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LECTURES ON QUANTUM MECHANICS
P; A. M. Dirac

Delivered at Princeton University, October, 193l.

In these lectures we shall deal with quantum mechanics from the point
of view of general physics; we shall discuss the basic ideas and formalism
of the subject and not the most convenient form of the working rules for
particular applications; the lectures are for theoretical physicists as
distinguished fram ﬁathematical physicistse

Formerly we used to think that the formalism of the Newtonian theory

would, if pushed far emough,’ give all the results we wanted; but now we

a;e introducing new formalisms ~ mew ideas - into the acheme of physics; we
are changing our axioms. _

We shall begin by discussing the meanings of some of the words we
shall use; it is not possidble to givg exact physical dcfinitions of theso

“words! we could, of courso; give mathematical definitjons, but these must

then be supplemonted by being given & physical significances The first term

we shall considor is ¢

4 Dynamical System; This is & sot of particlcé inter-
acting according to a definite law of force; it is specified Classiéally
by means of a Hamiltonian function, H, which depends upon the position co=-
ordinates of ecach particle amd the corrasponding momznta. We shall sce

that it is possibla to specify a dynamical system in the same way in the

quantum thoory.

State. There will be various possible motions of &

given dynamical system, consistent with the laws of motion. We call those

motions the states. We shall talk of a system as being in a given state;

classically tha state is speeified if we know the values of the position

coordinates and momenta of the particles of the system. It is to a ccrtain

extent arbitrary tvhether we t >
alk ,g.gﬁp"different states of the same
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dynamical system or of two soparatgﬂ@ynamical systems. If-we can make a
passagc from onc thing to another we ought to say they are two states of

the same system, otherwise they arc two differcnt systems, However tho .

distinction is not certain and may change as physics progrcsses., For oxe-
' 4 protons +’
and
(Hel 2 cloctrons

ample

are at the moment two aifforont systoms, but may later bc found to be two
states of the samec systom. Whon we deal with light quante we should cone-

sidor the analogues of the above to be the samc system since the numbor of

light quenta is not c-omsorved.

A state has a threco~dimonsional and a four~dinensional meaning. It
is often not necessary to say which neaning we are using; most quantum thee
ory work dcals with threo~dimonsional statcs, but we wofer to use tho

vord state in its four-dimensional nncéning; in this case a state is not a

function of the variable t at all. The transition from ono four-direcne-

P .
sional statoe to anpther can only be caused by an external forco not couht-

ed as part of the dynenicel systom.

In‘classical mechanics vo spocify a state by giving numorical values

to the cpordinates and momenta and othor varisbles (such as spin, if it existe

cd classically) of the systcn,

For a four dimensisnal state the coordira tes, nononta, ctes arc fuinca

tions of the variable t;

¢ &

X,¥yZ,6tc., and

Dynaniieal -Variable., The qQuantities x,y,z,

any functions »f thenm arc called dynamieal variables. t is not g dynsnical
veriable in thés sense, Complex functions are hare allowed, For any particular

state of the systen a dynanieal varidble becores in the classical theory a

specified function of t; it is not g relativistic concopt,

In the quantum
thoory we still havo dynamical variables,

but vo cantt say they arc ordinary




ol

functions of ths timc: -they involve something that contains t as a paras=

-~

netsr e

Obssrvation., Classically we don't consider obs rvatioms
boeause the obs.rvatinoa dosd?t upset the systam, bub for systans invclving
very snall masses wo caf't say this in gencral; there is a thcoretical linit
_t» the smallness of the di sturbence causcd by an obscrvation apd this is the

point of departurc of the quantum thoarys The disturbancc of the systenm that

we get is ennnccted with tho fact that we don't have doterminacy in the f

y
quantum theory; the disturbanco is liabls to alter tho statc of the systord.

Wo canlonly caleculate probabilitios of any given result being found as a re=-
sult of aa observation.

Observatisn. - An observation ~ftcn consists in ncasuriag

the valuc of a dynenical variable at somo particular time. ‘Marc gonerally,
an obsorvation consists in sctting in notion any picco ~f apparatus such

-
that a roading is tekon which depends uvon the state of the system; this de=~
finitisﬁ’makes an obscervatici a relativistie concept.

Observable. A obsarvable is what is neasurad when an ob -
scrvaxiqn is made; it is the value of a dynemical ‘variable at a specified
time, in tho restricted songd,ebut 1t is actually 2 relativistic concepts AR
cbhservable necd ant be capablc of boing mcasured directly by any apparatus;
for oxemple it is d~ubtful if the quantity

x(t) .+ py(t),
portaining to a givep particle, could be measurcd in a singlo. step, but
it is nevertheloss countod as an observable. A obscrvable is really a nore
fundamental conecpt than a dynanical varilable! it is to be used tagether
with the frur-dimcnsicnal meaning far a stato, just as é dyanamicel variable
is te be used vwith the 3-dimensional ricaaning.

Steady Statess -Steady states ore those such that the pros

bability of getting a glven result is independont ~f the time at which the

cbservation was made; it is only for unstoady states that the distianction here




s botween three~dinonsional and f?ur-d;gggsional states is neccssary.

We now vass nnﬁo the formnlisn underlying the genoral schome of quantun
rechanies. Tho basi; iden is tho pfi%ciplo Af suvsrposition. In classiecsl
mechanics we have a superposition property - for a vibrcting drum for cxariples;
 this is becausc thoe difforentisl equations arc limpnr in tho unknown quﬂntitie;.
In quantum mochanies we always have @ superpesitina proporty. |

Ceonsider a siaglo particle in two nosititmsi we mny consider this to be
two states, A and B, say. Than hat arc wo to cen by the state (ql A+ cz B)?
The natter is clucidatod by wmcans ~f the "indeterninacy of the thecry; ve on}gv
talk ~f probabilitics. The idea ~f supctposition was obtained only in a very
r-undabout way, but new we ovut it at tho beginning of the mubject. Before the
obzarvation the particlc is partly in each placo A and B but after the obscrva-
tion it is only ia n1: of the places. This jump is typical of the quantun
theory; wa can only calculate the proEability of finding the particle in either
of the plgces A and B. We ean doal with our states by gancral mathaiatical laws
that apg}y vhencver we have entities thet ccmbins edditively to férm new ontitics
of the‘same type.

Wo teke a complete set of iadepondent states, Y, 41 s e P
and lock on them as unit vectars in an n-dircnsional spacec; any state is thus
o veeter in this smacc. It is only tho dircetion of the vector that mattorsy
this c~nstitutes o rcal differeace betwoen the supcrjasition?brOporties +f the
quentum end classical wmechanics; 1t doosvnwt hold, for cxaqple, in the case of
the vibrating membreno.’ The veetcer zero dosn*t couit as a state at all in the
quantum theory, unliks in the c¢lassical theory. For rlost practical cxanples
n is infinite; the wmathematical theory has not, however, boen :stablished
rigorously for this case; ve usually assurc. that thcoteris that hold for-finite

n +ill hold frr iafinite n if tho result seéems reasonablc physically, We:allow

cmplex coefficients, ¢ in the quantwa thcory, dbut not in the classical theorya
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Fach (,P has a complex i:.laginary ;:hZCh we shall Genote by ¢ 5 ¢+ the rola=-
tions between the 'g’b's end the ~~¢ *s is not quitc the samc as in the
ordinary taiplex variable theory, sincc we cannot have ¢-1- 7 it is ‘pe-—
cause of this that we cannot splii up a L// intoc 1its real and imaginary parte; : ~
in order tn emphasize this differsence we usec '?) irstead of &ilj s we shall
reservo the bar for »Hrdinary corplcx quantities. We usc the phrasc coijugato
inaginary to denotc thc relation between - Slg' and ¢r and conjugate caon-
plex for thet betwecn a +*i b end a -1 b ,.a and b being ordinary real nmr’t-
bers; : the vector shace is thus ant a complex space in the crdinary seuse. ,

We d’n't try to expraess tho sb 's and - ¢"s in torms of quantities proviously
knovn; wo only roquirc to know the rules of manipulation fer them) we shall
also necd a physical interpretation for therd,

We rust be able to infer frow equations involving the \/,1 ts and 95'
some vhysical iifornation, and c-uversely, Wc rust be able tn exprcss phys1‘cal
information by rneans of conditicns to bo fulfillsd by the t/, ts and ¢ 's..

A typical caleculation in quant_:zm rrechanics is as follovs: we are gziven
certain_information conc\urning ~ur systen; bty meens of certain pules e are
able 3 oxpross this intormation irn terms of = nditicns upon the (70 ‘s and

5t§ sy  then when the results cof the natheiwties have Yeeun obtaineld we
apply ocur rules to thr final equa¥ions to fial thoir physica}l significance.

Wae novr eonsider toc :\ultit:“ication of (’/,, s =nd &,/) 's, We allov

¢g}; tc cast; Tt is vpalcg-us to the scalar »nicduet of tw vectars. We

do not aller such quaittitiss as m(}; or L;: ; we alvars vwrite the

\ .
¢ to the left of who (v in a profuet e this is, of course,
) .

not ai axion vat nersiv a conveniocrnee. .
We intcepret ¢r % » Yhich is an ordinary number,. to b2 the lengtlL
~f the vector (’L'T o« It is usuzal to zssuue that ¢7 b o= ,. this being
Yir

rovely a question of coanvenience; this mrocess is called norrelisationd} When
L is infinite it is net always possible to normalize in this way; we shall

ccasider this point laters

All the preécoding applics whether wo consider thrée-dinensional or four-
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o 1
2imensional statss. For threc-dimenstonal states we riust, of course, have L{f{r Y,
-~ 3

comstant; this is actuelly the case, ms wo shall seoc, as a result of the

ocquaticus ¢f notim.

The fact that the ?’J‘:: end \/1’5 are conjugate imaginarics irplics
that if

Lr LoomE C, \711’ + C, L/:jz
thon we requirs that .
Sbo = E; (Py + 2:1 c'tz_ 2

and alsc that

(Po.kljg, = L?l*%
Fo Yo » > 0.

These are really furthor axXioms and arc easily shown to be comsistont with one

and that

ancther; the last condition is necessary in order that we should bs able to

acrmalise cuwr synbols.

If we have two differcnt dynamital systems we can put then togother and
[ consider/t,hcr;z as a single system; we require aow to consider vhat happens to
tho cor:gaspo‘.lding L{,/ ’s + W. can put two systems togethoer in twe vays; in
cnc way ve just consiler two distinet systams to be differcnt states «f one
systor:; suppose that vwe have an n-iinmensional vector space £ r ono systal and
an m-iimensi~nal vector space for the nther, then the resultant systom has an
(n+m)-dimcnsi »nal veetor space, & vectar in this spaco meroly having the co=~
ordinates ~f tho lf:}’,s of beth original systers as conrdinates, Annther
way of combining tvue systems is to comsider then to oxist sido by siie in the
SaC spaco but withecut interacting; in this case the rosultant systar will
have n.n1 independsat states and n,m will therefare bs the number of dimonsions
of its vector space; if the coordinstos describing states of the two systems
arc ar and bs thoen the coordinntes of a state of the resultant syster: will

be arbs. If thor: is physical iatecractica between the two systenms the state

of the rosultent systen will not bo glven by arba but the t~tel number ~f states
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of the resultant system will still be mn. This problem of interaction has not
yet becn golved satisfactorily.

Wo nowr consider the proporties?*;rf observables in the symbolical schene
of things; we shall consider the states in their fo.ur-dimensional_significanceai
Observables arc §ust linear operatcrs that can operato upon the (70'8 and ¢>"s;
that is to say if ~ Dbe El.inear pporator then

cz(q/,+%) = XY, + Xy,

A particular exanple of an observable is just multiplication by an ordinary nune

ber: thus an ordinary number is to be comsidered as an observable; weé shall -

E
:

discuss tha physical significance of this number later. We can form the opgrén '
tion of sfdition-of two observables as
(O + w = w P o+, v
end siuilarly for mult{pli cation re write
(o) P = & (aay)
however |
o, X, 7‘ Ky K,
in genoral, The operatcrs rust also be able to operatc on ‘the ¢ 's: vhen
X, operates nn d the resultant is written ;i)a( ; ve always write the
o to:"th‘e':i"'ighf of the. cb but to the laft of the Li) -+ We ncod one other
axiom; wo assume that
Po (@) = (Fo2)yy

and thon we can write either of thesc quantities as ¢a<\j;;

k4

We introduce a coordinate system in the vector space of our u') ’5, i.e.
i

we takc a set of orthogonal unit vectors in the \,;‘) ~soacey TFhe coefficients or

the undt ;,')"s when we express a given '“f) linearly in terms of them will
form an ordered set of numbcrs which we ¢azx write

fa,

| ‘

- it

i

o

la.i

An operatsr o vill then became a square matrix and we opergte by using rmatrix

multiplication thus changing one \IL into anothe:c.'\ A (/5 becones what is con-
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veniatly written as a horizantal ax_'ray'r'

VST A e

and matrix multiplication still app]:_ies. The product ¢« is an ordinary
nur:ber.. The -above .completely represants all the properties of ~ur symbc lic
algebra. ‘We must considor the relations of conjagate camplexes and of con~
jugate inaginaries; one problem is as follows; that is the c;on~jugate imagine
ary of the vroduct &\, ? It is Tirst of all necessary to definc the

¢on jugate complex of an observable; we can do this ir the symboliec algebra as
followsf

CP«-&:\P:- = ;f’soz—'“}z‘ .
We can add X end K 8o that wo can seperate an observable iato its real
and imaginary —-arts. In terms of matrices ™  is the Hermitean conjugate
matrix of o . We roturn to our problem of finding the conjugate of oC Y, 5

ve know that

¢ T ¥,

7

4’4_ oy, =

and that
——
—- ! .
. P = A
hence if: k{)c = (X \;JQ we rust havo
¢C = 4)0_ (X
so that the conjugate complex of Va is CPQ o o Apain what is the
; s
¢ jugate complex obs.rvable to the.oroduct &, X, ? We have
"Pa, 0(! Xy 4)[, = (Pg_, (XTE‘T: 4/01. ;
but the left hand sids is the samec as (9'7a0(,)(0(1 kp{r) and. is tharefors equai to
‘}56 K, & Vo ; ;Eence we have
&, O<1 = X3 K, ;

and then we casily seo that

and sc ons Iu general
if v have any product oi q‘> 's, o¢’'s and \IJ 5 tue conjugate camplex or
con juggbe imaginary quartity is formed by reversing the order of the eletents
¢f the product ani taking their con jugates, This cormvietes the discussion of

the fcrmal properties »f the ;6’5 , k}/'s and a’s + We must now
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ve always usc this way of speeking but in the quantum theory we ecan -2ly use this

" meke certain rules or assunption

formalism. The First assumption

We have a systam in a giv

-

-9-

b

e

g for the nhysical interpretation of our abstract
{s the following:-— -

on state and tonsider a cortain obscrvation to

be rade nn this state, In general the result will not be deteryjinate but there -

is a epecial ¢dse in which the r

the obsotvable boing zensured* b

- e b i

1

csult is certain; lot the state be y end

e O 3 when tho rasult is certainly a we write

* This implies that the obser

o 3 Sl i i et

¥able be real, »

= Q,g’l/

¢ sy that % _bag the value a for the stato b Ia classical theory

way of spesking in the very special case in which thorc is eértaianty that our

cbssrvable will have the given value. If~e take o to be an ordinary number,

say ¢, Wo always have the cquati

-
-

~
go that ¢ is an observable of a

we alvays get the seame rcesult, c

9211 I'd

vory trivial kiad, such that whon we measure it

. vhatevir the state »f the system.

We can already %educe certain physical rosultsy

It
Ct!
end '
X 2
thorn

v

i

Q,y
y = any

(ol+ o) o= (o, + @) ;
50 thet O+ %0, Imsthevﬂueal+z%,andsiﬁlmiywolmyetmﬁ ¥, X, .

has the value a

Y, and \} , such that

2?24 Agai&k\suPPOSJ vc have one obsurvebls, & , and two states,

OL.‘P! = Q"LH
and I RN
then
| (Y + )= Al W + Cats)
and this micans that L will have the valuic a for ary statc given by suporw

N

yisition »f the arigingl states

s7 trivial.as the »revi-us onec;

frr vhich it d the value as This rosult is not

let us consider it ds applicd to sur former
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"‘\éxmple of a single particle which may be in either of two positions A and B.:
' et the two states be such that for eadh™of them the particle is. certaeinly in-
' one position. If the two positions cojneide our result implies ’t;hat for any
~ state obtained by the superposition of the two statos the particle will also
’ certainly be found in this position. W need a rore gemeral interpretetion,
“ however, of the s%me gencrality as that of the'classical theorys TFor any ine

. terpretation we must obtain pure’ nurbers out of our theory. Tho general way

7% obtaining pure numbors is by means of products of the type &, o ; this
numbor rofers to two diffor:nt states which was not the case in the cidssical
theory. ¥e cannot gi;re a direct physical significence to this number but we
cen to P, o, ; this nupber is quite definifie if b \j,=| . ™e camnot
say that this number is the value of the sbservable 0L for the state Y, as
ve can see as followst let us take twe “bservables o, and o, § then the

value of X, would be, according tc this interprctation,

¢x ¢ = a, (say)
and the value of Ky would be g
e 95 X L}‘, = Q (sey);
the value of (o(,+ 9(2) vould then be given by

| P+, = a,+ a,
vhich is as it ought ¢t~ be. But for the —woduct we would expect
@ o o= a,a,
whereas in gonsral
P X, oK F oA,
and this we camot look u-on qﬁo(y as the valuoc of @ oL for the state \fJ .
But we can regard it as the average value of X for the state \_}) » Thus
we assune that Cf), o L,‘)Y is the average valus of & for the;stato 4/’,,—,
Thus we- assume--fhetf ) is—the—-average value-=~£f- —:@‘-or:;he«stata—‘
This implies an indeterminacy. It should be verified that thc assumption

that if

X Y, = A LP’r‘
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>han a is the value of oL for the state ’\]JY and the assumption that

¢1 * is the average value of & for the ctate 'y are c-nsistent;

v this is eagily shown sincce wo have

¢, a, = P, = QL .

;’ later. If we have a relation

LY = ayy,
3 the quantity a is callod an eigeavaluc of tha cbservable for the state \P,,,. ‘
and q)_', is called az‘l eigonem q/ « If X 1is a real observable then all
its eigenvalues are recal numbers, for

Py APy = a G Py,

', but d),,"-~-})Y is a real number, and ¢,, A Y, 1is also a real nunber fram the
definition of a: real observable, so that it follors that a is a real number.
Againk. two k{J 's belonging to two differcnt eigenvnlucs of a given

observablec are orthogonel; for if ’

Oy =2 Ay \‘P‘f
o = Qg ¢,
¢5 (0(‘4’.,) = 52.1« d)s q}.,

and

we have

and
(‘.t’s aj Y, = Qs Yy
and haence if & F a_ we mst have qf‘s Y, = O vhiczh means that P, and 4,
are orthogonal s
With the abave mtzrial e can alreadiy “vork out cortain examplesi we sha'.l.
as an illustration, consiler the problem that corr.sponds nhysically to that ~f
the harmonic oscillatsr; stated abstractly we erc given
W= L (R rqp?)
and {
L — hoa — &
Yp-hy =4 '

and we requirs to £i1? the nassible cigenvalues of W/ . Supposa’chat W !
]

is ons of the zigeavalues of \A/ y SO that lwe have

1) W= W'y
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Now -
(b S R-iq)=_ b g™+ Ll ghl)
;; and 3
* (=il prig) = Zw+R ;
‘ honde >\ - '
. (t=ig)hrighp-cg) = (p-ig) WAL
; and also - (i W- ﬁ)(]’-*"t'ﬁ)
so that ‘
(@WK p=ig) = (h-ig) (2w~ £) '
or

(h-ig) (w=f) = WLp9) ;

and in 2 similar manner we show that

(hrigd(w+R) = W {(k+ig) .

Wo have, therefoare, - .
g’ Wk-ig) ¥ = (p-i yd (W-R)
| . M (w’~ﬁ.‘.'{h-'1/) ¢ by (1)y and this

shows that (N '~ f\_) is an eigonvalue nf W for the eigen-#{/(p-iq) Yoo

o . f . '
Hende if"~ W' is an eigenvalue of W so arc w-h ) W=-2h ... ana so
. Again we con show in a similar way that-
f N SN
W(htg)Y = (.}Hiv)(erﬁ)\P = \\'\/’+‘ﬁ}{_‘tuu_14/

so that if is an cigen-y ot W s~ alsc are W;h,

\
3
-
3
r
]
)
4
i
v

\,\/'+ 2h, «s¢¢ and so on. New siace fb is a real cpcrator the sigone

;  velues of . }Ll will be vositive or zerc, an similarly the cigonvalues of

’ q2 will not be nemgative; hence the average value cf W cannot be negativo,
.‘, and thercoforc tho oige;nvalues of W eannct be legative, silece an eigenvaluc

‘ Wl is always the av rags valuc for soms stato, namcly tho statc for which
WY = \/\/'\P . This conclusini d7sa't £it iw with our provious
k. rosult which gave us acgntive cigenvelues; this is b cause we nverlcoksd the

E possibility that

(-ig) ¥ =0 |
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ir this casc our argument could n-t proceed; it should rua:. if \/\// is an

eigenvelue of W  then so is ’\\/\/'-fj) " provided ( p - iq)¥ #0. We

must theroforo look into the question of vhen ‘(h-é?})k{J vanishes identically;

if . . -
(h-igl v =0

b we have

T

(Rt pcg) & =0

or .
|
(2w-f)y =0 ~ =
A4 .
FEETY (2w'-f)y =0
'E and henee, sineo LP is by hypothesis, not zero, we must haveo
i r. L2
& W= 7 "

Hence our serics of eigenvalﬁas terminatcs at 1/2 h on the side of small g;;\a,

It is easily shown that (p + iq) LP cannot vanish, so that there is no linmit to

<
k. our serics of eigenvalues on the side of large \/\/ + The eigenwvalues are thore-
'

foro

- é—'ﬁ’ gﬁ) = ﬁ) - - - to infinity..

'I'h.e ‘above methad appears £o work rather by way of a fluke; it surprises
us 12 just the same way that a pronf in synthetic geonetry surprises us; we
can obt:in a surer method in the guantum theory, just as in gecmetry we cbtain a
surer method by cmpi-ying anrlysis, so thet in more difficult »roblens - e doa*t

have to thiak ~ut special tricks for each particular problem.

We shall requirc the thecrcn that any L// cex bz cxpanded ia terms of |
the ¢igen~ kP’S of a give~ rcal operator.. If ths veetor space 18 ~f a fiaite
nuber of dirensisus this is easily proved; But a rigourcus proof for the case
in vhich the nwpbor of dincasiosis is infinite dosatt avpear to have bgen given.
The Cifficulty lies in the fact thet instead of Z L}/ ve may sometimes have
to use j%’jﬁb a1’ we shhuld require a lot of new axlmu abaut continuity,

limits, a4 sc »1, thich havo not yet boen formulatsd,

We can give an argumont that makos the result appear plausible for the



R

i 7o should oxpect that a solution existed for any initial value of k,U—,—

"“{»" .'.J’—

® xind of operatcors used in physics; sudpose we consider the oquation

(2] B = Layy

k to have a golution detoermined vhen ve know the initial wvalue

(LPT).,no = Y, 5

¥ ¥o assume that Yy can be expanded as a Rurier intogral

Yy = )'&i./t't LH» ({fl ) |

-; substituting in (2) ve got ’

j.c‘/L ’&()LTK/J}L c[/u = fdc)tvj:,gf/!tq/lt a[/b i

i a1d equating crefficients vwe get

f e = o e

sO that k’,'h_ . is en eigen-/ -TEP-=%%; belonging to the operator ol & -

Setting 7 = 0 we have

LIUO = S‘(’;jh ({/L
vhich &5 the result - e required,. The é’eak point in the argument is the assump-
tion of a Fourier integral expansion. Far a real observable we can easily show
‘ v o =
that ¢"r k}/_r is constant so that the length of the vector dogn't in-
" i
crease i,tf?\ infi ity as 7 inereases and one possiblo cause of failure cf the

like the
Pourier expansion is excluded. The equation (2) is just ». ° ‘\equation of

»

notion of a system vhose Hamiltonian operator is ol 8o that physically
We can now give a gensral definition of a function of an observable; if we
have an observable ( we can form (le :)(3 and so on, and thus any
function expressible as a power series; for functions that cannot be so ex=-
pressed we give a general definition as follows:

Let £(x) be a single-valued function such that the domail; of definition
ineludes all those points which are eigenvalues of the obxervable ( ; then
f{ o) .will certainly have a méaning and we can therefore define ﬁ(d) %y

to be equal to ?j?—(dll) LP/" which gives a meaning to £f( ¢ ) for every q/h_;,

"for a general t'U we make use of the expansion theorem to express it in




}' 50 that f(o() is now defined for any HU «- It should be noted that

«l5e-

térms of tha + g as -
! h

Y=g
fo P = 26 Fe Y s

and then we have

the above only holds for real observables since we have empl8ysd the expan-

sion theorem in the definition. We are thus now able to use functions of o
that are not expressible in terms of power series; we shall actually want

yo empldy such functiors, for wxample "é?: - and d\z . In general an .
observable has quite a number of square roots on account of the embiguity
of sign of each (@ﬁ) and to define a square root uniquely we must

state which signs are to be useds
Theorem. A If [_), is such that
X = Op_

then [5%(0() = g((y\)ﬁ) .

Tis is obviously true if f( oL ) 1s expressible as a power series; for
P

the general ‘case we "rove the theorem as follows:

o =

x % = Yy 0
where ah and aq may be enual. From the second we have
cp oL = a‘l/ 75?/ .
TR (e NN

and hence, since 30l =

Let

and

Thus

elther ' Qh = q,?/

or ¢7/ /3 ‘7”/, =0,
that is,either %(a/,,) = ﬁ(a@')
or ¢W /5 7’«'(1_ = 0,

since our fugetions are always single-valued; thus we infer that
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1

. wlf—- b
- [fay) - feag] Pyl p=o-
¥e now have
tp f0 ¢, = ¢y f(aﬁ) by

¢7/(d)/3 Yo = %(a"z/) Py [> P |
¢7/ [Bf(ot)~f(0()[5]tﬁ= [ﬁ(“ﬁ)“ f(av)] 357//3%% =0,

and, since ¢?/ and L/J/” are arbitrary, it follows that

B — fyp =0

as was to be proved: ' We can also easily prove the converse theorem that if ,

and &l so

and hence

anything that commutes with ©{ also commutes with f£ then £ is a function
of X « This dg\g'n't mean that O is necessarily also a function of f
since a function is defined to be single-valued. We can use this voroperty
as a definition of a function and this would have its advantages since it
dc;\gn't,use the expansion theorem.

Suppose we have two commuti.‘nig observables (O and ﬁ ;  then there
exist ce.t:tain L/J'S‘whioh are simultaneous eigen- 4}’5 of o and /3 and

e
moreover there are so many that any \f) can be cxpamded in terms of them;

for, let
OCK/ja- = a% 5
we can expand ‘7U¢ in terms of the oigen- ‘70'5 of ff) as, say,
o= 2, Y
then M%(ﬁ)ﬁba. = O(Z'G' %(ﬂ) (71),5_

but also X %(ﬂ) %- _ %(ﬁ) ), (by tho provious thcoream)
= a f8) Va,
= & Zp, ﬁ(/") '7Dﬂ
TR

X T, fl gy = 2 Zy f By

Now b will have as domain all thc eigenvalues of ﬁ and %{,’3} will have a

certain value for cvery point of this domain; thercfore since f£(b) is a
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completcly arbitrary function, we can é‘q‘ﬁate the coefficients of cach f£(b)

Xy =alfy

so that L/J,f,- is an eigen—t./i of ¢ . Hence every Ll) in our expan-

in the above, giving

sion is a simultencous cigen — \.}/ of ¢ and ﬂ +  This result can
be extconded to any number of camuuting observables. A s:t of two or more
observables that commutc with sach other may therofarc be cou.n'ted as a
single obs rvable; it is in this s@nse that we¢ can count the position of
a marticle as a single obsirvable, since the three eartesian coordinates y
camute with one another.,
We shall now discuss rerresentations in more de\tail;l to get a re-
presentation 'we must find a system of independent 4)'5 which satisfy
(3] By = Org
if Lf/ = Z‘Cﬁ\"jp we then say that,thq coefficients, C{,, , represont
this o, Sfmilarly if (f? = Z ;g— (;) the ogefficients, /b?' ,; TG~
Yo . kT f~
present /¢> .. IT Cﬁ aad k/J are conjugate, Cf" = '&fv .

p= Pp ¥
and @/“ = VJ)SUf» .

The matrix elcments of an observable, o , may bo obtained as followst we

Using (3} we have at once

have

= te thc order of the suffi
o(_q/l_\_ = ZLP‘U Q’?/f\, (note order o suffixes

in the coefficient)

and therefore .

we soe at once that if O’\ is real then a__ is Hermitian. The diagonal

4

dlemants ar: given By
= ¢, 0P
Dpp f P
which.are 't;heefaverago valucs ofr O  for the states \.;Jp ; this gives a
vhysical cignificance to the diagonsl elemente of the matrix of an observablc,
) .
The question arises as to how we are to find a set of LP S that will serve

as a base in the vector space. If we have an observable O(‘ such that
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there is only onc sigen- kf) bolong,ing to cach eigenvaluc of :x' we can
R /
teke thesc elgen-k}JS as our basis, but if scveral kV’S belong to the
samc eigeavalucs. it is best to take a set of observables
» Ky, 03,- -, An)

that commute with O(_‘ end having thc nroperty that the simultanocous

eigen—\.}J’s of ths complotc set of sbscrvables, X, , s, - ==, Ky,
1) 7
13
? such that only ono -belongs to each set of sigenvalucs.
We shall use the following notation which is very convenient: we p

“ and so on; the simul&’

denote the.cigenvalues of 0L DY 0(_ O( , o
-, O, may bec writton as \-P(O(,,O(z" 0 )

ot of eigenvalues.

. [}
tancous ecigen- s of O, oy, "
and so on since there is just e corresponding to gach s

Tor tho rcpresentative of any state we vrite (04110(;'6(3'--- D or, for brevity,

(O('l) , so that wo have ,
Y= 2, ) (x[h)

whare we put the ’}?L in to the rlght of the vertical line to show that the

rcpres\,nta’tlve bclongs to q/ﬁ, . We have also

Z Chlot) pl) .

Tor an obsorvadlc Ve write (rx ’(5]0(”\ and the equation that defines these

N

By = Z,; N% (“")(U»".lﬁlfx’)-

n which /& and ()(I onter the representatives of kl)‘/i

matrix clements is

The symmetric way i

will be justified later.
wo

and ¢&

The quéstion arisos as to

have in general fq/(ou) _ Zo(” L}'J (o) (o("j ff 0(’)
and if wo pub f = Ky wo got '

Koy P (@) = Zw P () (oL o)
out oy Plr) = & P&

so that we have the result gras Chat

now en QL itsclf 5111 bo represented;
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T S
(OU/‘O(T’OU)“? Koy bo(w, 3

that is, the ropresmtation anploying the oigan-q.}’s of o as basic

vectors is such that the X :5 are repr.sentsd by diagonal matrices; .
the basm k/J ’5 arc fixed by this property cxcept for a factar of the
form O, tf("() end this involves en uacerteinty in the COC'}) s
and the ({x /f/ o) ,5 , tho latter being undetermined to the extent of
a factor [’% (o*) = .(OU)J ; but in most wroblems we can ‘ignore this
indoterminacy. If we'takc & completc set of observa ables it will completcly
detorminc; one representation, apart from these arbitrary factors of modulus
unity, and any function of the X /5 will be represcntcd in it by a dia-
gonal matrix.

Wo cen take a secnnd set of comrmting obscrvables, ﬁ, , and con=-
sider what is the conncection between the- representatives «f the \P S ote.

in the new and tho old reproscntations; vo must heve a linear relationship,
ld

=2, W () (L))
T = Z g () (F1)

for

50 that,since

ta) Yy =2 ye)elel,
this cquation defining the coofficients  ((3'[d’), wo have

g = ZM/ @) (p'ar) (<)
and this gives the rosult that

(31)= 2, (plx) (1),
From oquation (4] We can obtein mn explicit axpression for ([ «'), noncly
(ﬂ'/dQ = Pp) P! . The quantities (3'fa!) ard called transfor-
mntion functionss There is a corrcsponding transformation for the ropro-
somtatives of the @ S, nmoly
’ (1) = Z C1pD (A %)

cherc it can easily bo scon thot thls (4"l &!) is ths same as tho one

for thc transformetion of ([.5'/ ) , Wcalso have the cquation

(«1) = Z, U'/ﬁ’)(ﬂ’/)



S
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vhere (X',/i’) is a new transfonnatloﬁ function vhich is the ~remc-
sentative of ‘\P(o(') and is given by (}5 (O() KP@’) = (d’, {SI\

it thus is the conjagaté complex of Cﬁ ) « Therc are further rclations
between the (d'/ﬁ’) and ((3’/0(’) corresponding to the fact that the transfor-
mation is in the nature of a rosation %th the veckor space; for we have in

fact

(b1) = X (pla)(aip”) (8"1)

a(

so that Z (f.’) a()(Q( //34) - Sp’ﬂ// ;
and similarly
ST (& (A1) = darar -

These relations express the conditions that if wec regard the transformation

functions as matrices they are rociproeal to each other; they arc anitary

-1

matrices, i.c. metrices that satisfy 8§ = 8+, and the corresponding trans-~

formations arc unitary transformations. .,

Weixave qj Z LP@()(O(’)

and the cor‘Jugate imnginary oquatlon

¢ = Zo(h (/o(”) d)(du) )
w0 by = & pa)(«"( 1) P@)

R m)(/w
o<'o<”

= f(o('))l

1
thus ,(7( ’)’ is invariant u.nder thes tramfom'z.tions. We can further show

that
' /" !
TH R CEVCTEDIC G
o o
"¢ shall now discuss the whysical m.aning of thess remresentatives;
thsy have one very important physical application; if C,b LP = ’ Yo can

2
say that ‘(o(‘l) l is the probability thet wc shnll get the result '
vhen e obsorvc the dbscrvable oC ; e prove this assertion as follous:

Tic average value of K is ¢ 0(7tfl and sigiilarly the avcrage value
of any Tunction f of the ()L)Sis ¢ %(0() ‘-// ¢




e i

Now 6 =5 (| ) ¢(w> |
and L|) qu@() (O( ) .
S < LA COXCUT ALV |
9’% ¢= 2 Ux)ifle)(=) .
. o) = % (e OZ’()(x 5 okl ® that
4%# Z cm)ﬁ(w) i) ,
| = {,i(fx') @)™ B

( i
~ Now suppose that P(O( ) is tho probability that the O({S shall have

E the values 0(, ;  vwhen the O s have the valucs a(/' 'zghas the value
r %(OL’) and hence
4 Z , P(OC') f(g(’) is the average value of £y
Hence we must have *

X 2
| S Pe o= 3 fC0 [

and since this must be true for arbitrary f wo can cquate coefficients of
- each f{o{’) and that gives us
. i

which is the result we wanted to prove. It is thc most frequently used

e e

conncction between our methematics and physics; (O(..'/) is actually just
the Schrddingar function.

We can ncw deduce the result thet if (X HU: C)(/L// thon (X certainly
has the value 0(’ ; wo follmw the usual method of detcrmining the pro-
bability of (X having a specified vabue for tho given state &P by exvpand-
ing QJ in terms of the sigen—-tyls off (X ; but here we shall only
have one term in the oxpansion;

Y = W (o) 3
hence using our physical result o sce that 0 certainly has the value O(I.

If we take \{) to be one of the basic &P s of ow sccond .

represen tation {5 ; say (70(/3’) , ve have
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V(B) = T, YL

in terms of(s

but (O(//[S/) is just tho represeatative of kp(()(’)/(and hence [P («!)= I(o('/B,)’z:

© But L}J({S') is such that the ﬂ)s certainly have the valucs /3I and so

[(o('[[i’),z is equel to thc probability of getting the result o(' when
we make an observation of K on the states for vhich the ﬁ’s certainly
have the values [3’ ‘'« We have, of course, me'}i’f::l(ﬁ’/d’)} 2‘and this is a
recpprocal theorem vhich states that. the probability of the 0({5 having the

»

valucs &' +hen the ﬂ '5 cortainly hava thec values /3’ 4s tho same
as the probability that the {S’s 711l have the values (3/ whan the &°S
certainly have the veluss OK'° . On account of this wroporty the (O(’/ﬂ')
have been called by Jordan the probability amplitudos. We now sce why"'.o have

the symetTy between o and k in the ropresentative (o('/fi) of %;

. /.
since 0('!‘&) is symmetric in its phys}'cal interpretation between % and X ;

(o{' H%,) is in fact a transformation function to somo rceprescntation in
s . /
which % is oxe of the basice ll/s .

We must, beforc leaving this sub jeet, consider the procedure in the
case in which we have a continuous range of eigenvalues of the O(/s ¢« VWo
can spproximate to the case of a continuous range by considering a lot of
eigenvalucs lying very closeo together; we shall for simplicity consider only

onc observable 04 ) and strall for the nresent preliminary discussion use

J
q/o(’ , etc, for its eigenvaluss. We have thc expansion

kP - z—-o(, L/Jdl Cd'
and if \,U is normalizocd
- 2
, = ¢(//= Zo(‘ ,C*X',
so that as the nurr}mn of cigonvaliues incrcascs tho rumbers Co(, must get
smalldr. Let :So(, be the demsity of the cigcnvaluos in the néighbor-

heod of -~ o s thot is, lot SOL' do(_/ be the number of eigenvalucs

\.t““‘

in the range (X’ to O(I+d 'Y ; then ch’ is of the order of (50(,)



Elme we can write the expansion for (,U ) roughly in the fam ¢ en integral as
= - 41
k// SCOU LPO(I 'sdl do(v

and the coef‘fic ients of KVo(/ , namely CCJ‘, So;,) 4 are now of the order . -
of («So(,) = so’ that they will become infinitely large as we approach the
limiting case of a coantinuous range of eigenvalues. We must .therefore norma~

lize the ka }S in a different manner so that they all become divided by

some infinitely large number; we shall require, in fact, that 92(, Wa’ = O(;%u).

The choice of normalization process is arbitrary provided it satisfies this' "

.
condition but we can find the most convenient one for our purposes by a

consideration of the physical meaning of Co(, ¢ we have seen that
ICN,/,' is the probability that we shall get ths result 0(/ when we
observe X on the state \l/ 3 TWhen wcy‘ have a large number of
eigenvalues we are interested only in the proba’bi lity of getting a result
in the range 0(’ to o('-}— c{, 0(’ fand not of getting a definite result;
let us call this probability P(O(’) a/o(’ so tnat P(O(I) will in general
be a,fﬁ.lj‘itcia number even in the limit; +then ip the limiting caée we shall
want to express. our normalizaed L// as an integral of the form
Y = onu) Ant (%'])
where qj@(') is so normalized *hat
j@)]* = Pa)dad’,
(P bzing normalized in <he vsual nmaner,
gy = 1.
One way of determining the approrriate normalizatioa would be to proceed to tho
: limit of the discontinuour case by straight calculation but we may obtain the
result we want in the following way: '
¥e want I(o(l/-)/ z to be equal to the probability that O have
a value in the range o o o'+ O/U(/ and thorefore wo want the average

z
value of f(«) to be jf(d’) KD(’/)}(/G(’ vhich must consequently be
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=*

equal to (}'b #(d) L‘/l . Thus We have,

N ¢ FOY
M(o() J(1)] % f(jf’) g M)//"/) () ot (271

= () ger, fi) J yewr) d' ('],
(since ¢(a')l€(o<) = 9%’);@/0( 7)

and gince (p(/) is arbitrary we may equate coafficients of the £( X' )

\

on both s1dos mnd get ,
@)= Crarl gt | i) ey '-
or '
§ ey plar) do7 (x71),
and this Will be the normalizing condition for our basic (P s ana s
in tho continuous case. This condition is to. hold whon (/| ) is an arbitrary
function and so we must have |
Py Py = O if &'
and then, since now
w)) = }Yqb( ) (A1) o 2 (1)
we must furthor have
y Py Yo () el
Thosc two equations are the conditions goverping our normalization; ws cem
ritc thom in one cquation as
i) Plxr) = § (-]

ESTE) wheve §(r) is an impropcr function such that

B

Sx) =0 4f xO

+ 4]
and (
J o) rdx = |
ary
The introduction and usc of this é——functig:.l has becn 'mo'm to causc a

cortain uneasingss among purc mathame ticians! It can be regarded as an
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abbreviated notation and ddcs not mmke the mathemtics non-rigorous since

L ad

the argument can be writted in full -in a rigorous manner, as has bean donc
by von Neumann. j’»’e should actually write the abovo mormali‘zation condition
as
g Ll/(\x/) %9(’5}(/0(1 (4'0(” == (the distance through which the
domains of intggration overlap).

We cannot get along easily without using the 5 -function; for
exampl/fe it is necessé.ry for ths remresentation of the unit matrix as we shallr
show‘; it can easily be nroved that the law of matrix multiplication becomes
{ig the continuous case

(i glar) = Jers]a) da (4 fy] 4

and so, “setting 5@-‘: :L we have

Cefnfar) = JCxttyaedd (47 9]

50 that )
(af1]am) = §(H=a"),
el >
If ve wafnt‘to find the representatives of X  wo proceed as’ follows;
we have
Xy = (@) dar (404149
and .
so that p
(4] ar) = & S(A=o")
Thus the 8 -fundtion is necessary for writing down “the clements of &
diagonal matrix. .

¥ M
£

¥We see that tho only difference between ths formulas of the discrete
. the continuous case is thas S d'= o/) teks :
case and @ continuous casc is that tekcs the place of oo
and integrals are uscd instead of sums. The diagonal slement is no longer,
hovever, the avcrage ¥elue of the obscrvable for the correspending state since

our normalization is nct the same as for the discrzete case. The rule of
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e i . : .
replacing ad'o(” by 6(0( - {/) ““holf.‘s also for transformation functions;

for

5(}('//5//)6/[}/(/[3//0(“) — g <O(/__ 0(”)
“ e = 50°F

: /
¥. can also make a trensformation from a continuous set of cipenvalucs; K ,

to a discrete sety , /5/ ¢ in which case the dbcve formulae become .

= (apy(prlar) = §(a-a") o
ﬂl
J (P11} dar(ulph) = Opysm

and similar alterations must be made for the various other cases thet may-arisec.

and

For the case of several -commuting obscrvable.:, oK, ogyr== o] , we require that
| (.X / ))ZC/d,G/d - dlo( be cgual to the nrobapility that the 0(1
have values in the raiges ’0(;',’ ~Eo 0(1 +%d D(,(' ;  the formulae look
- exactly as befcre providef we usc the S——I‘unction defined by
SCaan) = S(xl-a) S(il-al) - - S(Ah=oln)
end understend By oo | the product C{:X; J/O('L S The
normalizing condition ¢(o<f) (pco(/l) —— ’SCO(/’ O(") was really chosen
, artifically since we assumed that l(O(’D’ 2 was to be the probability
z that O( have a value in the range O(.I to ot dio("; it is possible to
introduce a weight function , p, and define . 7(0('})71 ?O(Olr) C{O(/
} to be this zrobahility, this is not really an éssentiafl generalization since

it only means ‘that (Q( D becomes miltiplied by P and similarly (o(’]f[od’)

A

by Z(J(O(') f)(o(”)j , but it is convenient in certain cases, such as,

for example, when we have two angle variables 49 and ¢‘ s, it being here

o e

convenient to use a weight factor sin® 8o "that the probsbility we obtain

. 2 ,
.. from the formula /(0('7)/ Smgdgdfé refers to the element of solid angle.

When the weight fuaction is employed we must alter the law of multiplication

. to be
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/ v /
Loy / 7 ) / 117 0 0(/)
@ Enjocr) = 1 Efoen) pla) el (%11
and other formulae must be likewise modified.» The casces we have considered
may be generlized by allowing sums and products to occur togethor in the -

same formula; for example the cquation for the represcntative of a k})

for an oL that has & discrote and continuous renge of oiven-
values is ’
v- S sfvwdien
and the reprcs«,ntatlve of LP cons1sts of the continuous sot of q”pan’tities
Co(‘l{) togother with the diderete sét Cp.

- This concludes what we lave to say about the gensral part of the theory.

X oy o, ——

=

We now have to come to the dynamical part’ of- the quantum theory. We
want to get the analoguc of the cquations of motioh and the like %hat- beldng
to tho classical thepry: .questions 6’f relativity' will arise Quring the
course of the discussion, but so far our theory is porfectly relativistic
if we tek®t the four dlmmsmnali:olfez state; when we come Yo the equations
of motion thc question of relativistic invariénce becomes imnortant and
no satisfactory relativistic theory for the general case Has boen given ==
the only special case for which a satisfactory thcory is kndwn being that
of a sinsle particle. Modst of our work will be on a mon-=relativistic baéi‘s;
we shall use, for examp.le, the pre-reldtivity tohcept of instantansous inter-
action betweon particles.,

In the histérical beginning of* quantum mechanics we did éverything by
analogy wit'h the classical theory, but no* we é¢dn't look upon the classical
theory as being so important but regard the quantum theory as being ‘cupspie
of standing by itself, e gshall nevarthelcess Pirst deal briéfly with this

analogy as it is vsry hoclpful.
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The classical equations of motfon may be @ritten in the Hamiltonien

' _‘ form; we introduce a set of Lagrangian coordinates 7/,, and conjugate mo=-

e menta ’1,? an-d then the Hamiltonian equations of m¢tion are

It seems that it is only equations of motion that can be nput into this form
that have an analogu‘e in the quapntum theory. In the quantum theory we shall:
want a set of equations to replace the Hamiltoniap equations and also we shall
want some conditions ‘to replace the: classical gondition that all our’ variables
conmute‘ In the classical theory we have & Poisson-bracket exwmression ,(P;.B).,
for two varisbles f and ’ given by

3‘(}4 3]11 Do 651/,4

and in the quantum theory we have the analogous expression

- - JERER 4_
S

Cifonl = CEATE + £LE7)

in both cases. If we meke the qné assumption that

We note that

o1

analogue of the classical B. P. of f and 71 P then the passage from the

is the

classical to the quantum theory presents no (ﬁifficulties.. We can express the

classical equations of mation in terms of P: Buw's as

?‘/,: [.ﬂ,"f,H] ;
fo= Lo H)

f= LEHL

For‘ the commutation rules of the quantum théory we assume that the P. B.!s have

and in general we have

the same values as in the corresponding classical case; we thus assume that




[(U'U(f/s] =0
Lie, Y =Que .
[CUy, tls-] = é‘vs

f Wo may write all our equations now as

P Ys ~ s~ ""‘Z‘

{l.,rls"flslhr" ‘ |
(5 ?/,., )h —?/15 7/,, = ¢ f 5.,5. and

ik F= fH-HE

S s
the last corre ponding to the equations of motim. T hese equations form the
A

fundamental dynamical assumptions of the quantum theory for the class of pro-
blems for which there exists a classical analogue.

The P.- B. in the quantum theory do/(s?ﬁ"t inwvolve any reference to canoni-
cal variables and this shows onc way in which the quantum theory will Be more
general than the classical since we may-deal with systems in which owr varia-
bles cannot be expressed in terms of canonical variables.

Tl}e/.first type of represantatial we think of' is that for which all the
q"s are diagonal; what are the represcntatives of the ”LIS in this repre-
sen&ttion ? It can casily bc shown that

{L"’ > ~t ’Z_ %f:f' ]
We can sec how this fits in with the conditions (5) by applying the operators
{1 2 to the représentative (1/}) , of any L}J and noticing
that the commutability relations,(5),hold. We can shc;w conversely that if (5)

are assumed then fiy —>—iA %}'{ ‘provided that we choose the phases of
the representation suitably. The result that }‘L,{ is represented by *,‘:{%ﬁ"’
when. (Mr is diagonal is due to Sck;)"dinger and is very importani: since it
gives us the most vowerful analytical method that we have in the/ quantum theory.
Any function f(qp) now becomes a differential operator %(1// -('Xg%) and if* we
want the eiBenvalues of £{qp) we have only to find the eigenvalues of a difg-

erential operator for whiéh problem there is an established technique« The
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conditions (5) are symmetric in the p's and q's; it is usual to take the g's

diagonal in preference to the p's since the g's have a more direct physical

- meaning; Wwe could however take the p's to‘bp diagonal and then we should have .

W’t — 42’5/:4 {we no longer get a minus sign), but this is

operater

not often convenient since H (which is the - we are chiefly interested

A P
in) is a quadratic function of the p's but may be a general fuilction of the (l;s

It is sometimes desirable to mke a transformation f£rom the q's to the
p's,when)for example, ‘we are interested in the momenta rather than fin the pos‘_‘i-’-
tions of the particles as in c¢ollision »nroblems. The transfomation fuhction
that connects the q¥s with the p's is easily fouad, from the equation of genw
eral transformation theory

J&5ly ”)”’7/"(4/"/h) feonps dp 1510

[] glves, »u mg = aXing vhe orie 1mens1ona case
vhich tti ~ (taking th ai 1 )

,;_»f 2 (’D ,1 -'/1{?/’/1&/)

so that
r
.'. /
The coefficient, k; is an arbitrary function of but its modulus is de-
L
termined by the normalizing conditions to be 1/4{1 , so that we have

. frf
iy /
( //7/)= T e /L /ﬁ‘ (note that the normalizing facktor
ffl" involves ordindry h.)

when the correct phase is choson. For the case of n variables we have
@'~ lpp) = R g )
This result is much used and should be lcarned by heart
We shall now consider the way in vwhich we could develop the guantum
theory without reference to the classical theory¥ we wish to apply our quantum
ideas to a physical systam; let us coasider a system and displace any statc of
it bodily in the dircetim of the x-axis th:c;ugh a distance 51 { this will
give us a new statc which is, of courss, a physically possiblc one. We must

similarly be abls to give a moaning to the displacamcnt of any observablo;




- -

if the avparatus used to find the value of tho observable is moved through Sx,

~

we say that it thon mecasures the dispiaced observable. %o now make one gencral
physical assumption, we suppose that the various opsrations of addition, mul- .
tiplication and so on which arc uscd in the abstract quantum theory are in-

variant under such displacemcnts; this is a very natural _assu'mption since

5 these oparations oxpress physical relations that are not &epondent upon any

frame of reference. Supposc We have any equation betwoen states and ob-
scrvables auch as \[/’_z o(x,H for oxample; then if the result of applying «»
our displacemant to ) , (. end ol is to ykold 7, q’Z end oL

~t ~ e
our assumption requires that q/tf* X \-H o Similarly if kH: LP;"’ k}/a we
require that /({\/:‘—‘ q;:ﬁ :J\/; since the suporposition relation is a real physical
relation and dc}'\g‘n't involve a refercnce to a frame of rcference, It should be
realized that we are here dealing with tI/IO three-dimensional aspect of a state
and the displacament is made on the state at one pArticular time. To proceced to

build up a mathematical theory of these displacements wo considér the infintites-

- @O -
imal displeccments; the limit Igim Yl-gai/-’ will give us some LP—symbol
X3 p 4 .
vhich vwe may call °Dx LP, i vwe first observe that

@, (D+4) = Dx Y -+ QD,( Y.

which follows from our general vhysical assumotion; this shows that @x L//,

is the result of a lincar operation operating upon LI/‘ and is therefore the

product of an observable, which we may call dx’ with \J/, so that wc can write
@x k'[/l = C{'x LP‘ ’

We must look into onc poiut before proceeding; if we displace our state is

the new L.P quite a definite thing? The new state is certainly quite

definite, but the¢ new k/J may be muXtiplied by an arbitrary numcrical factor

7. . b Y c ity
50 that LH is not def‘lmte.rjf 49, ) = we must have 4){ Y =cC
and this fixed the length of ‘-H and so tho uncertain numerical factor
Y
i must be of modulus unity; thus k'U/ is uncertain to thc extent of a factor

: 4
y of the form R )’ ; it follows that there will be =n uncertainty in d + We
: X

1 o
¥ must note that the uncertain factor Qy must be the same for all k{) Is
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and if it is chos»‘n arbltrarlly for ong \1(/ it becomes determined for all the
others, since if ‘-P -7 SU, and \‘/L—-y L.}/_L we require that

q)l"‘(‘!'z."a(%*{“(‘/)z' .'

Wae now calculate the effect this unccrtain factor has upon the operator

A S é]
@ ; let us tako LH L and writo
P/ E i R

, ! S = x kH ;

dx—30 x ,
no% We must have g‘; approach a definite limit, a say, as 51—-) o sinc;a
we require L//I to be changed in a continuous nsnner; we thus have

@,\4 of (}7(!4—:’)/-#---)- - ¢
e LH = AN
Sx o Sx
( 2 %)
- 5:6—-30 5_( ! )

and hence we have the relatlon

¥ .
d” = Cz/x + da
x Fa

showing that dx 18 undefincd to the extent of an ardi trary additive pure

imaginary-number .

We could equally well c onsider the operation of displacing the ¢/5 :

3
%e should then write ~ ¢
D - ¢ ;
Sx -.30 SZ
let us takc any two statos q/, and kl),_ and form the »roluct Cf) L}/?_

3
if we apply the displacemsnt to this nroduct it must remain invariant; hence we

must have
~v

¢1 LPz = (p/ %
& P ¢
(z.z;f" 4’,?3/7, + 4)1 (a;" LP""> '

! dx
.and procecding to tho ligit we get

(De &) W+ ¢ (D, )

QO =

' 50 that
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(!Dx ‘2) \P?_-' ""Pl(:Dx_ %)
= ~4%‘(d1 LVz)
= N(Q ({I) LVZ
hence, since Huz_ is arbitrary,
the minus sign is to bc noted here in comparison with the rclation “Dx LP,'-:. c{z(.//,
Now o[, § s tho conjugate imaginary symbol to D, that is, to dey
a1d this conjugate imeginary is known to bo 4)1 d, y SO that )
or 0/1 —- — ‘2-/1

showing that C/x i@ a purc imeginary obsarvabla.

#
\

o now consider the theory of the displscan-it of observables; the most

intercsting observable is x itsclf, the x-coordinatc of .the C-G of ths systen ;
’ x

if we have a plece of apparatus that mcasureg and we displace it a distance
A

Sx it then measures XX - gx g0 that e must have i = X- 81

from which it follows that ®x XX = - f - MNow supposc we displace tho
~
product Jc.LP ; wo get

D, x¢) =D.)y+ x (Dt
dexps =4/ + xdu ¢
p/xD('-D(Oéz“'/

which is a sort -~f quan tuin conditicn connzeting dx “ith x. Vo can by a similar

argument show that

z/z?—- 7 a/, =0

dqz—j'ﬂlf = O

o

b ¥ should like also to Tind the quenum conditioas that connect 0/,( with (72,

the question is,

commute




g

 dimensional mean ing o

- after a displacement the motion of the ne

henee the four-Adimensi on

tide; A

&y

t actually obvious si.ce we have the indeterminacy fector € in the
but it is no ‘

k})—*syfﬂbols. Let us loock into thematter more clossiy ;  We displace \yp, to

get LVB and choose the phase arbitrarily; we also displace % % —C—-—~ N

' T
% to 4‘)0 choosing an arbitrary phase; now, however our 2hases 8 |y Bf
are fixed for the x and y displacements of any other states and’ i %"‘“-»—9 "WB

thus we have no further arbitraries in kVB ——— \PD‘ and
% “‘“}‘-;JD . There is no theoretical reasm why the two phases
1‘ £l
at Dl and D_ should be the same but in all systems considered so far
o !
in sractice this has actuall beea the case.

If we take into account these changes of phase we no longer have

(H- E.u.:D?XH §x. @ >‘«)V:x ,,g_y(/+8x L)Qh&-ag@g%‘y

eal number such ithat --—J% “tends to a definite limit, a,}
J(

! , /,2_’.,)
’D{D(\/ Q)@ +Lg6x&b%l7u
or d d = CL}C C{ ‘+‘ ‘La/}, .
For 211 the appllﬂatlons of the guantwn tg

ecry that have been considered up to the
Dresent a% is zero. Let us write
ha cEd.

then when aZ( is zero we have

e x=2 f1, = ——L’f\/
{"x, “:,’r'jle K QtC, J
: j

,:c' “"7/7 J:C)

an’ these are just the Quantum conditions for momenta; heuce 'C ~ C{ may be

-

defi.ed as the components of the mo entum, and this gives us a way of defining

momentum without refersnce to the classical theory. W= have been usiag the three-

a state so that d must be regarded as a function o? the

time as a paraveter; it is just a dynamical variable. If we have a system that is

not acted upon by any external force we can show tha t dT must be g coastant; for,

v state must marallel that of the old and

aal state is dig= *laced as a whole and 4, will not change in

& systam that is .0t acted upon by external forces has constaiit momsntim,

Ye can develop a theory siuvilar to the ; P OT oA A B o 4 a .
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o~
! runs closely parallel but differs in ome respect, ‘as we shall seei ‘let L’U repraesent

~the statc obtained by a bodily rotation of“the state represented by \}J through a small

'angle é@ about the x—ams we introduce, (Df by

) Py
§é§'5 56 @;”W

, and we havo

;D (Y, +4) = ;D W J«@ V.
50 that we can cons ider $§\?J as the ﬂrodutt of some obscrvanle with k‘l’) ; vie
ftneruforo write o
We find as in pIx:VI:JLS case Ll"a’r Cl%' is not absolutcly dofinite the uncertainty
; consisting in the additicon of an ar‘o; crary oure imaginary number. ¢ find that
Dex=0, Deg=g ad Dyz=—
| g4 =C0 g £
¥ aad these ecuations give -
- Y
, | JM -3 4 = 3 ) |
Te find also that
ql _f? - a} J = (/'ff + ia ¢ 7 @
G'. d - Fd}o o G’ + "Q,‘; ‘x
d = 6{ +4LiQ (
. 4 ddg .
‘. where CZ s Q,, 3 Qf are reel nurhers wh c¢h arise oz account of the un-—
: certainty cf phase of the displaced | /] , like thQ a in the cquation for

3 # ; F

f Cj,dj‘dgﬁl,{;but if we write d;:::dg“?éa 3 d,-d{ ‘t(Q.,i 5 C[% G{ -éucd’f,
: these becare X % *-‘ &/ t

dydy —dpdy = g ete,

iy 80 that these extra constants, Qf) Qv’ J QF) don't make an essential gon.ralization

b of the thoory, although the corresponding constants of the linear disvlacement theory
E dn,

Fiwmlly, we ocasily obtain the rolations




J{? - ?‘AJ = dé,';’{:qt!. etC-J

there being nine arbitrary ourc numbors a vee 5 @ thowee of thesc may bce -

11 33’
absorbed in tho C[f‘ 0!4‘ and 6,}: but the remaining six constituts an cssential

gencralizatinsn of the theory. Once again, however, these a,)s dc not appear.
in the gquantun theory as at prcscent dev:loped.

For the preseat hectures ¢ shell assumec that these arbitrary numbers arc

-
all zere.

Sunnosc we now write

‘ - A &j m,= AN 0! )
’mzr-&’ﬁf’l§1 'mg_/??;. 3 f"’
then wo have
My X~ XM, =
m)‘<——'\,j mx ﬂb‘?ﬁ} effr-c,g
'n?,; 2} - Tn:ﬁ — T’é%g
x B " , (
m*rh' J("mxc'o_g_ ?
— 4% h c .
P 'rnm{-g P%mxw{v .‘&- 'r etC 2
- ’m;_h - b}ﬂlx_z“‘(”ﬁ ilg-b}
aad p f'
'mamg~*m3m:‘:;-. < ’m}; KA
which are just the same as the commutation rclations we would get for the angular
mo 1. tum i we introduced it as T = "04!23"5/? elfc.by avalogy with tho classical
theory. “'¢ have thus buen able ’?o introduce guautities that hav. thc :ropertics
of momenta and angular momcata without any refsrence 1o classical analogy, aad in
fact our amgular mon.nta arc morc gensral than that fouid from classical analogy
as thoy allow the possibility of a spin,
1
We got cortsin ~rovertics that vo wow * not expect from the c‘hssical analogy;
for cramnle, coasidgr & state that 1s spherically syrmetrical about the origin; ve
thon @aust have no rosultant auagular moman tiw oo oG
T 5 ’thy =7 m}, =0 .

But wc also have thc coiverse theofom; for if Ty =% ’)'TL? = 77’1/5' = (O

we mist have (i)u U) =0 cte. so that >£v ._‘t.. v =0 etc

0wl 5O
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war
and thercfors rotation of ‘his state about the origina can have no. effcet upon it,
so that 1t is thus nccessarily spherically symmstric. .

-

It must be noted that tho moments aud angular momenta t:at we have bucn dig-
cussing arc the total momenta and asgular momcata of the system; if we want to

build up a completc mechanical theory »o require to consider tho momenta of the in-
6ividual particles of the system under cou isidsratian but thore is no satisfactory

way, so far, - doisg this uxcopt by qnalowv with tho classical thooryl the method
A aa X . ’
of displaccment oncrators is thorefar. iicoimloba.
Te now consider the timc~dipplacoment oncrator; we taks a throc-dimensional
~7
scetion of a four-dimansional statc and cousider that statu, \P , Of the systeom

that is oxactlv the samc as the givop onc but at a tisc SC latery woe dofine £E'V

P
to be Lim &L”—— and then write

-0 S ;D Y“’ 4)

; cail alsc give a moaning to f ,wh eare {‘ is a dyaiamical variable;

_ 2 £
@t Jﬁ Oévt/-”-;bg 5c

. , . /
but . is a Tunction of ths maraavter + so that v. -ay wwrite it as §¢'J

o
the. g is f( t’-l—bé sines e ary now di splaciag the rrocess of obstrva-

._‘tion, aid so , %’ {( (:'1“(()[) - ;‘([-“) _ 5/..{ or g .

A AL .
20 S At

contrast this roesult with the correuspoadins rosult in the casc of th. smce

displacom nts wWhors wos rot aE

_ - 4 efc.
"~“‘D:(§> - dX 7

"iich hes a minus sign aad .aorcovir involves only martial derivatives; this shovs

§ U0 v.ryr cliarly the noa-rulativistic charaset r of our theory.

Supposc now we lot ()Dl- act upon tho 'ﬂrouuct flp ;  wWo thon havo

e (f'f’ (j) f’)q/v“ FCD&‘{"

3t

and so WGOY"- d ?qj §9/+ fd LP

=4, F- £d,




kot us now writc

POts

- o

L Td, =

~3G—

M

Erd wo got tho rosult 4hat .
| K E=FH-HE.

By analogy with the classical thcory,

fhis is just thc cquation of motion for the dyrnamic¢al variablc’ g that wc obtaincd
this gives us the important result that the

fuations of motion for any systam in thc quantum thoory must Be of the above form
-

hothor the systom have an analogy in th. classicel thecory or not.

ghat wC ma

The goncral, sys¥yom

doal with in the quantum theory will thersforc be one for which wc have

80y Hemiltonian function whatever depending woon any sort of sct of d%namical vari-

bL; Se

five,

-

~

fbid reference to the

b tinG 8(_’ , shows that wo th

Lo YN . _ d,.
$ES8 T5E e ¥

s.itation in the

¢

—

dy

e

Yic can furthermorc discuss the eguation pfmotion for \..U

‘#
X AT

4t T ftoo

T

g .
figurc, ia which Ll) is q,‘ displaccd

arefore héave

(¥ G = HY.

diagonal at the timc t;

Fshovs that wo arc to pieturc that the statc of a system is a

3 ~ Fo. .
not, howcver, the usual form of the Sehrddi gor wave cquation;

fsoaco; W got .his point Bf viow 1f w. ado~t thn

10

i obtain our moving framc of rofcrcnec by takiag

"ablc;s Wt_ arc

we have

if we look uvon

¢

i l.P from the thrco-dimensional viewpoimt; wo have, by tho dofinition of a 4criva-

Q(E+aE) - V)

-

St

. . o . - Md . i .
This is onc form of writing the Schrodi .gor wave cgquation; it

~

thr .c-dimonsi onal voctor in phas.-spacc which varics =ith tho tig accofdiig to the

lgbove cquation, i.c. that this voctor is cant inually undorcoing a rotadtion. This is

let us rathcr supposc

that we hav. a fixcd vaoctor roferred to a movins sot of coordinates in the phasc-

faur-dimecnsional meaning of 8 state;

a ronrcsactation in which the vari-

to chocsc the phasss of the renre-

e . .
sropor way so that it dc/)\sn't involve cxplicit depcndencc upon t, or,

R o, et Mg s [

e i 5y
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put in mathewatical form, we nmst have ( / ) independent of t. .'e now have
Ef fel e -
the whole change with tiie wut into the change in our renresentzation; the eguations
of motion for the coordinates of the fixed vectdr referreo to the moving representa—

of

tion will beLthe same form as the above bult written in the- nota'ulon

(g = (01 Hige) dgi (o)

If ve aotice that (‘Ut‘ ) igs a function of the n Vari.a‘éles, Q/lt) CU%_#) ”‘-)'?’RL“ )A
and therefore of the u + 1 variables, 7/, P i[,_/‘-- -, ?/m) £, where 'CUU -=--{ly, are no
longer considered as d.epéndi::zg on the Arari%,ble t, and if we picture C‘U’L“) in this
wav, the above is ther the usval form of the bcarodmger wave equation. Since <C(/ )
A is the representative of XfJ it ‘follows that /(7/ )} 6{0 is the prooahilit~ that the
tZ/S have values in the range % Lo %—)v a/,(y

, Let us cousider a &vaanical system for vwhich H does 't involve t explicitly,

i.e. for which there are no exterior forces var ng with the time; then <%/t/ /f/ )
Goesn't javol¥e t explicitly so that there are SOlUth"lS of the Schrfdinger emuation

- H'E
of the formr (?/t:,i) — /Q/ U e /»ﬁ

where (ﬂ)’ is indeoendeut ol the ti 16 an.c vhere we mst have

’ H(9'D = {(9'1Rlg") dg"(9"l) ;

thig &atter ig the standard equation for deteraining the eigenvalues of H and hence
waen H coesnlt iuvolve t explicitly there exmist soltions tﬂau are periodic in the
tle of the apove formu with I' zn eigenvalwme of H. This .sort of state is such that
the average value of an observavle is iudesendent of tae tiae, for the average valuc
. . ’ » X . ’ !
{ ! (H%'l/zz’z M d # n/ —4< H t//f
of .{ is given by ) (?}] e ?{ﬁ/ % f/ ?/ 'Q,
and the exponeats ca 1cel ezci other so thet this valve is i Genendent of the time.

It follows that the nrobebility of getfing an- parficular result when we mae ai

;-

cbservation is indenendent of the tilvce, singe the average velue of any fuaction of

; ig indepeadent of. the tiie., Such a stete is what ve call a 8tationary: State.

..y %




t so that we shall have

E -

4l

P

Let 'us now sce what thoory of rcoréscntation we get when we take the

-

4 stationary states to bc the basic statcs of the roprescntation. There will

. bo ccrtain coastants of the motion, i.z. coertain obscrvabl.s, Q(t_ f((vt r"l:‘)» -

such that
d

fo(t' =0 -

‘Or d"H:HdtJ’

i 1ot us takc a ropres:ntation for “hich thesc o(,’s arc represantod by diagonal

& matricces; then the Hamiltonian must also be roorcescated by a diagonal matrix so®

 that (olt»IH ‘Xt> H’ S"fé 0‘?

LR 4

whorc M) .

' Therc romains to be coasiderg,d th\, qucstion of how wc¢ arc to choost the phasss in
} this roproscntation; o might choosc thom so that they don't invelve the timo

I _xplicitly and in this cas~ the Schrédiiger cquation will hold in the nivw variablos

SRS IRCILILY CH)
' t
- = H/(Q(t”)

b “hich givss, on integration, ¢'H'7j’

(a¢l) = ("‘t’) <,

“here <0(t.l) dosn't involve the timc. Thus ths r.opresntative of a statc actually

- varics with tho time in this ronruscatation,

This rosult suggests thet wo iwtroducce a acw ronroscitation wiaich has diffordnt

L phas.s from the proyious onss such that tho revres atative of a state will not involve

the tims; ¢ ther forc take a naw rooroscatativ )\,d/} givon by

(O( ) (o‘\t <H£Zg

so that this nc~ rcprescntative of a st _tu is a coustant. Wc nov havc a particularly

f convoniont ropreosontatioan to usc-~it is in fact a fixcd system of coordiirat.os ia

b our vector gnace. If woc have any dynamical variablo, Ft , roprcsonted iz this

T represoutation by a matrix of the ty’DCCd , Fﬁ' / d“) then

Sl ]«1) = (] Ffar),

 thich is just amothcer Way of cxvressing the con,.ltlo that our axcs in W- space

arc fixcd. It is of intercst to scc how this umtrix for };: will vary with the

esn calcule.. this in %30 ways; usiug the cquatiols of motion,




s

| 72 got

| tion we must have (0(;_‘ ?t‘

bl

E=FH-HE ‘
(A uifle) - IFROH HETESY) WW

B so that {<HI"H”}5/ /;K‘ i

(«If]a”) o< - .

I} inother way of gotting this rcosult is simply to noticc that .in the Co(“ )—ronrusonta_

AW '
(}((_) indenondent of t and therofore when "¢ make our chango

of phasc C got just the above cquation. Thus our matrix lcoments =ill vary with
| the timc according to this oquation. This rcoresentation ‘:as th. first -0ac 1o bec
f found in the quantum theory; . it was discovered by Heiscnborg in 1925 as o rosult

tof a critical discussion of the Bohir thoory.

Bofore leaving this question of equasions of motion wo “rish to discuss the

conncetion between quantum theory and classical theory for the most gen.ral dynami-

cal systom containing a Hamiltonian vhich involwvoe the g's and p's vith th: only

restriction that H shall be oxprossdblc as a wowsr scrics in the p's so that

H(CO) *tﬁ%) may bc given a msanin ; this matter has not boen adcquet:ly dis-
e

f cusss” 14 the literature, We have the cquetion

SR d () = (gt G)

¢

“hore wic are drooping the orimes from ths gfs, “hich is permissible when this docs

not lcad to confusion. Suvpose e try to find a solution of this cquation in tho
form of waves in the coordinato spacc; 16 assume that

@1 = <7 A

\i/ / -
Whcre S né A arce twp roal functiois of tho g's and t.  Now

,‘ o £ o
‘ 4/}\}3@/03 < 5% 3..%?—# 4.’#6{:3’[\

and also '('S/’f’ c)S - ‘a"
~iF 33?74[7//)”" € ?3@: “4?6?1@‘\

' Thich gives - \Sf - ' i :
hich g (’{,?%‘01(?/): .Q"‘ / fg’% - 4"?-3?”5 A
. iand ia gon ral 25 -4 &-)A )

1o F5) 4 = Q{S/XZ# & 3

i o, substituting in our original cvyuation -y¢ find

, 3 ‘P
(3T = H(p - F5y)A-
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t Thus far our T ork has bcon cxact, We now ismke the approximation that may be
caunted as small and we then cxpand the right-hand side of thc abovye cquati'on’ by .
] Taylor's thoorem as a Hover scrics in /E up to th s2ocond torm; 1if e cquate

the zeroth power of X on c¢ach sids we got

1 25
(6) - bé-%- = H(‘U)S'@)

‘. vhich is just the Hamilton-Jacobi cquation of classiecal mochanics.

.

Equating th coofficicats of Xo*l \,aph side e would ko tcocmpted ‘t:,d write

fbAs DH/( zs@l(afﬁ) :
thich ould bec the result we would obt°1n 115'{3 (%_,, - 4,‘? '?' ) Tere a nymber

f 2u¢ not an opcrator; but actually tho overator ( »L'f 3 1) 1ill be somevhete in

B thc middle of the factors in cach torm of H; now E must be a real operator and this

(B ncans that it must be vossible to arrange the terme in it in such a way that the
'_l “holc opcrator has symmoctry “~ith rospcect to right and lcft; i.c. the sort of
| symmotry cmhibited in (({//11-{-/115‘/) or” ‘Z//Ll ZW so the rwsult 7 should out down

i} for our operator must b: symmotric botwewen lef: and right and if this symmetry
. -

oxists it 7ill be poermissidle ‘(sincu wWe arc nsglectiig torms in /z ] to take all

the 2 )

3‘{/ S to thc extrome left of onc half of ths torme and to the extrome right

of tho other half without altoring the ffect of the oncrator sincc the alte :rAation

4 cruscd by the 1.ftard shifts will just balance thet causod by the rightward shifts:
b

to illustrate this “holc -rocuss bictorially - o have -

2 VG T——
Using this procecss s sce that the cqurtion resulting from cquating the ccefficiocnts

{E or /z on cithur side of our 'origi’:ai cqudt*o'w. must cctually be

....Q.’.A- = ‘a* oH : 3 '
! iLZ: \(&g B.H((‘In *s*)) 5_5_ A

*BH(‘Z/»%@) IA + 1A s -5—- bH(% )

’r“i a(%@%) 5% Diﬂj

H]
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or, multiplying by 24, Q_S_
(7) dAl > 2 iy W) A
' p a v S ( %~ j ’

this, then, is thos (quptlov‘ “hich govsrns thoe am:)lltudu A, of our wave functioas;

-

> wish to gut a physical ~icturc of this ¢ uation and for this purpose o taksc a
coordinatc space, (q),“nd supposc thot there is .a fluid moving in it such that its

Density = Az

and its . 4 neit of currett = 2H<W;BS') AI‘
%"— componout of curreat = <3§/a (‘;1)

Then cquation (7) ziv.s just the conscrvation of* this fluid. So we hove this fluid

moving about ii g-spac: accordi: g to the cons.rv-tio: ¢ uation but ~ith no othur
limitations. Let us tnkc o fixoed S satislying the Tirst cquation and cousider ‘hat

A's —il1l +th.a safisf thy sccond; thu’VulOCity £ the fuild is than fix.d, asmcly

its o, — cowoat hes the vrlus 3 H(CU) B_S/ail)
20 33/09n)

Onc posmigsible solution -1l be th: follo™in 1%; Tu supposc thet initially tho

dens ity ‘/mnishos cvorywher o xcept in a sa°ll rogion; thea, on account of the
uqu'ltlor of continuity sad the definite veloeity., nt o léitcf time - ¢ shall still
hrv . the docasity venishin 2V rywhere cxeopt -ithin & smnll roeghan; this solution
is in the n~turs of 1 uove :,ket. Th ve is a 1imiS %o hom sanll this rogion mny

be taken sic. o have mode spproxime tions in obt~ini .g our tuo cquations, (6) =zad

(7}; ¢ must have, in fect, /E. %A <L .-—-—-- A 3

~ad this conditiol says thnt A must changt by an ﬂl.,pI‘vC]. bl . freetion o itsclf
oaly ia a2 distnnecc of scvoral —avolcnmgths. Th. motion of the wave packet is given
2¢<
by S H (C‘/) 'S'Si/' )
v.locity =
b( &'5/3 ?/’f)

~ad this is just cqunl to tho classicnl velocity o ths marticle since the classie=nl

formula is
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this shows that the wave vacket moves according to the same law as given by the

L

tre'jectory of the classical theory and indicates the way in which the classical

theory is tc be regarded as a limiting case of the quan tum theory for such sys-—
tems as we have discussed in this section; the limitation upon the smallness *of

2 wavd packet leads.at once to the Heisenberg Principlq_ of U ncertainty., *

" fThis conclucez our diwcussion of the general squations of motion and of the
goenera’ qguantum theoryp we shall omit reference to the elementary systems that
arise in the applications of the theory and shall proceed directly to more ad-
vanced questicns,

I
Y shall consider 1 hose special vroperties that arise When ve have systems

I

that co: lslSt of similar particles. Let us first consider the: case of only two
-

similar 'particles; we have discussed in g general way how we can put two systems
together and count them as & cingle system and two methods were given; the first
method t¢ which we shall refer as method (a), apnlied when the two systems were
consicered as alternatives and invo¥ved addition of the vector snaces, whilst the
second method, method (b}, @pvlied when the two, Systems were both rresent together
and iavolved multiplication of ths vector sraces. Then the systems are physically
of the same nature method (a) is quitoe trivial and it is only method (b) that ig
of physicsl interest; and if tho systems intoract we must use method (b),

We shall first of a1l examine the mathematics of method (b) when there is
nc theractlon taking the goneral casc vhen the two systems are not iecessarily

similar, Ve shall have a set of dynmical varigbles, F‘ » to Cescribe the

'first System and g set, F—'L v Yo describe the sccond, and we shall require that

~
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J{l; .ﬁ“ f:\, §| = O -
as the conditions that the two systems be diffenent (cven in the case of inter-
acting systems). The first system will have a Hamiltcnian fu_nction; H, (E ),

depending upch the ;:'3‘ and the second system will have H;( -.) as its
Hamiltoniahi The equatiocas of motion of the individual systems will be

iR f-FY -
Bh=fH-ng *
! : * o ‘ v

We now want to put thesc two systems togother and leave unchanged these cguations
of motion; we havs, since E, anc[ g_ commute,

A f=fH-HE

Ly ‘
and ‘ —

4'{ gtz gz HJ H g’—

wher ¢ ’

= H + H
.B: l 21

sc that so far as the esquations of mdtion are concorncd ve mercly have to add the

two Hami¥Ttonians of thc systems when we put them togethor.
.Lst us now scc what happens itc the Schr'o'dingor equa tion; wc want a repro-

sontation for th. twe systems and for this ourposc we takc a complcte set of
commuting obscrvables, qy, out of the obscrvables ﬁ and a complotoc scty qz,

out of the f; and thcn, siace they commutc, we can considor sz reorescntation
for the wholc system such that the ql's and the qz's arc dlaponal! this. corres-

ponds to multiplication of the vector spacocs. The wave cquaticn for the first
system by itsclf is '
) 1
’ B / ‘ /I) " ( )
C 4R 2 ()= (I g)) Ay (9
and for tho second systom it is
s ! — 7 ”‘ / y //
i B (w)) = [(991 Ha|9) g (9],
the matrices above rorf rring to tho ruprosontatives of the two systoms takon scp-~

arataly. As the ropresontative of Hl in the qlqz represantation we must have
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(CU:%;/ HJI?I”%:’:) = @/[ H/?//”) S(WZIN?/‘:)

and similarly for H wo must have

(99| B (97 927) = (921 H19:) § (9'~9,7),

and with the helr of thosc cquations we can casily verify thg:.rosurlt that

A 3p L] = (@hlHlg 9 g ey @ g2 ),

wherce this H ig H1 + HP. Thuse quations show that tho Schré'dingor cguation holds

s

for tho resulting systam 12 . add the Haniltonians of the original systoms"a'nd
multiply\thoir vector svacsse This rosult is nct rcally a trivial 013;. thgrd is
no obvious rcasonr vhy two vave Gquatioas should be combincd in just this manner;
the rcasem “hy it does Tit in t is way is that tho Schr&dinger gquation yas do-
rived from a consideration of displacoments which is a gen.rel method basod. on
grcup thoory considorations of spacc and tiwmc and it must thercfore agros with
thoso subsidiary couditions that may furthéar bs fouud nececssary; it is essuiltvial,
in order that this way of nutting two Systans togsothor should ""ork,that the wave

cquatior be lingar in the oprator S’E .

There is on. lmoortant nodification that may arisc; w may con sider in

our rosulting system only thosc statcs for vhich a special coaditio such as -

» ‘-J/ = 0 £ .

helds. This ig a Vory ilmvortant case in the applications.. Lot us consider it
both from the mathcmatical and the physicsal point of vioy; from tho mst hema tical
point of viow it means taking a subspace from our totel voctor spacc; it is
locessary that this subsmacs rimain invariaat uadsr ths cquations of motion ir
We arae to got anythiag of j)hy‘sioal interest; that is to say vz take \‘J{S
that move according to the layw ) éi _

<k G =hy
and if kP liog in the subspaco i1:itially it must roemain in it;  the cone

dition for this is that
ir F‘V =0
then = g-g,x@;' '
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wc get at onco from the sccond that
FHY =O
and thercoforc we must have
(FH~ MF) Y =0

and this usually mcans that we must have

FH-HF = O '

L 4
when we come to the applications of the theory. So this spccial way of combining

two syst&ns to form a single Systan is possiblc whenover wWe can find some observable,
F, that commutcys with H.

What does this mean physically? Tt means that therc is some ki
betvoon the two systams, but of a nature quite different from that onc usually gots
from the ordinary forccs that act between, them;  therc ig thus somc kiad of ¢on-
straint betweon thoe two systams, but onc vh

nich 1s not oxprossible as a .force or
intoracti on and docs not conflict ith their cquations of motion., As an illus-

nd of ¢ oupling

tration 3o may take two varticlus moving cach in a amc~dimensio gl domain as

shown and considaur that ths tov ons must alvays bo Vertically above | 7

l

I S

- p s . . . . . "“\-‘——*.....

tho lower onc, Cur cébnstraint 1s to bc pictufod as of this kind; l/
it is pf'grcat importance in the case of similar barticles. Trom - fi
the physical boint of view it might be ¢cmvenicnt to consider that o -

we have forceos, ang thaesc constraints agrg of-taon svooken of as such, but

“C must romembor that mathomatically they arc quite difforent from theg

ordinary forces that arisc from an interaction cne

Thc above theory @p-ics when we havo mors than tmo Systoms;
method (b) we have

H= H + Hy+ - -- * M.,

vhore H§ s vee 3y H are the
1 n

according to

Hemiltonig g of the original systems.,




RN

~48~

Fan
We shall now discuss spocial conditions that arisc vhen the systoems we put
together are all of a similar naturc, suth as all clecctrons or all light quanta,

4
and -se on. It thcon becomes nccecssary to roconsidor what we mecan by an obscorvable;
we ha\%:c soveral similar particles which arc d oscribed individually by obscrvables,
f’ }' - - and so on. If w: interchangc two ~f the particl.s we
P a ) ., J L o J
makc no physically obscrvablc changc and hence Wo ought not to talk of thc fs
individually as obscrvablosy but we can still talk of the probability of a partzicle
boing in a giv nrogion of spacc or notj; or of t70 marticles being simultancously

in t7o given rogions, aid_so oi, and it'is with this differ.nt typc of obscrvable
that we shall have to deal; o might also msk how many particlos have a given

valuo for their momentum, or more gencrally we may toke any sct of commuting cb—
s.rvables, q, ¢nd ask whethor thero cxist narticles for which the 3's have th.,valucs
¢', &nd w3 can, of coursc, coasidcr more complicated obsarvables of this natwrdc.
What is thc gonorsl m thematical p'ropr‘rtgr' of a1l such gu-ntitics? It is plainly
n eh

that thc gquantity must be symmetricead /\vai'iablos of tho »merticles. A mrticular
typc of symmctrical function of tho ;ls ~ould bo th. follovring:

Lot us take .Xr to be any variablc reforring to one of the dynamical
systoms and let us form t Xy P thet is, th. totnl veluc of thc variable x

=i
summcé for all thc syst ms; this is onc”of ths things w: cha observe. Thore arc

also morc complinatcd things of the type g;—;c Xt 15 and so on but
» e -
tho Xy arc the most important. T ¢ know the avorage valuc of

Z:() ZJ(’) Zx3J - = -, and geancerally of Z g(?@j?:hor«: f is an arbitrary
fuaf Jlon of x, then we shall know the average numbor of vparticlcs having x cqual
to any spccificd valuc, and the average number of prrticl.s in a small volumz of
sprce is o cuantity of this neturc; 1t follows b a sinilar srgument that if wo
know the average valucs of all gquantitics of the type 1’21#:5 X.,IS e shall
know the average number of times two prrticlos cxist simult;muously in two spoecificd
smll regions of smAacCa

W- must now dcvolop soms mathomntiznl theory that will .nable us to decl
vith obscrvablas of the typc Z Ay 3 thig theory will be snalogous
to tho t;hcory o thc Gibbs Enscmble in classical stntistical meochanics. Vs con
build up thc thcory in the folloving way; .

17, ~ P -~ - i :
Wo can chooss the g's of ow ropresmtation in ¢ symmotrienl Ty with rcespeet

to the .
particles and wo shall th'n got n roprssontation that' is symmetrie vith

respoct to =11 the varticles; cech narticle —ill bo roprescntod by - wave function,
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(*/ ') y and e shall assume for convenionce in tolking thet thoq"';',_s Lomm :
& .

a discroto got.  Suprosc wc tnke ~n x nnd ask “het is the avernge volue of x for

onc of the particles;

this avor'lgo value v111, of coursc,bc - -

x ¥ 'I/ 3 | ;
%?’/” Cly)( gl /7/)(7/ ) 3 .‘

Vo now put all the systems toggthor r~nd

ask vhat is the avirage total valuc ofx
it must, of courss, tc given by ’

.2 (Y Xy *lg) (g )

functlon for the r-th system; nov we emn take (?/'/Z/?“)

respiet to r since the operators x arc

for a1l the systaus ¢

There (Q/ 7) is the ‘"'IVL/

outside the summntion with homologous, rnd

“C then got ths result that th~ avsrage total

valuc of x for ~1ll the systums is given
by

Z. (y171g") (91 Yg'). )
Jlt to know abdut the assmbly to mng

qumntity/ Z;' (7/”/7)(‘1‘/7/) 5 we shall - I‘ltg

E (yIn)ig) = (4" 9');

//J sy Dlays an Lm")ort'} a2t part in the the 0TY3
of the donsity in ph

It follows th a7 nll Cr our quostion is the

‘ this quen tity,

it is the ansloguc

A8v space thnt cntcrs the classicnl statistice~l thoory; it

DAy be written as the dingonnl sum of x and p , IDCxP) = D (/) X) .

/
There arc o“soarvablos that entt be cxpressed in torms of f’.‘)

y 18 for cxample
tho symmctrical sum of functions of the dynn ionl vari wbl.s of two systems, vhich

is of the form g ( §, f;) ; © SO it is to n cortnin limited oxtont

only thnt we can con51dur an cnscmbla

to bec campletuly specificd by the function

p » Damely only in rogard to avereg:

s’ of qumtitics dcfincd for the Sys tems
@me at a time,
: The totnl value,

D(px)

then, of n quantity x for » given

cnscmble is givon by
in the classicrl thcory ve hrve

2 donsity function,/\?’ in phasc
Sp-’ICO rad the avorage valuc of x is given by

7 T (fxp dpety

ffirkea over the vwhols of phasc spacc. This nroccss of ecnlcul-ting average vlucs
ilis analogous to th~t of the quantum theory since. thz double integration corrcs-
fhhonds to the doublc summation of tho qu-ntum .thcory forrmule.,

| Th the dlassicrl theory

‘ ¢ motions of all the particlos aro dotemined by tho Hamiltorian cqu-tions

¢ hnve a dofinite zquetion of motion for P siico
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s0 tint, using the hydrodynamlcal equation of dontinuity for /,) ;
- Z(a@, G + bﬁ ,1,) = .”[/3, H.

F i s equation differs from the eque tion of motlon of a dvnanlca.,_ variable only in

the minus sign; we shall show that it holds for the quantum theory also; for we

- b T G

i

: ‘ ——zfs%(s/w: S (sl Iy
ab(‘]/ ) 2’[{1 (v'/sﬂw/zﬂ)+(w 5)[1# (s lcyﬂg

& S Mg 191~ Il Tl )
) .z; LRI KY Iely) = Cylely )41 Wl 9)f

B shoving that - bt is determlned by ﬁ itself),
|-~ X = HerR = - e,

Thus we have corréspondiig laws of motion for our classical density and our quantum

s¢ that

¥

#)f

density and this justifies us in saying that our /J is the gquantum theory ana-
i logue of the classical desnity in phase space; this result is quite remarkable
since ve have no phase spaee in the classical sense in the quantum theory. The

I uantum theory ﬁ 1s a function of just the same nuiber of variables as the

§ ft classical /D .

; This theory of the Gibbs ensemble is thus very satisfactory except that is%
= dogn't let us calculete anything that concerns & correlation between two systems.

| We shall now coasider the way of vuttine two systems together in which only .
2 subspace of the whole product vector space is used. These are the two. imnortant

cases in which ve use only symmetrical and oaly antisymmetrical wave functions;

‘these restrictions are of the lincar form
Fy=0

ik and we must verify that the subspaces in the two cascs are adtuglly invariant under

- the equations of motion; to orovs: this we have to use the condition that H is
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symmetrical between the warticles, ﬂf{,e introduce a nww notation by writing the
(Co;’qjgl --- ?/1: {‘ ) of the whole system as (\C }) with the primes

to the laft so that there will be no comfueion with the (((//[) we used pre-

viously for thc wave function of an individual system; we siailarly abbrevihte
v I8 ) e CylEly

Then the condition that H be svmmetucal is that

(ylHly)=(PyIHIPY ),

]
whore P?j is any Dcrmutatlon of the @ A ‘ For a wave function
e have the a,quatlon of mot 1on W )( W
L2 9! |)= Z (7/

S £ at(PW)*Zu(P : H/“)(“/)
| - v
§ Z»(qu )(P‘z/)

(since ?/ is in the nature of a dummy sufflx)

. Z \\ )( P AL
and therefore for the symastrical casg, in Wh.lch ?/ ’) - ( p ’)9

e got ?E(\g?/l):atfp?y)

showing that an initially symmotridal wave funckion remains symmetrical; in
wrecisely similar megnncr it is verificd that an initially aitisymmetrical wave
fuinction romains antisymctrical . The notion of symmetry or antisymmetry is in-

variant udcr a cenonical transformation; for if wo change from d1s qE, ees G
to Q’l Q;?, cee Q‘n the transformation function, CQ' Q1 --..Q” 'q/‘ W" _._?%))
will be of tho form

CC‘?,/ )(sz /‘f/q T (C\),n/]%z’)

vhere the (@-r/ 4/) arc all tho s\ame\functlon Of their argumcnts, de-
noting this +ran<sformatlon funotln by ( We dherefore have

(P ’Pf/)# (Q,@)J

the now representative of thu state will be given by

(Q1) = Z(@/ Nyl
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and so ol \

(Pb/ = Z'(P\Q %) Cyl)

a!i (PG| PY)(PY)

d Z,[/CQ 9 (Pyl)
so that if (_P {) - (‘(/l) .
then (PQ))& Cm\)

and similerly for the antisymmetrical wave functions. This shows that it ls permiss-
ible to talk about symmetrical and antisymmetrical states, these being such that they
are symmetrical or antisymmetrical for any representation.

The theory of the Gibbs ensemble will apply equally well when we restrict our-
selves to consider only the symmetrical or only the antisymmetrical wave functions

. 9
since the analysis makes no reference to the whole . semble; the case of antisymmetri-
A

cal wave functions is of special interest siace Wwe can now extend the theory of the
Gibbs ensemble so as to get rid of the defect we have menti oled; we can see this as
I

follows! The wave function for, the whole assembly can be expressed in terms of the
wave fwdetions, (7)(") S) y of the individual systems in the form of a determineant

as (1][{[)" (?/I’) ')C?/M)ID
A = ! 3
(?/ ), (fz//n) --=,(¢"Im)

where (?jq!&) refers to the ’T particle in the state S . T his determin~

ant will have e troperty that if we make a transformation of the wave functions

)%= X ans (¥)), X

where a-fs‘ corresnonds to & rotétion, 1t will have the” same value in terms of
the (?f"')[‘)* as in the terms of the (C(/ )') T his is easily seen to be the case
geametrically since is just proportional to ‘the volume of the (n+l)simpleg z

formed by the origin and the end points of the n vectors represented ?
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by the (1’ lS) An an nsddmmmsional space, such that the coordinates of the

?
) K
% vector are (1}'”/ I)J (7/(‘r /1)1;"'(7/(‘r)/ﬁ>)and laust therefore be invariant under

a rotation of the ~oordinatcs in this space, 'c arc thercfore only intcrestcad

in those quantitics that remain invariant under thesc I:gtations and it {s easy

to sue that all such quantitics must be cxpressiblo in torms of the soalar pro-

ducts (%//p/y#) ..-zr Z;g?/l S)(S J Wll)'

It follows that our p docs really givo us all the information that is con-
’ -
taincd in our determinent, A s 80 that if w. know A we fix ﬁ and

if w. know /) the value of A is fixud.

Lut us now considcr this matt-r analytically in grwater deotail. If two

T )
of thc wave functi onsj(?j( )/) o &arc the same A vanishcs and in non-trivial

cases Wo must have them all linearly indtpendent; we may furth.r consider

Giig)=Z, Z, Gyl 190y)
< I (1) S0 (1)
=2 (g9
= (9lely")

and henco p"" = [) .

This corrcsponds -to the fact that the cignnvaluas of p arc all sithor zcro

then have

or unity, which m ans physically t-at wc can't have morc than onc narticle in a
given state.

o should now be able to ans7.r such qQuestions as "what is the probability
I}
that we have one particle in the state %/ and ancther in the stats % ?
This probability can b~ ¢alculatcd in theo followving way:
We first calculatc the probability of all the i particlss belng in the
WA () . o )
statcs W)?/) =y ? s+ Wo then sum this probability over all 9
and this gives us the “robability of finding n - I varticlcs in the u - 1 states
' 17 (n-1)
?/) ? ) T" ? 5 &nd by ropoeting this nroccss we arrive at the pro-




emrbew *‘5 4 '

‘

bability wc seck. We must first inguire into the .wrmalisetion of our wave
function, & . Let us agree to count two po:..t8 in ronfiguratioh swvace

os one and ‘thc same point if they diffor only in : ssigning diffarent. particles

to the same statos; cr, mere cxplicitly, 1ot us ¢ grec, tf King the twe dimons

sional casc for the purposc of illustration, tha- thc poiit (@,,@1) in the

configuration space Yc considercd as ?/1 A

(Ve 0
the seme as the point‘so that wo arc hebe actuall -

deeling with only the shaded vorticn of* the two-

dimonsiocnal configur: 1t10ﬁ spacc;  and in genoral

oL

that the point C f//,?t "",Vn) be considercd the

samo as the points PCW’)V@ - /?.,) Then the wave "unctior will be properly nor-
mr‘llscd for the typical portion of cenfiguratioa 1 sace pre -ided thet the wrve func-

tions of the individual particles arc preperly norvelised =cpgrately. (If wo

I'd
did not makec the above convention reerrding the ccifiguret on smace we should re-
Mévy
quiro a normalising factor y‘/ fo‘r A ). Yo y now continuc with our
problem; the wrobability that i particles be in e states & ') --*y 7 ()
is given by ) m))
-, (1]

(cf/ 1), (@ --,(@/n) (fffp,,(l
!

/ ' ."

(’/f)(‘“’) - (4 '") (g1 (ulg === (Mg

“hich, by thz ordiaexyy

)

rulc for tHeo mu‘l{:iplv' catiol of tvo determinrnts and the do-

)
) is cqual to the detorminont

Giny), -- -, f,“)

I

(5l -

o . C’f)
finition of the meAtrix clom ants
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vhich w. shall denotc by D(n); Fwthermorc ¢ shall denotc y D(r) the dotsr-

5 a0

minant formed by teking thc first r rows nnd columi: of D(n The dgterminent
D{n) iavolvos only the matrix clcments of /’9 a1 it th ofore follows that
all tur other protabilitics will slso bc cxprossibl in tom ~ of the mtrix cl.ments
of P only. To find thc »robability of #A-~f. p ticles being in the
l m) ' tn) .
stntas W) -y ? wo must sum D{n) 1.r all -7/ ¢« T his turns out
to bc quite simple on account of the relation ‘: 4 ‘ © first cxpand D(n)
so as to soparato out the terms i volving 9( ) s wo have oxpnnding by tho
last rov and column, ¢ ) ) met
X ¥y R )] ¢ ¥
)] ) g ( tehf, / /9)9 S
. n-/ 2
Dy = @ lelg™De-) =2 (71 7 X
?) P v$¥|{
" Tl {S) (‘T)
Thorc K?s T) decnotos the cofaebor of the clan at (7}/ /f/ %
in the doturminant D(n - 1)s  Now we have

. gm{ P/?/tn)) sz /0@ k"r]%))

. > S?‘* N % ) (
Ild. also Z%cw) ( ?/w )(vg) //J ]?/ ) ( %ﬂ /0-4 W}(i/@‘ ﬂ)(g ))
oF Yalg YgPlt) Ses

a,d

_ GE}S)}{ }?/‘3))

J

- 80 that summing D(n} for all ;o glvos < v} o
Zh D<ﬁ): ahD(‘!\'!) £5e (q/ (N% ) K 61)

¥ D) = (n- DY
= D{‘““O .

Thus thg dotorminantly {n - 1) is thc probability tb t 1 = 1 rartielus bo found

in the states I) “) -~ -, (=1) We shall mo-. show By - proccss of ii-- )
R L4 m
duetion that the probability of finding m <n vartic cs in t .. stet.s % - W(



1

—ar

is cqu2l to the detorminant D(m) for we have,

D(m""’ - %bw)/ﬂ/ +4)) D("") E (”('M)/ )(?55‘) / Zb‘ﬂ-/)) KCJ’)

and thercfére D( ) D(_ )
Dim+1) = mUlm)— ™ Lo~
25: (*+) ) - éﬂ\w-?") [)(641) .

This factor (n - m) is just what we want physically simce tha*. aro n - m prticlcs

that may occupy our (m+l)th statc. We thorcforc howve tho r:sult th t 3 “(m+l)

m
1s the probebility of finding m + 1 varticles ia the states y) - ?( +i)

thar D(m) is the probabvility of fiinding m prtlcl\,s in the et tos ?} -y % l

and so the induction proof is valid. TFor the casc of a sing .. particle this
chocks up with our previous work sinco in this enasc the prob bility detorminant

bicomes just a single diagonnl clcment,
The dotcrminant oi_‘ p “thus contains a gront dcal of physical informa-
tiony 1its only mrthomntical property is that /ﬂ ﬂ » buvw from this v emm

~
deducc that cach of our D(r)'s has tho ch°r*ctor1at1r* proparhy of a probability

that 3
0% n(r) € 1.

For cxrmplec, for the casc of D(1) wc hove

@'Plgy)= (410 y)
a Z?/ ( //, (q)(Z() 7/)

| = (4)pl9)7+ 2 Feg KOl &G /¥)




[uas bl
o @l G )= 5 o gy el )

= 0,

since the factors on the right oceur in conjugate pairs; it therefore follows that
! / _
o< (y'lrly’) < 1.

Symmetrical quantities of the type %;:; \/(,g;agS} have physical meani3g and
the average value of such a function can be‘;;lculated,aﬁd expresscd in terms ofrDQ
so the difficulty in our theory of tie Gibbs ensémble has been got over for this
antisymmetrical case. A theory exis”s for the case of symmetrical wave functions
but it differs in important ways fror that for the antisymactrical wavé functions
that we have just studied and we shzil dsfor discussing it until a later time.

Yo mow consider the more general theory of the antisymmetrical wave functions
that takes account of the interacticns between partivles. Let us first consider
the question of which of the various tethods we have discussed for putting together
several systems into a single system #ill be the corrcct cues Tfor the coxpression
of natural rhenomena; thers is ;o sa~1sfactory general way of answering this ques-
tigp from the theorstical voint of viiw and it is necessary, for ecach kind of parti-
cle, to refer to the experimental faz's; in the caso of elsctrons the question is

decided by Pauli'w Txclusion Principi3 which may be stated as follows:

We can consider that sach cles ron in- an atom has its .own orbit or state;
then no two -electrons can havs the same stete,

This principle was announced by Pauli just before the introduction of the present

ing
qQuantum theory; by "having the same tato" we must now moean "havx the same wave

function”. The nrinciple is Very nec.ssary if we ars to have aay theory of chemisg-

try. We obtain just this exelusion mdncinle if wo say that only antisymmctrical

wave functions arec to ve allowed in +l o systom resulting frem the putting togethér

=] E* . » 3 . - » .
oI soveral electrons, and thus the Pavli exclusion Principle gives quite a definite

answer to our question For the case of clectrons. Another important case is that of

light quanta; the answer is not so obrious pbere but it turns out that we got a diffr-

crent kind of statistics according as ve¢ usc symmctrical or antisymmetrical wave

functions and that the case of symnetr .cal




wave functions gives the correct statistical results for light quangé.,

There are also other cases such as the nuclei of atoms and so on;

in the case of the nuclel of atoms, we refer to expsrimental data regard-

ing molécules to find the correct sort of wave functions to use, It
turns out that we can have only symmetrical or only antisymmetrical Wwave

functions in every case.
v

"e shall consider the case of electrons in more letail, but before

. S . . ’ . . .
doing this we shall give a brief resume of ths propertiss of the spin of

an electron; we counsider for the prescnt that thesc onroperties are given

nurcly experimentally. We heve already scen that a spherically symme-

trical system must have zero angular momentum, and conversely; tae casc

—

of a spinding elcectron is the nex®t simple being such that the coumpon-

ent of angular momentum atout any direction has oniy the Iwo possible

[
ralues 'dfjf‘it . The eleetron has, accoapanying this spin, a magne-

/
tic moment which is very small. For the mathomatical description of

the spin it is convonient to introduce thrce compononts, 3, ,,52’ 33,

of tho spin angular womcantum which must sabtislv the relations

.

cte., *
5 (:ea‘J:sa]f: ﬁ%%

since they arc angular momenta, and which must alsoc sstisfy
oL fF
S = yre efc.
R 2
since the eigouvalues of &, 8, and &, are #Ci'k .  Thus § 5.}
J # ﬁ ’ " 3 y
and 5.31 are purc numbers since they ¢ach have only onc cigenvaiue. If
we write
s« = § R o, elc,
2 2
Oy = 0w T = |
and 3 i . p
Ou Ty — Oy T » 24 %  tc

Trom these rclations we can deduce by straightforward algcbra that

W3 have




wae B0
G,;: CS%& = -—<3E}<52¢ 4 -4:<73, ete.
These arc the fundamental relations connocting the components of the spin
and should be known by heart, as also should the ropresentation
?, ’(‘&) %-0‘ ) 0} AQI’) '
"e note that in the wave functlon of a single clectron, (1?3 (o / ),

the Cig. ‘has a domain consisting of only two points, and so this is the -

same as if we had two functions of tho throe variablcs x,¥ and z; it is "

sometimcs convenicnt to consider that son clcetron with s»in is rcorosontcd
by a wave function dopending upon x,y »nd z and having two componcnts rath-

¢r than by a wave functipn- depending umon x ¥y 2z and C?;’ and having only

ong cemponent, The vwo points of viow arc however cequivalont.

Let us now roturn to thc case of soveral clcetrons; the spin has a

very important coffect despitc the fact that its effcet unon the motion of
an ¢leC¥TOR in g field is extromoly smell, being of thc same order of mag-

nitude as relativistic offccts; and sincc our presont theory is non-reola-

tiviskic we may negleet tho spin forces altogether. But wc crnnotv ncgleoct

the spin when we apply the oxclusion principla. Lot.xr deseribe the

rth glectron, 0;.’,

function for a system of n elgctrons will be of the typo

<"‘,16;} X3 5;3,. i ! U:a}) )

“he antisymmotry principle mecans that shis quantity must Lo antisymuoetri~

being the z-component of the spin; %hun the wave

?
cal in the x's and the C* $ together; it is for this rcason that we can-
not omit the spins when we wish to .apply the exclusién principlc.

To illustratc the effcet of the spin w.s shall considor the casc in
which there are only two clectrons present. If we nogleet the spin forces
altogcther the Hamiltonian of the resulting systom will be given by

= H + H
H 1*’72.*’
the last term being the Coulomb inteoraction cnorgy. This Hamiltonian docs

not i , i . . . .
0% involve the spins ay g1 so that w- may obtain wave functions of the

type (Jflsﬁz’ ) that will satisfy tho wave cquation. But wc may also




B

B0~

e B

(1:'3(2,[) F(¢}3¢n§) .

where F is any function whatcver. This is the general type of solutton

have the solutions

of tho wave cquation when the spins onter the wave functions but not the
JHamiltonian. Ve must now make the wave functions an'tisymmotrical; this

can bc done in two ways, cither by taking it antisymmotrical in the x's

and symmctrical in the spins or hy taking it symmotrical in tho x! = and
antisymmctrical in the spins, Now O" has only twe cigenvalucs and SO
there aro only two 1ndopo11dcnt functlons of it; wo shall call theso

functicns ﬁ( ("é) égdj’) , (ﬂ;i)el;nco)d by

and 19;0) o, fﬂ@o =),

Any function whatever of G}' is expressivle as a lincar function of
ol and ﬁ . For _two s7in variables thorc arc only four

indcpondent functions, namcly
ACHY JST

ot(°7§) ’ﬁ’ (02 3) /
i flis) i (53) ¢

(93 Au(%3)
which we shall denoto by d‘d;) d,(]!_) /5, - 5 and ﬂ’,ﬂl rosnectively;  wo
sec that d' q:. is symmctrical, /3, ﬂz is symmetrical and that '
q‘pzq’;/}’ ala is symmetrical ~hilc ‘o, ﬁ.,. - /3, XK g is anti-
symmetrical. Thore arc, thercforc, throu symuetrical snd onc antisymmc-
trical indepcndent fuactions of G,‘} and Cg;‘? i terms of which any

function of thom may be evoresscd. If e tak C?( ya.l) to bc symmo-

5 WO have, thcereforc, only onc statc of the systcm that

111l bc completely agtisymmotrical, and we call such ¢ statc a singlot

trical in Xl and x

statc; if we take (%,3{1) ) to be antisymmstrical ve have thros symetri-

cal functions of the spins so that 7o shall havec three aantisymmctrical states
in this case; such statcs ars said to bo trinlet stetos; they =ill give
the samec motions of thce cloctrons but will corrcsmo.d to differcnt oricnta-

(If =ec don't nnglced the spin forccos tho motions of

tions of their svins.
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thesce three states will be very giaghtly differcnt from cach other).

Lot us scc what will be the actual oricntations of theo spins of tho
elcctrﬁns in the various cascs; it is conveaicnt to introduce the quanti-
ty s given by
s(s+!) = -—-[(dw Gz) +(6ly+6 )""4—@73*‘23) ],
this giving the magnitudz of thc vector d'} + 61 « 'C thon casily

Tind, using the rclations satisfied by the CT'S' that .

S(s+1) = ,% + £ (g.8),

whoro(ﬁ O'g.) denctas the scalar product of 6’7 and Wy . Now

(Q;Jgi) can be shown to be cqual to F=+ 2 CQ’; J Cf;_ and_ henco we, have

[cgiegn) + 1] =4 (el

[(Q"ng) +[] ¢ has th> cigoenvalues =k 2.

so that

has tnc cigenyaluss 1 sand -3
X, Za :
and thoreforc

$ 1as tho cigonve lucn 1 and 0.
This rcsult is what wo would cxpect from ths roctor nicture that was very

much in fashion bocfore we had ths accurate thcory of quaatum mcchanics,
since we eould therc have the sping "parallcl", as 3;79 Ya ,or" nti~

parallcl™, as e ———d 5 8lving rpsultants of 1 and ¢ resncetivoly.
fa. Va
It is casy %o prove that the si lot stats cérrosponds to tho casc

in which s has th> cigenvalue zoro and that thoe trinlet statcs arc theso

for wvhich s has the cigenvalue onc; for <we have

S f; = (%)) = (F) = j}s
o fe=ifp and % fu= 2
O’lfﬂzﬁ} c}%ﬂ-f%'/{( and 03/%:-—//,.

and similarly

and also
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Yo can then oasils‘fsgi‘s ?jzm) ﬁd(o;‘) = &ﬁ“@f,‘) &(ﬁ)

showing that onc of the triplct states corrcsponds to thc cigenvaluc 1 of

s, and procccding similarly we prover the result wo stated. .

T

A state that is initially symmctrical or antisymmoctrical in Cﬁ and -~
CZ; will romain so for all time, if we noglect the offcet of the spin for-
ces, and honce this 'division of the totality of states into two sets is a »
practically permanent onc; if wo wish to bg quitc édccuratc we must say
that therc is only a small probability of a transition taking place from

s state of ono set to a state of the other.

e now censider the gengral.case of an atom with any numbor, n, of

sloctrons; the most powerful way of affacking this problecm would appcar

to be that which trcats permutation oggrators as obsurvablos; let us first
take thoe casc of any number of similar particles, not necessarily clectrons,
‘forming a single system; then if we have a wavce function , (CU, 7/1***61/,,, ,)3
w6 can apply any permutation on the g's and got a ncu wave fuiction. .Sincc
this permutation opcration is lincar vwe may look upon our ne wavo function
as tho result of an obscrvablc, P, opcrating upon the original onc and vc

srite

if (\qﬂ) — Y

then CP\Q/’) - P\V
This observablc, P, is of a now typc sincc it cannot bo exproessed as a
function of thc q's, but we can ncvertheless obtain a represcntative for
it since wc must havo
= (ylely)(yl) =Py

Yy .
CYIPIY)= Sry.y
> S\FVJ p"“q,'

This rcprescntative for P cnables us to find 1ts conjugate complex when

which gives

P is counted a2s an obscrvable, for we have




(\1/’5123/) (¥ 1Py)
(ylPlYy), #2a

(sinco thesc matrix eloments are all roal) 9

xSy, P .
| ’C‘MP“ )
T F=p"

“io divido the permutations up into classcs; P1 and Pb arc said fo
¢ L

bo in thc samc class if thore is a P for ; «hich

P Pef.' 9

tho mcaning of similar poermutations is of the following naturc; any per-

mutation of n numbcrs mey be cxpressed as a oot of cyelic pormutatiens as

for oxesmplec _
(13 4)(25 7 8)
, i .
/hich expresses the permutation that scnds 1 into &, 3 into 4 and 4 into

1, ,end also 2,5,7 and 6 cyclically im the s-mc 7775 Q pormutatiorn simi-

lar to this will then be onc that is ecxprcssiblc in the form

(xxx)(xxxx},

0 R0y ghow that the permuthtions arc canstants of the motion; the quen-

tity P deponds upern the paramcter t  and we Pave to find the valuc of

gg ; we have ';rdf PH- WP,

but owing to the symmctry of H thc rcsult nf operating wwith P upen HW
must be the same z2s the result of operati‘n’upon b P
an UFS y
operating upon this with H so that wo must have H‘NJ* HP(P and hcenec
52: must bo zcoro. This rosult gould alsc be obtained direét-

1y by using the represcntative of P. Thus tho P's arc constaiits: of the

motion.
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It is renlly very convenicnt whoem ¢ ean find coistants of the
motion of o dynamical system since thoy constitutg & partfal 1ntegrnfion
of the equations of motioch; when we have a ernstant of t@gﬁm@tiwn, CKJ
Tor any dynamical systcm we can divide all fthe stotss 3f the systom rinto

~
scts, the members of cach sot boing such that O has thé same given
value for cach of %hom, and this ciﬁssificatipn <111l hold £or 2ll time, **
In the present casc we heve Z;TL!“'}) non=trivial constaiits of thi
motion nnd this i5 tos much riches since. wo cnnant give numificnl valuos
tn 211 the P's simultancously bescrus< they dcu't all commutc; what 33 %hc
crfoet Jprocedure in such a casc? Yo look f£or functigns of the P's thnt
s mmuts with c~ch of the Pts and tnof§f=r0 chyraute ~th cach other; thesc
functisns, vwhich we den te by )(1, ¢ ¢c~n be given numerical valucs simul-
trnenusly nd ©ill thus scérve t-'classify the st~tes in the mannor wo re-—

-~
quirc.

Lot us sc. what this classificatinn menns physically for thc cﬁso, "
~f stationary statos; for the purposcs 2f this digcussien uc shall assume
that the cnergy levels form a discrcte set and thnt thé system «is dogener-

ats, i.6. that thers arc scvernl stotces for “Hich H has the same cigeavnlues
In this c¢nasc the .>( ﬁs w7ill have the proverty that cach will haves o dofin-

ite numericnl valuc corrasponding t- each encrgy lovel of the systom;  thht

N !
is, if wo make a-clossification of the states by manns of the }( S -1l

CY
ij')
=
O
Q
e
A
w
431
-
0
H
}..J
o
<t
c
6]

states bolonging o one enorgy lovsl go into the

* 2

d of* clessifying the states in ordor

13

consider what is the most sgoneranl meth
that this property shoyld held; o must look for some obsoryablg,lg , thet

is a constout of the motisn ard vhich will have tho s-me ummcric~l valuo for

1l states -having the s~me chorgy lovel; this means that /3 mey be rognrdod
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as a function of H according t~ ~ur deofinition of & function SFf arn Ab-
scervable. Sc we have to look for functinsns ~f the Pts thot arc functinns
T H; but £(H) must comaute with H ond with overything thut crmmutes with

H, so that thc functions we seck must commutc with =11 the P's. An exom—

ple »f such a functicn is

K = 7nL' Z pcl.ass ,;

class class
and this gives us one X frr ench class of the permutations, Ve can scc

that this gives all of the X‘{g sincec any fuiction »f the P's con be cx-
pressc@ as a linear fuhction >f the P's and if this linoar fwicticn ~f the

type Z CT P,» commutes with all the P's we hawve
¥ -1
P(Zc,B)P'=%c. R

)
which requires that all the .C°S . multiplying P's £ thce samc class must

be equal and henes »ur functi~n- is exprossible as & linear function ~f the

4,
s -
Wo ecan verify that f Z P Z P
' — class class

M class

for wec have merely to show that each pormutaticn qecurs the -same number of

times in the summation on tho right; wc¢ ask how mahy P's satisfy
-1}
Pe P - O, 2

let us assume that P and PO’ arce tw~ solutinans; thoi we have

-1 ,
RR =Fh;
then, climiaating PQ, , ¢ get - R
PR P = PRP
- - ~
P 'R, Pc. /% P = .

-4 .
s~ that P e commutes ccith P + ¢ keep Po

fixsd ard cnquirc h~w many P's satisfy this c-nditi-ng the npumber ~f such

~r




P's 711l plrinly be indepzndont f T nd he.cz the rumber oF Pts

satisfying  the coaditi~~ |
RRP =R

71ill be independent -f PCL and thoref-rc c-ch Pa similrr to PC 11l OCCUT

the snme number ~F timos i ur sum.

4 >

s - have a st of ;Xl'g oneh of shich is n eustant ~f the

-~

motion ard cummutes with ~11 th. P's, Lot us put

X, = X!
/ T T Ar

~herc :}: Arc numbors;  this ~1ll then oive us » classificetisn ~f the
Y
states such that all stati-nnry st-tes bolrigliie 0 the same o .rey lovel

will g~ intn thoe s'me c¢l-ss. Thorce -7ill be cortain restricti s up2in the
siumericenl vnluus that may bo givef t~ the )({S sinc. the S must
sntisfy certain algebr-ic rclatinus; v, any

Vv
boing a functi-m ~f the P's, m'st be cxprossible as o lirear functi-n
the P's, «zd, sitc. it furth.r rust c oot it 11 ¢ P's, it imst b oox-

. . . / . ,
pressible as a linsar fuieting ~f the ;x:s . Hoxce —'o must have rola-

tirns 2f tho tyve

R ATy R &%

and vhon we give numerical v~lucs to tho )(’5 they must b consistont
with these algebraic rolations.,

For the sake ~f illustroti 21 lot us teke the e~sc -f threo particlics ;
there arc 20w six permutnotimns which fall into thr.. classos.as £1lous;

The trivial pormut-ti~n, Pg

The irnterchangss, P(23), P(31) ~nd P(12), ~xd

, cqual t~ the idontity,

The cyelical pcrmutations, P{123) -~nd P(132).

OurX's arc gived by




eaie =B7

=1,
XO = (P(,as) + P(31) + P(/l))

znd X‘ — _L.( P(z23) + P('32)) |
and so we havo, sinco f Paz)j ote. nnd P{12)B(13) = P(231) etc., -
= L(3+6X.) = F# %, Xa o

and similarly a _ LY. t
and X : - 2 Xi *
X, X 4 d XI 2

thoso being the algebr-~ic rolations that must be satisficd by the numoricnl

valucs we give tn thoX's. ¢ easily find that “the ~nly n~ssibilitics are «

KMl ] -%
LA TETRCE

these giving a classification of the st-tes inte throe cla . The class

far which );l =X2 = 1 corresprnds tr the statecs that arc symotrienl, thot

for Whichxl —)(2 = =1 t~ the statcs that nrc antisymmotrienl and that for

“hlch){l c, XB = - 'é"' to states that asc ncithor c~aplctely symmetrical
rd

n~r completely antisymmetricnl, such stntos not arising in the corresp-nding

classifdicntion frr a system consisting »f -nly t° -~ varticlss.

There arce 10 2bvious sclutisns t» the algebr-ic relaticns thet musdt
be satisficd by the X‘“ in the genorrsl casc; the first is that f£~r which
X= 1 for evcryXand corrcsponds t~ the cnsc of syvmmotrical wrve functinnsg
the other is th~t f-r ‘-.:hichx= 1 for ‘'oven pormutnt =ns andx= -1 f~r ~dd

crmut~tions and this c-rresponds t-~ tho c-s¢ ~f entigymmetricnl wave func-
tiens. The ~ther solutions correspond t~ veve functi~is that arc necither
wholly symmetric nnr antisymmctric.

We can casily find how many solutions therce arc £-r the X's

frr the gener=l cnsc ~f n particles; lot therc be m%s ~f hich one

is the trivin l)& )& = P, = 1. Lot us corsidor o J.l”‘"I furcti~n of tm,'x's’

"g?alX *4 X +H—+ - IIX’”‘"/
u.cti~ T thzx s, sy,
B d &QXQ+@al; + '*‘4—%&—1\,‘ X'M*JJ

]

then 32 must als~ bc cx»nressible s o linc-r
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e

. kot . .
and we can continue to express BB, B4, «++ o, B as linear functions c¢f <he

)( ’5 . With the relation , -
1= X
e
We Now have m + 1 equations from which ve may eliminate thej&fs so as to give,

say,

Jo+ 5.8+ 5.8~ +3 B0,

this can be regarded as an ordinary algebraic equation since its coefficientasr

#

are numbeis; We can golve this équation‘to obtain m roots which, we shall see,
must all be distinet; each root will be a linear function of the {é}corres—
nonding to a set of numerical values for the‘}ts 80 that we shall obtain m
such sets and there are therefore at most m different sets. e can see that

—

the roots of the equation in 3B must be distinct since if we had Tewer than n

~

different sets of values for the'}rs we could construct soumething of the type

CLo.)( o + Cl/;t} oo+ C§65~a )(.«1—'

which Woui& vanish for all these sets of values; this quantity would thus
have all its eigenvalues zero and must therefore be equal to the ﬁumber Zero
which would mean that the'}ts were not linearly independent. That the¥'s
must have real eigenvalues follows from the fact that P and P~ are in the
same ‘class and P + P*l, which isvéhe saine as P + fﬁ must be real. The num~
ber m is equal to the number of partitions of the number n.

e have now completed our discussion of the way in which the stetes
of a system of n similar warticles f£zll into classes; let us nroceed to anply
this theory to the case of electrons. ‘e may now only have antisymmetrical
wave fuictions and so the direct applicotion of our mode of classification
leads to the trivial‘result that there is only one class of states, mamely
those that have antisymmetrical wave functions: Bu% there is a diffurent

way in which we may apply the previous theory which ©ill not lead to trivial

~
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results; the wave funetion, (1 (S’MI“ d‘ ---X G/) must be antisymmetri-
cal in both the x's and the: 6‘ ’5"“" . We consider the permutations, B,
that act on the x's only, and the permutations, Pf , that act only upon the

7
0‘13 y  any permutatioi of the x's and &S together is then of the

form P P?.. e must have P
pp? = x|
where the positive sign is taken if P P is an even gormutation and the
negative sign if it is an odd one. 8o we .have & -
- ;
P l= 4= P,
Let us once again neglect the spin forces and take “the Hamiltonian, H, of
)
the system to be indcpendent ~f the @ S 3 1t must be a symmetrical functicn

of the x's and so i

showing that the P's are constants of Tic motion; we can thercfore apply our

préce..ing theory to the P's and this will give us results that arce not trivial.

Py

s
Bince PP‘" :1:' it follows that tho Pd}j are also constants of thec
. p% ‘
motion. o now wish to establish a conncction betwezn the, P Sand tho d‘§
themselves; let us consider the spin vectors, Q, and g’ 9 of two of the

cloctrons; we write ‘ . ) ‘ O .
‘;{(@uga) “’"’{ T M '3

and we shall show that CD'2 fmist be identificd with the interchange, El .
i ¥

"¢ could prove this result directly by gotting a represcntation for ( )‘,,_

o
and P' but we can get a neator mcethod by using gensral algebraic reason-

2
ing; wo have

2

O' = [ (from (67)

. 2
and also P , .
2 =

again wo have
OuTix=t] ~<'¢r9«a;3+«1cr.; Tyt it Oy |

and

% O wé’?‘y‘ +4""a‘6‘f ‘o 354" %z
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so that s
Om, d:x = o/z

with similar results for the y- and z- components of the spins; we

may therefore write these results as

Ou. & = - Oli

3
and since O = , we have from this equation ‘that

12
Oll gl = g,, Ooz
4
and Omg"x = & Oia | ° r
these properties are just the same as those possessed by )2 ands

g
since OU.- and }2 must each commute with (g ; Q’u_, -, G ,

]
O,zch:a)z . 1

B
where @& 1s a number; and since we have O,,.” 1q 1t follows that

it follows that

C=x==*| - To determine the correct sign to use we comsider the
@) 7
average of the eigenvalues of 7 ;a and also of Rl ;  now the

ely,erage of the eigeunvalues of (ﬂ'b g‘) must be zerc so that the average

4
of the eigenvalues of o/1 is—si-— . For the, Fl.i S » since we have

three symmetric and one antisymmetric independent functions of &, and
. . d ( ! )

th r nvalue il ¥i=]) = - . Hence w

di , the average eiganvalue is ™ ! ') ence we

have to take the positive sign and thus have. the result that

O, = Pg.
PF o & J(g.8)+1f-

"e can now carry on with the classification of the states of our system

In general we have

o< n particles; we have X - _..L. E P
, = MNelassE—clags  class
N -1 __. L]
and since P - P e have

. s
X= *f"f‘class Zdass PCM—‘S

and so we can use the Pw’s instead of the P's for determining the

values of the“&'s; this is more convenient than employing the P's since
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wc have an exprossion for the P )S in torms of the d'f about whose prop-

ertics we know quite a lot; weshave, for cxamplo, that ;(( is the’

averago of ‘L{(Jq’) QS) "'/_? so that (Q”Y‘J g—s) }
V)

X(mi ..J‘_g MN(n-)) /e

we can express this in tor@s of the variablc, s, that deseribous the mag-

nitude of the total spin and which is doflncd by

s(sv) = 4§ (& x)"-»CS:‘Ty) + (¢ )f
2l (e.5) - (T8, 5 5) - E(a.

B/ 4 S(5+) —Fn
= o M-4) Ly G(S41)
7((:9.)*’ (ﬂ,;_’l)

Thus ;(( )15 doscribable in torms of the " number of pmarticles and

and henee

Just the one quantity s,-which detg;mincs the magpitudq,of the total spiam. .
This holds truc for all tho:&fs. It follows that thore wildl be one se} of
r'd

numerical valuss for the'!?s corresponding to cach valuc we ean gij? te

tho Ygriablo Sy  Tho number of'so%s of numcrical valucs is.now vory much
e pd": i ~ e .

restricted since tho 3 oporate upon quantitics the domain of cach of

whosc cigonvaluos consists of two points only. Yo have onc class of states

corrcsvonding to cach numorical value We“ca; give to j; K fﬁo permiss—

ible valucs of s are known from a general thcorom applying to ary angular

momentum observabls; we find actually that the: permissible valugs of

form the arithmetic sorics 3’ ) x -/} % “‘,13 o=

ending with either Eé‘ or (D 3 tho valuc %%’ corrcsponds to tho

case in which all the svins arc parallel. Thus cach class corresponds to

a definite numorical valuc of thc rosultant spin. This is, however, wot an

accurate statcment since we have ncglected the spin Torces; if we don't

negloet thesc forcus the s is o léchT a constant of thc motion and so

there is a small transition'érobability from onc value- of s to another,

that is, from one class to anothor according to the above schome of class-

ification,
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One cbuld proceed to bui%ﬁkup a perturbation theory to deal with the
Coulomb intergition forces, but we shall not discuss it in these lectures;
we shall, however, deal with this problem by a method which hasﬁreoently' -
been much employed end which is based, upon- a variational principie. As
soon as we have interaction between the particles of our Aystem the pro= .
blem becomes extfemely difficult and in gemeral involves equations that are
so complicated that exact solutions cannot be found by present'analytioag
methods; to attack these problems we must therefore maeke use of approxi;
mate methods; approximate methods do not necessarily have to be ugly and
those we shall describe are based on general laws; all of physics is. only
approximation.

The method cqr;éists in assuming ei‘gen-kkg' that are restriéted to pe.
of a certain definite form and finding which of these-eigen-\$ﬁ§gives the

,
best approximation to the solution of the wave equation. It is applicab%a
to the genefal atomiic system and not merely to the case of systems consigte
ing of a number of electrons only. The first question that arises is what
is the special form for L%) that one should choose, but to answer this
question we must be guided by physical considerations and we shall theree
fore not consider the answer at this point. TIf we assume a given form for
the wave functions how do we set about choosing: the vavrious arbitrary things
that occur in this special form in order to obtain the best approximation?
Let us first consider this question for the case of stationary states and
latgz give the general theory; when stationary states exist the Hamilton-
ian, H, must not contain the time explicitly and to find the stationary

states we must determine the eigen-.\*jﬁs of H, We shall prove the theorsm

that if ¢(V = 49¢-being the conjugate complex of \,) , then the necessary

and sufficient condition that W be an‘eigen— §U of H is that §) H\y be
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i
stationary for all variations of Y/ that lwave (;f) ;)U equal to unity;
H !

for wo have

'S(4>H‘V) - O

oY) =
so that we musv have 8(¢ng;’) = E % C?w)

4 3 : Thia
for all. variations of kz,-' s E being a number. Ihus

§ T gH-E) ] =0 :

provided that

- §6. (H-E) W + ¢-» H= E.‘) ey =0
How %)¢ aud ZL%’ are vt indave variations sinee thoy sre conpju-

gato imsoinery quantitics, buv we shall show théat we hey noviértheless cquatc

el

the two herms in the above cguation individually to zoro; for, if ws take

(Y

: N ’ .
a new 8\)} ¥hich is i times the old ons  the nuz & 15 + 1 times the old

'

aud we have ] .
i S+ f (H-E)L SO
-and comparing this with the privious egquation wo find that
S (H-E)Y =0
and H(MH~E)HY =0

which proves our statement;™ since SgV is arbitrary we have

* %o shall ofien use in future work this property that e gat thc right
answer if W assume 8¢ and S\P to be independent and we shall just
guote the rosult without going through the proof evoiy time.,

H-E)Y=0

showing that QJ is an eigen - \P of H, I beiag the corrcsponding cigon-

value. It is not difficult to show that the condition is noceasary as well

o

as sufficient. %o note that tho qigenvalus, ¥, is cqual to thHe guantity,
¢ H ‘V, that wo varied.
The ghove theorem forms.the foundation of our method of approximation;

Ve assums Tor this method that-the wave function is of a spscial form, \4} H
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this means that we are limiting tho approximato solution to lie in a do-

finite subspace of the W -spacej * Wwe now have to shoose
\“ so that it will be the best approximation to the solution of the Pro=

blem; we must thus have ¢‘ H t# stationary for all variations of LP, that

retain its special form and the condition for this is.that o,

SPEY =8¢ HY ; ()
the epproximate eigenvalue is then given byg H(P provided that \P
properly normalised.
We- now generalize this theory to the case of non-stationary states;
the work doesn't look éxactly parallcl to that given above but is actually

a little more direct. The equation that must be satisfied in“f:he“exact

theory is {-— dq; (P

where we are taking the three-di—mensioaal view of g stato, It \P is given R
arbitrarily at time t it -4s determined for all othcr times by this equa-
tion;‘ let us take the initial \.P at time to to be of the special

form, \H(th) ; the condition that Ly(t) be a good approximation is that

4?‘55 wi= HEE) +« Y6 ©)
where (_(;) is small. This can'be written as 1V,
: K Qi) = FPllHpDdE+ (1) d
and we want w(t,.gd,t)‘ to be such that LM(I:Q 1is the smallest
possible vector with W,(ta) fixed, If we make any variation in ¢
it will induce an equal variation in “-'Pt since the other torms. in (8)

are fixed;$§owe have

i & 8y (k+dt) = Sy () oLt. N

,‘_,

Now the condition that \#’1’ ga” o 11 as possible is that ¢xq)?. be a

minimm so that we must have
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(¢, 4) =0
5¢, ¢ =0

* See previous footnote. .

or*

But from (9) we have
-¢ S¢ (t+dt) = S () dE

and hence we get the condition that
S (Lordt). §, (L) = O L
and taking the limit as b~  this becomes

o ¢l Ct°)' "puz(t") =0;

if this be satisfied \P will be the smallest possible. Multiplying (7)

bj 5¢; we have
Uk sg s sphy o

which is the condition that {4)‘ be the best approximation to the soliution
v e
of the wave equation.
bet us consider this niethod frém the pursly geometrical point of view;
the dlagram reprosents thée spice of the kP S 4nd the subspace occupied by
(4/ S of the given fordl \P 8
g
it deHoted By the curve PRS) :
Lot the vector 0 P be \Y, U?o)
. —
and let the broken line PQ K

b

denote the motion of the end of

this vector according to the exact 6
74

equation of motion, 4 :H‘P o _ This curve will in general not
/—hy\

lie in the subspace of the kH JS H We go for a time dt along P Q X to

the point § so that @ is the endyat time t°+d,t,of the vector that

satisfies the exact wave equation; from Q we drop a perpendicular Q R onto

e .
the subspace of the q/ Js and ‘the vector 0 R is then Y (to+ift)' To see

the relation between this pieture and our analysis we note that P Q is the

vector ﬁq), d‘t/-b and Q R is \Hdt/( H the perpendicularity
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of @ R to the subspace of the \H)_S‘ is a geometrical oxprcssion of the cqua-

tion S% Cto""d/l:}: q):_.((:") =0

that we have used in the analysis.,. -
Suppost we take kl)' %o be iditially normalized according to the ogqua-
tion é‘ LP.:I ;  the qué,aétién is will this L')' rcmain ,s:) normalized when
1ts motion is determined by the above method? We can easily verify that this
will be so provided that the special form of LP' doesn't involve any re-
striction upon the normalization of g}}’ i 1.0, if \H is of the speci'al
form so also must C;LM be, where  is an arbitrary number (gcometri-
cally this means that, the subspace of the L‘/‘ )5 is "to bé a cone having the
origin as vertex). We prove this as follows: if C\R is of the special

H #
form k'}, a permissible variation will be

8‘-‘): = EY,

where € is a small number; substituting in (10) we now have

4?6#"”}' E ¢ HY
" a4 d%-—ww.

the conjugate complex equatlon is
re a—Q— Y= @ HY)

and subtracting this from the above we get

9 + 44 gy =0
so that 4), QH remaing constant.

The method for non-stationary states actually includes the method for

stationary states as a special case since if we' take &V such that

iR ‘*‘ = EY

equation (9) becomes just the equation

S EWi = S4.H Y

that was found in the method applicable to stationary' states,
We shall now apply the general method to the approximate solution of

the problem of several interacting systems and in particular to that of several




interacting electrons. We talﬁc»e first of all the case of scveral inter-

acting systems, not néceosgsarily similar systems; let the set of commt-
‘ ing observables 4y describe the first.system, q, the second, ... , and

q, the nth; there is no homology between these sets of observables in the
] z:-‘ general case. We shall have an oxact wave function (q/, qu--- W”" ) 4
'f let us take the special form for the approximate wave function to be

{&(f/l) gg(ﬂ,) .- /gﬂ (Q}@)j which we shall write as TT( ﬁ(ﬂ,)

We first of all take the case of stationary states and apply our method of

‘ ; approximation; now

‘ 8= 5[ £,G)] *_

‘ and so ‘—~Zs 28 /SC%) _”',{4,5 fn{ (?/"')? . |
“ Sp.HY = 2, Sgéfs(ﬂé).m;es@(‘lﬂ).mq/f(w’,.--% [Hl?ﬂ-"%)ﬁa’% T4 L9<)
h =2, {f *Sﬁ(fué).d-q‘/g,@/;(Hlf/s”)dg/,”,ﬁ(qzs” o |

@il o) = (T, R GG el 92) T sty oy,
Thi§ quantity is a function only of ﬁ; and W;/ i We have carried out .

i an integration for all the variables except these. Again we have
! 7r s 7).
 shey - E5(sf00 B G Ty T fuC94)

‘ We may assume without any loss of generality that each of the f's is in-

dividually normal ized that

i{ O dy! #(4) =
[l £40) = 1.
E Then we can carry out the integration in the previous equation for all the

w variables except q; and we get

' 84 E = BEsh(50).dgi. £.(99).

Thus from (7), equating coefficients of gﬁ- s We hawe

§Glngs) agi. fap) = E£,@0 a

and these are our final equations for the individual functions f; ; these
i‘ equations say that each of the functions ﬁ must be an eigenfunction of

the corresponding operator H.S belonging to the eigenvalue E. We have,
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using the normalisation condition on the f's,

E = § £ dy, @ Folge) d o £

which expresses B symmetrically for all the systoms when we make use of the_
equation that defines (Q/é IHS I Wsll) .

We can give a simple physical meaning to the above results; for we
can interpret H as a Hamiltonian belonging to the sth system alone; this
Hamiltonien is obtained from the accurate Hamiltonian by a sort of averaging,
process applied to all systems éxcept thec s'th system. This simple pictiure
was really thought of and the above equations obtained by Hartrec from phy-
sical grounds long before their justification by the present method was ob-
tained by Fock,

Let us now consider what hap'_eens in the case of non-stationary stateés;

we have

4#851): 01&5\: Sf (‘{js)mﬂ'ﬁ (ﬁ@ Wd? Zu“‘é"t‘y" TT«r‘;u’g (‘{/v)
--t‘KZ Sgg' fCZ) )d7/s/ ﬁf(%) }: a [gﬁ(‘bs\) d?”f(@’s}

where Gy Lfg#(?}u) d?/" f(ﬁ“) ,

provided that sach f, is normalised at the particular time that we are con-

sidering. Thus from equation (10}, equating coefficients of S ¢ , Wo Have

R PR, o) - (i Mg dg: figs) oo

and these equations are the generalisation for the case of non-gtationary
states of the equations (11} that hold for stationary states. We have to
consider the meaning of the numbers Q“ s in the first place we can get
an expression for the sum of all the a's; for multiplying (12) by f (% dﬂs

and integrating over z we have at once

Zu, Qe = { (%“)4?5 (% IHI‘I/ ) d? % (?/ ”) PR T
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and the right hand side is the same ;: the symmetrical form for E that we
found for the case of statipnary states; apart from this we can say nothing
about the a's and our equations sre accordingly to a certain degrec arbitrary
so that if we know the f£'s at a giver time we cannot find their values at\a

later time. This degree of arbitrariness is just what we should expect since

we can multiply the f£%s by numerical coefficients whosé product is unity with-

o

out alte?ing the tosal wave function. It is possible to reduce the arbitrar~
iness in the £'s by insisting that they remain individualiy normalised for all
tiﬁe, but there will still be some erbitrariness lefd corresgonding to the
arbitrary numerical, fa¢tors. of modulus unity by which the f's may still be
multiplied} wé can show that this restrictiod upon the £'s causes the a's to

be real numbers; for we must now have

Abﬁgfd}j{pp:(‘f/«) Ohi:";* {1 (I?’;} L ol
or P 7 ;) . R -‘Jf’( / ( 4;)53?4’ éﬁit?f‘h) =)
P N TR

which is just

“'a‘—; - aqr = O

so that a, must be real. *
The above theory is dquite general; when we come to apply it to phy-

sical problems the Hamiltonian will be of the Torm

4 ? g i 1 z § T
H my S o~ r . .,( ___,S{’Y, i ;5'5‘ }
the first group of terms referring to the systeme one 4t a time and the second
group to the interactions between pairs of systems; interactions iﬁvélving

more than two particles do not occur in ne'rure. In this case it is inter-

esting to see what our general equations reduce to: wWe have now
(‘Vg‘“&“{/sﬂ) - (@’Siusé 3/3”} $ Z‘($S 6(?/5/ “i?s”) ("f’;u,"p) + | .
T P ) + Eene s, 5G9 OVt

£ %5
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wher o0 ,

(*}{U.,;{)m ﬁl ( 1 05‘0.,: (ﬁ/ﬂ: U:r;oy’ d?[«f (? )
&%31314@ ﬁg (01 dﬁ’ﬂe(‘l}fﬁ ts ?/1?/3)01?/5,”f ((g . -

(’YCIVTtI‘!f) B \) 'f (%f g@‘) d?/"‘d?/: ﬂ)’*{{/ fos, i @g)d'ﬂ!/ d?/g ﬁ g’)g (%’

Also our expression for E can be written in this notation as

E=s (VU1 + KZ: (ﬂ"ﬂ%ﬂ*’s)»

Substituting these results in (11) we now have . ’° ) ,
Z‘(SIU; 5.)4—%2 Cfrs ” 'rs)} _g» (?/g g } s+£5 ﬁ”"s}?/s)d%f ﬁs‘(?ﬁ)’

This equatlon is an easy one té interpret physically; the operatorﬁ,;l‘ﬂ (vs'*’épﬂ)

1s the contribution to the Hamiltonian of the &  system that arises from
the interaction of the T% system; it is just the value of the interaction
energy of the 'Yth and .sth systems averaged for the Tth system assuming it
to have the speciel state..representc:.d by the Wave function Lpe
,Fov‘ the non-staticnary states we have the equation
{{a%-,g (g!)+ 3(stUs s)+§: (»:s!\/qs-fs) Qs }'ﬁs@/-?)z
s Ey Palt?) g ).

This completes what we have to say about this general theory; the analysis

T A AT B A RN N e 3 o KPSl

is complicated but it is possible to see the phys1cal meaning of each term

that enters 1nto il the method is merely a process pf averaging,

We shall now consider an improvement in this method that can be made

3
.

in the case of electrons; for, the wave function of several electrons must

be antisymmetric and we therefore cannot express it as a product of the form

. il
' E o %. (?4) « We shall use the notation that the operation A operat-

ing upon a function F of all the q's gives the result

- =5 [<=F(Pg \]
A %w@/: 7/,“)}: T e g V]
the positive sign being taken for even and the negative for odd permutations;

A EF(qu Dt Cﬂ"é} is therefore antisymmetrical.

The special form of the wave function that we shall now donsider will

be
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which is just thé previous special form of the wave function made anti-
symmetrical. The applicatiby of -the method of ‘approximation will be very -

complicated if We take a genéral Hemiltonian and we shall therefore only

e 5 U + 5o Vs -

In a = resenbation in which the q's are diagonal U will have a représen=

consider the case in which

!/ S/ .
tative (‘f/d /Uff/ £ )but since” the q's are homologous we need not spe-*
cify Which set we are using and may write the above representative merely

!
as ( l/ ?/ l) 3 in a s:Lmllar way we may write the representatl’Ve
144 K

o« Vg (99" IVI9 Y

In carrying ‘out the computations involved in the method of approxi-
mation we must make as many simplifying assumptions as we can without loss
of generality; one such assumption ,is that the f's are normglized and

orthogonal to each other; we therefore assume that the f£'s satisfy

‘ fz'(‘(/)d?/ %'{_(@) = S5 (15?,

We can further assume without loss Jf ‘genérality for the Cas}e ‘of anti-
symmetrical wave functlo ¢that the varied £'s will still satisfy these
conditions;thus we assume that

gsf (1) Ay #2 (V)= Ors- (14)
The following simple property of the operator A will be much used in the

later work, namely, if F(q) and G{q) are any functioh of the q's

5 ASF@).Tidg. ATGGI = Jal(F) Tidy ATGA)
= Var | A{F ()} TTdy. &-(n).

This is easily seen to be true since on. the left -we have- (’n:) torms in
the, integrand of which only ’n! are. dif»ferent, eacli-of these occurring

¥
'n‘, times; this ‘h,&, combines with the ';'/‘.::_.;" that enters the defini-
"

tion of A to give just the \/“Vi! written above.

Ed
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1ot us first take the case of stationary states; our main work
will consist in evaluating the quantity S¢,.HL}I, and to Ao this we
first consider the quantity ¢‘ H LH , reduce it as fer as possible by
meens of the relations (13) and then perform the variation; .this is allow-

‘able since we have assumed that the varied f's are still normalised and

cfcthogonal. We have ) (vu)z
g b =(§ AT Bl T (u-gi il )m'@ AT T §
SA “’T,ﬁ(fg«)ﬂdg/@ =g [ ) Trdq)' A ST fe (9 ),

(smce H is symmetvrical in the 7/ ) and;o 2g Lo g'f.'tlxmlJ

T ({1, T i 92 TR AT

and we can show that this reduces to

s faf vd o) (§1Ulg) "s§ “) " ( “
f 2 f’;g > b Fagty f)d?/a@(‘of Z’i gy [ 4447 T
or, We mus ave 4 representauve o) the form

(g 1Usd &) Trf;ks §(q4- ‘{)s.)

and so for this part of the total Hamiltonian we can immediately perform the
/ "

s 4
integration with respect to all the variables except;{/ and ?j\and we

find that any permutation of the set A other than the identity will produce
a8 zero integral on account of the conditions (13) and when we take this
identity permutation term we obtain the Sth term of the fifst sun of the
above result. The second ‘term comes in a similar way except that now we have
for each pair (r,s)fzv)ve?mtations that will not lead to & zero integral,
nemely the identity and the interchange of ?/., and ?/ s jthe remnents of

these two terms being shown in the square parentheses in the second term.

We now make the variation upon ¢‘ H (M and this leads et once

tht:qz:; (8494 (ylUly) ‘ti/f (V) " ’ - B
Ay ([ pulshy WG ) M )J
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In simpler form we have

54, He=.{(SFo() dq' (41U+P-A1 A" (3 o
Bl =2 W) dg gy Iy Ay A )
i) = SRyl VIS )

Now wé want é;gé . };¢,=5 O ror variations satisfying (14); this means
that- the coefficients of S }Z in {15) must be a linear combination of the.
coefficlents of E;gg in the equatlons 14), g0 we have the cornditions
J(?/'/U%.B*A \a') 01? % [z,”) & oy dsfg (9 )P
the Q gy Dbeing Lagraugm rmultiplisrs. These are our final results for
the stationary states; they are a little simpler than the .corresponding ones
foyp- the gene?al case considered pre"1ouslyig;K;Zve the same operator operat-
ing upon all the f's. The term B ¢corresponds to the 2{? {31-5 of the
general theory and we may s%y that B is the contribution to the Hamiltonian
of the st glectron due to the interaction of all the electrons upon the
St’h

te
S glectron; it includes the interaction of the ‘electron with

itself and this isn't really right physicelly since it is quite meaningless
its

to talk of the interaction of an electron WithAown field; but this is

taken account of by the term A which makes just the proper allowance for

the fact that there is no interaction of the electron with itself and which

also contains exchange terms which could not be found from ordinary physical

agruments..

Ed

For the case of none-stationary states we have to work out also the

quantity A 54, g—‘gf . The easiést way #s to simplify ix @ 3%

as far as possible by means of (13) and thén to perform the variation; we

have
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QU= (AT Fl o A 5 ST, ofl90)F

|

A w1 (AT v} Ty ZRLOT,, A000)]
= BS [ flpdy dBE) by 03)

and making the variation we have Z__S 5 S f:{%). a’ 7 dgr (?/) -

Our ¢ondition is now that d W _ >
A EY GE= S HY
where g¢, are subject to the conditions (14); 30 we get

ik d St.( 1/)"’2'1 ;és ﬁ’ (§)= gf‘i/’/ v+EA/ ?/")‘Z?%(?/)’)a (16)

the ,e., s being the Lagrangian miltipliérs, We can obtain some information abeut
the b,y correspondisy Eo the informetion

kwe found for the ats in the generai théory; We can choose the g 80 4that the

£'s always remain normalized aﬁﬁ orthogdénal ahd it is then easily seen that
this requires the 4.,5 considex;ed as a matrix to be Hermitian; for, we

must have

%5};z¢/)dwﬁzw=os

(AL ag fcw) + (40 G -
so that the matrix - d #v ()
“TE(AG) £ ]
is Heymitian; but if we multiply (;te) by A and {ntegrate with respect to
G (F )y B o b LR F

now the right hand side is evidently a Hermitian matrix and we have just.
shown that the first term on the left is so that if follows that éi forms
a Hermitien matrix. This condition corresponds to the condition that the

a's be real in the general theory.
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We can collect up these equations and put them in a very much neater

~85-
form by the use of the density function we introduced in the theory of the
Gibbs ensemble: this will then give us an approximate extension of- our pre-
%
‘vitms theory of the Gibbs ensemble in order to take into mccount the inter-
ac¥ion of the similér systems. We shdll show that it is possidle to express Sur

results in terms of P alone; we have defined by

(ylPly) =L f(w)g@j") .

and. it thus contains all the 1nfonpatlon contained in the f!'s that is inveri-
ant under those rotations in f-space that we considered when wg praviously dis-
cussed thd quantity /9 for the case of aptisymme)pigal wave function. We
shall £irst express v' in terms of alone~ « We havé

& Loy )-1?% (W“w DQ _éul}

and substltuting the value we have folmd for J this beédmes equal to

trfe @)ﬁf@,[\ﬁs—x\ I9)4 % (‘(/”)ﬁ @
z LI, (@) + g1V A?‘g )y e (5 }

the terms fn square brackets cancel each other since . is Hermitian, so

Y i
that thé Lagrangian multipliers disappear from the expréfsion ﬂor;%(% j{j’({));

this is just what we should expect since "the Lagrangian multipliers express
the arbitrarine8s in the f's due to the fact that thedr valuegs at & given

time do not completely determine their values at a later time (owing to the
possibility of applying the rotations mentioned above) and ‘there is ng such

arbi’trainess in + We have, then

a( P~ (1Vee-Ag Mg Gieiy) -
o=} f(cuwcg”’) oG NEAlY),

o v‘ /
since (Q[ "’B’A‘?f is Hermitian; the f's haye now completely dis-
appeared explicitly from our expréssion for -— ( CI/ 4{)’ ”) and we can write

the result symbolically in the form

wt s

Pt e st sictpinieinf oo

e i b g -

Ao
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. A = + AR — ) — (U'“‘i’ B"A) 3
4»}{\&{5/’ CUtB AP =/
and so it appears that this P satisfies the usual type of equation that a
density function satisfies, the Hamiltonian being (U + B = A); there is this
difference, however, that (U + B - A) is not a given quantity but is itself
a linesar function of p s @8 1s seen when we cxpress B énd-A in terms of
p ; Tor, from the definitions of thesc guantities we get at once
(?/”/8)7/“7: gjé.vfc{}z//v/%wfjw)d?//d?///(%lﬂlp/?//) ' )
and P ; Wy !
GINy) = {5 Vig'y")dy 2 Cy Ity
The f's have now disappeared completely from all our formulas and we aave
expressed everything in terms of .

If ve take the interaction between electrons to be the ordinary Cou-

<

N o
lomb .interaction we have Fol.
Wy - B S ey
@' M"Y SG-4)8("4" Tiyy)
where ig(q'q"') 1s the distance between the ;oints g' and q'"' (teking these
to be cartesian cgordinates and ignoring the spin]j. The matrices B and A
now take the values ' (1’ m[‘/)l @“j d 1
I} /" — 5% I. ,7 : ‘
/ "
= / /9 - e? 4 /[J/ﬂ)
(‘f//A% — ,Y.[*f,u)
) 7, CO / l
The quantity 7}///!/)/7/’”) that enters the formula for (((/ /B/@)ls a Cig-

gonal element of (.) and therefore gives the probable density at the point

qQ''' so that if we suppose that we have a dist{ribu’cion of. electricity given
by this density, the integral € %:) i.:s' Just the ¢lassical potential
at the point q' that would be produced By this distribution, and the matrix
(Cz;'l B /W”) therefore represents the contribution to the Hamiltonian of
this potential, There is no such simple meaning for the quentity A. The

Hamiltonien for th® motion of p now consists of a part, U, that is the

e T P Ly
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Hamiltoniaen of a single elsctron without interasction, plus a part, B, that
1s due to the whole distribution of charge, minus a part, A, that 1s a correc-
tion term for the term B so as to cancel the interaction of the electron with _
itself and which also contains _exchange terms due to the antisymmetry of the
apyproximate wave function.

To make the approach to the classical theory we may neélect A end treat
q and ’s as classical variables and we then get just the classical picture
in phase space; the equationﬂ%ﬁ means that the classicalp must be e "
0 or 1 for each point of phase space 80 that there will be a sharp boundary
between those parts of phase space where P = 1 and those parts where/):a,
If we took the spin into account we should find that /Q must have one or
othér of the values 0, 1,2 at each point of phase spate ( /) is here the dia-
gonal sum over the spin variables). Let us see how & boundary between parts
of phasé space for which P has different values will move; the equation

ik & p = (UB=Ap ~p(U+B=A)
must now be written in the P. B, form, neglecting 4, a§ .
-ég = [U+BJ/3] . e ey
dt =,
It is convenient to consider that the valuye of ’f.) chenges gontinuopsly,
though very rapidly, at .the boundary in order that we may differentiate
at these places. Let the boundary be given by
F(Joq tF = 0;

We may now regard /) as a function of F, tha} is

ﬂ T.""f(F)’ n

since the valug of P at any point dependwgt on which side of the ‘boundary the

point is, and this is determined by whethér P ig positive or negative .at the

point, We now have ”ﬁa @_E
E T dF ot

but
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%% = [u+B, f(F)] =- %@i [U+B, F]

by the usual rule for a P. B. involving a function of a function; so compar-

-

ing these twWd values of a’ft we get

E=u+8,F] ; :

in particular, for a stationary state we have aF'-/ al:=08° that the boundary

5]

This method is easily applied to get a rough idea of the distribution of the .

must satisfy

électrons in an atom having many electrons, For a state of minimum energy

there will be no region for which P = 1. The electrons will all crowd in~

to the region of phase space of lowest energy and will saturate this region with
p = 2 gverywhere in it.

It is significant that the quantity @’7/”/ \// @”’%’9 always oceurs in the

Sy Mgy - VgtV Y]}

in all the-équations that have physical meaning; for example althohgh V doesn't

combination

enter in this way in the definitions of B and A it is only B = A that enters
* the physical equations and this quantity contains V only in the above combina-
tion. This fact is true not only for the approximate method but also for -the

exact theory as we can easily see since if (7() be antisymmetricel the value of
1%
< Z Z4$ 'Y‘S) W )
will depend only upon the value of ?( (/?/” ‘e w) (CU@ V (v CV )f This
 means that any new V such that the value Of{(() 7/”{ / ) (q/q/ /7/ cv"'jf

is the same as befare will give the samje“phy.sical.‘ resu;ts as before: this
&

the quantity

shows the unsatisfactory position of the present theory regarding the inter-
action between electrons since we assume more about the interaction than is

necessary to give the results; a satisfactory theory would give the value of

g( 9 v/@lll?.//v) "’(?j’?/”{ ) ”l)} without giving the value of




——t Lo

T+ (5]

We shell now consider the other kind of systems of similar particles that
is of importance, namely that kind for which only symmetrical wave functions
occur in nature. The important practical physical aepplication is to the theory
of light quanta, .

The basig of the theory of symetricai wave functions is a certain trangw-
formation that one can make; we have a wave function
- - e A
G ol
such that if we permute any of the q's we may suppose that we still get the
same point in the domain of the wave functior; we can therefore make a passage
to a different set of coordinates that will be symmetrical in the gq's. Let Q/(Q')
be any one of the permiss ble values of the a's and write

i ' (a),

_ na = the number of q'w equal to Q

if there are n particles we must thus have E ‘nq' n. We can, now regard
o b
each point of the domain of the wave function as specified by the n's instedd
of the q's; they are just a set of symmetrical function of the q'q. We, may
now write the symmetrical wave function ((U,{;; --—'% ‘) as a wave futction of
: L 2 n
the form (na Dy eeo ?,) and we shall have to find the appropriate transforma-
tion that connects them; the number of variables, p, is equal to the number
of eigenvalues of q, which is in general 1nfinite. The transformation in ques-
point

tion is of a rather trivial kind since each ﬁof the domain of the wave function

@ -=-9al) °°Y"93P°7’“ Go & point of Ehe demain of thewave furction
(ng n, ...’ ;  ard we must therefore have

(?}ﬂ/z‘“'%n ');:-“C (714- n& == i)
where  ia a number, where we regard the nfs as functions of the gq's; we
take the connection between the two wave functions to be such, that if one is
normalized the other will be also and this means that we must have

T N DA CE R

%1‘ “Yn q-(a-an,&.-.




now each term of the summation ep the left corresponds to one term of the

summation on the right but one term of the latter summation corresponds to
several torms in the summation on the left; let us count the number of

terms that correspond to a given term on the right; 1t is the same as the

(a), n, are

number of ways we can choose the g's so that n of them are q b
(o)
q , and so on, and this is just
nl
MNe | n&l . :
Hence we must have S S

Kggagnl) = =

Yo
AR ). .- ' s
o) = (2265 ),

(neglecting the possibidigy .of an arbitrargr phase).
- 3

S
=
’;g "
3
[ §
'
S~/
M

The next question we should like to consider is the way in which we
are to make a passage from a symmetrical observable répresented in terms
of the q's to its representative in terms of the n's. It is }aaeiest to
work with the transformation of wave functions, for, if H be'ﬁéi symmetri-
cal operator, and SIJ a symmetrical state H‘\P will be a symetricai
state, say 4,/, , and we know both sides of thé equation

Hy =
in terms of both the q - and the ﬁ‘ - representation; fram which, since &V
is arb}ltrary, we may infer the n-representative of H, We shall apply
‘this }o the special case in which H fs of the form
where U,’ is a function only of the variables of thewrm particle.

In the g, -representation for the rth particle U"f will have matrix

(92 U] 9t ),

and we may write this as

elements,




-

(4 1919“)

since U is the same for each particle; we shall -also write it as Uag,
for the sake of brevity. If wb take a representation for the whole
assembly the representative of U’Y will be given by .
t, s / Y, N b (‘ / ’ ’ U s ¢ py - - /.
- ot - v ;- - . (i
(9% /| U199y m)* Ur 1Ur]Y, 81/3/, S%?, 871. 9
in which 5 4 #is omitted from the set of Krongecker,gis on the VR
lrifa
right. -
Let us now take an arbitrary Q.U having the representatives
[._- I \ .
(GU‘ cv" ') and (na Dy eee t ! respectively in terms

of the g- and n-representations. The equation 5

. M =Hy
@il = 3 (@, Uit ) (99 941)
f L2 e U )G 9 Yoo )

now U,, occurs n, times in the first summation and the U,y term {h the

d
second summation (that is the term for which %1: = ?/ (c)g ‘;I = %/( ))

occurs na times so that in torms of the n-representation our equation be-

)
con;s!n f-.- %. | }nl_“ /2
(Lot o) Ym0 m

Z ('nat‘n& !“"(W'Qf’("d'f‘}!;" /2
cFd ml

(ra gty I Ui 5
the wave function (na n, ces o1y Ngels eee 1) arises because the éorres-

/ /
.ponding wave function of the gqsrepresentation differs from (?/l 7/1~ - W’h‘ )

/" . f
bnly in that - replaces @1 so that the number of particles in state

/ (() v 7 (d’
% (-_- is reduced by unity and the number in (:: q] increased
1 \=§ !

by unity,;‘ 1t is then necessary to give the wave function its appropriate

el - (ng1)! /..

normalisation £actor, naMelY | eiliem 4 <), (Wt’)' .
7!

t
» 80 that we obtain
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the result given above, This result simplifies to

(Matge--1)=T_ M\, (1 7 -—-:)»rgn engh ) (n, g -mev gkl
and we can say that H will be just that operator that changes (n nb oo 1)
into (n, n, ... {1).

‘ In order to ssewhat this equation means we shall write-it symboli-
cally; a suitable symbolical notation is suggested by the properties ef
the harmonic oscillator, for n, etc. can oniy take on the values o, 1,2,

35 eee @and these, as we have seen, are presigely the eigenvalues of

J =z (r+ ‘?f')
Y h=pg=

We shall want to imtroduce some kind of variable that will be a sort of

-canonical conjugate to an n and to do this we shall make use of the known
theory of the harmonic oscillator; fgf;we may regard J as like an action
variable of the classical theory and as having therefore‘a:canonical con=-

jugate like an angle variable. In a representation im whgéﬁ J is diagonal

it is given by t 3 matrix

O 00 o0 OO O--
© 1 OO0 O ©O--
Jzz 008% 0 o ©-- .
00'@30?“’ 3
Q0 O 0 4 -~
QQ C © O (? 45"‘
I
W defined By being represented 1n this

Wwe introduce the quantity Q2

representation by the matrix,

4w

having ones just below the main diagonal and ull other elements 2ero; w

is then the quantum analogue of the angle vartable canonical ta J. The

-l

4l
complex conjugate of £ , namely <2 , 1s given in th‘§representation
: N




by

O

(, O
- 04 @)
£ = O
o

These matrices that we have introduced hgve certain simpie broperties that

should be noted: firstly we have
but -e-i-w .e'-‘ buf' ¢ J >
being equal to the unit matrix bor:-ed on top and .at- the: left by a row and
TR

& Golumn of zeros. We also have the relations ,

e J = (T-petY
= <Y T (gt

and in general Wf({f) _ f(J }) .ed,w;
R 1o N R W

rd
Let us now introduce w's canonlcally conjugate to our n's, 44)‘ being the

congjugate of n: anéd so on; @4% will bes repressnted Jl;{')r\a matrix that
is diagonal with regard o o, if b a and that is like the -e, wabove
for the elemsnts cor: esponding to the ei genvalues -of na, and simllar state-—
ments hold for all the other n's and w's; it follows that e } % and -Q, #
will commte, The equation we ere considering,»g;ay now be ﬁrit’ten symbol~

ically in the form

H=X m U, +Zc¢dn (‘nd,-e»}) £ (ug- waL)U

giving H in terms of the new variables niand +their conjugate wls; we may

write this also in the form 4.( A ~ W¢)

H= 2, W2 (ny+i =§; GU Upp ©
* Zc,a, net @ Py (g i)V
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By the same argument we could garry through this transformation for a more

general observable such as Z v where V refers to two
v<g Yvg °? YR '

particles, in this partlcular case we find the result

£ L L 2 y/] --(:td;L
>V =) my g mhgt By ﬁw)-e (T +) e
<s YS & absed @ ?
where V ab.od is the matrix element .of V that refers to ‘q qL ) for the
! 9
row and q(c) ’ q(d’) for the column,
We can write these transformations in a concise form by introducing
new variables defined dy
-¢'ar ~~bw‘ Y
fom (ng 1) =€ *ny
and the conjugate compler

fa ng *@.{W '@t%(naﬂ)i&

the ?q, correspond to the quantity (f@ + 1q) that enters the analysis of

’,

the harmonic oscillator. In terms of the ‘? W& now have

and ZTU‘F’ = Za/é* Ey Uq.é’; {-@-
Z«g\/ Z: &mf ;@ a&cd fc ’F«L.

There is one point of interest to be noted; we might change from
the g-représentation to a new representation for which, say, Q's were dia-
. t 9; L] .' y LI N )
gonal; the wave function (g0 qnj ) would then be written (Qle %,
we may now introduce new n's defined by

nA = the number of Q's having the value QA,
and so on, and then introducing w:b‘ etc conjugate to these nA’ s we could
define FA 23 for this representation; what is the conngetion between
these 5 and the old }? $ 7 It turns out to be ‘quite a simple
one; ror we have

2 U = wao.e,fg ?UAB fﬁ

for arbitrary U; but we know that




&
Uy ’ ) @"19*) Use (4 4/ Q°),

the (q| Q) and (q ‘ q) being transformstion functions fer a single particle
of the assembly, and substituting in the previous relation we get B)

Yot Uit £= 0 ape Fa@1990Ue (4%1Q

vwhich gives, on equating coefficients of U ab?

£=7, f(ol “) an
e ;;, X, (3% B)fa |

which are the transfonnation laws for the S
There are one of two other properties of the F § that are to be

noted; we have from the definition of the fs that

ﬁz— ?@: Tt (16]

and .4
i fa ~ Ne

these-following sinee Q‘YQ acts essentially like the unit matrix when

I
multiplying nya on account of the fact that nb— has the form

L =

-0%10.

2¢ro being the first élement of the main diagonal,

Again, since the fg ‘are observables they will have equations of

motion of the form '%F.:: fH"’HF !

vhere H ig a Hamiltonian., Let us assume that H is here of the form }:‘ U,.,
this being the case for light quenta since there is no interaction between

them; we then have as the equation of motion For Fa’

“'ﬁf Z U &f# (19)

- ;
since f commutes with all f and with all f except ? .
a é r a
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These equations, (17) and (19}, are-like the equtions that govorn the motion
of one of the particles of the assembly cénsidered by itself, thé:dnly afiff-
erence being that the wave function, (Cva" ) Y ‘_o‘t a single -particle is
an ordinary function whilst the ’s “é're ‘operatorhs:, Lot ‘us {fonaidéwx‘ thé
limiting case in which there is azi infinite number of particles in each ste}te
80 that the n's are infinite; in virtue of (I8) ‘we may now consider the " f';
as commuting with esach 6ther so that they may{oe taken -as or&inary mxmbers;-v
if we normalise the (q® | )that refers to'a single perticle by taking

) o @ a

X (gDuy) =" e
instead of unity, n being the total number of particles, so that ‘tCU ‘)‘
1s then ‘the probably number of particles in ‘the: state ¢°, i.e. B, Wo may in
the limit look on this as corresponding to the equations, (18) so that the
equ;.tions for the fé’ and for the ( gaf J*'s are exsctly similar. This re-
sult is rather remarkable since the f {5 trepresent an Binstein-Boge assembly
whilst ;he (¢} )'s represent an assembly of claﬁ‘sicpllyt*~3’§13“epeqdent‘ parti-
cles and these are two.different assemblies physically. . There is, however,
vne important difference between the mathemmtics involved in the two- cases,
for wo know all about a classical assembly if we Know how many of the systems
are in a given state, the phases of the (qa{ }*s Being therefore indetermin-
ate, {if we do have fo introduce some pheses in the course of the mathematics
we must average over all possible values for thése ghg,sgs i order 'to obtain a
physical result); for an Einstein-Bose assembly, hoﬁigve;, to know all that
is pérmissib..e about the assembly we must Lbé given the phases as well as the
number of systems in each state as the { "g are observables; the phases can
have gpecified numerical values for a given 'state of an Einstein-Bose assem-
bly. If the n's are not all large the difference .between the twp assemblies
of course becomes greater since the fls are not just mgmbers like the

y ai{\)
((U l) £ but ere observables satisfying definite commutability rélatiq;lssthe
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,3:9'7-@
’ a4

process of passing from the (q}ql ) )S to the g ’S' is often referred to as &

process of segggd gu‘antisaﬁgn.
This is the essential underlying theory for a system of similaz particles

that are representable ornly by summetrical wave functions; can we obtain a

similar theory for the case of a system of par%iclqs ‘having only ant isymetrical

wave functions? This’ is possible- and has been worked out by Jordan; we shall
! ¥

proceed to consider the casc of entisymmetrical Wave’cfunctiénsy we introduce

var iables, n gt Do wve o as before defined by " di

&

na = the number of g's having the walue q(a)" até,

but now, since (qyqg qn[ ) is antisymmetrical, the n's may ‘take .on only the

’

velues O or 1. We must now try to set up a wave function of the form (nanb l };
to each set Of valuss of the g's therg will-be one definite set of values for
the n's and for each set of values of the n's there will Be one 88t of values for

rd

the q's, but we shell not kmow in what order these ¢'s will ogccur din ‘the wave’

function; ell we may infer, therefors, is that -

Fa

(qlqz . qn{ ) =4 (nanb .,,’w ), Hew Wi
(a normalizing coefficieht not being.necessary in the present case}. To.get over
this ambignity of sigh Wwe meke some arbitrary convention concerning the order
we wvite an arbitvary servies

of the q'z"as, say,

1 2 3 . | e ps

Gy % Q75 eee 5 8%, (u= .umber.of eigenvalies for g},
and make the convention that if the 'g's ocpur ‘in the wave funéticn in thé seme’
order as they occur in this series we teke the positive sipm, d

We cen now follow through the same analysis as we did in the symetrical

case and-we f£ind that if

q) —$ (ngny eee | )
Y= Z"‘I U“' LV ‘
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we get

| k})' :.Zg'nc L)(c(nqn&’“l) +Z Z e Ucd qu,ne"" 'c"") nd'”o""‘_')j

C d=*c
where we make the canvention that if either @]c‘ I) or (’nd-o-l) have any

other value than 0 or 1 the corrésponding wave '‘function on the extreme right

is to ‘;Je counted as zero. This equation is similar to that that arose in

the symmetrical case éxcept for the ambiguity of sign &and the abscence of . j
certaim mmerical coefficicnts; we have to teko the positive sigi if thCJs;t

o

ol ¢ s eorrespending torths.en® ol NS T, Byy eee Dgl)o Nga1r *°° 0 that is
the set of q's that differs from the set in -the ini‘tial vwave function, (c;.lq_a
see Q) g ), ty having ¢° — qd.A, can be brought -into-the arbitrary order-
ing we have decided upon by an even number of permutations, and if not we must
teke the : ~Five sign. If, then, in,the arbibrary series ql, qz, ese 5 W
£ind that q° and qd are sepax:ated by an even number of q's*'*%hich acfiually
occur if the set CU' - - CU“ corresponding to m,,ny, ... Wo must take
#he® positive sign and if by an odd number the hegative sign. Thus we have the

T~

4+ sign when Z n 2 is even, the sum being taken over all 2 for which
Le) (c) (d)

and g , and the - sign otherwise,

lies between g
It is possible to express the above equation in operetional form in a
manner analogous to that employed in the symmetrical case; we must introduce
cperators conjugate to {i.e. that do not commute W;’l.t',ll) the h's; we Hote that
the n's are analgaou:s to operators that cccur in the description of the spin
of the electron, for, since n a has the eigenvalues O and 1, the quantitj;}
{2n,-1) has the eigenvelues + 1; hence we may write
(2 n - 1) =—0"%q,

where @, is a spin operator, with similar equations for -85 C,-*"

Q
G‘éQ and 63‘8- cormmuting. As the conjugate operators to thase O—z )5

2

we take “3% (035‘ 4’ Cfg) and -i— (ij'ﬁ“{:d“y),wmch, when we take




pte 1 TN

—— o

the usual representation for 5;._’0»"3’ and O. 3 » are given by
00
v = (
x(%-c%) = Lio
md & (G+L6y) = (3L) 3 i
‘ these operators have the properties that

K(Ecige) (rergne]) = (v et o)

S

€

and L )
{ (Gt 0y (ramg--e il ) = (ra e et 1) 5.

Where, of course, in the first case wo must have ne =1 and in the second
n, = 0 or otherwise the right hand side must be taken as zero. Using these

operators our equation may be written in the form

’ 4
~ L/~ (G \(Cud + <0,
= n U -+~ Z Z #U (.zc_ c x o
» This corresponds to the similar equation that was obtained Por the -sypmetri-
| cal case; the + sign is an ugly fegtme of this equation and we shall intro-
duce new operators in order to get rid of it. We define fd by
7 —_— . \L_ p S, ,
£ =% % Gyu.  (dF < %4
where the Gg :5 that cecur’ as factors to the left ¢orrespond .in order to the
g's of our arbitrary series as far as the tern, ng The conjugate complex of
may be written as
4 ﬁ C —— ) 6-
: -~ Lrc -4 G, )' a - c
£ = g (Gxc=4 %) 6330 3
since the % ’S commte. We now have, since d“a' =1,
. i ’ 6 6 .—-"6 d -
BRI DI il TR
AR T B,dv) O3, ds2 -~ Fye
where the upper line in the curly parentheses is to be taken if ¢ < 4 and the

lower if d < c. Since

Gédné (O'xd*ifgd) = 3 ["‘rgc/*@xd)

ang . , ’
%(ch”{:oﬂyg‘) %C b~ ‘5"‘ (“"’463( +€IC)
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Wwe may write the above formula as

E s #Eoin 250 S 7 A G- dg)

{ O3,d+! 8’3 dtz -~ O3 ¢
and we may now eonsider the curly parenthesis as being on the right of the
factor ;‘-{(534* < 34-)since each term of it commutes with this factor; Now
the eigenvalues of each O} are + 1 being - 1 if the corresponding n 1s
1l and + 1 if the corresponding n is C; 50 if there is en even number of n's
between n, and nd equal to unity the curly parenthesis will produce a posi-'

tive sign and if an odd number & negative sign; this is just the rule we had

for determining the correct sign to Gse in our previous eéquation for 2 - U’f

8o that we may now write it in terms of the {S as
Z = “1s U 2 Z: F ?
‘{U ~ Z_- c c cc c d *c Co/ o/
which is our final formuia for this trgnsformation; 1t is these ‘, that

are to be regarded as the real enalogyes of the f& of the symmetnical case;

they Have rather interesting ovroperties; we notice that

’ EEa+rug =0 if ¢ £,

since, for example, if ¢ > 4 there will be a factor 6;?‘.} in the.expression

1t + D _,_..
for ﬁ which will anticommute with the fector (o:,_ds}—‘t gd)that enters ?d

and ail the other factors will commute. Also we have
f &
since Cd;(c 'ff'-¢ c) < - O and hence wa may combine these two re-

sults into the single formula

EL+ 5 E=0;

it follows that we also have -

FE+EE o

We may compare these resulits with corresponding results that erose inm the

symmetrical case, namely

£&- 8 =0

i 54“??"0"




Again we have in the same. way

fé E,, if c#d

but
R 4 G <o c.)< Tuct L yc)
2(-5) = T,
(which we compare With the corresponding

- fcfc“ Ne ' L,

of. the symmetrical case),

= Fc_? = é_('+¢§$) = I-"mc, g

<
(which we compare with the correspouding

EE= I +m¢
of the symmetrical case),
ES+ 8 &

which combines itk the previocus result to give

ﬁ@*if” cd 5;

the corresponding formula for, the synmxetrlcal case is

E TR T Sd.

We thus see that there is a very close correspondence between the gorm(a%]‘.ism of sy=

e

so that we have

metrical and antisymmetrical assemblies, the difference lying only in chang?esHOf
sign, although the analykis by which our results were obtained was quite different
in the two cases, The similarity between the two. cases is further brought out by

the fact that we can wiite H for the antisymnetricgl,, case in ths form

sz%e_ i U@g.fg_

which is exactly the same as the form we ﬁad in the symmetrical case.

This Jordan theory. for the sptisymmetrical wave functions has not been applied
practically to the case of elsctrons; it is not convenient to work with in prace
tice since it involves so memy variables; it is, however, of grigat interest the-
oretically on account of the way in which the results we obtain cqrr,espb,nc} to those

of the symmetrical cass.




We now go back to the symmetrical case and apply the theory to the

particular case of light quanta interacting with an atom; ‘this ﬁvgg.’vea
app
our making a slight generalisation since the previous theoryAto‘ the case

-

of anly an assemdbly of similar particles. The genéraliéation ‘{8 to make
it apply to an assem‘r;ly 1;;teracting with some other system, frér example
an assembly of photons interacting with an atom. The total Hamilténian
will be of the form

- H=H p Z'f U1
where HF refors to the atom &nd Uy ig" the proper epergy of &
light quantum together with its interaction eréPgy with the atom: We take
a set of commuting variables ) to describe the atom, and then thé re-—
presentative of U will be (5’ % lU’ f” ") and since we have canled

U | Fob

q!, q_" etc. q2, q etc., wWe may Wl.‘,ite this as ( W T e %{
. ) . 22 T oM
or as q@ which we regard as a-matrix in § and f P

. t :
We can now proceed to introduce . § as before and wé -shall ob-

tain exactly the seme results as in the previous symmetrical cded sexcept
for the one difference that the U, ap @re no longer pure numbers but are

functions of the variables that:describe the atom; since the Ufs camute
with the ?)5 our previous result for 'Z'r UT can be takeén over

directly for the present case and gives

H=H +Z—q,& fm adr E}

It is necessary to make one further generalisation; the total num-
ber of photons is not .conserved since an atom may emit .or gbsdrb a pHoton;
our theory of Einstein~Bose assemblies didn't apply- to this case but the
necessary modification is quite trivial; we merely postulate the existence
of some new statd, the zero state, such that when the photon is in the zero

state it cannot be observed at all; 1if a photon is absorbed by an atom we

e
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say that it jumps into the zero state .and if it is emitted we say that it
jumps from the zero state into some other state; . wo assume.that the num-
ber of photons in the zero state is infinite.

To fix our ideas we wish to say what our q's shall be: we shall take
q to be such that when q = q® the particle is in a statioﬁar} state, which
means that g is a constant of the motion; for a singlepparticie the con-
stahits of the motion are the components of the momentum and so we shall t%ké
the q's to be the components of the momenta of the 1light quanta. We must
also introduce one more variable., having only two eigenvalues, in order to @5
express the state of polarisation of the light quantum; we take this new

variable to refer to the states of linear polarisation rather than to the

states of circular polarisation since the former leads to slightly simpaer

3

formulae. -

We can now write down explicitly what the fortr of U will bej’ it must

~
consist of the proper energy of the photon togbther with a certain term that
describes its interadtion with the atom. The proper energy :is known to be

b4

proportional th the frequency and we thus have
Uagp = hﬁ\%b SCbeF + Vﬁb
where Véb is still unknown. We have now

H=HP+H&+HR

Where Ep 1s "the HemKltonian of yhe atom alone,

Hy 1s the HamPltohian of the radiation field elone, nemely Z@ 'Y!b'ﬁ'yq, P

H a5 nle Y, g Oog) 2%

We should now like to separate out of I&a the terms that refer to the zero

and H is the. interaction term, given by

state and treat them apart from the other terms. Using O to denote the zero

state the corresponding terms in HQ are N
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Z ,n' 1 ‘LW \/ (ﬂ@-*') -4&)‘_&
Z ,.1'/1 -e:cﬁ)‘a’ V (no+‘)" - "."(.)l

In order to deal with f:.nite terms here we must introduce new coefficients ~

instead of V and v that differ from them by infinite factors; we
ol a.¢ .

M, 2 \/0@, V@

and then
oo - L W — \/ .
<i O 'f @ \/ a ,

where Vy, 1s the. con;jugate complex of Vy, and now the zero state terms in HQ

write

may be written as ;/ ..,c
Z. %\/ /?. tw—{r\/(ﬂq‘ )2. a?

The introduction of the zero state has thus allowed terms involving the
- Ll ! ~ Ly
2 S Q‘DJ £ 95 singly to enter the Hamlltonian instead of only
-
terms containing the combinetions @ ,_e e eté.. This is
whet”we should expect since it is only the latter type of .operator invoi¥ving
the w's that conserves the number of photons.
The total interaction energy is now p
- -71: 1% g2 4 wWy.
w Yo -itg
\/ '/"3- v™a V (’ﬂofﬂ € 3
+ Tva = .
where now & and b are ta.ken over a,Ll s‘cates except the zero state.

To get a theory of the interacticn of light quanta with an atom all
that remains to be done is to d&termine what the interaction matrix Vg shall
be. The only way we have for determining the Hemiltonians that we have used
so Par is to make use of the analogy of the classical theory, and we can do
this in the present case; we have to pass %o the limiting case in which the

\3 become infinite and then compare the result with the classical result.

The real reagson why this warks is that an assembly of light quanta is

dynamically equivalent to a set of harmonic oscidlators, this equivalence
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still applyip,g whgp we have an interacting atom. (The number of harmonic oscil~
lators is very large since we have one for each state of the phgtona. ivoluding
incidentally, the zero state]l. It is this that gives ué the reconciliation
between the wave and particle aspects of light since we can regard waves in a
continuous medium as equivalent ;or & set of harmonic oscillators corresponding

$6 the Fourier components Jf thé wave.

Now our states are such that the momentum has a deﬁnimte.value s0 that
we ought to take the .case of a continuous range 'of eigenva‘lues‘ and must therss
fore pass from the sums to integrals; this would in general be quige compli-
cated; we .should in fact have to set up a new kind of mathematics becaﬁse of
the fact that the number of the variables n and*”v.z is equal: to the number of
points on a line; however, we don®t really need to do this in the general case
since wé are only concerned with the case in which the.n's aag.g.;g?ig:';; in which

<y

B Vd . "y N N
cdse We can neglect the.non-commtability of the n's ancl, 'Q, fS S Wwe can

make the passege from sums to integrals by assuming that th; discrete pigen-
values for l’, lie very closely together and then make a transition to a
different notation that refers only to certain ranges d l‘l« of momentum space
rather than to discrete eigenvalues b,a . TFor this purposé we have to in-
troduce quantities @' a that give the density of these eigenvalues’ in.momen-
tum space; Wwe say that 6:;_, is the number of discrete eigenvalue:s Er '1
per unit volume of momentum space about the point f\o" ; this % is there‘—
fore infinitely large in the limit and so we introduce 'Qa given by
”‘q = MNa Ca a

ﬁyhich is the number of light quanta per unit of mémentum sgacex about ;@, .
If. we ke polarisation 4nto sccount We must say that T|q i the ﬁtmb?r of
photons per u;;it of momentun{ space for a fixed )polarisation.

We now have to use different matrix elements:,(ht I V' {‘),”)3 referring to

the case of cohtinuous ranges of eigenvalues for the momentum; these will
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differ from the previous ones refe;rzng to diserete eigenvalues Sor the momentum

only in tl}e introduction of a weight funetion; in the. discrete theodry the weight

is 6. a d’l H in the continuqus case We- should- iike to attack the We'fght
d ;g/ itself and so We must chenge the weight function by the factor &

We can apply our general rule for changing the wﬂ%ht function and we get

Vog (6292)"2 = (h*|V] ).

For the q » since the weight attached to-the zero state is not changed, we have
Vosulr = (pelV ]0) '
f and
V. oot = (0IVI %)
‘. We can now rewfrte our interaction energy, taking the n's to be large, in
| the form / @ “%fo-
oer, Jutvi e e
+T ., (m!h)ﬂ« gt Sar GG

the transformation

or, interms of integrals, as

' He J(;f‘)v 11"{ %(Olvlh)%’ “]Mﬁ“
) ey € M adbe s

since 6;:' is now the same as d /‘L a ‘these integrals also imply
summation over both states of the polarisation.
Weo may now proceed to compare this. expression with the analogoﬁs one of
the classical theory end so obtain the values of the matrix -elements of V. We
# shall merely indicate the lines slong which it is necessary to proceed in order
to bring the classical expression for the intaraction energy into a form in which
1t can be compered With the quamtum form, (20].
We may consider the classical electromegnetic field to consist of waves
that we can resolve into plane waves, which means that we can oxpress it in the

r

form of a Fourier integral; We have
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= (g, G52 - t)bdh
ﬂ =fﬁb (é“li) —z‘ﬁ'\)bt*}”,)dfz
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g and ﬁ being the electric and magnetic force vectors, énd y/'
the phases, \5'1 the frequencies and .___ and ﬁ ,,, the- dmplitudes of
the Fourier components. £ f‘ and ,g l" gre of equal magnitude and each

¥

is perpendicular to the ofrher and to the vector 2’1. . The total energy 1s

2, 92 _ K3 Voz
g J(E+87)d2 = [ £ 4 '
the integrals heing taken over the whole of space.

Now since the energy of a light quantum is h VWV the total energy

must be 'Y) WQ l)h dh and so we must have the connectipn

4’ ‘
between __g ’_L and ‘the npumber of light quanta per vclume element of mo~
mentum space; this gives, at once the relation

+

£r = £L v
CShp = ,g2 hh
We must also introduce the vector potential % which we express in the form

-

A= (A, Sm(%uiﬁ\%byh)dh o

where A ‘\ is connected with 5}1 by the relation
/& h___ (ﬁ:}f\)f,) gi‘ TTJQ’V;, ‘fzh}fvo*w(at) (23)

Let us for simplicity mske the assumption that the - om has oqiy one electron

or at _ZLeast that it has only one electron that is of imp'ortahce for the present
disocussion; then the classical expression for the interaction energy of this
atom with the field of radiation will be the total energy of ';he atom when the
field is pregent minus the energy of ;he atom vhen there is no field so that

this interaction gnergy is equal to

e e e e, -




4 - -
=T (.ZJ A) .{,MCLA » (24)

et us write t‘:)

/wﬁ =~
so that (22) vecomes

é = {Ab &%d,l:’ (26)

the quantities ’L«J"'.l increase uniformly with the time and arc of the same néture

+ 2TV Yt 5 (25)

as the AU~ ’k we introduced in the quantum theory of photons being the angle
variables corresponding to the componants of the harmonic oscillations of the
Fonrier expension. Substituting in (24) frém (26) we find that the classical

interaction energy may be written in the form

IR A (VR

and using the value of A h given by (23) this becomes
’ — IW‘ _
f‘f(ﬁ)%f‘ 1y, 3 (&P R AR
- ‘/ . ' Y . [ P '&f‘ f

- & 6_.' N R e Tan) O ¥lapaf, @

where 2 P denotes the scalar produé¢t of jt_«_with the unit vector along & b

and is thus the components of é:_ in this direction, and iwhere 8/,_/{ is the
angle between the elec‘cxiic vectors of the components ,) and {Il .

We now compare the two expressions(20) and (27), ‘that we have obtained
for the inyeraction energy pf the atom with the radiation field. The single

integral terms in the two expressions will coincide if we choose. the matrix

olements ( f\’ V/ O) end (O ' W , ,1) to be such that
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(RIVI0)=CNIN=F(w5) %

The doudble integral terms areo not similar 1n the two casos since there is
| nothing in (20} to correspond tz the terms (27} caritaining quantities -
A W S —oa (1S} +‘0f
like €. (wjot < ) (it p

the double integral in (27) to coincide witlr the tems of thé double integral

and if we wish the other terms of

of (20} we must choose the matrix elements (: / } fb‘)

to be .such that( r‘ ) 2Trw:;1-; (v}\v}‘)/z (?7 5 | .

The oxtra terms in (27! are not important physically and can be negle¢ted in
the ordinary applications; they correspond to the emisslon or absorption
of two light quenta simultarecusly which processes are not physically important ;
however the eximtence of these terms means that the -foregoing theory of
photons has not been as complete as it might and we could actually get terms
’

in (20} that would correspond to these extra terms in (873 if we took the
interacfion energy of the assembly of photons with the atom o contain terms
that refer simultaneously to two light quanta.

The above is the essential ‘theory of the light quantam and it shows
how we can obtain explicitly the interaction energy betwecn a light quantum

.and an atom, Our interaction energg5obtained by considering a large number

of photons, can now be appdied to the case of a single photon interacting with
an atom. The quantum interaction energy for a single tphdf:ong is not at all

, | { .
like any classical expression; the matrix elements (HV/ ) ars given by

an entirely different analytical fommula from that giving the matrix elements

(OIV /7-) end (%’,V}O) s0 that we cannot hope tobe able to ex-

press the whole matrix in terms of canonical coordinates and momenta; 1t should

be remembered that (0 /’L) and (fl / 0) are not matrix elements

really byt are functions of the cbservablc describing the atomywe should
really introdyce the commuting veriables F describing the atom and should

replace the equation (28) by
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e\ ) :
< AY/ S v !
v 0 - - > 4 p

A \2T%
but the notation we have been using is quite unambiguous if we remcmber this
.poin'rt. .‘

Wo can now work out the problems of the absorption, emissien and

scattéring of a photon by an atom; there is cne difficulty in the working out

of this theory since the wave equation with this kind of interaction ensrgy is

¥

mot really convergent and we therefore camot give en ex&qt meaning to the
Hemiltonien; we can, however, still operate with it and get sensdbdle results

since it possesses a property of semi-;:onvergencé; if we glot_ the importance
of (0‘ Vl f’t) in the w;ave equation against increasing "1 we obtain

a curve ccntai;ning several sharp peaks
initially_‘ as shom)followed by a declin;
and a subsequent slow rise to infinitys

the peaks give the resonance frequencies

of the at’c;m the (O’ V/ }7-) being

Yery importent for these frequencies. In practive, at least for freguencies

carresponding to visual light, we can cut off the interaction energy at some
value of ,1« , such as at the point A in the diagrem, &0 that all ‘the re-

sonance frequencies are retained and the infinite part to the right of A is

ignored.

We shall now consider Heisenberg's developmenit of this theory of ra-
dimtion to meke it into a field  theory . £ amd %7 have at present
no meaning in the quantum theory and Heisenbetg has given-a theory ;n which
we ¢an introduce electric and magnetic vectors into the quantum tl;eory and
in which we‘.can, give commutablbly relations between them. T his part of the

theory can easily be made relativistic since we can treat ocur Hurier components
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as harmonic osclllators to obtain "b}ag comnut;bility relations and by n_:gking the
Fourier resolution In a relativistic way we can obtain comutability,,;:;plgtions .
that will be relativistically invariant.  Physically __cg endJf at one -
point ought to commute with _E_ andﬁat another point a1': tl_;e same time, since
the principle of relativity; implies that no effect can travel ﬂth, velocity
greater than thet of light and thus a measurement of g onﬁ at one point at
a given time cannot disyfb the measurement of E orﬂ at another point at

the same time so that we must expeet commutation between 8 andﬁ at one point
and g and;'fé at another.  We actually find that this is thé case in the
Heisenberg theory if the two points are a finite distance apé.rt, but not 1if

they are an infinitesimal distance apart. Our problem is to find the general
commutability relations in connecting the field qua'ntities at a particular time.
If our theory is to be complete we must know the commutability relations connect-
ing the field quantities at differrent,times but if we combine our limited in-’
formatioch with the equations of motion we can infer the more general commuta-
bility relations. It is therefore sufficient to work with one particular time

and this does not mean that our theory is not really relativistic.

For time t = 0 we may write

Eeo= (€, G (EF2 ) df
" K= WW(-E"M f

and we have also the relation

ﬁz: f;’: V,z’?h_'a

we want to regard 'r) end )/ as in some way conjugates since ’Vl describes

the strength of a particular oscillation and )/ describes its phase; we
cannot, however, have a relation of the type

’Y‘)‘t b/ /) h yrs = constant

since the <  have a continuous range of values and we must hsve
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if h#“\. however closely r\, and f\. be togesther. We therefore pass to

the case of discrete eigenvalues very close to each other; we take 6},. as the

number of eigenvalues per unit of momentum space and then we may write our form-

=2, & ‘f’”((w ""471")".“?:‘
2 ﬂ%’ (&8 ) R

Wit ,,? given by 1
’YI = ’YL "\_ 0}.‘_ .

To pass over to the quentum theory we only have to assume that ’n I"' and )/,l

ulae in the form

end

satisfy the quantum conditions
4 1 ( f)
T h Q M= )I h{m }.L‘}'
/"
with the conditiones thet ”l / and L jf‘b comtmte if- h ,\ » These conw-

Gitions are quite definite _n the Giscrete case and we have no difficulty at ‘all
P .

in applyirg them.
O
Let us now express & _ahd :H,in terms of the n's and the)j’ s; Wwe have,

——

writing O(;\ to denote the unitv vector in the direction of gb , and [3’,_

for that in the dlrection zjg//l) | % 3 |
€= ww ()" 4.
ﬂ}x i "m)h) (’”‘h gh) Bh

and substituting in our exp"essioa for g we obtain ) i
| Z( v\ %2, 1[ T(xpYR iy 4 LR Ay -4
- & ’ =, o - _1
E,.. ’ﬁ, i AT h_) ?(,#L ﬂil £ £ f'é"e. ) f O}L ,
but this formula does not make g s real obscervable and so it cannot be correct

for the quantum theory and must be modified in such a way as to become Hermitian;

this can be done if we merely write it as

&
E- LAy [P bl S Al T
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We could also make it Hermitian by putting one 'Tlr to the left of the '
-t
)( f‘ and the other to the right “of “the £ )’,, but this would not do

sinco -Q 7 1“ ‘end -a yf" are not really exact reciprocals and only boheve as
A (. yh ;

such provided they enter our formulas always in the combinations ’R, ,L

and € Lff‘ ’n,’/\ ;

us, and we have elso a similar expression for ﬁ/ with ﬁ/, in place of the

the above expression for 8 is thl;s determined for

O(r above.

We can now proceed to calculate our c ammitability relations; let us in-

i

troduce the following notation;
gg is to denote the camponent of g in some direction ﬁ and
"t it ] " ] L " v " " " 1
gﬂm m )
where gand m are for the moment quite arbitrary. Let us work out first the
commtability relations between E’ (Z7) ana fo (x’) our £ortmula for

Eo(i) when written in terms of Yhe fs given by

P ?}1“‘ *{'/y/l fn/2

f \
becomes A ’p -([%),1 /ﬁ -z
_8(1)-* ya (:Urv,t)/o(h[-a /j)f* fp}

end so we have, since an g / commute but
9 S b' }‘L

—

£, fgrt hghzghh'l’
g (x') x") x" ) =
(>’ gt )EG( ) ), //,f ¢(;’1)/ 5

::::-ﬁ-;' ZH"' QW(\)M’}» D(}'-@ d’f”mz -(,C_J ,1)/,( (7 }x)//ﬁ )}
‘4"

:—.#Zﬁzvadl?d}xm? 1(1% M/X %Cx ~ f‘)/’?}

| Now the fl refers to theé polarisation as well as to the momentum; we first
of all sum over the two states of the polarisation, let us suppose we have fixed
a direction of motion for the phota, which must be perpendicular to O(_ and (j P

when we sum for both states of the polarisation we have to0 sum ‘only the part
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o( #g O( Fm of the adove férmula-.since these are the only quantities that
have to do with the state of polarisatior; we write )I for the unit veétop in
the direction of the vector /’L ; X and /3 are each perpendiculer

o )/ and to each other sb that we bave to sum for the two cases o= o( a’ncl dzﬂ

-
-

thus getting

O_Spedpm = ope dpa + pe (3 pom
pelarisation = @D Qle‘m‘... y/“é )!b,m .

since d‘bQ ) /Sb‘e and Yy p etc. Bre just the direction cosines of the
directions ) and m referred to Q()ﬁ end Y  as exes. We now have to sub-
stitute this value for the effect of summation ever the polarisgtion into our ex-
pression above and then to sum for all values of thé-momentum of the photon; we

can turn this sum into an integral again-and we sse at once thet this integral

vanishes since the integrand is an odd function of /’1 o It follows that
t I — ) F «rl asasre -
EEnle) = E, 00 o) = O
A similer Tesult holds for the components of the magnetic field. The remain-

ing problem ic to determine "the commutability relations connecting 6% Lf ')

with :}%@1 (r”)_; we have o _ “ho same ex-
) . s — = pression ag for the
éae(x'),ga[x”)“ %[1 )Cﬂ(;y) - case o é?; ¢x’)
, e and - x#y except,
that «f" is replaced
by fAps

and writing this expressicn in the form of integrals it” bocomes

aT Vi, o LS o XX R -J(z'—;’;,&)ﬁ dh.
r Xb%isftiozeﬁb ?‘@ / -~ € . g /1

Now when We sum over the polarisation we have the two cases o¢= @&, p=pn

a’hd o ~— ﬁg (3 —> — g(j the latter being the

result of turning the former polarisatim through a right-sngle, and so we get

2 Apefpwm = — of
polarisa tion he p ﬁ/\f pom
If we now want to continue without having to consider very ccmplicated formulae

we must specify what 'g and m are to be. In the first case let us take Band nm

to be parallel; +hen Zdhg ﬁ/mvanishes so that we have the result that “_ (9“)
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an.dﬂ( x’j commte if they #te parallel. The other intéfostifig
44
case is when QX')and ﬁ(x’yare perpgndicular and if we also: know the comm-
utability relations for’this wase we shall know the commutability relations con-
cerning g and‘;{élfor arbitrary directims; let us, then, take ..‘Qand m_per- .

D d

pendicular end each perpendicular- to the direction n. Then we have
= X - of kg
pelawisdfion be ﬁ’tm he/ﬁ{“ﬂ (/?’th e Y[zﬂ,
sinco (0( &) )1) and (1 m n} form two sets of mutually perpendicular triads.
Also instesd of )?m We can Write !hj/ Fve , where we take n to be the direc-,
tion of the z-axis which is allowable  since n is & fixed directicm. Substitutfng

in our integral we now have

8@‘) ‘}S/(x")—-ﬁwfx’i)e (@)=
S j’e qu')ﬁ w-(yv"?)ﬁg +G-3)r ?/’ﬁ
Ty 3V Y P
- %e'%sw-wsea 5[ b, §EG I - € STt iha:
b

(since -- because tHe mcmentim of a light quantum is equal to.&v ., and
C

since we have tiﬁa result j{’,@d ﬁ‘/’#aﬁ,’;.z: »,ﬂt g(o!) )

-

- p |
= € (arst) S(g) (2UA £ §G3)

(;mce, by differentiating the integral in the previcus barenthesis wn:h -respact

. , A {. <apfE )

o e L[p g < A5l

=24k (=) (4§ S(3)
= "24’@‘515 %/ 8 ( x' - %”),

. : | ’
(- x) = 8Cex) Sy -4 8653
the directia z is here to be upderstood as the direction that is perpendicular vo

both 1 emd m. Using suffixes x,y and z:to denote the directions 1 and m these

commatability relations are

e e e —
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-~ bt

[8 (,1) ﬁ (zlf) = -4 TC 35 C.x x”)

stlgbc’)a 3(:/)]"‘" +44'7TC (l x)

with sigilar results for the other components of 8 and ﬂ

i
;
‘;
|
i
|
;
|
!
|

We shall now show that these commutability relations lead to
Maxwell's equations for the fleld if we teke as the Hemiltonian Jjust the
classical quantity for the energy, that is if we take

) (&4 5 )l ; -

for the motion of we have. for example,

‘{5(3&") [F[J)y HJ
_M)([gy) Et) + B )]dx'r »

(since [ and “fd ' are commuting operations).

Now the camonents of 6" 2+ 72" ei1 commite with
’C‘,:lx) exropt %/(z") and “%M and we have |
(E ')75/ (2] = g-[&(r) H CJ’JJJ’Z/ (<7 -;’jé/ w)[€, <) j[xlﬂ
-87rc§?-,€(f’ u)};/ C"”

(since the P‘,%,'s are ordlnary numbers and thus:-commute
with ﬂ (x") s .
"

and integrating over all space With 'f‘ega'r'd to 20 we get

X[g @M ] dx= - 8Tre $5 K, (2

similarly we obtain the result ﬁ/ t:f')
z "

([€s N dx'= +87e 35 P

and substituting these two results in (29) we obtain

5'(5@ = -« Ssﬂa"'ca& Hs

which is just one of the Maxwell equetions. The other ‘Maxwell equations

came out in the ssme way ahd this shows that the commutability relations

we have obtained for the figld components do. lead ta the correct equations

of motion if we take the above Hemiltonian, Attempts have been made to

T A
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bring the potentials into this theory but it doesn't seem to be possible to
give any commutability relations..;;r them which will be consistent with the
abové commutability relations for the field quantities and which will be re-
lativiastically invariant. This is as far as the radiation theory will really

go satisfactorily.

We shall now consider breifly the question of relativistic quantum |
mechanics; the whole of the original theory of states and observables wes
relativistic when we considered the four-dimensional meaning of a state and
the relativistic meaning of an observable. One of the madn difficulties in
obtaining a satisfactory relativiwtic theory is to £ind suitable relniﬂstic‘
observables o work with; in the case of a system containing more than one
particle we have no really satisfactory relativistic theory at present: if

we teke as ouJ: ocbssrvables the positions or the part;cles at a particular

«ﬁ "f "*”‘ ‘!“é ‘; 36 H' "‘; l* ? 5 \\"1- RZE2 S

instant of time ve £ind that they are very unrelativistic quantities-and their
transformtion laws &re so camplicated that we have very l'it,tlél chance of
obtaining a relativistic theory in terms of them. The only case in which a
theory that is at all satisfactory hes been given is when we have only ope
particle.

We take the wave equation in:the abs_ence of an electromagnetic field
(gravitational effects are so very small that they may be neglected;: indeed

1t may be that gravitation has only a statistical significance) to be of the

form

Z ""Z 0&’514-0(.*'771;‘.}‘-}’ %
vhere W 'C‘R.'S‘E
end “h o= ““-#ax r =1,2,3,

We are led to this formm simply by the requiremsnt that the wave equation be
s P
linear in ths Operator \A/= b# ot 5 vhich we found to he a necessary con-

dition from group theoretic cgnsidgrati ons. o;' the displacements of states; if

DT e TR S
B =

LN B -~ 3 RPN
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we want scme kind of symmetTy betwee‘r'f"épace and time, as We do in a relativistic
theory, we must thus have the wave eguation linear in the [’) S also. We want
the Hsmiltonian in the above wave equatiom to be something like the second order
relativistic Hemiltonian of a free particle and this méans tﬁat we want the O(S
to satisfy

Ky Oty Oy Ohpe = 2 S (f‘ﬂ’= ’;2,3,9),
since then if we-evaluate
eyl B E, o ot ]

we get just she classical Hamiltonian., Our wave equation doesn*t look com-'
pletely relativistic since the W/ . has no coefficient although the }""S

heve, but this is not important since by mu],tiplication by an O( we can

give W/c, a coefficient and leave one of the ’7-’3 without one. It canm quite
easily be shown that this wave eqguation leads to re]ativistic results, the best
method of showing this being by the wse of spinors; we shall not pause to dis-
cuss, tgi_s point here.. We shall. proceed to show how tlfis'eqmtion leads us to
ascribe spin to the electron; when there is an electror;xagnetic field we gen-

b

oralise cur wave equation by writing

2
AT
.... f <
and -+ E Ao or
where ‘A A ) is the potential of tho field. The equation thus becomes

T
W, 2 Z ( 2 )
{(-—wc/\)*’ oy (bt EAY) 4oty mef Y= =0.’

For a discassion of this equation we shall need to put it into & dir,ferent form
and this will require some kmowledge cf the properties of the Of s We have
already found quantities that -obey ccmmtability relations like those satisfied
by the 0('5 , pamely (5, 6' and O'% : there are however only three of
these and to obtain the O( S we must introduce a similar set of three quanti-

- t % ~ -
ties, /.7“ pz and ps that commute with the 0‘3 end obey the same co

mmutation rules. *© We carnot obtain four matrices N O( s in terms of two-rowed

1

[re——
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square matrices and we have to @ toat least four rows and columns to represent

parber ] y
them™, We take a representation of the &S and ﬂ S togetker, for which

-0t

3

*  We cannot use three-rowed square matrices since the cigenvalues of o(.-uare the
same as those of &, 0(.;':.: O(ZO{; K, == &, and hence to every positive
eigenvaluo of an X corresponds an equal negative ono so that we must have

an even number of eigenvalues and therefare an-even numbor of rows and columns.

we shall require four rows and columns in our matrices, and write
G, = f Lo %
Ky ¥ P; d-%
.0(3 = Pl d’z‘ 3

these Q( 5 then have the properties we desirs; the above is maerely a parti=

-

cular way of représenting the o( S aﬁd there are several other ways; the,

Iy, e - -, k3 PR ey i..&w 2 i» R S
present method is conveniant because we may treat O(‘ J qz : and «q{s as the
i 5 63 A i o o2 ig” i e "5y Y
_ccmponen«ts of ﬁ, times’ the vector o .

In tems of the .S‘ and 0‘5 the ‘wave “équatibn“beébmé‘s‘ ¥

?(W.} $A°) +/J' (Q‘J’ h’+ EA) +Pa Wcz(‘%’ s IRy

Cne of the most direct ways of gettmg physical 1nformaticm, from this equati on

is to make it into a second order wave equation tha{: looks scmathing like the

[PRARE

vave equation formed from the olassical relativisbic ﬁéiﬁiitonian. “We. tha,rérore

B e s e e

consider the equatioci
§(¥+24)-plo, b+ 34) 5 e f( o -Ao)+ﬂ (g5 b+ £A)+ame] ¥=0;

this being the way in which we fen change the linear equation into a second

order equatidn that looks as closelg as posaible like the second order equmtion

using the éldssical ﬂamiltcmiam ffb ‘évaluate the operator aptering thie 9qua~

»‘.4 UHe '-~»

tion we make use 6f the general, theqrem that . if X and b4 qogmxte with; g

C x)(g*‘r% (X, Y)+4(5‘ XoY)

then
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where X x Y denotes the vector prodttt of X and Y. Applying this theorem to a
particular case that arises in oyr, eysluation %o have, since -
U’x + %A:) x("g*%Ag)"-‘—' g(‘h”i‘Af' /"aA:" A:3 l"'x TA: }‘g)
=-4iK & (3}/\3" %’ Ax) '
=LK E H ,

the result that o
(6, B+#A) = (h+2a) +4 25 H):
T e e i F R £);

80, using these results,our second order wave equation becomos

Z(‘é‘" +2AY-(h* s ma-R E(G #)-ip ® 2(s,8)j¥=0.

The first two parentheses are tho same as the temms that enter the classical

Hemiltonian; We have here extra teris involvingﬂ%and E . The difference
7 — -

has arisen from the fact that the coefficients of the O(JS ‘no longer commute

Witll,:x each other when a field is present. ‘The sxtra terms may be interpreted

as some sdditicnal energy that the electrch has dn the electromagns tic field;

to get the actual magnitude of this extra energy Wwe must of. course divide the

equation by om in order ‘that the part that co“rresponds to the, classical energy

have the correct facﬁor; thus our extra témms correspond to the extra poten=

tial energy ’g.
. y &
£ © H)+4 22 (s .
— { an (] _ )

The first term may be attriviited to the electron having & small magnetic moment

of magnitude A

2.
Amc
The other term gorregponds to ‘the electron having an imaginary dlectric moment
€
/) ' ame = °
The magnetic moment seems to have a physicel meaning but the eclectric moment

being imaginary ~»does#gpt geem to have physical significance; it appears necessary
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to regard it as a mathematical f£i¢tion.since the lineer Hémiltonian was real
and so the imaginary term must haye come iﬁ from our ﬁ“qvin“g .changed to a second
order equation. If thero were no electric field thée imaginary part' .would dis-
appear and so an electron moving in a purcly magnetic £iéld would behave as” °
though it had & magnotic moment of the above, magnitude. ’

Wo now consifler the other way 11-1 whi'ch tho gpip of "ﬁm aéldcﬁ'i'éﬁ sémed inm,
ramely in. the angulaf momentum of the electron. In the o:;-dingry way tho angu-

+

lar momentum of the eléctron about the x-axis would bé defined by

'mx = 5, P}—-} F%f .
Now when there is ho field we have

T MO

and so . 2 ””"x = m, H=- H m € -
= 5-4.'&(70, (d’zfla 3 ,"3)

and this does not vanish. Thus the ordinary angular momentum is not a constant

of the motion!

But we have

= -24ep, (‘Y Py~ Py 3)
and hence it follows that .

v .L‘ﬁ‘, “ -
s0 theat
L £ 6, -
’m:_g‘, + i‘ Gy = const.
Thus suggests that this exwe,ssfgnzis the real angnlar momentum integral for the
problen so that the ordinary anfilar momentum must be supplanented by 3{'%3’ ;

we aseribe this extra angular momentum to the apin of the electron.
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We shall now consider the cqplete intogration of the equations of mot}gn
in the case of no field; alkhough the quantities invodved do not. commute the
equations are .sufficiently simple to admit of complete integration, as was showmn
by Schrodinger. By performing the integration we obtain an insight inté the motion
of en electron according to the present theory. Ve shall chenge the sign of the
Hemiltonian for comvenience and write

H=c 5 PLE, k) +ps 'mc}
or;, in terms of the %)5, !

H = cZ(Q(,)})'—}'O(#‘m;cz;
we consider first the equations of motion for the momentum; Wwe have
hp = [ fy s H]

=~ 0 -

g

and 80
p, = comnst.
which is what one would expect in the.case of a particle moving freely in no field.
Again we have . . J
= [xﬂ cxy "‘1]

‘(since Xy commtes with every quantity in

7

H except ’L.r )

= C Ky
and so C df ig the expression for the velociiy according to the relativiatic
theory of the electron. This is at first sight a surprising result since it
means that the velocity of the electron is always equal to. that of light on account
of the fact that the eigenvalues of (¢ Ol.4 e&re + G;  this result, however,
18 not really so surprising as it appears to be since in order to measure the
velocity, there Seing no simple cénnection between the velocity and the moment um
in the presont case, We must observe the position of the electron at two times
very near togethor; whepn We observe the exact- position the first time the mo=-

mentum, accarding to the uncertainty principle, becomes completely undetermined
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end is therofare practically certain to be infinite, corresponding to a velocity
equal to that of light. -
Wo cen also sco that this result is what mse should expect by referring to

the wave equatién; if we start with a wave ‘functi{on that is just the 5 ~fine tion

at the position Aat tims t = O, then at timo ‘ . A .
St by the well-known propertics of the wave K¢ - iA _A =X
’ o A
equation the 8 -func tion will have sproead 8 : C

out into a spherical shell, jndicated by B C

‘in the £1 gure, of radiue C St . The

relativity principle re@uires that the elec~ \{:

tron cemnot be outside thds shell at #ime S, the special form that the
wave equation has tells us further that neigher cdn it be within it. Thus at
time Sb the olectron will certainly have moved through a distance C Sb,

The velocity of the electron” is not a constant since it iceeps on changing

its djrection; we shell now show that its averago value is connected with the

momen tud by the usuel relaticn betweon voleeity.end momentum. For, let us con=

sider the way in which the velocity chenges; we lave
L‘K(X,, = o, H=-Hoy
now - C ol ¥ c ,’L Ay
a, H+ Hoy = g e Py FEFy 0y

and so
L“:K o'(., = QO(,H“'QC/"‘"

the ,1,( is a constant of the motion and H is also camstant so that we now

have a lirncar differential equation with constant coefficients. ¥ollowing

Sehrd inger wo introduce h“'

= Ao

. 1
(it is permissible to write .t:. since t‘(..f and H commute),

!
4
Et
&
4
1
4
i

.

g oS e e AR

s g AT I




and then we have ,
1 %1}.{ = ‘f: # ‘Xof
=AYy H (30)
which is a differential equation for g, Intograting "we geot

Ny = const. g —32d H&/‘K ]

(since if we diffaréntiate this oxpression for ~ Ve got s
q{ comst, @ 3¢ HYZ (—-:z tH) ) &

the constent of intoegration is not necessarily an ordinary number and so its
position in the farmula is of importance and in tho above it must beé placed first.,
Wo have for this constant the value

(1o = v €520
and thus ocur intogral is 'tht/'R 7

My = MR

this equation will show us how the voloe ity varies with the time . We_ could have

proceeded by an-slternative method; - v could havo used the rolation

4:% (;(,,( =—Hd,+ 2Ach~

’(’f{d’.{ = ;.ﬂd" H - QC /7.'4 é
if we do this we obtain
{‘ﬁ- '7'1 = -2 H M~

(Noge, by camparing this with oquation (30), that ’\’l ~ anticommutes with H)

and this leads to 14 HE
Mt = /{

We thus have two different empressions for ‘YL., but they are actuslly equiva-

rd
instcad .of

lent sinee when we change tho order of 'rz: and Hwe must change the sign of H

0 -
because 72_( like T{T y eanticommmtes with H. In fact we can soe the

equatioms are equivalent sincé @11, is a real observable and therefore
the two esquations are oonjugate complex,
We thus have
«+= C oy cx b
RCARY

:c@),. 2¢HE/K +C1£:-
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The last torm is what the velocity would be according to classical idoas; Bso
tho mean valuoe of the velocity is ju.s%‘wi;he classical value and we hawe in e;dd.
ition the high frequency velocity glvem by the f{rst tem which results .in the

actual megnitude of the velocity being always equal to the velocity of light.

§ Wo now have . LIF : -
X,.=2¢ 01:{ Q—J(Ht/‘#_,‘.. ".l.l.:é ‘f-a-('
+= Ve 27 TCH
where 8, is a constant of integration vhich will be an obsermable. Follow-
STl L
ing §chréfding_er we split up x, into two torms v
N
27 = Jﬁ.‘, -+ ff
e c‘)’-«
= b 4
. -1
and f _ ife e € 2 # L
. == s H
T TR
= = M H
and also = “—~ -—i—" H ﬁq‘r
since '71‘ “ anticommut es with H. .

The part %‘JY gives the motion of the elsctron according to c lessical réla-

tivistic ideas; the . gives the high fregquency part of the motidn.. Now

H has very big eiganvaluss of tho order of me? so that f‘f is of véry high

frequency indecd; its amplitude however is very small sinco it is given by
W

and the eigenvaeluss of 12: are of the ordoer of unity as we éee from the

fv

definition of N+ the eigoenvalues of O(Y being + 1 end of C-H— being

not greater than unity on account of the relativistic ‘relation between '1 and

H, s0 that the amplitude of . ﬁ is of order vwhich is a very

amc
emall quantity gven in the theory of the atom. Thus the motion of our elgctron

,,,,,

is to be pictured as a high frequéncy wiegie about a ‘st¥aight Iine as shown below;

'

L e W et T
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We can get a simplée formula for the megnitudo of the oscillating part;

for f‘&’# (”i’ég"s"'l'f)(‘:fc Y _’s_ -
= R L L

now c
&y = 1111 * H : ;
end 8o, squaring this relation, we get a2
| = 7S + *-Q-“LH,, = 3 '

the croes terms venishing since ’Ylvcomnmtes with f'l,( and anticommutes with H.

ance wo have al? ‘
T g B (- FE)F

in which the ofder of the factors on the right hand side no longer matters. So

we have 2 4 ; c® h:l-_,, z+/,_32)
Foprepre By jo- UL LIS

2 B
g = £ (1 + —C
B-H* « H* 2 ,
and this is always small since ﬁg < end e is siall.
HE = b

Wo have been considering the motion of the centre of gravity of the

eloctron; we can treat the. spin in the same way; the spin én@llar momentum

is 5‘_"%‘ Q'  and we have
+B& = - L (6 H-H)5
now We notice

(@{H“HG1_)H + H(d:(H"‘H d‘.r) =Gy H,?.__ HZG"‘T

‘e }

since Ha is independent of (¢ , and henco we have tho result that (d} H - H G})

anticommutes with H. So

%Xé" ant icammutes with H.

f] .
We may now treat 5” 6; as wa treated ‘?1 since each antic‘onnm;tes:with H.
Fo nave iR g (5 H-Hoq)= (o Hone)H - H (oW —Haoy)
S « 3 (6r H-He ) H
vhich is the same as the-differential equation we had for ﬁz,rs s 1integrating we

obtain
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O}H ﬁd}.‘&' (G«H HO'V)&, 0

K o

which gives us explicitly the value of 6:( , and integrating once again we get

-a2¢ HE
+fo =7 (o:, H*H@)tm;'r A ¥+ % 3,

-3(Htﬁt

(where a‘; is a constant of integration),
L+ K
and we now have the spin variable expressed as a high freq;uency varying part to=-
gether-with a constent part. We can try to interpret the variable part of, the

apin in the following way; Suppose we evaluate hhe quentity ( E ) 4 P-) ,

we &ve(-‘g'x 'l’)‘ - fl ﬁa g ,1 ' “L\:’b DL“:":\:
- ‘ﬁ"("h"‘s 73 ) oo

Jic _ |
= (d hz &y r‘z) , (trom the definitim of the
| > s

and this quentity we shell show to be equal to ihe 1-component of the varying

part ’g-.(ﬂ} H H O"—r) of the spin, except for-sign; for
£ (s H-Ha) B P N TS S e L

Uﬁc p(Tah.~ "iﬁs)H
-‘%—c‘ (N dsﬁz)‘ﬁ-’

we mey therefore say that the variable part of the spin is just
-(Exk)
and we may interpret this es meening that the variable part arises from the
smell radius vector { moving with the ‘momen tum I'— attachad to the end of
it. Schrgdinger tried very hard to give a gimilar meaning to the constent part
of the spin tut it doepn’ t secin to be possible te obtain a simple picture in
this case. This compl,otes the discussion of the quations of motion ror the

4 @ Y
. ‘W. K] ) tv '\ 5‘ -J,« 3
’“?a! > wy ol

relativistic theory of ,,the electron; it showa us how each or our variablea

B

. $,
Lok
\ i

e e e o i

ey

kS

i e e G B A P

i
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varies with the time; each has a agall, high rr-equen;y t;rm ’;n additim to the
part that WQuld be expected from classicel ideas.

We shall now considEr the difftculties of the relativistic theory, " for
the case of sta tionary states im the. absence of an electromagnetic tield the'"?’

energy is given by - - N

E*= ‘(h +Ii"*+h3 ptn C) ,

and therefore any. eigenvalué of 2 will be Jjustemal to the right hand side of

so that

the above expression whm some particular eigenvalues are, given o. the }1)5 .
It folloys. that any eigenvalue of” B2 must Zbe such gt
£ ‘2 > mrct
and so
’ /A
oithor 2 MCET
or E ‘4 - mck.
In prective we always £ind the result -E! %@1 c? and ‘this really, gives rige to &
di screpancy between theory and observation since, as We ‘shall ;s ée, Wa csnnot
ignore the negative energy states, Let us teke any I:épz‘%esent’a’twﬁ'ﬁof which E,
amongst .other obs"erVabIé‘s, is diagonalj there ’wiil‘be certain points in the
domain of the wave furicti of. for which- pig ) ‘e c % Jénd: others for which E"Q- m c®
and this mesms that the domain ¢ of ‘the wave functicm divides up inteé two regioms.

7

qite distinect and separate fram ecach-othors 4 waye -function that ~eapnishos every-

vhere in its domain except in the region where E* %m ¢® wo shalk call, fo¥lowing
Schrodinger, & positive.wave function, end one that,. is zero except wh:ére/E' £ - me?
will be called a negative wave fupction; - ‘then: we- may: gay that oril'y posi-
tive wave runctions have been ocbserved -to cccur in natures :So. lopg a&-we desl
with en electron in the absence: of a field a wave function that is initially

positive will remain positive, stnce E is & constant of -the motion.in the absence

e W y-3 ek,
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of a field; but if there is a field such is no longer the case in general and
this gives rise to d real ditficultyﬁi‘n the ‘theory gince it means that there is
a small probability of a transition from a positive to a»pegat’ive energy state
end we can therefore no longer ignore the negative energy states. We can discu;s
these transition probebilitids in thé £6liowing way; let V dendte the extra
terms that arise in the Hamiltonien when there is a field present' then ‘bhe
gemeral theary of transitions shows that

(EL ’ V l E ”) 5 ;(oinittiﬁgf the other &;or.

vables that should accompeny
B},

is the matrix element that is reshonsible for a transition from a state"o;‘ energy

E' to one of emergy E'', or vice versa, and if ‘this mtrix é1ément vanish we shall
not get wuch trensitions. There are four kinds of matrix elemerit of the above

type according as E! end E'' are pos‘itfx‘re or négdtive and the matrix‘elements that
cguse the trouble will be those in which E' and E'' are’ of o;pposite sign. Ve

can splif up eny observable into two parts, -one of whith ch;tains,in this repre-
sentation,only matrix elements for vhich E' end E'* Am both'p::sifive or both
negative end -the other elements for- which B! and E'' have' different signs. We shell

call these two parts respectively the 'even and odd parts of the: obsérfable. I

we could arrange that the matrix elements have only even ‘parts we siould get over
oar difficulty end this is what Schrzgiinger tried to wdo. We can easily see -how
this should be dome; -let us consdder the cbserveble X, first of all; We en-
quire what are the even end odd parts o x., .. Our previous Fesdlution of ‘X,
into two parts‘,;cu.,. and f" , turas out to be the same as its resolution into
< pven and. odd parts; for we-have

£E+Ef =0

and” this meens ,since E. is diagonal, that D

(€151E)(E™E)=O
86 that (Eligf Eﬂ)‘ must vanish unless E? = -E''; ﬁ is thus odd.

}w
Pl
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We now consider the part X ., ; this can only be dafined through the relatict

-y 0t
*

Xy = x.,"l' ﬁf end thus we have

E:ggzx.,é Efx-*(fg éf-r) .
4{(:0(., f_(
c#de—sr.fcns
4%c"’-ﬁ— {c“-&t

and s0, taking a representation in which »/\,' is also diagonel, as we mey’-since
h"' coanmutes with B, we have N 'ﬁ 2 E, 'fl-r l E”)
E |2 eV E"-€) = <K Ely

= o unless B! .= B''y

1] }t

"

I
;%

gé

2 1/ Ay
and thus (E )x'f IE = O unless E' = E'', so that X4 .is even. Hence
o .
Xy is the even part of X, and f the odd.
. 8

It is now easy to’ express eny fugction of x in terns of an-even end an odd

o ~ )
part; ~we first notice that F(Iq,f_{) and F(x-w ‘ﬁ,)‘mpst hawe the .same

o S
G

oven perts and opposi te odd parts. Thus

F(I‘Uf{) + F(z-u f{) is Bven , : i
and F(Iv,fﬂ) - ("-u _ﬁ) is.0dd,. . f_
This enables us to oxpress eny function of x in terms ofits even-and odi* pants as _
ﬁ(x_) = f[:{ + f)
=t [+ f -]+ [pexes)- f-8)1,

the terms in the first siuare parenthoses consti.‘tuting the .even part and $hose in the

second the old, We mea that the odd part will be very small on account of the
smallness of f . Schrgdinger proposes to get over the difficulty of the ne-
gative énergies by neglecting the odd parts 'altogether,.and he has shown that
this ifmkes an Adterdtion in the, celculated spectrum of Hydrogen that is much too
small to bo obseived. However, this method doesn't seem to be very satisfactory

since the new wave equation is no longer relativistic; 8o probably this is not

Ed
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really the correct line upon which one should proceed in-order tc: i'pggive the
difficulty of the negative ammergy l;ve]s. |

Another way in which cne might proceéd is to assume that all the negative
energy states are ocaupied by electrons; then dby the.Pauli princiiiii‘e’ the electrons
that are left over in the positive energy states can never jump into the stetes of
negative emergy. This Wwould be a formal way of getting over the ditiieulw but
it does, of course, introluce the idea of dn infinite number of electfons in the
negative energy states; this infinitely need not give rise to any immedidte diff-
iculties in the theory; a perfect vacuum will be a spa"éé {n which all the nega= °
tive energy states ares filled and all the positive energy states are :Q'MPC‘}‘:
. ’ <. 1In the Maxwell equations we have the re-
lation | ) ' |

div € = ~47p

and we must then interpret /) as b’eing only the differace between the elsot¥ic
density in the case under c&midaration and in thé casé of a yeouum as dofined
above., If mo wantod actually to write down equations for this thewry one may
dot infinities coming in but similar infinitios have -elready appeared in the theary
¢f radiation and it scems reasonable to suppose- that one should first get over
these infinities in the rediation theory end them aaploy the ideas thus discovs
ered to overcoms any infinities that occur in the‘“ theéri off the nega;;ive enorgy
slectrons,

These negative anergy electrons are not 658 corsidered as a mathe-
matical fictien; 1t should bo possiblo to detect them by experimental means.
It ought to dve possib:!.e to 1ift up ons of the electrons in s negative energy state
to bring it into a positive enorgy statg; this wuld leave a vacancy in‘the
series of negative energy states and we ask ocurselves what such a vacancy would

be like. Let us first consider what one electron alone in a negative enargy atate

would be like; this can bo best scen by referring to the classical theory;

P
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(the negative energy states oxist in th'd classical theory but we don't get
4 qps from positive to negative energy, states so that tho negative energy statas
may be ignored). C%assically_ the Hemiltonian that describes the motion of an

electron is of the form _ -
Fa (¥ 8A) - (b 8a)- e

the equations of motion according to this Hamiltonien being:

DF
$= 3§, = -2t iy
dﬁp.r—- =5, :k’("v*?A
ds

4“ Iy
vhere /4) Vo ,J 4) 3/ ‘d—; x""sht 5 and we have to tagke ‘the posﬁ%

and

A
V)B V'

sign in the second equation far ¥ = 1,2,3 and the negative sign for W, = 4.

Lot ug mowrconsider a new Hamiltonian funetion ™ defined as
% % 2
(..\'.‘/;. ~2A)- (k- ?é) - m2c®;

the corresponding equations of motion &re

dx,.____gChﬂ !EA’&)
iﬂ Iox (M-¥A)S

These two sets of equations of motion will become the seme if we take

?Av

%_::g
=k
and **
SV — 8§ .

Thus if we take an electronic trajectory corresponding to F and to & positive
value for the energy it will be the seme trajectory as that corresponding to F*
fa an slectron of negative energy, amd cc‘:nversely. Now ‘JJ’* 48 the sams as ¥
except that it has -~ e instoad of + e; s0 an electron .of negative cnorgy will

.
mova in just the seme way ' an electron of positive energy having charpe + ©
A :

instead of - o. The seme result also holds for the quantum theory. Thus if we take

an electron in & quantum state .of negative energy it will move in an electro=~

magnetic fiold in just the same Way as an ordinery electron would move if it had

L

g
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a positive instead of a negat ive chargb,.

Let us now pass from the casg, of a single oloctron to that of the whole
sat of negatiwi"e clectrons; any holoe in ‘these .states will ‘move in exactly the
seme way as that electron would move that ‘would Just £111 up this hole (neglect-
ing tho interaction botween the eloctrons) and -it would furthermorc have & posi-
tive ejcrgy so that this hole would not bo enything unre asonable; we shéil: To-
for to such a hole as an enti-eleetron; an. anti -el oc tron ought to bave the samo
mess as e&i electron and this eppears to be unavoidable; Wwe should prefer to get a
much larger mass so as to identify tho anti-electrons with the, pro‘lfona, but ‘this
does not seem to work even if we take a Counlomb 1nteraction 4nto accqunt. The
above theory does not lead to 8 ¥iolation of the prineciplo of the oonsefvation of
electricity since if an electron of positivo cnerey jumpse into a holec it dis=-
sppears but also causes an anti-eléctron to vanish, and gimilarly if an electron
of negative auorgy jumps to a state ‘gr posi tive cnorgy tho effoct is to prodwe an
clectron and an anti-eloctron.

The theory -enablos one to .calculate the probabi 1ity for an ecloctron jumping
dowm into one of the holcs and £1lling it up; it 4s ‘nocessary that two light quanta
be cmitbed in such a process ou account of the princi;;los of thc conservation of
onergy and momentum since wo may taks a Lorentz freme of rofercnce in which the
clectron end anti-cloctron in questim have together no resultant momentum and
thus after their coalesence end disappearance tho light amitted must also have no
rosultant momentum vhich is impossible with o;lly one, 1light quentum.

This idea of the ‘anti-electrons doesn't seem t0 bo capable of experimental
tomt at tho moment; 1t could be settled bY experiment if-we gduld obtain twp
beam::s of high frequency radiation of a gufficiently great intensity and Yet tham

interact.

(The notes by B. Hoffmann].
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