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Period Mapping at Infinity ∗

Phillip Griffiths

∗IMSA talk on 5/6/20. Based on joint work in progress with Mark
Green and Colleen Robles
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Abstract
Hodge theory provides a basic invariant of complex algebraic
varieties. For algebraic families of smooth varieties the global study
of the Hodge structure on the cohomology of the varieties (period
mapping) is a much studied and rich subject. When one completes
a family to include singular varieties the local study of how the
Hodge structures degenerate to limiting mixed Hodge structures is
also much studied and very rich. However, the global study of the
period mapping at infinity has not been similarly developed. This
has now been at least partially done and will be the topic of this
talk. Sample applications include

I new global invariants of limiting mixed Hodge structures

I a generic local Torelli assumption implies that moduli spaces
are log canonical (not just log general type); and

I extension data and asymptotics of the Ricci curvature

I a proposed construction of the toroidal compactification of
the image of period mapping.
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The key point is that the extension data associated to a limiting

mixed Hodge structure has a rich geometric structure and this

provides a new tool for the study of families of singular varieties in

the boundary of families of smooth varieties.

Outline
I. Extension data
I Geometric properties of extension data of limiting mixed

Hodge structures

II. Basic results
I Removable singularities for level 1
I Level 2 determines all the extension data
I Fundamental formula

III. Applications
I Ampleness of KB + Z
I Freeness of kLH − `0Z
I asymptotics of the Ricci curvature
I Speculative toroidal completion of period mappings
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I. Extension data
I Hodge structure of weight n (V ,F ),

F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC

F p ⊕ F
n−p+1 ∼−→ VC, 0 5 p 5 n.

Equivalent to Hodge decomposition

VC =
p+q=n
⊕ V p,q, V

p,q
= V q,p(

V p,q = F p ∩ F
q
, F p =

p′=p
⊕ V p′,q

)
.

I Mixed Hodge structure (V ,W ,F )
I W0 ⊂W1 ⊂ · · · ⊂Wn = V ;
I
(
GrWk (V ),Fk

)
is a Hodge structure of weight k ; here

F p
k = F p ∩Wk,C/Wk−1,C.
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I Extension data: E = {MHS’s with fixed Gr(V ,W ,F )}
I Gr(V ,W ,F ) =

{
H0,H1, . . . ,Hn

}
I Ek =

{
MHS’s that are at most k-fold

iterated extensions of H0, . . . ,Hn

}
I E1 =

n
⊕
k=1

Ext1
MHS(Hk ,Hk−1) ∼=

n
⊕
k=1

Hom(Hk ,Hk−1)
F 0 Hom+HomZ

:= J

I ExtqMHS(∗, ∗) = 0 for q = 2

I Ek+1 → Ek has fibre
`
⊕Ext1

MHS(Hk+`+1,H`)

which is a Cm/Λ where Λ is discrete (thus T ’s, C∗’s, C’s)

I Limiting mixed Hodge structure (V ,W (N),F )
I N ∈ End(V ) nilpotent with Nm+1 = 0 gives unique

W0(N) ⊂ · · · ⊂W2m(N) with{
N : Wk(N)→Wk−2(N)

Nk ,Wm+k(N)
∼−→Wm−k(N)

I N : F p → F p−1
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I Polarization and cones
I Q : V ⊗ V → C, N ∈ End(V ,Q)

W`(N)⊥ ∼= W2m−`−1(N){
Qk : Gr

W (N)
m+k (V )⊗Gr

W (N)
m−k (V )→ Q

Qk(u, v) = Q(Nku, v)

=⇒ GrW (N)(V ,W (N),F ) = ⊕(polarized HS’s)
I will have a cone σ = span{N1, . . . ,Nr} where

[Ni ,Nj ] = 0 and where

W (N) is the same for all N =
∑

λiNi , λi > 0, in σ
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I Special structure for extension data associated to LMHS’s

I (TeJ)⊗ C is a HS of weight −1 and Hodge
decomposition

(k − 1,−k)⊗ · · · ⊗ (−1, 0)⊕ (0,−1)︸ ︷︷ ︸⊗ · · · ⊗ (−k , k − 1)

I (TeJab)⊗ C is the maximal sub-HS in ︸︷︷︸
I Gr

W (σ)
−2 End(VZ,G ) ⊃ Λ2H1(J,Z) = H2(J,Z)∗

Proposition:{ integral
(1,1) classes

∪
σ̌⊗Z

}
⊂ H2(J ,Z) ⊂ Gr

W (σ)
+2 End(VZ,Q) and A ∈ σ̌

gives an ample line bundle LA → Jab

Question: What do these ample line bundles have to do with
the geometry of the LMHS’s along a fibre of Φe?

<◦>
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II. Basic results
I B = smooth variety with smooth completion B and

where Z = B\B is a reduced normal crossing divisor ∪Zi

with Zi irreducible

I
{

Variation of Hodge
structure (V,F,∇,B)

with monodromy group Γ

}
⇐⇒

{
Period mapping
Φ:B→Γ\D with
image P=Φ(B)

}
Here ∇ : V → V ⊗ Ω1

B is the Gauss-Manin connection with
∇2 = 0 and V := ker∇ is a local system. The Hodge line
bundle

LH =
p
⊗ detFp

I May assume monodromy Ti around Zi is unipotent with
logarithm Ni — a neighborhood of a point of
ZI =

⋂
i∈I Zi looks like ∆∗r ×∆s and

σI = spanZ+{N1, . . . ,Nr}
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I Geometric case X→ B with X→ B having the
Abramowich-Karu et al. form of semi-stable-reduction
over Z
I Mg ; essentially smooth
I KSBA M; ∂M highly singular.

I Cattani-Kaplan-Schmid: For b0 ∈ ZI

lim
b→b0

Φ(b) =


equivalence class of

limiting mixed Hodge structures

with monodromy cone σI


 B Φ // P ⊂ Γ\D
∩ ∩
B

Φe // P

where Φe(b0) = Gr

(
lim
b→b0

Φ(b)

)
9 / 21



10/21

Conjecture: P is an analytic variety on which LH,e → P is
ample.

Using model theory (0-minimal structures) assuming Γ is
arithmetic Bakker-Brunebarbe-Tsimerman proved that P is an
algebraic variety and LH → P is ample.
I What has been missing is the global analysis of Φe along a

fibre Bp of Φe — known that Bp is a complete subvariety
of some minimal ZI — along Bp the Gr(LMHS’s) are
(locally) constant — what is varying is the extension data

I B∗p = Bp\{intersection of Bp with Zj ’s, j 6∈ I}
Φ1 := map B∗p → {level 1 extension data J}

Theorem A: Φ1 extends to a map

Φ1 : Bp → Jab ⊂ J .

This is a global result using mixed Hodge theory

Φm := map to extension data of level m on fibres of Φm−1
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Theorem B: The Φm are determined by Φ1 and Φ2.

Thus Φe = Φ0,Φ1,Φ2 constant =⇒
{

extension data of LMHS’s
is constant along Bp

}
.

This is a local result using the IPR.

I The main result is

Theorem C: Φ∗1(LA) = −
∑

k 〈A,Nk〉 [Zk ]
∣∣
Bp

.

This result relates the behavior of the LMHS along a fibre of
Φe to the normal behavior to Z of Φe along that fibre.
Reflects subtle global behavior of Φe ,

I We note that Theorems A, B, C really are results about
the behavior of the period mapping at infinity; they only
use Φe on a neighborhood U of Z in B .
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III. Applications
To illustrate a simple application of Theorem C we make the
following

(∗) Assumption: Φ1 does not have any positive dimensional
fibres.

I If Bp does not meet any lower dimensional strata of Z ,
then {

−[Zi ]
∣∣
Bp
→ Bp is ample

⇐⇒ N∗
Z/B

∣∣
Bp
→ Bp is ample

I If (∗) is not satisfied or if Bp does meet Zj ’s, j 6∈ I ,
Theorem C can still be used; e.g.,
If dim = 2 and Φe(Zi) = point, then the intersection
matrix

M = ‖Zi · Zj‖ < 0.

Thus Z can be contracted in the U above.
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I There exist ai > 0 such that for m� 0

LH,e −
∑

ai [Zi ]

is ample (cannot choose ai = 1; they depend on the
maximal eigenvalue of M .

I In general uses of the main result are somewhat subtle
and still being worked out — for A ∈ σ̌ and C ⊂ Bp a
curve

0 < degC (LA) =
∑
i∈I

〈A,Ni〉 degC

5
0

(N∗
Zi/B

)−
∑
j∈J

〈A,Nj〉

=

0

(Zj ·C )

and these inequalities must be played off against one another
(e.g., the Z 2

i < 0 and Zi · Zj = 0, i 6= j , in the dimB = 2
result).
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I Among the properties a line bundle L→ X over a smooth
variety can have are

— L is nef
— L is big

}
numerical

— L is free
— L is ample

}
geometric
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The Hodge theory literature abounds with results of the first
two types,† but those of the second type are more scarce. One
reason seems to be the lack of global information about Φe

∣∣
Z

.
The following is an illustration of what can be done using
Theorem C.
First we recall the Higgs bundle construction

— E p = Fp/Fp+1, E = ⊕E p

— θp : E p → E p−1 ⊕ Ω1
B induced by ∇, θ = ⊕θp

— ∇2 = 0 is equivalent to θ ∧ θ = 0

— δ : TB → F−1 End(E ) induced by θ.

On (B ,Z ) we have

δe : TB(− log Z )→ F−1 End(Ee)

†e.g., certain moduli spaces are of log general type or are hyperbolic.
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(LT) Local Torelli assumption: δe is injective.

Theorem: LT implies

(a) (∗) above is satisfied

(b) KB + Z is free

(c) KB + Z is ample ⇐⇒
{

the Gauss map G(Φ1) has
no positive dimensional fibres

}
For any map ϕ : W → J from a k-dimensional variety W to a
complex torus the Gauss map is

G (ϕ) : W → Gr(k ,TeJ)

sending w ∈ W to ϕ∗(TwW ) ⊂ TeJ .‡

‡G (ϕ) is a finite map ⇐⇒ KW is ample.
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I Example of case (b): B = A
Tor

g and fibres of

A
Tor

g
π−→ A

SBB

g = Φe(B) are abelian varieties and Φ :=
identity, then KB + Z = π∗O(2).

I ωe := Chern form of LH,e → B ; gives complete Kähler
metric on B — then

c1ωe 5 −Ricωe 5 c2ωe + σ

where σ = 0 is bounded and σ > 0 if G (Φ1) is a finite
mapping.

I With some details still to be checked, another result is
I If LT is satisfied at a general point, then there is an `0

and a k0(`0) such that for k = k0

kLe − `0Z is free.

If the details are completed this would give a sharpened
version of the BBT result without the assumptions that Γ
is arithmetic.
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I Finally we give some speculation on the

Question: What are the natural completions of images of
period mappings?

Given Φ : B → Γ\D and B as above at the set level one may
define maps

Φe

=
Φ0,Φ1,Φ2,Φ3, . . .

Theorem B states that the Φm for m = 3 are determined by
Φ0,Φ1Φ2. The word “determined” means “determined up to
constants,” like integration constants in calculus. The
geometric/arithmetic meaning of these constants is yet to be
worked out.
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In the classical case when the period domain D is Hermitian
symmetric we have only Φ0,Φ1,Φ2, so this is not an issue.
That being said, provisionally we propose

PSBB = P = Image Φ0 (minimal)

PTor = Image{Φ0,Φ1,Φ2} (maximal)

for the completions of Φ(B) = P . The reason for the “Tor” is
that Φ2 is only defined on Zariski open sets W ∗ in the fibres
W of {Φ0,Φ1}, and

Φ2 : W ∗ → spanZ(σI∪J)

spanZ(σI )
⊗ C∗;

thus Φ2 maps to essentially a product of C∗’s. Defining Φ2 on
the complete fibres of Φ1 will necessitate at least partially
completing the products of C∗’s.
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Journées de Géometrie Algébrique d’Angers, Juillet
1979/Algebraic Geometry, Angers, 1979, pp. 107–127,
Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown,
Md., 1980.

[CM-SP] J. Carlson, S. Müller-Stach, and C. Peters, Period
mappings and period domains, Cambridge Studies in
Advanced Mathematics 85, 2nd edition, Cambridge
University Press, Cambridge, 2017. MR 2012297. Zbl
1030.14004.

20 / 21



21/21

[GG] M. Green and P. Griffiths, Positivity of vector bundles and
Hodge theory, 2018. arXiv:1803.07405.

[GGLR] M. Green, P. Griffiths, R. Laza, and C. Robles,
Completion of period mappings and ampleness of the
Hodge bundle, 2017. arXiv:1708.09523v1.

[G] P. Griffiths, Hodge Theory and Moduli, Clay Lecture
given at the Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK 2020.
https://hdl.handle.net/20.500.12111/7885

[Z] K. Zuo, On the negativity of kernels of Kodaira-Spencer
maps on Hodge bundles and applications, Asian J. Math.
4 no. 1 (2000), 279–301, Kodaira’s issue. MR 1803724.
Zbl 0983.32020. Available at
https://doi.org/10.4310/AJM.2000.v4.n1.a17.

21 / 21


