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Chapter I. Intreduction

1, Consider as the fundamental space of this. course & point set
which is a Hausdorff space, that is, which satisfies the following four Haus-
dorff axioms:

(l.l) There exists a set of points and a set of neighborhoods suth
that to every point p there corresponds one or more neighborhoods Zﬁ&p), each
Ul (p) containing p.

(1e2) 1If U0 ( p) end 2,/7/(13) are any twd neighborhoods of p, there
exists a third neighborhood 74" (p) of p -such that 727" (p) is contained in the
intersection of 2/ (p) end (' (p)e

-

(1.3) If a point q is contained in a néighborhoed of p, Ul(p), then
there exists a neighborhood of q, 7f (a), such that A (q) is contained in
Vi(p)e

(1.4) If p is different from q, there exist neighborhoods 24 (p) end
Ul (g) of p end q respectively without cammon points.

Assume that to each point p of this space there exists e partisular
neighborhood and a particular n-dimensional sphere such that a definite home &~
morphism exists between thems¢ To each point of this neighborhood assign the
coordinates of the corresponding point of the n-sphere determined by the given
homeomorphism. Such a neighbbrhood ?/7(p) will be called a coordinate neighbor-
hood. A further assumption will be that the space is such that the transforma-

tion from the coordinate system of one coordinate neighbérhood to that of an
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overlapping one will be regular. By & regular transformation is meant a con-
tinuous transformation with continuous derivetives up to and including those of
the mtM order, m 2 1, where m is sufficiently large to satisfy all of the proofs.
For the present m will be taken equal to 1, and only first derivatives will be

assumed. Since the first derivatives exist,

{

-~

5
J

\ -
OX DX S
(1.5) 3"{’ —a"/_'(i( - Oe and

'
(1_51} lD IL\ a \: 1
ARPER
and hence the Jacobian will be different from zero. Such a space as hag been
described will be known throughout these notes as a manifold.

By a comnected manifold is meant a manifold which cannot be sepgrated
into tﬁo mutually exclusive menifolds. Assume the spaoe to be a connected man~
ifold. Then any two points of the space can be joined by a continuous curve
with continuous first derivatives at all but a finite number of pointéf’which

-

will be called an admissible curve., For take a point P in a commected mani-
fold?fz end consider the set S of all points Q that can be joined to P by an
admissible curve. S is open, since any Q that can be joined to P by an a?mis-
sible curve lies in a coordinate neighborhood whose points can be thus joiﬁed
to Q and hence, since the sum of two admissible curves with a common end point
is an admissible curve, can be joined to P. S is closed rolative to=77Z for if
R is a limit point in /7T of a sequence of points Qi«that can be joimed &o P,
then there are an infinito number of Q4 in = coordinate neighborhood of R, and
R con be joined to any one of thom and hence to P.  The set E of all points
that cannot be joined to P is also both opon and relakively closed since it is
the complement of S. All points of‘oither S or E are in coordinate noighbor-

hoods., Hence both S and E arc manifolds. But S is non-vacuous since P is in

¥ The right ha.,,g de“\,atw& must exist and he fumite at al:( rw'nfs hut
the i“‘(ﬁ% PN“T the Left hand ope at all hut the teft end r:o\n't'.
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it, Therefore E is vacuous since /71 is connected. Ilence, by this argument

it is shown that any two points of a comnected manifold can be joined by an ad-

missible curve. If the regular transformations between coordinate neighbor- v

hoods have continuous derivatives of order m > 1, then the curve can be made to

have continuous derivatives of order m at all but a finite number 6f points.
1

n
2. Let there be given a function F(xj, se., Xp, Ay ees, /} )

4 h )
F(x, A ) of a contravarient vector (X1, eee, Xp, A, se0y A ) which satis-

fies the following conditions:

(2.1) F(x, ¢ A ) = oF(x, A), ¢ >0, i.es P(x, A ) is positive homo-

geneous of the first degreec in /\ 5

(242) F(x, A) 2 0, = 0 if and only if A =0, i.e. P(x, A ) is posi=

tivo definite in A ;

(2.3) F(x, A ) is continuous in the 2n variables x, A for x in & co-

- ordinate neighborhood and for any /\ .

Let x(t), a monotonic increasing funotion of 4, be a continuous map-
ping of a straight line segmont on to an admissible curve joining two given
points P and Q such that x(t ) = P, x(’cl) = Q. At each point of the curve, ex-

cept perhaps at a finite number, there is given the set of values X1, eee, Xp,

C/X' * 4-14’ Hence for each admissible curve CQ thero exists an
dt v dte P x

Fay Q ~ d . ) s:lﬂ]te . .
Tz ) = Q F(x, 9%X ) 4 t attaching a real non-negetive number, . .
P (b dt

to each admissible curve connecting P to Q. :7 (C% ), for a def-

oriented 0
inite,\curve CF", , is independent of the parameterization. For set t = t(s).

Then '..$ the Pardrne‘tEr s (s to give the same orientalion
L € .

’ . [
g “ 3 ¢ . .
. v, -

. . i
- Gty Vi



. ds
" . ﬁ->oi

- oy dx d
JaF 819 ::fcarlx,zrs 43)dt
;

- !Qr( X’d<)d s by (2¢1)
0

A
Call J (C%) the arclength of the curve (}% The question naturally

arises whether there is a curve connecting P to Q whose arclength is either
greatest or least. There is obviously none whose arclength is greatest, for
the arclength of any curve can be surpassed by adding a closed circuit to the
curve.

_ for admuissible the
Since .. - A .. - curves connecting P to Q $.y Aarclong’chs are finite

and since all arclengbths of curves are non-negative, there exis’cs i‘\ogrvecx’clets'd‘:/e
lower bound to the arclengths of the curves joining P to Q. Call this greatest
lowor bound the distance from P to Q, written TQ. Due to tho fact that only
posi‘t/':&ye homogeneity is assumed, i 7( QF in general. In fact thore is no sim-
ple relation botwoon thom. However, the other two distance properties hold.
(2.4) Q2 0,

(2.5) TQ + QW 2 TR

0 if and only if P = Q

The proofs will follow. First a lomma is nccessary. _
definite cebrdinale
Lommo. Given a closed, compact point seot 77[ lying cntirely in aA
'he!gkbor‘hood
,\UZ ond on x ¢ /}{. Then
2.6 A max p =F(x,/u ) 2 B mox A
. . "
where ©© > A 2 B > 0 and max /M = greateost of !/u'/, ° T )’/U f
Proof. Consider F(x, A\ ) whore x & /7 and max ) = 1. Thon

F(x, (\ ) is a continuous function of acomp:ut closed point sot and hencoc os-

sumos its least upper bound A and its groatest lowor bound B. That is

A-ZF(x,A);B
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Since P(x, A ) assumes its greatest lower bound B and since ,-3\ f/ 0 for max A = 1,

we have by(2.2)that B > 0. Hence

Ac 2 F(x, cA) 2 ceB>0; ¢ > 0.

2

Set ¢ A =/u. Max/«f( = Ce

. A max y 3F(x,/u)2.Bmax/u,- B > 0.

The proof of (2.4), the first axiom of distance, follows.
F(x, \ ) is positive defini’ce}(Z,.Z)J v[CQ P(x,
'P

greatest lower bound for all C%, q 2.0,

Since

d X )at 2 O and their
Jt

Proof that PP = O will follow later.
In order to show that PQF 0if P# Q, take a wl(P) excluding Q and a a (P)

such that the closure of (p), U/(P), is compact and contained in 7/{1(13)."

et

By the lemma, if x¢# U , F(x, A y2Bmaxd , B> O, Let

A ;R = x;(R) = %;(P), R being & point on the boundary of U/ (P), and let 9~

be the greastest lower bound of max 4 ;(R): Then

mex O (R) 2 G > 0.

> > O since P is an interior point of UT (P).

Connect P to Q with an admis~

sible curve. There will be a first

point R at which the curve will intersect
the boundary of (J (P).

Then

Q
fPF'(X,i':"%')“

Z”BIFRL%{M for all &
%’B‘fp%’%:df{ far al.l L?
%lez(m"%(?)'{fow— atl ¢,
2> DmaxA;R2D ¢ > 0 .
. PQ = Bo >0, and
6 = o if P = Q.




Note that this same construction shows that all points Q! such that
PQT < Bg- are inside of ?j] (P), i.e. for every neighborhood Ul (P) there exists
all —_
a (0 > O such that points Q' whose distance PQ' < /0 form & set 2// (P)
A /’
lying in 7/7(1?). A similar proof would show that for every neighborhood U (P)
there exists a /) > 0 such that all points Q' whose distance Q'P < /,) form a
> o tnot 7)
set Mf’ (P) lying in U (®). (Sec foolncte page 7).

The proof of (2.5}, the triangle axiom of distance, now follows. Con~
sider any three points P, Q and R. Suppose that the triangle axiom were not
true and PR = PQ + QR + S s S > 0. There exist curves C% and Cg such that

VECORSENLYCE
Y@ me 5.

Take as & curve connecting P to R the curve CI; = Cg + Cg. Then by definition
S TR = Jepr Jeg) <Tm+m+ .
c.n ﬁ =< E)—Q- + -Q.R"
< A proof of simultaneous continuity of the distance PG with regard to

both P and Q will now be given, Consider any two points P and Q and any neigh-

borhoods L (P) and U7 (Q). For any P, € 7 (P) and Q € UT (@)

< .
PlQ = PlP + PQl, and hente

]
d
O
‘_..I
A
e}
| o
el
L]

Interchanging the roles of P and P,

- < PP TP~ and TP
P Q; - Fq; | & PF), the groater of PP, and PyF.

Similarly _ Tq; & FQ + Qqg,
L el - li— < Cp———
Pq, - Fq S 0Q,
T - B £ Q.
e | S
t3q - F N | £ g,
4 D — e Pt ~
(2.7) ", 1FQ - T L PF +°Qq -




Vow wse the lemma as follows. Tsake a coordinate neighborhood of

P, ¥ (P), and in this coordinste system take a bhounded closed sphere S with P

as center and let Pq £ S. Let x; (P) end x;(Py) be the coordinates of P and Py.

Set
5y (6) = %, (B) + £y (P) = m5(2)) )
which will be called a straight line joining P to Pl. Write
xi(P) - xi(Pl) = Aiu

For t = 0, x3(t) = P; for t = 1, x,(t) = P;. Since S is a closed compact set

the lemms applies and

_ Flx, ) ) S £ % max /\ when x € S,
T 5 < dx
Now ‘ PP ¢ /F(x L 95 ) d s, ',

“SA f(may D) d t since %%:[){'

SA maxd; .
Hence for any & > O there is an S such that for all P, E s, PP, < €., Sim-
-
ilarly PlP,* QQl and QlQ % can be made small at pleasure. Therefore P‘P:L and

ol

B S e I

*  Consider any curve Cg joining P to Q and porameterized by p(t) whers
p(’bo) = P, p(tl) = Q. Now when traversing the curve in the opposite sense

it is parameberized by p(-t), 'l: running from =t, to -tl, and the new par-

ameterization is given by 7 = -t so that -d“"? 1. Then

-t, 7
[T—(x(-f), %“-%:-t)}clt—‘-"“ Flxm, “GC/,X"”C// fT(x - )cf7‘
gy )

2 75

2
Hence arclength, with a metric ¥(x, )\ }, for the durve CP is equal to arc-
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length, with F( x,—ﬁ) as metric, for the curve cz , Similarly for distance,
PQ with a metric F( X, ﬂ ) is equal to QP with a metric F( X ;3’() and any
proof of properties of a distance PQ includes the proof of the correspondifig
properties of the distance QP sinee F( X;/\) possessed the samd three proper=
ties (241), (2.%2), (2.3), as F( x A ). THowsver, note that since the metric

function is fixed for a given problem this does not imply that the distances

PQ end QP are equal.

ik —

-—

,Q\Q, can be made small at pleasure, Then .recalling (2.7), for every £ 5 O there

L
is an S(P) end an S(Q) such that for all P, € S(P) aml all Q, € 5(Q)
3G, -Fal < €
Hence the distance 'I:"Q' is simultaneously continuous with regard to both P and Q.

There is no knowledge concerning the existence of derivatives of PQ with teogard to

P or Q under the present assumptions, |

Using this theorem the remaining part of the first exiqn of distance

(244), that PP = O con be proved. For
TP STQ + QP

But P and QP approach .zero as Q approaches P, while PP is constants

L] B e

e PP =, Og

Previously we defined the se} 7)7/5 (P)s Tt cen be easily shown that

W/ (P) is an open set, by showing that ( ( ’UT/, (P)), its complement, is closed,
Its complement is by definition the set of all points Q such that TQ 2 /0% Now

consider any sequence of points Qehaving a 1limit point Q and such that QLCCM(?@)

Now -15'(71'5, is @ continuous function of Q;5 hence

lim T, = }Q

i




But -I?Q:z /0 Therefore PQ 2 /0 , and Q € ¢ %(P)) Therefore
c( ‘Zz; (P)) is closed and Z?; (P) is open. We shall call ZZ;Q(P) e met=-

ric neighborhood or a /9 -neighborhood. It has been shown that for any neigh-

borhood 27 (P ) there exists a /9 such that 7/, (P) is contained in Y (P).
Conversely, for any ZJGA(P) there exists a 24'(P) contained in it, nemely it-
self. - Therefore the two systems of neighborhoods are equivalent and the sys~

tem QIGO(P) of metric neighborhoods can be used without changing the topology

of the manifold.
The two main problems can be stated as follows:

I. Given two points P and Q. Is there an admissible curve connecting P to Q

whose arclength is equal to PQ? This is the problem of the absolute mini-

Mmunl.

II.Take any connected open subset of the menifold. Is there an admissible

curve lying entirely in the subset commecting two given points of the sub-

e
set, P and Q, whose arclength is the greatest lower bound of the arclength

of all such curves? This is the problem of the relative minimum.

The sbsolute problem for a subspace is the relative problem for the space. It

might also be noted that the solution of both problems depends upon the order

of traversing the curve connecting P and Q.

3. Another assumption will be placed on the space.
Q% such that there exists a point P

MR P
2

(3}1) Any infinite set of points
so that PQ are bounded
W'W .
L.
this property will be called

have an accumulation point in the space. A space having

* almost compact.

e

The so-called Hilbert curve will now be constructed. Roughly, the

procedure will be to show the existence of e mid-point between two given points

P and Q, and in general ZP—l points dividing PQ into ZP equal parts for all p.
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‘The limit points will then be added to form a continugus curve. First the fol-

lowing theorem will be needed.

THLOREM. For any two points P and Q in the manifold there exists a

point R in the manifold such that
PR = RQ = #PQ.

Proof. Set PQ = /0 Gonstruct a point set WF/Z (P) of all
points R such that PR = /0/2. ﬁop/z (P) is not vacuous, for connect P to Q
with eny continuous curve p(t). Pp(t) is & continuous function of p(t) which
is a continuous function of t.  Hence T’Fﬂ is a continuous function of t as-
suming the values O and ﬂ. Therefore Ppt) assumes for some point Ro the
value //2 since a continuous function defined over a closed compact set as=~
sumes all values between any two particular values that it assumes.  Hence
there is a‘point R, in ?QP/,?_ (p). W/—’/Z (P) is closed, as follows., Giv~
en any sequence of points S, such that :‘TS—II = ﬂ/Z and approaching e limit S.
Since/-?rs;; is a continuous function of S,

e

lim PS S .

r>00 B
LT = O

and 8 is a point of W/"/Z (P). TNotice that the assumption (3:1) is necessary
. to show c;ompactncss ’
tiy this pr(.idf/\ Accordingly W/O/Z (P) is o non-vacuous, closed, compact

——

point set. Take emy point R' on W//K (P) and consider R'Q , R'Q is a con~
tinuous function of R! defined over a closced, compact point set, .and hence as-

sumes its minimum @~ for some point R. Now

PR + RqQ 2 Fq. Substituting,
Ca+a 2 p

a-

. (12

On the other hand, take any admissible curve joining P to Q and form

Q: P’ Q
o=,

134
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where P! is a point on the curve such that FP!' = [')/2. The existence of such
a point on any continuous cuare through P has already been provgd. .. Then
[ 2 TPT + P'Q,

/7

I

/2 + G, since P! & WF/Z (P).
SO W= P2 ffr T e
T F/z.
s T = f/2 and the proof of the theorem is complete.

the gra”’zfes‘t lower bound of

Note that the  definition of distance in terms of/‘ an integral was used.
\

i

This or some equivalent assumption is necessary for the proof of the theorem.
The existence only, not the unigueness, of the point R has been showmn. In
fact there might be more than one, or even infinitely 'many. Hence the con-
struction does not give a unique Hilbert curve.

Consider the Euelidean line segment (0, 1) and let O correspond to P
and 1 to Q, and & to P(%), = midpoint of P and Q. The midpoint of P and P(3)
and that of P(%) and Q are constructed, and are made to correspond to 1/4 and 3/4
respectively. This process is continued indefinitely. In the pth step there
are 2¥+1 points P(%)’ 0$nS2p, P(O) = P and P(1) = Q, such that the dis-
tance between any two conseoutive points is 'éjT‘—'ﬁ; To P( % ) let corres-
pond 27]5 in the line segment (O, 1). In the pth step, let us temporarily de-

note P(g},?) by P . Then

S K-t .
PiPk = --—z‘?" '{0/ K z i

For PP S PiPiyq * PiygPy ., * oo “ B 4Pk
$ Pl (k- i)
_ .75 £ 2
Now PQ S PP+ PP P Pp

A

rs . P
" K=t 2-K71
/’[ﬁ?ﬁ"" v T 2”]‘“?.
But now 15?3_ = /d, 50 PiPy must equal ’52—},‘—/ ; since otherwiss thé conttadiction

/J</7 arises. That is, for sny two points X and ﬁ of the sét of points

(
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of the space obtained by this process of taking midpoints

e POP@ = (B-%)7, (B2 &,
since (X and /3, are both points of.some p’th step.

A mopping function p-('b) defined over the set t = ‘%.3 now ex-ists. On
the segment (0, 1) take & sequence o(l:l--> e and any other sequence /3,131 ->a,
where 0(1'1 and /31’1 are of the form Z—z%- , but a is any real number. Under the
assumption (3.1) the sequence P( o<r'l) have an accumulation point P!. Pick then
from 0(;1 a subsequence X  such that P( (Xn) heve the limit point P'. Also
pick a subsequence ﬂn of /3151 such that P(pn) have a limit point P". Now
ﬂn - X n is either greater thaon, equal to, or less than zero, and, to be
sure, it falls into at least one of these throe categories for an infinity of
n; say for instance that 'ﬂn - X n > 0 for an infinity of n. Then for this

subsequence

P IPTE ) = ({6,1 - O(n)/). Now

lim P(X n) = P! and lim P( ) = P" for the subse~

ﬁuen(@ ﬁm'dm>o smeé"ﬁ‘?a Sequence CO‘R?@]‘QES to a Limit any svbse-

quence converges to the same limit. Therefore
lim P( ¢ )P = PtP" = (a-a
Jim PColy) (/5n) ( )/
By(2.4), T'P" = O implies P! = P"., If the original set P( ¢y ') had more than’
n

i

0.

one accumulation point, a subsequence of P( 0(1:1) could be picked sonverging %o
each, so that by the obove all accumulation points of P( o(r'l) coincide. In
general then, given any two sequences (X n and ﬂn converging to o, O/n and
m
pn being of the form "2"'? while a is any real number, then
lim P(eX ) = lim P .
h>oo (o) NP 2 (ﬁ n)
The definition of P(t) will be enlarged as follows. Take any se-
m
quence o ~> t, o(,_ of the form ;p , and set P(t) = lim P(o(,). Ift is
n n 2 nNDo

a nuaber of the form ‘%% this does not conflict with the previous definition of

P(t) as cen be seen by teking the sequence O = t. For any t, and t, now,



(3.2!) Pt )P(%,) = (by - tl)f

a8 is seen by taking the limit of P(tnl)P(%nz) = (tnl - tnz)/D for two se-

quences of points tnl and tnz approaching tl and tz respectively.

To show that the curve P(t) is continuous, consider eny t and any se-

quence tn approaching it. Now

P(E)P(%,) =(t, - t)f' for t, > %,
?('tjp(t'n'T = 0 for t, = t, and
P(ﬁnjp‘(-b'j = (t - tn)(ﬂ for t, < te

Fach of these three sequences of distances, if it exidtd, has the limit zero.

]

Hence the sequence consisting of the totality of them has the limit zero, and

P(t) is continuous. -
P(tl) = P(tz) if and only if %, = t,, and the mapping P = P(t) is one

to one. Hence since P(t) is continuous over a compact set, the mapping is bi-

contfnuous. This curve, the so-called Hilbert curve, is a simple arc joining

P to Q. It has the property that given any three points on it, A, B, and C, in

the order P, A, B, C, Q, then

(3.3) =18+ 50
which follows immediately out of the distance formula. This Hilbert curve,

however, does not necessarily under the present assumptions give the distance

PQ if used as the path of integration for two reasons: first, the curve may

not possess a derivative; and second, if the first derivatives exist the inte-

gral may not minimize the arclongth.
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There are other methods by which a Hilbert curve cen be constructeds”
First, from ah infihite sequence of cutvey C such that lﬁm C = FQ a sub-
h
sequence CQ can be pitked converging to a limit turve, whlch is a Hilbert gurve*

2 e gl Y Lt

* Bolza, O. Vorlesungen llber Variationsrechnung, B.G.Teubner, Leipzig, 1909,
Chap. IX.

' Y 3

s
—

A second method is similar to the original one. Let us call R a between point

of Pend Q if PR + RQ = PQ. It can be shown that there exists a between point

R such that PR = CK/D 5 058 X 1, /47 = PQ. Then the original method could
be carried thr&ugh picking other between points t the mid-point and getting .
a8 before en everywhere dense point set, Neither method will be considered in

detail.

The characteristic property of a Hilbert curve is the distance formula

(343) I8 + BC = AC
for all“A, B, C on the curve in the order of orientation. For if for any con-~
P pamin o~y i,;?‘“ 1, 1, s o »’.v(‘,

tinuous cuévg”%(t)’ o & g £ i we have )

£ « 2 t - " g

ﬁtm(tz) * P(tz)P(t ) - P(tlmts)v Con

% § i then the curve P(t) is a Hllbert curve and

for any three 0 S < 6, S Ry by

can be, constructed by the m;d:po;nt metpod. , Let P(O) s P ,, 804 spt s = Pl 5:

......... ~~— e s FETER

s is a contlnuous increasing function of % runnlng frem O to f? = PP(t), and

- - romiey e +o ot W gt e oo B A e i g

therefore there must ke a % such that PPT§7 /9/?. Then»,. . .y
_ Pp®) # POD)R(L) = PP(L), .. .
, ) . f/2+ PEIP(Y=, p roend .
e L PEED = o

Thus Pg%b is g mid-point op the curve., The procgss obviously .can be contipued

indefinitely and a Hilbert curve constructed. Since P(s) = P(t(s)) and the Hil-

bert curve~just;constructed,coincide on.a set of points whose parameters s arg,

o et . . ns
£ %
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of the form %% and hence are everywhere dense, and since both curves are con-
tinuous it is seen that P(t) and the Hilbert curve are identically equal.

A minimizing arc Ml%’ ie.0e ,an are such that fMg = '13-@, obviously
has the property that every sub-arc of Mg is itself a minimizing 4rc bebtween ibs

end points. On & minimizing arce, take any three points A, B, C in the order -

s
— i J— fc — fc
B f o o K¢ 4> snd thus

(3.3) 18 + ‘Eb- = m;

of orientation. Then

This is the characteristic property of a Hilbert curve and we see that any mini-
mizing arc is a Hilbert curve. It will be shown later under more assumptions
that any Hilbert curve is a:minimizing arc., However this is not true under the
present assumptions as a later example will. show,

THEORENM. Givén an ordered pair P, Q and a beotwgen point R of P and
Q+« Then there exists a Hilbert curve joining P to Q and passing through R,

Proof. Take a Hilbert curve joining P to R and one jeining R to. Q.
It will be shown that the curte H consigting of the sum of these two curwes is
a Hilbert curve joining P t6 Q.. To show this it will suffice to show that for
any three points on the curve A, C, B in the order of orientation,
(343) AC + TB = EB.

If A, C and B are all three on the arc: PR or all on the are. RQ (3.3)

holds by assumption.. Consider now the case where C = R. Then

Q PR = PR ~ AR and
' BQ = RQ@ - RE.
IBSER + BB by (245), and
B3 £ FE + EB + BQ by the same,
SPR-IR +iB + Rq - §B
SFQ + B - R ~ KB since
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PR + RQ = PQ by definition of R.
.. 5 2ER + ®B
.+« EB=1IR+TB.
C R /Q Now let C be any point on the arc
A _ ~-f..é// AR. If C 1ies on the arc RB a similar
, proof holds. By the eabove
¢ ‘P . _ )
AB = AR + RB
But
AR = AC + CR sinte PR is & Hilbert curve.

Likewise

TB = CR + RB,

e

Subtracting,

AC + CBE=AR + RB
= Ec
Therefore (3,3) holds on H which hence is a Hilbert curve joining P to Q end pass-

ing through R. -

-

If there is g unique Hilbert curve Hg joining P to Q, then Hg is dis-
placed continuously as P and Q are varied. More precisely, teke a sequence of

points Pn-‘-9-P and & sequence Q —>Q, and join P to Q, by eny Hilbert curve

gon Teke any point R on gom

1 n n
.

PR, & PP_+ Pan by (2.5),

Then

[ 4
,‘

and since PP ~and Pan are both bounded, PRn is bounded and by (3.1) R will
have an accumulation point. Teke a subsequence R' of Rn such that R! has a
n n

limit point R.

P R! + RVY = P
n'n nQn nQn

and due to continuity we have in the limit

‘P—ﬁ"'—a:-m-
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But H§ 1s unique and therefore all between points of P and Q lis oy it. There-
fore R is a point of Hgﬁ and indeed all accumulation points of Rn lie on Hg.
It might Be noted that if ?;‘ﬁ;' = nFE end if o —> K then R;—>R such

that PR = X PQ.

P ‘1? An example showing the importance

I ‘ J of the uniqueness of the Hilbert curve in

the above proof is a torus, indicated in

the diagram in the common manner as &

T’ P rectangle, with a Fuclidean metric on the
rectangles For all points such as Q not on the central cross the Hilbert
curve is unique and is displaced comtinucusly with Q, but for points such as Q!
or Q" on the central oross there are.two or four Hilbert curves as indicsted,
end as Q! moves off the cenmtral cross to one side or the other, the Hilbert
curve is obviougly displaced discontinuously.

" Consider now a Hilbert curve joining two given points P end Q. If
there exists e point R such that Q is a between point of P and R, then by a pre-
vious argument the original Hilbert curve plus any Hilbert curve joining Q to R

would constitute a Hilbert curve joining P to R. Let the Hilbert curve be ex-

tended in this menner as far as possible, Take a new parameter

SB = PB; +then

(344) BC = Sg - Sp by (3.3)

There are three apparant possibilities for the domain of d:

I. 088« K, X being a constant;
II. 05 s=<K; K " 1" n ;
I11. 0 £ s ¢ o0

E The first casc however is impossible for, since (3.3) holds for all points with

parametor s < K, we could use a-limiting process dimilar to that uscd in the con-
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struction of a Hilbert curve and extend the Hilbert curve 1o include a point

whose parameter would be X.

In the second and third cases the Hilbert curve is closed. For if a

sequence of points Pn on the Hilbert curve has e limit point P, then it has been

shown that
o~ 2 mes— USRI,
lim PP = 0, PP being the greater of PP, and P P,
7Yoo n n n n
d h lim PP =0f 11 By (3.4) then |S S 0
and hence lim PP . = or all m, y (344) then |5, nm\k—?‘ as n

end the S, , forming a Cauchy sequence, have a limit point S. Since then

as
Is -8 |—>0 A

has P(S ) as a limit point.

; . N
. n —>» oo, we have thathlgannPQS) = 0 and the sequence Pn
Therefore P = P(S) and is a point on the Hilbert

curve, proving that the Hilbert curve is closed. In the second case the last

point on the curve will be called-the minimum point. For a compact space it

is easily seen that only- case II can occur.

Arc length of a curve has been defined only if the curve is admissible.

A ’(generalized" arc length, as distinguished from "real" arc length, can be de-

Pined for all continuous curves in the following way. Let the curve be given

by P = P(t), O £t £1, P(t) being a continuous: function of t. Take some sub-

division of (0, 1) with n+l pojnts t_ = O, €1, =es, ty = 1. Form

ég?(tb)?ztﬁﬂ) = 571 z _P'QTOYP( ).

If the subdivision is made finer by further subdivisions such that to a givwen

€ > 0 there exists an N so that
't;:,'_,""t‘" < €, L =0, n

if n > N, then Sn altays increases and tends therefore to a limit § finite or in-

finite. & will be called the "generalized" arc length of the curve P(t). S
can be shown to be independent of this method of subdivision. Take any two
th and mth step,

kinds of subdivision, form the Sn and 81;1 respectively for the n
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and let 7}3§208n = a"mﬁgﬂo Sé = b, If, to be definite, b > a, then there

exists an € such that b= € >a. TFor somém, §! >b = €/2, Tow take en
n so large that there exist points Qi of Sn so near to the P*(ti) of S& that
n-l

[Sp= £@&Qul < ¢/2.

This is possible because P(t) is continuous and PQ is a continuous function of
Q

)
both P and Q. But 5%: .Q,
ivi+l

fS:n + é; ='2§;2>CPLY:?;+i <i a J I é;i*‘i €7%1 J and
b—%2+3 < S,'m,.a;—é' < a.

< Sn { a. Hence

2> b-¢

and a contradiction is reached unless a = b.  This proof will hold with an ob-

2

vious rewording if b is infiinite. It might be noted that the S thus defined is
the least upper bound of all Sn,for 2ll possible subdivisiond., If the “"gemer-

alized“farc length S of gn admissible curve is obtained, in egth step

PPl £ fc}f(‘f;') )

and hence
Stcy £ J)
However, since the Hilbert curve is obviously a minimizing curve for "generalized"
arc length, the greatest lower bound of the "generalized™ arc length of all con-
tinuous curves joining P to Q is equal to —6.

The following interesting example by Dr, Comenetz shows among other
things that curves can exist whose "generalized" arc lengths are actually less
than their "real" arc length. Take a 2-dimensional space with the form

Fixx) =Flay,xy) = 77 2% L A

A brief check will revoal® that the fym satisfies all of the assumptions (2.1),

(242), (243), 'and in fact gives a symmetric distence between any two points: In
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this space any Fuclidean straight line is a Hilbert eurve. For, consider =

straight .line from P-to Q. Take R, the Euclidean midwpoint of P and Q. Fo¥
every curve joining P to R thetre is a congru-

C? ent curve joining R €o Q, and since the form

does not depernd on the coordinates x, y, the

integral along the first curve equals that

along the second. Since this is true for
every curve joining P to R, we have that PR = RQs  Now for every curve
Q x; = x4 (%), y; = y;(¥) Joining P to R, if P
be taken as the coordinate origin, there is a
curve x, = in(t), v = Zyi(t)'joining P to Q
1R and the integrdl along the first is half of the
integral along thé sedond. Hemce
P T - 475 - W,
and R is the mid-point in the sense of this metric, of P and Q. The construc~
-~

tion for a Hilbert curve gan bBe continued and it 18 sden "that the Ehclidean

straight line ;joining P to Q is a Hilbert curve.

C? Consider #ny point P and a line par-
allel to the y-axis et a distance a from it,
P and join P to all points @ on the line by
a straight linés It is a matter of simple cal-

culation to verify that the slopes & giving the least integral are o=t ﬂ‘\':f
and aré independent of P or a.

Consider a poiné P and construct
through P the two straight lines of slbpesﬁ,#i

If ¢ is in the condtructed angle it can be

joined to P by a turve consisting only of
4
straight lines of the slopes z yZ and such
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that it is a single=-valued Yfuretion of x. Comparison of corresponding infin=
itesimals of such a broken line and those

of any other curve from P to Q, shows that
the broken line gives the minimum value to

the integral and hence

50 = Rtys'i‘_YQf

?Q \EP CR Cs e
b

This broken line PRSQ being a minimizing arc is a Hilbert curve, while the

stroight line PQ is a Hilbert curve whose integral is larger. But for Hilbert
curves due to (3.3), their characteristic property, the "generalized" éarc
length is equal to the distance between the end points.  Therafore there are
curves whose "generalized" arc length is
less than their "real" arc lerigth.

Hilbert curves other than those

noted ebove can be constructed in this meth-

od, If Q lie# in tge basic angle comstruct-
ed at P, the large parallelogram with P and Q as vertices as in the diagram, can
be- constructed. Any point R in the parallelogram is a between point and can be
taken as a point on the Hilbert curve. In the same manner, between points of
P and R, and R and Q can be picked and the method continued constructing a Hil-
bert curve. )

It might be noted that this example shows that different Hilbert
curves may have arcs in common ' . oo FTunT L bl
and that Hilbert curves are not even unique in the small, and that there eare

Hilbert curves with continuous derivatives not being solutions of the variation

problem.




22

Chapter II. Local Propetties of a Minimizing Arec.

4, The following standard notation will be adopted. By a curve of
class C'™ is meant a curte which is continuous -and has continuous derivatives
up to and including those of the mth order, aend at any point not all of the
first derivatives vanish. By a curte of class 0™is meant one which can be. di-
vided into a finite number of parts, the closure of each part being é curve of

class C7n.

Q
A l’JurveMP joining P ¥o Q is said to be a relative minimizing arc if
lar ger Q
A " - than that of eny curve in a neighborhood of My,

Q

Any sub=arc of such a curve M.P is also a relative minimizing arc and hence if

its arc length is not

Mi is of class D we can, in the investigation of local properties, consider
sub~arcs of class Chﬂl which are also reletive minimizing arcs. Indeed, these
sub*arcs can be chosen so small that they lie entirely in one definite coordi=
nate meighborhood 4 »

At this point let us add the following assumption.

(4.1) F(x, A ) has continuous partinl derivatives up to and includ-

ing those of the fourth ordér. In this chaptér we do not assume that x, A )

is positive homogeneous in A If F(x, ;\ ) is positive homogeneous in /] , then

the existence end continuity of the partial derivatives will not be assumed at

(x, 0) (zero vectors),

The existence of continuous derivatives of the second order only will

be needed immediately, but those of the fourth order will be needed eventually.
st degree in /" » 5—-§ =F; is homogensous

t

If F(x, A ) is homogenseous of the 1

th

of the 0" degree in A, i.e.

_TFZ(X,-CM = EE(X,(U
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and F; woulci have to be independent of R if continuity were required at the
points (x, 0O). '»Siﬁce positive homogeneity of F(x, A) is not assumed in this
chapter, the integral along a cuyrve, and hence the minimizing arcs, will be de-
pendent on parameterization. Such a curve whose integral depends upon the par-
ametér is called a parameter curve.

We také now a copbinuous curve C, jolning P to Q of class ¢’ , lying
in one coordinate neighborhood and giving a relative minimums

Ts find now necessary conditions thap such a curve C, be a relatiwe

minimum, consider the following family of curves C ,

7 2 €
A= Xt €), !

== )
Co = x;(t, 0) being the curve investigated. Let th('b,. € ) be a comtinuous
’ 5 2.
function of both t and €, and assume that %—;:%’ 9.3..‘. and > ,x.‘:. are
* L I)OE 2 Ot JE

2
" X. -
contimious; then =—>=— @exists and is equal to & Also let
MOuEs DeE Ot ™ St oe *

A (ty,6) = . (P)

Aoty €) = 7:(®),
Then %‘é“' = 71" s covariant vector, and the last two conditions require that
7‘\"‘ vanish at P and Q.

For instanae xi(t, € ) can be taken of the usual form
Zi(te) = Xd)+€ g:u(2) 5

yL(t) being of class ¢ , end y,(t,) = y;b('b,,;) = 0. Note that this linear form °
for x.‘_('b, € ) however is dependent on the coordinate system: Each curve Cg of
the family is of class Q1 under these assumptions., and there exists an 7’\ such

that for J€1{ < T, 21l the curves li®s within the neighborhood relatiye to which

Co is a minimizing arc.
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Set up now the integral

Jre) - ﬂ/z.%”z‘ﬁi 5313972“‘“&(?’6))&75.

A necessary condition for C, to be a relative minimizing arc is that

7(0) £ 3/(6) for all |€| <')‘\, and if 7 (€) has a derivative at € =
'

then y(o) =

Under the assumptions which have been placed on F(x, A ) and x: (t, €)

the derivetive- exists and the conditions are satisfied for differentiation under

the integrel sign. Thus we get

(4.2) y;),./taal’ 1o o OF Xz« >ap_t
' € = to(é_—;. D€ T Sul DT oe

where x; are the second n variables of Fs

From this point there are two methods of procedure. Ve will give
first tHe classical way for which it is necessary to. assume that C, is of class

2
¢, We can now integrate the second half of the integral (4.2) by parts and

e = (352" + [ BE38 -4 BRI

. 9 X:

L __
and since 71 -(3———' venishes at t and t,,

(8:3) 7/0>———~ [(ax. ﬁ%)%% It

where now x; = =, (%, 0).

get

tj' (0) is ealled t:e first variation of Co. Tt obviously depends on

the fomily of curves Ce «  If the first varidtion of Co venishes for all famil~

jes of comperison ourvés C,dis called an extremnl. Each minimizing arc is an

extremal, but not converselys -
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' §MEOREM. The necessary and sufficient condition fhat a curve be an

extremal is that the "Euler vector"

_ oF >
(44). /g = S, %fr? 'D‘xE .

vanishes a&long the curve.

Provf.  (The proof tha'b/‘. is a covariant vector will follow later.)

Denote X L6 Then (4.3) becomes

(443) 7{0) fﬁ?ZJZL

s

when 7’(" depends upon the femily of comparison curves, but /i: depends only on

o.

l If /L = 0 along C, then,’:j 1(0) = 0 for all ??‘, , and the sufficien~
cy of the condition is shown.

Let 7f'(0) = O and suppose /‘ # 0 at some point R = x;(t) on C,.
The eXistence of e femily. of comparisoén curves such that 7f! (0) # 0 will now be

shown and a contradiction obtained unless 1 vanishes on C,. There exists at

% R(t) a contravariant vector O"‘" such that f; (Tb > 0 at R(t)s But /é
| continuous vector, hence there is an irtterval about R(t) corresponding te the in-
,' terval (t =9, t + 7) such that with the above G“" /01 G"'") 0 in that inter-
3 val., Take now es & family of comparison curves i
| 2:(t € = x, (1) + €LLt) TT
' where ¢ (t) is of class ¢’ and such that o¢(t) = O outside the interval end

o{(t) > 0 inside of it. Then

77": %',:('é ;N(f)wbj and |

14

Moy = [ fa{t)o Lt > o0




D
o

and the theorem is proved.

The fact that /Ct is & covariant vector can be shown in the following
menners  Thke an Y-dimensional sub-menifold S of the entire space R, defined
by
(44) x; = xi(y%, ces, yﬁ)

Také any two points P and Q of S and suppose them to be connected by a curve
lying in S,
Yo = goi(t)) (e =1, =% 0)
This curve considered as a curve in the entire space R, would be.
% = xz(y(t)), (=13, eve, D)e

Then if we set

(4.5) / = 2Ki g [fyaqgeer foi=
R AN Y
giving the cemmection between the Buler wvectors of the entire space R,)‘2 and S.
If /ez = 0O then the curve is an extremal relative to S and (4.5) states that
(9; , the Euler vector with regard %o R77, of the curve is normal to S. This

proves the

THEOREM. The necessary and sufficient condition that a turve of a

submanifold is an exbtremal of this submanifold is that the Buler vector is nor-

mal to the submaxifold.
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If ¥ = n we can considor (4.4) as a coordinate transformation in Ry

and since then

(446) f——‘ = g-’-(ri ﬁj (1, 3

we sce that /0" is indeed a covariont wvector.

1, «ee, 1)

We will not consider the question of corner conditions. Assume we
hove & minimizing arc of class D?* and at e corner R take a coordinate neighbor=

hood. The curve PRQ is of class D2 and may be repre-~

T
sented by x; = x;(t), £t 8 t,, where
Q
k% dz; d %
J1 Tf? Tt

T being the parameter of R. Now, as before, take a family

X(te) = A (t) +eyien | yirr)=y't):

and set up

7 tey = [(”fé + 8% & 3 4t

-
Now when integrating by parts, split the interval (t,t,) into intervals (t, 7 )

At

and (7 t,)s Then

Ty
Jer= [ (35 A% 5E

o~

.
19 [

+15% %‘H *[»g’ ‘9‘%

t, . R
= [ paide -B-gqij*; -g-;;;ﬂ*

But arcs PR and RQ, being subarcs of a mininizing arc, are extremals and {0L = 0

along them. If now we assume that 7]‘ is continuous we get

o= {55, (5%),.,1-°

L4
for arbitrary continuous 7?" and thus we obtain as a necessary condition for a

2 . s as
minimizing arc of class D +the Weierstrass=Erdmenn corner condition that
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DF _ Q._E)
) (55),.= 5%),.,

. F : . : 2
1eCe —D-—-—, exists and is continuous at the corners., If a curve of class D
é

is to be an extremal ﬁ‘: = 0 and (4.7) holds at all corners,

It can easily be shown that T:L = % F(X /U is a covariant vee-

A
A: = 7;(7-;)°") 777)

be & coordinate transformetion. Then

tor. For let

'>\L = 3-:7:(.'; '>\K and
Tox, ) = Flamy, &0 = F(Z 1),

Therefore we have

PF (A _ DF ) Dxs
- Y DI EEE Y

and F; is a covariant vector. In the same way it can-be shown that

5')—[; AT 0_{3 is a covariant tensor of second rank.

Under the assumption that F(x, :,l ) is positive homogeneous of the

first degree in A we have obviously thet Fe is positive homogeneous of the

Oth degree in A + Then using Buler's Theorem on F; we get

DFF v
S ©
and hepce \O‘:J‘ = 0 at all points. This is what one would expeot, foér if

0':3\ 7( 0 we could solve

| 47‘«_..927" dZ'
=l %’ beXK T

2
Jor jtx‘( and obtain extremals, solutions {f , = 0, which depend on the
&

peremeterization. But extremals, undér the assumption that F(x, ) ) is posi=-
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tive homogeneous of the first degree in A , are independent of the parameteriza-
tion as is to be expected from their definition and also as can essily be showm

by direct calculation: Let (/)L' be the Euler vector of a curve for parameter -
t

t, and , for s. Then
@)‘ g dX .

(p, — D—F‘/X,;ﬁ) ‘_____ci OF (% dt>
t)

CTOTIX: dt " Dx

b

xdx

_d__B—F( ,Is) ds

' X, s VK
_ . ds
2T °F i

because 5‘.2 and 5"7?/ are homogeneous of degree 1 and O respectively, and
v ‘

H
e
\

if f‘; vanishes for one parameter it vanishes for all.

_ Be TWe have already presented on page 24 and following, one method

/
of handling the integral 7 (0). In the following second method we will as-

dx.(te)

sume only that x;(t), the arc under consideration, and _3‘24' are of class

Df. Ve have as before

| g [ (5384 2 £ Rie-o

and this time we 1n’begra’ce the first part of the integrand by parts, getting

o 7/[0);f[f9~“ +}F 555 dt-o

(541) 7(0)"‘_! [ [()_F;ijtj%’?'jdtﬁo

0

for each T of class D such tha‘b Tl (t,) = 7'(‘ (t,) = 0. Letting

91; 1: = f we have

L
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‘.

fwm f(qs )4 dt-o

cy being a constant since 7" venishes at t, and t,. Now cj) is of class

| = [ (9 at

7’(‘13 of class DY and vanishes at t, and £, if o, is taken so that 71‘ (6,) = 0.

D° so if we s&t

2

Then ‘

.. (?Sz" CL)Z =0 and 43,;_:" C;
in each sub-arc in which ¢, is of class D°. But c; is a consbant, and
hence (b, = o, overywhere. That is
D_F(X X_) QT—/XX ) Jt =
o, X’ t, OA;

It might be noted that the Weierstrass-Erdmann corner condition can be obtained

(542)

from (5e2) since comtinuity of c; and """ C"t insures the contlnurby
of a;’; . Along a sub-arc of x;(t) of class Cf o, end f

both have derivatives and hence 5-1:-, has one and

(543) 4 2F _. oF _
dt 57(1 o X;
and the Fuler equation is again obbtained, this time without assuming x;(t) to

%
be of class ¢ . Notice, however, that we are unable to write the Euler equa~

tion in the form

_ D da; D'F dfg -
(5437) g‘g‘ DXDXC’t ‘""D'XI D'X, i 4 2 O

[4
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. 2
since the existente of %—txz'\ has not been sassumed., We will show however

thet if P(x, x') is not homogeneous of the first degree in x' and ‘(T"J'\ # 0,

R
D is automatically of class Cz', and

5’3" an extremal of class C
Xy 2

if, in the case F(x, x') is homogeneous of the first degree in x?, 1 035 \\

is of rank n-1, an extremal of class C1 can be so parameterized that it will be

of class Cz.

First we assume ‘G:A) # 0 and xz('b) of class C'. In (5.2) we set

— !
sewy x'n in DT‘ (x and obtain

O X
(5e4) 3/( U ER) =
1 . . -
of class C' where Using now a theorem on implicit
T\ o/ -
5;{ )z b%

}7( O at T, 25, see Zn, & solution set of (5.3),

unknowns z, , ees, Zp for x'

functions we see that if }

there exists an interval “b - € . T+ E , and some neighborhood UC(V) such
that, for any t in the interval, (5.4) has one and only one solution

o’
Zyyseesy Ly in 7](’2'), zL(t) being of class C . But %, z,= x'[(t) is a solu-

1

tion of (5+4) by construction and hence must be unique in a neighborhood; and

since z;(t) is of class ¢! we see that xt(t) = z;(t) has a derivative x7(%).

2
Therefore the extremal xi'(’c) must be of class C

To prove the second half of the statement above, let us compare the
variation problem of F(x, R ) with that of & = F‘2 where F(x, P\ ) is positive

homogeneous of degree one in A Assumo now that 57% Let

gzm :[t Fdt
Then ° t,
:j/(o) rfto%—t;dt

and 1
(D=7 F s dt
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I’
Now if x}‘(t) is an extremal of class C of the F problem and if t = t(s),

dt
s > 0, then x; ((t(s)) is also el éxtremal. Let s be so chosen that F is

constant along the exbremal, ilems

t
Frxdzy = o= Fx )55

1
s - %LT(V%{)AHC, .

ahd

|

I

; ' ] Then
|

J(e)-o= [ 5645
: { 31 -
}‘ F(o)= ZC[SGQG:_O;S;

and en extremal of the F problem with arc length or a constant times arc length

I
|' as parameter is an extremal of the F2‘ problem. Hence, since xl(s) is of class
|

- IFFS F
¢t we see that under the assumption l ‘DX D?C ) # 0 an extrenal of PF(x, A)

when parsmeterized by arc length is of class c%*.  The ebové proof holds for

Fk, k;ll, as well as forF-
352

It will now be shown that Lhe assumptiofl tjx DX ‘ A4 0 is equiva-

{ f} ,, lent to the asswnp‘tlon that ” 5————5"' H is of rank n-1, and in feret that
i rd —
; ' i O F k#1, and g7 ;? then if
i . = , s, 8n ‘ = en 1
Teg = Ox/ axJ. AR

¢ J

as .
“J

1

1 is of rank r, 7-":3 is of rank r+l, We have
I

1

7ZJ. = K(K"?)—FK Z%'f ‘b—F/ + \"T ‘

e

l Consider the system of n .linear equations
) .
i 34
1‘:
{
\\ Téj “ is of rank s if (5,5) contains s linearly independent equations and
. )
no more, or if (545) has n-s linearly independent solutions ;\ but no more.

/ rs
Also if 7‘2 /’-1') =0, 1.2 1, ves, n', and (5¢5) have the same solutions, then
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the rank of “ ’T‘LJ || is equal to the rank of 1 7"&3 ”

If (545) has a solution Rt we note from (5e.4) that
(546) o = k(x71)TK'&F§’F5 )\"+|«Tk'c77zj X
has the same solution )C, But if we multiply (5’.6) by x!. we get

o=kk-D T F N

by using twice the Euler theorem ( G:J X\,: = 0, F,‘:xL! = F), and hence
(FFO, k#£L), ,
(5e7a) "FJ lJ = O

But then we have v
K K‘IGTJ Xs - D .
giving .
(547b) qwz\,) A’ = 0 ,
Hence any solution of (5.5) is a solution of (5,7) and obviously conversely,
an/c},by & previous remark the rank of (545) is equal to that of (5.7). ﬁu‘b‘ FJ
and G:j are linearly independent as shown in the above proof so if the rank
of (5¢7b) is r, that of (5.7) and hence that of (5.5) is r+l, and conversély.
We thus complete the proof that if F(x, A) is positive homogeneous
of degree one in }t and | G:J “ is of rank n-l, any extremal when parasmeter-
ized by are length ié of class CZ.
6« A series of remarks on the properties of Buler vectors will fol-
low, Consider an open, simply connected point set S with F(x, A) homogeneous
and of the first degree in A , A necessary and sufficiént condition that the

integral from P to Q for all P and Q in this point set S depends only on the

Jlo)y=o0

for each arc connecting P to Q; that is, for curves of class C f‘j = 0.

endpoints is that

The necessity follows from previous considerations. The sufficiency can easily

’
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be seen by imbedding any two curves comnecting P to Q in a. one-parameter family
x,(t, €)=0, t, $t S 71 $ €8 Tk, of curves joining P to Q. Then
/
from 7 (€) = 0 it follows that _7( € ) = const. and the integrals along the
&

two curves in question are equal. If
"

2 —
SF _ XE ) _ 2F 7
D% O X, Al

along all curves ! must be identically zerc in’x;x! and x't because one can
always construct a curve having these values. Therefore first

_'F

7 /

OX; X 4

and we easily see that because of homogeneify

(641) ’T: (7(/’)(}:: (X)X

- 2F _d 2T
(0= Sw T dF o

= 0O

This gives

{l
;/‘.
>9
X
a
~
P

_ (A« _ OA
Lo _WK
for all x and x', &nd hence )
DA DA
(6.2) ’D X[ : 5 ’X K Q
— !
for all points of S. We thus see that the fP}‘(XIX ) d f) F positive
homogeneous of first degree in x', is independent of the path from P to Q if
end only if F(x, x') is of the form (6.1) and (6.2) holds for all points of S.
Consider a curve x.(t) of class Cz's We have along this curve
Fefn) = %

_ d (o aF‘)
"5X1+df(% D X:
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and hence ’
a _ .g‘_;_( _oF
(843) / X:= 7l F — 5 A
If x;(t) is an extremal ( ()z = 0) then

(6e4) ’f:. 3;— = vonste

end an integral of the Fuler equation is obtained. Notice that (644) holds

regardless of homogeneity of F. Now let F(x, x') be positive homogeneous of

the kT8 degree. in x'.  (6.2) becomes

(6.5) (1-k) &% =i K

If k # 1, F(x, x') = const. is an integral of Buler's equation. If

k=1, /, XL‘ = 0 for any curve and . is always g normal vector to the
[ %4

curve. It can be shown that in the c‘ase of a Riemannian spacs /’2 is in the
direction of the first normal to the curve.

_- Let us compare the variation problem for F(x, A ) and FK,R F(x, A )
being positite homogeneous of the first degree in A , Let (ﬁy and . be

(%
the Buler vectors for the F and the Fk problems respectively. Then

5 Tﬁ —k(k-)F br ‘if

: dT - ..
0, ¥ is conshant along the curve and 37 " 0, giving !6)" =

0, arc length can be introduced as parsmeter making F a constant and

(1
() )

LY
zero along the curve, and then ()(: = 0, Thus the extremals of the F
K
problem are extremals of the F problem, and all extremals of the F problem can
K

be so parameterized ag to make them extreémals of the F~ problem,

7 Take néw 07-" = .’t"2 where P(x, A) is positive homogeneous of the

R 4
. _ QF 3 ¥ O'XK > F dz’XK
© ~(/': XS D f)/Y ,13W,£d‘tz

first degree in A .




D

ol

2)?

and since

/ ¢
2& ?%
(741) d ‘tz
A o
h . .
wnhere, since ax [)XK 18 D

H,(x, x*) is positive homogene

written as ,

13
X\ =

Either (7.1) or (741') will be.

i

(7.11)

36

\ % 0 we can solve and get

= H(x x)

ositive homoégenedus of the oth degree -in x',

nd ,
ous of the 2 degree in x', (7.1) cen be

H. (% t)
5

called the normal form of the Huler édquationg.

At this point we will digress to “introduce gnother form of Euler's

equations also of importance,

(7e2) V., =

1

Since ~

‘€>¥£ DX
obtain
dx.

_A___..tlr

Under. the same assumptions ag above, set

5 X

% 0 we. can tise the implicit fancbion thesrem on (7.2) and

ﬁ(?@v)

Now from the Euler equations folilows

4y
di

avi _—
o dt
' , dv‘, _
where

is positive homogeneous of the

a?&xQ
ﬁ/x V) 3

) H ('x,v‘)
O A¢

Hix W) = F(x9)—v. Fxv)

nd | . . ;
2" degree in v;. Agein, we have
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2
(7.3b) H 2

(7.3) are the Jacobi~Hamilton equations.
We will Feturn now to (7.1) or (7.1)f, the normal form of Euler's

equation., In order to derive this form we had to add the following assumption

2_ 2%
(7.4) x G’LQ ‘ x O where Gy = ;%%75 )

It is at this point that we will need the derivatives of F of the fourth order
assumed in (4.1) in order that H(x, g ) be of class ¢2 for the domain X & w/xo}

where v/(xo) is any coordinate neighborhood cf any poin"’é xo/, and g arbitrary

——

except for 5 7( 0. Then by a standard theorem on differential equations*®

n "

* Bolza, 7orlesungen Uber Variationsrechnung, 163 ‘;g,
. P

s

there exists for a given x, ga -/ 0 and 7° a solution element of (7.1)t of

7(;_ = gﬁé (t/ 7?7(°,§°) t

(7.5) _ ) 7’_715 = Tf?])
g[ = j’l':f sé[ (t,//-;xojgo)

such that 750 = ¢é(7;’ A Xo/ g:) and g :Jd‘{ #&(7; T X‘} go)

to

class C2

with x,, . always in the domain 7(57/[(7(0) £x0, This solutian element is un-
iquely detSrhined by its initial values ’
X, g’o r in the sense that two such elements with the same initial values
/ /
coincide in their common t interval. In fact the solution element is independ-
ent of 77 in thet the addition of a constant ¢ to the parameter t does not

change the fact that the element is a solution of the Euler equation, since

H(x, x') is independent of t, but merely changes the initial values to X, ga e
. A
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Take the end point Xé [Tf7'(> of the above solution element and

construct, using any coordinate neighborhood of that point, the solution ele-

ment of (7.1)! with the initial values 7[ (T'f 7—0) §L (7«_{_71)
o= bt T al(ren), E(T+7))
S =hdlt Tin a7, Slren)

with 7'7‘77-77’ Lt L 7‘%7]%771 . Since (7.5) and (7.6) are both solu-
tions of (7.1)'with the same values for ‘t—: ’/"717'( they must coincide in

(76)

their common t intervals; we call (7.6) the extension (7.5). We thus obbain
a solution of (7.1)! which will be of class Cz in ¥, 77, %, and go if we sub-
stitute in (7.6) for 7(/7‘#77)/ g/f’-f??) their values obtained from (7.5).
This solution does not depend on 7’{ ; as can easily be shown by the uniqueness
property of a solution element. We can obviously continue the solution to the
left as well as to the right, and by repeating indefinitely both processes we
obtain/a solution of class C2 in the variables f 7’ ]’o g: 7( 0, defined
/ / ’

for an always increasing t-interval, which we ‘will later: show to extend from
-0 to 4 o0

We now show that the extremal depends upon + and 7 only in the form
t - 7.  We know that gbé (t—c)t 7(0/5,3/ fL (t—c/7; 7(0/ ga)

is a solution of {7.1)! which, for t = 7 + o, has the initial values )’01 g‘

Cl;c(t “CT X, gﬂ)i 4’5(’:/7"7‘? X“,g")

and setting 77 = Oend ¢c = 7
b (¢ 7 x,5)= #lt7on,5)

The only property of Hi("x, g) used thus far is its independence of t. We can

Hence

now write our extremasls as




x(t) = & (t-tp X(P), S(P))
(8 =2 ¢ (t-ty xP, (W)

(7.7)

where
(7.71) ‘LP—- el & 'f_P + o

Evaluating (7.7) for the point Q with parameter t,, one obtains

(Q = ¢ (t-t,,x(?), 5(P)

(Q) = d ¢, (t oty 2, 5 (P)
Aty = ¢ (t-T, X(R),5(Q))
£, (1) = L h(1-tq, 1(8),5(Q)

will coincide in their common t interval since for t = tQ they assume the same

o~

AR

Then (7.7) and

values x, (Q) §? (Q); that is to say

me),. B (1-t, 1) ER)= Pltt,, X(@ﬂ@)

for any t in the interval (7.71). This is the analytic expression of the fact
that an extremal is defined by any boint on it and the tangent vector at this
point. ‘

Now we prove the

THROREM. Every extremal can be extended to Infinite length. By
this is meant that to any s z 0 there exists a point P on the extremal such
that the arc length along the extremal from P, to P is equal to s.

Proof, TWe will show that there is no bound for the parsmeter t.
Let us assume that the extremal is estended to the right for all the parameter
values t less than a certain a. Then we will prove that it can be extended to
parameter values t 2 a. Tor simplicity let us set tP = 0, The equation for

this extremal then takes the form
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2 (1) = (1, x(?)5(P)
g, (¢) = 45 ¢,(t, x(MS(7)

From (7.8) we have for t, in the t interval

b (1, xDSD) = P (-1, (9,5 (5)

Teke now a séquence ‘bn in the t interval cohverging to a. The corresponding
points § = x(‘cn) will have an acdéumulation point for, since #(x, x') = k along

the extremal,

3. ,fw-‘(xx it =kt L ka

and the points SIl satisfy assumption (3.1). It might be noted that this as-:
sumption is stronger than is necessa;y in this case; completeness of the spate
would suffice. Let R be an accumulation point, &id let Sn now be a subsequehce
converging to R. Take a coordinate neighborhood w(R) of Ry +then for some N,
and n > N, all S will lie in %(R). In %(R) form x;(Sn), the tangent vec-
tors to the extremal at S . Pick another subsequence ‘of points, again denoted
by S,, for which xj!‘(Sn) — 7;(: . It is easily shown by use of the lemma on

pe 4 that . is finite. Since F(x(Sn)x'(Sn)) = k&, we have in the limit
F(x(R), g) = k, showing that g is not a mull ¥ector but lies in the domain

for which Hi(x, %’ ) is of class c2. The extremal

7(g[t): 4’;(@7((1%)/%) , ~714¢471)

can be constructed. It is of class c® and assumes the initial values x(R),g
for t = 0.
We have yet to show that this .extremal element actually is a continua-

&

tion of the extremal., To do this we will show that

¢ (a-w xMTE) = (-o x(R), S (R)
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for g~ sufficiently small. Now

C]%, (‘t) X/?>,§(?>) = %/f-ﬁh/X(Sﬁ/?(S;D) ,05% < a.

Set t

it

t, - G where 7\ > 750, end J~is so small thet ‘bn - @ lies in

A

the 0 2+ < a interval. Then

P.(tig xVEF)= R (-gAls) Sl

and as n-> o0 e get by continuity
F,(2-0,x (M, S(7) = ¢ (5, 2(R), 5(R)

completing the proof that an extremal can be extended to infinite parameter +
and hence to infinite arc length s since IT('X X )Jt =\ }( t
k>o0. It is obvious then that it also can be extended to negative infinity.

We will show now that an extremal is determined uniqueiy,_ by & given
direction at a given point, that is to say that all extremals with the initial
directions X i'LJ oK > 0, at X, coincide as point sets. Let the extremal
with initial values e xé be written in the form

x; = x; ()

and maeke the change of parameter l

i: C(T'"?;>+to ¢ > 0.

J
x (1) = %, (c(r-r)w) = xz/’/“)}
R =x/ () L& = c 5 (D),
/j/:: (7"):‘407("”/{)%'%"’(3 7,: /f) and
F) —H (R (), (1) = ~
cE [l () - Hy (% (8), (1) |

Then

N
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—~ /V/ /
then if xi(t) is an ex’crem‘.a],?i{r) is also.  But 7(/7;) ‘:—;Yo/ 2//7;): CX,,)
so the initiel values (x,, cxé), for ¢ an arbitrary positive constant, give the
same extremal with only a change of parameterization.
8. In this section we will consider the question of the existence of

normal coordinates. First a series of auxiliary equations will be derived.

7(5[5) = 9?% (5, So, X, XO/J

and meke the following change of parameter

Teke an extremsl

s = as + b, a >0
"'a‘: 'g"z-;‘-j = %’éé' and
Xi(a§+b)=¢;(a§+b,a‘s:—}bj XDJ‘HE%LB
¢, (3,3, 7. ‘L(jg)

o L(d
since the extremal is uniquely determined by the initial values (7(° 2 (d -a))
y <

Then

for s = -s-o. Setting a's_o + b = 0 and dropping the bars gives

(8.3) Cf> (als- S2), © 7(;"(31))5 5‘%[5:53 A, (g’?” PR

1
By setting a = <= L

fors)s ande.==-—-a--f'ors > s, one obtains
{wssxo 92)) = h(10n,65)0) s>
(8.2)

(s s x, (32 ) ¢(/o,;r°/-{5—$a) >) s<S,

The first half of (8.2) is the expression for an extremal issuing from Ps the
second half that of an extremal running into Po' If the distance function is

symmetric, the two expressions are the same. Both equations (8.2) hold also
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for s = s_, because, as later is shown, 75,(3, s
¢

P

or %o xé) is also continuous

for a null vector (xo, 0). The second half of (8.2) could be derived from the

gt d

: (o dx ‘
first half and the fact that =S —-So Ao — 7= is an extremal
t / / p; C/S 1]
of the variation problem for F(x, =-x!) as a metric function. We first have by

introducing ¥ = -s,

C#é (”3: -5, A = {j'xg))‘:' Sé‘*(sf 557(3(3%3

and then by the first half of (8.2) |
. A d — ~
P {és/—so,xol-—( d«;—’i)) = c}s (—7/ 0, %o 3 -50)[3—-9)
' |
= ¢, (ox,()(E).) .

For convenience we c¢an set

(842)" gb,.(fj 0, m//*ﬁ%ﬁf 4{ (7(5 [55)(319) Je0

84, and
w d _ : dx\ \ -
o G (L oxt o) = b (A, 5E)
If one sets
(s—sg(géﬁog-y;/ L= ﬂ "5’h) s > 5,

the equations of an extremal issuing from P become

(5.5) X = F: (%, 9) .

The next task is to show that (8.3), for a fixed x4 cen be solved for the y's
in terms of the x's, and (8.3) ¢an hence be considered as a coordinate trans=~

formation in neighborhoods of x = x, and y = O respectively. The y's will be

o)

called the normal coordinates with P_ as origin. (8.3) can be solved for the

y's in a neighborhood of the point y = O if 955 are of elass C1 and the

Jacobian is different from zero at the point v, = 0, as we will now show.
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In (4.1) derivatives up to those of the fourth order are assumed for

P(x, x') at all points (x, x') except (x, 0). Therefore H, (x, %x') has continu-

N ‘ 4
ous first and second derivatives é?%%i‘ ) §§I4 é> }4L }{
. ) <o )
—>? H: 3 X; DA; DX, ngDX;

ox ox,

tive homogeneous of the second degree in x',

and at all points except (x, 0.  But since Hj(x, x') is posi-

¢ 2D H:

and are positive
O X; o 7(’

momogeneous of the second and first degrees respectively in x!'.  Therefore H;,
D H: DH:
X and > 7(/, ere, as is easily shown, automatically continuous at
) J

(%, 0) and vanish at these points. Then since

im HyloXott o 9-HiCx0) _ o _ 2 Hi(x 9

Ao P O X¢
(X080 -Hi(X0) i 8 AUHy0es 19— HX 9]

Ao A v 0270 A

3

’ _ . - 2 H(x®
DK/

and

!

Hi(x, xt) is of class C! without any restriction as to the points (x, 0) (and
indeed of class 0% except for the poimts (x, 0)). As a consequence theénleft
side of equations (8.2) is of class C1 in all of its arguments. By definition
q%. Xgr ¥) = 96 (1, 0, xg, y). But we have shown that gﬁ (s, s, xo, y)
is of class C for all of its arguments. Hence q& (xo, v) is of class C

without restriction. e might note that ¢ (x., y) is of class 02 except, in
¢ o -

general, at the points (xg, 0}.

Next it must be shown that the Jacobian of (8.3) does not vanish at

the point y = 0.  Consider the equabion of the extremal, 7((: = %/Xo/gf)
B /




4b

and differentiate with regard to t, getting
d?(( . D ¢[ /Xoi‘y)’ g
K
dt O Yy

on the extremal. Going on the extremal to the limiting point X gives

_ D ¢ Uxn, 0 ’
?L pY v, ES"
for all go . Therefore .
2¢x, 9 _ <
O Vi «

and the Jacobian is equal to 1 at the points (x, 0).

We are now able to use the theorem of Dini to solve x, = ¢ (xo, y)
in a neighborhood of y = 0, getting
(8.5) $ ( Ao 7()
in a corresponding neighborhood of x_, " wher's % is of cldss ct. (8.3) sets
up & correspondence of some point P of our space to every y, but not necessarily
a one—to;one correspondence. The above use of the theorem of Dini states that
there exists a neighborhood w(yo) of iy = 0 and & neighborhood 7//(::0) of P_

such that there is a one-to~one correspondence between the points of M(yo) and

those of ijf(x defined by (8.3) or (8,5). The y's so defined:in ’w(yo) are

called normal coordinetes with P as origin. 75 (x , ¥) and ?(xo, x) are
both of class Cl and s:.nce ¢ (x , ¥) is of class C2 except for points (xo, 0)

it can be easily verified that a(xo, x) is of clasgs C‘2 except for po:Lnts

If we have now 7‘. = %L /7(0/ (;'gf()j) then Y, = (g-éo‘z are

the normal coordinates at the poimt P(x). Let us meke the change of coordinates

(%05 x)e

/:E’i =/x\i(x1, eee, x,) in /M(xo). Then \
(4Z) . a:zz) d__zs}
)= (5a) .\ dT /s
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—~ (:'__J' t
and we have for the new normal cbordinates, y; = dt /o g,

~ _ (2%
\/[ = :)7(/(>o .\)K

and the normal coordinetes transform like a contravarient vector at Po under a

transformation of the general coordinates. In general, we will call any co-

ordinate system in which the extremals issuing from (or rumning into) a given

point Po have the linear form y; = ?L t a normal coordinate sysjbem with P

as_ origin.

9., Let us write (8.3) as, P = P(y), emphasiziné the fact that it is
e continuous mapping of the y-space on points of our manifold independent of the
coordinates. This mapping is not necessarily one-to-one and may not cover all

of our manifold, but we have shown the existence of a normal coordinate neigh-

borhood, that is a neighborhood 7Zf(y,) of y, = O in the y-space which is in

one~to=~one .continuous correspondence with a neighborhood 7/{(P0) in our manifold,
-..—7' >
such that y maps on P(y).

P = P(ty), O L4 .f 1, is the equation of an extremal g comnecting P_
to Py = P(y). If F(x, %Z;- ) = k along g, then for erc length s from Py to Py

on g we have (y = ( 5—’%)03 1

(9.1) s = j.f‘()t'ﬂ/)(}t =k :T(Xo/ YJ .

Let wﬁ(Po) denote the point set each point P of which is connected to P0 by

at least one extremal arc of length less than &%  Then all points of @(Po)
X ,

are described, although not uniquely, as P =-P(y). Using (9.1) we see that if
T é w o there exists at least one set yi, see, such that P = P(

Y1 Yn y
and F(xo, y) < /ﬂ , and conversely, showing a correspondence of y & w yo% .
and ?()’) £ 20 (’Po) if we denote the y point set F(xo, y) < /gby

w(yo) . We now show that in any neighborhood M /YJ of the origin (y, = 0)

,0

I
|-
-
i
L
L
i )
|

i .
|

|

El

I
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of the y space there lies a w{o( yo)}/0»>‘0 ., Suppose this were not so,
Then there would exist a set (yi)n of elements of the complement ) C (M(yo)))
of M(yo) such thet F(x,, ¥;) = {7 < 8y, where s, -= 0 as n = >0 Then

application of (2.8) gives
< .
B max yp 2 Ffwg,.y,) = 03 < sy
and hence ¥, O as s, —>> 0. But & contrediction is now apparent since, on
the one hand C {w()/o)) is closed and contains 1lim ¥,» whileé, on the other

ho @
hend, 1im y = 0 and is in Uf(yo). Therefore for every neighborhood ?//(yo)

h—=»00
/-

there exists a w (yo)/ >0 such that 20 (yo) - M (yo)
P U0 ’
Since the complement, C( 20 (yo)) of 7&/(\}0) is given by F(xo, y)

>

f =

oyid F(xc‘-,, y) is continuous, C (W/o(yo“ is closed and hence W/) (yo)
is open., . |

We thus see that in every Z/ﬂyo) there lies an open point set M(x}

By application of the correspondence found above betwsen points of neighbor-

hoods of the y-space and our manifold ( Z)?(\/o) *‘?’M(PO )) the following
e
immediate theorem is obtaihed.

THEOREM. The set M (B), for sufficiently small /ﬂ , form an
equivalent set of neighborhoods to UZ(PO), i.e. the M(Po), for sufficiently
small p , are open point sets, and to every 'U/(P ) there exists a w (’Po)

0 .
lying within it. This w/a(?‘,) is the set corresponding to wf[ \/o)'
wﬁ (‘Po) ) for sufficiently small / s has the property that if

—? & ?ﬂ/ ( 'Po\ there is one and only one extremal of arc lengbth less than

f connecting Po to P. At least one extremal exists by definition. If more
than one exists there would exist more than one (xo, y) in w/ﬂ [)’,,}) corres~
ponding to P in W/' (_Po)/ since only to y of w{o (\lo) corresponds an ex=
tremal of arc length F(xo, y) < joining Po to P. We might note thet if

? 6‘7\0/5 (—Po) there exists an extremal connecting Po to P of arc length less

e g o e o e 3 e i
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than f' Then PP < /) and P £ U//(Po), That is
(843) can also be wrltten s
-3V, ?osh,

. 1
giving e continuous mapping of the product space {P} X‘{Y}., where {P} denotes
our manifold and {Y} the n-dimensional number space (yl, cesy yn), onto the prod-
uct spaceo {P} X {P}. The continuity of the above statement is with respect to
the neighborhoods of a topological product space, which are the produsts of the
neighborhoods of the component spaces. To the point @-O_, YO) of {P} X{Y},
where YO = 0 is the origin, y; = 0, ..., ¥y = 0, of the y-space, ¢orresponds
the point (P, P,) of (P}x {P} Hence there exists, corresponding to the
neighborhood ’U((?—) chb_.) of (_15._, ?‘), a neighborhood UL"(.IS ) X M(yo),
(y, =2 0), of (P, ¥,) whose map under (9.2) lies in VIE ))( 7/(— ):

(9.:5)  maw ot UL (BIXUVIGY C V(R XU (F) .
Teke now a cgordinatie neighborhood 7//(;0) of xo, the coordinates of

P From (9.2) and (9.3) we have ‘that the % _. and x; defined by

o’
(9.4) %01 = Foi ,' Xo = (?éé(x"/y)
lie in WGEO} if x, € 7/]/(3;0) and y {"Z/i’(yo). The functions in (9.4) mre of

class C’, and the Jacobian is equal to 1 at (3?0, y )o Hence there exist a

oi

neighborhood M(ﬂ' > ¥, ) and a neighborhood 7/7(— , x ) which are in one=to-one
correspondence., Indeed 2’((:{0, xo) can be taken as & cubic neighborhood

('fo)a X Gc'o)a, vhere (;_053 is }xi - ;oi} e, i=1, «vs, n. Thus to every
x, € (J_c'o)a, x & (;o)a there corresponds one and only one pair (xo, y) in

MGO, yo) such that x, ¢i(xo, yt),

0S¢ (OO, joins x_.(t = 0) to x,{(t = 1). This proves the
J ol i

¢i(xd, v), end the extremal Xy
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THECREM: There exists a neighborhood Gg'o)a of 3':'0 such that any two

of its points can be joined by an extremal arc, and by only one whose corres=

ponding (x,, ¥) L&, v,)-

Since (5?0, yo) is an inner point of 7//(3?0, yo) thére exist a cubic
neighborhood lxi - :Eoil {b <aof 3?0, ‘denoted by Gfo)b, such that for all x in
the closure of G{O)b’ (x, ¥,) lies in w(;c';, yo). Let :7 be the intersection

of the closed point set (xo, y), where x & Go)b and y is arbitrary, and the

closed compact point set :Z/f(;o’ Vo) = MG{O, ‘yo), the Jboundary of w(;o’ yo)

7 is obviously closed and compact; it is non-vacuous since any curve (xo, yt)
X, £ G{o)b’ y arbitrary, O St <o » is a-pon~compact point set, and hence can-
not lie entirely in the compact point set ?//(; Y, ) but must cross its boundary.
Let /ﬂl be the maximum and /ﬂ the mln:l.mum, /1 / s Of F(xo, y) over the
set 7 We recall that F(xo, y) is the arc-length of the extremal arc

¢ (x,, ¥t), O AR p > 0; for F(x,, y) = 0 if and only if y = 0,
- been
but it haslshown above that (x » ¥, = 0)are inner points of 7//(5{'0, yo) and
hence not in 7 « We thus have
(9.5) /0,, > F (%) ~.>_/ﬁ>'0 on 7
It Flx_, y) < /0 for some (x_, ¥), x5 & & )b, then (xy, y)& U (x,:7,),
for otherwise there would be some (xo, yv) in O 7//(“ . Y ) for which
F(xo, y) £ /0 + Consider the continuous curve (xo, yt:), 0l S 1, running
from an interior to an exterior point of M(Sc‘o, yo), Then for some 7~ < 1
oy
(xo, vy 7° ) would lie on the boundary of [/f(xo., yo), and hence on j; then
F %, y1) = 7F(x. )¢ TP LP
-
showing a contradiction. Hence all points (xg» ¥) such that X, & (xo)b and
F(x,, ¥) < ‘p are points of 7//’(}?0, yo).

THEOREM : Ir x and x are elements of Gc-o )b then at most one extremal

ars of length < / Joins x_ to X.  For to every (x,, x) £ IR )b X ("' )y, cor=
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responds one and only one pair (x,, ¥)¢& Z{(Eo, y'D), and for every pair (xo, y)
not in 7/7(3?0, yo), F{x,, ¥) 2/’ as shown above., Hence at most ome pair
(xo, ¥) cen exist for which F(x_, ¥) </ and (xo, y) corresponds to (xo, x)e
No point (xy, )& A &o» Vy)s %o € (xg)y, oxists such that Flx,, y) > .

For if such & point (x,, y) exists a value 7~ > 1 can be found for which the ex-

tremal (xo, yt), 0 S ¢ £00 , intersects 7 end for which F(x,, yt) =
= 7"?(;{0, v) > 7 /l > /ﬂl* giving a contradiction. The combination of the
two above underlined statements gives the following important

THLCREM: For any ;o there exists a neighborhéod (350 )b end two numbers

/jl 2 /0 > 0 such that awy two points X, and x of (;o)b can always be joined by

en extremal arc of length < /01 and by at most one of length < / .

10, We will now prove the following Thedrem of Polza which we will
need.
THEOREM:

(1) Let W(Y) be a metric space and W(X) be a topological space.

Let X = £(Y) be -a continuous mapping of T(Y) on a?(X)_.

(2) Let € be. a closed compact subset of - (Y) which is in one-to-

one correspondence with its map £(C).

(3) Let there exist corresponding té each ¥ £ C a neighborhood

'M(Y) which is in a one~to-one correspondence with its map £( 24(¥)).

Then there exists a é«Va (C) which is in one~to-one correspondence
f

with its map f£{ 2)//0 (¢)). By Z//F (C) is moant the set of points P such that

there exist.points P! of C such that PPT ¢ 25 i.es U o (C) = i;, U (1),

If the theorem were false there would exist a monotonically decreasing

sequence /Dn"} 0 such that there exist two different points pAY and Yﬁ’ elements
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7/7/,7 (c), and hav1ng the same image, i.e.
(a) Y n and Y ﬂ WD (C}
(b) Y. x‘( )

() COYSYy= £0Y)

From (a) it follows that there exist two points z) end Z" both .in C and such that
\{ -Z </’n Y”Z”</a'n .

Since C is compact there exists a subsequence of Zﬁ, again called Z&, which is

convergent to Z'. Take a subsequence of this such that the corresponding Zg

converge to a Z". Since C is closed Z', Z" € C. Y£ = Z' and Y; -2 7", as car

be seen by use of the triangle inequality, and since f£(¥) is continuous,

£(2') = £(2") by (c). Therefore Z' = Z" by assumption (2) since both are ele-

ments of C. But this contradicts éésumption (3), because there would exist in

each neighborhood of Z' = Z" different points Y} and ﬂg with the same map. Thus

b

the theorem is proved.
-

e make the following application of the Theorem of Bolza. Let

Pl

¢ = W{d (y ) have the following two properties:

() ]%%(P)<%¢— l7(x)
(ﬂ) }5——;‘1‘&”0 for )'87/%()’0)

J

Then by the theorem there exists some mneighborhood M(C) of € such that /M(C)
(the 7/7 (C) in the Theorem of Bolza) is also in a one~to-one correspondence -

with its map.

/
We now show that a 9 / s > lies in C) such that
o (¥,) I f , Uc)

properties (<X ) and (p ) hold for wﬁ/(yo)’ we will call this "extending"

7/% (y ). Let /) 2 be a monotonically decreas:.ng; sequence. Then if

)
the statement is true (1St) 7% (yo) - N(C), and (an) gs%‘ # 0 for

n
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vy & wf (yo) for all n greater than some N+ If the first were false there
h
would exist a sequence Y & 2@,"1 (¥, eand Iy € C (7/( ( C)) .
Hence / < F (7(.3) \},_,\) </71 . From this and the lemma on page 4 we obtain
/Q,-] >F (% Y) > B Tnax\‘)ﬁ))
and hence the ¥y, are bounded end have some convergent subsequence again denoted
by V3 V<P yé Then from our first inequality follows P(%,, y) = ﬁ , and
hence Y ¢ ?0 (yo) = Csy But y= hlim ¥, 8lso lies in the closed comple-
0o

ment of V(C), and a contradiotion is reached. If (an) }%—%l were not
different from zero for Y 7@7’ (yo) for all n greater than some N, there

D P(Xs,Y
would exist a sequence y, such that F‘(xo, Yn) < fn but l —%—'\‘—j‘-ﬁl)l =0,

As before; we get a subsequence ¥y =>~¥s and for this y we would have

DP(x,,Y)

%T \ = 0, in contradiction to (ﬁ ). We thus

F(x, ¥) < f and |

;ee t.hafcf if éropertie;é (o() and (ﬁ) hold for the closure of some 7/)/4 (vo)
they hold equally well for a . wo_ (yo), g > - It is obvious that if
properties ( o) and ﬁ) hold for w)(ye) they hold for w,i,(yo), T </ﬂ
A division of all real numbers into two classes A and B is thus obtained with a
number (ﬁ in A or B according to whether ( X )} and (/g ) hold for Qp/ /)’a)

or not, A number P = P(ﬂpo\) is.thus defined by this Dedekind cut, which,
by means of the above investigation, belongs to class B. P = P ( U}Do) is a

function of the point (Po A % (ya) possesses the following proper-

P(T)
() 2’? ( y,) <> ‘WP (P.)

(8)  153) 0 for e 17 00

ties:

oV
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12 (') were to fail there would exist Y, V'€ 7/;)(5;5)7) , y'xYy

cF(y') = ?(y"); but y! and y" lie in some w {yo 7 < P for which
(X)) holds. If ( ’) were to fail for some y, y would lie in some 2/) /) )
< P for which ( ) holds. Since ( o) and (%) do not both hold for

24)(?( \}°) either t b )__ O at some point GP (called a conjugate

point to »on the extremsal @ ) on the boundary 2;3 (\] — 2/7 (y )

or there ex1sts a y" on the boundary and a y' in }9 (‘/ ) such that
ﬁg)(y ) = ? (y"). In the second case it can be- shown that y' is on the bounda-

L
ry too. Assume Yy & WP (yo) There exists a neighborhood

/M(Y’) C W (y;) in one~to-one

correspondence Wl‘bh its map M{?)

3¢(x!y')‘ ~ o,

w(y') may be taken so small that

y"f V(y'); Then there exists a

neighborhood w(y") of y" such that
’w(y )ﬂ w(y") = 0 and ( "? (y) being continuous) the map of M’ ") is

contained in M(T). Let Y be a point in the intersection

7}7(3;") m ?/)P (yo). To Y corresponds its map ? (Y) in ‘2//(6?) end to

ﬂP (Y) corresponds a point 2 & w(y’). But this gives two different points

i of ?ﬂp(yo) with the same map 553 (Y), contradicting ( 0(,1 Yo We can collect
the above results into a

THEOREM:  Either there exists a conjugate point on the boundary

7\/)P (yo) - W (y,) of ?p (yo) or there exist two different poa.n’cs on

the boundary with identical meps, i.e. there exist two extremals of equal length

P connecting GR with ﬂg) (y') = OF (y"). Such extremals will be called

double extremals.
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- - - 3
THEORZN ¢ Let ;;? be a c_grgpggj:_iubset of our manifold, and let .L be

a0
the greatest lower bound of P(G’P), jf 7)7’ ;s then _E. > O.

Proof. First we show that the greatest lower bound z of the lengths
of double exbtremals issuing from VP, where (?C 777 , is greater than zero.
If Z were equal Lo zero there wo'uld exist d sequence OK\ Q,“ ) ?’hé 777}
of double extremals whose arc-lengths approach zero, Since 77715 compact, ?71
. TP ) .
can be picked as a convergent sequence , j,h‘? and since

— — /
?’\Q"”Ié OP Gﬁ,ﬁ JP»,\ Q’)‘l wo see that Qﬁ"’? [f) But this contradicts

the last theorem of section 9, according to which there  exists a neighborhood of

q) which is free from the endpoints of double extremsls of lengths less than/‘;”
13
In the second part of the proof we need the function P (?,) . defined,

as the least upper bound of all ﬁ for v}high the following property holds
. Xo,Y)

(X)) Flx,, y) < f implies ) *——gi-(‘\f""“ =3 o,

where x7,

)

5 are the coordinates of 0})0 . It is obvious that property ( X°) lflxolds
; { )

for P (GFO); also P (ﬁ) }. P(Jﬁ) gince we could "extend" PI(J}{ §°‘>

unless ‘ E -(X,)Y) ‘ vanishes at some point of WP, (\}o) Ve now show°

/
that P (ﬁ) is semicottbinuous, i.e, that to every € > O there exists a neigh-

borhood w(ﬁz)su‘ch that if -ﬁ is a point of W(G_R>th’en
PI( BP:) >, P/((Po) - & R If this were false then in each M{Jﬁ) there

— {
would be a point GPD} Gc‘o), for which PI(OP‘)) 4 P (ﬁ)o) ""é v For this

350 and same y both

’F(_?'C,})/) < P/(Oﬁg*é and

P 95(7(‘ L._y_.) = O
oY
would be true. Take such a sequence ;on.’? ;o° For this and a corresponding

set ¥y
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F (K., 0 < PP)-€¢
O P (Fons In)

J Y
would both be true. By use of the lemma on page 4 we get

B max 1.l < P(TY-€ :

hence Iy is a bounded set and has some convergent subséquence which we will de=

= O

note again by A If V=7 ¥ we obtain in the limit

F(x,y) < P(PH)-€ e
la (71:»)) — 5

in con‘bradlctlon to the déflnltlon of PL{%P) , thus proving the semicontinuity
ot P (JPB If P (BP) is infinite it can be shown, in a similar men-
ner, that to each N > O there exists a (7, / ?)such thet if 7?:6 7/7/ ’?,)
then [ ( OP) > N.

liow let us go back to our theorem. By definition of __E there exists

a soquence of points oy & /7 such that ( 777is compact) P = P
P (?m) - f. « To a given sufficiently small € > O there exists a neigh-
borhood /71 ( 7’) such that
PI(®) > P(P)-€> P(P)-¢
EFC‘,’ WZ/ T) Hence for all n greater than_some N
"(P.)> P(P)-€.

Since the length of a double extremal is always _}_ E >O we have for all

P(@n) > (Z) P(?)‘-é) >0,

if (a, b) denotes the smaller of a and b, and hence, since 6 is arbitrary and

P is the greatest lower béund of P(‘P) where (ID € '7?7}
P >(T P(T) >o.

n>N

We thus complete the proof of the theorem.
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1lls In addition to our past assumptions (2.1, 2.2, 2.3, 3.1, 4.1)
we add the following one.

(11.1) (d?o has the property that any extremal arc
P (T y
EGPO()F ) q) ¢ 2/‘})9((%1(?5) y is a minimizing arc,

ie6s the arc-length of E is not greater than that of
@,§ 1s not greater

any other arc from OR to ? .

(11.1a) zﬂP( 330> (/Po> has the property that E 7, P ,

(4]) , has a shorter arc-length than all
Te V20" ©

arcs from ? to q?.
o

According to the definition of distance the arc-length of “}6}) = 5? ’/37

0
7 under both assumptions, i.e< B ‘? U/S) is a minimizing arc. That these
assumptions are not necessary for the theo;y is apparent from the fact that it is
by no means proved tha‘b.a minimizing arc bé an unbroken extremal (see the example
on page /19) " A minimizing arc could consist of a finite or infinite number of

oF(x5) _ (v
extremal arcs. In this case the covariant vector U: = W - =T

i
N L
would have to vanish at any corner point A. ( { and 71 are the two ta&ent
vectors to the curve at A) We define bhe invariant (:
= [ )=, %
Co X,§7 = N ‘
5, the Welerstrass Z‘function is a positive homogeneous function of two con-

travariant vectors g and n defined at the same point; it is of the first de-

gree in %’ and of the zero-th degree in-7l , and vanishes for 7’] =X g .

If 5 venishes if and only if 77 - g’ , it is cailed essentially positive,

Later it will be proved that a necessary and sufficiemnt condition for (11.1) to

be true is that the Welerstrass é: ~function be not negative; and that a suffi-

cient condition for (11.12) is that *%he é ~function be essentially positive.

1

If the E’Z -function is essentially positive, a minimizing arc can have no corners,
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because. the (E ~function would vanish at such a ccrner without 7‘) - X g . The
important case of a Riemannian metric is a case where the 5 -funetion is essen-

tially positive.

THEOIEM:  Under assumptions (11.1) or (1l.la)
< P(T.)

(11.2) 7/) ()= M (1)), f——
‘Proof. a) If q> < :2/) (7)) there exists en extremal Eg

of arc~length less than Therefore q)? f' and 7) & W [T)
b) If ?5 % / 'bhen .> /«' Hence there must ey1st some arc
“’)

Cl? such that 1'bs arc-Jength 7(( ﬁ But this arc in its entirety,

‘Po ¢
and in particular its endpoint GP lie in 2@ 7)) for otherwise there
would be some point Q both on the curve and on the boundary of ?)

But due to the definition of w / , its boundary in mormal coordlna'bes is

characterized by F(xo, y) (D , wh:.le

ST 2 TE)=T iy NG

giving a contradiction.

Consider now a Hilbert erc H $Q 3 since it is a compact point set tho _E’

greatest lower oound of P(?) where {PC H is greater than zero. Sub=-

3’5\’
divide it into ¥ subarcs by N-1 intermediate points ')“'/ f})f‘l"i (7) 6? U’Sj Q)

such thatb e

(P)= 12(TF.) ( ¢
we see that w(?)fﬁ(?)/

and hence q)i.'}'i & 7'—; (C?‘_) . Thus there exists, under assumption (11.1),
an extremal E -of length q)‘ q) connectin f to CT)'
%5 © ot 5L Tl

41

Since




58

The fundamental property of Hilbert arcs gives

PR = TR+ et P9

and since GP(_ ij-H = 7/[':6?‘ ‘?,:”) we getb
s TG E Mg

(11,3) shows that the curve Z_ E_ 2 ,51() ) is a minimizing arc of class _D~2.

et st

(=0 . ¢
If the 5 ~-function is essentially positive there can be no corners, and the min-

g

imizing arc oo t_ P, 5}')::.” is an extremal arc of class Cz.

Under the assumption ~(11.1a) we shall prove that each Hilbert arc H'?Q
is an extremal arc and minimizing. This is first shown for a subarc HRS of
H?Q , for which RS < E s _E being with respect to H?Q. From this and the
fundamental property of Hilbert arcs the above statement to be proved follows.
3ecause 28 < P , S lies in /Z/JP (R) and hence there exists the extremal arc

ERS of length RS. Now each point T of HRS is a point of E if not, let vus

P RS’

construct, as above, the minimizing arcs Bl end E{‘S connecting R to T and T %o
RT

S respectively. Now

' T,
T = JEL),
RS = j’(ERS), and

—— ——— P —
RT + TS = RS.

F(EL AE) = T(Eg)

contradicting the assumption (ll.la) that E’%S C 7/)13 (R) provides the shortest

Hence

length. Hence each point T of HR’% lies on E’:{S’ and, since there is one and only

one point on each of the arcs of a given distance /’ , O £ ﬁ £ RS, from R, we

have H’-{S 2 Bogs proving the statement.




As a result of this proof we obtain the following important fact: if
ve 79/){73) and if the Welerstrass g *function is essentially positive,
each "between" point R of ? and Q lies on the extremal arc E ?Q joining CP
to Q and lying in % /?)

12, We will consider now the problem of characterizing normal co-
ordinates, 1le8. coordinates in which the extremals issuing from a point I/fo have
the equation vy = § is where g is a constant vector apnd s is equal to a con-
stant times aro-lemgth, by properties of the metric function F(x, x'). Teke a
normal coordinate neighborhood ?/f(yo) of the point )¢ , whercthe normal coordi-
nates y ere defined by x; = ¢i(xo, y) and Wherqf”(yo) is such that if

v 7//(3'0) then the whole extremal yt C_?/f(yo)_; 05+t S1. 1f F(x, x') is

the metric function in the x ocordinate system,
. D I\ o I
F(bexn, 3591 = F (o,
~

will be the metric function in the normal coordinate system. Sinse according to
2 e ~
(4.1) F(x, x') has derivatives of the fourth order "and since \}: exists and is

3%ch .
continuous, and, except for Y =0 %——Q“‘ exists and is continuous al-
e / e y‘; D \JK

g
so, the following assertions hold, - GF (y, y') is continuousy —5—-\' is con-
OF R °
tinuous likewise except at y = = 0; <7 eand ‘ ! are continuous
P Y=Y ) ‘16"'/ S \};‘,‘ P ‘M

% e
except at y' = 0; and :_3“\)","3:\')/ is continuous except at y' = Oand y = O,
h © <
where all of the stetements of continuity are for y & W(yo) and y!' arbitrary.

If vy = 7"" s, s equal to a constant times the arc~lehgth, is an extremal

E  issulng from GFO , the Bulei vector on E

(12.1)

a N\
= 2t d T _

¢ o Y dt Q y;
for all s # O and such that vy = 7713 is in 7//(yo)_. Also, since s is equal to

o constant times the arc~length,
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(1242) (F(‘/,?\) = k= Flo "ﬂ

b for all points of E.  Set

7‘( (s) is continuous along E; thersfors
NI
(o) = kom 71‘(5 _9__’_“__{.9,._7_?)
7—’L S»o b \}/,
1 . -
Then from (12,1) we get
~ o
d e - .o>:D"(Y"-
E(T{JQ n.(o) -
the Euler equation in another form. Multiplying (12:2) by s we get
| Fly,yy=Floy) ;
: this differentiated is
o F( _y) ’+ \/.2) X)
PR D Yi

L for all y # O in the néighborhood w(yo). Therefore, due to the homogeneity

; conditions/on the terms of the above equation,
DFOY) 4 DT =
a yl ~a yl
d (%

/ or
) J

o GF—{‘J,\J} + ')IL(S\)—’?]Z(G) =0,

DY

| Multiplying by -é—, .
il 2 Nl -1 0
L 4 ) -] -0, Sx0,

ﬁ Hence
%—(QL(SB*WL(O)) + ﬂﬁ%ﬂ'@: 0 sxo,

., Integrating this differential eguation, we get

' - G .
NNl =5, 5x°
. Since the limit of the left side of the above as s approaches zero is zero (we

have assumed that the whole extremal, O s § Sl' lies in W(yo)) c; = 0 and

o
M iy, tmv——_—
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77.(53—77- 0) =0, o
OF (ym) ?f ZD o

> ¥ AN

: DF (Y, /—(o "y)
(m 3) .-5—\7,——2 s

' ~ (1243) hence are necessary conditions on the function q—'(y, y') for the y co-

B ordinate system to be a normel coordinate system.

ile will now show that conditions (12.3) are also sufficients Multiply-
| ing (12,3) by s

I’: T - O .

(12‘4) F {Y,}’)—‘“ *(O/y);

| f multiplying the above by ‘g‘;‘/

oy - O

TFly,ny=Flon),

| end hence s is proportional to the arc~length along the curve vy = 7’{is. Next

t it is shown that ; = 0 along ¥y = 77is. From (12.3) end the derivative of

>

DFOM _
o Y. '

B (12.4), -

B and hence along vy = 7] .8

" /, — o ¥ {_,ll) %FQ;-)J) = 0

¥ and the sufficiency of (12--.{5) is shown,

“Te note that . K
E /’(yEJ) _ 2F©O) K =1
R ’

| a5 well as (12.3) form a set of necessary and sufficient conditions for normal co-

ordinates. In Riemannian space
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F = Ei () 7\%\5

; and hence the conditions become
| ()Y = 5

. Zgu(y)‘r\ agiJ(O) T‘ ) or
L (12,5 .
 (1218) £ (Y)ys = &1y .

This oan be written as
405 = ¥
if coordinates are chosen such that 813 (0) are jequal to,g
133 Along an bxtremal y, = nls we, have
arc-langth = f TU 7'06} s

fo F (0,m)ds by {1244)

Flom)s

Flay) =5

if the last equality be taken as the definition of S(y)s  (Of vourse this formula

\

20

L has been proven before.) By the oonsidera’cfwns of section 12 we see that Y
) L

4

n

i

- exists for y 7( 0 and s‘ (1‘_2" ) 97:( )
2S . 2F (e (Dy _ 2F )
- B’F’(\) 7]3 -

dy/ .

Let y; = 7‘lis be en extremal E jJolning y_ t0.y;, and let y; = vy (%),
0+t £ 1, be any other curve C of class p lying in the normal coordinate neigh-
. borhood, connecting Y to Yy and passing through Yo only for the value £t = O.

L Lot ?(7') be the point y, = .yi( 7°) on the curve C. Then

S(yy-She) = f

?('r)

. ;____S_‘_ .
fC\’1 PETRRE
‘P(’i’)

7

i




f —J--,.
- AR b
BRRRGR o

.i Let 7 approach zero; S(y( 77)) = ﬁz'(o? y( 7°9) approaches zero,. sinece y{ 7 )

. approaches zero and CFT is continuous and 77(0, 0) = 0. Then, since the

S 22Ny 4t
exists,

Sey) = f‘mm‘) dt.

¢ was any curve passing through y but once, and could be E; therefore this holds

l.

~ for E too, in which case it alsd follows from the homogeneity of C7T(j, 72 ).
} The above formula for S(yi) has begen proved for curves of class pt passing through
i the origin but once. It holds equally well for clcsed curves where the origin is

L the first and the last point on the curve, but is not any other boint on the curve.

(In this case S = §(0) = 0.) Every arc of class Dl, as can be easily shown, is

B : sum of a finite number of such arces; hence the formula holds for each arc of

class Dl. Let
d A

B

arc-length of C - arc-length of E

fc'ﬂr(y, y)dt — Sy

[ FOLdt- ] D_/:%,zﬂ yidt
fc{\¢b{yyy DJFJM L)cdt
JELY,Y, wt, ‘

If Z{ 2 0, /A 2 0 and the extremal E is an arc not longer than any other curvé

I

i

i

i

connecting the two end points and lying in the normal coordinate neéigliborhood.

THEOREM. If in p (v.), /) < P( L thég; -function is non-

negative, an extremal E from Vo to vy 1y1ng in ;}f? (yo) is such that

27(E) 2 d7(C), C being -any other curve of class D1 connecting y  to y;. If

is essentially positive, then :7(E) 4 :7(0).
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Proof. If C CZ[)/a (y,) and f; 2 0, then 7(0) 2 ](E) as we

 have just seen. There is at least one point ? , different from Y, OB C at

junich y' # 7? since C ¥ E, and at this point 7’ , under the assumption that the

. o : . 4 . o /7

. & ~funotion is essentially positive, é ? 0, Since we are assuming C C Z/)/ (yo),

7 Te 20/0 (yo).  Now Z(y, yte )= Gyoy. v, v # Yo, showing that in
3 i

@ normal coordinates the é ~function is a continuous function of y and y! alons,

it v # Voe  Hence 5 > 0 in some interval on C about the point ? There-
btore A\ > 0and J(C) > o (B).

o If ¢ C‘X, WYO (yo) there will exist a point (P on C and on the boundary
R 77, (3.
1 (0 7 ¥, ~a f (?
(C5) > TAC,
yo )o P
o (\/ 3 P e _

| 4 e 4 :7( C y;) .}. c?o? - ﬁ/
: since W, ((ﬁ,) E Md(ﬁ,). But 7(5) 4 / Therefore
- a ( .
! j(C) > 7 (E) under either of the assumptions oh 5 if C CS( 7//2 {E)) and
L f
B tho theorem is proved, '
Suppose 5 (x, g/ 7] ) < 0 for some x, g , 7? in our menifold. Con-

R struct an extremal E through the point CP = x with the tangent wvector . On

f £ pick 'a point 730 such thet (_P ol }C)P(Fﬁ\ (FPa/ . Then for 7] t = yi in
’ S

o) the normal coordinate system with origin at T,,
/0? ~ 7[ g (v, ?5 s ¥) 1s & continuous fungtion of y

%———\\} b g , and sinoe 5 (y, g ' y) < 0at 7;
v Eq 5 (y: g ’ y) <0 &long some arc @ of
. B 4

N
&S?, Construct the extremal E% from %P, to Q. Teke C = E% + 9P  as a com-

class C! which has g ias tangent vector at

E parison curve.
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A = TJIE) = T(0)
= J Edt
JE;E’CHP +I@§Jt

and the extremal E is not a minimizing arc. Collecting the results we get the

T

THEOREM. A necessary and sufficient condition that in each 7@, (73)

{
the extremal arcs through the origin have lengths no greateir than tThose of any

comparison curves is that the é -function be non-negative throughout the space.

If the };‘—func_tion is essentially positive the extremal arc will be shorter than

b amumay

any comparison curve.

14, A curve Cl is said to be homotopic to & curve C, (6 = 02), both

connecting two given points ? end Q, if there exists a one-parameter family of
~

curves - ’ o< € £ 1
? - Hé/t) / —oo< d(E)< t4 b(e) L o2

joining ? +to Q such that a?(é, t) is continuous in the domain of definition

and C, and C, are members of the family. It is a simple matter to wverify that

2
the relation of homotépy is reflexive, symmetric, and transitive, Let {C} be &

homotopic eclass of curves joining two given points, f.e. a set of curves such that
any two of them are homotopioc. Due to the three properties oft the homotopy rela-
tion listed above, a homotopic class is uniquely defined by any member of it. We
might remark that if the space in question has properties such as to allow speak-
ing of ares of class D™ we can restrict our definition of homotopy to such types

of curves. It can be shown that two arcs of class D' homotopic in the genersal

sense are homotopic in the restricted sense, and conversely.
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FERHO R There is a minimizing arc (an extremal without a cormer) in

B coch homotopic class {C_} of curves E)joinin_g,__s_)_ to Q, if the & -function is es-

B sontially positive.

Proof. Let d = g.lub. 7(0), CE {C}-, and C of class Dl-. Then

| there exists a sequence C, such that Cy < {C} and

) = d e M

} ‘ Take constants Dl >D > d. ,
. m)

C,C UL

B for all n sufficiently 1arge. Let

g = g.1.b P(R),
‘, where R € WD (F) and P (R) is the l.usb. of f such that ?/)/ (R) is

+ describable by normal coordinates. Thén _E > 0 since 7// (6?) is compac‘b.
, [ Divide Cn into N subarcs of equal length by points Pnf’ i=0, J:, ,vee, Nj

(S)o = JPJ 6PN = Q Then there exists a k such that
~

(ﬁ’ X’W,) C_lz\ twe P

;ﬁ. } for sufficlently large N. As a consequence

amaamm———

PP v < L

r’ i /—-\

;3 4 for any point ﬁj on C' = dg) A . and indeed
|4 mbt 4t l

| min <K<
;gme%yﬁgswmﬁf

=57, CHT.

\{ | Hence a unique extremal erc of length v‘m'- ﬁi‘”

N
,’ E - L‘qz\iﬁlm
¢ oxists connecting %D to ? and E/ . /’Z/)P {{:L), We have

. D4
M ’V\l+ )

(1441) 7([{:[} mm < fj(C/) ,




Now '
! / i/l '()*
3 I ( ./s> g t +’1)

Fe(C (=

Tor the proof of this we use normal coordinates in Z/QP (GK:L>; then C! has

85 equations
v, = v, (6, m &t S,

Consider the family

- H§ o astLg,

%1607 y, (t) €2 1<4b,

yi(él %) is obviously continuous, end £ = 1w gives C' while £ = b gives E!;

hence BE' 2 C'. By introducing

\

LT 0 ottty 31}4€Li+l /
we have
*®
(14.2) Cﬂ”’\VJ Cﬂ
since '
7 ’
(”r\: LIT‘D Q?l?@w J C?L? i ¢ ’

Because of (14.1)

since by (1442) ¢* £ {c},
a s "j(c;l).
Hence, since AJ (Cn) <> 4 as n->» >0, we have
’j(c;)-p d as n-> o0,
We now show that a minimizing arc G* existsy Take a subsequence of C;‘l

such that
) R, .
.=, i=0, 1, ses, N,
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which can be done since «fmg_ A 7/713(?) and‘ WD ({? is compac’c. Then

P, e ?7@(?) C UL,
PP < K E

m L

7.7 oy{,f,ek P,

Because of this last, there exists a unique extremal t.&'sy‘ ? 1 Joining OPL to
(2 L

' and also since

we have in the limit

OT)H, such that

- A'/g a(i\g? v
n> m
N :J'&;’;o 7(E“P P +1)

Let C* = Z. ‘-~°P ?LM . Then
- ¥) =t TIC) =
~ and C* is a minimizing arc relative to LC;.
Hext it is shown that C* [ {C} This is accomplished by showing that

C* X C* for some fixed n sufficiently large. Take neighborhoods

n _ o
ASHE® U/Dq( ?} i=0,1, es., N; such that if TL & M/?) and
/ PR
(J..',{ é é}?(? /> then "OL,UDL.:/ s E Then 3;)\{ ¢ D/(ﬁ)‘forn,
sufficiently large and for i = 0, 1, ¢.., N. Connect ?Z to ﬁ,ﬁ by a contin-

uous curve Cf (() oX €& §1, lying in 7/7/?) Thén there exists a unique
extremal E P, (é) ({3 (C) connecting U? (C) to CP 1 ({)

The totality of all these extremels (') (é)ﬂ? ({) as { runs

from O to 1 will be a continuous femily of exﬁremals deformlng [:. «? ﬂ’) into

Eaﬁ.\" {PM"‘H . If R is = point of EGPL((‘) GS)L+I(6> we shall assign to it €

as its first parameter. The second parameter X may be glven by

(14.5) e e osion st Z
X COENC U
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| .so thet on bﬁ(‘f>q¢?+l{é> X runs from i to i+1, R, for any point of an
ex‘tremal of the family, is thus given in the form R(e, X)/ oS € s 1,

» Of. O( 5 N. We show that R (6/ 5() is continuous in 6 and O, Take se-
b quences £, € and Xy X , éﬁ and € between 0 and 1, &(,, and

t X between i end i+l, (The latter is no real restriotion for if i < of < i+l

i+l, then we

i

I then almost all 06,1 lie in this interval; if for instance X

- /
P have to consider for X4 both intervals 1 < O(/ £ 141 and i+1 § OC ¢ i+2, and

for both intervals the proof runs along the lines given,) We show that for
€‘h = € , O —2 &4

!  R(ﬁn)avh'—} R(é/@() as T}—-—'B'Mv

B 3y assumption GPZ,(E"") -—> ?‘ (53 :}nd ﬂ?_“ (én) — jﬁ;r_”

f point R—n = R (671/ O('h\) h;as the  =-parameter

v (1444) % —_ w + v j
g l ﬁ. ?.‘, (éa-\) JP;_M({“)

‘, Since R 1is a poinf: on L %)L &w ,_____,_..’-—-—--("“
‘ (1445) O’P(,'(e,,\) R + R,n ‘?L”(fn) ‘-‘-.’ﬁ(éﬂ) ?H é‘h)
| due to the minimiing property of the extremal arc when the 5 ~-function is non-
t negative. Beeause of the fact e T
7 R £ ‘T)-.L ?L (¢) + ﬂ (€) Rn
< F. %) + £

is bounded, and by assumption (3.1) there will be some

(/f), The

7R

it follows that /4 -

convergent subsequence of Rn, again denoted by Rn, such that
‘ Rn""? Rasn —-——7 oo,

We must now show that R =R (C’,Q-()_. From (14.4) and (14,5)

P (6) R + i
?;(é) 6(){»‘!7‘6)

(14.4') X =
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P e amsneuny 2
- —_—T : _ WAK! (6
| According to (1445!'), R is a "between" point of 7)[6) and 7)'“[6)‘ ) and
gince E CSD (é)‘ {E) is the unique Hilbert arc comnecting @ (é) to
L“(é) , each "between" point lies on E op (é) JS H(() ; ‘therefore R
11 . . . d has . ts first ters  According t
ies on t. qﬂz (6) QE_H(E) and has €'as its first parametet ccording to
(1444') R has & as second parameter,
v v R = R (E/O()j
and C* 2 C;‘; for sufficiently large ne. This shows that C* ¢ {C} and completes
the proof of the theorem stated at the start of this section
The following remarks can be made concerning the work of this section:
1st. If the g ~function is#essentially positive, the minimizing arc C*

has no corners, For if it had one we could construct in {C} a one*parameter fam-

A

ily of cuﬁyes c(e ), - € £ 1, such that C* = C(0) and 7/(0) # 0, donttadict-
ing the fact that C* is minimizing in ‘{C}.,

2nd. The above proof- shows the exis‘l_:’enoe of & minimizing arc for the
class of all curves of class D! joining ? to Q, and in that cohwse it is the easi-
est proof.

3rd. In quite an enalogous way it can be shown that if
dP Q £ 20 (?) and ﬁ < E where P is the _E belonging to

w (?) 'bhen there exists a unique extremal arc Joining 7 to Q, and if if R

lies on this arc, R is a continuous function of CP , @ and the parameter & = ﬁ,




71

e
Chapter III, The Notion of the Field and the Weierstrass é -Function

154 The work of this section was first proved, in part, by J. H. C.

i Whitehead in a paper The Weierstrass fo -Function in Differential Mebtric Geometry,

B cppearing in the December 1933 number of the Quarterly Journal of Mathematics.
} The proof here presented for the theorem below was obtained independently by Dr.

| Comenetz., Dv-? mx,)

THEOREM. If assumptions (2.1) and (2,2) hold and i ; 7(‘,' DX,‘( X 0/

E . . il (x, x') = F(x, x')%, the Weierstrass 5 -function is essentially positive
o FN(x, x9) |

and Y A is positive definite.
DA py

Fix x and g , and consider g (X/ E/ 7?) — g (7‘]\) as a function

of 7] alone, Note the important fect that g / 7-\) is positive homogensous of

degree zero in '7’\ s leee in the ’7\ space g( ) is constant along a straight
line issuing from}the origin. Let 57 and 52 be the l.u,by and the gsl.b. re-
spectiv/%ly of fo /7‘\) . Then two sequeunces 7\7‘ and lh can be picked sugh
that 5/7?71) - ZI1 and 5/7]/1) —>, é;g” Because of" the homogeneity prop-
erty of g/ ) these sequences can bg s picked that; say- T [7(/ 'TI.,,) = 1

and F(X/ 7’)/77) = 1) that is both sequences lie on a 'closed compact set. They
therefore both have acqumulation points, and subsequences can be picked, again de-

noted by 7771 and 7{) , such that 1
P> M, = 7

and the existence of at least one maximum end one minimum of & /71) is showne

Then

(15.1%) y g (7(/ 577) :‘"’—F(Z, g) - 1%%()72}) g‘

and -D,T;:Q at 711 and 772. ¢
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(154 2) E__ ?_,_E_(ZQZ]T ?" =0 ,

\, 27,
i Since by assumption Da—r D)(K i # 0 “)7( P o XKl

proved on pages 32 and 33, Hence there is or}ly one solution, up to a factor, of
L ¢

is of* rank n~l, as was

e U . ‘ ’
A Since the Pactor is-unimportant, the only two

L d

\i

(1542). Thls is ?g
ceses are g = :\‘,‘ Tl Since these &re -the only two solutions amd since at
least one meximum end one minimum exist, one of them must .give the maximum -and the

other the minimum. Pubting ‘7} '1‘5 in (15.,1), we get’ é (. Putting

7 "—'g in (15¢1) we get
(11 3) ffﬂ//g“g) :T(Yf) 3‘(1 g)/ 25’)
' =T(x5) +F[7r ?)

and according to our assumption (2.2)

E(x§-5)> 0

Thus 7’173 "f"g gives the minimum and = g gives the maximum, end thus

5/7(?77)> O Since Z O is a minimum, g’OOnlyifq g

hence g(?( f 7‘]) is éssen’clally positive. Note that if the assumption

/
(242) is dropped, the sign of g /}Y g 72) is independent of 7] ;, a8 is
shown by (15.3).

Since 7'( - g‘ glvgs:éamum’ we sée that
7
D’r\ Dn‘ f g 20
for 7'] g and any g |
LEQ __ITD) ¢
371 D?‘t | D)(’);(’DX

_ )’“FM(E)
- 57( D7<t<

SEAE Tty

Therefore




for all g g

DF\LQ?; ( {)7\_"??%(25«“

B; d Xk

512
and since l QX
Let S be the surface F(x, 7] ) = const. Now

: bmzﬁ (- g) or
(7( ) )l(/?(?])

is the equa’clon of the tangent plane T to

’q S,J.n()
Fingn) —Feng) " 2l ¢l

=F (x g)*—\_(fxqé

Thus if f’; 2 0, F(x, g ) 2 Plxy ) and each paint on the tangent plane T lies

outside of S, showing the convexity of S with regard to straight lines. Converse~

is of rank n, it is positive definite.

ly, if S {s convex, F(x, g ) ¢ F(x, 71 and 5 0. Thus-the condition

ondition for the convexity of the surface

5

g) 2 0 is =u necessary and sufficient
F(x, 7‘] ) = const.
| We now see that assumptions (1ly41) and (1l.la) are equivalent with no
need to differentiate between the two cases, and indeed that these assumptions
need not be made since the work of this section shows that the previous assumptidns
were sufficient to show that the Weierstrass 5 ~function is essentially positive. ~
16, Ina 7@ { PD) with Y, omitted, the extremels issuing from
?C define a vector field by means of the tangents 71*;' to the extremals at each
point. For this vector field it has been shown that the covariant veotor
L 2Y(xn)
’q, =

L D %/Z
_e

where S is the arc-length on the extrémal

j¥iR

|

is a gradient, i.c. 7’{

o/
>

L

-

measured from Ta
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We now consider a generalization of this field, Take & given open,
simply-connected region of our space which may be covered by one or more coordinate
. L
t neighborhoods. Let a field of difections g (contravariant vectors up to a pos-

F itive Pfactor) exist such that the covariant vector
§' © DF (7(“, £)
¢ R S ¢
L is & gradient, or,which is equivalent, that [ g d 7‘ depends only on the end

¥ points P, P of the integration path. Weé have previously shown that

‘ _38, o8
—ﬂ.zK“ DXK )X’ =0

| is a necessary and sufficient condition for thé integral /T:g‘f c{ 7(‘: to be
y 0

indepefidént of path.. In our case this betontes -

| VRO XFing )’é”
Tr'”"(g>p A /YK T D X; 37( Dﬂr

) _Yrmy o 2T /X?')gj_
' DA > X 2>?(K 2’7( Rl
Since ~—:L (D( g ~.T‘ (g) ) X > (?; any- solution g i(xl,....xn)

of (16.,1) is given only up to a positive factor as one would expect from the na~

(1641)

d

1 L i
B ture of the problem. Let g (xl » sees X ) be such & solution. Then the curves
tangent to the vectors of the field are given .as solutions ‘of

(16.2) _43_2% - gt(x#)u'/)(ma).

i Multiplying (16.1) by ETK we get X
, DT (x £ DEALX
T3 = 97(,; >¥y £5 DALY A OAX

and since the derivative of (16.2) is
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azx _

C* t 2> ;(}< %T

_ m/xx) D F(x >F/ x)o
HLKJ K ( KX)KX D 7,'7( XH

/- =0 ,
{ .

¢
THEOREM. The cubves tangent to the vectors __g of a given vector field

¥ this becomes

.: (1643)

"

t
are extremals if the g is chosen so that the cwrresponding covariant vector gg

_DF&%)
We insert at this point the following remark. Tet . - D X,
_2%

X be such a field., Let CPQ be & curve. tangent to the contravariant

L

vectors of the field, and compare 7(CPQ) with 7 (CPQ -,PQ being any other curve

is a gradlent.

in the field conmnecting P to Q. Then

aq = [Fax)dt - [Tlaa)dt
C

= [ Fian)dt - f 5, 7, dt

froaddt = [, § x4

:I{Q'F/WX] B—%@f)];}’ 4+

- L E(7, £ dt

Thus under our assumptions A 7 " 0 and C PQ is a qninimiz‘ing arcCe This, too,

)

I\

shows that the curves tangent to the contravariant vectors are extremals. Indeed

it shows more, namely that any extremal arc of the field (tangent to the f l) is

relatively minimizing with regard to the neighborhood defined by the region dof the

field. This shows the importance of fields for the wériation problem.
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In general the converse of the theqrem stated above does not hold, as
will be shown, but an hdditional condition is required. In case the space is

-

2-dimensional the converse does hold because (1643) has Il. = (0 as a conse-

R
quence., We see that _TFL K = "“T-K . end from (16.3)
1
; 2
Then because not both g and ard zerd by assumption
”1?1 B ‘_“21 = 0.

Thus the

THEOREM. In a 22dimensional space R, the ‘tengents to any field of ex-

. 7 L ’ . e
tremals form a vector field g':. with §’ such that the corresponding g"_ is a

gradient.

] ?? = )P

If n> 2 and g, is a gradient, iie. W, J then
A

“i§%§f§f_ii d X, =0

and the vector f(’, is normal to the fédmily of hyper-surfaces ?ﬁ/ﬂf) = consta
But if the covarient vector \;,(_ is given by means of a field of extremals, then
in general for n > 2 there exists no family of hyper-surfaces ?9/;7) = const., with
gll. as a normal, showing that for n > 2 the converse is in gemeral not true. The
additional condition necessary <is that the extremals ‘of the field be normal to a
femily of hyper-surfaces %/7(% ey, X'rb = const. We will show that the
existence of one hyper-surface to which the extremels are normal will insur.e the
existepce of a family, thus sharpening the additional condition neceéssary.
Proof. Let thore be given a field of extremals and o hyper-surface

§ﬂ ¢ /ﬂ,,/ r ’/ 7(41)-7 0. which each extremal cuts in g distinet point. Let

990(7);-0 bo written as X5 = xg(y-_['. h..,yn_l). Let g‘i('yl’ csns ?’n) be the
B ‘tongent veotor to the extromsl at x°(y) on the hyper-surfaces Then this extromal

is given by
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7[/7(/3 ’5’(?) -0 L1 <,

Consider the twb extremals E and EP P passing through the peints P and P on

PP

?00= 0, and set
2= T(E55) - T(Ensp)
_[4 to
[’F/x,x’)dt*fT(%,X?“

where the first integral is along the arc E- -, the second along EP p* To calcu-~
o

PP

late A i}x let us join the points P_ and ?; by en arc C, lying in ?90 = 0,

Yau = 43“(6) v seLd,

The hyper-surface, the field of extremals and the turye 06 may be chosen so that

7((46) /’33 Yo (&)
are of class Cl. The totelity of extremals of the field passing through each

point of the curve C forms a two diménsional manifold F denoted by

’ = & (Xf 3/€J (8(5)) ) ..
, 0.2 t4 (€
1= (et |

o < € £ 1.

which contain ell derivatives necessary to make the following calculations permis-
sible. Join P to T by & ourve C of class C end lying in Fy.

C: t= Tl o-(o)= 1, P/Ei)ffqlor

= (€ (6),

On each extremsl arc L‘_,y (f)?k(é)

(o = Flated 160} I

AT =70 -7(00)
= {7t de.
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7’(/.6) = ﬁ:(x(f 3 f,y’(f 5))576)]?(6)

Py 35
| Integrating this by Par" e geb

"J(é> -—[t—(%% U “v‘ fﬂ%% ﬂ AJ(C
- feBER w[%% W

? (&)
| -

(J64)* '][6) D’ ]’t[b\?(’\%xéj?(e) {f Dé

% (16.4) is invarient. under coordinate txjansformatlons ‘bherefora there is no as-
sumption @§ to the number of coordinate systems necessary to cover F,.

Since C is 7( 7((0"'(5 f> andQ :J,sxl'—‘-x(t) ),
| 'P() ‘P()

]Mé) I + [M“ g and

d x: 7@ sx7 2
| ( dcj) Dé]
" Then (16,4) becomes 5‘7'{ ;( _ ‘F
_ l(f%_‘ é\‘ dX ?@
~'(e) = LT]J T LS/ de
(igeat) - 2O T Axwi’*’»(f)
-[F] o' - -57:/ Z‘?z .

(16.5) (6) L ]?Cﬂ g l{é); . .

 Thus

(16.6) A(\j f]/(édf’fﬁclﬂ "f? 0/7(
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If C, and C are closed, then '13'0 = Po" P=Pand A7= O, i.es

; g, Av. = f Cdx-
[§dx =] 5.dx
Now let the field of extremals be such that there exists a hyper-surface
e,
¢ { ) = O %o which the extremals are normal., Theh ‘gb d?{L =0 on
)
? = 0 and

(16.7) fc 5. dx;=0

Note that C.was any closed curve in the field of éxiremals”that possessed the fol-

lowing property: C c&n be split into a finite number of ercs ‘each of which has

not more than one intersection point with any one piven extremal of the field.

Thus we have proved that 95 / 7() f g D‘ X dépends only on the
coordinates of the end points if the integral is taken along durves possessing the
above property, and by this means a ?9/7( for a f‘ixed P, may be defined. Now
take a coordinate neighborhoocd at the point P so oriented that the n x=axes have

the above méntioned property in this neighborhopds Then if P has the coordinates

?(X'b zx 7‘ X'”)

%0(11 /7(4.47< FA T, n)—¢/7() = B;F_(_Q_E)_ dx;

7 (H/ ’
Pr ) A
where the integral is taken along the 7{ axis from 7(2 /P) to 7(; 'fb . By
the theorem of the mean P
- = 2
DE(TE)
’ tes - = HERSIvY S
?9(7(7 ey +A//1H/ fx'“) 60/7() A 9 XL

Hence the limit v

= _ OT(x5) _
6.9 5= TN T oA

L
and the covariant vector ¢ formed from the contraveriant tangent vector § of

4

0
the field of extremals normel to f = (O is a gradiermt. This completes the

proof,
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We include here two remarks.

I. We have shown that under the assumption that the field of extremals

b is normal to a hypersurface,

AT = HEM)- T(E() = T(E)

7

- [7(E) de

- jgf’@;«) dx;
e 2 XL

Hence

b (16.9) 7(@ ‘7/5) IYDF{KX) /X?]%’ gt

= [[Erxedt y
(1649) is correct as long as 7( {-{' é) has %_7% /%7&—) %Z;’:'Q) "5{*5’6')

| the derlvatlves needsed to use (16.5) However; since

7{)( 7Y,,(€> gk) t) the existonce ‘of these derivatives depends only on

| the choice of 7(0 (6) and S, (é) Thus in (1649) there is no other restric-

§ tion on C. This means that as long as an arc C ¢an be imbedded in such a one-
: parameter family ‘of extremals, then A fj >__ O, This does not cortradict the
fact, which will later be shown, that if Q is beyond the conjugate point of P on
i E, an art CPQ can be construgted such that Aj< O) for this art obviously
cannot be 'so imbedded.

II. In the case that the hyper-surface ?0’ O. degenerates to a

point, we have

:
¥ % SE
; JEN-TE) = 747{2 dr;

(fv,E)

‘and if E1 E, and E
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Tie) = [2E2Rdx:
:2::0) N = :7(()-“7()3") = j;g /?(/ 7// g) dt.

(16.,10) is quite analogous to (16+9) and holds whenever a one-parameter femily of
extremals 7(& :';(L (i; ¢ ) with the above stated derivatives exists passing
through a point and such that C is imbedded in it.
At e point P take a normal coordlnate nelghborhpod :Z/S7 (P Y. ir
= yi( € ) arfe the equations of a ourve C passing through P, y; = yi( € )t is
a one-parameter family of extremals passing through Po and such -that the curve G
is imbedded in it. Thus we have enother proof for (16.10) in the cese of a

%(’ﬁ,\.

We now consider two immediate consequences of this work.

—

4

¢
THEOREM. Given a field of extremals with tangent vector § such that

the corr onding covariant vector + is a gradient, and two hyper-surfaces nor-
§sp g H g yP

mel to the extremald of the field. Any two oxtremal arcs intercepted by -the ftwo

hyper-surfaces have equal length.

Let the two extremal
arcs be E; and By, and 1ot Csiand 04
be curves lying one in each of the two
. hyper-surfaces and connccting the

points of intorsection of El and E2

with the hyper-surfacos (see diagram).

Consider E and C3 + E + 04, both

e x5 TE) = T, L) T, 36D = T,
7((;) = ’]‘/ ., Then
T(GtE +C>f}(s)7 t T+ T4 7,
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Now f;F/xx} oF (}gijy dt = f)r{;x)x/“ /}

Hag{y) >F(x:§ At - p?(x )yt - Ty

)F(?(x Dr/x{)]x At = o.

77‘7 V1,2 T4 T, e
79\-74

THE ENVELOPE THEOREM FOR R2. Let an extremal exist in H with C a nor-

Therefore

completing the proog.

mal curve and E, an envelope Then

TENtHC) = TE.
) +IENTTE,)-TEY)
5sz (2% E}dt

1E, 40y

= J((,)

since 7((\,{\ =0 ( g function vanishes along the envelope).
/jflfz\ + 7/(ij = 7{E4>

17. We now gonsider the Pields of extremals obtained from the Jacobi-

En

Hemilton normal form. Take the 72 —F\ problem and assume i))( c))(’ \ 2 0,

As before, we obtain the Jacobi-Hamilton normal form
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dy, _ 2 HXW
~t > X:

(17.1) da; . _ O H(X )
dt - D V! J

where v, = B—%F\;[IZLZ() and H(x, V ) =F\(X,:§) ¥ ‘fTL = ‘—F’\(’X/ ?) .
D'Ff\(% 7() to get x:'.L = ’?L(X, V)_

? (X ¥) was obtained by solving V:
) Y Y A
Consider a field of extremals (solutions of (17.1) defined over & given domain and

&

having the andditional property that

DV
(17.2) Y. = S

[

that .is ) is a gradient, V will be called the field function. Then

(17.3) l“‘ (7(4/ X”))D.;/;/ };‘)7\(]’”) = const,.

are- partial differential equations for the field funection. As proof, differen-

tiate the 19f’c side of (17.3), and by uslng (17 1) and (17.2)

DH L oH 2% _ dy _dxe D _
MH ox; T Own oA T Gt T afF ow ~ ©

Conversély, if we have given a solution V(x1 .o xn) of (1743) for some constant,

then

: ‘ 'X )
(17+4) _d,& = ) H (
dt B V'
defines a field of curves xi(t). Along each such curve V(x) and, 'VL/X) = 5’5(1

are functions of + and .é.:..y.l. = ;_..YA dXK . But from (17,3) we get

di O Xk d‘t

P )H QVK - DH d?ﬁ( BVL
5"71( T 5% 57 ~ DX ‘a”%’ '3'7@

| - 5% TGt
(1744) EJLL ~ dw

’
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xi(t) and Ya(t) hence are solutions of (17.1) and tho curves are extremals. Thus

the

Wf
THEOREM. The field funetion V of & field of exbremals with )2 = —%;j(,

[®

is a solution of (17.3) and any solution of (17,3) gives a field function for some

field of eoxtremals with 7¥; a gradient’

We can get the same result by considering the problem of finding & con-

) D 7:(
t ariant field g: Xy e X, such that 4 being the corres-
ravariant fie ( ) js‘* S, \/ eing

ponding covariant vector. As in the preccding scction we get

) Vi byl —
- L — _)__,.S — D
Triu - O Xk AL

T £ = =(% - (7<§>"0
Hence if we have a field of extremals é;?' = ¢ and therefore

F(x

(x,7)

since —\:\/7(/ g) (')( 7(){ V)) -H /7( V) Conversely, if

Hz, V) = const.,—F\ (x, Q? ) = const, and {/9 = 0, giving a ficld of oxtremals.

and

conste or

A

~

"

const.

-

In this section and the onc preceding we have given two different defi-

nitions of extremal ficlds. jgn the f%ist casec we started with such vector fields
{ _ o F(X%
g; (xq oo %) that fl' = T=—tA?%  i5 o gradiont, and showed that each
1 n t Dy(t’

curve tangent to the vector field was an cxtremal., In the second case we started
with an oxtremal ficld with 'V' = (.F ?: ) being a gradient, and
showod that H(x, ¥ ) = ~p (X -f?) we.s constant, and hence also F(x, f% ). Now
(17,5) v, = AT M

and if ’V is a gradient /}4 is also ono since F is a constant throughout the

space. Thus each cxtremal field in the second sensc 1s oan extremol field in the

first sense.
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- QF(x
O A

gt s .
gredients Now since 5 is only fixed up to a positive factor we so vhose it

Start now from the first point of view with /J { a

thet F(x, 5 ) = const. thréughout the space. Then, using (17.5) egain, V; is

L

seen to be a gradiemt, Hence each extremal field in the first .sense, if so par-

ameterized thet ks is parameter (s arc-length, k fixed throughout the space) is

an extremal field in the second sense,

We consider mow the special case of the Riemannian n-space, where

_F\ = ByiXyX, end v, = %:? = zgm"xi‘ This last has the solution
<
xl‘{=jk(x Y)=3% kpy. Hence

H(?(/ v) = )
= “%‘1"&3&?5’(4 Y Y

~ -1
We thus see that - gM VF )/q

- 8Pq?l bv = consts
9 Xq
defines the field function V for extremal fields defined by

7(’/ P %t‘i - ,..gbk av

(.The hyper-surfaces V = const. are such that the exbremals of the field are normal

to them,)
Chapter IV, Minimum Points and Conjugate Points

18, Consider EPOP(_’o) the extremal arc issuing from P . We know
that there exists some sphere neighborhood in which EP P(%) is minimizing.
o

We also know that if B is minimizing Bp (7))’ 0E TS t, is too, end if

.EPOP(tz) is not minimizing neither is Ej PP -bz < 7”  Thus e class division
of all points P(t), 0 & t <00, P(0) = P,,» is defined where a point P(t) belongs

to class 07 if it end hence all preceding points P(tt), t*' < %, mre such that

L Ao sraw

S e e e i T i e oz e <

]
&
g
i
.z
!
i
|
}
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EP P(t) are minimizing, and all other points tomprise &Z; ’ This class division
o}

defines a point Py = P(tl) which is either the last point of 527 or the first

point of éZ;', P1 i% called the minimum point on E with regard to P;:

s

* Wo note that the work of this section could be carried through g considering min-
imun point t6 %hé left on E with regard to P , i.€4 8 point P, such that if P

is to the right of P, EPP is s minimizing arc.

-

zh i

iHEOREM. P, £ of

Proof. P1 = P(tl) is the minimum point on E with regard to P, ; hence

there exists a sequence t < tl, t < tl’ such that each EPoPn P = P(tn), is

minimizing.

JE, 5 ) =T

7(E'\%‘Fh)“——> 7(12?0?1\) and ‘P‘P’H 7?0?1 as N> 0%
Therefore
J(Epp) = BT

and EPOPl is minimizing.

Obviously 07 contains an intervel, nemely W (—Po) [\ E'P_QT('&))
f P(E) /

THEOREM. If E, P is minimizing and P' is on EPOP between P end P, then
>0

But

no other minimizing arc exists joining Py to P'.

Proof. Let B! be another minimizing arc comnecting P, to P! other than
E. Then E! + EP'Pl would be minimizinge
There exists a corner in this arc at P!,
for otherwite E and B! would be identical.
But, since 25; is essentially positive,

there can be no such corner in a minimizing

arc. Therefore E' = E and E was unique.
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The conjugate point to Po on EP P(%) ig defined as the first point on

.;l 3
other than Po at which A = ] % Cfc. [X vanishes, whén yi = ‘g g

T w

EP6P(t)

is the extremal EPOP(t)’

THEOREM. It P1 is.no’c the conjugate point to Po on ”EPOP(‘bs’ then there

are at least two minimizing arcs joining P_ %to P;.

Proof. Take a point P beyond P, on E ’ Since by definition of
1 P,P(t)

T

P P., E is not minimizing end since &ccord-
1’ "P,P
Fex

ing to the theorem of section 14 there exists
an unbroken minimizing extremal arc K¢ s
g Py
7 > ¥ B p 7 Bpgp ond
’ J(Epp)=T.F
P,P) 7 Tt
Take a sequence ’cn-—%» tl, tn > tl’ and the corresporiding sequence
P(tn) = Pn--> Pl’ P being beyond Pl. As we have just seen, there exist minimiz-

ing extremal arcs EnPoPn 7 Bp.p,}

Eﬁ?Pﬂ A P . (%, y,nf)
so parameterized that ,P’ | 2{‘1 ; fé (7(0/ y’n)

r‘ .

Now F(x,, v, ) = Po?n end F,F_ < FF; + € = M for soms € > 0 and for all n

larger than a sufficiently large N. Therefors

B max Yn&TF (%, Yn) < M

and the ¥, are bounded. We can then pick a convergent subsequenece, again denoted

rd

by Yy such that V> AR Consider now

‘ |
E'y x = %’/9(0, , t>'
E,~> E' in the sense that (79i(xn, Yab,) = 9ﬂi(xo, y'3) if £ -2 7, In par-
ticular for t, = 1, 2:1 = gfi{j{o/ )@1> —= 5%1 (73/ yf) and the point Py
is on E', that is El'DoPl is an extremal connecting P, to Py EI',OP1 is also min-

imizing, for




Eﬁ? 1711 = Elloh end ;
Y(Epy,) = j (@11, Yal), P10 V) 3

J?(c/’(z y'e) (%, y'e)dt
T(Er,p,) .

But also ~J (B, ) = PP, and F. > FF.
o'n

7(51,?13 =T.P,

To complete the proof now we ghow that if E = E then P, is & conjugate
PO l POPl 1

. . ’ =
point. o e - . Assume EPoPl = EP0P1'

that is that'yi =y Now P is given on E.and E; by the paremeters t, and

s @

respectively. Then

('18‘31) o = ?{é (7(0/ \]‘n’\) - ﬁé; [7(0/ }'th>
Consider |
’ @2 (T> = % ( 2/@/ P, fn+T{Y1’\P )t‘n))

According to (18.1)
P (1) — (P =0

or according to the law of the mean

(1842) 5(’ ) Df@%w)[\)ﬁ‘\#‘tq: O/ 048,41,

Since B, 7 E, Yop 7’y £ Therefore
%(7 )"['n 9()”/’1 yt»! 04 954 1,
o Jp
Now yt = ytl end y,~=~> y' = ytl as n —=> OO and we have
> &, m,yﬂ)
S Yr

(18.3)




89
. »
We will later show that since Ep Py is a minimizing arc this determingnt does not
o
veanish on EPoPl between Po and Pl' Hence Pl is the conjugate point of P, on E,
and the theorem is established.
In the course of this proof use was made of the following

Lemma, If an are P(t), O $t &1 is covered by a finite number M of

neighborhoods A, ses, A3, P(0) & A, P(1) & Ay y. such that the subarc defined

bya; $te.,;lies inA,(1=0, oo, s N-1; & =0, ay=1) and if P(t) is

the 6 = 0 member of a continuous one-parameter family P(t,€ ) of arecs,

0d € ¢ 1, 0 Lt ¢ 1, then for sufficiently small € each & arc has the proper-

w7 that its subarc defined by a. $t & 841 lies in Ai'.

Proof. If this were not so there would exist & sequence € n such that

)»

< PR ‘ . .
a; = £, 2 e, . would lie in the closed complement C(A;) of A;.  But there are only

for some i which is a function of n and for some tn’the point P(’cn, 6 n

nA

s finite number of i. Hence for & subsequence € ot of £ ntt

P
a; < kn' < e, exists for each € 4t Such that P('tn,, En') & C(Ai) for at least

one i, Teke a convergent subsequence t , of & .5 t t. For this subse-
. n nt n

nt’

quence P w = P(t 4, € on) > B(%, 0], 8y $t¢a,,. This, however, is a contra-
diction since P n lies in closed point set C(Ai) while lim Py = P(t, 0) lies in A
This lemma was used in writing equation (18.,2). For by this lemma the
extremal arcs En from a certain n on,and the extremal are E are describable by the
1
same chain AO, eses A‘N—-l of coordinate neighborhoods, and hence ?D'i(xo’ yn) and
CPi(xo, yI'l) are the same set of functions,
x5 = ¢i(xo, gt), 0S €< cQ, The equations for an extremal are
constructed by using a chain of coordinate neighborhoods covering this extremal arc.
These equations depend on this chain in that another oxtremal arc having the same

end points and the same orientation but going along another chain of coordinate

neighborhoods may be described in the coordinate neighborhood of the end-point,

e ot ol e e S S
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which may be the same for both chains, by & different set of functions. I
E: x, =%, 5¢)
is an extremal, we have only proved by use of the existence theorems that for a
neighborhood of gl’ cees g n’ t, (xo fixed) this system of functionms ? 3
exists and ‘is of class C%, (Of course also this remark shows the use of (18.2)
to be permissible.) A second extremal E! passing through M(x), & neighborhood
of x;, will have in general initial wvalues g' not in the above-mentioned neigh-
borhood of §'1, cees gn' t. However, in our case En from a certain n on will
stay in that neighborhood. If E and E! are describable by the same chain of
neighborhoods, then the very c¢onstruction of the sets of functions ¢ 5 show both
sets to be the same n functions. B
19, The relative minimum point can be defined in the same manner as

the minimum point Pq (more I;roperly called the absolu¥e minimum point)., An ex-
tremal afc EPOP‘ is said to be relatively minimizing if its length is less than or
equal to the length of any arc coifmecting Po to Pt and lying in some definite
neighborhood M(EPOP') of the extremal arc., Also as before, if EPOP' is rela~

tively minimizing and P" is a point on it between P, and P", then Ep pn is rela~
o

tively minimizing. If we describe an EPOP by P = P(t), 05t < 00, we have by
the above remarks a class division (OT/ £-> in the t intervel, where t & OZ
if EP P(t) is relatively minimizing, and t:coé if not, This clads division de-~
finesoa. parameter tz, and, if 'bz < OQ, a corresponding point Py = P(’cz) which

will be called the relative minimum point of Po on E We cannot say in gen-

POP'
ersl whether tz belongs to cless 0701' oﬁ'; examples of both cases exist. Due

to the existence of V/Z (Po) we see that P2 7' Po' Also it 4s immediastely ob-

vious that the absolute minimum point Pl either comes before or coincides with the

relative minimum point Pz.
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We note that the notions of Mleft" minimum points, relative or absolute,
cap be defined and the theorems proved coréerhing the "right" minimufi.-points can
be proved for the "left" ones. (See the footnote on pags 86, )

Let x; = ¢i(x , gt), 0<t<00, be a set of extremals issuing

from the point Po(x ). Along one extremal E, glven by g we define

| A =13 %s
|
,E Since 'C; : = . t s Where yk = g t, we can write this gs

155

afe
o 35

Hence A (¢) = 0, and, since ‘._i) = 1 at the point P and is a continuous
function, thers will be some t-interval, 0 < t <. € , in which I\ (£) # 0. Leb
f }A be the set of t values t 7 O,for which /) (t) vanishes. Since [\ (t) is
continuous, g,_'b}a is a closed point .set which does,not have t = O as 4n esccumu-
lation point. (In fact it ocan be shown that {t}b Yes no accuulation points.)
Thus ’7" the greatest lower bound of L.'!:},A)belongs %o t'}ﬁ , and is. the first

paremeter other than zero at which -A (t) = 0. P(7~} is celled the conjugate

point “to P on EP oF' This definition of conjugate point is independent of the

coordinate system. Making a transformation in Z//(Pb) and M(P(?’))

f 7(7(7/“.%70
T‘ we getb §¢ = beg

2% - [3%] 2 28T
(19.1) e gK a 7/((03{“')595 B '§ UZ(@
— . ) 7(3 P Xh .
and thus B—- ]w(ﬂﬁ)_a f ) 7< K- WN“))
- DXL K
(19,2) A = B\b’xsx /d”(?))\?) x \w(m.
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Since the two Jacobians in the above formula do nct venish, we see that our
statement is correct. (19.1) can be interpreted as showing that g“zg((k is a
mixed tensor which is a contravariant vector at the point P and a covariant vec-
tor at the point PO.
Wo consider now the question of double poimnts on the extremal EP P

A point P(t) is called a double point of the extremal if there exists & t'?
0< %' < t, such that

(’0() P(t) = P(t!?)

THEOREM. If there are any double points on an extremal, there is a

»
kg

Tirst double point.

Proof. From tho set 0 S % < 60 we toke the set %b}‘x of all t for

which the property (&X) holds. Let U = gelabs g_’q}‘x. By the definition of
0~ there exists a seguence 'bn->,> g » 'bn>:. U~ , such that

- P(t ) = P(t1), O < tﬁ< t .

Take a suhbsequence of "bn such that the corresponding 'b;l converges to a f,, Then
p(g-) = P(O-M), oS T < 0%,
if (T' < @, P( (J y is & double point, ard, since g = ggl.b\,{t }a’ it is the
first double point, Ir _OJ: (T‘ " then in each neighborhobff of there would
be two different parameters t, &nd 'bz'i whose maps on the extremal Ep p are identi-
cal.. This, however, is in contradiction to the fact that to each ;oin'b of an are
of class Cl there exists a neighborhood on the curve and a neighborhood on the
parameter interval which are in one=«to-one correspondence. (This proof actually
shows more, namely that the sct of all double points on an src of class ol is
closded,)

20. THEOREM. %5 is tho emaller of 7~ and (J; +that is, the relative

g

minimum point coincides with the first of the two points, the conjugate point and

the first double point.

¥

The rather long proof of this theorem will be presented in two cases:
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Firgt case, Let 0_2_ 7" We will show that tz = 7 The proof
of this case is in two parts;
We will show thet %, = 7,  Let EPOP(t')= E', 0<%'< 7", Since
a2 7", there are no doudble points on BEf; to each t, 0S +t < %', corresponds

one and only one point P(t) on E!. Also on E!

(1) ~]%ﬁ

We now have the following situation: there exists a continuous mapping of iy}

x O

the n-dimensional number space, onto our point space r; under this mapping our
extremal arc E' corresponds to the closed compact "straight lime™
. ot : €M, 0%+ 4,
in the y space; the correspondence between e! and E! is one to one; and, since
,7) P
o

is in Yne<to~one correspondence with its map. Thus all of the assumptions of the

# 0 on E*, there exists for each y on e' a neighborhood Z)Z (y) which

Bolza Theorem (page 50) are satisfied, and we can conclude that there exists a
neighborhood 2'/7 (et) of e' in one-to-one correspondence with its map Z/Z (BY),
Lemma. There exlsts a nelgh'borhood /07 (e') £ y/(e') such that
P!
\ 71 O for eny y in 7/1[1(6‘)
If this were not true, take a sequence of neighborhoods M ” (e?),
/n’> 0, /1 > /2> /3> «se, Where Z///ﬂ(e') is defined by means of
any metric in the y space. Obviously for all n greater than some N,

2/7?47 (e") CW(e‘), since vz(e') is en open point set. Now if the lemma

were not true there would be a sequence of points Y é 7/7 ,n(e'), such that

D CP‘: (7( ol_iﬂ,).

K
’3\; & e', contradicting our assumptions. Thus the

V> V.V € ety emd

2 591(9(0':%')
P o&K

Then =0 ’
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lemma is true and the existence of M(e') @M(E'), such that \ 5%“\ =0
in ,DZ(e'), is shown.

The theorem of Dini shows that the inverse function y = £(P) will be of
class Cl, and of class C2 for P 71 Po. Thus we have a neighborhood of E! des-
cribable by the normal coordinates of the point Po.

‘ We now try to find a neighborhood in w(e*j with the property that if
it contained a point y it contained the entire "straight line" yt, 0< ¢ <1,
that is to say, a neighborhood containing en extremal field. If o' is y = yyt,
0< 4 <1, consider extrémals Ft such that the eu¢lidean angle A?yl < & eand
the range of t is the interval from O to 1 +0{ 3 C iy =T, 05+S1+¢.
For sufficiently small O, we state that 211’8 will lie in UZ(G')x If not,

then for some sequence o(n—> 0 we could find two sequences y, and ‘cn such that

4 Y, L& 0 £ty 4L 4,

}
but y,t (,, c( ’lj((e‘)) the complement of 2) (et). Teke convergent subse-
quences of Vn and t , to be agein denoted by ¥y and ’cn, such that y, =7, t, > &

Then
<1

ot

A"ﬁ'yl=0,0§

together with §& € C( ’W(e')). But then § = y, and Ft lies on e!, giving rise

?

to a contradiction. Thus for O less than a certain € sall extremal arcs yt of
length less than 1 + X and lying in the cone given by the point P  and the
euclidean angle 4Wa< C< will lie in 7/((6‘). Take the open point set con-
sisting of all these extremal arcs and add to it e neighborhood

o~
7,/()3 (yo) Cw(e'); the result, 2/ ('), will be a neighborhood of the de-
sired property. We can use our previous results for neighborhoods describable by
normdl coordinates and obtain the result that the extremal ‘arc o' is minimizing
relativeA’co all admissable arcs in /7/’\{/(e'). But e! cen extend as close as de-

sired to the conjugate point; hence the relative minimum point can not come be-




A

95
fore the cdonjugate point, that is ‘bz Z 7/.
Bofore proving t, < 7Y in the first case, to obtain t; = 97 we shall
consider the second case.

Second cese. Let 77 = (¢  We will show that t, = G  Teke a %'

such that 0 S ¢t < G~ On E

p P(t') there is no double point, and

5= 2% o

Hence by the results just obtained in Case I, P P(‘c') is minimizing relative to

some neighborhood of 1%, and ¢, Z g But if ’6 > 07, the extramsl arc Ej P(*t )
contains a double point, and hence can't be minimizing relative to any nelghbor-
hood. Thus t, = ( , end Case II is proved.

In order to prove &, < 7 if "U” > 7, the second part of the First
Case of the theorem, it is necessary to have a knowledge of the second variation
and its pz:/oper‘bies. Therefore, keéping in mind that the proof of the theorem is
as yet incomplete, we turn to the consideration of the second variation,

21, Let x = x(t), 0 S+ < 1 be the equations of en extremel E, and
embed it in e one-parametsr family of curves, x; = x;(t, € ), 05+ < 1,

-1 € <1, which pass through the end points of E, and of which E is the € =0

member. Consider then the two integrals

J(eo = f‘F(xx’)dt‘
}(6) = fT—T\(x xydt,

where F o= Fz. Let us assume the :f‘amlly x (+, € ) to be @ontinuous and possess

2.
the following continuous derivati’&es-gxl X D b X<

2t ) o€ )315{;) _
D% ¢ X

5“5’5‘"}—‘% . We can now differentiate the above “integrals, getting

| 4
Ao = 2 FSedt

and
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te={(3EVat + (¥ 2E
¢ Jlo={(5e)dt+ [T 51
"= ’3"(0) and ’:(“ = ’j"(o) are called the second variations of E (for the
and F problems respectively) with respect to the family of comparison curves
Y y

xi(t. € ). Parameterizing E, the € = O member, with a constant times arc-

length with the same limits, O, 1, we get, since F = k along E,

/
(21.1) ;:, = R k»7o
1 2
Lo !
(21.2) 7 }0 = )C(%%) dt+k 7, ) k>o.

(21.1) gives us the known result thet en extremil >f the F problem if parameter:-
ized with a constant times arc-length is an ext.emal of the T = pR problem.

¥

(21.2) gives us the inequality,

(21.3) /ﬁ} >\<7 k>o,

between the second variations of the two problems, F and F2,

Wo make the following note:
(K_‘, BB:ES" +ABT)7(
K S__k ’""cﬁ‘ >F DX)

&), = [L3% 39, .

If the femily be s0 chosen that Ea;;, b.blh =, const, on the € = O member,
t

'y

Hence

then (21.2) becomes £ "Y' = k’]" k> 0,

Because of the vam.shlng of the determinant b X/"g 7(/ { the use of
the second variation g of the ‘F\ problem rather than 7;, that of the F prob-

lem, will be necsessary. However, the two second variations are connected by
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(2142) and (21,3},

22, In deriving the sxpressiong for the setond varigtion, an accurate
deseription of the nature of the family x.(t, €), 0S5 tS1, -1S €51, is '
necessary. We take xi(t, &€ ) of class D?, where we mean by that that the t~inter-
val ¢an be divided into a finite set of sub-intervals in each of which any mémber
of the family is of class c2, 1If OLi, i =0, 1, «ssy N=1; be the corner points

of a member of the family, we require that the member be continuous at (X j» end

that 0{3 be independent of £ .. Besides the d-pointss, other points /)7\3

j=1, «.., M, are of imporbtance in this work, Aﬂ~poin§: is one lying in_the
interscetion of two coordinate neighborhoods, which is the end-point of an ard
described by one coordinate system. We. shall fake vers that no ﬂ-point is also
a X -~point, which af course can be donn,
We also assume in each sub-interval of
the curve in which it is of class ¢? the
existence and continuity of all deriva-
+tives necessary to differentiate under

the integral sign fnd to integrate by

parts in whak fol;lows‘. The existence
and continuity of the first and second partial derivatives of x and %' and the
first partial derivative of x", all with respect.ta € will suffice.
We note that since x; (0, £ )‘and xi(l, €) are inde(pe;de:rb of £ 4 and
singe x; ( o(-j €)= x( o§+/ €) for a1l &€ , ;g—zég and %——é'(,a‘: vamish at
t = 0 and 1, gnd are continuous at the corner points.

We derive a formula for the sccond variation of an extremal arc EP P for

o
the F’ problem.
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hence

Tio = [(3E 2% +3 )t

Split the path up into intervals containing o and ﬂ points as end-points only;

we can then integrate by parts and get

1O = [B% —~535)32 4t
E:?%?e(] + )w’bﬁfjﬁvk

where the bracket terms are summed for all b{ a.nd / points, However, since

Y 4
E;F: -%% %5 an invariant "';_) 7( ‘gé P— D and the ebove equation ben

be 'wrl'bten as

Hence

0 L S h >t :
. };@ _ f%%%%ﬁ%%\’)gé +2 %?}

where € s set equal to zero throughout the right-hand side.. This equatlon. in

spite of its appearance, is an invariant equation; eince f = 0 on E, the
€ = 0 member of the family, (%ﬁ is a Yovariant vector, while each
€ Jeeo x| OF
term in the brackets is an invariant gs we shall show, Since =< ¢
& 5 ;('
(E is an unbreken extremal) are continuous at the () points, the bracket term *

can be written as

TR
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I.let .i‘i = ‘x.i(xl' es0p Xn)4 Then

S T 9% 0€
E/ = —é.__.__.;t_tk ’B—F\
and ’32"' ;?{, ‘37(; D?r;/( ) a
Ko — DK DX oTX, D X
€%~ 9 Xk 'aéK T BXFE'K‘Q 17' € ea )

4 . ¢ 4
R+
Since [ ] E‘}%K we .see that Ls’j is a con-

traveriant vector and @ B‘F\ 1s a covariant veétor, and Hence that
€ '5 /

each term in the bracket is an invarlant. In fact, the second térm in the

bracket drops out and we get

(22.3) /gléo) ‘-‘-[ “DXQJf %(%:E;Z\)J X (g : S

Notice that this expression for the second variation is independent of =N g%

Another expression for %\':(O) will be deduced in the following manner,
Differentiate the equation for the
2 =\ 2 A\
%&' 2 B o R R D 7( o Ak
€ T OO K¢ DE B7(>XK D€

C-](BO‘T‘T\ BXK 1 E?ﬁc)
dtoaioxk D& D?(’BXK €

ler vector i and get

We se%

2-;—'\,_
Rovm)= 35 Qe o <0, )=

(only Rik(x, x') is a tensor),. and set up the quadratic form
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(22.4) Zﬂ(%—,—l) :’PLK?IZ?-IK + % Qa‘(ni,’iw + ’R‘L.R/;\ifkk

in the 2n variables 1 1(t), N (t)y £ =1, .., n. Then |
A A+ Qs Ruc):
N (7 n.7) | Y
"‘D_*ﬂ ~de i) o %L (77)

i Tt = s

o e O 9T LR .

where 7?( = X} C o, ¢ and where that equation is taken as the defin-
!5 € / T DE

ition of %{f( "rl)_ » Thus %, { 77))8. function of .the arbitrary contravariant

vector ’)7 k (’ l‘) is a covariant vector along E. This is evident since
xi(t) + € ni(t) defines, on each segment of E which {¢ covered by ona coordi-

~ [ » OX¢ Y
nate system, a family for which 7"(‘ = SZ . Then %/ )__..; —t
v E . . [ 23 7 E ‘E. - O

is a covariant vector. (22,3) ‘c¢an now be writtsh as

(2244) H"(O) = fj{(”]) 72{4{.“5?@%)]:{};«’5[04) '

Since

N . kD HE
CET RN = 3e(55)

we get

e Ay = himnat ~[ 3% ia%d) .

Another expression for 3"(0} can be obtained by integrating both sides

£

of the equation

' i A, . > 2nr ¢
SF — 7 1B E 2 2K

(22,5) 2 €*

3

_ < b"x; T ‘BQXC
= dﬂ+{’¢§gz ‘\'dé;g (’%&’ SE

This gives




e - [t

o)+ B, 220

The middle term of (22,5) drops out in the integration since /0 5 T 0 on E. The

(2246)

second term in (22.6) is not usually given, but is nécessary if ome is working in

1 ’
more than one coordinate system, This equation,(22.6)/involves Egyggt but

this expression cen be removed as follows
CIPY \Bx PNy 2
@7(' >/J+ f(b ; B’ax}g’ pt )

(bv\ ax
Y4 SE /H'

/ aé(D‘F\>—_Dﬂ_ .

hence we can write (22.6) as (71

(22,7) 2”(0} = Zfﬁ(ae ac) dt- [ %]ﬁ;

an equation which could also be obtained from (22.4).

but

=0

and, as before,

.~

23, The equations for i(t)

(7)) =T 0N + @ ) ¥
wc]d{"(.@tfé(x/ﬁn +—RNL-/’)(,7)7’) "/ = 0

(2341)

are called the Jacoby differential equations of the variation problem ., They

are linear and of the second order in‘71 (t), and as we have seen, are invariant
under coordinate transformation if x(t) is an extremal arc. Since

f
\Rik(x x*)\ 7 0 for the |\ problem, they cen be solved for 'Tl' and put in the

normal form ’
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(23,2) 77”’: = A K (ZL) 77 K +E ¢'K{1.‘) 77}’(

This reduction to normal form is impossible in the F-problem; for this reason we
must use 'bhe'F\ -problem in this work on the second wariation.

We now endeavor in the fellowing work to characterize conjugate points
by means of solutions of the Jacobi differential equations. From the existence

theorem for the set of equations (23,2) we know that any solution 77 i(t) of

/ .
}/i( 77) = 0 is uniquely determined by arbitrarily given initial values ﬁ 1(ty),
d i —

'n (t ) at a giwn point t, From this we deduce that if any 2n so{utions

77& = 1, sees 2n, of (2342) are kmown such that

{d ol
Di4) = M;,mm\*o

for t o’ then thege 2n solutions form & basis for &1l solutions, i.e. any solution
of %a' / >;: O is linearly expressible with constant coefficient in terms of

the 2n 7?01(’, Since % / 7) = (O are linear, any such lindar combination of the
770( form a solution, and since we have assumed D(’b ) = 0, the equations

7?/7‘:3‘ Ap(TloL
/tQ Audtnw

with given /? ( { > d't 77 / ) are uniquely solvable for A,y - Hence the

solution A(&no( is the wnique solution with given initial wvalues,

The determinant D(t) is such that if it is zero for some %+ it is gzero
for all t, To show this, differentiate D(t). In differentiating the columms
involving the 7702 you get determinants equal to zero; in differentiating the

s a d (' s s . *
columns involvin, ou substitute from (23.2) and simpl etting de-
& 37 N ¥ (2342) implify, g g
terminants of the form BiiD' Hence
1 =
D 2_B;3D

and
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D= C JiBodt
€ 2
thus D has no geros unless C = 0, in which case D & Op Now using the faet that

/i 2 0 in x,, _g', t, for xy = Spi(xo, g‘b). we get
(23.4) B—F\[;\"’x’) — D‘A\/X_) = O
oA d t PYY, 7%( )
Therefore, since % / 7]) = D—(%" ’
. . ) ,
’)Y A_f ./7’{( M 77(' %/J:Zua/}b

00
are solutions oi‘ % /77> -0, For example, differenciate (23.4) with respect

" wigD’F‘W“f") 275 + —»%W 7 ;ﬁ

- OA; D?ﬁ

%lg\ % 5% 87(( X ic 5%5&] or )
(agab = 0.

(Note that all derivatives enterlng into this calculation exist.)

?)-: >4k

and

]
i

In a8 similsar menmer it can be shown that
. - . L
Since C,Di(xo. 0) xo:L. d't % (/;Yo §= we see that

are also solutions.

(23.5) ‘D XOS ' t (8] J ) d t & XDS ‘t:.' 0 /
“ 850 t=o ! dt § 4= )
Therefore for the Zn sclutions 2 ) Q-‘Cﬁ att. =0

Do) = = |
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and the 2n solutions -—-i 5—?,03 of ;L / 77) ¢ ere linearly inde~

X5 2
pendent, and form a basis for all e.‘olut:.onSy Thus for any solution 77‘/ t of

(ylfé(?]):awehave’ ; ’ :’D ‘
7~7L~/t> = dJ%_L;(ai _\,FJ Cch_J

where o(j and ﬂj are constants eand contraveriart vectors at the point t =

79 =

and hence o(i = 0 for any solution of (//‘: (77) — O vaaishing at t = 0; there~

Betause of (23.5) we have

fore

¢

, 24
(2346) 77‘(f) —?ﬁJ S‘;ﬁ‘_} , ﬂj const.,

is the general solution of the Jacobi diffsrential equations which vanishes at

t =0,

ernm——— "

~

7“ the parameter of the tonjugateé point P( 7)) of P on E, was defined

as the first parameter different from zero for which !-Ei;: , = ¢, Henceg the

J(.‘é—i}-ﬁ- = 0
/ agf 1=7

are solvable by a non~trivial set ﬂl, coes ﬂn. The corresponding solution

equations

1(t) of the Jacobi equations (see (23,6)) therefore vanishes at 7~, Also,
since 7° was the first paremoter different from zero at which %—ﬁ )...
there is no solution of S” (’}7) O which vanishes at t = O and at t* < 77,
Thus the

THEOREM: )~ , the parameter of the conjugate point P(7*) of P, on E,

is the first parameter a,ftér t = 0 in the givyen orientation for which a solution

7] (t) of the Jacobi differential equations which vanishes at ¥ = O will vanish

agaih,
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This will be called the socond characteristic property of the conjugsate

a L
point, the first being the vanishing of 1 iy <3 i .

It was importent to know in this work that wo had, in (23.6), tho. gen-

|

eral solution of % /77) = O which vanished at t = 0; to obtain this we had
to work with theF\ ~problem rather than the F-problem.

In the semo way that we defined P( 7" ), the conjugate point on the right
of Po on E, as the first point other than t = 0 at whioch } E%{g%) = C>} “m'can
define P(7r ), the conjugato point on the left of P, on E, as the last point othor
than t = 0 at which /%K‘-.j/ =0, where %i, as in (8,2)", is the expression
for an extromel E coming into Po' The proof we have just completed oan be easily
modified for this caso, and ﬁo have the second characteristic property for lof
conjughite points. Thus for P( 7)), thore exists a solution of ths Jacobi eque-
tions vaenishing at P( ?) and at Po’ and there is no solution vanishing at P, and
P, P(F) <).f< P,. However the existence of & solution of % /’}7) = O which
vanishes &t P( %) and at P, P(3 ) <P < P, is etill a logical possibility; that
is, the right conjugate point of the laft conjupate point of a point Po need not

be P,. Later, by using a third characteristic property of the conjugate point

left

which we .shall prove, we shall exé¢lude this possibility, and have that the right

conjugate point of a point P is P.

conjugate point of the right
Jug p Lot

Uslng the definition of V/ ( 7'] we obtain

5:dm) - nig e - [%.m)m a_,_.m{,:qga

Eﬂ(s, £) fiafaz(;. 52]77(
?

st) >
- fbgt o' -glég»?n +c,t/>f.y§f 69 ) |

"
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>t ey o 24 20 p) 2«
T y5E)- 3,,? U & i

ﬂ(?} 77/ §) = u<7] £ +QK(7:{K"§‘+ §‘K7T>+R£K§L77'K
emon o ovtad = N(%,%;7,7).

(23.7) % 3&/7/) %/‘5’ dt[égii‘;}g) Bﬂ%@ﬁgtj .

24, We return now to the unfinished theorem of section 20, The fact
that remained to be proved was that if the conjugate poifit were not beyond the
first double point ((T > 7’) then t, S 77, where t, was the parameter of the
relative minimum point, We ha:ve already shown that tz*E 7" in this case, 80
this would show that t, = 7’ and complete the proof ‘of the theorem.

We first show that if T is a parameter greater than 7, a comparison

Z "
2(te), 10T
) 2T O‘{té‘r)

famllx

can be constructed for which “} "(0) < O,

The proof follows thg,t of Schwartz given in Bolza, Variationsrechnung,
pe 84. Let zi(t) be & non-trivial solution of %(77) Z O such that
zi(O) = zi(’)") = 0. Let yi(-b) be any other contravariant vegtor of class ¢ do-
fined for 0 € t S T, and such that yi(0) = y1(T) = 0, Along the extremal EPOP(T}

we define

itg) = gi(e) » iyt ), 0StS v,
(24.1) 7? ) ) T

= i), 7°St<ro,

where k is a constant to be determined later. A(t) is of class D? with 7~

d

the only point of discontinuity of CT{ ??" ( f) )’ at this point we have
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) ff:%j =7 ”'k?’

Henceé. '7’

From (22.,4!') we get

3(") ‘/’(ZML(P(Z M%)“
Ffolip kot -3 7em.

Because of the 11near1‘by of sy [ ) we have

W{zw?) K (D) + kK.

Therefore, since wi(z) 0 an (("" = xy( )

(284 2)3(0) kﬂ(‘g LCH‘ ‘H('/gﬁ()a%ff -k Qa]rr)%i(f)

(23,7) yields

AL C PR e X'y ~’°ﬁz}

Integration of this from O to ¥ gives

[1/’/3)2&? BQ %L“
- [3%] 7y

since z1(0) = zi( 7)) = y"(O) 0. (24,2) then beoomes

'J”(o} k{@—ﬂ a{;,,ﬂw}af")

316 [T
ctone Dﬂ = QAR °('r*) =) = kg(‘r)
,,(7 kfa(*") and §77) = K BiL7) 2T,
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T Hg(zl]' X,?’( w’ =
[RMZ] Qb ¥Rl 34—2“)]
[Q k'a" +‘RKLK3]
, = 2R« %-

T
0 ' 2K, 2 AT
(24.3) 3 (6) = TkR, . Z %“j ¥ k f(,l!(«&) a‘dt.,
7 0
(24,3) is en invariant equation since £ ( ?’) is a contravarient vector. Since
2(7°) =0, $1(7) 70} otherwise ai(t)

% /7]> = /), Therefore, betause { R.Lk‘

we are a'ble to choose the vector y1( 7% ) so that Rik i‘ # 0, Hence if k ig

0 end is ® trivial solution of

1]

!}

0, Rikzi( 7%) # 0s  We now see that

chosen with the correct sign the first term of (24¢3) is negatlve, and if k is
chogen sufficiently small,the second term, containing &s it dqes a k2 factor, can-
not influence the sign of "(0). Therefore if T > 7, & comparison family cen
be picked for which “4."(0) < 0. According to (21e3) we see irmsdistely that for
the same family ’_7“(0)'. the second variati‘on for the Feproblem, is less than zerc.
But such an extremal erc with negative second variation can't be relatiyely mini-
mizings If it were possible, the members of x;(t, £ ). for sufficiently small

€ , would lie in the 7}7( P(T)) for which Eg P(T) is supposed to be minimizing
and in this case ({) 7{0) 2 0, snd 'j"(o) 2 0. THence the relative min-
imum point cannot ilie after the conjugate point, 1.6, 'bz - '7’ , and the proof of
the unfinished theorem of section 20 is completed.

We have assumed in the reasoning that it is always possible to find a

family xi('b, € ) corresponding to a given xi(-b) and 77"({-) ?_Z(S(_w .




is such a family.

is negative. We will not prove that for no po
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In the case of one c¢oordinate system only,

#o (8 €) =;(4) +7) (Y€

We also notice that this theorem of section 20 can be stated for left
conjugate, first double and relative minimum points.
25+ We have just shown that for an extremal arc P P(T) T >,

there is always a comparison family such that z"(o), and consequently 7"(0)

nt before the conjugate poimt does

there exist a family x(t, & ), O <StST< 7 » whoSe gecond variation ’j"(O) is

Space
map 7/7( R (T)) of u(eo,r) will be an open point set containing EPbP(T)with

the proper’cy that there exists to each poist P.of it an extremal which lies in
W(EPOP(T)) joining P, to P in M(EPOP(T)).

t

negative. According to (21.3) we sée that }"(0) is likewise not negatives

We note that we might have double points
on the extremal erc Ej In the
Y space A('(L,) = I%E(é‘ ‘330 OB 0 s
the straight line y; = ‘lt o<t<T,
corresponding to B

P OP(T
There exists, therefore, some neighbor-

hood ’zf/(e T) of o Ain whioh \'gf‘\

being continuous, will not ve.nlsh. Let

us thoose this neighborhood 2// {eOT)
so that if y is a point of it the entire

)’ since T < 7.

straight line yt, 05 £ S 1, will also

lie in it, as can easily be ddénes The
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Any ard C r? y;(€),0 < € < 1, of class D' which comects y = O to
y(Tﬁ) and which lies in w(c OT) can be embedded in & continuous family of
straight lines y, = y; (€ )%, 0< €£<1, 0% ¢t< 1, having all the properties

necessary to obtain the expression for A 7 = 7(6 T) ‘7/607') in terms
Y o :

of -the g =function, and hencs obtain A 7 2 0. Therefaore the second veristion,

7, .
j ( 0)) is not negative for eny family xi(t,é ) whose members, for sufficiently

small € , ere maps of such curve C p. It is still necessary to show that this

holds for any family xi(t, € ) whose € = O member is the extremal ar« \EEOP(T)'
Take a finite set of neighborhoods wl ) eees ?/]N in, (U](EPOP(T.))
that cover the extremal EPO‘P(T)' where 7/75_ contains the sub-arc of EPOP(T) de-
fined by X 1 S £t < o(i +1° The W/l can be teken such that N corresponding
neighborhoods Uy, ees, Wy lying in 7}7(‘0 oT)' exist covering e,p, each uj homsqmor-
phic to{?//i. To do this, split Ep pny into a finite number of subearcs each
homeomorphic to the corresponding 'b-znterval and hencé to the cortesponding sub-
arc of @ _q. Then by the Bolza theorem each such sub-are of e, has a neighbor-
hood u homeomorphic to its map w, For sufficiently small € the members of
the given femily xi(t, € ) will all lie in the sum of the N neighborhoods 7/(‘

(the sub=are & ; <%S a;‘_ﬂ in wi)' and will be split by these into N sub-

ercs to each of which will correspond & sub-ar¢ in u

; in the y space. (See the
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The sub-arcs for such an é member lying in Uys sees uN,which are thus obtained,
need not be connected; x.k( Q(i-!-l' € ), as a point in 7}71 and as a point in
Wﬁl might have two distinet maps Iying in u; and uy 4. These two pvints cor-
responding to xk( (0'4 141° € ) spproach a common limit point Y = g k O<1+1 lying
in u, ﬂ u,,, 88 € —> 0, Hence, for sufficiently small & , the two corres-
ponding points in us and s will both lie in the intersection uy (\ LISE in
which casé they will coincide. Since the number of neighborhoods w; is finite,
the maps in the y space of the members of the family xi(‘i‘;, C—, ), for sufficiently
smell € , will be conmected arcs of class Dl 1yiqg in the sum of Uy, ...," Uy and
commeeting y = 0 to y(T). But we have already shown that for such a family ,
7"(0) > 0. Thus for no point before the comjugate point does there exist a
family whose second wyariation ’j"(O), and consequently alsa 1(0), is negative.
We also see that for the arc EP P(.\,)P(T\l the conjugate point, there exists no

femily such that ”{}“ < 0, For if such a family xi(t, € ) were to exist, let

7? (f) DX [1‘ 0) 776(0)=77£(T)=0,
Let t' be & parameter value between that of the _l_g_g_’g_ {6 ~point and 77, end let
77:( (t), & >1, t'>e defined in the following way: t /
b(f) = 72 (t) , © t
* = N+t ), et et
Z

inN
in

— l T‘t’
Obwiously (t)% 1(t) as O =>1. Also, as we see from the contimuity

of (22.6), /}" )) — (}{O 71:43.:3 o = 1. But since (3"(0)>n0\> O

"
we see that ’} cannot be negative.

THEOREM A: The right oonjugate point of the 18£% conjugate point of
left g right €

———

the point P, on E is Po'
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We prove the theorem for the upper .of the two choices indicated in its
stetement; the proof for the other case will then be obvious. Let P(7”) be the
right conjugate point of P on E. Then there will exist a solution (£) of
the Jacobi differentisl equations vanishing at t = O and at ¢t = Y. Because of
the existence of this solution P! = P(t!), the left conjugate point of P( ") on
E, canmot lie before Po‘ If P! 7/ Po' then 9thez:e’ would exist & second variation

"(0) < 0 for EP()P(?’)" But we have just seen that this is impossible; hence
Pt = Po and the theorem is proved., According to ‘Theorem A Wwe see that conjugate
points can be associated in pairg.

THEOREM B: Two pairs of conjugabe points, P, P(7) and P!, B'(F’) al-

ways separate, i.e. they fall in the order Py < P! < P(7) < 1’;‘(’7,)4

Let P! be such that P < B} < P(7), PY 7 P, P '), the right con~.
jugate point ‘c‘)f P!, cannot lie before P(7) since on N hence on
EPOP(T),,, o) would be negative for some family. LikZWise' pr( 7"} # P{7), for
in that case P! and not P, would be the left conjugaté point of P(}*), contradict-
ing Theorem A. Hence P'(’af") must lie after P(7), and the proof is completed.

THEOREM C. P( (%)), the right (or left) conjugete point of P(t),

moves_continuously with P(t).
Let P(7(t)) be the right conjugate point of P(t) on E. Let
FUFEYPT7F; ) be an intervel containing P("P(£)).  Let: P(ty), P(t,) be the left

conjugate points of P( 7’,) , P( ’3]’2 ) respectively. Then Pifl,Pths cortainsg P(t).

end, considering 7~ (t) as a mapping, map P('El)P(tz) = P(T,)P( 7’3 ), proving the
theorem.
Three anslogous theorems involving (absolute) minimum points will now bc

given,
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right _. left < ‘
N THEOREM Ags The i-ef%_'—- mnixm:gn point f’f the “e= minimum goint of the

point P on E is P ,
o 7o

Lot P, be the right minimm point of P on B and P('; be the loft minimum
point of P. on E. P! cannot lie between P_ end P, since E is minimizing,
1 o o 1 P0P1 "

If P! wore to lie to the left of P, (see the diagfem), then P, could not be the
right conjugate point of Po on E, since
according to Theorem B the right conju-
gate point of P! would havé to 1lie be-

‘tween Po end P., end in this case EP(')P

1’
1
would not even be relatively minimizing.

Therefdre if P(’) were, to lie before P,
there would have to be & decond minimiz-
4 1 ' ' s ans o8
ing aro E’P;> Pl 1° But. then EPC')P: EPoPl would be & .minimizing
arc with a ¢orner connecting P(') to Pl’ which of course is impossible, Therefore

connecting Po to P

Pé = Po and the theorem is proved.

THEOREM B, « Two pairs of minjmum points P, P, end P;. P] always sep-
arate. ’

Let Pé lie between Po and Pl end not coincide with Po' P!, the right
minimum point of Pc'a on E, cannot lie before Pl since E . is minimizing; it can-

otl s
not coihcide with Pl' for in that case Pg and not Po would be the left minimum

point of Pl’ contradicting Theorem Al. Hence Pi mast lie after Pl"’ and the proof
is completed.

THEOREM Cye Py, the right (or left) minimum point of P(t) moves ccn-

tinuously with P(t).

The proof parallels that of Theorem C,

The three similar theorems for relative minimum points are not valid.
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»

25, Consider an extremal arv EP p. where Py is the (absolute) mini-
. o'l

mum point of P_ on E. if EPoPl is defined by %; = ‘Spi(xo, g‘b), the closed seg-

¢ _
. = i <4 < : ‘

ment y, = gl'b, 0° %2 'blj(g.); corresponds to it in the y-space, Let 72’7 be
the point-set in the y-space consisting of all such closed segments for all “5' ’
end let 7?71 be the point-set in the y-space defined by yj = gi'b]-( g) for all
g‘ ”7 , is such that its map in;T, the x=space, is the locus of minimum
points with regard to Po' We show the following properties concerning 777 and
e |

1) The map of Munder P = P(y) (xi = CPiV'(‘aco, g t)) is the e‘nfcire space W’

For each point P of T there exists & minimizing extremal connecting Po to it;

hence there exists a point y in 77? such that P = P(y)s

2) 777 is closed. A point y of ?77 is tharacterized by the equation F(xo, ¥) =

T _
= POP(y); since both pides of this equation are continuous in y we see that e

limit point of points in 277 is in ‘777,.;

3) 12 y ¢ 7J1-7)1, there exists a neighborhood Ul 3) in tre y space which

is homeomorphic to its map. Since the donjugate point to P o B E does not lis
before the minimum point to P on E, N (y) = ‘ v ‘ A0 if y ¢ 77 ? 'Mlg

K .
hence the existence of a W/(y) homeomorphic to its map.

4) %‘/- Wl is homeomorphic to its mep. To any y cqrresponds only one point P

of ?’), . Since y lies before the minimum point, only one minimizing extremal

are EP P(y) exists, and hence to & point P of the map of 777.—’»7 | corresponds
o

only one y of 7)7:’2,’7.,
5) If y, y' £ %, and if P(y) = P(y') then either y = yt or ¥, y' £ 77’1‘1.

The argument is the same as in 4).
6) 777-—%1 is open. Consider y; = 'S'i;bf 0t < tl('g). a point of??”f’ 777..

According to property 3),there exists a (y’(y) which is homeomorphic to its

mep, end hence is such that DAF Foiey & Z/,(y). Using the Euclidean

R M A R TR A P
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metric in the y space, take a series of sphere neighborhoods - 7/"70—17 (yv),
O‘n‘-? 0; for sufficiently large n 2’/70- .(y’) C zaI/(y). if 8) were false,
then there would exist in each 7/70«- 8 y! on & o( T - 7771} the comple~

ment of 777’:?771. y'c. is ejither in 7?71 or C (771) in either ctase,

since A (y* Tn ) # 0, there would be a mimimizing extremal €y different

T

from ®ay and such that y'o 77? and P(y! o ) = P(y" o ). “Pherefore,ac-
Tn

cording to 3), y“q_n ﬁ! %ﬂ (y)e Since eoirg_ is minimizing,

n .,
F(x,e y"o;l ) S F(xgr y'g-:n e
Since F(xo. y*q.ﬂ' )-§= Fix,, y) as n % OO0, we ‘haye that F(xo, y"% ) < M; us-
ing the lemma of p, 4, we see that y“c. is bounded, and a convergent subse-
quence, again denoted by y s can be pickeds '>. y".  Since
¢ ﬂd’.ﬂ y), y" ¢ Mc.. (y), end hence y7/ ye According to 2),
y" C "777, But mow we have '
d B(y) = P(y"),
y7 vy
¥ £ 777‘7774) me?,f/)
in contradiction to 5). |

7) ?771 is closed. This follows immedietely out of 2) and 6).

8) The condition that %715 bounded in the y+space is equivalent to the condi~

tion that T‘is compacts

_—-J—.-’
e) Assume is compact,- Then b—P being & continuous function of /P

T/ . P < M for all P ; avcordingly F(x,, y) <M for y é 777‘ Then .

14

by the lemma on’p. 4, vs is bounded.
b) Assume m is bounded. Then "yil <kify & 77?. Then F(x_ , y) <M

for y &€ 777 , and consequently POP < M for all P.  Assumption (3,1) then

shows the space T to be compacte
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9) 7771 is the boundary of 777,—- WI‘ Sinte ?77’%_ is open, its boundary

consists of all of its accumulation points not in itself. But each accumila~

tion point of 777"7771 is in 777_. and hence either in 777’1 or in W7' 7771.

On the other hand, every point of / 1 is an accumulation point of peoints of

777"' 7771 (for instance of points on the extremal to this point),

10) tl(g’), the parameter of the minimum po:.n'b of P on the extremal

ﬁpi(xo, 'g t), is a continuous 51ngle-va1ued functlon of ‘g which is

homogeneous of degree =1 1n5. Let g .> gl, and Yol ?m 1. g’m) be

the corresponding minimum points, All yi & 7)71, and hence, since 77’71
™m

is oclosed, y , <> ¥;» the minimum point on the extremal given by fi.
4.“(:

I ¥1" g, ().
Since g 7 0, some component, say g » does not wmnish; then gm # 0 for

dufficiently large m. We then have

t (s)
4(€,) » THE_ 4 g
We notice also that the minimum po:.nts of P on T are continuous functione

e £,




