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Abstract. This work is part of a project to construct completions of period mappings

Φ : B → Γ\D. A proper topological SBB-esque completion Φ0 : B → ℘0 is constructed.

The fibres of Φ0 are projective varieties, and the image ℘0 is a union of quasi-projective

varieties; one wants to endow the topological completion with a compatible algebraic

structure. This raises questions about: (i) the global geometry of the Φ0–fibres; and (ii)

the existence of period matrix representations on neighborhoods of such fibres over which

the restricted extension is still proper. The purpose of this paper is to investigate these

questions.

1. Introduction

1.1. Overview. The motivation behind this work is to construct completions of period

mappings, and to apply those completions to study moduli and their compactifications.

The goal is to develop an analog of the Satake–Baily–Borel (SBB) compactification and

Borel’s extension theorem [BB66, Bor72] for arbitrary period mappings; see Conjecture

1.6 for a precise statement. The conjecture raises a number of questions about the global

asymptotic structure of a period mapping (§1.4). The purpose of this work is to establish

properties of this structure.

Remark 1.1. We distinguish the global asymptotic structure studied here from both global

properties of the period mapping and the local asymptotic structure. The first concerns

properties of a variation of Hodge structures over a quasi-projective base. This is a classical

and much studied subject beginning with [Gri70], and with recent developments including

[BKT20, BBT23, BBKT20, BBT20]. The second concerns local properties of degenerations

of period mappings beginning with the nilpotent and SL(2) orbit theorems [Sch73, CKS86].1

The orbit theorems describe the period mapping over a local coordinate chart at infinity.

The period map will not (in general) be proper when restricted to this local coordinate

Date: April 27, 2023.

2010 Mathematics Subject Classification. 14D07, 32G20, 58A14.

Key words and phrases. Period map, variation of Hodge structure.

Robles is partially supported by NSF DMS 1611939, 1906352.
1Significant applications include the Iitaka conjecture [Vie83a, Vie83b, Kol87] and the arithmetically of

Hodge loci [CDK95].

1



2 GREEN, GRIFFITHS, AND ROBLES

chart. Very roughly, what we mean by the global asymptotic structure is properties over

larger neighborhoods at infinity where both the period map and its extension are proper,

cf. §1.5.

1.2. The set-up. We consider triples (B,Z; Φ) consisting of a smooth projective variety

B and a reduced normal crossing divisor Z whose complement

B = B\Z

has a variation of (pure) polarized Hodge structure

(1.2a)
Fp V B̃ ×π1(B) V

B

⊂

inducing a period map

(1.2b) Φ : B → Γ\D .

Here V = VZ⊗ZQ is a rational vector space with underlying lattice VZ; D is a period domain

parameterizing pure, weight n, Q–polarized Hodge structures on the vector space V ; and

π1(B) � Γ ⊂ Aut(V,Q) is the monodromy representation. Without loss of generality the

period map (1.2b) is proper [GS69]. The image

℘ = Φ(B)

is a quasi-projective variety [BBT23]. The motivating goal behind this paper is to construct

a projective compactification ℘ of ℘ and an extension Φε : B → ℘ of the period map.

The compactification should be obtained from Hodge theoretic data at infinity; that is,

from the limiting mixed Hodge structures of the period map. Write

Z = Z1 ∪ Z2 ∪ · · · ∪ Zν ,

with smooth irreducible components Zi. We denote by

ZI =
⋂
i∈I

Zi

the closed strata, and Z∗I ⊂ ZI the Zariski open smooth locus. As we approach a point

b ∈ Z∗I the period map Φ degenerates to a limiting mixed Hodge structure (W,F ) that is

polarized by nilpotent operators in the local monodromy cone σI . The Hodge filtration

F ∈ Ď will vary along Z∗I , and is well-defined only up to the action of exp(CσI) on the

compact dual Ď. This induces a map

(1.3a) ΦI : Z∗I → (exp(CσI)ΓI)\DI ,
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cf. §A.2. Nonetheless, because N(Wa) ⊂Wa−2 for all N ∈ σI , the induced Hodge filtration

F p(GrWa ) on the graded quotient GrWa = Wa/Wa−1 is well-defined. In this way we obtain a

period map

(1.3b) Φ0
I : Z∗I → ΓI\D0

I

factoring through ΦI .

Theorem† (Theorem 2.20). The maps (1.3b) can be patched together to define an extension

(1.4) Φ0 : B → ℘0

of Φ : B → ℘. The image ℘0 is a Hausdorff topological space compactifying ℘, and is a finite

union (not necessarily disjoint) of quasi-projective varieties. The map Φ0 is continuous and

proper, and the fibres are projective algebraic varieties.

(In the interest of conciseness, many the results discussed in this Introduction are stated

imprecisely and/or incompletely; this is indicated by the superscript †. The reader will find

the formal statements, with all necessary definitions, in the body of the paper.)

Remark 1.5. The completion Φ0 : B → ℘0 encodes the variations of limiting mixed Hodge

structures modulo extension data along the strata. This is the sense in which ℘0 is a minimal

Hodge theoretic compactification.

1.3. The motivating conjecture. Theorem 2.20 gives us a candidate for the general-

ization the Satake–Bailey–Borel compactification and Borel’s extension theorem. More

precisely, this paper is motivated by Conjecture 1.6.

Theorem† (Theorem 2.24). The Stein factorization

B ℘̂ ℘
Φ̂

Φ

of the period mapping extends to a “Stein factorization”

B ℘̂0 ℘0

Φ̂0

Φ0

of (1.4). The fibres of Φ̂0 are connected, and the fibres of ℘̂0 → ℘0 are finite. And, as in

Theorem 2.20, the image ℘̂0 is a Hausdorff topological space compactifying ℘̂, and a finite

union of normal complex analytic varieties.

Conjecture 1.6 ([GGLR20]). The image Φ̂0(B) = ℘̂0 is projective algebraic, and the

extension Φ̂0 : B → ℘̂0 is an algebraic morphism.
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Remark 1.7. In the classical case that D is hermitian and Γ is arithmetic, a stronger version

of Conjecture 1.6 holds: ℘0 is the closure of ℘ in the Satake-Baily-Borel compactification

of Γ\D, and Φ0 is Borel’s extension [BB66, Bor72]. In particular, if D is hermitian, the

extension (1.4) is algebraic.

Theorem 1.8 ([GGLR20]). If dimB = 2, then Conjecture 1.6 holds.

For more on the dimB = 2 case, see [GG22].

Remark 1.9. Bakker–Brunebarbe–Tsimerman have applied the o-minimal structures of

model theory to prove the long standing conjecture that the image ℘ = Φ(B) of the period

map is quasi-projective [BBT23]. In particular, they show that the (augmented) Hodge line

bundle

Λ = det(Fn)⊗ det(Fn−1)⊗ · · · ⊗ det(Fd(n+1)/2e)

is semi-ample over B, and that ℘ = Proj
(
⊕dH0(B, dΛ)

)
. Note however that this result

does not suffice to establish the existence of a completion of the period map. What is

missing is to show that Deligne’s extension Λe is semi-ample over B. This is conjectured

to be the case in [GGLR20], and proven there for dim℘ = 1; and for dimB = 2. What we

can say in this direction is

Theorem† (Corollary 3.10). A power of the line bundle Λe descends to ℘̂0.

Corollary 3.10 is a consequence of (i) the existence of a neighborhood O0 ⊂ B of A0

over which Φ0 is proper and admits a period matrix representation (§1.5); and (ii) strong

constraints on the monodromy ΓA0 of the variation of Hodge structure over B ∩ O0 (§3.1).

There is also an arithmetic component of the argument (Theorem 3.22, which asserts that

the values of a certain character are roots of unity) requiring the construction of a rational

representation ΓA0 → Aut(U) with certain properties (§3.5.1). The construction is intricate

(because ΓA0 need not commute with the local monodromy at infinity), and requires that

we work with a more expansive notion of what it means to polarize a mixed Hodge structure

than has previously been considered. (See §3.5.5 for an overview.)

It is an open question whether or not Λe descends to ℘0.

1.4. The motivating questions. The main challenge that arises when trying to prove

Conjecture 1.6 is to show that ℘̂0 admits the structure of a complex analytic variety. It will

then follow from [GGLR20] that Λe is ample over ℘̂0. This raises a number of questions,

including two that are the focus of this paper. Let A0 be a connected component of a

Φ0–fibre.

(i) Does A0 admit a neighborhood O0 ⊂ B with the following properties? The restriction of

Φ0 to O0 is proper, and the holomorphic functions on O0 separate the fibres of Φ0
∣∣
O0?
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(ii) What is the global geometry A0?

Remark 1.10. Question (i) arises because this would establish the desired complex analytic

structure, by either [BB66, Theorem 9.2] or [Gra83]. Question (ii) is relevant because we

are conjecturing that there is a map contracting the fibre A0, cf. [Gra62, Art70, Fuj75].

1.5. Period matrix representations. A partial answer to Question §1.4(i) is given by

Theorem† (Corollaries 2.25 & 3.7). Given a connected component A0 of a Φ0–fibre, there

exists a neighborhood O0 ⊂ B of A0 with the properties:

(a) the restriction of Φ0 to O0 is proper, and

(b) the restriction of Φ to O0 = B ∩ O0 admits a period matrix representation.

What is meant by “admits a period matrix representation” is discussed in Definition 1.12.

The theorem allows us to reduce Conjecture 1.6 to the problem of extending functions off

Z ∩ O0.

Theorem† (Theorem 3.30). Conjecture 1.6 holds if the holomorphic functions on ZI ∩ O0

extend to holomorphic functions on O0.

This reduction of the conjecture is deduced from [BBT23] and the following theorem.

Let Fpe and Λe denote Deligne’s extensions of the Hodge vector bundle and augmented

Hodge line bundle to B.

Theorem† (Theorem 3.8 and Corollary 3.9). There exists mp > 0 so that the power

det(Fpe )mp is trivial over O0. In particular, there exists m > 0 so that the power Λme is

trivial over O0.

Remark 1.11. As noted in [GGLR20], the existence of theses trivializations implies that

implies that det(Fpe )mp and Λ⊗me descend to the finite cover ℘̂0. Returning to Question

1.4(i), and the problem of separating fibres, it follows from this triviality and [BBT23],

that: (i) the functions on O0 separate the fibres of Φ̂0 over O; and (ii) functions on ZI ∩O0

separate the fibres of Φ̂0 over Z∗I ∩O0. So what is left to establish an analytic structure on

℘̂0 is to show that functions on ZI ∩ O0 can be extended to O0.

Definition 1.12. Period matrix representations are closely related to Schubert cells (§A.5).

The compact dual Ď ⊃ D can be covered by Zariski open Schubert cells. Each such cell is

biholomorphic to Cm, with m = dimD. (These are local coordinate charts on Ď.) We say

that the period mapping Φ can be represented by a period matrix over an open set O ⊂ B

when the following two conditions hold:

(i) The lift Φ̃ : Õ → D of Φ to the universal cover of O takes value in a Schubert cell

S ⊂ Ď.
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(ii) The monodromy ΓO ⊂ Γ of the variation over O preserves D ∩ S.

Under these conditions, the pullback of the coordinates on S→ Cm yields the period matrix

representation of Φ|O. If ΓO is nontrivial, then the entries of the period matrix may be multi-

valued (cf. the logarithm in Example 1.17). Nonetheless, we may think of this as giving us

a (possibly multi-valued) coordinate representation of Φ|O.

Example 1.13. The fact that period maps are locally liftable implies that they can always

be locally represented by period matrices. Schmid’s nilpotent orbit theorem implies that

this property also holds at infinity: points b ∈ Z admit local coordinates U ⊂ B so that the

restriction of Φ to U = B ∩U can be represented by a period matrix. The expression (1.18)

is an example of one such representation.

1.6. The geometry at infinity. Question §1.4(ii) is answered by Corollaries 5.5 and 5.8,

which may be summarized as follows. The variation of limiting mixed Hodge structures

over Z∗I defines a map Φ1 : A0∩Z∗I → JI , with JI an abelian variety. This map encodes the

level one extension data in the variation of limiting mixed Hodge structure along A0 ∩ Z∗I .

It extends to the Zariski closure A0
I = A0 ∩ ZI ,

(1.14) Φ1 : A0
I → JI .

The abelian variety admits a family {LM} of ample line bundles. (The latter was indepen-

dently observed in [BBT20].)

Theorem† (Corollary 5.5). There exist integers κi = κi(M) so that the line bundle LM is

related to the normal bundles NZi/B by

(1.15) (Φ1
∣∣
A0
I
)∗(LM ) =

∑
κi[Zi]|A0

I
=
∑

κi NZi/B
∣∣∣
A0
I

.

Remark 1.16. The expression (1.15) relates the geometry along A0 to the geometry normal

to Z ⊂ B. Moreover, by Theorem 6.1, this is the central geometric information that arises

when considering the variation of limiting mixed Hodge structure along A0
I .

Theorem† (Corollary 5.8). If the differential of Φ1
∣∣
A0
I

is injective and M ∈ Nsl2
I , then the

line bundle
∑
κiN ∗Zi/B

∣∣
A0
I

is ample.

Example 1.17. Consider a weight n = 1 variation of Hodge structure with Hodge numbers

h = (2, 2). Suppose that dimB = 2, and fix local coordinates (t, w) ∈ ∆2 = U on B

centered at a point b ∈ Z so that Z = {t = 0} locally. (Here ∆ ⊂ C is the unit disc.)

Suppose the local nilpotent logarithm of monodromy about t = 0 has rank one. (This is the

mildest possible non-trivial degeneration. Imagine a 2-parameter family of smooth genus
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two curves acquiring a node.) Then the restriction of Φ to ∆∗×∆ = U may be represented

by the period matrix

(1.18) Φ̃(t, w) =


1 0

0 1

α(t, w) λ(t, w)

ν̂(t, w) α(t, w)

 ,
with α(t, w), λ(t, w), ν(t, w) = ν̂(t, w)− log(t)/2πi holomorphic functions on ∆2.

We can choose the neighborhood O0 so that the monodromy over O0 takes the form

γ =


1 0 0 0

a 1 0 0

b 0 1 0

c b −a 1

 ,
with a, b, c ∈ Z. Then the period matrix Φ̃(t, w) transforms as

γ · Φ̃(t, w) =


1 0

0 1

α(t, w) + b− aλ(t, w) λ(t, w)

ν̂(t, w) + c− ab + 2aα(t, w) + a2λ(t, w) α(t, w) + b− aλ(t, w)


Under this action, ν(t, w) transforms as

ν(t, w) 7→ ν(t, w) + c− ab + 2aα(t, w) + a2λ(t, w) ,

so that

τ(t, w) = exp(2πi ν̂(t, w)) = t exp(2πi ν(t, w))

transforms as

τ(t, w) 7→ t exp 2πi (ε(t, w) + a2λ(t, w)− 2aα(t, w))

= τ(t, w) exp 2πi (a2λ(t, w)− 2aα(t, w)) .

This is the functional equation for the classical theta function. We may normalize our choice

of coordinates (t, w) so that ν(t, w) = 0. Then, this computation implies that t · ϑ, with ϑ

a section of the dual to the theta line bundle, is globally well-defined along the fibre.

Acknowledgements. We have benefited from illuminating conversations and correspon-

dence with several colleagues. With respect to the discussion of the conjecture in §3.6,

special thanks are due to Gregory Pearlstein for pointing out the role of equivalence re-

lations in such questions, and to Daniel Greb for pointing out the Moishezon structure

and the related [GSTW20, Corollary 1.3]. We are indebted to the anonymous referee for

identifying a gap in the proof of Theorem 3.8.
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Organization of the paper. • In §2.1 we review the Lie theoretic structure of the ex-

tension data in the limiting mixed Hodge structures along Z∗I . In §2.2 we use the reduced

limit period map to establish a very close relationship between the restriction of Φ0 to Z∗I
and the topological boundary of the period domain in the compact dual (Proposition 2.7).

• The topological completion Φ0 : B → ℘0 is constructed in §§2.3–2.4.

• In §§3.1–3.2 we show that A0 admits a neighborhood O0 ⊂ B with the property that

the restriction Φ0 to O0 is still proper, and admits a period matrix representation.

• In §§3.3–3.4 we show that some multiple det(Fpe )⊗mp → B of the extended line

bundles are trivial over O0. From this it follows that a power Λ⊗me descends to the finite

cover ℘̂0 → ℘0 (Corollary 3.10).

• In §3.6 we reduce Conjecture 1.6 to an extension problem.

• In §4.1 we study the monodromy about A0
I = A0 ∩ ZI . In §4.2 we construct explicit

sections sM of line bundles over a neighborhood O0
I ⊃ A0

I . These sections will be used in

§5 to establish (1.15), which relates the geometry of the Φ0–fibre A0 to the normal bundles

NZi/B.

• In §5 we study the level one extension data map A0
I → JI . In §6 we show that, modulo

a nilpotent orbit, the higher level extension data is locally constant on fibres of (1.14).

• We need to set notation and review the local behavior of period maps at infinity.

Because this material is classical, we streamline the presentation by placing this this review

(which also includes the proofs of a few technical lemmas) in §§A–B.

Contents
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2. Period mappings at infinity 8
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4. Neighborhood of a Φ̂0
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5. Level one extension data 29
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2. Period mappings at infinity

2.1. A tower of maps: extension data. To understand the geometry of the fibres of

Φ0, we note that what varies along the fibre A0 is the extension data of the mixed Hodge
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structure (W,F ). This suggests that we study of the geometry of the extension data. To

that end we realize (1.3) as the extremal maps in a tower

(2.1)

Z∗I (exp(CσI)ΓI)\DI

(exp(CσI)ΓI)\Da
I

(exp(CσI)ΓI)\D2
I

ΓI\D1
I

ΓI\D0
I ,

ΦI

ΦaI

Φ2
I

Φ1
I

Φ0
I

with 3 ≤ a ≤ 2n− 1, that is defined as follows.

2.1.1. Mixed Hodge structures. Given a MHS (W,F0), define Hodge numbers fp` := dimF p0 (GrW` ),

and set

DW = {F ∈ Ď | (W,F ) is a MHS, dimF p(GrW` ) = fp` } .

Set

G = Aut(V,Q) ,

and let PW ⊂ G be the Q–algebraic group stabilizing the weight filtration. (See §A.1.1 for

further discussion of group notation.) Given any g ∈ PW , there is an induced action on the

quotients W`/W`−a. The normal subgroups

P−aW = {g ∈ PW | g acts trivially on W`/W`−a ∀ `}

define a filtration PW = P 0
W ⊃ P

−1
W ⊃ · · · . The group

(2.2) GW = (PW,R/P
−1
W,R) n P−1

W,C

acts transitively DW , [KP16].

2.1.2. Limiting mixed Hodge structures. Now suppose that the MHS (W,F0) is polarized

by a nilpotent cone

σI = spanR>0
{Ni | i ∈ I} ⊂ End(VR, Q)

of commuting logarithms of monodromy. (Here exp(Ni) is a local monodromy operator

about Z∗i .) Define

DI = {F ∈ DW | (W,F ) is polarized by σI} .
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Then W = W (σI) implies that the Q–algebraic group CI ⊂ Aut(V,Q) centralizing the cone

σI is a subgroup of PW . Note that this centralizer also admits a filtration CI = C0
I ⊃ C

−1
I ⊃

· · · by normal subgroups

C−aI = CI ∩ P−aW .

The group

GI = (CI,R/C
−1
I,R) n C−1

I,C

acts transitively DI , [KP16].

2.1.3. Definition of the tower. Let

ΓI = Γ ∩ CI,Q .

The variation of limiting mixed Hodge structures along Z∗I in §1.2 induces the map ΦI

of (2.1), cf. §A.2.4. The maps Φa
I are defined by passing to the quotient spaces Da

I =

C−a−1
I,C \DI . Define

℘aI = Φa
I (Z

∗
I ) .

We have natural surjections ℘a+1
I � ℘aI . Theorem 6.1(c) implies

Theorem 2.3. The maps ℘a+1
I � ℘aI are finite to one for all a ≥ 2.

We have tower of fibre bundles

DI � · · ·� Da+1 � Da
I � · · ·� D0

I .

We say that the quotient Da
I has automorphism group GaI = GI/C

−a−1
I,C to indicate that

GI acts on Da
I , with the normal subgroup C−a−1

I acting trivially. The base space D0
I is a

Mumford–Tate domain with Mumford–Tate group G0
I .

Definition 2.4 (Extension data of LMHS). If δI = δI,F = δW,F ∩ DI is the fibre of the

surjection DI → D0
I and Γ−1

I = Γ∩C−1
I,Q, then Γ−1

I \δI,F is the (polarized) extension data of

the limiting mixed Hodge structure (W,F ). The image δaI = δaI,F of δI under the projection

DI → Da
I is also a fibre of Da

I � D0
I , and we say that Γ−1

I \δaI,F is the (polarized) extension

data of level ≤ a.

Remark 2.5. Theorem 2.3 asserts that the level ≤ 2 extension data map Φ2
I determines the

full extension data map ΦI up to constants of integration. Additionally the level 2 extension

data is discrete. (The data not given by constants of integration is given by sections of line

bundles with fixed divisor, Theorem 6.1(c) and Remark 6.2.) So it is not surprising that we

will see that the answer to Question §1.4(ii) is to be found in studying the level one extension

data (which is given by the map Φ1
I) along the the Φ0

I–fibre A0 ∩Z∗I . This restriction takes

value in some ΓI\δ1
I,F . The spaces ΓI\δ1

I,F and Γ\δ1
W,F of level one extension data carry

rich geometric structure. As observed by Carlson, these spaces are tori, and ΓI\δ1
I,F is an
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abelian subvariety when F p(GrW−1) defines a level one Hodge structure [Car87]. To this we

add Theorem 5.3, and Corollary (5.5); the later encodes the central geometric information

that arises when considering the VLMHS along A0
I .

2.2. Reduced limit period map. The purpose of this section is to describe an important

relationship between the period map Φ0
I : Z∗I → ΓI\D0

I and the topological boundary ∂D

of the period domain in the compact dual Ď. In general, the limit Hodge filtration F

associated with a point b ∈ Z∗I (cf. §A.2.4) will not lie in the boundary. However, there is

a “näıve”, or reduced limit F∞(b), that does lie in ∂D (§2.2.1). Each of these limits takes

value in a CI,R–orbit OI ⊂ ∂D, and there is an induced map

(2.6) Φ∞I : Z∗I → ΓI\OI .

Let

℘∞I = Φ∞I (Z∗I ) ⊂ ΓI\OI
denote the image.

Proposition 2.7. The period map Φ0
I factors through the reduced limit period map Φ∞I .

Moreover, the map Φ∞I is locally constant on Φ0
I–fibres. In particular, the map πI : ℘∞I → ℘I

is finite.

The proposition is proved in §§2.2.2–2.2.4. It imposes an additional constraint on the

monodromy over a neighborhood O0 of a A0 (Lemma 3.3). This constraint makes it possible

for us to show that Φ|O0 admits a period matrix representation (Corollary 3.7).

2.2.1. Definition. Fix a local lift Φ̃(t, w), and let (W,F, σ) be the associated limiting mixed

Hodge structure (§§A.2.2–A.2.4). The reduced limit period

F∞(w) = lim
y→∞

Φ̃(z, w) = lim
y→∞

exp(iyN)g̃(0, w) · F ∈ D

is independent of our choice of N ∈ σ, [GGK13, KP14, GGR17]. (The limit is understood

to be taken with x bounded.) The two filtrations F and F∞(0) are related by the Deligne

splitting (§A.3)

(2.8) F p =
⊕
a≥p

V a,b
W,F and F p∞(0) =

⊕
b≤n−p

V a,b
W,F .

In particular, the Lie algebra f∞ of the stabilizer StabGC(F∞(0)) is

(2.9) f∞ =
⊕
q≤0

gp,qW,F .

Recalling that the map g̃(0, w) takes value in CI,C (§A.2.4), we see that

(2.10) F∞(w) = g̃(0, w) · F∞(0) .
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In particular, the map F∞ : {0}×∆r → Ď is holomorphic, and takes value in the CI,C–orbit

of F∞(0). What is less obvious is that: (i) The holomorphic F∞(0, w) takes value in the

real orbit

OI = CI,R · F∞(0) ⊂ Ď .

(ii) The real orbit OI is open in the (complex) orbit CI,C · F∞(0), and so is a complex

submanifold of Ď. See [GG15, KP14] for details.

The reduced limit F∞ is independent of the local coordinates (t, w) expressing Φ̃. So

the reduced period limit induces a well-defined holomorphic map (2.6).

2.2.2. Proof: period map factors through reduced limit. Observe that there is a natural

identification

D0
I ' C−1

I,R\OI .

This identification induces

(2.11) πI : ΓI\OI → ΓI\D0
I .

We have

(2.12) Φ0
I = πI ◦ Φ∞I .

In particular, πI : ℘∞I � ℘I .

Remark 2.13. When D is hermitian the map (2.11) is an isomorphism and Φ0
I = Φ∞I .

2.2.3. Proof of finiteness: formulation of the argument. It is enough to show that F∞(w) is

constant along the Φ0–fibres in {0} ×∆r. This is a consequence of the infinitesimal period

relation. The essential point is that the map

(2.14) w 7→ g̃(0, w) · F is horizontal.

Recall that g̃(t, w) takes value in exp(f⊥), and g̃(0, w) takes value in exp(cI,C), cf. §A.3

and §A.2.4. We have

f⊥ ∩ cI,C =
⊕
p < 0

p + q ≤ 0

cp,qI,F .

Note that

f⊥ ∩ cI,C ∩ f∞ =
⊕
p < 0
q ≤ 0

cp,qI,F ,

and consider the decomposition

f⊥ ∩ cI,C = d ⊕ e ⊕ (f⊥ ∩ cI,C ∩ f∞)
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defined by

d =
⊕
p < 0

p + q = 0

cp,qI,F and e =
⊕

p < 0 < q
p + q < 0

cp,qI,F .

Each of these three summands is a Lie subalgebra of f⊥ ∩ cI,C.

Since f⊥ ∩ cI,C is nilpotent, the function g̃(0, w) may be uniquely decomposed as

g̃(0, w) = e(w)f(w)s(w)

with f(w) ∈ exp(d), e(w) ∈ exp(e) and s(w) ∈ exp(f⊥ ∩ cI,C ∩ f∞). Since g̃(0, w) =

e(w) f(w)s(w)f(w)−1 f(w), and both e(w) and f(w)s(w)f(w)−1 take value in the unipotent

radical C−1
I,C, we may

identify Φ0
I(0, w) with f(w).

Furthermore, since f∞ is the stabilizer of F∞(0) in f, (2.10) implies we may

identify F∞(w) with e(w)f(w).

So to prove the lemma, it suffices to show that

e(w) is locally constant along f–fibres.

So we assume

(2.15a) df = 0 ,

and will show that de = 0; equivalently,

(2.15b) e−1de = 0 .

2.2.4. Proof of finiteness: horizontality. Horizontality is the condition

(2.16) (ξ−1dξ)p,q = 0 , ∀ p ≤ −2 ,

with (ξ−1dξ)p,q the component of the f⊥–valued ξ−1dξ taking value in gp,qW,F , cf. §A.5 and

§A.4. At (0, w) we have

ξ−1dξ = (efs)−1d(efs)

= Ad−1
fs (e−1de) + Ad−1

s (f−1df) + s−1ds(2.17)

(2.15a)
= Ad−1

fs (e−1de) + s−1ds .

Note that e−1de and s−1ds take value in e and f∞, respectively. Furthermore, (A.6d) and

fs ∈ exp(f⊥ ∩ cI,C) imply that

e−1de = 0 if and only if
(

Ad−1
fs (e−1de)

)p,q
= 0

for all q > 0 and p+ q < 0. At the same time (A.6d), (2.16) and (2.17) imply that

0 = (ξ−1dξ)p,q =
(

Ad−1
fs (e−1de)

)p,q
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for all q > 0 and p + q < 0. The desired (2.15b) now follows, completing the proof of

Proposition 2.7.

2.3. Extension to proper maps. The period map Φ0
I : Z∗I → ΓI\D0

I may not be proper,

however it has a proper extension [GS69]. Let Π be the finest possible partition of the

power set {I} of {1, . . . , ν} that satisfies the following property: given π ∈ Π and I ∈ π, if

I ⊂ J and ΦI extends to Z∗J then J ∈ π. The Γ–conjugacy class [W ] of the weight filtration

is well-defined along

Zπ =
⋃
I∈π

Z∗I .

The intersection ZI ∩ Zπ is the weight-closure of Z∗I . The maps Φ0
I and Φ1

I in the tower

(2.1) extend to the weight-closure (Lemma B.1), as follows. Given I, J ∈ π with I ⊂ J we

have Z∗J ⊂ ZI ∩ Zπ and ΓJ ⊂ ΓI . It is also the case that DJ ⊂ DI (§B.4). This induces

maps ΓJ\Da
J → ΓI\Da

I , and a commutative diagram

Z∗J ΓJ\D1
J ΓI\D1

I

ΓJ\D0
J ΓI\D0

I .

Φ1
J

Φ0
J

The resulting

(2.18)

ZI ∩ Zπ ΓI\D1
I

ΓI\D0
I

Φ1
I

Φ0
I

are proper extensions of the maps Φ0
I and Φ1

I in (2.1). The proper mapping theorem implies

that the images

℘0
I = Φ0

I(ZI ∩ Zπ) and ℘1
I = Φ1

I(ZI ∩ Zπ)

are complex analytic spaces. We reiterate that the image ℘0
I of Φ0

I parameterizes σI–

polarized Hodge structures (a.k.a., level 0 extension data) along ZI ∩Zπ, and the image ℘1
I

of Φ1
I parameterizes the extension data of level ≤ 1 along ZI ∩ Zπ.2

2If we restrict to local lifts at infinity we can say more: it is a corollary of Lemma B.20 that the maps

(2.18) patch together nicely to locally define analytic maps along Zπ.
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2.4. Two topological completions. Consider the disjoint unions

℘̃0
π =

⋃
I∈π

℘0
I and ℘̃1

π =
⋃
I∈π

℘1
I .

Following the discussion of §2.3, if b ∈ ZI ∩ ZI′ ∩ Zπ then we identify the two points

x = Φ0
I(b) ∈ ℘0

I and x′ = Φ0
I′ ∈ ℘0

I′ . Let ℘0
π be the quotient of ℘̃0

π by the equivalence

relation generated by this identification. Define ℘1
π analogously. Set

℘0 =
⋃
℘0
π and ℘1 =

⋃
℘1
π .

Note that we have injections

℘0
I ↪→ ℘0

π ↪→ ℘0 and ℘1
I ↪→ ℘1

π ↪→ ℘1 .

Define maps

(2.19) B ℘1 ℘0

Φ1

Φ0

by specifying Φ0
∣∣
ZI∩Zπ

= Φ0
I and Φ1

∣∣
ZI∩Zπ

= Φ1
I .

Let ε = 0, 1. Fix a Riemannian metric on on B. Since the fibres of Φε are compact,

there is an induced metric on ℘ε. Endow ℘ε with the metric topology.

Theorem 2.20. The topology on ℘ε is Hausdorff. The induced subspace topology on ℘εI
coincides with the natural topology on ℘εI as a complex analytic space. The map Φε : B → ℘ε

is continuous and proper, and ℘ε is a topological compactification of ℘.

Proof. It is clear that that the induced subspace topology coincides with the natural topol-

ogy on ℘εI . The topology on ℘ε is Hausdorff if and only if the map Φε is continuous. In this

case, the map is necessarily proper. So it suffices to establish the continuity of Φε.

Suppose that bi ∈ B is a sequence of points converging to b∞ ∈ B. Let Ai and A∞

be the fibres of Φε through bi and b∞, respectively. Let b′i ∈ Ai. Since B is compact,

{b′i} contains a convergent subsequence; abusing notation, let {b′i} denote that convergent

subsequence with limit b′∞. The essential point is to prove that

(2.21) b′∞ = lim
i→∞

b′i ∈ A∞ .

Informally this says

lim
i→∞

Ai ⊂ A∞ .

The local analog of this assertion is Lemma B.5. The “globalization” will follow from a

certain finiteness result for Siegel domains.

First assume that both sequences {bi} and {b′i} are contained in B. Fix two coordinate

charts U and U
′

centered at b∞ and b′∞ respectively, and local lifts Φ̃(t, w) and Φ̃′(t, w).

Without loss of generality, bi ∈ U and b′i ∈ U′. Since bi, b
′
i ∈ Ai, there exists γi ∈ Γ so that
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Φ̃′(b′i) = γi · Φ̃(bi). Shrinking U if necessary, there exists a finite union D ⊂ D of Siegel sets

so that Φ̃(Ũ) ⊂ D. (In the case of one-variable degenerations this is a corollary of Schmid’s

SL(2) orbit theorem [Sch73, (5.26)]. In the general case, this is [?, Theorem 1.5], and

is key to the Bakker–Klingler–Tsimerman result that period maps are Ran,exp–definable.)

Likewise, we have a finite union D′ ⊂ D of Siegel sets so that Φ̃′(Ũ′) ⊂ D′. It follows that

there are only finitely many distinct γi. Restricting to a subsequence with all γi = γ equal,

we have Φ̃′(b′i) = γ · Φ̃(bi). Since we may replace the local lift Φ̃′ with γ−1Φ̃′, this forces b∞

and b′∞ to lie in the same Φε–fibre. This establishes the desired (2.21) in the case that {bi}
and {b′i} are contained in B.

For the general case, we may assume without loss of generality that {bi} ⊂ Z∗I and

{b′i} ⊂ Z∗I′ with W I = W I′ . We leave it an exercise for the reader to verify that Lemma

B.5 allows us to modify the argument above to treat the general case. �

2.5. A “Stein factorization” of Φε. Since the period mapping Φ : B → Γ\D is proper,

we may consider the Stein factorization

(2.22a) B ℘̂ ℘ .
Φ̂

Φ

The fibres of Φ̂ are connected, the fibres of ℘̂ → ℘ are finite, and ℘̂ is a normal complex

analytic space. Likewise, we have Stein factorizations

(2.22b)

℘̂1
I ℘1

I

ZI ∩ Zπ

℘̂0
I ℘0

I

Φ̂1

Φ̂0

of the maps (2.18). Again, the fibres of Φ̂ε
I are connected, the fibres of ℘̂εI → ℘εI are finite,

and ℘̂εI is normal.

The construction in §2.4 applies here to define ℘̂ε analogously to ℘ε. Again, we have

injections ℘̂εI ↪→ ℘̂ε. The “Stein factorization”

(2.23) B ℘̂ε ℘ε

Φε

Φ̂ε

of the map Φε in (2.19) is given by specifying that the restrictions to ZI ∩Zπ coincide with

(2.22). Again, the fibres of Φ̂ε are connected, and the fibres of ℘̂ε → ℘ε are finite. The

obvious analog of Theorem 2.20 holds by essentially the same argument.
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Theorem 2.24. The topology on ℘̂ε is Hausdorff. The induced subspace topology on ℘̂εI
coincides with the natural topology on ℘̂εI as a normal complex analytic space. The maps of

(2.23) are continuous and proper, and ℘̂ε is a topological compactification of ℘̂.

Corollary 2.25. Let Â ⊂ B be a fibre of Φ̂ε. (Equivalently, Â is a connected component

of a Φε–fibre.) Fix a neighborhood Ô ⊂ ℘̂ε of Φ̂ε(Â) ∈ ℘̂. Then O = (Φ̂)−1(Ô) ⊂ B is a

neighborhood of Â with the property that the maps Φ|B∩O, Φε|O and Φ̂ε
∣∣
O

are all proper.

3. Neighborhood of a Φ̂0–fibre

Let A0 be the Φ̂0–fibre Â of Corollary 2.25.

3.1. Monodromy about the fibre. The restriction of the variation of Hodge structure

(1.2a) to O0 = O0 ∩B induces a period map

(3.1) ΦA0 : O0 → ΓA0\D

with monodromy ΓA0 ⊂ Γ.

Lemma 3.2. We may choose the neighborhood O0 of Corollary 2.25 so that

ΓA0 ⊂ PW,Q ,

and the induced action

GrW (ΓA0) = ΓA0/(ΓA0 ∩ P−1
W ) ⊂ Aut(GrW ) = ⊕` Aut(GrW` )

of ΓA0 on GrW stabilizes the Hodge filtration F (GrW ).

Proof. The fibre A0 is contained in a weight strata Zπ (§2.3). Along Zπ we have a variation

of mixed Hodge structures (W,F ). Here the weight filtration is constant, and it is the

Hodge filtration F ∈ Ď that varies. These filtrations lie in a GW –orbit DW (§2.1.1). So we

may choose the neighborhood O0 so that ΓA0 ⊂ PW,Q.

When we restrict to A0 the variation of mixed Hodge structures has the property that

the Hodge decomposition F p(GrW` ) is constant. So we may further assume that ΓA0 fixes

F (GrW ) ∈ D0
W ; equivalently, the discrete quotient GrW (ΓA0) stabilizes F (GrW ). �

Lemma 3.2 can be further strengthened. Recall the reduced limit period filtration

F∞ ∈ Ď of §2.2.1.

Lemma 3.3. We may choose the neighborhood O0 so that ΓA0 ⊂ StabGC(F∞).

Proof. Proposition 2.7 implies that the the reduced period limit is constant on the connected

A0. �
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Since Γ is real, it follows that

(3.4a) ΓA0 ⊂ S = StabGC(F∞) ∩ StabGC(F∞) .

And (2.9) implies

(3.4b) S ⊂ PW,C .

3.2. Period matrix representation. Consider the Schubert cell (§A.5)

(3.5) S = exp(f⊥) · F =
{
F̃ ∈ Ď | dim (F̃ a ∩ F b∞) = dim (F a ∩ F b∞) , ∀ a, b

}
.

Lemma 3.6. The action of ΓA0 on Ď preserves the cell S ⊂ Ď.

Corollary 3.7 (Period matrix representation). Every local lift of ΦA0 over a chart U cen-

tered at a point b ∈ A0 takes value in S. In particular, the lift of ΦA0 to the universal cover

Õ0 → O0 takes value in the Schubert cell:

Õ0 S ∩D

O0 ΓA0\(S ∩D) .

Φ̃A0

ΦA0

Proof of Lemma 3.6. Since S is by definition those filtrations F̃ ∈ Ď intersecting F∞ gener-

ically, it follows from (3.4a) that S is preserved by ΓA0 . �

3.3. Trivializations about the fibre. Let Fre → B denote Deligne’s extension of the

Hodge vector bundle [Del97].

Theorem 3.8. There exists mp > 0 so that the power det(Fre )mp is trivial over O0. If Γ is

neat, then we make take mp = 1.

The theorem is proved in §3.4.

Let

Λe = det(Fne )⊗ det(Fn−1
e )⊗ · · · ⊗ det(Fd(n+1)/2e

e ) .

be the extended (augmented) Hodge line bundle.

Corollary 3.9. There exists m > 0 so that the power Λme is trivial over O0. If Γ is neat,

then we may take m = 1.

As noted in [GGLR20], Theorem 3.8 and Corollary 3.9 yield

Corollary 3.10. There exist integers m,mp > 0 so that the line bundles det(Fre )mp and

Λme descend to ℘̂0.

Proof. Recall that O0 is the Φ̂0 pre-image of an open set Ô0 ⊂ ℘̂0 (Corollary 2.25). It

follows from Theorem 3.8 that det(Fre )mp descends to a line bundle on ℘̂0 that is trivial

over Ô0. �
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3.4. Proof of Theorem 3.8. The map exp(f⊥) → exp(f⊥) · F = S is a biholomorphism

(§A.5). So Corollary 3.7 implies that there is a uniquely determined holomorphic map

(3.11a) g : Õ0 → exp(f⊥) ⊂ GC

so that

(3.11b) Φ̃(ζ) = g(ζ) · F .

Set dp = dimC F
p, fix a nonzero λ in the line det(F p) ⊂

∧dpVC, let mp be any positive

integer and define

f : Õ0 → (
∧dpVC)⊗mp

by

f(ζ) = g(ζ) · λmp .

Remark 3.12. If

(3.13) f(ζ · γ) = γ−1 · f(ζ) ,

then f defines a section of det(Fp)mp → O0. This section will define a trivialization of

det(Fpe )mp over O0, by essentially the same arguments as in [Del97]. So to prove the

theorem, it suffices to establish (3.13).

3.4.1. Decompositions of monodromy. The proof of the theorem will make use of two de-

compositions (3.15a) and (3.16) of the group S defined in (3.4a). Both are induced by

natural decompositions of parabolic groups containing S, [ČS09, Theorem 3.1.3]. To begin

we note that it follows from (2.8) that the Lie algebra of S is

(3.14) s =
⊕
p,q≤0

gp,qW,F .

The first decomposition

(3.15a) S = S−1
W o S0

W .

is induced by the parabolic subgroup PW,C ⊃ S. The unipotent radical of S is

(3.15b) S−1
W = S ∩ P−1

W,C = {g ∈ S | g acts trivially on GrW` ∀ `} ,

and has Lie algebra

s−1
W =

⊕
p, q ≤ 0

(p, q) 6= (0, 0)

gp,qW,F .

The reductive subgroup

(3.15c) S0
W = {g ∈ S | g preserves V p,q

W,F ∀ p, q}

has Lie algebra g0,0
W,F , and is a Levi factor of S.
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The second decomposition

(3.16) S = S−1
∞ o S0

∞

is induced by the parabolic subgroup StabGC(F∞) ⊃ S. Specifically

S−1
∞ = {g ∈ S | g acts trivially on F q∞/F

q+1
∞ ∀ q} = exp(f⊥)

has Lie algebra

s−1
∞ = s−1

W ∩ f⊥ =
⊕
p < 0
q ≤ 0

gp,qW,F

and

S0
∞ = S ∩ StabGC(F )

has Lie algebra

s0
∞ =

⊕
b≤0

g0,b
W,F ⊃ s0

W .

3.4.2. Monodromy action. We have

Φ̃(ζ · γ) = γ−1 · Φ̃(ζ) ;

equivalently,

g(ζ · γ) · F = γ−1g(ζ) · F .

However, while γ−1 preserves the Schubert cell S, it need not be an element of exp(f⊥). So

we can not assert that g(ζ · γ) = γ−1g(ζ).

In order to determine g(ζ · γ) we factor the monodromy using (3.16). Write

γ−1 = αβ ,

with β ∈ S0
∞ and α ∈ S−1

∞ . Then the action of γ−1 on g · F ∈ S is given by

(3.17) γ−1g · F = αβg · F = αβgβ−1 β · F = α (βgβ−1) · F .

Noting that βgβ−1 ∈ exp(f⊥) = S−1
∞ , this implies that

g(ζ · γ) = αβg(ζ)β−1 .

Since β−1 preserves F , it stabilizes the line det(F p). So there is a group homomorphism

χ : S0
∞ → C\{0}

such that

β−1(λ) = χ(β−1)λ .
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Remark 3.18. If every χ(β−1) is an mp–th root of unity, then (3.13) will hold. We will show

that there is a group homomorphism χ∞ : ΓA0 → S1 ⊂ C such that χ∞(γ) = χ(β), and

each χ∞(γ) is a root of unity (Lemmas 3.19 and 3.20, and Theorem 3.22). Since ΓA0 is

contained in an arithmetic group, and every arithmetic group contains a neat subgroup of

finite index, it follows that there exists a choice of mp so that the elements of χ∞(ΓA0) ⊂ S1

are all mp–th roots of unity. This will establish Theorem 3.8 (Remark 3.12).

3.5. The character χ∞. Because ΓA0 stabilizes F∞, the line

det(F p∞) ⊂
∧dpVC

is an eigenline of ΓA0 . Let

χ∞ : ΓA0 → C\{0}
be the associated character. Note that χ∞(γ) = det{γ : F p∞ → F p∞}.

Lemma 3.19. We have χ(β) = χ∞(γ).

Proof. The polarization Q induces a nondegenerate bilinear form on
∧dpV , also denoted by

Q, with the property that∧dpVC = det(F p)⊥ ⊕ det(F p∞) = det(F p∞)⊥ ⊕ det(F p) .

In particular, given 0 6= µ ∈ det(F p∞), the pairing Q(λ , µ̄) is nonzero. We have

Q(γ−1 · λ , µ̄) = Q(λ , γ · µ̄) = χ∞(γ)Q(λ , µ̄) .

On the other hand, since α ∈ S−1
∞ , it acts trivially on det(F p∞) and we have Q(α · λ, µ̄) =

Q(λ, α−1 · µ̄) = Q(λ, µ̄), so that

Q(γ−1 · λ , µ̄) = Q(αβ · λ , µ̄) = χ(β)Q(α · λ , µ̄) = χ(β)Q(λ , µ̄) .

Thus χ(β) = χ∞(γ). �

Lemma 3.20. The character χ∞ takes value in the unit circle S1 ⊂ C.

Proof. Let N ∈ gR ∩ g−1,−1
W,F be a nilpotent operator polarizing (W,F ). There exists k,

independent of the choice of N , so that Nk(det(F p)) = det(F p∞) and Nk+1(det(F p)) = 0.

It follows from N ∈ g−1,−1
W,F , (2.8) and the decomposition (3.15a) that

(3.21) γ Nk(λ) = Nk γ(λ) .

In particular,

χ∞(γ)Nk(λ) = γ Nk(λ) = Nk γ(λ) .

Without loss of generality, µ = Nk(λ). Then

0 6= χ∞(γ)Q(µ , λ̄) = Q(Nk γ(λ) , λ̄) = (−1)kQ(γ(λ) , µ̄)

= (−1)k χ∞(γ−1)Q(λ , µ̄) .
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Thus χ∞(γ)−1 = ±χ∞(γ). �

Theorem 3.22. Given γ ∈ ΓA0, the eigenvalue χ∞(γ) = det{γ : F p∞ → F p∞} is a root of

unity.

This will establish Theorem 3.8 (Remark 3.18). The remainder of §3.5 is occupied with the

proof of Theorem 3.22.

3.5.1. Basic idea of the proof. We will construct a rational representation ΓA0 → Aut(U)

with the property that the γ–eigenvalues of U include χ∞(γ)−1, and all have absolute value

one (Lemma 3.29). Since these eigenvalues are the roots of a rational polynomial (the

characteristic polynomial of γ : U → U), it will then follow from Kronecker’s Theorem that

these eigenvalues are roots of unity. The essential observation underlying the construction

of U is that the mixed Hodge structure (W,F ) is polarized by rational N ∈ gQ ∩ g−1,−1
W,F .

In the special case that there exist ΓA0–invariant N polarizing (W,F ), standard con-

structions yield the rational representation ΓA0 → Aut(U) (§3.5.4). In the general case, a

new perspective is needed to deal with this lack of invariance; see §3.5.5 for an outline of

issues involved and how they are addressed.

3.5.2. Induced mixed Hodge structure. The mixed Hodge structure (W,F ) on V induces one

on
∧dpV . It follows from (2.8) that det(F p∞) = (

∧dpV )a,bW,F is a summand of the Deligne

splitting; and that

(3.23)
(
∧dpV )r,sW,F = 0 , for all s < b ,

(
∧dpV )r,b = 0 = 0 , for all r 6= a .

(This is pictured in Figure 3.5.2.) Setting m = ndp and k = m − a − b, we likewise have

det(F p) = (
∧dpV )a+k,b+k

W,F . And (
∧dpV )r,sW,F = 0 for all r > a + k and (

∧dpV )a+k,s
W,F for all

s 6= b + k.

3.5.3. The weight-graded quotient. The action of ΓA0 on V induces an action on
∧dV .

This action preserves the weight filtration (3.4), and so descends to an action on H` =

GrW` (
∧dpV ). This gives H` the structure of a rational ΓA0–representation.

It follows from (3.15) that the action preserves the Hodge decomposition H` ⊗ C =

⊕r+s=`Hr,s induced by F . We have natural identifications Hr,s ' (
∧dpV )r,sW,F , with respect

to which

(3.24) det(F p) ' Ha+k,b+k and det(F p∞) ' Ha,b .

Given γ ∈ ΓA0 , let γr,s : Hr,s → Hr,s be the induced action. Then we have

(3.25a) χ∞(γ) = det{γ : F p∞ → F p∞} = det(γa,b) .



THE GLOBAL ASYMPTOTIC STRUCTURE OF PERIOD MAPPINGS 23

r + s = m(a, b)

det(F p∞)

(b, a)

det(F p∞)

(a + k, b + k)

det(F p)

(b + k, a + k)

det(F p)

Figure 1. Hodge diamond of the MHS on
∧dpV .

And more generally

(3.25b) det(γr,s) = det(γs,r) = det(γm−r,m−s)−1 .

3.5.4. Proof of Theorem 3.22: special case. Suppose that (W,F ) can be polarized by an

element N ∈ gQ ∩ g−1,−1
W,F that is invariant under ΓA0 . In this case, both PN = ker{Nk+1 :

Hm+k → Hm−k−2} and QN (u, v) = Q(u,Nkv) are ΓA0–invariant. Then the facts that QN

polarizes the weight m + k Hodge structure on PN , and ΓA0 preserves the Hodge decom-

position, imply that the ΓA0–eigenvalues of PN all have absolute value one. Kronecker’s

Theorem implies these eigenvalues are all roots of unity (§3.5.1). Finally, we observe that

det(F p) ∈ PN , and therefore the eigenvalue χ∞(γ)−1 is a root of unity.

3.5.5. Proof of Theorem 3.22: outline for the general case. The main difficulty that must

be handled is the fact that there may be no ΓA0–invariant N that polarize the mixed Hodge

structure. This leads to the introduction of

N = {Adγ(N) | γ ∈ ΓA0 , N ∈ gQ ∩ g−1,−1
W,F polarizes the MHS} ⊂ gQ .

By (3.4a) and (3.14),

(3.26) N ⊂
⊕

p,q≤−1

gp,qW,F .

In general, N 6⊂ g−1,−1
W,F , and so elements of N will not “polarize” the mixed Hodge structure

(W,F ) in the sense of [CKS86, (2.6)]. Nonetheless, we still have a well-defined isomorphism
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Mk : Hm+k → Hm−k with the properties that

(3.27) Mk(Hr+k,s+k) = Hr,s ,

and QM (u, v) = Q(u,Mku) polarizes the induced Hodge structure on ker{Mk+1 : Hm+k →
Hm−k−2}. (The map Mk : Hm+k → Hm−k is pictured in Figure 3.5.6.) And while PN will

not be ΓA0–invariant in general, the intersection

P =
⋂
M∈N

ker{Mk+1 : Hm+k → Hm−k−2} ⊂ Hm+k

is a rational ΓA0–submodule. Note that P is nontrivial as (3.23) and (3.26) imply

(3.28) det(F p) ⊂ P ⊗ C ,

under the identification (3.24). The intersection P inherits the Hodge decomposition, and

every QM , M ∈ N , polarizes this Hodge structure.

We still have to deal with the fact that QM need not be ΓA0–invariant. To that end we

introduce a decomposition QM = QM,1 +Q′M with both summands rational and QM,1 the

ΓA0–invariant part of QM (§3.5.6). If QM,1 polarized the Hodge structure on P , then we

would be done; but it need not. So we introduce a rational ΓA0–submodule U ⊂ P , which

inherits the Hodge decomposition, and with the property that the Hodge structure on U is

polarized by the QM,1. It then follows (as in §3.5.4) that the γ–eigenvalues of U are roots

of unity. It remains to observe that det(F p) ⊂ U ⊗ C.

3.5.6. Proof of Theorem 3.22. The polarization Q identifies Hm−k ' H∗m+k, and the bilinear

form QM is an element of the rational ΓA0–submodule

S =

{
Sym2Hm−k ' Sym2H∗m+k , m− k is even,∧2Hm−k '

∧2H∗m+k , m− k is odd.

Let S̃ν ⊂ S⊗C be the (generalized) eigenspaces, as ν runs over the distinct eigenvalues

of γ : S → S. Both S̃1 and ⊕ν 6=1 S̃ν are defined over Q, and we will be interested in the

associated rational ΓA0–module decomposition S = S1 ⊕ S′. Let QM = QM,1 +Q′M be the

corresponding decomposition. Then

U =
⋂
M∈N

{u ∈ P | Q′M (u, P ) = 0}

is a rational ΓA0–submodule.

Lemma 3.29. The eigenvalues of U include χ∞(γ)−1 and all have absolute value one.

As discussed in §3.5.1, this establishes Theorem 3.22, and by extension Theorem 3.8 (Re-

mark 3.18).
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Hm+k

Hm−k

M

det(F p∞)

det(F p∞)

det(F p)

det(F p)

Figure 2. The map Mk : Hm+k → Hm−k.

Proof. Let Λ(Hm−k) denote the γ–eigenvalues of Hm−k listed with (algebraic) multiplicity.

We may fix a basis {eν}ν∈Λ(Hm−k) of Hm−k so that each eν is a (generalized) γ–eigenvector

with eigenvalue ν, and each eν is contained in some Hr,s. Without loss of generality we may

assume that the basis is closed under complex conjugation, eν = eν . Let {fν}ν∈Λ(Hm−k) be

the dual basis of Hm+k defined by Q(eµ, fν) = δµν . Each fν is a (generalized) eigenvector

with eigenvalue ν−1, and is contained in Hm−r,m−s. Then

QM =
∑
µ,ν

qMµν eµ ⊗ eν

defines qMµν ; and we have

QM,1 =
∑
µν=1

qMµν eµ ⊗ eν and Q′M =
∑
µν 6=1

qMµν eµ ⊗ eν .

Note det(F p) is a γ–eigenline of P⊗C with eigenvalue χ∞(γ)−1: this follows from (3.25)

and (3.28). And (3.27) implies Mk(det(F p)) = det(F p∞), under the identifications (3.24). It

then follows from Lemma 3.20 that det(F p) ⊂ U ⊗ C, and χ∞(γ)−1 is an eigenvalue of U .

It follows from (3.27) that U ⊂ P ⊂ Hm+k inherit the Hodge decomposition. So we may

assume without loss of generality that the basis {eν} was chosen so that {fν}ν∈Λ(U)∗ spans

U , and {fν}ν∈Λ(P )∗ spans P , for some subsets Λ(U)∗ ⊂ Λ(P )∗ ⊂ Λ(Hm−k). Now suppose

that fν ∈ P r,s. We necessarily have ir−sQM (fν , fν) = ir−sQM (fν , fν) > 0, as discussed in

§3.5.5. So if fν ∈ U r,s, then qMνν = QM,1(fν , fν) 6= 0. It follows that |ν|2 is an eigenvalue

of S1; that is, |ν|2 = 1. �
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3.6. Discussion of Conjecture 1.6. The results of §3 reduce Conjecture 1.6 to an exten-

sion problem.

Theorem 3.30. Conjecture 1.6 holds if the holomorphic functions on ZI ∩ O0 extend to

holomorphic functions on O0.

3.6.1. Outline of proof. Recall that Λe descends to ℘̂0 (Corollary 3.10). Suppose we can

show that ℘̂0 is a normal Moishezon variety containing ℘̂ as a Zariski open subset, and that

the extension Φ̂0 of Φ̂ is a morphism of algebraic spaces. It will then follow from [GGLR20]

that Λe is ample over ℘̂0, establishing Conjecture 1.6.

The set

X̂ = {(b1, b2) ∈ B ×B | Φ̂0(b1) = Φ̂0(b2)}

defines an equivalence relation on B with the property that Φ̂0 : B → ℘̂0 is the quotient

map. Suppose that X̂ defines a proper, holomorphic equivalence relation on B. Then

[Gra83, §3, Theorem 2] asserts that the quotient ℘̂0 is a compact, complex analytic variety,

and the quotient map Φ̂0 is a proper holomorphic completion of Φ̂. Since B is projective

(and therefore Moishezon) it follows that ℘̂0 is Moishezon [AT82, §5, Corollary 11]. As

Moishezon spaces are algebraic, Serre’s GAGA implies Φ̂0 is a morphism, [Art70, §7].

So the essential problem is to show that X̂ is defines a proper, holomorphic equivalence

relation. Since Φ0
∣∣
O0 is proper (Corollary 2.25), it suffices to show that the holomorphic

functions on O0 separate the fibres of Φ0
∣∣
O0 .

3.6.2. Separation of fibres. Bakker–Brunebarbe–Tsimerman [BBT23] have shown that ℘ =

Φ(B) is projectively embedded by sections of Λ⊗me → B that vanish along Z. We have

seen that a multiple of Λe is trivial over O0 (Corollary 3.9). It follows that the holomorphic

functions on O0 will separate any fibre of Φ0
∣∣
O0 from any other fibre of Φ0

∣∣
O0 .

By the same argument, ℘0
I = Φ0

I(ZI ∩ Zπ) is projectively embedded by sections of

Λ⊗me → ZI that vanish along ZI\Zπ, and holomorphic functions on ZI will separate any

fibre of Φ0
∣∣
ZI∩Zπ∩O0 from any other fibre of Φ0

∣∣
ZI∩O0 .

So to prove Conjecture 1.6 it remains to show that holomorphic functions on ZI ∩ O0

extend to all of O0. This completes the proof of Theorem 3.30.

4. Neighborhood of a Φ̂0
I–fibre

Next we restrict out attention to a fibre

A0
I = A0 ∩ ZI

of the map Φ̂0
I of (2.22b).
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4.1. Monodromy about the fibre. Along ZI ∩Zπ we have a variation of limiting mixed

Hodge structures (W,F, σI). The Hodge filtrations lie in a GI–orbit DI (§2.1.2). Arguing

as in the proof of Lemma 3.2, we may choose a neighborhood O0
I ⊂ O0 of A0

I so that the

monodromy ΓA0
I

of the restriction of the variation of Hodge structure (1.2a) to O0
I = O0

I ∩B
takes value in the centralizer CI,Q of σI

(4.1) ΓA0
I
⊂ ΓA0 ∩ CI,Q ,

and the induced action on GrW stabilizes F (GrW ). Let

(4.2) ΦA0
I

: O0
I → ΓA0

I
\(D ∩ S)

be the induced period map.

Remark 4.3. Unlike (3.1), the period map (4.2) will not in general be proper.

Because the induced action of ΓA0
I

on GrW` preserves both the Hodge filtration F p(GrW` )

and the polarization by N ∈ σI , it necessarily takes value in a compact subgroup of

Aut(GrW ). Since Γ is discrete, this forces the image GrW (ΓA0
I
) of ΓA0

I
→ Aut(GrW ) to

be finite. If we assume that Γ is neat, then this finite group is trivial, and the monodromy

(4.4) ΓA0
I
⊂ ΓA0 ∩ C−1

I,Q ⊂ S−1
W

is unipotent.

4.2. Divisors at infinity. The purpose of this section is to to construct, from the period

map (4.2), explicit sections sM ∈ H0(O0
I , LM ) of certain line bundles LM → O0

I . We will

see that the sections have divisor

(4.5a) (sM ) =
∑

κ(M,Ni) (Zi ∩ O0
I)

for some integers κ(M,Ni). In particular,

(4.5b) LM =
∑

κ(M,Ni) [Zi]|O0
I
.

4.2.1. Line bundles over ΓA0
I
\S. Recall the Schubert cell S of (3.5) and Lemma 3.6. We

will construct line bundles over ΓA0
I
\S from the data:

• The left-action of ΓA0
I

on S induces a right-action on the functions f : S → C by the

prescription (f · γ)(ξ) = f(γ · ξ).
• Let

f1 = F 1(gC) =
⊕
p≥1

gp,qW,F

be the nilpotent radical of the Lie algebra f stabilizing F . The relation (A.6c) implies

that the bilinear pairing

κ : f1 × f⊥ → C
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is nondegenerate.

Recall the biholomorphism X : S
'−→ f⊥ of (A.9). Given M ∈ f1, define

fM : S → C by fM = exp 2πiκ(M,X) .

Given γ ∈ ΓA0
I
, define a holomorphic function eMγ : S→ C∗ by

(4.6) eMγ =
fM · γ
fM

=
exp 2πiκ(M,X · γ)

exp 2πiκ(M,X)
.

Then

eMγ1γ2(ξ) = eMγ1 (γ2 · ξ) eMγ2 (ξ) .

so that

γ · (z, ξ) = (zeMγ (ξ), γ · ξ)

defines a left action of ΓA0
I

on C× S. Let

LM (C× S)/ ∼

ΓA0
I
\S

be the associated line bundle over the quotient. Then fM induces a section sM

LM

ΓA0
I
\S .

sM

4.2.2. Line bundles over O0
I . Pull the line bundle LM back to the (punctured) neighborhood

O0
I

(ΦA0
I
)∗LM LM

O0
I ΓA0

I
\S .

ΦA0
Φ∗
A0
I

(sM )
sM

Recall the local lift (A.2), and note that the local expression for the pulled-back section

Φ∗
A0
I
(sM ) is

(4.7) τM (t, w) = fM ◦ Φ̃(t, w) = exp 2πiκ(M,X ◦ Φ̃(t, w)) .

If M ∈ g1,•
W,F and κ(M,Ni) ∈ Z for all i ∈ Iπ, then (A.10) implies

(4.8) τM (t, w) = exp 2πiκ(M, X̃(t, w))
∏

t
κ(M,Ni)
i

is a well-defined holomorphic function on U. If in addition 0 ≤ κ(M,Ni) ∈ Z for all i ∈ Iπ,

then τM (t, w) is holomorphic on U.
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4.2.3. Extension to O0
I . Define

(4.9) N∗ = {M ∈ g1,≤1
W,F | κ(M,Ni) ∈ Z , ∀ i ∈ Iπ} .

Lemma 4.10. If M ∈ N∗, then the line bundle (ΦA0
I
)∗LM is the restriction to O0

I of a

holomorphic vector bundle LM → O0
I . And (ΦA0)∗sM extends to a section of LM (which,

in a minor abuse of notation, we also denote sM )

LM (ΦA0
I
)∗LM LM

O0
I Õ0

I ΓA0
I
\S .

sM

ΦA0

(ΦA0 )∗sM
sM

The desired (4.5) now follows from (4.7) and (4.8).

Proof. Set

X̃γ(t, w) = (X · γ) ◦ Φ̃(t, w) −
∑
`(ti)Ni

Again, the key point is that it follows from (A.6d), (A.10), (3.4a) and (4.1) that the compo-

nent X̃−1,q
γ (t, w) taking value in g−1,q

W,F is a well-defined holomorphic function on U, so long

as q ≥ −1. So κ(M, X̃γ(t, w)) is a holomorphic function on U, so long as M ∈ N∗. Then

(Φ̃)∗(fM · γ)(t, w) = (fM · γ) ◦ Φ̃(t, w)

= exp 2πiκ(M, X̃γ(t, w))
∏

t
κ(M,Ni)
i ,

and

(Φ̃)∗(eMγ )(t, w) =
(Φ̃)∗(fM · γ)(t, w)

(Φ̃)∗(fM )(t, w)
(4.11)

=
exp 2πiκ(M, X̃γ(t, w))

exp 2πiκ(M, X̃(t, w))

is a well-defined holomorphic function on U. �

5. Level one extension data

Along A0
I we have a variation of limiting mixed Hodge structures (W,F ), with the

property that the Hodge decomposition F p(GrW` ) is constant, and all of which are polarized

by a fixed cone σI . In this section we study the σI–polarized, level one extension data

(Definition 2.4) of these limiting mixed Hodge structures. This extension data is encoded

by the restriction

(5.1) Φ1
I : A0

I → ΓA0
I
\δ1
I

to A0
I of the map Φ1

I : ZI ∩ Zπ → ΓI\D1
I introduced in (2.18).



30 GREEN, GRIFFITHS, AND ROBLES

Note that δI is a subset of the Schubert cell S of (3.5). It follows that the quotient

inherits the line bundles

(5.2)
LM

ΓA0
I
\δI

of Lemma 4.10.

Theorem 5.3. Assume that the monodromy Γ is neat (cf. §4.1).

(a) The bundle π1
I : ΓA0

I
\D1

I � D0
I admits a subbundle

JI JI ΓA0
I
\D1

I

D0
I

⊂

π1
I

that is fibered by abelian varieties JI . The restriction Φ1
∣∣
A0
I

takes value in a translate

of JI .

(b) If M ∈ g1,1
W,F , then the line bundle LM of (5.2) descends to ΓA0

I
\δ1
I . In the case that

M ∈ N∗ ∩ g1,1
W,F , we have

(5.4) LM |A0
I

= (Φ1
I

∣∣
A0
I
)∗(LM ) .

(c) There is a nonempty subset Nsl2
I ⊂ N∗ ∩ g1,1

W,F with the property that the abelian variety

JI is polarized by the L∗M with M ∈ Nsl2
I .

(d) The set Nsl2,+
I = {M ∈ Nsl2

I | κ(M,Ni) > 0 , ∀ i ∈ I} is nonempty. Indeed the

dimension of the real span is dimσI .

Theorem 5.3 and (4.5) yield

Corollary 5.5. The line bundles LM → JI are related to the normal bundles by

(5.6) (Φ1
I

∣∣
A0
I
)∗(LM ) =

∑
i∈I

κ(M,Ni)[Zi]|A0
I

=
∑
i∈I

κ(M,Ni) NZi/B
∣∣∣
A0
I

.

It follows from Theorem 6.1 that (5.6) is the central geometric information that arises when

considering the variation of limiting mixed Hodge structure along A0.

Example 5.7. Suppose that A0 ⊂ Z∗i and Ni 6= 0. Taking I = {i}, we may choose M ∈
Nsl2,+
i , so that L∗M → Ji is ample and κ(M,Ni) > 0. Then N ∗

Zi/B

∣∣∣
A0

is ample if the

differential of Φ1
∣∣
A0 is injective.

More generally, we have
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Corollary 5.8. Suppose the differential of Φ1
∣∣
A0
I

is injective and M ∈ Nsl2
I . Then the line

bundle
∑
κ(M,Ni)N ∗Zi/B

∣∣
A0
I

is ample.

Remark 5.9. The sum in Corollary 5.8 is over those j with Zj ∩ A0
I nonempty. Theorem

5.3(d) asserts that we may choose M so that the integers κ(M,Nj) are positive when j ∈ I;

we are not able to say the same when j 6∈ I.

The remainder of §5 is occupied with the proof of Theorem 5.3. In outline, the argument

is as follows:

• In §5.1 it is shown that the level one extension data takes value in the translate of a

compact torus JI . This is a consequence of a Lie theoretic description of the extension

data, and the infinitesimal period relation.

• The action of ΓA0
I

on δI ⊂ S is analyzed in §5.2.

• The line bundle LM → ΓA0\δI descends to ΓA0
I
\δ1
I if and only if the functions eMγ of

(4.6) are constant on the fibres of δI � δ1
I . In §5.2.4 it is shown that the bundles

parameterized by M ∈ g1,1
W,F have this property. If, in addition, M ∈ N∗ ∩ g1,1

W,F then

we also have a line bundle LM |A0
I

(Lemma 4.10). In order to see that (5.4) holds, we

show that the associated systems of multipliers coincide.

• We then restrict to a subset N1 ⊂ g1,1
W,F ∩N∗ (which may be thought as imposing an

integrality condition on M) and compute the Chern forms ωM in §5.3.

• We restrict to a final subset Nsl2
I ⊂ N1 (which may be thought of as a positivity

condition) and confirm that −ωM is positive on JI . It then follows that the line bundle

L∗M → JI is ample and JI is an abelian variety.

5.1. Extension data and tori.

5.1.1. Lie theoretic description. The level one extension data

ΓA0
I
\δ1
I = (ΓA0

I
· C−2

I )\(C−1
I · F )

is defined in Definition 2.4, a Lie theoretic description of δ1
I = δ1

I,F is given in §A.6. With

that as our starting point, we note that the biholomorphism exp : c−1
I,C → C−1

I,C yields a

canonical identification

C−1
I,C/C

−2
I,C '

⊕
p+q=−1

cp,qI,F .

Setting

LI =
⊕

p + q = −1
p < 0

cp,qI,F ,

we have

C−1
I,C/C

−2
I,C ' LI ⊕ LI .
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Additionally c−aI,C = (f∩ c−aI,C)⊕ (f⊥∩ c−aI,C), and the map f∩ c−1
I,C → δI given by x 7→ exp(x) ·F

is a biholomorphism. It follows that we have a canonical identification

C−2
I,C\(C

−1
I,C · F ) = LI .

Taking ΛI to be the discrete image of ΓA0
I

under the projection C−1
I,C → LI , we obtain

(5.10) ΓA0
I
\δ1
I = ΛI\LI = CdI,1 × (C∗)dI,2 × JI ,

with (C∗)dI,2 × JI a complex torus having compact factor JI .

5.1.2. The infinitesimal period relation along fibres. Let ω = g−1dg be the pull-back on

the Maurer-Cartan form on exp(f⊥) ⊂ GC under the map (3.11). The infinitesimal period

relation (§A.4) implies ω takes value in f−1,•.

The local lift (A.2) implies that ω may be regarded as a multi-valued logarithmic 1-form

on O0 with poles along Z∩O0. More precisely, let ω−1,q be the component of ω taking value

in g−1,q
W,F . If q 6= −1, then ω−1,q is a holomorphic (but a priori multi-valued) 1-form on O0.

The component ω−1,−1 is a logarithmic 1-form with poles along Z ∩ O0.

The restriction ωA0
I

to A0
I takes value in ⊕q≤0 c

−1,q
I,F . The hypothesis that Γ is neat (§4.1)

implies that the component ω−1,0
A0
I

taking value in c−1,0
I,F is well-defined (single-valued).

Write g = exp(X), with X : Õ0 → f⊥. Then ω−1,q = dX−1,q. And the infinitesimal

period relation implies that the restriction of dXp,q to A0
I is zero for all p + q ≥ −1 with

p ≤ −2. (Alternatively, this is (2.15).)

5.1.3. Compact torus. It follows from (3.14) that

ΛI ⊂ c−1,0
I,F ⊂ LI .

In particular, the torus factor (C∗)dI,2 × JI of (5.10) is contained in the image of c−1,0
I,F →

ΛI\LI . It follows from the infinitesimal period relation (§5.1.2) and the compactness of A0
I

that the image of Φ1 : A0
I → ΓA0\δ1

I is contained in a translate of the compact torus JI .

We will show that JI is abelian by exhibiting ample Lie bundles LM → JI .

5.2. Action on LMHS of the fibre. Before describing the action, we first need to work

out some formula.

5.2.1. Logarithms of monodromy. To begin, we note that (3.15a) and (4.4) imply that any

element γ ∈ ΓA0
I

may be expressed as

γ = ec

for a unique

c ∈ s−1
W ∩ c−1

I,C .
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Applying the decomposition (3.16) to factor

γ = αβ

with α ∈ S−1
∞ ∩ C−1

I,C and β ∈ S0
∞ ∩ C−1

I,C, we again have unique

a ∈ s−1
∞ ∩ c−1

I,C and b ∈ s0
∞ ∩ c−1

I,C

so that

α = ea and β = eb .

Given any x ∈ gC, the Deligne splitting (§A.3) yields unique xp,q ∈ gp,qW,F so that

x =
∑

xp,q .

One may verify that the logarithms satisfy

c−1,0 = a−1,0

c0,−1 = b0,−1

c−1,−1 = a−1,−1 + 1
2 [a−1,0, b0,−1] .

5.2.2. Action on the fibre. When restricted to δI ⊂ S, the map X : S → f⊥ of §4.2.1 takes

value in

X : δI → c−1
I,C ∩ f⊥ .

Set ξ = exp(X). The action of γ on ξ = exp(X) · F ∈ δI satisfies

(logαβξβ−1)−1,0 = X−1,0 + a−1,0(5.11a)

(logαβξβ−1)−1,−1 = X−1,−1 + a−1,−1 + [b0,−1, X−1,0] .(5.11b)

The containment (4.4) implies

(5.11c) (logαβξβ−1)p,q = Xp,q , ∀ p+ q = −1 > p .

Let λ be the image of γ under the map ΓA0
I
→ ΛI . Under the identifications of §5.1.1 we

have

λ = a−1,0 and λ = b0,−1 ,

and (Xp,−1−p)p≤−1 = X−1,0 +X−2,1 +X−3,2 + · · · parameterizes a point in LI . So (5.11)

is describing the action of ΛI on LI .
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5.2.3. Logarithms of products. For later use we consider γi = αiβi ∈ ΓA0 , with γi = eci ,

αi = eai and βi = ebi , as above. Suppose that γ = γ1 γ2. Then one may verify that

a−1,0 = a−1,0
1 + a−1,0

2

b0,−1 = b0,−1
1 + b0,−1

2

c−1,−1 = c−1,−1
1 + c−1,−1

2 + 1
2 [a−1,0

1 , b0,−1
2 ] + 1

2 [b0,−1
1 , a−1,0

2 ]

a−1,−1 = a−1,−1
1 + a−1,−1

2 + [b0,−1
1 , a−1,0

2 ] .

5.2.4. Proof of Theorem 5.3(b). The line bundle LM → ΓA0
I
\δI descends to ΓA0

I
\δ1
I if and

only if the functions eMγ of (4.6) are constant on the fibres of δI � δ1
I . If M ∈ g1,1

W,F , then

(3.17), (4.6), (5.11) and (A.6c) yield

(5.12) eMγ (X) = exp 2πiκ(M,a−1,−1 + [b0,−1, X−1,0])

on δI . These functions are constant on the fibres of δI � δ1
I , and so descend to well-defined

on functions on δ1
I . There they induce a line bundle, (also denoted)

LM

ΓA0
I
\δ1
I ,

over the level one extension data. Additionally, if M ∈ N∗ ∩ g1,1
W,F , then (4.11), (5.11) and

(5.12) yield

(Φ̃)∗(eMγ )
∣∣∣
A0
I

= (Φ1
I)
∗eMγ (X) ;

establishing (5.4).

5.3. Chern classes. We now wish to compute the first Chern class c1(LM ) of LM →
ΓA0

I
\δ1
I = ΛI\LI for M ∈ g1,1

W,F . We have [Below LI should be replaced with spanCΛI ⊂ LI .
Thank Haohua Deng. 22.07.29 ]

H1(ΛI\LI ,C) = (LI ⊕ LI)∗ '
⊕

p+q=−1

cp,qI,F ,

and

H2(ΛI\LI ,C) =
∧2H1(ΛI\LI ,C) =

∧2(LI ⊕ LI)∗ ,

H1,1(ΛI\LI) = L∗I ⊗ L∗I .

Define a map

ω : g1,1
W,F ↪→ L∗I ⊗ L∗I ' H1,1(ΛI\LI) ,

that sends M ∈ g1,1
W,F to the form ωM ∈ H1,1(ΛI\LI) defined by

ωM (u, v̄) := κ(M, [u, v̄]) = −κ(u, adM (v̄))
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with u, v ∈ LI .
Recall the definition of N∗ in (4.9) and consider the subset

N1 =

{
M ∈ g1,1

W,F

∣∣∣∣∣ κ(M , [a−1,0, b0,−1]) ∈ Z , ∀ γ ∈ ΓA0
I

;

κ(M,Nj) ∈ Z , ∀ j s.t. Zj ∩ (A0
I) 6= ∅

}
.

(If j 6∈ I, then Nj is not necessarily well-defined. However, κ(M,Nj) is.)

Remark 5.13. (i) When γ = exp(Ni), we have a−1,−1 = N and a−1,0, b0,−1 = 0.

(ii) The fact that κ is defined over Q implies that N1 is non-empty; in fact, N1 spans

g1,1
W,F .

Lemma 5.14. If M ∈ N1, then the form ωM represents the Chern class c1(LM ).

Proof. Define a smooth function hM : LI → R by

hM (z) := exp 2πiκ (M, [z, z̄]) .

With the formula of §5.2, is straightforward to confirm

hM (z + λ) = |eMγ (z)|−2 hM (z) .

So hM defines a metric on LM → ΛI\LI with curvature form −∂∂̄ log hM , cf. [GH94,

p. 310–311]. It follows that the Chern form of LM is

c1(LM ) = − i

2π
∂∂̄ log hM = ∂∂̄κ (M, [z, z̄]) = κ (M, [dz, dz̄]) = ωM .

�

5.4. sl2–triples. The ample line bundles LM → JI are constructed from sl2–triples {M,Y,N}
constructed from the data of a LMHS (W,F,N), N ∈ σI . Here we briefly review this well-

known construction (see, for example, [CM93] or [Sch73]), and discuss those properties that

we will use later.

Define Y ∈ End(gC) by specifying that Y acts on gp,qW,F by the eigenvalue (p+ q). Then

Y ∈ g0,0
W,F ∩ gR, and

adY (N) = [Y,N ] = −2N .

Notice that Y depends only on (W,F ); in particular Y is independent of N . The pair

{Y,N} may be uniquely completed to a triple {M,Y,N} ⊂ gR with the properties that

(5.15) [M,N ] = Y and [Y,M ] = 2M ;

In particular, {M,Y,N} spans a subalgebra of gR that is isomorphic to sl2R. We have

M ∈ g1,1
W,F ∩ gR .

From [M,N ] = Y and κ(Y, Y ) > 0 it follows that

(5.16) 0 < κ(Y, Y ) = κ([M,N ], Y ) = κ(M, [N,Y ]) = 2κ(M,N) .
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We regard (W,F ), and hence Y , as fixed. And consider M = M(N) as a function of

N ∈ σI .

5.5. Ample line bundles. Define

Nsl2
I = {M ∈ N1 | M = M(N) for some N ∈ σI} .

The fact that both σI and κ are defined over Q implies that Nsl2
I is nonempty.

We have NMu = u for all u ∈ cp,qI,F with p + q = −1. The fact that that N ∈ σI

polarizes the MHS (W,F ) on (g,−κ) implies that

−iωM (u, ū) = −iκ(M, [u, ū]) = iκ(u, adM ū)

= iκ(adNadMu , adM ū) = −iκ(adMu , adNadM ū) < 0

for all 0 6= u ∈ c−1,0
I,F ⊂ LI . It follows that the line bundle L∗M → ΓA0

I
\δ1
I has positive Chern

form −ωM for every M ∈ Nsl2
I (Lemma 5.14). Thus L∗M → JI is ample.

5.6. Positivity. It remains to establish Theorem 5.3(d); this is a consequence of Remark

5.17 and Lemma 5.23.

Remark 5.17. The mapN 7→M(N) is the restriction to σI of a diffeomorphismM : N →M
from an open cone N ⊂ g−1,−1

W,F onto an open cone M ⊂ g1,1
W,F . This is a well-known and

classical result in the theory of nilpotent elements of semisimple Lie algebras, cf. [CM93]

and the references therein, and is discussed in the context of Hodge theory and polarized

mixed Hodge structures in [BPR17, §3.2]. In general the map is not linear; in particular,

while the image M(σI) is a cone, it need not be convex.

Notice that the first equation of (5.15) implies that

(5.18) M(λN) = 1
λM(N) ,

for all λ > 0. We claim that

(5.19) ad2
N (dM) = 2dN .

To see this note that the fact that Y = [M,N ] is constant implies

[N, dM ] = [M,dN ] .

Since elements of the vector subspace spanR σI ⊂ g−1,−1
W,F ∩ gR commute, we also have

(5.20) [N, dN ] = 0 .

Thus

ad2
N (dM) = [N , [M dN ]] = [dN , [M,N ]] = 2 dN .

In particular, the differential dM of N 7→M(N) is injective.
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Notice that (5.19) and (5.20) imply that

ad3
N (dM) = 0 .

Since N ∈ σI polarizes the MHS (W,F ) on (g,−κ), we have

(5.21) 0 ≤ −1
2κ(dM, ad2

N (dM)) = −κ(dM,dN) ,

with equality if and only if dN = 0.

Lemma 5.22. Fix 0 6= N ′ ∈ spanR σI . The set

σ′0 = {N ∈ σI | κ(M(N), N ′) = 0}

is contained in the closure of

σ′+ = {N ∈ σI | κ(M(N), N ′) > 0} .

Proof. Suppose that N ∈ σ′0. Fix a smooth curve ν(t) in σI with the property that ν(0) = N

and ν ′(0) = −N ′. Set µ(t) = M(ν(t)). Then (5.21) implies

0 < κ(µ′(0), N ′) .

In particular, ν(t) ∈ σ′+ for small t > 0. �

Lemma 5.23. The cone

σ+
I = {N ∈ σI | κ(M(N), Ni) > 0 , ∀ i ∈ I}

is open and nonempty.

Proof. In the case that dimσI = 1, (5.18) and (5.24) yield σ+
I = σI .

For the general case dimσI ≥ 1, with I = {1, . . . , k}, set

Rk+ = {y = (y1, . . . , yk) ∈ Rk | yi > 0}

so that

σI = {N(y) = yiNi | y ∈ Rk+} .

Set M(y) = M(N(y)) and κi(y) = κ(M(y), Ni). Then it suffices to show that the cone

S+ = {y = (y1, . . . , yk) ∈ Rk+ | κi(y) > 0}

is open. From (5.15) and (5.16) we see that

(5.24) 0 < κ(M(y), N(y)) = yi κi(y) .

Since the yi are all positive, this forces some κi(y) to be positive (with i depending on y).

Decompose

Rk+ = S ∩ S′ ∩ S′′
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with

S1 =
{
y ∈ Rk+

∣∣∣ κ1(y) ≥ 0 ,
∑k

i=2 y
iκi(y) ≥ 0

}
S′1 =

{
y ∈ Rk+ | κ1(y) < 0

}
S′′1 =

{
y ∈ Rk+

∣∣∣ ∑k
i=2 y

iκi(y) < 0
}
.

The inequality (5.24) forces the open sets S′1 and S′′1 to be disjoint. Since Rk+ is open and

connected, this in turn forces S to be nonempty. Then Lemma 5.22 implies that the cone

S+
1 =

{
y ∈ Rk+

∣∣∣ κ1(y) > 0 ,
∑k

i=2 y
iκi(y) > 0

}
⊂ S

is nonempty and open in Rk+. This proves Theorem 5.3(d) in the case that |I| ≤ 2.

For the general case |I| = k we induct. Assume that the cone

S+
a =

{
y ∈ Rk+

∣∣∣ κi(y) > 0 , 1 ≤ i ≤ a ;
∑k

i=a+1 y
iκi(y) > 0

}
is nonempty (and therefore open) for some 1 ≤ a ≤ k − 1. Define a decomposition

S+
a = Sa+1 ∪ S′a+1 ∪ S′′a+1

by

Sa+1 =
{
y ∈ S+

a

∣∣∣ κa+1(y) ≥ 0 ,
∑k

i=a+2 y
iκi(y) ≥ 0

}
S′a+1 =

{
y ∈ S+

a | κa+1(y) < 0
}

S′′a+1 =
{
y ∈ S+

a

∣∣∣ ∑k
i=a+2 y

iκi(y) < 0
}
.

The definition of S+
a forces the open sets S′a+1 and S′′a+1 to be disjoint. Since S+

a is open, ev-

ery connected component of S+
a must have nonempty intersection with Sa+1. Then Lemma

5.22 implies that the cone S+
a+1 is nonempty and open in Rk+. This completes the inductive

step. �

6. Higher level extension data

Let A1
I be a connected component of a fibre of the level one extension data map Φ1

I :

A0
I → ΓA0

I
\δI introduced in (5.1). Along A1

I we have a fixed cone σI and weight filtration W ,

and a variation of limiting mixed Hodge structures (W,F, σI) with the property that both

the Hodge decomposition F p(GrW` ) and the level one extension data are constant. The goal

here is to study the higher level extension data. Over A1
I∩Z∗I this extension data is encoded

by the map ΦI of (2.1). We will see that, after modding out by some level two extension

data (which can be recovered from the sections sM of §4.2), the map ΦI is constant along

A1
I ∩ Z∗I and extends to A1

I ∩ ZI . Very roughly, this days that the full extension data is

determined by the level ≤ 2 extension data (Remark 6.2).
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We assume that the monodromy Γ is neat. Arguing as in §3.1 and §4.1, we may choose

a neighborhood O1
I ⊂ O0

I of A1
I so that the monodromy ΓA1

I
⊂ ΓA0

I
of the restriction of the

variation of Hodge structures on O1
I = O1

I ∩B takes value in C−2
I,Q ∩ S. Set

J = {j | Zj ∩A1
I 6= ∅} ⊃ I .

While the cone σI is well-defined (because the monodromy ΓA1
I

centralizes the cone), the

larger cone

σJ = spanR>0
{Nj | j ∈ J} ⊃ σI

is, a priori, defined only up to the action of ΓA1
I
.

Theorem 6.1. Assume that Γ is neat.

(a) The neighborhood O1
I may be chosen so that σJ is well-defined, and the monodromy

ΓA1
I
⊂ exp(CσJ).

(b) There is a well-defined holomorphic map

ΨI : ZI ∩ O1
I → (exp(CσJ)ΓA1

I
)\DI ,

that “extends” the map ΦI of (2.1) in the sense that we have a commutative diagram

Z∗I ∩ O1
I (exp(CσI)ΓA1

I
)\DI

ZI ∩ O1
I (exp(CσJ)ΓA1

I
)\DI .

ΦI

ΨI

(c) The map ΨI is locally constant on the fibres of the level ≤ 1 extension data map

Φ1
I : ZI ∩ Zπ ∩ O1

I → ΓA1
I
\D1

I introduced in (2.18).

Remark 6.2. The information contained in exp(CσJ) is level two extension data. So the

content of Theorem 6.1(c) is that the full extension data is determined by the level ≤ 2

extension data, up to constants of integration.3 The level 2 extension data contained in

exp(CσJ) is not lost; it is encoded in the sections sM ∈ H0(O0, LM ), with M ∈ g1,1
W,F , of

§4.2. These sections are essentially discrete data as their restriction to the Φ0–fibres is

determined up to a constant factor by (4.5).

3In the case that D is hermitian, all extension data is level ≤ 2; that is, DI = D2
I . So here we find here

another example of the ansatz that horizontality (the IPR) forces period maps and their images to behave

“as if they were hermitian”.
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6.1. Outline of the proof. Theorem 6.1 is proved by an inductive analysis of the higher

level extension data along A1
I ⊂ A0

I . Over A0
I
∗

the extension data is encoded by the map

ΦI of (2.1). We have seen that the projection Φ1
I to level ≤ 1 extension data extends to

A0
I (§2.3). In general, the higher level maps will not extend. However we do obtain local

“extensions” after quotienting out by the larger monodromy cone σJ . These extensions

are constructed level by level. We begin with the level ≤ 2 extension data. First note

that ΓA1
I
⊂ C−2

I,Q implies that σJ is well-defined modulo c−4
I,R ⊂ c−3

I,R, so that exp(CσJ) is

well-defined modulo C−3
I,C. So (2.1) and Lemma B.20 yield a well-defined map

Ψ2
I : ZI ∩ O1

I → (exp(CσJ)ΓA1
I
)\D2

I

and a commutative diagram

(6.3)

Z∗I ∩ O1
I (exp(CσI)ΓA1

I
)\D2

I

ZI ∩ O1
I (exp(CσJ)ΓA1

I
)\D2

I .

Φ2
I

Ψ2
I

This says that we may “extend” the map Φ2
I from Z∗I ∩ O1

I to ZI ∩ O1
I if we quotient

by the larger exp(CσJ). The map Ψ2
I encodes level two extension data modulo the cone

σJ ⊃ σI . The following lemma asserts that this data is (locally) constant whenever the

level one extension data is fixed.

Lemma 6.4. The map Ψ2
I is locally constant on the fibres of the level ≤ 1 extension data

map Φ1
I : ZI ∩ Zπ → ΓA0

I
\D1

I introduced in (2.18).

A straightforward modification of the arguments in §3.1 and §4.1 establishes

Corollary 6.5. We may choose the neighborhood O1
I so that ΓA1

I
⊂ (exp(CσJ)C−3

I,Q) ∩ S.

As above, (2.1), Corollary 6.5 and Lemma B.20 yield a commutative diagram

Z∗I ∩ O1
I (exp(CσI)ΓA1

I
)\D3

I

ZI ∩ O1
I (exp(CσJ)ΓA1

I
)\D3

I .

Φ3
I

Ψ3
I

The inductive step is

Lemma 6.6. Fix a ≥ 2. If the monodromy ΓA1
I

about A1
I takes value in exp(CσJ)C−aI ,

then there is a commutative diagram

(6.7)

Z∗I ∩ O1
I (exp(CσI)ΓA1

I
)\Da

I

ZI ∩ O1
I (exp(CσJ)ΓA1

I
)\Da

I .

ΦaI

ΨaI
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The map Ψa
I is locally constant on the fibres of the level ≤ 1 extension data map Φ1

I : ZI ∩
Zπ → ΓI\D1

I introduced in (2.18). And we may choose O1
I so that ΓA1

I
⊂ exp(CσJ)C−a−1

I,Q ).

Note that Theorem 6.1 follows directly from Lemma 6.6. The remainder of §6 is occupied

with the proof of Lemma 6.6 (which subsumes Lemma 6.4 and Corollary 6.5).

The existence of (6.7) follows from the monodromy assumption by an argument identical

to that establishing (6.3). Assuming the constancy of Ψa
I , the existence of a neighborhood

O1
I such that ΓA1

I
⊂ exp(CσJ)C−a−1

I,Q follows from an argument identical to those in §3.1. So

the crux of the proof is to show that Ψa
I is constant on Φ1

I fibres. The argument (§6.4) makes

use of a Lie theoretic description of the level a extension data (§6.2) and the infinitesimal

period relation (§6.3).

6.2. Lie theoretic description. Fix a ≥ 2. The fibres of ΓA1
I
\δaI � ΓA1

I
\δa−1
I are the level

a extension data (Definition 2.4). We begin by observing that these fibres are biholomorphic

to the quotient ΛaI\LaI of a vector space LaI by a discrete subgroup ΛaI ⊂ LaI . To see this,

first note that the fibre is

C−aI,C · F
(ΓA1

I
∩ C−aI,C) · C−a−1

I,C
ΓA1

I
\δaI

ΓA1
I
\δa−1
I .

We have

C−a−1
I,C \C−aI,C '

⊕
p+q=−a

cp,qI,F

C−a−1
I,C \(C−aI,C · F ) '

⊕
p + q = −a

p < 0

cp,qI,F = LaI .

The latter is an abelian group, with discrete subgroup

ΛaI =
C−aI,C ∩ ΓA1

I

C−a−1
I,C ∩ ΓA1

I

.

We now see that the level a extension data of (W,F ) is biholomorphic to the product

(6.8) ΛaI\LaI ' Cd1 × (C∗)d2 × Td3

of an affine space Cd1 with a complex torus (C∗)d2 × Td3 having compact factor Td3 .

Since σJ ⊂ c−1,−1
I,F , it then follows that the fibres of

(exp(CσJ)ΓA1
I
)\δaI � (exp(CσJ)ΓA1

I
)\δa−1

I
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are, for a = 2:

(Λ2
I · σJ)\L2

I (exp(CσJ)ΓA1
I
)\δ2

I

ΓA1
I
\δ1
I ,

and, for a ≥ 3:

ΛaI\LaI (exp(CσJ)ΓA1
I
)\δaI

(exp(CσJ)ΓA1
I
)\δa−1

I .

Note that (Λ2
I · σJ)\L2

I inherits (6.8) in the sense that it is also biholomorphic to a product

(6.9) (Λ2
I · σJ)\L2

I ' Cd1 × (C∗)d2 × Td3

of an affine space Cd1 with a complex torus (C∗)d2 × Td3 having compact factor Td3 . (We

abuse notation by continuing to denote the dimensions by di.)

6.3. The infinitesimal period relation along fibres. Recall the Maurer-Cartan form

ω of §5.1.2. Recall that the component ω−1,−1 taking value in g−1,−1
W,F has poles along

Z ∩ O. Let ωO1
I

denote the restriction to O1
I . We can finesse the poles in ωO1

I
as follows.

The assumption that ΓA1
I

takes value in exp(CσJ)C−1
I implies that CσJ + c−a−2

I,C is a well-

defined subspace of gC. The 1-form ωO1
I

naturally induces a 1-form η that takes value

in (g−1,•
W,F + c−a−2

I,C )/(CσJ + c−a−2
I,C ). This 1-form is holomorphic (but possibly multi-valued).

(Informally, we say that the poles of ωO1
I

“live” in CσJ .) If we let η−1,q denote the component

taking value in (g−1,q
W,F + c−a−2

I,C )/(g−1,q ∩CσJ + c−a−2
I,C ), then we have natural identifications

ω−1,q

O1
I

= η−1,q for all q 6= −1. And we may informally think of η−1,−1 as the quotient of

ω−1,−1

O1
I

by CσJ .

The restriction ωA1
I

to A1
I takes value in ⊕q≤−1 c

−1,q
I,F ; equivalently, η−1,q

A1
I

= 0 for all

q ≥ 0. If a ≥ 2, then Ψa is locally constant on the fibres of the level ≤ 1 extension data map

if and only if η−1,q
A1
I

= 0 for all q ≥ 1− a. The hypothesis that Γ is neat (§4.1) implies that

the component η−1,−a
A1
I

is well-defined (single-valued). Also the infinitesimal period relation

implies that the restriction of dXp,q to A0
I is zero for all p+ q = −a− 1 with p ≤ −2.

6.4. Proof of Lemma 6.6. The argument is inductive. Assume that a ≥ 1 and that we

have a well-defined

Ψa+1
I : ZI ∩ O1

I → (exp(CσJ)ΓA1)\Da+1
I .

We will show that Ψa+1
I is constant along A1

I .
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Recall §6.3. Fixing a point z0 ∈ A1
I we may define a holomorphic map

(6.10a) A1
I →

{
(Λ2

I · σJ)\L2
I , a = 1 ,

Λa+1
I \La+1

I , a ≥ 2 ,

by integration

(6.10b) z 7→
∫ z

z0

η−1,−a

along a curve α : [0, 1]→ A1 joining z0 = α(0) and z = α(1).

Because

g−1,−b
W,F = g−b,−1

W,F ,

the image of (6.10) necessarily lies in the noncompact factors Cd1 × (C∗)d2 of (6.8) and

(6.9). Since A1 is compact, this map must be locally constant. This forces η−1,−a = 0. This

is precisely the statement that Ψa+1
I is locally constant along A1

I . �

Appendix A. Asymptotics of period maps: review of local properties

Here we set notation and review well-known properties of period maps and their local

behavior at infinity. Good references for this material include [CMSP17, CKS86, GGK12,

GS69, PS08, Sch73].

A.1. Notation.

A.1.1. Groups. Given a Q–algebraic group G, the Lie groups of real and complex points

will be denoted by GR and GC, respectively. The associated Lie algebras are denoted gR

and gC, respectively.

Let V = VZ ⊗Z Q is a rational vector space, with underlying lattice VZ. Let End(V ) =

V ⊗ V ∗ denote the Lie algebra of linear maps V → V , and let Aut(V ) ⊂ End(V ) denote

the Q–algebraic group of invertible linear maps.

Fix n ∈ Z, and suppose that , and Q : V ×V → Q is a nondegenerate (skew-)symmetric

bilinear form satisfying

Q(u, v) = (−1)nQ(v, u) , for all u, v ∈ V .

From this point on, G will denote the Q–algebraic group

G = Aut(V,Q) = {g ∈ Aut(V ) | Q(gu, gv) = Q(u, v) , ∀ u, v ∈ V } .

with Lie algebra

g = End(V,Q) = {X ∈ End(V ) | 0 = Q(Xu, v) +Q(u,Xv) , ∀ u, v ∈ V } .
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A.1.2. Period domains. Let D = GR/K
0 be the period domain parameterizing effective

weight n > 0, Q–polarized Hodge structures on V with Hodge numbers h = (hn,0, . . . , h0,n).

Given ϕ ∈ D, let

VC =
⊕
p+q=n

V p,q
ϕ

be the Hodge decomposition; let

Fnϕ ⊂ Fn−1
ϕ ⊂ · · · ⊂ F 1

ϕ ⊂ F 0
ϕ = VC

be the Hodge filtration. The weight zero Hodge decomposition

(A.1) gC = ⊕ gp,−pϕ

induced by ϕ, is polarized by −κ, where κ ∈ Sym2g∗C is the Killing form. The isotropy

group K0 = StabG(ϕ) stabilizing ϕ ∈ D is compact, with complexified Lie algebra

k0C = k0R ⊗ C = g0,0
ϕ .

Let Ď = GC/Pϕ denote the compact dual of D. Here Pϕ is the complex parabolic

stabilizer of the Hodge filtration Fϕ, and has Lie algebra pϕ = ⊕p≥0 g
p,−p
ϕ .

A.2. Period maps at infinity.

A.2.1. Unit disc

∆ = {t ∈ C | |t| < 1}

and punctured unit disc

∆∗ = {t ∈ C | 0 < |t| < 1} .

Upper half plane

H = {z ∈ C | Im z > 0}

and covering map

H → ∆∗ sending z 7→ t = e2πiz .

Multivalued inverse

`(t) =
log t

2πi
,

and (well-defined) differential d` =
dt

2πi t
.
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A.2.2. Fix a point b ∈ Z∗I ⊂ B. Choose a coordinate chart

(t, w) : U ⊂ B
'−→ ∆k+r

centered at a point b with

(t, w) : U = B ∩ U
'−→ (∆∗)k ×∆r .

Reindexing the Zi if necessary, we may assume that

U ∩ Zi = {ti = 0} , for all 1 ≤ i ≤ k ,

and U ∩ Zµ = ∅ for all k + 1 ≤ µ ≤ ν. (We are assuming, as we may by shrining U if

necessary, that U ∩ ZI = U ∩ Z∗I .)

A.2.3. The counter-clockwise generator αi ∈ π1(∆∗) ↪→ π1((∆∗)k) = π1(U) induces a quasi-

unipotent monodromy operator γi ∈ Aut(V,Q), 1 ≤ i ≤ k [Sch73]. Passing to a finite cover

of B if necessary, we may assume without loss of generality that γi is unipotent; let

Ni = log γi ∈ g

be the nilpotent logarithm of monodromy, and

σI = spanR>0
{N1, . . . , Nk} ⊂ gR = Aut(VR, Q) ,

the monodromy cone (for the coordinate chart centered at b).

A.2.4. The universal cover of U is

Ũ = Hk × ∆r .

The local lift

Φ̃ : Ũ → D

of Φ|U is of the form

(A.2) Φ̃(t, w) = exp(
∑
`(ti)Ni)g̃(t, w) · F .

Here, F ∈ Ď,

(A.3) g̃ : U → GC

is a holomorphic map, and we abuse notation by regarding the multi-valued `(ti) as giving

coordinates on H. Additionally, if F (w) = g̃(0, w) · F , then (W,F (w)), is a mixed Hodge

structure (MHS) polarized by the local monodromy cone σI . We say (W,F, σI) is a limiting

mixed Hodge structure (LMHS).

The infinitesimal period relation implies that the restriction g̃I = g̃|U∩Z∗I takes value in

the centralizer

CI,C = {g ∈ GC | AdgN = N , ∀ N ∈ σI}
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of the nilpotent cone σI . The map

(A.4) FI : Z∗I ∩ U → DI , w 7→ FI(w) = g̃(0, w) · F

defines a variation of limiting mixed Hodge structure (W,FI(w), σI) over Z∗I ∩U. The map

(A.4) is not well-defined; it depends on our choice of coordinates. What is well-defined is

the composition

Z∗I ∩ U DI exp(CσI)\DI .
FI

(That is, it is the nilpotent orbit that is well-defined.) This yields the map ΦI of §1.2 and

(2.1).

The fact that exp(CσI) ⊂ P−2
W,C implies that (exp(CσI)ΓI)\Dε

I = ΓI\Dε
I for ε = 0, 1.

So (A.4) does induce well-defined maps

(A.5) F εI : Z∗I ∩ U → Dε
I .

The maps (A.5) are local lifts of the maps Φε
I of (2.1).

A.3. Deligne bigrading. Given a mixed Hodge structure (W,F ) on (V,Q), we have a

Deligne splitting

VC = ⊕V p,q
W,F

satisfying

W` =
⊕
p+q≤`

V p,q
W,F and F k =

⊕
p≥k

V p,q
W,F .

The induced splitting

(A.6a) gC = ⊕ gp,qW,F ,

of the Lie algebra gC is defined by

(A.6b) gp,qW,F = {x ∈ gC | x(V r,s
W,F ) ⊂ V p+r,q+s

W,F , ∀ r, s} ,

satisfies

(A.6c) κ(gp,qW,F , g
r,s
W,F ) = 0 if (p, q) + (r, s) 6= (0, 0) ,

and is compatible with the Lie bracket in the sense that

(A.6d) [gp,qW,F , g
r,s
W,F ] ⊂ gp+r,q+sW,F .

It follows that gC = f⊕ f⊥ with

f = ⊕p≥0 g
p,q
W,F

the parabolic Lie algebra of the stabilizer StabGC(F ) of F , and

(A.7) f⊥ = ⊕p<0 g
p,q
W,F
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a nilpotent subalgebra of gC. The map (A.3) is determined by the property

g̃(t, w) ∈ exp(f⊥) .

Remark A.8. Without loss of generality, we may assume that (W,F ) is R–split

V p,q
W,F = V q,p

W,F ,

which implies

gp,qW,F = gq,pW,F .

Then g̃(0, 0) ∈ P−2
W,C.

A.4. Infinitesimal period relation. The pull-back of the Maurer-Cartan form on exp(f⊥) ⊂
GC under the map (A.3) is ω̃ = g̃−1dg̃. The infinitesimal period relation asserts that ω̃ takes

value in f−1,•. And when restricted to ZI ∩ U, the form takes value in c−1,•
I,F .

A.5. Period matrices and Schubert cells. Since the period matrix

exp(
∑
`(ti)Ni)g̃(t, w)

of the local lift (A.2) takes value in exp(f⊥) ·F , the local lift Φ̃(t, w) takes value in the open

Schubert cell S

S = exp(f⊥) · F =
{
E ∈ Ď | dim (Ea ∩ F b∞) = dim (F a ∩ F b∞) , ∀ a, b

}
,

defined by

F b∞ =
⊕
c≤n−b

V c,a
W,F .

The map f⊥ → S sending X 7→ exp(X) · F is a biholomorphism. Let

(A.9) X : S
'−→ f⊥ .

denote the inverse. The obvious analogs of (A.6) hold with End(VC) in place of gC. Given

X ∈ End(VC), let Xp,q denote the component taking value in End(VC)p,qW,F . Recalling the

notation of §A.5, we have

(log g̃(t, w))−1,q = g̃(t, w)−1,q ,

and

(X ◦ Φ̃)(t, w)−1,−1 =
∑k

i=1`(ti)Ni + g̃(t, w)−1,−1

(X ◦ Φ̃)(t, w)−1,q = g̃(t, w)−1,q , q 6= −1 .

We say

(X ◦ Φ̃)−1,• =
∑

(X ◦ Φ̃)−1,q

is the horizontal component of the (logarithm of the) period matrix.
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In general, the function X̃ : Ũ→ f⊥ defined by

X̃(t, w) = X ◦ Φ̃(t, w) −
∑
`(ti)Ni

is well-defined on Ũ, but multi-valued over U. But the discussion above implies

(A.10) X̃−1,•(t, w) ∈ O(U) .

A.6. Extension data. The fibre δI = δI,F of DI � D0
I through F ∈ DI is the set of

F̃ ∈ DI inducing the same pure, weight ` Hodge filtrations on the Hn−a(−a) as F . It is

a complex affine space. To see this, first note that δ1
I,F = C−1

I,C · F . As a unipotent group

C−1
I,C = exp(c−1

I,C) is biholomorphic to its Lie algebra c−1
I,C. The Lie algebra of C−aI,C is

(A.11) c−aI,C =
⊕

p+q≤−a
cp,qI,F .

Since

c−1
I,C =

(
c−1
I,C ∩ f

)
⊕
(
c−1
I,C ∩ f⊥

)
with

c−1
I,C ∩ f =

⊕
p ≥ 0

p + q ≤ −1

cp,qI,F .

the stabilizer F in c−1
I,C and

c−1
I,C ∩ f⊥ =

⊕
p < 0

p + q ≤ −1

cp,qI,F ,

we see that

δ1
I,F = exp(c−1

σ,C ∩ f⊥) · F ,

and the map c−1
σ,C ∩ f⊥ → δ1

I,F is a biholomorphism.

Likewise, CσI ⊂ g−1,−1
W,F is an abelian ideal of the nilpotent algebra c−1

I,C ∩ f⊥, and we

have a well-defined induced biholomorphism

c−1
I,C ∩ f⊥

CσI
'−→ exp(CσI)\δI,F .

Appendix B. Compatibility of weight closures

The purpose of this section is to review compatibility properties between the weight

filtrations W I = W (σI), and discuss some of the implications for local lifts of period maps.

These local results will have global consequences, including the following corollary of Lemma

B.20.
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Lemma B.1. The maps

Z∗I ΓI\D1
I

ΓI\D0
I

Φ1
I

Φ0
I

of (2.1) extend to proper holomorphic maps on ZI ∩ Zπ. These extensions are compatible

with the Φ0
J and Φ1

J on Z∗J ⊂ ZI ∩Zπ in the sense that the we have a commutative diagram

(B.2)

Z∗J ZI ∩ Zπ

ΓJ\D1
J ΓI\D1

I

ΓJ\D0
J ΓI\D0

I .

Φ1
J

Φ0
J

Φ1
I

Φ0
I

Lemma B.1 is a corollary of Lemma B.16.

B.1. The commuting sl(2)’s. Our constructions are defined over the open strata Z∗I .

We will need to see that these strata-wise constructions satisfying certain compatibility

conditions in order to obtain the properties asserted in the lemmas above. The key technical

result here is the SL(2) orbit theorem [CKS86]. We briefly review the theorem, and then

discuss consequences.

Suppose that ZJ ⊂ ZI ; equivalently, I ⊂ J . To begin we assume that we have a local

coordinate chart centered at b ∈ Z∗J with local monodromy cone σ = σJ generated by

N1, . . . , Nk as in §A.2. Given I ⊂ J = {1, . . . , k}, let σI be the face of σJ generated by the

Ni, with i ∈ I. Define

NI =
∑
i∈I

Ni and NJ =
∑
j∈J

Nj .

Given this data, the SL(2) orbit theorem [CKS86] produces “commuting sl2–pairs

NI , YI ; N̂J , ŶJ ∈ gR .

These pairs have following properties: NI and YI commute with N̂J and ŶJ ; and there is a

(YI , ŶJ)–eigenspace decomposition gC = ⊕ ga,b,

ga,b = {ξ ∈ gC | [YI , ξ] = aξ , [ŶJ , ξ] = bξ} ,

with integer eigenvalues a, b that splits the weight filtrations

(B.3) W I
` (gC) =

⊕
a≤`

ga,b and W J
` (gC) =

⊕
a+b≤`

ga,b .

We have

NI ∈ g−2,0
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and

NJ ∈
⊕
a≤0

ga,−a−2 .

If we write

(B.4a) NJ =
∑
a≤0

NJ,a ,

with NJ,a ∈ ga,−a−2, then

(B.4b) NJ,0 = N̂J .

B.2. Consequences for the local lifts of Φε. Recall the two maps F εI : Z∗I ∩U→ Dε
I of

(A.5). Since I ⊂ J , we have Z∗J ⊂ ZI . Fix a coordinate neighborhood (t, w) ∈ U ⊂ B so

that Z∗J ∩ U = {t = 0}.

Lemma B.5. Suppose that (tm, wm) and (t′m, w
′
m) are two sequences in Z∗I ∩U converging

to points (0, w∞) and (0, w′∞) ∈ Z∗J ∩ U, respectively. If F εI (tm, wm) = F εI (t′m, w
′
m) for all

m, then F εJ(0, w) = F εJ(0, w′).

This lemma is the analog of Theorem 2.20 for the “local lift” of Φε, and implies that this

lift is continuous.

Proof. Given (t, w) ∈ Z∗I ∩U, recall that F εI (t, w) is the composition of FI(t, w) = g̃(t, w) ·F
with the projection DI � Dε

I = C−ε−1
I,C \DI (§A.2.4). Moreover, g̃(t, w) is holomorphic (and

therefore continuous) on ∆k+r, and takes value in CI,C when restricted to Z∗I ∩ U. So to

prove the lemma, it suffices to show that

(B.6) W I
` (cJ) ⊂ W J

` (cJ) .

It is a general fact that the centralizers satisfy

cJ ⊂ W J
0 (gC) and cJ ⊂ cI ⊂ W I

0 (gC) .

So (B.3) implies

(B.7) cJ ⊂
⊕
a ≤ 0

a + b ≤ 0

ga,b .

Note that (B.7) implies the desired (B.6) for ` ≥ 0.

Suppose that X ∈W I
` (cJ) for some ` < 0. Then (B.3) and (B.7) imply that there exists

unique Xa,b ∈ gC so that

X =
∑
a ≤ `

a + b ≤ 0

Xa,b .

In order to establish (B.6), we need to show

(B.8) Xa,b = 0 for all a+ b > ` .
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From NJ(X) = 0 and (B.4) we see that N̂J(X`,b) = 0. Since {N̂J , ŶJ} is an sl2–pair, the

centralizer c(N̂J) of N̂J satisfies

(B.9) c(N̂J) ⊂
⊕
b≤0

ga,b .

This forces X`,b = 0 for all b > 0, and yields the desired (B.8) for a = `.

Working inductively, fix m < ` < 0 and assume that (B.8) holds for all m < a ≤ `.

Again, NJ(X) = 0 and (B.4) implies N̂J(Xm,b) = 0 for all m+ b > `. Since, b > `−m > 0,

(B.9) implies Xm,b = 0 for all m+ b > `. This establishes the desired (B.8) for a = m and

completes the induction. �

B.3. When weight filtrations coincide. The properties (B.3) and (B.4b) yield

Lemma B.10. Suppose that I ⊂ J . The following are equivalent:

(i) The weight filtrations coincide W I = W J .

(ii) We have ŶJ = 0.

(iii) We have N̂J = 0.

(iv) The cone σJ ⊂ c−1
I .

Corollary B.11. (a) If I ⊂ I ′ ⊂ J and W I = W J , then W I = W I′ = W J .

(b) If W I1 = W I2, then W Ii = W I1∪I2.

(c) The union

IW =
⋃

W I=W

I

is the unique maximal set IW such that W = W IW .

If W I = W J , then ga,• = ga,0 implies

(B.12a) c−aJ ⊂ c−aI ,

and

(B.12b)
c−aJ
c−a−1
J

↪→
c−aI
c−a−1
I

.

In the case a = 1, the inclusion (B.12a) yields the striking implication (known to the

experts)

Lemma B.13. If σJ ⊂ c−1
I , then σJ ⊂ c−2

I .

Corollary B.14. We have exp(CσIW ) ⊂ C−2
I,C.
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B.4. Consequences for LMHS. Note that Z∗J ⊂ ZI if and only if I ⊂ J . In this case,

ΓJ ⊂ ΓI . We will also see that DJ ⊂ DI , cf. (B.19). In particular, we have an induced

ΓJ\DJ → ΓI\DI . When W I = W J , then this map descends to ΓJ\Da
J → ΓI\Da

I .

Recall (§A.2.4) that the local lift of ΦI : ZI → (ΓI exp(CσI))\DI is

(B.15) νI ◦ FI : Z∗I ∩ U→ exp(CσI)\DI .

Define

ZW =
⋃

W I=W

Z∗I .

Lemma B.16. There is a well-defined holomorphic map

(B.17) Φ̃I : ZI ∩ ZW ∩ U → exp(CσIW )\DI

that, when restricted to Z∗J ⊂ ZI ∩ ZW , coincides with the composition νIW ◦ FJ .

Proof of Lemma B.1. Given ε = 0, 1, Corollary B.14 implies that

(exp(CσIW )C−ε−1
I,C )\DI = C−ε−1

I,C \DI = Dε
I .

So the composition

ZI ∩ ZW ∩ U exp(CσIW )\DI (exp(CσIW )C−ε−1
I,C )\DI = Dε

I
Φ̃I

is the local coordinate expression for the extension Φε
I : ZI ∩ ZW → ΓI\Dε

I of (B.2). Thus

Lemma B.1 follows directly from Lemma B.16. �

Proof of Lemma B.16. Suppose that I ⊂ J and W I = W J . Consider a local lift Φ̃(t, w)

over a chart U centered at b ∈ Z∗J (as in §A.2). Along

ZJ ∩ U = {tj = 0 ∀ j ∈ J} = {0} ×∆r 3 (0, w)

we have the map FJ : Z∗J ∩ U→ DJ of (A.4)

(B.18a) FJ(w) = g̃(0, w) · F .

Along Z∗I ∩ U = {ti = 0 iff i ∈ I} we may choose a well-defined branch of `(tj) for all

j ∈ J\I. Then the map FI : Z∗I ∩ U→ DI is given by

(B.18b) FI(t, w) = exp

( ∑
j∈J\I

`(tj)Nj

)
g̃(t, w) · F .

Comparing the expressions (B.18) for FJ and FI , and keeping CJ ⊂ CI and (B.12a) in

mind, we see that

(B.19) F ∈ DJ ⊂ DI
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and FJ takes value in DI . (Note that the containment F ∈ DI is nontrivial, as F arises

from the LMHS along Z∗J .) It follows from (B.18) and (B.19) that

νJ ◦ FJ : Z∗J ∩ U → exp(CσJ)\DI

also takes value in (a quotient of) DI . The lemma now follows from (B.18). �

If follows from Corollary B.11(c) and (B.19) that the orbit

DW = GW · F ⊃ DI

is independent of our choice of DI and F ∈ DI so long as W I = W . It is straightforward

to verify

Lemma B.20. There is a well-defined holomorphic map

(B.21) Φ̃W : ZW ∩ U → exp(CσIW )\DW

that, when restricted to Z∗I , coincides with νIW ◦ FI .
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