
1/54

Completions of Period Mappings

Phillip Griffiths∗

Outline
I. Introduction

II. Preliminaries
III. Basic Results
IV. Applications

∗Notes of a talk given at IMSA at the University of Miami, October 5,
2020. Based on work in progress with Mark Green and Colleen Robles.
An earlier version of these notes is in
https://hdl.handle.net/20.500.12111/7910.

1 / 54



2/54

I. Introduction Given the data (B ,Z ; Φ) where

I (B ,Z ) is a pair consisting of a smooth projective variety
B and Z = ∪Zi is a simple normal crossing subvariety of
B with complement B = B\Z ; and

I Φ is given equivalently by a period mapping

(I.1) Φ : B → P ⊂ Γ\D

with image P , or by a variation of polarized Hodge
structure (V ,F,∇;B). We want to define and give some
properties of natural completions

(I.2) Φ : B → P

of (I.1).†

†These notations will be explained below.
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Informally stated among the results are

(i) There are two natural completions, a maximal one P
T

and a minimal one P
S

. The latter is analogous to the

Satake-Baily-Borel compactification Γ\D
SBB

in the
classical case when D is a Hermitian symmetric domain
and Γ is an arithmetic group. The former is in some ways

analogous to a toroidal compactification Γ\D
Tor

; it
provides a potential candidate for the general definition of

a toroidal completion P
T

of the image P of a period
mapping (I.1).‡

‡In [CCK79], [Cat84] for the classical case of algebraic curves there is
a harbinger of some of the material in this talk.
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(ii) Among the applications of the methods used to construct
the completions of P are properties of line bundles
associated to (B ,Z ; Φ). There are many results, both
classical and recent, concerning nefness and bigness of
such line bundles. Frequently more subtle are those
involving freeness. For these it is natural to make generic
local Torelli assumptions as the general case can usually
be reduced to this one. Still even more subtle are
ampleness results; for these it is natural to make local
Torelli assumptions that hold everywhere. Under a
probably unnecessary mild technical assumption two
sample applications are

I If generic local Torelli holds, then for sufficiently small
ε > 0 the line bundle

KB + (1 + ε)Z

is free; and
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I If local Torelli holds, then KB + Z is free, and there are
necessary and sufficient geometrically expressed
conditions that it be ample.

(iii) Other applications that we shall have time to only briefly
illustrate are to the boundary structure of moduli spaces
of general type algebraic varieties. The Hodge theoretic
boundary strata of the minimal completion provides a
guide to how one may organize the stratification of the

algebro-geometric boundary; the mapping P
T → P

S

suggests how one might desingularize it.
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We emphasize that in (i) the constructions

(B ,Z ; Φ) P
T
,P

S

are relative; given the data (B ,Z ; Φ) completions are
produced. This is in contrast to the usual process where for
arithmetic Γ various completions Γ\D are constructed and,
under certain conditions, a period mapping Φ : B → Γ\D is
proved to extend to Φ : B → Γ\D. In the classical case there
is [AMRTS10] and the references cited there.) In the
non-classical case there is the work [KU09]. The somewhat
different methods used here to construct P ’s and to prove
results about them might be summarized as the global study
of the period mapping at infinity.
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The global study of period mapping (I.1) on the open
quasi-projective variety B is a long standing subject, one of
current active research (cf. [BB20], [BKT13], [D20], [P20],
[PLSZ19], [LSZ19], [Zou00] for a sample of recent work and
extensive bibliographies). Typical results are that under local
Torelli assumptions

I (B ,Z ) is of log general type;

I Ω1
B

(log Z ) is nef and big;

I hyperbolicity properties of B .
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The local properties around a point of Z is also classical
([CKS86], partially summarized in [GGLR20]). Of interest in
their own right they also enter into the proofs of the results
just mentioned. However it has become apparent that to
obtain more refined conclusions about the data (B ,Z ; Φ) one
needs global information about the variation of the limiting
mixed Hodge structures on Z , specifically the global behavior
along the compact subvarieties of Z where the associated
graded pure Hodge structures remain locally constant. The
key geometric result (Theorem C below) relates the variation
of the extension data of the limiting mixed Hodge structure
along these subvarieties to the geometry of the co-normal
bundle N∗

Z/B
restricted to them.

Finally we note that in [BBT20] there are techniques related
to some of those discussed below.
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II. Preliminaries
A variation of Hodge structure (V ,F,∇;B) is given by
I a holomorphic vector bundle V → B with integrable

Gauss-Manin connection

∇ : V → Ω1
B ⊗ V ;

I the kernel of ∇ is a local system VC = VZ ⊗ C whose
monodromy preserves VZ;

I the holomorphic vector bundle F has a filtration
Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 = V where

∇(Fp) ⊆ Ω1
B ⊗ Fp−1;

I not included in the notation is the existence of a bilinear
form

Q : VZ ⊗ VZ → Z
such that each (Vb,Fb,Q) defines a polarized Hodge
structure.
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As usual, without essential loss of generality we may assume
that the monodromy around the irreducible components Zi of
Z is unipotent. There are then canonical extensions, recalled
in [GGLR20], Ve ,Fe of V ,F such that

∇ : Fp
e → Ω1

B
(log Z )⊗ Fp−1

e .

Dualizing gives a bundle map

TB(− log Z )→ F−1 End(Ve).

It is convenient to use the Higgs formalism where we set
E = GrF V , Ee = GrFe (Ve) and then the above map induces

(II.1) TB(− log Z )
δ−→ F−1 End(Ee).
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In the period mapping formulation we are given (VZ,Q)
where VZ is a lattice and Q : VZ ⊗ VZ → Z a non-degenerate
bilinear form. Setting V = VZ ⊗Q and given a set of Hodge
numbers hp,q we denote by D the period domain of polarized
Hodge structures (V ,F ) where F is a filtration

(II.2) F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC

that together with Q define a polarized Hodge structure of
weight n and where hp,q = dim(F p ∩ F

q
). Setting

G = Aut(V ,Q) with GR the corresponding real Lie group, it is
known that D is a homogeneous complex manifold that is an
open GR-orbit in the compact dual Ď, which is the rational
homogeneous projective variety consisting of all F ’s in (II.2)
satisfying the first Hodge-Riemann bilinear relation.
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Upon choice of a reference point b0 ∈ B , giving (V ,F,∇;B)
is equivalent to giving a period mapping (I.1) where the
monodromy group Γ ⊂ GZ is the image of the monodromy
representation

π1(B , b0)→ Aut(VZ).

Using the period domain formulation allows one to apply Lie
theory to the variation of Hodge structure. Before explaining
how these methods apply to study the period mapping at
infinity we recall a couple of further definitions.

A mixed Hodge structure (V ,W ,F ) is given by (V ,F )
together with a weight filtration

W0 ⊂ W1 ⊂ · · · ⊂ Wm = V

such that F induces a Hodge structure on each
GrWk V = Wk/Wk−1 := Hk . The set of mixed Hodge
structures with fixed Hk ’s will be denoted by E .
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We have maps

E = Em → Em−1 → · · · → E2 → E1

where Ek are the k-fold extensions in E . Thus E1 is the set of
extensions

0→ Hk → Wk/Wk−2 → Hk−1 → 0,

and E2 consists of these extensions together with the pairs of
extensions{

0→ Wk−1/Wk−3 → Wk/Wk−3 → Hk → 0

0→ Hk−2 → Wk/Wk−3 → Wk/Wk−2 → 0.
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We note that

E1
∼=

k
⊕Ext1

MHS(Hk ,Hk−1) := J

where J is a compact complex torus with tangent space a
Hodge structure of weight −1 and whose k th summand in the
above direct sum decomposition has Hodge type

(k − 1,−k) + · · ·+ (0,−1) + (−1, 0)︸ ︷︷ ︸+ · · ·+ (−k , k − 1).§

A fibre of E` → E`−1 is
k
⊕Ext1

MHS(Hk+`,Hk); it is an
extension of a compact complex torus by a product of C∗’s.
The tangent space is a Hodge structure of weight −` that for
` = 2 has no summands of Hodge type (a, b) with |a− b| 5 1.

§cf. [Car87]
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Given a nilpotent endomorphism N ∈ End(V ,Q) where
Nm+1 = 0 there is a unique weight filtration W (N) satisfying{

N : Wk(N)→ Wk−2(N)

Nk : Wm+k(N)
∼−→ Wm−k(N)

.

A limiting mixed Hodge structure is a mixed Hodge structure
(V ,W (N),F ) where

N : F p → F p−1.

Using the Q one shows that the associated graded is a direct
sum of polarized Hodge structures.
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More generally, giving commuting nilpotents N1, . . . ,Nr that
generate a cone σ = spanZ+{N1, . . . ,Nr} such that each
N ∈ σ gives a limiting mixed Hodge structure, the weight
filtration W (N) is independent of N and will be denoted
W (σ). The induced polarizations on GrW (σ) V depend on the
particular N ∈ σ.

The extension data associated to a limiting mixed Hodge
structure has a geometric structure only partially present for
general graded polarized mixed Hodge structures. Denoting by
σ̌ the dual cone to σ there is an inclusion

σ̌ ↪→ PicJ .

Consequently for each M ∈ σ̌ we have a line bundle LM → J .
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III. Basic results

Given the data (B ,Z ; Φ) from [CKS] it is known that to each
point b ∈ B there is associated an equivalence class of limiting
mixed Hodge structures (V ,W (σI ),Fb). If b ∈ B , we take the
polarized Hodge structure corresponding to Φ(b). If b ∈ Z ∗I ,
we define two limiting mixed Hodge structures (W ,W (σI ),Fb)
and (V ,W (σI ′),F

′
b) to be equivalent if there exists γ ∈ Γ and

λ = (λ1, . . . , λr ) ∈ Cr such that

I σI ′ = γσIγ
−1;

I F ′b = γ exp(
∑
λiNi)Fb.¶

¶This is the definition one expects. Only up to γ can we identify the
fibres of V with VC, and the Hodge filtration for the limiting mixed
Hodge structure is only defined up to scaling by conormal vectors

λ ∈ N∗
Z∗
I /B

.
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Definition: P
T

is the set of equivalence classes of limiting
mixed Hodge structure associated to (B ,Z ; Φ), and

(III.1) ΦT : B → P
T

is the obvious map.

Conjecture: P
T

is a projective algebraic variety.

The normalization P̂
T

can be defined and using Lie theory
one may prove the

Theorem A: P̂ is a compact complex analytic variety.

The set P
T

is constructed to retain the maximal amount of
Hodge-theoretic information associated to (B ,Z ; Φ). At the
opposite extreme we denote by DI the period domain (actually
a Mumford-Tate domain) parametrizing Hodge structures of
the type (GrW (σI ) V ,F ) where σI is a polarizing cone.
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There are period mappings

ΦI : Z ∗I → PI ⊂ ΓI\DI ,

where, for b ∈ Z ∗I , ΦI (b) is the associated graded to
(V ,W (σI ),Fb). Set

P
S

=
⋃
I

PI

and define

(III.2) ΦS : B → P
S

by ΦS
∣∣
Z∗I

= ΦI . It is conjectured and proved in special cases

(cf. [GGLR20]) that P
S

is a projective algebraic variety over
which the Hodge line bundle

L := (detFn
e )⊗ (detFn−1

e )⊗ · · · ⊗ det
(
F[(n+1)/2]
e

)
is ample.‖

‖In this regard see [BBT20] and the related papers [BBT18] and
[BKT18].
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Basic idea behind the study of the period mapping
at infinity: The period mapping at infinity is essentially the
restriction of ΦT to Z . We then have

ΦT
∣∣∣
Z

//

��

ΦZ

��?
?

?
?

P
T

��

ΦS
∣∣∣
Z

// P
S
.

With two major differences the composed mapping
ΦZ : Z →

∏
I ΓI\DI is like an ordinary period mapping (I.1).

The first major difference is that along the fibres there is a
non-trivial Hodge-theoretic information given by the variation
of the extension data defined by limiting mixed Hodge
structures. The second is that, as mentioned above and will
be discussed in detail below, the key point is to relate this
geometry along the fibre of ΦZ to the geometry normal to
those fibres in Z .
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Our next step is to introduce spaces P
k

that interpolate

between P
T

and P
S

. As a set

Pk =

{
set of extension data of level 5 k in the equivalence

classes of limiting mixed Hodge structures in P
T

.

}
There is a tower of maps

P
2n

= P
T

��

Φ2n = ΦT

P
2n−1

��

B

Φ2n

BB����������������

99ssssssssss

Φ1

%%KKKKKKKKKK

Φ0

��999999999999999
...

��

P
1

��

P
0

= P
S

Φ0 = ΦS

(III.3)
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We emphasize that these are maps of sets, not of varieties

(except conjecturally the composite map P
T → P

S
should be

a map between algebraic varieties). To study the period
mapping at infinity, i.e., the maps Φk along Z , we set

F (Φk) = typical fibre of Φk in Z .

It is known ([GGLR]) that

(III.4) F (Φ0) is a compact subvariety of Z .

The proof of this uses the Cattani-Kaplan-Schmid local
analysis of the canonically extended variation of Hodge
structure together with the global fact that ordinary period
mappings extend across subvarieties around which there is
finite monodromy.

In the following result we assume that a fibre F (Φ0) of Φ0 is
irreducible. It then has a Zariski open set in a minimal
stratum Z ∗I .
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Theorem B: (i) The level 1 extension data map

Φ1 : F (Φ0) ∩ Z ∗I → J

extends to F (Φ0). (ii) The image lies in a translate of an
abelian subvariety Jab ⊂ J. (iii) For M ∈ σ̌I the line bundle
LM → J is positive on the image of F (Φ0).

The first statement is a special case of the general result that
a holomorphic mapping α0 : X 0 → T from a Zariski open set
X 0 of an irreducible algebraic variety X to a compact complex
torus T extends to a holomorphic mapping α : X → T . The
reason is that in the diagram

H1(X 0,Z)

α0
∗ &&NNNNNNNNNNN

// H1(X ,Z)

α∗xxq q q q q q

H1(T ,Z).
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the dotted arrow fills in by a weight argument in mixed Hodge
theory. The morphism α∗ of mixed Hodge structures is then
induced by a holomorphic mapping filling in the dotted arrow
in the diagram

X 0 ⊂ X //

��@
@

@
@ Alb(X )

α
{{wwwwwwwww

T .

The statement (ii) follows from the infinitesimal period
relation that gives that the differential of the holomorphic
mapping F (Φ0)→ J lies in the (0,−1)⊕ (−1, 0) part of the
tangent space to J (this is the part over the bracket in the
diagram above). The result (iii) is a consequence of the
ampleness of LM → Jab for M ∈ σ̌I .
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We now come to the

Theorem C (main formula): Denoting by Φ1
0 the

restriction of Φ1 to a fibre F (Φ0), for M ∈ σ̌ we have

(III.5) (Φ1
0)∗LM = −

∑
〈M ,Nk〉 [Zk ]

∣∣∣
F (Φ0)

.

If as above we have a minimal inclusion F (Φ0) ⊂ ZI , then
for J = {j 6∈ I : ZI ∩ Zj 6= ∅}, the sum in (III.5) is only over
the k ∈ I ∪ J .

To get a feeling for the formula, if F (Φ0) ⊂ Z ∗I and the Ni ,
i ∈ I , are linearly independent, then letting M range over the
Ni we conclude that

(III.6) If Φ1
∣∣
F (Φ0)

is a finite-to-one mapping, then

NZi/B

∣∣
F (Φ0)

is a negative line bundle.
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At the other extreme, in a fibre F (Φ1) we have that as Q-line
bundles

NZi/B

∣∣
F (Φ1)

∼= OF (Φ1).

In general the terms in (III.5) with i ∈ I have opposite signs to
those with j ∈ J . This subtle interplay is a key phenomenon.
The point is that the main formula (III.5) relates the geometry
along the fibres of the maps in (III.3) to the geometry normal
to those fibres in B .

Turning to higher level extension data we have

Theorem D: Φ2 maps a F (Φ1) to product of C∗’s.
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The point here is again that using the infinitesimal period
relation and the fact that the differential of the map
F (Φ1)→ (level 2 extension data) is a mapping between real
vector spaces, the image of TF (Φ1) lies in the Hodge classes
part of the weight −2 Hodge structure

T (
k
⊕Ext1

MHS(Hk+2,Hk)).

A further use of the infinitesimal period relation is given by
the

Theorem E: For k = 3 the fibres in (III.3) of P
k → P

k−1
are

finite.

In this case the differential of the map F (Φk−1)→ (level k
extension data) is zero.

In the classical case when D is Hermitian symmetric one
may show that n = 2 (any such D may be equivalently
embedded in a Siegel generalized upper-half-plane).
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In the non-classical case in coordinates the fibres of P
2n → P

2

may be expressed as periods of integrals of polylogarithmic
type and give constants that resemble those that arise in the
expressions for multi-zeta functions. This is perhaps not so
surprising as such numbers arise as periods of mixed Tate
motives that express the extension data of particular mixed
Hodge structures of Hodge-Tate type in terms of special
values of multi-zeta functions. There may well be a very nice
story here. In particular the variations of graded polarized
mixed Hodge structures of Hodge Tate that arise in moduli
will be variations of limiting mixed Hodge structures and using
Theorem C these will have what is turning out to be rich
additional structure.

The general picture that emerges of P
T

is

I there is a stratification of P
T

derived from the
stratification of Z and that maps to a Hodge-theoretically

defined stratification of P
S

;
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I the open strata in this stratification of P
T

are families of
subvarieties of semi-abelian varieties, and in the
non-classical case at a point of each strata there is a finite
set of additional information expressed in coordinates by
iterated integrals of polylogarithmic type;∗∗

∗∗The intrinsic explanation for this is that using Lie theory the period
matrices of the extended variation of Hodge structure around a point of
ZI may be put in block form whose entries are polynomials in the log ti
and with holomorphic coefficients. Using the infinitesimal period relation
the derivatives of the higher degree polynomials in the log ti ’s may be
expressed in terms of the ones that are linear in them. Since one half of
the level of the extension data in the limiting mixed Hodge structure
corresponds to the degree of these polynomials (this can be made
precise) the extension data of levels = 3 can be obtained by iterated
integrals of level 5 2 extension data in which the log ti ’s appear linearly.
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IV. Applications
We shall give two types of results that use the global analysis
of the period mapping at infinity. One of these concerns the
finer properties of freeness and ampleness of line bundles
associated to (B ,Z ; Φ). We shall state these under a
simplifying technical assumption that helps to isolate the
essential geometric content of the results. The second will be
a very brief discussion of an application to moduli of general
type surfaces.

For the first, among the properties that a line bundle
L→ X over a compact complex manifold may have are

L→ X is nef

L→ X is big

}
L→ X if free

L→ X is ample

}
.
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The first pair are of a numerical character; the second are
geometric. For the data (B ,Z ; Φ), arising from the sign and
singularity properties of the Chern forms of the canonically
extended Hodge bundles there are numerous results of the first
type (some sample references were given above). For example,
assuming generic local Torelli that δ in (II.1) is injective at a
general point

I KB is of log general type;

I Ω1
B

(log Z ) is big (and there are related
hyperbolicity results);

I the Hodge line bundle L→ B is nef and big.

(IV.1)
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The proofs of these results use the global geometry of the
period mapping (I.1) on B and the local analysis of the
variation of Hodge structure around the points of Z . One
might hope that having an understanding of the global
geometry of the period mapping at infinity, i.e., on all of B ,
could lead to more refined results of the second type above.

The technical assumption we shall make is that the mappings

(IV.2) ΦI : Z ∗I → PI ⊂ ΓI\DI

are fibrations. In general one probably needs to further stratify
ZI so that this fibration property holds along the strata and
that the pieces fit together properly.
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The next property is a conjecture about which we can prove
special cases, and where the main formula (Theorem C) may
be used to reduce the desired result to a combinatorial
property of monodromy cones.

Conjecture F: Assume that generic local Torelli holds and
that the restriction of Φ1 to the fibres of Φ0 is an immersion.
Then there are ai ∈ Q=0 such that the Q line bundle
Le −

∑
aiZi is free.

We remark that in general we cannot take the ai to be
equal. This will be discussed below.
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Without the local Torelli assumption (which is convenient but
not essential) and the assumption about Φ1 on the fibres of
Φ0, but with the assumption that Γ is arithmetic, it is proved
in [BBT] that

(IV.3) P has an algebraic structure and L→ P is ample.††

Denoting by Le(∗Z ) the sheaf of holomorphic sections of
Le → B that vanish to some order on Z , (IV.3) proves that
Le(∗Z ) is free in the sense that there is a finite dimensional
space of sections in H0(B , L⊗me (∗Z )) that projectively embed
P = Φ(B). Thus Conjecture F would give a stronger form of
the result in [BBT20].

††The paper [BBT20] is especially noteworthy in that it makes use of
the very interesting new technique of o-minimal structures (cf. [BBT18]
and [BKT18]).
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To explain the combinatorial statement that would give a
proof of Conjecture F, using the fibration assumption and the
base point free theorem from birational geometry the result is
reduced to showing that for an irreducible curve C

C · L = 0 =⇒ C · (ΣaiZi) < o.

Denoting by σ the cone spanQ+{Ni} and by Eff1
L(B) the cone

of effective 1-cycles X satisfying X · L = 0, there is a pairing

Ψ : σ̌ ⊗ Eff1
L(B)→ Q

given by

Ψ(M ⊗ C ) = −
∑
i

〈M ,Zi〉 (C · Zi).
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Then using Theorem C and the base-point-free theorem one
needs to show

There exists M ∈ σ̌ such that Ψ(M ,C ) > 0 for all
curves C with C · L = 0.

The first non-trivial case of this is when there exists a
connected fibre Z = Z1 + Z2 of Φ0 where Z1 ∩ Z2 6= ∅, and
there exist curves C1 ⊂ Z1, C2 ⊂ Z2 with C1 · Z2 6= 0,
C2 · Z1 6= 0. Setting

eij = Ci · Zj

an argument using Theorem C gives e11 < 0, e22 < 0; our
assumption gives e12 > 0, e21 > 0. Elementary reasoning then
shows that we may choose a1, a2 > 0 such that

C · (a1Z1 + a2Z2) < 0.

However it is in general not possible to choose a1 = a2.
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We note in passing that Hodge theory as in Theorem C gives

e11e22 − e12e21 > 0;

this Hodge index-like property suggests an indication of the
nature of the conjecture.
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For the next result, keeping the assumption (IV.2) we have

Theorem G: KB + Z is nef, and for rational ε > 0
sufficiently small the Q-line bundle

KB + (1 + ε)Z

is free.

We suspect that the assumption (IV.2) is not necessary and
that that the result holds when ε = 0.

For B = Γ\D
Tor

a toroidal compactification where D is
Hermitian symmetric and Γ is arithmetic, there is a canonical
ample “automorphic form” line bundle

Le → Γ\D
SBB

over the Satake-Baily-Borel compactification of Γ\D (Le is the
extended Hodge line bundle).
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For Γ\D
Tor π−→ Γ\D

SBB
from [Mu77] we have

(IV.4) KB + Z = π∗O(1).

Thus KB + Z is free but not ample; its Proj is Γ\D
SBB

.

For the next result, on the fibres F (Φ0) the level 1 extension
data gives a morphism

Φ1 : F (Φ0)→ Jab

from F (Φ0) to an abelian variety. We assume that this
mapping is an immersion and denote by G (Φ1) the associated
Gauss mapping to the Grasmannian of d = dimF (Φ0)-planes
in the tangent space TeJab.
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Theorem H: Assume local Torelli in the form that the
mapping (II.1) is injective. Then KB + Z is free, and it is
ample if, and only if, G (Φ1) is an immersion.

The example (IV.4) when B = Ag shows that the assumption
about the Gauss mapping is essential.

Assuming local Torelli, the Chern form ω of the Hodge line
bundle gives a complete Kähler metric hω on B . It is known
that the holomorphic sectional curvatures of hω are 5 −c for
some constant c > 0, and also that the holomorphic
bi-sectional curvatures are 5 0 and strictly negative on
particular open sets (cf. [BKT13] and [GG20]). If dimB = d
and Ω = ωd is the volume form associated to ω, then the
Ricci form Ric Ω is strictly positive on B .
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The proof of Theorem H requires some understanding of the
singularities of Ric Ω on Z , especially along the fibres of Φ0.
This involves the second fundamental form of the sub-bundle

TB(− log Z ) ↪→ F−1 End(Ee).

A second type of application is to moduli spaces M for
varieties of general type X with a given Hilbert polynomial
m
⊕χ(mKX ). For algebraic curves M = Mg and the canonical
compactification Mg is a very beautiful and much studied
space. It is essentially smooth, meaning that the Kuranishi
space of a stable curve is reduced and of dimension h1(TX ).
Thus we may take our B = Mg . The period mapping (I.1) is

Φ : Mg → P ⊂ Γ\D

where D = Hg and Γ = Sp(2g ,Z).
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There are various toroidal compactifications and for some, but
not all, the period mapping extends to

Φ : Mg → Γ\D
Tor

(cf. [Nam80]). A reasonable supposition that we have not
verified is that for the second Voronoi toroidal
compactification of Γ\D the image Φ(Mg ) is the P

T
of

Theorem A (cf. [Cat84]).

When we come to higher dimensions, e.g., X a smooth
algebraic surface, the situation is very different. The moduli
space MX having a canonical projective completion MX

parametrizing stable surfaces with the given Hilbert polynomial
has been constructed by Kollár, Shepherd-Barron, Alexeev (cf.
[CCK79] and [Kol13]). However the situation is quite unlike
the curve case. Even when MX may be essentially smooth,
i.e., the Kuranishi space has dimension h1(TX ), MX may be
quite singular along the boundary ∂MX = MX\MX .
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A particular example here are the I -surfaces studied by
Franciosi-Pardini-Rollenske (cf. [FPR15a], [FPR15b],
[FPR17]). These are regular surfaces with K 2

X = 1, pg (X ) = 2.
The moduli space MI has dimension h1(TX ) = 28, and taking
B = MX the period mapping (I.1) is locally 1-1. However at
least for normal Gorenstein I -surfaces X0 corresponding to
boundary points in MI\MI the limit surface does not see the
extension data in the limiting mixed Hodge structure in a
specialization X → X0. This is explained in [Gri20], and in a
joint project with FPR and GGLR we hope to explore the

extent to which P
T

desingularizes MX . Informally stated,

what is suggested is that the potential toroidal completion P
T

may in some cases serve as a guide to how one desingularizes
completed KSBA moduli spaces.
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Appendix: Elaboration on this example

Let M be a KSBA moduli space of surfaces of general type
and with canonical completion M where the boundary
∂M = M\M parametrizes surfaces X with semi-log-canonical
singularities (cf. [Kol13]). A part Ne of the boundary
corresponds to normal Gorenstein X ’s with simple elliptic
singularities. In contrast to the case of algebraic curves where
Mg is essentially smooth, Ne ⊂ ∂M is generally highly
singular and consideration of the extension data in the LMHS
suggests a natural desingularization of M along Ne . This
phenomenon also extends to non-Gorenstein isolated
singularities and to non-normal X ’s as well.
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Assume for simplicity that M is smooth and that a general
point of M corresponds to a smooth regular surface. One may
ask

I can Hodge theory suggest what surfaces X appear on the
boundary ∂M = M\M?

I Can Hodge theory suggest how one might construct a

desingularization M̃ of M?

As noted above the answer to both questions is positive. For
the first, a general limiting mixed Hodge structure has

N2 = 0, rankN = 2.
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Thus the LMHS has associated graded (H1,H2,H1(−1))
where H1 = H1(C ) for a smooth elliptic curve C . Given a
KSBA degeneration X→ ∆ where Xt is smooth for t 6= 0 and
X0 is a normal surface corresponding to a point of ∂M, what
is suggested is that X0 = (X , p) where p is a simple elliptic
singularity of a surface X and where the resolution of that
singularity is (X̃ ,C )→ (X , p) where X̃ is smooth and C ⊂ X̃
is an elliptic curve.
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For the desingularization of M one needs to do a semi-stable
reduction

X̃→ ∆̃

of the family X→ ∆. Since N2 = 0, Clemens-Schmid
suggests that the central fibre X̃0 should have a double curve
C and no triple points. The simplest possibility is that

X̃0 = X̃
⋃
C

Y

where X̃ is as above and Y is a smooth surface containing C .
Since C is a smooth elliptic curve we might try a smooth
cubic C ⊂ P2. The normal bundle NC/X̃ has degree d = −C 2

while NC/P2
∼= OC (3). To achieve the necessary condition

NC/X̃
∼= ŇC/Y
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for smoothability, we must blow up 9− d points pi on C .
Since for a smoothable elliptic singularity we have

1 5 d 5 9

so that Y is a del Pezzo surface. Moreover from X̃0 as above
we can construct the potential limiting mixed Hodge structure,
and a standard computation gives that

Ext1
MHS(H1(−1),H2)

contains a factor constructed from the subspace Hg1(Y ,Z) in
H2. It then follows that the information contained in the level
1 extension data in the LMHS is essentially the

AJC (pi − pj) ∈ J(C ).
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This tells us which points pi on C ⊂ P2 to blow up to
construct Y .

Of course the above is heuristic, but hopefully it does suggest
the tight interplay between Hodge theory and geometry and
illustrates how a geometric construction from a lMHS may be
used to study moduli.
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