G across ,, ond by (5545) it oquals ~ | dG.

Conscquently the above oxpression equals the product

- [dH L4 [dGo
Y
‘1

~%

%
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In the same way we find that

Is : -
S J{ = | a® / dGe
é -2 2
Hence by (55.'7-)’, 3 # - W
(5549) deH=:._>__ ( jdG[dH- de/dG).
=y # .
! 173
r v Izy > A:,J

This formuls shows that for any two integrals G and H in S~M, the valuer of
9

j~GgiH around | is determined by the values of the periods of G and H, end
in fact is equal te-the mbove simple quadratic polynomial in thé periods.
So far as the discussion has gone, the periods or jumps of integrals

in S-M may depend on the particular choice of the cuts a_, and br and of the

g

curve M!.

56. Integrals of the First and 8econd. Kinds

P We shall go back now to the analytic function F(z) introduced in §54.
It has already been remarked that the point set M cemn be supposed to lie in
the interior of the polygon TT. Restricting if necessary the simply con-
nected region C which contains M, we mey essume that it too lies.in the in-
terior of Tfﬁ In addition, it cen be shown that C may be so restricted that
its boundary is met by M' in only one point. Then thé region C~M-M?, con-
sisting of the points of C which are not on M or on the part of M' lying in C,
is comnnected.

The real potential funetion in C-M which is the imaginary part of
F(z) was called 7L‘, . It was stated that a second real potential function t7!/2_
exists in C, such that W, + kII/l can be extended to ‘be & potential function
Y in S-M. Then certainly Vo= Y, + {7, in C-N-M'.

Now the integral L, or rather its determination as a scalar in the

region D', is an analytic function in D! having the imaginary part SU . In
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particular, L(z) is analytic in C-M-M' Wwith the imagidery part ¢

The region C is simply connected, and L,l/z is a poténtial function in
C. By the theorem of §45 there exists in C an analytic fufiction F2(z) having
klb‘l as its imaginary part.

The function F(z) + Fz(z) is analytic in C-M, énd hence in C-M-M',
and its imaginary part is t}/, + L//l But the seme was said for L(z), since
A Y/, = ¥ 4in C-M-M'. Thus the analytic functions L(z) and F(z) + Fz(z)
have the same imagimary part in the conhected region C-M-M'. In visdw of the
Gauchy-Riemann equations, their real parts have the same gradient in C-M-M',
and hence differ at most by a constant. Therefore
(56.1) L(z) = F(z) + F'z(z) + const,
in C-M~M': '

The right member of (56.1) i3 in fact analytic throughout C-M. TI%
follows that the jump of L along M! is zero. Consequently the definition of
L can be oxtended to all the points of M! ekcept the endpoints, in such a way
that L becomes analytic along M!.

We hove now resched this coriclusion: when the integral L is derived
by starting from an anaiytic function F(z), L has a determination as an anai-
ytic scalar throughout the doubl§: conneéted region obteined by subtracting M
from the interior of TT Going béck to the surface S, this meems that L is
representod by a one-valued snalytic function all over S-M, oxcopt that along

the 2p cuts a_, and b, the function is two-valued, with-definite jumps.

v
In (56.1) Fz(z) is regular in C and therefore on M. Consequently L

has the same type of singularity on M és the given analytic fumction F(z) has.
Suppose that instead of #(z) we start with chother function

F(z) + ’F:(z), where rf"(z) is snalytic throughout C. Let "72; be the imaginary

part of FT. We know that to the ime.ginary part l{/, of F & certain (Y, can be
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added such that %ﬁ +-Ky2 can be extended into a function ‘W in S-M. Hence

Lo

to the imaginary part ' + 4 of F + F the function Yy = ¥ cen be added

haad

such that the sum ( |} + (]/ ) + (\ffz - W) or Y o+ /4, can be extended into

the same k#’ in S-M. As noted at the end of §64, the process of extgnding
the imaginary part of en enslytic function into S=M, when possible, is essen-
tially unique. &:?}b

Therefore if & certain F(z) gives rise to an integral L, and if F is
modified by éhe addition of any functiom analytic in C, the modified F will
give rise to exactly the same integral L.

By definition the imaginary part of L differed by at most & constant

which was a one=-valued potential function over S-M. Hence the jumps

from kp,
H

or periods of L are 2p real numbers.

By extending the real part instead of the imaginary part of-F(z) it
is possible to construct a different intcgral L* in 8-M which has 2p imaginary
jumps. Just as in (56.1) wo have
(5642) L*(z) = F(z) * Fp(z) + const,
in C-M, where F; is analytic throughout C.

The difference L - L' is an intogral in $-M. From (56.1) and (56,2)
it is ovident that this integral (or its gradient) has only o romovable singu-
larity along M. Honce L-L* cxtonds into an integral which has no singulari-~

ties over the ontire surface S. Such an inbtegral is said to be of tho first

kind., Of course not all of its jumps can bo zero unless it is constant. In
foct, not all of its jumps can bo recal; otherwise its imeginary part, and
hence the whole integral, would be constont. Similarly an integral of the
first kind whose jumps are all imaginary is merely a constant. In the present
case, o8 L and L* have real and imaginary jumps respectively, L—L* has compléx

jumps, and it is not constant unless the jumps of L or of Lf are all zoro (which
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they may be, however ).
On e surfece of genus zero the only integrals of first kind are the
constants. For as the whole surface is simply connected, eny such integral
nes o determination as an analytic function on the whole surface, end hence

must be constant.

Suppose that the point set M is & single point, with the coordinate
z = 0, and “that F(z) equals h?./éT; 7° being a positive integer and a, & com=
plex number. The corresponding integral L is called en elementary integral of
the second kind, and 1s denoted by LYKQ; M, ar-), where Q is & peneral point on
S. It has just one singulariby on the entire surface S: a pole of order ™
gt the point M. Its jumps are all real,

An integral which has one or more poles but no other singularities on

the surface S, is said to be of the second kind. If its jumps are zero, it is

e rational function (plus an arbitrary constent).

(If an integral when determined in a certain region has a pole at a
certain point Ql of the region, it will have & pole of the some kind atlQl when
determined in any other region containing Ql. This is bccause in any neigh-
borhood of Ql, any two detorminations of the integral differ by & constant.)

Let L be eny integral of the second kind having & pole of order r at
M, but no other poles. By the "principal part" of L with respcct to the co-
ordinate z is understood, as usual, the torms with negative powers of z in the
Laurent series for L about the point M. Evidently by forming & suitable linear
combination of the eclementory integrals Ll(Q; M, al), vees IN(Qs M, ar)’ we can
obtain an integral of the second kind having tho same principel part at M that
the givon L bas. Then the differonce between L aﬁé the linear combination is

an integral of the first kind. That is, tho most genoral integral of the sec-
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ond kind having a pole only at M is & linear combination of elementary inte-
" grals of the second kind with poles st M, plus an integral of the first kind.
If I has only reel jumps, it actually equals & linear combination of elementary
integrals., For since Ll, cvoy 1F also have only real jumps, the integral of
first kind must in this case be constant.

More generally, we see in the same way thet an arbitrary integral of
the second kind equels & linear combination of elementary integrals of the sec-
ond kind, formed at the various points where the given integral has poles, plus
an integral of the first kind. The latter will be constant, and may be omitted,
when the given integral of second kind has only real jumps. '

Of course Lr(Q; M, ar) is en elementary integral relative to the co-
ordinate z. If we used another coordinate z' about the point M, and formed the
integral L'" (Q; M, al) having a;/?fr as its principal part at M, we should ob-
tain another integral then f(Q; M, ar). (For when expressed in terms of z,

-
the principal part of L may contain other negative powers of z than the low-
est.) However, it follows from what was said just above that 'Y is a linear
combination of Ll, Yees L.

Naturally, instead of teking the elementery integral$s Lr(Q; M, ar)
with real jumps, we might have used the second construction, extcnding the real
instoad of the imaginary part of ar/zr over S, to obtain other elementary inte-
grols of second kind, 1@ M, a:), with imeginary jumps. What has been said

about the L¥ applies with only obvious changes to the L*r.

57. Elementary Integrals of the Third Kind

Suppose finally thet the point set M is a simple arc, with endpoints
whose 2z coordinates are 8y ond 5 and that F(&) is some branch of

log [(z-al)/(z—az)] in C=M. By our first construction we obtain from F an in-
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tegral La a in S~M with only real jumps across fﬂ (and by our second con-

172
struction an integral L: a with only imaginary jumps).
172
The integral L, , @ppears from its definition to depend on the pari
172

ticular coordinhate z, but actually it does not. For let z! be another com~

plex coordinate in C, and let ai and aé be the z! coordinates of the endpoints

of M. Then the equation of transformation from z to z! in C may be written e&s
z' - al = (z-al)A(z)

or as

(57.1) z' - 8} = (z—aZ)B(z),

where A(z) and B(z) are analytic in C. Neither A(z) nor B(z) can venish in C;

for if A, for exemple, vanished when z = &, we should have dz'/dz = O for

Z2 = & and if A venished for some other value of z we should have two dis-

l;

tigct values of z corresponding to the seme value a! of z'.

1
Dividing, we have

zt~al zZ=8
1

1

zt-al Z2=8
2 2

G(z),

where G(z) = A(z)/B(z) is analytic and never zero throughout C. As C is sim-
ply comnected, log G(z) ®en be defined as & one-valued and analytic function
in C and hence in (=M. For a proper choice of the branch in defining log G(z)
we then have

P AR R z=6

= log
z'-aé z—az

log + log G(z)

in C¢Me That is, F(z) as formed in the z coordinate system differs only by a
function analytic in C from F(z') as formed in the z! coordinate system. But

we sew in the previous section that the integral L derived from F(z) is
172
« Therefore L really does not de-
*1%2

then identical with the integral L, ,
172
pend on zZ.
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The function F(z) has & jump of 27 i in crossing M. But as is well
known, the derivative, and hence the gradient, of F(z) may be extended so as

to be analytic at every immer point of M. Thus the integral Ly o is anal=~
172

ytic on the whole surface S except at the two points a, end a,, where it has
logarithmic singularities.

Let M' be another simple arc, joining 2, to some point aé, and lying
in a region C' covered by a coordinate z'. Suppose that M and M' together
form a simple arc N. Let aé and aé be the z! coordinates of the ends of M'.

let L be the integral considered above, eand let L_, , be the similar in-
182 #2%3
tegral derived from log [(z'—aé)/(z'-aé)] in C'-M',

The sum

L =L + L
alaé ala2 ale

1at
273
is an integral which is analytic over S except at Bys 8o and aé. This in-~
tegral has a jump of 2TU'i across N (it may be shown that the sense of crossing
to obtain this jump is the some along M as along M').

/,
In the intersection of C-M and CA-M', L, . is equal to
173
Z=8 z'-aé
+ log
z=8y z'-gé

(5742) log

plus & function analytic in C/{] C'. The transformation from z to z! is ex-
pressed by en equation of the form (57.1), where as before B(z) is analytic and
not zero, Consider a neighborhood of &y lying in the interscction of C-M and
C'-}!, which as a result of the removel of M and M' is in two discomnected
parts, one on each side of N, In either part

(6743) log (z'~a}) = log (z-8,) + log B(z).

If we write (5742) as

log (z-al) - log (z-az) + log (Z'Tﬂé) - log (z'-aé)

geme momas s

Ly S

sy Jursmnens mmgme = <5, 5%

EF B
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end use (57.3), we see that L___, is equal to
#1%3

(57¢4) log (z-al) - log (z'-aé)

flus a function analytic in the above neighborhood with the arc of N not ex-

d

cluded. But as for (57.4), different determinations of -it differing by 2Wi
would be used in the Ywe disconnected parts of the mneighborhood.

Now each term of (57.4) is analytic at &, Thus while different
branches of the terms may be used on the twe sidel of N, the derivatives are

ore~-valued and analytic even on N, Hence the gradient of Ly, a:’ and the in-
173

tegral itself, actually has no singulerity et #,. At e, and a}, however, it
does have logarithmic singulerities.
5 *
The jumps of La ot across rﬁ are all real. By #sing La o and

173 - 172

* we would obtain a similar integral with none but imaginary jumps across

L
8385

.

. More generally, let a and b be any two points in the interior of the

polygon T]n and let N be a simple arc joining a to b and lying in the interior
of 77i Then we can construct an integral Lab which is- regular on the whole

surface S except at a and b, where it has logarithmic singulerities. This in-
tegral has a jump of 27 i ‘across N, and real jumps across rﬁ. Similarlj, an
L:b can be constructed with a jump of 2T i across N and imoginary jumps aciose
fi The mothod would be to separate N into a finite succession of ;ares M,

M!, M"% ..., lying in successive regions C, €!, C", ... covered by coordinates
z, 2%, z", .e. o Just as before we would set up integrals in the successive

regions and prove that their sum is an % or an L;b as required.

Ab

The integrals Lab and L:b are called elementary integrals of the

third kind,
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’

Employing the above integrals of third kind, we shall show that non-
constent integrals of first kind exist on eny surface of genus greater than
zero. This fact was not established in the previous section.

Drew a simple closed curve E on the surface S. Let a, b be any two
points of E. Call the two gimple arcs into which a and b divide E, ﬁl end No.

Construct es described above the integral of third kind, L, . which
has legdrithmic singularities at a and b, and only real jumps except for a jump
of 21ri across Nl. Construct dlso the similar integral Lia which has the jump
of 2T 1 across Ny. (The constructions &f Lab end of L, may require the use
of different polygons [ﬁ,)

The sum

—

L= Ly * Ly,
is an integral on S which has no singularities et & and b, and hence no singu-
Jarities whatever. This may be proved by the method used earlier in this sec-

-
tion. Thus L is an integral of first kind. It remains to show that L is not
constent.

The imaginary part of Lov has a determinetion as a potential function
on the entire surface, except for a jump of 2T across‘Nl. This is because
Lab hed no idaginary jumps other than the one across Nl‘ Lik;wise the imagin-
ary part of Lba is o potentinl function on § oxcept for a jump of 2T sacross
Nza It follows that the sum of the imaginary parts of Ihb and Lba’ and hence
ths imaginary part of L, has n determination as a potential function on S, ex-
cept for a jump of 2T across the simple closed curve E. (It cen be proved
that this jump occurs in the seme sense, on crossing from one side of E to the
other, all along E.)

Thus the imaginary part of L is & one-valued potential function on

the surface S minus the simple closed curve E. There are two possibilities:
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either E separates S, in which case S-E consists of two disjunct regions; or
E does not separate S, and S~E is a single region.

If E separates S, L will in fact be constant. For_if we take the
above determination of the imaginary part of L and modify it by adding 27 in
the proper one of the two regions into which E divides S, the result is a po-
tential function over the whole of S, and hence a constant., Then the gradient
of L is zero, and L is constant.

On the other hand, suppose that E is a non-separating curve on S.

If L were constant, any determination of its imaginary part in any region on S
would be & constant. But the above determination of the imaginary part in

S-E is not constent, as it has a jump of 2T across E. Thus L is not con-
stant. This proves that non~constant integrals of first kind exist on surfaces
of positive genus.

Consider a polygon {ﬂ formed for a surface S of positive genus,.

The sides &y and -8y of fﬁ are represented by a non=-separsting curve on S.

In consequence of the discussion above we see that there exists on S an in=
tegral of first kind having a jump of 27 i across a?'but no other imaginary
Jumps on rw‘ If we divide by £ 27 i we gcen say that there exists an in-
tegral of first kind with a jump of +1 across a, s its only real jumpg OF
course any one of éz. sees ap, bl’ PR bp might replace &y in the last state~

ment.

58., The Linear Space of Integrals of Firft&Kind

Given a surface S, let V be the totality of integrals of first kind
on S, Since a linear combination, with complex coefficients, of integrals of
first kind is again an integral of first kind, V is a linear space with respect

to complex coefficients (or, similarly, with rospect to real coefficients),
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The constant integral must be -considered as the zero element of this sfias®.

We shall show that the dimension of V, that is, the maximum number of integrals
of first kind which are linearly independent with respect to complex coeffi-
cients, is the genus p»

Lemme 1; Let a set {w} of elements w be a linear space with respect
to complex coefficients. if {w} has e finite dimension ‘g with respect to com-
pléx coefficients, it has the dimension 2q with respect to real coefficients,
and conversely. ‘

Proof: Suppose {w} has the dimension g with respect to complex co-
efficients, and lst w-,....,'wq be a badis, Then'wl, ...,:yé. iwi,...., iwq
are readily seen to be a basis with rTespect to.real coefficients. Hence® {w}
has the ‘dimension.’2q with Tespect to'real coefficients. Conversoly, if-{w}
has the real dimension-2q,:it has-a finite complex dimension q"§ 2g. By the
first, casec, 24' = 2q. Honce %w}»has the complex -dimension Q.

Let a polygon {7 be constructed for S. TDenote by ;v (7 = 1,004,D)
an integral of first kind having a jump of <+l across a,,,, but no other real
jump. Also, let ;f+3’ be an integral of first kind having a jump of +1 =eross
b_, as its only real jump.

Now %&, rrey gép are linearly independent with respect to real cool-
ficicnts. For .if Qfseves qu are real, the integral
(5801) v = clgi Feivee * cngép

has o roal jump of ¢, across a, and a real -jump of c across b, . If the

v pt+ ¥

s's arc not all zero, v-cannot be constant,
Furthermore, let v be eny givon intogral of first kind, ond let

Crreesss CZP be the real parts of the jumps of v &crosgs &y, «.es bI,...,bp

a
b
respectivoly, Then (58.1) holds, becauso the difference of the two membors i:

an integral of first kind without roal jumps, and hence a constont.

S

- e
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~~ Yot g * ’ .
Therefore vl, sees Voo are & basis for ¥ with respett 'to real coeffi+

cients, and the real dimension of V is 2p. ) By the lemma, the dimension of V

with respect to complex coefficients is then p. = On-any surface, the number

of linearly independent integrals of first kind is exactly equal to the genus.

Incidentally, the last statement is a proof of wh;t was remarked in
§53, that p does not depend on the particular triangulation of the surface.
For the number of independent integrals has nothing to do with any triangula~
tion. A similar proof is implicit in the formula at the end of §63, except
that we do not yet know that non-constant rationel fun¢tions exist on’any given
surface.

Our next step depends on a less simple lemma:

Lemme 2: An integral of first kind which has no jumps on the a,
lines (or, the b, lines) is constant.

Proof: Let ?? + i{'}f be a detormination of the given integral in
1he polygon _[T, Then @ + iy/ is an analytic funetion in 77 which may
have jumps on the b,. lines, but none on the &, lines. And the potential
functions ? and l// may be considored as dotorminations of real integrals in
TT for whose jumps the samoc can be said.

Wo now usc (55.9) applied to §L and ‘f/ as G end H. In view of

/
. linos, we soc that ?ij/ = 0,

(5545) and our hypothesis about jumps on tho a.

Let a triangulation of class ‘Dl be made in the polygon .l ; in such
a way that the totality of odges of the triangles includes the whole of [ﬁ
Praceecding as in the proof of the first theorem of §48, we deduce that 9’/ and
\‘n'x are constant. The only diffc?ronco is that here fg) 61(%" around all the
triangles reduces to fgb L{/lll around F) instead of vanishing ciiréo'bly, when

account is taken of the cancellations due to integrating back and forth along

conmon edges of adjacoent tria.nglo:?.. But since (CP (/y/ = 0, the final con-
g
r’c
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clusior is quite the.same here as in §48. Hence the ‘given imtegral is.con-
stant.

Let v, ees ;-'fvl') be a basis for the spgceV (considered from now on
as, & linear space with respect to complex coefficients). Represent the jump
of v, (X = 1, .eps, p) across the line ayg’(V = 1, aeey P) DY *"6’0(/1/ ) and

* ' /
the jump of w!'  acrass hy. by To(

v
Let
o =3 ? .e ; .
(58.2) . V-2 AT] et AP'VL!)
be & linear combingtion of the y! with complex coefficients A, . Then the

jump of v across &y is the same linear combination of the, jumps -of the v!,
across p g ,that.is,
(5843) A'J.Q;l/v‘ hoees ¥ Ab-g’l:i/; -
and similarly-the jump of v.ecross b,, 1is
- S A ’L”_.;Vt*,.f + pr'r;V
This mey be seen directly, -or else with the help of formulas (55.5) end (55.6).

Ve
A first conclusion is that the determipant ! C\J«p of the a

v
jumps of & basgis‘v', ~.cemnot vanish. For if it did, .we could find numbers
Biyaeey Ap for which (58.3) would venish for gll the values of 2/. [Using
those Atd in (58.2) we would have en integral v without jumps on the e, lines,
and hence by Lemma 2 a constant. This is impossible, because the v'  are lin-

’
sarly independént. Similarly ’ T@: v ‘, cannot vanish.

If we set

S
~ Vi 4
: Vo Z A Ve where ’AY : , 7{ 0,
« gz «ﬁ ~ 8 ) "‘ 'e(P
we obtain a new basig Vys eses ?p' For:the p integrals v, are agein linearly

independent. The jumps of the o BOTeESs & and zbf are given by

y
, ; L o /
D A"‘“ﬁ% md T, = 7 A}prrﬁy

respectively.
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Since (‘.. o( '% 7! ‘0, the coefficients Au_P can be so chosen that
(58,4) o’;p = Qo )
In fact, |LAaf11 is simply teken as the inverse of {léjgv H, When the

matrix of the a, Jumps has thus been redused to the identity, the matrix of

the bl’ jumps becomes symmetric, so that

(5845) T = T .

oY Y
We can prove this ds follows.

Let' v, end 'vp stand for two analytic functions which are determin-
ations of the integréls v, eand 'Vf'; in the polygon Tr Let W be tri-
angulated ds in the proof of Lemma 2. If we integrate Ve dvﬁ around all
the triangles and use the Cauchy inkegral theorem of §46, we find thet

fv of dvp = 0.

{‘1
From (55.9) 11; follows that

fdv [ dv, - f avy / av.,
z, / |
)

5 (- Tan e;w Ty ) = 0.

¢ sostituting (68.4), we derive (58,5).

7/ /
By (55.5) and (55;%),

Summary: The linear space V of integrals of first kind on a surface
of genus p is of dimension p. .A basis of p integrals Vs seos vp can be
selected for V in such a way that the matrix N 6’;_‘/!{ of the 8, Jjumps is
“ho it matrix, end the matrix ” X {1 of the b;, jumps is symmetric aad

ron-singular,

59, Differentials

The sum of sn integral of second kind and one of first kind is stil)

.en integral of second kinds The sum of &n elementary integral of third kine}
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and an integral of first kind i# said to be of third kinds An integral of
second or third kind is termed “Hormalized" if it has no jumps on the &, lines
(of a given polygon ™).

Let I be an integral of second or third kind, hatving e jump of A,
across a ., In

v -

Alvl + eee *+ Apvp
we have an integral of first kind with the same a,, jumps as I,  Hentd

Ite I~ :E.Ad'vd
is an integral of the same kind .as I, having the same singularities but with—
out a,, jumps. That is, an integral of second or third kind can always be

normelized by the subtraction of a suitable integral of first kind. ) ’

Consider an integral L which is a linear combination with complex
coefficients of a finite number of integrals of first, second and third kinds.
(i course L may itself be an integral of one of these kinds, or it may be a
rational function (plus an arbitrary constant)..

The derivetiwe d1/dz of I with respect to & complex coordinate z is

called a Pdifferential®. A differential does not have the character of a
f2int function, therefore, but of a covarient vector in a space of one (corw-
plex) dimension, and necessarily of a gradient. For if we took another co-

ordinate z'!' instead of 2z, we would have

52,1) aL . dLa
dz* dz dzt

The differential derived from L is one-valued (as & vector), just as

the ordinary gradient of I is. In fact there are the relations
L _ 0L _1 0L

== X2,

dz P x 1 33{2

e

where z = X *+ ix2 » between the components of the differential and the gradiexn:
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By essumption the siggularities of L are poles and logarithmic singu-
lerities, or sums of these. It follows that .dL/dz, when-determihed in.any
specific coordinate system z on the surface S, is an analytit function with no
singularities other than' poles.

To say that a differential has a pole or a zero of a certain order
at a certain point, is an invarient statement. This follows from (59.1) if we
express by power series the three functions involved (ef. (48.2) and (48.3)),
end keep inmind thet dz/dz! is snalytic and not zero. . A finite value of a
differential, other than zero, changes with the coordinate system. (Even the
number of times the value is assumed may change.)

A differential which is not identically zero has at most a finite num-
ber of zeros and poles.

Let L, be a second integral like L, but not a constant, From the

1

-transf;rmation law (59.1) it is clear that the ratio
. d

(59.2) e N /%
of the two differentials derived from L axd LI=is an invariant, & complex point
function oh S. Since cach differential is analytic in any given region except
for poles, the some con be said for-the ratio. Hence £ is a rational function
on Se.

If L and L1 are linegrly dependent, so that L =‘cL1 + conste, where
¢ is a constant, then f is constont, Conversely; if £ hes a constant value c,
the gradient of I equals ¢ times the gradient of Ll' ond hence L = oL1 + conste
and the two integrals are linearly dependent.

Now L and Ll con surely be taken to be linearly independent; for ex=
amplec, L may be cof sccond kind and L1 of third kind, It follows for the first

time -that on any given surface S therc exist rational functions which arc not
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constant, This gives content to the discussion of §§48+51, To perform &

similar service for part of §52 we shall prove that for any given non-constant

rational function f there &xisgts :a rational .funotion h such that f,h are &

primitive pair,

Let f be of order n. Let fo be a value which f assumes at n dis-
tinct points Pl’ eves Rn' We shall construct a rational function h which
assumes the value hj (3 =1, see, n) at Pj’ the hj being n distinet but other-
wise arbitrary numbers. Our statement will then bo proved (see the discus-
sion before Theorom II, @52). ‘

In some neighborhood of Pﬁ' f .can be imtroduced as a complex coordi#
nate, since no P, is & criticdl point of f, Construct the clementary integral
of second kind L(j) which has as its orly singularity a simplc pole atb Pj with
1/(f~fo) as principal part. -

P Consider the rational function

p(3) g a9 ar
dz dz !
the quotient of the differentials of the integral L(J) and the rational func-

tion f. -In the neighborhood of P,, if we use f as the coordinate z, we sec

J
that

o(0) el e
ag - (£-f,

)<

so that F(J) has o double pole at Pj with --1/(1‘-£‘"Q')'2 as principal part. At
Pys weer Py 3y Pryys euer By on the other hand, 73) 55 regular, since LU) ig
regular and df/dZ i not zero.

The desired function h may be defined by

= 2p(3)

h = -% hj’(g—fo)

For the j th summbnd evidently‘is a rationdl function which oquals --h.j at P
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and vanishes at all the othér.P's.

We réeturn to the integral L, the general linear combination of inte-
grals of first, second and third kinds. Let f,h be a primitive peir of ra-
tional functions on S.

The ratio of the differentials of L and f is & rational function.
Consegquently according to Theorem II of -§52,

%-E- = R(f;h) —g— '
where R(£,h) is some rational combination of f and h.

It follows that
(5943) L = f;l'{(f‘,h)d_f.

The integration can be performed along curves in (at least) any simply conmect-
ed region in which“dL/az has 1o poles. If we denote the rational function
R{f,h) simply by g, we may write instead

(59+4) L= ufgdf.

It is possible ts prove -convefsely that if g and f aré any two ro-
tional functions on S, f not being ‘constant, them .(59.4) defines an intogral L
which is a lincar combination of integrals of first, second end third #inds.
Expressing g as e rational combination of f end h, ‘whore h is primitive with
respect to £, wo havo the eduivalent form1(59.3).

Now -(59¢3) -or'«(59¢4) emoumt to the ordinary form of -definition of on
"Abelian integral™., Hence tho three kinds of integrals thet we have been dis-
cussing, and the linenr combirations of them, are the same thing-es Abelian

integrals.
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60¢ The Riemann~Roch Theorem

- .~ o

We have already proved ithat there exist nori=éonstant rational fume-
tions on eny given surface- ¢ Our object now. is to obtain some idea of how
many such functions there are on, the surfaces In particular, what freedom is
there in assigning the poles?

Let Py, eees P be T distinet -points, where r.2 l. Our first ques-
tion will be: Do there exist rational functions-which are analytic at every
point of S other than the‘Pj'(«jf 1, eees T), end whi¢h.at Bach of the Pj either
_are analybic or have simple poles? .This:of course is not quite the same thing
as asking for rational functions with mssigned-simple poles.

The set of all rational fumctions which have nd ®inpgulerities except
perheps simple poles at the Pﬁ’ ¢onstitute a linear ‘space &r & *“module" W with
respect to complex coefficients. This space contains et least the constant
$unctitns. our. answer will be given as a formula for the dimension of W,

lLet 8 be represepted as’ & polygon jjr with the Pj in its interior.

Let zj be & complex coordinate .covering a neighborhood of Pj‘

Construct en integral of second kind, Lj’ which has a simple pole at
Pj with principal part l/Ej, but no other singularity. We may assume that Lj
is normalized; as describcd,at:the boginning of §59, 'so that it has no jumps

on the a_, linses, In the work below,,L‘_j will stand for some spocific deter-

v

mination of the integral Lj in the polygon ?7..

Consider e rotional function £ of the space We Let the principal

part of £ at P, be cj/%j, it.being understood that cj moy be zeros.

J
<
The difference betwecen f and AL‘Gij hos no singularitios and is
therefore equivalent to on intogral of first kind. As there erc no jumps on
the a . lines, the lattor integral equals some constpnt k. That is,
(60,1) £= G Lyt sen * oL, + k
(cfe the end of §56).
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This formula gives us an upper limit for the dimension of W -' For
since any element of W can be obtained by some choice of the.complex parameters
%, ooep 0, &, the diriensidn of W is.et most r+l, However, it cen be less
than r+l, This is not because. distinet sets of values of cj, k may furmish’
the same f; indeed, this camot ‘happen, for 'LI, ceey 'Lr’ 1 are linearly inde=-
pendent, as is readily seen by considering their pvles.

The dimension of W can bé less than r+l because, while any choice of
values .for the paremeters yields .a normalizéd integral of second kind with mo
singularities "but "simple poles 'at the Pj {or a bonstan’c), it does not necessar-
ily yicld a one=valued function. Int‘fact; wo can say that r+1 is the dimen-
sion of theé module of mormalized integrals of second kind which have no sihgu-
larities that are mot 'simple poles -at ‘thd Pj (more pre¢isely, the dimension is
r, for the.additive constant X -in.{60v1) Yobs not change f considercd as an in-
tegral o s

Our problem thus becomes, to dotormine what condition must bo laid-
on tho cj in order *that the integz.'al f in (60.1) shall be ‘equivnlent to & ono-=
velued function, . In- other words, for whet ‘cj will the jumps 0f £ all bo zoro?
As £ has no a, jumps, this means: for what valuos of the o5 will the b,
Jumps of £ all be zero?

Let the jump of Lj- across b,, be denoted by Py (3= 1, vevy T3
7 = 1, eeey D)o -~ Thon the jump of f across b, equals ch Piv )and the
condition on the oj becomes
(60.2) Oy Flig * som + . Pry =0 ("= 1, veey D)o
At this point we can already say tho't if v is .groater than the genus p, °5 not
all zore ton be found satisfying (60.2),"and hence there will &xist non-con-

stant rational funections with not more thax r poles, all simple. -
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The rank of the matrix i PJ 3 1t 1s some number between O and p.
Denote it by p= T, where O < T €p. Then (60.2) has exadtly r = (p= T)
linearly independent solutions cj. 1et °j (2 1, sees r=p¥ T ) be such in-
. e
dependent solutions.
The r-p+ T +1 rational functions

2 1

Sij ! fr-'p+ 741"

1

fo
are & basis for the module W, For they are linearly independent, because the
Lj end 1 are linearly independent, and likewise the gj. Furthermore, any f
in W is of the form (60.1), in which the o ‘are expressiblo linearly in torms
of the ogj; hence f is exprossible linearly in terms of fl’ Y ?r-p+?’+l'

We have now provod with Riemenn that on a surface of ‘genus p, the

linoar space W of all rational functions having at most simplec pdles at r giv-

en points as singularitiocs, is'of dimension rep+ T +1, where 0'§ fst.

It might seem from the definition of the integor T +that its value
depends on the special choice of the polygon r’ , or of the coordinates z;.|
about the pZ)ints Pj’ or of the integ;'als Lj (although actually the Lj are
uniquely dotormined when r ahd the zj are fixod). But in view of the formu-
la of Riemann, it is evident that “~ deponds on nothing but the set of m points
Pj’ An interprotation for T was added to Ricmemnn's result by Roch, and we
shall now develop this.

let P be an arbitrary point within the polygon TT, end let & be a
complex coordinnte about P. Write L for the normalized integral of second
kind having e simple pole at P with 1/[2 as principal part, as its only singu-
larity. Any one of the Lj is an integral of this sort.

At the end of §58 we had esteblished the existence of a set of p in-

tegrals of first kind, v, ("X = 1, eees P), which formed a basis for the module

V of all integrals of first kind on the given surfaco. We saw that the jump

of v o OCTOSS &8 _, could be assumed to be d

7 x Y
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The differential derived from an integral of first kind is ¢alled a
"differential 6f first kind"., Such a differential is ”éna‘ly:biC ove'z: the whole
surface. * The differentials of first kind constitute e linear éphce of dimen-
sion p. * For an arbitrary integral 'v of first kind is given by
(60437 vE Ajvy f oee ¥ i\pv;p, ’
where the A's' Bre complex parameters., Differentiating, we find that -

av . dv dv_’
(6044) -J;:=A1—~4...+A £
The" dv/dz on the left- is &n arbitrary differential bf first kind, + It canmot
be zero, beceuse the v which eppesrs in (60:3) is hever e constin€. « Hence the
differentials 5f Tirst kind are a modulo’ of diméision'p, and in fact the dif=-
ferentials of the v can sorvé as a basis for this module. +
Once more, consider & trifngulation of cless ¥ .in "the polygon T

]
such that the whole of the bowndary’ [ appears: among the edges- of the trie

angles. Let the point P bo interiof to #oms tridngle £ lying in' the C, co~ "

ordinate system.

Consider the result of integrating 1L dv,, eabout all the triahgless
On the one hand, this reduces e flv,dvd\' . On the other hand, 'dev&':u van-
ishes about every trianglé' other tlr:an A7, by the Cauchy integral thoorem.
About A we have to évnluate

( d\z o
(60.5Y) SR 'dé
The integrand has a simple’'polé at é = 0, with the residue {d'v;x /d'é] 2 =0
It may be shown as in’ the proof of the last thoorem In §48 that the talue in

question is +2'Tr}(: *times the residue, &+ Hexncd

{ {dv‘o;
Jiav, = 2Wif—s=, e
P al " 3$=0

(This relation may seem impdssible, sincé there is =an ‘inveriant on the left

but not on the right. ' It should be rethembered, hoWwdver;, thit the relation is




true only for a special coordinate C in terms of which the principal part of

L is 1/().

Here we meke our third use of formula (5549):

nLdv SE_(JdL

N .

av, - | av, de)_.
a £,

Since v
(4o =5 [ a -
=~ yav, = Oe('z/ and - d. = 0

’g’b‘

(1 is normalized), this Becomes

JCLdvof =.- thdLo
e

Ry
Our conclusion is that

(60.6) de = 2T [
0(,
Thus the jump of L ecross b, is determined by the value of the differential

dv

=1, o

of v 4 at é
- The above computation holds in particulgr for each of the integrals
Lj' The 'simple pole of ’Lj was et the point Pj,the special coordinate < was

zj, end the jump of 'Lj 8cross b was called IOJV . Hence

Pip ==t il T“lz 0"

|

The rank of h f)dpi was p= [ . Thq renk of

} (..‘v= ]-‘p"lq.nﬂpx 3 = }’-0.0lr)

(6047) [

' b ey
is therefore p~ T also, and of course the rank of the transposed matrix is the
same.

The linear space of differentials of first kind wes of dimension p,
and an erbitrary element dv/dz of this space was given by (§0.4) in terms of
the basis dvv /dz. Now the set of differentiels of first kind which venish
at all the points l?l, see¥ Pr ore & linear subspace (it may be recalled that

the vanishing of o differemtial at a point.is inveriant, and even the order of




vanishing is inveriant)., The condition for a differential dv/dz,’giVen by
the parameters A, in (60¢4), to vanish at all the Pj is

.dv:L dvp
(60.8) Al[ a—;:' ]Z =O+ ece * Ap[ a'é“- ]Z =O =0 (J - 1, ecey I‘)o
J i i 3
The matrix of this system of r equations is the transpose of (60.7), -and its
rank is p= TU. Hence there are p - (p=7T) or T linearly independent solu-
tions A, .

Roch's interpretation of the intéger 7" in Riemamn's formula has now

been derived: T is the dimension of the linear space of differentials of the

first kind which vanish at all of 'the points Pl‘ cesy -Pr.

So far we have only discussed rational functions which have simgle
poles at certain given points. The ‘more general ‘result is the folldwinge -

Riemamn=Roch Theorem: On & surfaée of gemus p, let r distinet points

P1s ooy P be selected, Iet a positive integer m, (J = 1, 'eses T) be as~
signed to the point Pj’ ond let'm + .o+ m 2 m, The set of rdtional func~
tions on the surface which have nd singularities &t points other than the Pj'
and which at Pj- have either nc singularity or elsc a pole of order not more
than mj, constitute, a lincar sphce of some dimonsion 'T. Then

(60.9) T=m=-p+"T +1, where O € T <« The integer T
is determinod by the point set 'PJ. and tho corresponding numbers mj. It may

be interpreted as the dimension of the linear spoce composéd of all differen- "

tinls of the first kind which venish at overy one of ‘the points Pj’ and in fact

vonish to et least the order :mj at Pj.--
The proof of this theorém is very similar to the proof of the special
caso in which all the mj ‘are equal to 1, which has already been given. There-

fore it will be enough t6 show in what way the goneral proof would differ from




240
the special one. This can be sufficiently illustrated in a particular case,
say where m, = 2 end the other m's dre all &qual to L.

It is convenient to write 'r=1 for the.number ®f distiret points "in-
stead of r. Then the m 8f the theorem becomes the same az r. -let & point
P. be introduced which is identical with Pys Yo that P1 oW eppears m, = 2
times emong the Pj'

The linear space W is now the sét 6f ell rational functions f which
hdve no singularities except perhaps simple pdles at Py eeey Pr-l and & simple
or a double pole at Py

The integrals Lis «oes thl are the same as they were, But for L,
we take the mormelized integral 'of secofid kiﬁd.Liz) which has a double pole
at Pr = Pl with prinecipal part 1/q%: and no other singularity.

‘Given &n f in W, write cj/'zj £or the prin¢ipel part of f et Py
(1< j<r), bub clybl + cr/bi for the principal part of f at Py. Equation
(6041) “thon holds, and Riemann's pert of the thedorem: follows as béfore.

The intogral L in the néxt discussion must be allowed to have .a podle
with principal port 1/ g 2. In that oase the integrend in (80+5) has s res-
idue 8t { = O the quan.tityf[dzvd/dgz]Z ;b’ the coefficiont of the linear
term in the expansion of‘ay}()ﬁ.i in powsis of & . Then the first derivative
is replacod by the second within *the ‘Brackets in: :(60s5)s

The matriz (60.7) bécomes

d'V" . ‘d}T.z, d‘ZEVV
2 YUY =LA S e (B = dyesarD)e
T Ty 200 @l A0

The condition for a differential dv/dz given: by (60s4) to vemish at all the
P 18 (60.8) With j = 1, e, T=1, and thé zcondition for its venishing at Py

+o be of second order is
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dzvl dzv
Al[ET]z =0t e Ap'[""%]z =0 = O
21 1 dzl 1

There are T linearly independent solutions to these equations. - Hencé T is
the dimension of the module of differentials of first kind which :';Szénish to at
least the second order &% Pl and to at least the first order at Pz..‘...Px'__:iw *
The proof of the theorem is now complete.

Perhaps (60.9) is better thought of as a relation between T and T
rether than as a formula for T in terms of 7° and the other 1letters. For T

does not seem intringically simpler than T.

6l. The Brill-Noether Reciprocity Theorém

This section contains several results commécted with the Riemann=
Roch theorem.,

let £ be & non-constant rational function of some order me. - Let
Py f.., P, be tho m points at which f assumés a value & (a point P where
f = a p times is understood to be repeated p timeés in the list, and a similar
convention will be used for the zeros of differemtials)e *

The number T of the Riemann-Roch theorem has & certain value T'(2)
for the set of points Pl, ‘"iPm (more precisety, for the r distinct points of

the sct Wwith their essociatod multiplicities whose sum is m). The value. of

T (a) is independont of a, - Otherwise stated, the number of linearly inde-

pendent rational functions having poles at most whére f has poles, is the same
a8 the number having poles &t most whére f has any given finite value.
Lot Q) » «ve» Q be the poles of f. TWo must show that the mumber of

linearly indppondent- differentials of first kind which vanish at least at

Ql'.‘.,cn,,. Qﬁ'ﬂ. i§ ‘the same as for Pl. fc.',,“Pm. b
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* 1~ 3
Take a basis dvj/dz (3 =1, ves, T {00)) for the linear space of
*
differentials of first kind venishing at least at the Q's. Now (f-a)dvj/dz
ig still e differential of first kind, say d?r'j/dz; (The corresponding inte-

gral of first kind is given by

et

*
[ dv

v = | (f-2) dz + const,
| (eme) g

The integrand is amalytic even where f has a pole, since dv*/dz has a zero
there of at least the same order.)

The d'{r/j/dz gre linearly independent, and they vanish at Pl’ evas 'Pm'
Consequently T (a) 2 T (00). Similarly by teking a basis of T (a) differ=-
entials venishing at the Pts ‘and multiplying them by 1/(£-2), we would prove

that T (00)2Z T (a)e < Hemee T (a) = T (00) as assertéd.

Let a differentisl dv/dz # 0 of first kind be given, which we may
'call’ ?D Suppose that its zeros are at certain points Pis eoes Pys not neces-
sarily distinet (so far as wc know up to now, the number t of these points mey
be 0). Imogine these points separated in any way into two sets, say Pl""’Pm
and Pm-f-l’- eoos Pro Let T and 7 be the numbers referred to in the Riomenn=
Roch theorem for tho point set Pj (3 = 1L, eew, m), and let T7, 7 be the cor-
responding numbers for the Py (k = mtl, ceey Tle ¢

(One, or conccivably both, of the point sets mby be vacuous. - In
that case the two numbers in question arc 1 and p respectively.)

Teke o bosis 7),’, .oes @.,, for the linear space of differemtials

of first kind vanishing at least at the P 5° Lot

a + ees D e
(6141) £ = R4, = f-_%’ .

where the a's Bre complex nmumbers. Then f is & rational function (cfe (5962))0

Its poles arc at most the points Ps for although the donominator 37 vanishes
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also at the Pj’ the numerator vanishes at the Pj likewise.
Conversely, let £ be a rational function with poles at most at the
Pk'
As q% s sves q3z are 8 basis for such differentials, there must exist co-

Then £¢ is a differentiel of first kind hdving zeroa at the PS.
Ki

efficients &,, wee, 8o for which (61l.1) holds. Thus (6l,1) is a formula, in
terms of ‘T” parameters al} seey B ) for the module of rational functions f
which ore infinite at most at the Pj. This proves that Tf = 7.  Similarly,
- /
T="T.
Applying (60.9), we have:
/
T =T +MWMm=p+4d,
/
T =T # (tmy-p+1s

Thegse two formulas are the statoment of the Bridl-Nocther rcciprocity theorem

(or eithor formule alone would bo enough)e

- Adding, wo find that

L

(61.2) t = fp - 2,

A differontial of first kind on a surface of gonus p has oxactly 2p=2 zeros.

Anothor proof of (6142) is as follows. Lot £ be somo rational fume=
tion, of order n, having none but simple poles. (1f fl"is a rationgal function
with simple a's, 1/(f;~a) is an £ of the dosired type.)

The difforential ?3 has no poles and t zeoross The differential
df/ﬁz has 2n poles, becauso & simple pole of f becomecs a double pols of df/az,
ond o point which is not a pole of f doos not Bocome a pole of df/dz. The
number of zeros of df/dz is A/ the sum of the orders of the critical points
of fo TFor a zero of df/dz comes only from &”eritical point of £, the order
of tho zoro being tho same as that of ‘the eritical point; ond every critical
point of f does yiocld zeros of df/dz, since tho poles of f are not critical

points.
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The quotient of differentials

@
e T F

df/hz

is a rational function, 1f no zero of 97 coincides with a zero of df/ﬁz, the
number of poies of F is evidently 4/°, and the number of zeros is t + 2n.
Since F, as & rational function, has the same number of zeros as it has poles,
t + 2n = M.
This equation is still true even if some number of zeros of 99 and df/dz co-
sncide, for then that number is subtracted from both sides of the equation.
At the end of §53 we found that
(6143) 2~-2p=2n - A,
Eliminating n and 4 between this snd the previous equation, we obtain (61.2).
Otherwise considered, we have here a new proof of (61.3)s (It is
true that £ was required to have simple poles, but the result is easily seen
to h61ld just as well for the arbitrary rational function fl from which £ was .

derived. In.fact, f. has the seame n and W’ as £.)

1

On o surface of genus O, the only differential of first king is the
one which is identically zero., On a surface of positive genus, we shall
prove, it is not possible. for 0ll of the -differentinls of first kind to vanish
simulteneously at any peint.

For suppose that they all do venish et some point P. Then in par-
ticular, all tho differentials of the basis dv,/dz, ees, dvp/dz vanish at P,
Construct o normalized intogral L of second kind heving a simple pole at P
with principel part l/@; in somc -coordinate system f; about P, and no other
singularity. Exactly as in the previous section, (60.6) holds., Henco L has
no jumps on the by lines, and since its a jumps are zero also, it is equiv-

alent to a rotional function. This function L is of order 1, for it has only



one pole. As in §51 we conclude that L has no critical points and therefore
the given surface is of genus zero, contrary to hypothesis, The last step
might also be made to depend on (6143), as n = 1 and 4/ = O for the function L.

In the case of a surface of genus 0, (604,9) reduces to

T =m+ L.

Teking m = 1, we see that there exist non-constant rational functions of order
1 on the surface. By §51, this proves that any two of our surfaces which
have genus zero are essentially identical with the complex §phere, and conse=

quently with each other,

62, Abelian Integrals of First Kind

Let £ be o rotionol function of order n on & surface S. As de-
scribed in §51, S can be represented through the agency of f as an n=~leaved
Riemann surface over the f=sphcre Zf .

Toako two distinct points o and b on :f: ond let Pl’ acey Pn and
Ql' coey Q be the points of S that correspond to them. The.Pﬁs and Qt's will
all be distinet unless a or b is a branch point on :?_ (that is, unless a or b

is below o branch point of the Riemenn surface over .. ).

Join & to b by o curve Cab of class D1 on ‘Ef, no one of whose points,

except porheps & or b, is a bronch point, Then those points of S which cor-

respond to the points of Cab can be separated into n curves of class Dl Joining
the points Pj (j = 1, eses n) to the points Qj in some order, let us say P; to
Q. Py to %2,’.1., P to Qn. Thesc n curves on S, which may be called Cj'
would be the projections of Car, onto the Riemann surface,

-

Let L be on arbitrary integral of first kind on S. Consider the

; /OLL




caﬂ‘

This can be written as

n
<5 {ar/az
(62.2) Z'J L AF
J“‘C- '
The integrand, being & ratio of differentlals, is a rational function h.

Hence (6242) becomes "

zuﬁq.

J':
This equals
(6203) ’Z >ﬁ/%
the integration being performod along c ab 0 41 , and the integrand being the

sum of the values of h at the n points of S corresponding to a given point on

%

By the lemme at the beginning of §52, the integrend of (62.,3) is a

. R
rotional function of £ on the sphere 2. . This integrand cannot have a pole
for dny value of fj 'fOr if we chose b ﬁg be the pole and arranged cab so as to

contain no other pole of the integrand, (62.3) would have to be infinjte. As

it equals (62.1), which is finite because L is an intogral of first kind, this

o
is not possible: Hence the rational functlon “Z h is constant. The con-
a
J=1

stant’ velue must be zero, otherw1se we could derive a contradlctlan by taking
B €o be the point £ = CK} on 4;_ and proceeding as bofore.

Qur conclusion is that

(62.2) 0[/

h-—-—-

J -

fér the arbitrory integral L of flrst kynd. s

The curves'bj joined the Pj‘to the Qj!in a specific order, determined

by Cab‘. However, for any assigned order of the Pj‘ﬁnd Qj thore exists & set

of curves joining them in that order for which (6242) holds for every L. For
example, if it is required to have Pl Eoingd to Qz and P2 to Ql. with the -othor

- - ’
P's and Q's joined in tho same order as before, we have only to draw a curve A
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of class D1 from Q1~t° Qz. Then C1 followed by A is the new Cl, end C, fol-
lowed by the reverse of A is the new 02, the remaining Cj being the same as be-
fore. Obviously (62,2), is still true for the new set of curves Cj’ since all
that has been introduced is an integration back end forth along A, which can-
cels out. Of course the new Cj need not correspond to any single curve Cab
on the f=sphere.

The result so far is this: if £ is a rational function of order n,
snd if Pl’ PR Pn are the n points at which £ hes some value a, and
Qs ooy Qn are the.points at which £ = b, then the Pj can be joined (in any
order) to the Qj by certain curves Cj such that formulae (6262) will hold true
for every integral L of first kind.

Now let Ci, waoys Cﬁ‘bo n srbitrary curves of class D1 joining the Pj
to the Qj in any order; lot us say agein, in the order Py, Qy8 eees Py Qh‘
Let le ""-Cn be curves joining the points in the same order and having tho
proporty (6242).

Ropresent S by a polygon -} _ We shall make the assumption that all
of the Cj and Cﬁ interscct 5»1 at most a finite number of times. Take an ar-
bitrary integral L of first kind, and denote its a., jumps by CC, and its
b, jums by T, (¥ =1, bees.Ple e

The curve-Cj, which leads from Pj to Qj’ followod by the reverse of
Cj’ leading from Qj back to Pj’ is a single closéd curvoe: 05 - Cj' Integrate
dI, along this curve. ,In the case- shown in the diegram the rosult would be

[L(Y) = L(=x)] + [L(~2) = Lé=¥)] + [L(x) - L(D)],

where I refers now to tho valucs of some
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determination of the integrsl L in -the polygon. This equals

*
H

[(L(x) = T(=x)1"+ [L(Y) = L(=¥)] - [L(z) - L(-2) ],

or according to the definition of jumps in §55,

‘T1+ 5'2- TS'

In the same way it is seen generé.ily that

(6243) PRI dL - i (m By 7/ T 7, )
C. Co
(3= 1, ese, n), where the m and n._ are integers (positive, negative or
Jv iy P

zero) depending only on the various curves and not at all on the particular in-
tegral L. Of course the 7, and 'Z"V do depend on L.

Surming (62e3) for the'n valuea of j and taking socount of (62.2) we

find theat
: O
- T
(6244) > iar ;; (mv G, *u, T, )
J In y
where mV is written for ~ mav )and similarly for n,, . The final result

=

is this:
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Theorem: Let f be a rational function of order m, and let Pl""’Pn
be the n points et which f takes on some one velue, and Ql’ coos, Qn the points
where £ takes on another value,. let n curves Ci, es ey Cﬁ of .cless Dl be
drawn, joining the Pj to the Qj in any order. Take en arbitrary integral L
of first kind, end let cf; end 7T, denote its a,, and b, jumps respective-
1y, across the sides of . polygon- [7  Then a formula of the type (62.4)
will hold, in which the 2p -integers m,, and n, are independent of the particu-~
lar integral L.

The m, and n, do depend on the curves Cé and on the particular
polygon r? and they need not be uniquely determined even when the 05 and [~
are fixed. |,

The property stated in the thoorem is characteristic for sets of
(distinct) points Pj~and Qj et which a rational function has fixed values.

For the following converse.can be proved: Af the Pj and Q,j arc such that some
sot é} curves C5 can be drevm for which (62.4) holds for overy L, the my end
n,, being independent of L, then a rational function f of order n exists whose
zeros snd poles are the Pj and Qj respoctively.

In (bf+a)/(£+1) we would then have .o rational function assuming the
arbitrary distinct (finite) velues & and b at the Pj end Qj respectively. The
condition that some sct of 05 shall satisfy;(SZ.%)_is not really weaker then
the condition that all sets of curves 05 shall do so. For it is easy to see
by the mecthod of proof of the previous theorem, notably the step from (6243)
to (62.4), that if the property holds for one set of curves it holds for all.

To prove the above converse We first derive a lemma on integrals of
third kind. lLet P and Q be two distinct points in the jnterior of o polygon
[ﬁ, Construct an integral of third kind (§57), say ~Tr£Q’ which is regular

except for logarithmic singulerities at P and Q. Draw a simple arc N of class
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Dl from P to Q in the interior of [7 Then 7719Q has a determination as an
snalytic function in the interior of f1, N excluded; and across N this deter-
mination has e jump of 27 i. Normalize / 0 (§59) 'so that it has no a,,
jumps. Its jump across N is then still 27T 1,

Once more we make use of the special integrals of first kind,
Ty sees vp, of §58, The jump of v, (X =1, eee, p) BOrOSS ‘ay was simply
& end the jump of v, @ocross b, was "Ly, , where Ty = T, o -

Xy
Drew a simple closed curve H abouf N and interior to F) asg shown

in the diagram:

o~ —

Both || Q and the v, are esmalytic in the region between H and f
and are continuous on H and on . By using a network of triemgles {each in
e single complex coordinate system) covering the region in question, and then

applyiné the Cauchy integral theorem, we find that

’
(6245) 1TT dv, = ( P A7
pore g R
Now Qa
(6246) J?dev* =427 4 fdvd
P

For it may be shown that these two values differ by arbitrarily little, This

. -




is proved by shrinking H towards N. The integrations around P amd Q yield

arbitrarily small quantities, in spite of the logaritihmic singularities of
T( P ot P ond Q. The inbegration ajong the remainder of H is arbitrarily
close to the right membor of (62.6), bscause TT has o jump of 2 7T i across
N and v, is conbinuous all along N. (It can be proved that the sign before

the 2 M i is correct, the integration about H being in the positive sensoc. )

Applying (55.9), we may rewrite (62.5) os ®
i ~ \ ,
Z({clﬁ foév;“ /‘é‘j&f‘{mQ,} = 2777—[ Voo -
=t a PQ& : ) 7/ p
v Y Ty C
Since TT is normalized and the jump of vc( across a.,, is de (note

| (5545)), this reduces to

(62.7) fc/ o = —2774/6/4/”

Thus we see that the bd jump of the normallzed integral of third kind TFPQ

is determined very simply by the dlfferenco in values of the special integral
of first kind v 4 at the two singular points of TTPQ' The wvalues of v, oare
understood to mean the values of a determination of v, in the given polygon.
This is the lemms referred to above, It should be compared with the similer
formule (6046) for the b jump of a normalized elementary integral of second
kind (note the extemsion of (6046) indicated near the end of 8§60)

Returning to the converse theorem, we select a polygon fﬁ such that
all of the Pj and Qj are in its interior. We join Pj to Q‘j by a simple arc
Nj of class D1 lying interior to iH) and we select the Nj so as to be non-
intersecting. As already remarked, (62.4) is obeyed with the Nj in place of
the C5 (perheps with different integers m_, and ny).

Construct the n normalized integrals of third kind TTP Q.° Rrigm
3l
the single Abelian integral
,f:»

J=t V«,

B et g e e




As the Tr's are normalized and the jump of v, across & is 50(7/ , We see

that the jump of J across a,, is 27rin,
As for the jump of J across b, :
fow z[m E szn ffaf
J=1 a,,
Using (62.7) and the def:.nrb:.on of T,, 8s the jump of vy 8cross b,  we

e n
IO/‘/: —zTrxLché/' + 277“42720( e
a Jr/N

Then by (62.4), v_ being the integral L of first kind,
v £
SACH) A
— . ! {
fo[t/ = =24 2 (My Oy o+ n«Tp«) AT AL (L
«=1
a

But Tz, o« = T‘,(p- 3 therefore

j [c[u 2*7%77’

Thus a1l the Jumps of J across the sides of /—1 are of the form
277 i times an integer, and the jump of J across each Nj is 277 i. The only
singularities of J are the Pj and Q.. If zj is a complex coordinate about Pj
(where, say, zj = 0), then in a neighborhood of Pj the difference between J and

log zj is analytic; and similerly if zJ! is a coordinate about Qj we know that

J equals ~log 25 plus an analytic function in some neighborhood of Qj (see §57).

It follows that if we teke a detemination of J in the region between
r-’ and the Nj' end form the exponentiai f & eJ, the result will have no jumps
et all and hence will bo a one-valued function on the surface S. This func-
tion f£ is enalybic and distinet from zero at all points other than the Pj and

Qj’ At the Pj it venishes and at the Qj it has poles. Therefore f is a ra-

tional function of order n with the properties that were required.
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The above "transcendental" treatment of the theory of amalytic func-

tions may be compared with the "algebro-geometri¢" treatment, which can be

found in the notes on 'S, Lefschetz's lectures on Algebraic Geometry written

by M. Richardson and E. D. Tagg, Princeton Mathematical Notes, 1936~1937) .
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