
POSITIVITY OF VECTOR BUNDLES AND HODGE THEORY

MARK GREEN AND PHILLIP GRIFFITHS

I. Introduction and notations and terminology

I.A. Introduction. From S. S. Chern we learned the importance of curvature in
geometry and its special features in the complex case. In this case there are significant
geometric and analytic consequences of the curvature having a sign. Both positive and
negative curvature have major implications in algebraic geometry and in holomorphic
mappings between complex manifolds.

The vector bundles (Hodge bundles) and complex manifolds (period domains) that
arise in Hodge theory have natural metrics and subsequent curvatures that through
the work of very many people over an extended period of time have played a central
role in the study of Hodge theory as a subject in its own right and in the applications
of Hodge theory to algebraic geometry. Of particular importance are

(i) the sign properties of the curvature (positivity of the Hodge bundles and cotan-
gent bundles of period domains);

(ii) the result that in the geometric case the non-degeneracy of curvature forms is
an algebro-geometric property;

(iii) the singularity properties of the curvature, especially that of the Chern forms.

Regarding (iii) we note that the essential geometric fact that enables one to control
the singularities is a curvature property of the bundles that arise in Hodge theory.

The primary purpose of this mainly expository paper is to present some (but not by
any means all) of the fundamental concepts and to discuss a few of the basic results
in this very active and now vast area of research.

A secondary purpose is to isolate a special feature, norm positivity, that is present
for the vector bundles that arise in Hodge theory. To set a context, curvature Θ is
defined using second derivatives and therefore is in general a second order invariant.
However in certain circumstances it may be a first order invariant. An example is the
curvature form ΘH of the standard line bundle H := OX(1) for X ⊂ PN a smooth
projective variety and where OPN (1) has the standard metric. Then ΘH is the metric
induced on X by the Fubinin-Study metric on PN .

For the vector bundles E → X that arise in Hodge theory the curvature is also a
first order invariant of the form

(I.A.1) ΘE = (A,A)

This paper is partly based on joint work in progress with Radu Laza and Colleeen Robles (cf.
[GGLR20]).
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where A ∈ Ω1
X(E) is a holomorphic matrix of (1, 0)-forms and ( , ) is a C∞ bilinear

form constructed from the Hodge metrics. Then using notations to be explained
below

ΘE = 0, and

ΘE = 0 ⇐⇒ A = 0, which is a complex analytic condition.

The two central topics of this paper are positivity and singularities. These are
discussed in Sections II, III respectively. For the first topic we have chosen to focus
on metric positivity and numerical positivity. The first of these involves the positivity
properties of the curvature form and resulting Chern forms, which express de Rham
cohomology representatives of the Chern classes as polynomials in the entries of the
curvature matrix. The second of these are topological expressions of positivity of
certain polynomials in the Chern classes. In Hodge theory both types of positivity
are present and ultimately reflect the norm positivity property of the curvature of
the Hodge bundles. Thus for example, in the Hodge theoretic case if the positivity
condition under consideration is expressed by P = 0, then P = 0 imposes pointwise
first order complex analytic conditions on the variation of Hodge structure. In the
geometric case these become cohomologically expressed algebro-geometric conditions.

One reason for selecting numerical positivity is our feeling that in the geometric
case the algebro-geometric implications of this property have only begun to be used
(e.g., in the proof of the Iitaka conjecture). Even in the classical case of curves,
abelian varieties, K3’s, . . . the consequences of numerical positivity for moduli spaces
seem yet to be more fully explored. And, as noted above, numerical positivity is a
natural consequence of the norm positivity property of the curvature.

The main emphasis in Section II will, however, be on metric positivity, that being
the various measures of positivity in holomorphic vector bundles, especially Hodge
bundles and cotangent bundles, that arise from sign properties of expressions derived
from the curvature. Most of the results we shall give are either standard ones or slight
refinements of such.

One of the questions that we discuss is motivated by the observation that bundles
that are semi positive but not positive, meaning that their curvature form ΘE = 0
but not ΘE > 0, occur naturally. Examples include the universal quotient bundle of
rank = 2 over the Grassmannian and the Hodge bundle F n when hn,0 = 2. Moreover
the “flatness” present in these bundles is frequently of geometric interest.

Aside from line bundles those that are positive, which implies ampleness, are much
less common. For semi-positive bundles one would, however, like natural conditions
that imply the existence of sections of symmetric powers SmE. In Section II.C we
give the following result along these lines. This result applies to the two bundles
mentioned above, where we assume a local Torelli condition for the second:

If ΘE = 0 and ΘdetE > 0, then SmE → X is big for m = r where r
is the rank of E.

As mentioned above we are particularly interested in bundles that have the norm
positivity property. As in (I.A.1) the curvature of such bundles is given by the norms
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of holomorphic bundle mappings

(I.A.2) A : T ⊗ E → G.

For these maps we consider the conditions

(a) T → Hom(E,G) is injective;
(b) for general e ∈ E the mapping A(e) : T → G given for ξ ∈ T by

A(e)(ξ) = A(e⊗ ξ)

is injective.

Then there is the result: If on an open set in X we have either of the above conditions,
then

(a) =⇒ detE is big,

(b) =⇒ E is big.

Algebro-geometric and Hodge-theoretic consequences of these results are given in the
text.

The other major topic in this paper is singularities, which is discussed in Section III.
The structure of the singularities of a degenerating family of Hodge structures is of
increasing importance, especially in the applications of Hodge theory to algebraic ge-
ometry. With notable exceptions such as the proof of the Iitaka conjecture ([Fuj78],
[Vie83a], [Vie83b], [Kaw82], [Kaw85], [Kol87]) and the algebraicity of Hodge loci
([CDK95]), the analysis and application of singularities of degenerating Hodge struc-
tures has been primarily concerned with 1-parameter degenerations. More recently
the detailed analysis of several variable degenerations is coming to play a central role,
e.g., in the Satake-Baily-Borel and toroidal completions of period mappings used in
the study of compactifications of moduli spaces ([GGLR20], [GGR21]). Moreover, the
general structure of singularities continues to be used in establishing results about
the hyperbolicity and log general type properties of parameter spaces of families of
smooth algebraic varieties ([Den18], [VZ03]).

In the analysis of the asymptotics of several variable degenerations of Hodge struc-
tures two algebraic properties of monodromy cones σ = spanQ+{N1, . . . , Nk} play a
central role. Here, using the notations reviewed in Section I.B.4 the Ni ∈ End(V,Q)
are commuting nilpotent elements. Each N ∈ σ defines a monodromy weight filtration
W0(N) ⊂ · · · ⊂ W2n(N) = V , and the first property, due to Cattani-Kaplan, is

(I.A.3) W•(N) is independent of N ∈ σ.

The second is the relative weight filtration (RWFP) property, which for the case
k = 2 where we have N1, N2 is the following: Since [N1, N2] = 0, the nilpotent

transformation N2 induces a nilpotent transformation N2 on GrW (N2)
• (V ), and then

N2 induces a monodromy weight filtration W (N2) on GrW (N1)
• (V ). On the other hand

N := N1 +N2 induces a weight filtration W (N) on V , and the RWFP implies that

(I.A.4) Gr
W (N2)
k−m

(
GrW (N1)

m (V )
)
∼= Wk(N) ∩GrW (N1)

m (V ).
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Here the right-hand side is the filtration induced on GrW (N1)
• (V ) by W•(N).1

Both (I.A.3) and (I.A.4) are highly non-generic properties of a set of commuting
nilpotent operators. Although they are purely algebraic statements their current
proofs are analytic using Hodge theory. One of the main purposes of the arguments
in Section III.C is to clearly isolate the role of the RWFP in the analysis of the sin-
gularities of the Chern form of the augmented Hodge line bundle. This approach will
enable us to avoid the rather complicated sectorial analysis in [CKS86] and [Kol87].
The problem to be dealt with is essentially to show the existence of a limit

(I.A.5) lim
xi→0

P (x)

Q(x)
.

where P (x), Q(x) are homogeneous polynomials of the same degree in real variables
x1, . . . , xk where Q(x) > 0 in the quadrant xi > 0 for i = 1, . . . , k. Of course such
limits do not exist in general; they depend on the path of approach of x to the origin.
Here we are establish the desired limit by a direct computation of the Chern form.
This computation turns out to make apparent the fact that the RWFP is the key
general Hodge theoretic property behind the result.

I.B. Notations and terminology.

I.B.1. General notations.

• X, Y, . . . will be compact, connected complex manifolds.

In practice they will be smooth, projective varieties.

• E → X is a holomorphic vector bundle with fibres Ex, x ∈ X and rank
r = dimEx;
• Ap,q(X,E) denotes the global smooth E-valued (p, q) forms;
• we will not distinguish between a holomorphic bundle and its sheaf of holo-

morphic sections; the context should make the meaning clear;
• L→ X will be a holomorphic line bundle.

Associated to L→ X are the standard notions

(i) ϕL : X // PH0(X,L)∗ is the rational mapping given for x ∈ X by

(I.B.1) ϕL(x) = [s0(x), . . . , sN(x)]

where s0, . . . , sN is a basis for H0(X,L); in terms of a local holomorphic trivial-
ization of L → X the si(x) are given by holomorphic functions which are used
to give the homogeneous coordinates on the right-hand side of (I.B.1);

(ii) the line bundle L→ X is big if any one of the equivalent conditions
• h0(X,Lm) = Cmd + · · · where C > 0, dimX = d and · · · are lower order

terms;
• dimϕL(X) = dimX

is satisfied;
(iii) L→ X is semi-ample if any one of the equivalent conditions

1This is explained in more detail in Section III.C.
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• for some m > 0, the evaluation maps

(I.B.2) H0(X,Lm)→ Lmx

are surjective for all x ∈ X;
• ϕmL(x) is a morphism; i.e., for all x ∈ X some si(x) 6= 0;
• the linear system |mL| := PH0(X,Lm) is base point free for m� 0

is satisfied.
If the map (I.B.2) is only surjective for a general x ∈ X, we say that Lm → X

is generically globally generated.
(iv) L → X is nef if deg

(
L
∣∣
C

)
= 0 for all curves C ⊂ X; here L

∣∣
C

= L ⊗OX OC is
the restriction of L to C;

(v) we will say that L→ X is strictly nef if deg
(
L
∣∣
C

)
> 0 for all curves C ⊂ X;

• for a vector bundle E → X, we denote the kth symmetric product by

SkE := Symk E;

• PE π−→ X is the projective bundle of 1-dimensional quotients of the fibres
of E → X; thus for x ∈ X

(PE)x = PE∗x;
• OPE(1)→ PE is the tautological line bundle; then

π∗OPE(m) = SmE

gives
H0(X,SmE) ∼= H0(PE,OPE(m))

for all m.2

I.B.2. Notations from complex differential geometry. Given a Hermitian metric h in
the fibres of a holomorphic vector bundle E → X there is a canonically associated
Chern connection

D : A0(X,E)→ A1(X,E)

characterized by the properties ([Dem12a])

(I.B.3)

{
D′′ = ∂

d(s, s′) = (Ds, s′) + (s,Ds′)

where s, s′ ∈ A0(X,E) and ( , ) denotes the Hermitian inner product in E. The
curvature

ΘE := D2

is linear over the functions; hence it is pointwise an algebraic operator. Using (I.B.3)
it is given by a curvature operator

ΘE ∈ A1,1(X,EndE)

which satisfies
(ΘEe, e

′) + (e,ΘEe
′) = 0

2The higher direct images RqπOPE(m) = 0 for q > 0, m = −r; we shall not make use of this.
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where e, e′ ∈ Ex. Relative to a local holomorphic frame {sα}, h = ‖hαβ̄‖ is a Hermitian
matrix and the corresponding connection and curvature matrices are given by

θ = h−1∂h

ΘE = ∂(h−1∂h) =
∥∥∥∑
α,β,i,j

Θα
β̄ij̄
sα ⊗ s∗β ⊗ dzi ∧ dz̄j

∥∥∥ .

For line bundles the connection and curvature matrices are respectively θ = ∂ log h
and ΘL = −∂∂ log h. If h = e−ϕ, then

ΘL = 0 ⇐⇒ (i/2)∂∂ϕ = 0 ⇐⇒ ϕ is plurisubharmonic.

Definition: The curvature form is given for x ∈ X, e ∈ Ex and ξ ∈ TxX by

(I.B.4) ΘE(e, ξ) =
〈
(ΘE(e), e) , ξ ∧ ξ̄

〉
.

When written out in terms of the curvature matrix ΘE(e, ξ) is the bi-quadratic form∑
α,β,i,j

Θα
β̄ij̄eαēβξiξ̄j.

The bundle E → X is positive,3 written Emet > 0, if there exists a metric such that
ΘE(e, ξ) > 0 for all non-zero e, ξ. For simplicity we will write ΘE > 0. If we have
just ΘE(e, ξ) = 0, then we shall say that E → X is semi-positive and write Emet = 0.
It is strongly semi-positive if Emet = 0 and (detE)met > 0 on an open set.

The bundle is Nakano positive if there exists a metric such that for all non-zero
ψ ∈ Ex ⊗ TxX we have

(I.B.5) (ΘE(ψ), ψ) > 0.

The difference between positivity and Nakano positivity is that the former involves
only the decomposable tensors in E ⊗ TX whereas the latter involves all tensors. In
[Dem12a] there is the concept of m-positivity that involves the curvature acting on
tensors of rank m and which interpolates between the two notions defined above.

Positivity and semi-positivity have functoriality properties ([Dem12a]). For our
purposes the two most important are

the tensor product of positive bundles is positive, and similarly for
semi-positive;

(I.B.6)

the quotient of a positive bundle is positive, and similarly for semi-
positive.

(I.B.7)

The second follows from an important formula that we now recall (cf. [Dem12b]). If
we have an exact sequence of holomorphic vector bundles

(I.B.8) 0→ S → E → Q→ 0,

then a metric in E induces metrics in S,Q and there is a canonical second fundamental
form

β ∈ A1,0(X,Hom(S,Q))

3We should say metrically positive, but since this is the main type of positivity used in this paper
we shall drop the “metrically.”
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that measures the deviation from being holomorphic of the C∞ splitting of (I.B.8)
given by the metric. Equivalently it measures the failure of the Chern connection
acting on A0(X,E) to map A0(X,S) to A1(X,S). For j : Q ↪→ E the inclusion given
by the C∞ splitting and q ∈ Qx, ξ ∈ TxX the formula is (loc. cit.)

(I.B.9) ΘQ(q ⊗ ξ) = ΘE(j(q)⊗ ξ) + ‖β∗(q)⊗ ξ‖2

where by definition the last term is −
〈
(β∗(q), β∗(q))S, ξ ∧ ξ̄

〉
and ( , )S is the induced

metric in S. The minus sign is because the Hermitian adjoint β∗ is of type (0,1).

Examples.
(i) The universal quotient bundle Q → G(k, n) with fibres QΛ = Cn/Λ over the

Grassmannian G(k, n) of k-planes Λ ⊂ Cn has a metric induced by that in Cn, and
with this metric

ΘQ = 0 and ΘQ > 0 ⇐⇒ k = n− 1.

Similarly, the dual S∗ → G(k, n) of the universal sub-bundle has ΘS∗ = 0 and ΘS∗ >
0 ⇐⇒ k = 1.

Geometrically, for a k-plane Λ ∈ Cn we have the usual identification

TΛG(k, n) ∼= Hom(Λ,Cn/Λ).

Then for ξ ∈ Hom(Λ,Cn/Λ) and v ∈ Λ

ΘS∗(v, ξ) = 0 ⇐⇒ ξ(v) = 0.

Here the RHS means that for the infinitesimal displacement Λξ of Λ given by ξ we
have

v ∈ Λ ∩ Λξ.

The picture for G(2, 4) viewed as the space of lines in P3 is

Λ Λξ

v

There are similar semi-positivity properties for any globally generated vector bun-
dle, since such bundles are induced from holomorphic mappings to a Grassmannian,
and positivity and semi-positivity have the obvious functoriality properties.

(ii) Below we will recall and establish notations for the standard concepts in Hodge
theory, including the Hodge vector bundles F p → B over the parameter space B of
a variation of Hodge structure. The geometric case will be when the variation of
Hodge structure arises from the cohomology along the fibres of a family X

π−→ B of
smooth, projective varieties Xb = π(b). Here X and B are complex manifolds and
π is a proper submersion. We will use the standard notation ωX/B for the relative
dualizing sheaf. It is a line bundle over X whose fibre at x ∈ Xb is the canonical
bundle KXb,x = detT ∗xXb.
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The Hodge bundle F n → B with the metric given by the Hodge-Riemann bilinear
relation satisfies ΘF = 0 [Gri70], but unless hn,0 = 1 very seldom do we have ΘF > 0.

These examples will be further discussed in Section III.A.
(iii) In the geometric case of a family X

π−→ B with smooth fibres, the Narashimhan-
Simka [NS68] Finsler type metrics in π∗ω

m
X/B have a Hodge theoretic interpretation.

As a consequence of this

There is a metric hm in OPf∗ωmX/Y (1) whose Chern form ωm = 0.

Some care must both be taken here as although hm is continuous it is not smooth
and so ωm = (i/2)∂∂ log hm and the inequality ωm = 0 must be taken in the sense
of currents (cf. [Dem12b] and [Pă16]). Metrics of this sort were used in [Kaw82]
and have been the subject of numerous recent works, including [Ber09], [BPă12],
[PT14], [MT07], [MT08], and also [Pă16] where a survey of the literature and further
references are given.

I.B.3. Interpretation of the curvature form. Given a holomorphic vector bundle E →
X there is the associated projective bundle PE π−→ X of 1-dimensional quotients of
the fibres of E; thus (PE)x = PE∗x. Over PE there is the tautological line bundle
OPE(1). A metric in E → X induces one in OPE(1) → PE, and we denote by ωE
the corresponding curvature form. Then ΩE := (i/2π)ωE represents the Chern class
c1(OPE(1)) in H2(PE).

Since ωE
∣∣
(PE)x

is a positive (1, 1) form, the vertical sub-bundle

V := ker π∗ : TPE → TX

to the fibration PE → X has a C∞ horizontal complement H. Thus as C∞ bundles{
TPE ∼= V ⊕H, and

π∗ : H
∼−→ π∗TX.

In more detail, using the metric we have a complex conjugate linear identification
E∗x
∼= Ex, and using this we shall write points in PE as (x, [e]) where e ∈ Ex is a

non-zero vector. Then we have an isomorphism

(I.B.10) π∗ : H(x,[e])
∼−→ TxX.

Using this identification and normalizing to have ‖e‖ = 1, the interpretation of the
curvature form is given by the equation

(I.B.11) ΘE(e, ξ) =
〈
ωE, ξ ∧ ξ̄

〉
=: ωE(ξ)

where ξ ∈ TxX ∼= H(x,[e]) and the RHS is evaluated at (x, [e]). Thus

(I.B.12) ΘE > 0 ⇐⇒ ωE > 0,

and similarly for = 0. There are the evident extensions of (I.B.12) to open sets in PE
lying over open sets in X. For semi-positive vector bundles we summarize by saying
that the curvature form ΘE measures the degree of positivity of ωE in the horizontal
directions.
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For later use we conclude with the observation that using OX(E) ∼= π∗OPE(1), given
s ∈ OX,x(E) there is the identification of (1,1) forms

(I.B.13) (−∂∂ log ‖s‖2)(x) = ωE(x, [s(x)])

where the RHS is the (1,1) form ωE evaluated at the point (x, [s(x)]) ∈ PE in the
total tangent space (both vertical and horizontal directions).

I.B.4. Hodge theory. We shall follow the generally standard notations and conventions
as given in [CMSP17]4 and are used in [GGLR20] and [GGR21]. Further details
concerning the structure of limiting mixed Hodge structures (LMHS) will be given in
Section III.D.

• B will denote a smooth quasi-projective variety;
• a variation of Hodge structure (VHS) parametrized by B will be given by the

equivalent data
(a) a period mapping

Φ : B → Γ\D
whereD is the period domain of weight n polarized Hodge structures (V,Q, F •)
with fixed Hodge numbers hp,q, and where the infinitesimal period relation
(IPR)

Φ∗ : TB → I ⊂ T (Γ\D)

is satisfied;
(b) (V, F •,∇;B) where V→ B is a local system with Gauss-Manin connection

∇ : OB(V)→ Ω1
B(V)

and F • = {F n ⊂ F n−1 ⊂ · · · ⊂ F 0} is a filtration of O(V) by holomorphic
sub-bundles satisfying the IPR in the form

∇F p ⊂ Ω1
B(F p−1),

and where at each point b ∈ B the data (Vb, F
•
b ) defines a polarized Hodge

structure (PHS) of weight n.5

In the background in both (a) and (b) is a bilinear formQ that polarizes the Hodge
structures; we shall suppress the notation for it when it is not being explicitly
used.
• The parameter space B will have a smooth projective completion B with the

properties
Z := B\B is a reduced normal crossing divisor Z =

⋃
Zi having strata

ZI :=
⋂
i∈I Zi with Z∗I ⊂ ZI denoting the non-singular points Z∗I,reg of ZI ,

and where the local monodromies Ti around the irreducible branches Zi of
Z are unipotent with logarithms Ni;

6

• the Hodge vector bundle F → B has fibres Fb := F n
b ;

4This will be our main reference for Hodge theory.
5More precise notation would be that V is a local system of Q-vector spaces with complexification

VC = C⊗Q V. Then the Gauss-Manin connection is ∇ : OB(VC)→ Ω1
B ⊗ OB(VC).

6To achieve this we may have to pass to a covering space of B branched along the Zi’s.
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• the Hodge line bundle Λ := detF = ∧hn,0F ;
• the polarizing forms induce Hermitian metrics in F and Λ;
• the differential of the period mapping is

Φ∗ : TB →
⊕
p=[ n2 ]

Hom(F p, F p−1/F p)

where F p → B denotes the Hodge filtration bundles;
• setting F = F n and G = F n−1/F n the end piece of Φ∗ is

Φ∗,n : TB → Hom(F,G);

• the Hodge filtration bundles have canonical Deligne extensions

F p
e → B;

using the Hodge metrics on B, the holomorphic sections of F p
e → B are those

whose Hodge norms have at most logarithmic growth along Z;
• equivalently, in a neighborhood U ⊂ B of a point b ∈ B\B, a holomorphic

frame vj for F0
e → U is given by a holomorphic frame over U = U ∩ B that

when expressed in terms of a horizontal or flat frame is given by a matrix whose
entries are polynomials in log t1, . . . , log tk with coefficients that are holomorphic
functions in U and where the Gauss-Manin connection has regular singular points
with residues Ni := log Ti around Zi;
• the geometric case is when the VHS arises from the cohomology along the fibres

in a smooth projective family

X
f−→ B;

• such a family has a completion to

X
f̄−→ B

where this map has the Abramovich-Karu ([ATW20]) form of semi-stable reduc-
tion (cf. Section 4 in [GGLR20] for more details and for the notations to be used
here); then the canonical extension of the Hodge vector bundle is given by

Fe = f̄∗ωX/B.

We conclude this introduction with an observation and a question. For line bundles
L→ X over a smooth projective variety X of dimension d, there are three important
properties:

(i) L if nef;
(ii) L is big;

(iii) L if semi-ample.

Clearly (iii) =⇒ (i) and (ii), (iii) =⇒ |mL| gives a birational morphism for m� 0.
In this paper we will consider the case where L→ X has a metric h that may be sin-

gular with Chern ω that defines a (1, 1) current representing c1(L). The singularities
of h are generally of the following types:

• h vanishes along a proper subvariety of X;
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• h becomes infinite, either logarithmically or analytically (in the sense explained
below) along a proper subvariety of X.

We note that if ω is the Chern form associated to a smooth metric, then ω = 0 =⇒
(i), and that in general in a Zariski open X0 ⊂ X where h is a smooth metric

ωd > 0 =⇒ (ii)

(cf. (II.C.6) below and [Dem12a]). The Kodaira theorem states that if X0 = X, then
h is ample. There is a general conjecture [GGLR20] that the augmented Hodge line
bundle Le = det(F n

e )⊗ · · · ⊗ det(F ((n+1)/2) is semi-ample. For a number of purposes,
including applications to Hodge theory, it would be desirable to have conditions on
ω that imply (iii).

In more detail, if Φ is a proper immersion, then ω defines a complete Kähler metric
on B. This metric has singularities along Z that reflect the geometry of the period
mapping at infinity. It is conjectured, but not proved, that the special structure of
this situation imply that Le → B is semi-ample. As explained in [GGR21] this will
involve the geometry along Z of the singular Kähler metric ωe.

In [BBT18] and [BKT18] the new technique of o-minimality was introduced that
proves that the image of the period mapping defined on B is an algebraic variety
on which L → B descends to give an ample line bundle. This result settled a long
standing question and uses methods that are sure to lead to further results.

II. Positivity

II.A. Iitaka dimension and numerical dimension. In algebraic geometry posi-
tivity traditionally suggests “sections,” and one standard measure of the amount of
sections of a line bundle L→ X is given by its Kodaira-Iitaka dimension κ(L). This
is defined by

(II.A.1) κ(L) = max
m

dimϕmL(X)

where

ϕmL : X // PH0(mL)∗

is the rational mapping given by the linear system |mL|. If h0(mL) = 0 for all m we
set κ(L) = −∞. From [Dem12a] we have

(II.A.2) h0(mL) 5 O(mκ(L)) for m = 1,

and κ(L) is the smallest exponent for which this estimate holds.7 We will sometimes
write (II.A.2) as

h0(mL) ∼ Cmκ(L), C > 0.

We note that

κ(L) = dimX ⇐⇒ L→ X is big.

7Including κ(L) = −∞ where we set m−∞ = 0 for m > 0.
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Numerical dimension. Let L→ X be a line bundle with Lnum = 0; i.e., L is nef.

Definition (cf. [Dem12a]): The numerical dimension is the largest integer n(L) such
that

c1(L)n(L) 6= 0.

In practice in this paper there will be a semi-positive (1,1) form ω such that [(i/2π)ω] =
c1(L), and then n(L) is the largest integer such that ωn(L)+1 ≡ 0 but

ωn(L) 6= 0

on an open set.

Relating the Kodaira-Iitaka and numerical dimensions, from [Dem12a] we have

(II.A.3) κ(L) 5 n(L)

with equality if n(L) = dimX, but where equality may not hold if n(L) < dimX.

Example (loc. cit.): Let C be an elliptic curve and p, q ∈ C points such that p − q
is not a torsion point. Then the line bundle [p − q] has a flat unitary metric, but
h0(C,m[p− q]) = 0 for all m > 0. For any nef line bundle L′ → X ′ we set

X = C ×X ′, L = [p− q]� L′.

Then κ(X) = −∞ while n(L) may be any integer with n(L) 5 dimX − 1.

The reason we may have the strict inequality κ(L) < n(L) seems to involve some
sort of flatness as in the above example.8

For a vector bundle E → X with Enum = 0 we have the

Definition: The numerical dimension n(E) of the vector bundle E → X is given by
n(OPE(1)).

Since OPE(1) is positive on the fibers of PE → X we have

r − 1 5 n(E) 5 dimPE = dimX + r − 1.

Conjecture II.D.24 below suggests conditions under which equality will hold.
From (II.B.4) below we have

(II.A.4) n(E) is the largest integer with Sn(E)−r+1(E) 6= 0,

which serves to define the numerical dimension of a semi-positive vector bundle in
terms of its Segre classes that are defined in Section II.B below. We remark that as
noted above

(II.A.5) OPE(1)num = 0 =⇒ Sq(E) = 0 for any q = 0;

we are not aware of results concerning the converse implication.

8Cf. [CD14] and [CD17] for a related discussion involving certain Hodge bundles.
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II.B. Numerical positivity. 9

In this section we shall discuss various measures of numerical positivity, one main
point being that these will apply to bundles arising from Hodge theory. The basic
reference here is [Laz04]. A conclusion will be that the Hodge vector bundle F is
numerically semi-positive; i.e., Fnum = 0 in the notation to be introduced below.

II.B.1. Definition of numerical positivity. We first recall the definition of the cone
C = ⊕Cd of positive polynomials P (c1, . . . , cr) where ci has weighted degree i. For
this we consider partitions λ = (λ1, . . . , λn) with 0 5 λn 5 λn−1 5 · · · 5 λ1 5 r,
Σλi = n, of n = dimX. For each such λ the Schur polynomial sλ is defined by the
determinant

(II.B.1) sλ =

∣∣∣∣∣∣∣∣∣∣
cλ1 cλ1+1 · · cλ1+n−1

· ·
· ·

cλn−n+1 · · · cλn

∣∣∣∣∣∣∣∣∣∣
.

Then ([Laz04]) C is generated over Q>0 by the sλ. It contains the Chern monomials

ci11 · · · cirr , i1 + 2i2 + · · ·+ rir 5 n

as well as some combinations of these with negative coefficients, the first of which is
c2

1 − c2.
For each P ∈ Cd and d-dimensional subvariety Y ⊂ X we consider

(II.B.2)

∫
Y

P (c1(E), . . . , cr(E)) = P (c1(E), . . . , cr(E))[Y ]

where the RHS is the value of the cohomology class P (c1(E), . . . , cr(E)) ∈ H2d(X)
on the fundamental class [Y ] ∈ H2d(X).

Definition: E → X is numerically positive, written Enum > 0, if (II.B.2) is positive
for all P ∈ Cd and subvarieties Y ⊂ X.

We may similarly define Enum = 0.
A non-obvious result ([Laz04]) is

(II.B.3) For line bundles L→ X, we have

Lnum = 0 ⇐⇒ L is nef.

The essential content of this statement is

c1(L)[C] = 0 for all curves C =⇒ c1(L)d[Y ] = 0 for all d-dimensional
subvarieties Y ⊂ X.10

This is frequently formulated as saying that if L is nef then it is in the closure of the
ample cone.

9We are including a discussion of numerical positivity because this property will hold for the
Hodge bundle but to our knowledge has yet to be generally applied in the application of Hodge
theory to algebraic geometry.

10Here c1(L)[C] := deg
(
L
∣∣
C

)
, and similarly for c1(L)d[Y ].
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II.B.2. Relation between Enum > 0 and OPE(1)num > 0.

For the fibration PE π−→ X there is a Gysin or integration over the fibre map

π∗ : H2(d−r+1)(PE)→ H2d(X).

It is defined by moving cohomology to homology via Poincaré duality, taking the
induced map on homology and then again using Poincaré duality. In de Rham coho-
mology the mapping is given by what the name suggests. The dth Segre polynomial
is defined by

(II.B.4) Sd(E) = π∗

(
c1 (OPE(1))d−r+1

)
.

Then ([Laz04]): (i) Sd(E) is a polynomial in the Chern classes c1(E), . . . , cr(E), and
(ii) Sd(c1, . . . , cr) ∈ Cd. That it is a polynomial in the Chern classes is a consequence
of the Grothendieck relation

(II.B.5) c1 (OPE(1))r − c1 (OPE(1))r−1 π∗e1(E) + · · ·+ (−1)rπ∗cr(E) = 0.

The first few Segre polynomials are
S1 = c1

S2 = c2
1 − c2

S3 = c1c2

S4 = c4
1 − 2c2

1c2 + c1c3 − c4.

An important implication is

(II.B.6) OPE(1)num > 0 =⇒ Enum > 0.

Proof. By Nakai-Moishezon (cf. (II.C.8) below), OPE(1) and hence E are ample. Then
Enum > 0 by the theorem of Bloch-Gieseker ([Laz04]). �

As will be noted below, the converse implication is not valid.

II.C. Metric positivity. Because of its general importance in complex differential
geometry we begin with a discussion of

Tangent bundle. When E = TX and the metric on E → X is given by a Kähler
metric on X the curvature form has the interpretation

(II.C.1) ΘTX(ξ, η) =


holomorphic bi-sectional curvature

in the complex 2-plane ξ ∧ η
spanned by ξ, η ∈ TxX

 .

When ξ = η we have

(II.C.2) ΘTX(ξ, ξ) =

{
holomorphic sectional curvature in

the complex line spanned by ξ

}
.

Of particular interest and importance in Hodge theory and in other aspects of alge-
braic geometry is the case when TX has some form of negative curvature.

14



Proposition II.C.3 ([BKT13]): Assume there is c > 0 such that (i) ΘTX(ξ, ξ) 5 −c
for all ξ, and (ii) ΘTX(λ, η) 5 0 for all λ, η. Then there exists ξ such that ΘTX(ξ, η) 5
−c/2 for all η.

This implies that if the holomorphic sectional curvatures are negative and the
holomorphic bi-sectional curvatures are non-positive, then they are negative on an
open set in G(2, TX), the Grassmann bundle of 2-planes in TX, and this open set
maps onto X. Noting that Gr(2, TX) maps to an open subset of the horizontal
sub-bundle in the fibration PTX → X, from (II.C.6) below we have the

Corollary II.C.4: If the assumptions in II.C.3 are satisfied, then T ∗X is big.

We will see that these assumptions are satisfied for period mappings where Φ is an
immersion.

First implications. In this section for easy reference we will summarize the first
implications of the two types of positivity on the Kodaira-Iitaka dimension and nu-
merical dimension. These are either well known or easily inferred from what is known.

Case of a line bundle L→ X

Lmet > 0 =⇒ L ample.(II.C.5)

This is the Kodaira theorem which initiated the relation between metric positivity
and sections.

The next is the Grauert-Riemenschneider conjecture, established by Siu and De-
mailly (cf. [Dem12a] and the references there):

(II.C.6) L0
met > 0 =⇒ κ(L) = dimX.

Here we recall that L0
met > 0 means that there is a metric in L→ X whose curvature

form ω = 0 and where ω > 0 on an open set. The result may be phrased as

L0
met > 0 =⇒ L is big.

For Hodge theory this variant of the Kodaira theorem plays a central role as bundles
constructed from the extended Hodge vector bundle tend to be big and perhaps
semi-ample,11 but just exactly what their “Proj” is seems to be an interesting issue.
Because of this for later use, in the case when X is projective we now give a

Proof of (II.C.6). Let H → X be a very ample line bundle chosen so that H −KX is
ample. Setting F = L+H we have Fmet > 0. For D ∈ |F | smooth using the Kodaira
vanishing theorem we have {

hq(X,mF ) = 0, q > 0,

hq(D,mF
∣∣
D

) = 0, q > 0.

11The issue of additional conditions that will imply that an L which is nef and big is also semi-
ample is a central one in birational geometry (cf. [Ko-Mo]). The results there seem to involve
assumptions on mL−KX . In Hodge theory KX is frequently one of the things that one wishes to
establish properties of, so that at least thus far the base-point-free theorem has not seemed to be
useful.
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We note that the vanishing theorems will remain true if we replace L by a positive
multiple.

Let D, . . . , Dm ∈ |H| be distinct smooth divisors. From the exact sequence 0 →
m(F −H)→ mF →

m
⊕
j=1

mF
∣∣
Dj

we have

0→ H0(X,m(F −H))→ H0(X,mF )→
m
⊕
j=1

H0(Dj,mF ).

This gives

h0(X,mL) = h0(X,m(F −H)) = h0(X,mF )−mh0(D,mF ).

Using the above vanishing results

h0(X,mL) = χ(X,mF )−mχ(D,mF ).

For d = dimX and letting ∼ denote modulo lower order terms, from the Riemann-
Roch theorem we have

χ(X,mF ) ∼ md

d!
F d

mχ(D,mF ) ∼ md

d!
(dF d−1 ·H).

For m� 0 this gives

h0(X,mL) =
md

d!
(F d − dF d−1 ·H) + o(md).

From

F d − dF d−1 ·H = (L+H)d − d(L+H)d−1 ·H
= (L+H)d−1 · (L− (d− 1)H)

replacing L by a multiple we may make this expression positive.12 �

The next result is

(II.C.7) Lmet > 0 =⇒ Lnum > 0, and similarly for = 0 (obvious).

The inequality in (II.C.7) is sometimes phrased as

Lmet = 0 =⇒ L is nef.

The theorem of Nakai-Moishezon is

Lnum > 0 ⇐⇒ L is ample.(II.C.8)

The next inequality was noted above:

κ(L) 5 n(L), with equality if n(L) = dimX;(II.C.9)

Case of a vector bundle E → X

(II.C.10) Emet > 0 =⇒ E ample, and E0
met > 0 =⇒ κ(E) = dimX + r − 1.

12This argument is due to Catanese; cf. [Dem12a].
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In words, E0
met > 0 implies that E is big.

We next have

(II.C.11) Emet > 0 =⇒ Enum > 0.

This result may be found in [Laz04]; the proof is not obvious from the definition. We
are not aware of any implication along the lines of

Emet = 0 =⇒ Enum = 0.

Next we have

(II.C.12) κ(E) 5 n(E) with equality if n(E) = dimX + r − 1 (this follows from
(II.C.9)).

This leads to

(II.C.13) Emet = 0 and Enum > 0 =⇒ κ(E) = dimX + r − 1.

This follows from (II.A.4) and (II.C.12).
It is not the case that

Enum > 0 =⇒ E ample;

there is an example due to Fulton of a numerically positive vector bundle over a curve
that is not ample (cf. [Laz04]).

We will conclude this section with a sampling of well-known results whose proofs
illustrate some of the traditional uses of positivity.

Proposition II.C.14: If E → X is a Hermitian vector bundle with ΘE > 0, then
H0(X,E∗) = 0.

Proof. Using (I.B.13) applied to E∗ → X, if s ∈ H0(X,E∗) then when we evaluate
∂∂ log ‖s‖2 at a strict maximum point where the Hessian is definite we obtain a
contradiction. If the maximum is not strict then the usual perturbation argument
may be used. �

Proposition II.C.15: If E → X is a Hermitian vector bundle of rank r 5 dimX
and with ΘE > 0, then every section s ∈ H0(X,E) has a zero.

Proof. The argument is similar to the preceding proposition, only this time we assume
that s has no zero and evaluate ∂∂ log ‖s‖2 at a minimum. Here we are viewing s
as a section of OPE(1). This (1,1) form is positive in the pullback to X of the
vertical tangent space, and it is negative in the pullback of the horizontal tangent
space. The assumption r 5 dimX then guarantees that it has at least one negative
eigenvalue. �

Proposition II.C.16: If E → X is a Hermitian vector bundle with ΘE = 0 and
s ∈ H0(X,E) satisfies ΘE(s) = 0, then Ds = 0.

Proof. Let ω be a Kähler form on X. Then

∂∂(s, s) = (Ds,Ds) + (s,ΘE(s)) = (Ds,Ds) = 0,
17



and if dimX = d using Stokes theorem we have

0 =

∫
X

ωd−1 ∧ (i/2)∂∂‖s‖2 =

∫
X

ωd−1 ∧ (i/2)(Ds,Ds)

which gives the result. �

A further result.
As discussed above, for many purposes positivity is too strong (see the examples

in Section II.B) and semi-positivity is too weak (adding the trivial bundle to a semi-
positive bundle gives one that is semi-positive). One desires a more subtle notion
than just ΘE = 0. With this in mind, a specific guiding question is

Question: Suppose that one has ΘE = 0 and for ∧rE = detE we have ΘdetE > 0
on an open set; that is, E is strongly semi-positive. Does this enable one to produce
sections of SymmE for m� 0?

The following is a response to this question:

Theorem II.C.17: Suppose that E → X is a Hermitian vector bundle of rank r that
is strongly semi-positive. Then SymmE → X is big for any m = r.

Proof. Setting SrE = Symr E, we have ΘSrE = 0. Let ωr be the curvature form for
OPSr(E)(1). Then ωr = 0, and we will show that

(II.C.18) ωr > 0 on an open set.

For this it will suffice to find one point p = (x, [e1 · · · er]) ∈ PSr(E)x where (II.C.18)
holds. Let x ∈ X be a point where (Tr ΘE)(x) > 0 and let e1, . . . , er be a unitary
basis for Ex. Then some 〈

(ΘE(ei), ei) , ξ ∧ ξ
〉
> 0.

We may assume that the Hermitian matrix〈
(ΘE(ei), ej) , ξ ∧ ξ

〉
= δijλi, λi = 0

is diagonalized. Then

〈
(ΘSrE(e1 · · · er), e1 · · · er) , ξ ∧ ξ

〉
=
∑
i

〈(
ΘSrE(ei)e1

i
ˆ· · · er, e1 · · · er

)
, ξ ∧ ξ

〉
=
∑
i

λi > 0.

The same argument works for any m = r. �

Using this we are reduced to proving the

Lemma II.C.19: Let F → X be a Hermitian vector bundle with ΘF = 0, and where
this is a point x ∈ X and f ∈ Fx such that the (1, 1) form ΘF (f, ·) is positive. Then
for the curvature form ωF of the line bundle OPF (1) → PF , we have ωF > 0 at the
point (x, [f ]) ∈ PF .
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Proof. Let f ∗1 , . . . , f
∗
r be a local holomorphic frame for F ∗ → X and

σ = u([a1, . . . , ar];x)
∑
i

aif
∗
i

a local holomorphic section of OPE(1) → PF , where a1, . . . , ar are variables defined
modulo the scaling action (a1, . . . , ar) → λ(a1, . . . , ar) and u([a1, . . . , ar], x) is holo-
morphic. We have

‖σ‖2 = |u|2
∑
i,j

hij̄ · aiāj

where hij̄ = (f ∗i , f
∗
j ) is the metric in F → X. Up to a constant

ωF = ∂∂ log ‖σ‖2.

We may choose our frame and scaling parameter so that at the point (x, [f ])

(II.C.20) hij̄(x) = δij, dhij̄(x) = 0 and ‖σ(x, [f ])‖ = 1.

Computing ∂∂ log ‖σ‖2 and evaluating at the point where (II.C.20) holds any cross-
terms involving dhī(x) drop out and we obtain

ωF =
∑
ij

(∂∂hij̄)(x)aiāj +

(∑
i,j

dai ∧ d̄ai −

(∑
i

ai · dai

)
∧

(∑
j

ajdaj

))
.

When we take the scaling action into account and use Cauchy-Schwarz it follows that
that ωF > 0 in T(x,[f ])PF . �

Remark that the point (x, [e1 · · · er]) corresponding to a decomposable tensor in
SrEx is very special. Easy examples show that we do not expect to have ωr > 0
everywhere. In fact, the exterior differential system (EDS)

ωr = 0

is of interest and will be discussed in Section II.D in the situation when the curvature
has the norm positivity property to be introduced in that section.

Example II.C.21: We will illustrate the mechanism of how passing to SrE increases
the Kodaira-Iitaka dimension of the bundle. Let E → G(2, 4) denote the dual of the
universal sub-bundle. As above, points of G(2, 4) will be denoted by Λ and thought
of as lines in P3. For v ∈ Λ we denote by [v] the corresponding line in C4. Points of
PE will be (Λ, v)

�
�
�
�
�s v

Λ

and then the fibre of OPE(1) at (Λ, v) is [v]. The fibre EΛ
∼= Λ∗, and we have

H0(G(2, 4), E) // EΛ
// 0

= =

C4∗ // Λ∗ // 0.
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The tangent space

TΛG(2, 4) ∼= Hom(Λ,C4/Λ)

is isomorphic to the horizontal space H(Λ,v) ⊂ T(Λ,v)PE. As previously noted, for
ξ ∈ TΛG(2, 4) we have

ΘE(v, ξ) = ω(ξ) = 0 ⇐⇒ ξ(v) = 0(II.C.22)

�
�
�
�
�s

v

Λ

Λξ

Here Λξ is the infinitesimal displacement of Λ in the direction ξ.
We observe that

(II.C.23) ϕOPE(1) : PE → P3

is the tautological map (Λ, v) → [v], and consequently the fibre of (II.C.23) through
v is the P2 of lines in P3 through v. The tangent space to this fibre are the ξ’s as
pictured above. We note that dimPE = 5 while κ(OPE(1)) = n(OPE(1)) = 3.

Points of PS2E are (Λ, v, v′)

�
�
�
�
�s v sv′ Λ

and unless v = v′ we have

ΘS2E(v · v′, ξ) 6= 0

for any non-zero ξ ∈ TΛG(2, 4). Thus for ω2 the curvature form of OPS2E(1) we have

ω2 > 0 at (Λ, v · v′)

unless v = v′; consequently S2E is big.13

We shall give some further observations and remarks concerning the question posed
at the beginning of this section.

Proposition II.C.24: If E → X is generically globally generated and detE is big,
then SkE is big for some k > 0.

Proof. By standard arguments passing to a blowup of X and pulling E back, we may
reduce to the case where E is globally generated. Let N = h0(X,E) and denote by
Q → G(N − r,N) the universal quotient bundle over the Grassmannian. We then

13In this example flatness occurs along a closed, proper algebraic subvariety. In Section II.D
below we will discuss the general question/conjecture as to whether this phenomenon is general if
the curvature has the norm positivity property.
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have a diagram

(II.C.25) PE

��

α // PQ

��

β // PN−1

X
f // G(N − r,N)

where

• f ∗Q = E;
• β ◦ α = ϕOPE(1)

where ϕPE(1) is the map induced by H0(OPE(1)). As a metric in E → X we use the
one induced by the standard metric on Q→ G(N − r,N). Then we claim that

• ΘE = 0;
• Tr ΘE > 0 on an open set.

The first of these is clear. For the second, detQ is an ample line bundle overG(N−r, r)
and detE = f ∗ detQ. Thus

ΘdetE = Tr ΘE = 0

and for d = dimX
(Tr ΘE)d ≡ 0

contradicts the assumption that detE is big. The proposition now follows from
Theorem II.C.17. �

This proposition is frequently used in connection with the following well known

Proposition II.C.26: If SkE is big for some k > 0, then there exist arbitrarily large
` such that Sk`E is generically globally generated.

Proof. As a general comment, for any holomorphic vector bundle F → X{
F is generically

globally generated

}
⇐⇒

{
OPF (1)→ PF is generically

globally generated

}
.

Since sufficiently high powers of a big line bundle are generically globally generated,
and since by definition F → X is big if the line bundle OPF (1) is big, we have

F big =⇒ some SmF → X is generically globally generated.

Taking F = SkE, our assumption then implies that there are arbitrarily large ` such
that S`(SkE) is generically globally generated, consequently the direct summand
Sk`E of S`(SkE) is also generically globally generated. �

Corollary II.C.27: If E = 0 and detE > 0, then SmE is big for arbitrarily large m.

Proof. By Theorem II.C.17, SmE is generically globally generated and detSmE > 0
so that (II.C.24) applies. �

Remark II.C.28: For a line bundle L→ X we consider the properties

(i) L is nef ;
(ii) L is big ;
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(iii) L is semi-ample.

For vector bundles E → X one has the corresponding properties using O(1). In
(ii) and (iii) one generally uses SymmE rather than just E itself.

Although all these properties are important, in some sense (iii) is the most subtle
(note that (iii) =⇒ (i)). For a specific question, suppose that we have in L → X a
Hermitian metric with Chern form ω such that

(II.C.29) ω = 0 and ω > 0 on X\Z where Z ⊂ X is a normal crossing divisor.

Then ω defines a Kähler metric ω∗ on X∗ := X\Z, and one may ask the

(II.C.30) Question: Are there properties of the metric ω∗, especially those
involving its curvature Rω∗, that imply that L→ X is semi-ample?

A special case of this question was discussed above; it will be revisited in Section
III below.

II.D. Norm positivity.

Definition and first properties.
As previously noted, for many purposes including those arising from Hodge theory

strict positivity of a holomorphic vector bundle in the sense of (I.B.4) and (I.B.5) is
too strong, whereas semi-positivity is too weak. The main observation of this section
is that for many bundles that arise naturally in algebraic geometry the curvature has a
special form, one that implies semi-positivity in both of the above senses and where in
examples the special form has Hodge-theoretic and algebro-geometric interpretations.

Definition II.D.1: Let E → X be a Hermitian vector bundle with curvature ΘE.
Then ΘE has the norm positivity property if there is a Hermitian vector bundle
G→ X and a holomorphic bundle mapping

(II.D.2) A : TX ⊗ E → G

such that for x ∈ X and e ∈ Ex, ξ ∈ TxX

(II.D.3) ΘE(e, ξ) = ‖A(ξ ⊗ e)‖2
G.

Here we are identifying Ex with E∗x using the metric, and ‖ ‖2
G denotes the square

norm in G. In matrix terms, relative to unitary frames in E and G there will be a
matrix A of (1, 0) forms such that the curvature matrix is given by

(II.D.4) ΘE = −tA ∧ A.

We note that (II.D.3) will hold for any tensors in TX ⊗ E, not just decomposable
ones. As a consequence E → X is semi-positive in both senses (I.B.4) and (I.B.5).

The main implications of norm positivity will use the following observation:

(II.D.5) If the curvatures of Hermitian bundles E,E ′ → X have the norm posi-
tivity property, then the same is true for E⊕E ′ → X and E⊗E ′ → X,
as well as Hermitian direct summands of these bundles.
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Proof. If we have A : TX ⊗ E → G and A′ : TX ⊗ E ′ → G′, then ΘE⊗E′ =
(ΘE ⊗ IdE′)⊕ (IdE ⊗ΘE′), and

(A⊗ IdE′)⊕ (IdE ⊗A′) : TX ⊗ E ⊗ E ′ → (G⊗ E ′)⊕ (E ⊗G′)

leads to norm positivity for ΘE⊗E′ . The argument for ⊕ is evident. �

A result using norm positivity.
The idea is this: For this discussion we abbreviate

T = TxX, E = Ex, G = Gx

and identify E ∼= E∗ using the metric. We have a linear mapping

(II.D.6) A : T ⊗ E → G,

and using (II.D.3) non-degeneracy properties of this mapping will imply positivity
properties of ΘE. Moreover, in examples the mapping A will have algebro-geometric
meaning so that algebro-geometric assumptions will lead to positivity properties of
the curvature.

The simplest non-degeneracy property of (II.D.6) is that A is injective; this seems to
infrequently happen in practice. The next simplest is that A has injectivity properties
in each factor separately. Specifically we consider the two conditions

(II.D.7) A : T → Hom(E,G) is injective;

(II.D.8) for general e ∈ E, the mapping A(e) : T → G given by

A(e)(ξ) = A(ξ ⊗ e), ξ ∈ T
is injective.

The geometric meanings of these are:

(II.D.9) (II.D.7) is equivalent to having

ΘdetE = Tr ΘE > 0

at x; and

(II.D.10) (II.D.8) is equivalent to having

ω > 0

at (x, [e]) ∈ (PE)x; here ω is the Chern form of OPE(1).

This gives the

Proposition II.D.11: If E → X has a metric whose curvature has the norm posi-
tivity property, then

(i) (II.D.7) =⇒ detE is big;
(ii) (II.D.8) =⇒ E is big.

A bit more subtle is the following result, which although it is a consequence of
Theorem II.C.17 and (II.D.8), for later use we shall give another proof.
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Theorem II.D.12: If the rank r bundle E → X has a metric whose curvature has
the norm positivity property, then

(I.B.4) =⇒ SrE is big.

Corollary II.D.13: With the assumptions in (II.D.12) the evaluation map

H0(X,Sm(SrE))→ Sm(SrEx), x ∈ X,

is generically surjective for m� 0.14

Proof of Theorem II.D.12. Keeping the above notations and working at a general
point in PE over x ∈ X, given ξ ∈ TxX and a basis e1, . . . , er of Ex from (II.D.8) we
have

(II.D.14)
r∑
i=1

‖A(ξ ⊗ ei)‖2
G 6= 0.

Then using (II.D.5) for the induced map

A : TxX ⊗ SrEx → Sr−1Ex ⊗Gx

from (II.D.14) for ωr the canonical (1,1) form on PSrE at the point (x, [e1 · · · er])〈
ωr, ξ ∧ ξ̄

〉
> 0. �

Remark: Viehweg ([Vie83a]) introduced the notion of weak positivity for a coherent
sheaf. For vector bundles this means that for any ample line bundle L→ X there is
a k > 0 such that the evaluation mapping

H0(X,S`(SkE ⊗ L))→ S`(SkE ⊗ Lx)

is generically surjective for `� 0. He then shows that for the particular bundles that
arise in the proof of the Iitaka conjecture if one has detE > 0 on an open set, then
an intricate cohomological argument gives that E is weakly positive. One may show
that (II.D.13) may be used to circumvent the need for weak positivity in this case.

We note that the ample line bundle L → X is not needed in (II.D.13). We also
point out that

Emet = 0 =⇒ E is weakly positive (cf. [Pă16]).

This is plausible since SkE = 0 and L > 0 =⇒ SkE ⊗ L > 0. In loc. cit. this
result is extended to important situations where the metrics have certain types of
singularities.

We conclude this section with a discussion of the Chern forms of bundles having
the norm positivity property, including the Hodge vector bundle.

14Then this also implies that the map

H0(X,Sm(SrE))→ Smr

is generically surjective.
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Proposition II.D.15: The linear mapping A induces

∧qA : ∧qT → ∧qG⊗ SqE,
and up to a universal constant

cq(Θ) = ‖ ∧q A‖2.

Proof. The notation means

‖ ∧q A‖2 = (∧qA,∧qA)

where in the inner product we use the Hermitian metrics in G and E, and we identify

∧qT ∗ ⊗ ∧qT ∗ ∼= (q, q)-part of ∧2q (T ∗ ⊗ T ∗).
Then letting A∗ denote the adjoint of A we have

∧qΘ = ∧qA⊗ ∧qA∗ = ∧qA⊗ (∧qA)∗

and
cq(Θ) = Tr∧q(Θ) = (∧qA,∧qA). �

In matrix terms, if

A = dimG× dimT matrix with entries in E

then

∧qA =

{
matrix whose entries are the q × q minors of A,

where the terms of E are multiplied as polynomials.

}
It follows that up to a universal constant for the Hodge vector bundle F

cq(ΘF ) =
∑
a

Ψα ∧Ψα

where the Ψα are (q, 0) forms. In particular, any monomial cI(ΘF ) = 0.
The vanishing of the matrix ∧qΦ∗,n is not the same as rank Φ∗,n < q. In fact,

(II.D.16) rank Φ∗,n < q ⇐⇒ c1(ΘF )q = 0.

In general we have the

Proposition II.D.17: If E → X has the norm positivity property, then P (ΘE) = 0
for any P ∈ C.

A proof of this appears in [Gri69].
In the geometric case when we have a VHS arising from a family of smooth varieties

we have the period mapping Φ with the end piece of differential being

Φ∗,n : TbB → Hom
(
H0(Ωn

Xb
), H1(Ωn−1

Xb
)
)

and the algebro-geometric interpretation of (II.D.16) is standard; e.g., Φ∗,n injective
is equivalent to local Torelli holding for the Hn,0-part of the Hodge structure.

The following is a result that pertains to a question that was raised above.

Proposition II.D.18: If Φ : B → Γ\D has no trivial factors, and if hn,0 5 dimB
and H0(B,Fe) 6= 0, then

chn,0(F ) 6= 0.
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Proof. We will first prove the result when B = B. We let s ∈ H0(F,B) and assume
that chn,0(F ) = 0. Then s is everywhere non-zero and we may go to a minimum of
‖s‖2. From Proposition II.C.16 we have Dσ = 0, which implies that the norm ‖s‖ is
constant and

∇s = 0

where ∇ is the Gauss-Manin connection. Using the arguments [Gri70] we may con-
clude that the variation of Hodge structure has a trivial factor.

If B 6= B, the arguments given in Section III below may be adapted to show that
the proof still goes through. The point is the equality of the distributional and formal
derivatives that arise in integrating by parts. �

The exterior differential system defined by a Chern form. In this section
we will discuss the exterior differential system

(II.D.19) ω = 0

defined by the Chern form of the line bundle OPE(1) where E → X is a Hermitian
vector bundle whose curvature has the norm positivity property (II.D.1). Without
assuming the norm positivity property, this type of EDS has been previously studied
in [BK77] and [Som59] and also appeared in [Kol87].

Here our motivation is the following question:

(II.D.20) Under what conditions can one say that the Kodaira-Iitaka dimension
of E → X is equal to its numerical dimension?

Proposition II.D.21: The exterior differential system (II.D.19) defines a foliation
of PE by complex analytic subvarieties W ⊂ PE with the properties

(i) W meets the fibres of PE π−→ X transversely; thus W → π(W ) is an étalé
map;

(ii) the restriction E
∣∣
π(W )

is flat.

Proof. Since ω > 0 on the fibres of PE → X, the vectors ξ ∈ T(x,[e])PE that satisfy
ω(ξ) = 0 project isomorphically to TX. The image of these vectors is the subspace
(here identifying ξ with π∗(ξ))

(II.D.22) {ξ ∈ TxX : A(e⊗ ξ) = 0}.
This is the same as the subspace of TxX defined by

ΘE(e⊗ ξ) = 0,

which implies that E
∣∣
π(w)

is flat. �

Remark: Given any holomorphic bundle map

(II.D.23) A : TX ⊗ E → G,

if we have a metric in E → X we may use it to identify E ∼= E∗ and then define
the horizontal sub-bundle H ⊂ TOPE(1). It follows that (II.D.22) defines a C∞

distribution (with jumping fibre dimensions) in TOPE(1), and when the map (II.D.23)
arises from the curvature of the metric connection as in (II.D.3) this distribution is
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integrable and the maximal leaves of the corresponding foliation of PE by complex
analytic subvarieties are described by Proposition II.D.21.

The restrictions E
∣∣
π(W )

being flat, the monodromy is discrete. Heuristic arguments

suggest that the maximal leaves W ⊂ PE are closed analytic subvarieties.

Conjecture II.D.24: Finite monodromy provides the necessary and sufficient con-
dition to have the equality

κ(E) = n(E)

of Kodaira-Iitaka and numerical dimensions of a holomorphic vector bundle having a
Hermitian metric whose curvature satisfies the norm positivity condition.

The idea is that the quotient PE/ ∼, where ∼ is the equivalence relation given by
the connected components of the foliation defined by (II.D.19), exists as a complex
analytic variety of dimension equal to n(E), and there is a meromorphic mapping

PE 99K PE/ ∼
together with an ample line bundle on PE/ ∼ that pulls back to OPE(1). The rather
simple guiding model here is the dual of the universal sub-bundle over the Grassman-
nian that was discussed above. In fact, the conjecture holds if E → X is globally
generated with metrics induced from the corresponding mapping to a Grassmannian.

We note that the foliation defined by the null space of the holomorphic bi-sectional
curvature on quotients of bounded symmetric domains has been studied in [Mok87].
In this case the leaves are generally not closed.

Finally we point out the interesting papers [CD17] and [CD14]. In these papers
the authors construct examples of smooth fibrations

f : X → B

of a surface over a curve such that for E = f∗ωX/B one has

E = A⊕Q
where A is an ample vector bundle and Q is a flat U(m,C)-bundle with infinite
monodromy group.15 In this case the leaves of the EDS (II.D.19) may be described
as follows: For each b ∈ B we have

PQ∗b ⊂ PE∗b
and using the flat connection on Q∗ the parallel translate of any point in PQ∗b defines
an integral curve of the EDS.

II.E. Cotangent bundle.
(i) Statement of results. Let Φ : B → Γ\D be a period mapping with image a

quasi-projective variety P ⊂ Γ\D. The GR-invariant metric on D constructed from
the Cartan-Killing form on gR induces a Kähler metric on the Zariski open set P 0

of smooth points of P . We denote by R(η, ξ) and R(ξ) the holomorphic bi-sectional
and holomorphic sectional curvatures respectively.

15We note that Q ⊂ f∗ωX/B ⊂ R1
fCX is not flat relative to the Gauss-Manin convention on

R1
fCX .
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Theorem II.E.1: 16 There exists a constant c > 0 such that

(i) R(ξ) 5 −c for all ξ ∈ TP 0;
(ii) R(η, ξ) 5 0 for all η, ξ ∈ TP 0 ×P 0 TP 0;
(iii) For any b ∈ Po there exists a ξ ∈ TbP 0 such that R(η, ξ) 5 −c/2 for all η ∈ TbP 0.

Observe that using (II.C.7) from [BKT13] (iii) follows from (i) and (ii). As a
corollary to (ii) we have

(iv) R(η, ξ) 5 −c/2 is an open set in TP 0 ×P 0 TP 0.

We note that (iii) implies that this open set projects onto each factor in P 0 × P 0.
As applications of the proof of Theorem II.E.1 and consideration of the singularity

issues that arise we have the following results of Zuo [Zuo00] and others (cf. Chapter
13 in [CMSP17]):

P is of log-general type,(II.E.2)

Symm Ω1
P (log) is big for m = m0.(II.E.3)

The result in (II.E.2) means that for any desingularization P̃ of P with P̃ lying over

P and Z̃ = P̃\P̃ , the Kodaira dimension

κ
(
K
P̃

(Z̃)
)

= dimP.

The result in (II.E.3) means that

Symm Ω1

M̃
(log Z̃) is big for m = m0.

The proof will show that we may choose m0 to depend only on the Hodge numbers
for the original VHS.

The proof will also show that

(VI.B.2)S P is of stratified-log-general type,

(VI.B.3)S Symm Ω1
P

(log) is stratified-big for m = m0.

Here stratified-log-general type means that there is a canonical stratification {P ∗I } of
P such that each stratum P ∗I is of log-general type. There is the analogous definition
for stratified big.

Without loss of generality, using the notations above we may take M̃ = B, P̃ = B

and Z̃ = Z; we shall assume this to be the case.

Remark: The results of Zuo, Brunebarbe and others imply thatKP (log) and Ω1
P (log)

are weakly positive in the sense of Viehweg. This is also a consequence of (II.E.3).
The proof of Theorem II.E.1 will be done first in the case

(II.E.4) B = B and Φ∗ is everywhere injective.

It is here that the main ideas and calculations occur.

16This theorem is a variant of results in [CMSP17] and [Zuo00].
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In general the singularities that arise are of the types

(II.E.5)


(a) where Φ∗ fails to be injective (e.g., the inverse image of Psing),

(b) on Z = B\B where the VHS has singularities,

(c) the combination of (a) and (b).

As will be seen below, there will be a coherent sheaf I with

Φ∗(TB) ⊂ I ⊂ Φ∗(T (Γ\D)).17

Denoting by Io the Zariski open set where I is locally free, there is an induced metric
and corresponding curvature form for Io, and with the properties (i), (ii) in the
theorem for Io Theorem II.E.1 will follow from the curvature decreasing property of
holomorphic sub-bundles, which gives

R(η, ξ) = ΘTP 0(η, ξ) 5 ΘIo(η, ξ).

As for the singularities, if we show that

κ (det Io(log)) = dimB(II.E.6)

Symm Io(log) is big(II.E.7)

then (II.E.2) and (II.E.3) will follow from the general result: If over a projective
variety Y we have line bundles L,L′ and a morphism L→ L′ that is an inclusion over
an open set, then

(II.E.8) L→ Y big =⇒ L′ → Y is big.

We will explain how (II.E.6) and (II.E.7) will follow from (II.E.8) for suitable choices
of Y, L and L′.

(ii) Basic calculation. It is conventient to use Simpson’s system of Higgs bundles
framework (cf. [Sim92] and Chapter 13 in [CMSP17]) whereby a VHS gives a system
of holomorphic vector bundles Ep, and maps

Ep+1 θp+1

−−→ Ep ⊗ Ω1
B

θp−→ Ep−1 ⊗ ∧2Ω2
X

that satisfy

(II.E.9) θp ∧ θp+1 = 0.

Thus there is induced

Ep+1 θp+1

−−→ Ep ⊗ Ω1
B

θp−→ Ep−1 ⊗ Sym2 Ω1
B.

The data (⊕
p
Ep ⊗ Symk−p Ω1

B,⊕
p
θp) for any k with k = p is related to the notion of

an infinitesimal variation of Hodge structure (IVHS) (cf. 5.5 ff. in [CMSP17]).

17Here we are identifying a coherent sub-sheaf of a vector bundle with the corresponding family
of linear subspaces in the fibres of the vector bundle. The coherent sheaf I will be a subsheaf of the
pull-back Φ∗T (D\Γ)h of the horizontal tangent spaces to Γ\D. The critical step in the calculation
will be that it is integrable as a subsheaf Φ∗T (Γ\D)h.
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In our situation the vector bundles Ep will have Hermitian metrics with Chern
connections Dp. The metrics define adjoints

θp
∗

: Ep → Ep+1 ⊗ Ω1
B,

and in the cases we shall consider if we take the direct sum over p we obtain

(E,∇ = θ∗ +D + θ), with (II.E.9) equivalent to ∇2 = 0.

The properties uniquely characterizing the Chern connection together with ∇2 = 0
give for the curvature matrix of Ep the expression

(II.E.10) ΘEp = θp+1 ∧ θp+1∗ + θp
∗ ∧ θp,

which is a difference of non-negative terms each of which has the norm positivity
property (II.D.3) (cf. [Zuo00] and Chapter 13 in [CMSP17]).

For a PVHS (V,Q,∇, F ) we now set

Ep = GrpF HomQ(V, V ), −n 5 p 5 n

where GrpF is relative to the filtration induced by F on HomQ(V, V ). At each point b
of B there is a weight zero PHS induced on HomQ(V, V ) = g and

Ep
b = gp,−p

with the bracket

[ , ] : Ep ⊗ Eq → Ep+q.

Thinking of θ as an element in g ⊗ Ω1
B, the integrability condition II.E.9 translates

into

(II.E.11) [θ, θ] = 0.

We shall use the notation

Grp = GrpF HomQ(V, V )

rather than Ep for this example.
The differential of Φ gives a map

Φ∗ : TB → Gr−1 .

Definition: I ⊂ Gr−1 is the coherent subsheaf generated by the sections of Gr−1

that are locally in the image of Φ∗ over the Zariski open set where Φ∗ is injective.

For ξ a section of I we denote by adξ the corresponding section of Gr−1. The
integrability condition (II.E.11) then translates into the first part of the

Proposition II.E.12: I is a sheaf of abelian Lie sub-algebras of ⊕
p

Grp. For η, ξ

sections of I

ΘGr−1(η, ξ) = −‖ ad∗ξ(η)‖2.

Proof. For η, ξ ∈ Gr−1 the curvature formula (II.E.10) is

ΘGr−1(η, ξ) = ‖ adξ(η)‖2 − ‖ ad∗ξ(η)‖2.

The result then follows from adξ(η) = [ξ, η] = 0 for η, ξ ∈ I. �
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On the open set where Io is a vector bundle with metric induced from that on Gr−1

we have

ΘIo(η, ξ) 5 ΘGr−1(η, ξ) 5 0.

The first term is the holomorphic bi-sectional curvature for the indued metric on
Φ(B).

To complete the proof of Theorem II.E.10 we need to show the existence of c > 0
such that for all ξ of unit length

(II.E.13) ‖ ad∗ξ(ξ)‖ = c.

The linear algebra situation is this: At a point of B we have

V = ⊕
p+q=n

V p,q

and ξ is given by maps

Ap : V p,q → V p−1,q+1,
⌊n+ 1

2

⌋
5 p 5 n.

In general a linear map

A : E → F

between unitary vector spaces has principal values λi defined by

Aei = λifi, λi real and non-zero

where ei is a unitary basis for (kerA)⊥ and fi is a unitary basis for ImA. The square
norm is

‖A‖2 = TrA∗A =
∑
i

λ2
i .

We denote by λp,i the principal values of Ap. The λp,i depend on ξ, and the square
norm of ξ as a vector in TpB ⊂ TΦ(p)(Γ\D) is

‖ξ‖2 =
∑
p

∑
i

λ2
p,i.

In the above we now replace V by HomQ(V, V ) and use linear algebra to determine
the principal values of ad∗ξ . These will be quadratic in the λp,i’s, and then

‖ adξ∗(ξ)‖2

will be quartic in the λp,i. A calculation gives

(II.E.14) ‖ adξ∗(ξ)‖2 =
∑
p

( ∑
i apλ

4
p,i(∑

i λ
2
p,i

)2

)
where the ap are non-negative integers that are positive if Ap 6= 0, and from this by
an elementary algebra argument we may infer the existence of the c > 0 in Theorem
II.E.1. �
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At this point we have proved the theorem. The basic idea is simple:

For a VHS the curvature (II.E.10) of the Hodge bundles is a difference of non-
negative terms, each of which is of norm positivity type where the “A” in Def-
inition II.D.3 is a Kodaira-Spencer map or its adjoint. For the HomQ(V, V )
variation of Hodge structure, A(ξ)(η) = [ξ, η] = 0 by integrability. Conse-
quently the curvature form has a sign, and a linear algebra calculation gives
the strict negativity ΘI(ξ, ξ) 5 −c‖ξ‖4 for some c > 0.18

The central point here is the observation in [Zuo00] that curvatures have a sign on
kernels of Kodaira-Spencer mappings.

(iii) Singularities. The singularity issues were identified in (II.E.5), and we shall
state a result that addresses them. The proof of this result follows from the results
in [CKS86] as extended in [GGLR20], [Kol87] and the arguments in [Zuo00].19

Using the notations introduced in (ii) above, a key observation is that the differ-
ential

Φ∗ : TB → Gr−1

extends to
Φ∗ : TB 〈−Z〉 → Gr−1

e

where TB 〈−Z〉 = Ω1
B

(logZ)∗ and Gr−1
e is the canonical extension to B of Gr−1 →

B. This is just a reformulation of the general result (cf. [CMSP17]) that for all p,
θp : Ep → Ep ⊗ Ω1

B
extends to

(II.E.15) θpe : Ep
e → Ep−1

e ⊗ Ω1
B

(logZ).

As noted above, the image Φ∗TB ⊂ Gr−1 generates a coherent subsheaf I ⊂ Gr−1

and from (II.E.15) we may infer that I extends to a coherent subsheaf Ie ⊂ Gr−1
e . As

in [Zuo00] we now blow up B to obtain a vector sub-bundle of the pullback of Gr−1

and note that Ie ⊂ Gr−1
e will be an integrable sub-bundle.

The metric on Gr−1 induces a metric in I and we use the notations

• ϕ = Chern form of det Io∗;
• ω = Chern form of OPIo∗(1).

Theorem II.E.16: Both ϕ and ω extend to closed, (1, 1) currents ϕe and ωe on B and
PI∗e that respectively represent c1(det I∗e ) and c1(OPI∗e )(1). They have mild logarithmic
singularities20 and satisfy

• ϕe = 0 and ϕe > 0 on an open set;
• ωe = 0 and ωe > 0 on an open set.

With one extra step this result follows from singularity considerations similar to
those in Section III below. The extra step is that

18This first proof of the result that appeared in the literature was Lie-theoretic where the metric
on g was given by the Cartan-Killing form. As will be illustrated below the above direct algebra
argument is perhaps more amenable to computation in examples.

19These arguments have been amplified at a number of places in the literature; cf. [VZ03] and
[Pă16].

20These are defined in Section III below.
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Ie is not a Hodge bundle, but rather it is the kernel of the map θ−1 : Gr−1
e →

Gr−2
e ⊗Ω1

B
(logZ).

As was noted in [Zuo00], either directly or from (5.20) in [Kol87], using the definition
and properties of mild logarithmic singularities as defined in Section III.A below, we
may infer the stated properties of ϕe and ωe. �

Remark: It is almost certainly not the case that any sub-bundle G ⊂ Gr−1
e will have

Chern forms with mild logarithmic singularities. The bundle Ie is special in that it is
the kernel of the map Gr−1

e → Gr−2
e ⊗Ω1

B
(logZ). Although we have not computed the

2nd fundamental form of Ie ⊂ Gr−1
e , for reasons to be discussed below it is reasonable

to expect it to also have good properties.

Note added in proof: This has now been done in [GGR21]. The level 1 extension
data along the fibres of Φe maps to compact complex tori and the 2nd fundamental
form referred to above is expressed in terms of the associated Gauss mapping. This
is a part of the rich geometry underlying the period mapping at infinity.

The issue of the curvature form of the induced metric on the image P = Φ(B) ⊂
Γ\D seems likely to be interesting. Since the metric on the smooth points P 0 ⊂ P
is the Kähler metric given by the Chern form of the augmented Hodge line bundle,
the curvature matrix of TP 0 is computed from a positive (1,1) form that is itself the
curvature of a singular metric. In the 1-parameter case the dominant term in ω is
the Poincaré metric PM = dt ⊗ dt̄/|t|2(− log |t|)2, and the curvature of the PM is a
positive constant times −PM. One may again suspect that the contributions of the
lower order terms in ω are less singular than PM.

(iv) Examples. On the smooth points of P 0 of the image of a period mapping the
holomorphic bi-sectional curvature satisfies

(II.E.17) R(η, ξ) 5 0,

and for η, ξ in an open set in TP 0 ×P 0 TP 0 it is strictly negative. This raises the
interesting question of the degree of flatness of T ∗P 0. In the classical case when D is a
Hermitian symmetric domain and B = Γ\D is compact this question has been studied
by Mok [Mok87] and others. In case B is a Shimura variety the related question of the
degree of flatness of the extended Hodge bundle Fe over a toriodal compactification of
Γ\D is one of current interest (cf. [Bru16a], [Bru16b] and the references cited there).

Here we shall discuss the equation

ΘI0(η, ξ) = 0

over the smooth locus P 0 of P . In view of (II.E.10) this equation is equivalent to

(II.E.18) adξ∗(η) = 0, η ∈ I.
To compute the dimension of the solution space to this equation, we use the duality

ker(ad∗ξ) = (Im(adξ))
⊥

to have
dim ker(ad∗ξ) = dim

(
coker

(
Im{adξ : Gr0 → Gr−1}

))
.
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Since I depends on the particular VHS, at least as a first step it is easier to study
the equation

(II.E.19) Adξ∗(η) = 0, η ∈ Gr−1 .

Because the curvature form decreases on the sub-bundle I ⊂ Gr−1, over P 0 we have

(II.E.18) =⇒ (II.E.19)

but in general not conversely.

Example 1: For weight n = 1 with h1,0 = g, with a suitable choice of coordinates
the tangent vector ξ is given by g × g symmetric matrix A, and on Gr−1 we have

(II.E.20) dim ker(ad∗ξ) =

(
g − rank A+ 1

2

)

Proof. At a point we may choose a basis for that Q =
(

0 Ig
−Ig 0

)
and

F 1 is given by

(
Ω

Ig

)
, Im Ω > 0

ξ ∈ Gr−1 is given by

(
0 A

0 0

)
, A = tA

η ∈ Gr0 is given by

(
C 0

0 −tC

)
.

Then

[ξ, η] =

(
0 AC + tCA

0 0

)
.

Diagonalizing A and using (II.E.18) we obtain (II.E.20).

Example 2: For weight n = 2, ξ is given by

A = h2,0 × h1,1 matrix.

We will show that on Gr−1

(II.E.21) dim ker(ad∗ξ) = (h2,0-rank A)(h1,1-rank A).
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Proof. We may choose bases so that Q = diag(Ih2,0 ,−Ih1,1 , Ih2,0) and

F 2 is given by

Ω

0

iΩ

 , Ω non-singular,

ξ is given by

0 A 0

0 0 tA

0 0 0

 ,

η is given by

C 0 0

0 D 0

0 0 −tC

 .

Then

[ξ, η] =

0 AC −DA 0

0 0 tAD + t(AC)

0 0 0

 .

Choosing bases so that A = ( I 0
0 0 ), C =

(
C11 C12
C21 C22

)
and D =

(
D11 D12

−tD12 D22

)
, we have

AC −DA =

(
C11 −D11 D12

0 −tD12 0

)
.

Setting rk(E) = rankE for a matrix E, this gives

rk A h2,0-rk A

rkA

h1,1-rk A

(
∗ ∗
∗ 0

)
where the ∗’s are arbitrary. �

As in the n = 1 case we note that

(II.E.22) A of maximal rank ⇐⇒ ker(ad∗ξ) = 0.

Example 3: Associated to a several parameter nilpotent orbit21

exp

(∑
i

`(ti)Ni

)
· F

is a nilpotent cone σ = {Nλ =
∑
λiNi, λi > 0} and the weight filtration W (N)

is independent of N ∈ σ. As discussed in Section 2 of [GGLR20], without loss of
generality in what follows here we may assume that the LMHS associated to N ∈ σ
is R-split. Thus there is a single Y ∈ Gr0 HomQ(V, V ) such that for any N ∈ σ

[Y,N ] = −2N,

21Here F ∈ Ď, the compact dual to the period domain.
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and using the Hard Leftschetz Property Nk : Gr
W (N)
n+k (V )

∼−→ Gr
W (N)
n−k (V ) we may

uniquely complete Y,N to an sl2 {N, Y,N+}. Let gσ ⊂ End(GrW (N)
• V ) be the Lie

algebra generated by the N, Y,N+’s as N varies over σ. The properties of this impor-
tant Lie algebra introduced by Looijenga-Lunts will be discussed elsewhere; here we
only note that gσ is semi-simple and that the nilpotent orbit gives a period mapping

∆∗k
Φσ−→ Γloc\Dσ

where Dσ = Gσ,R/Hσ is a Mumford-Tate sub-domain of D. Of interest are the
holomorphic bi-sectional curvatures of Φσ(∆∗k). We shall not completely answer this,
but shall give a proof of the

Proposition II.E.23: ΘI(η,N) = 0 for all N ∈ σ, if and only if, η ∈ Z(gσ).

Proof. We denote by gC = ⊕
p
gp,−p the Hodge decomposition on the associated graded

to the limiting mixed Hodge structure defined by σ. The Hodge metric is given on
gC by the Cartan-Killing form, and its restriction to g−1,−1 is non-degenerate.22 The
decomposition of gC into N -strings for the sl2 given by {N, Y,N+} is orthogonal with
respect to the Hodge metric, from which we may infer that the adjoint adN∗ acts
separately on each N -string. The picture is something like

η◦ η // ◦
N∗
jj

η // ◦ η //

N∗
hh ◦.

N∗
hh

Because N is an isomorphism the same is true of N∗; consequently

ΘI(η,N) = 0 ⇐⇒ η belongs to an N -string of length 1,

and this implies that [η, Y ] = [η,N+] = 0. By varying N over σ we may conclude the
proposition. �

Example 4: One of the earliest examples of the positivity of the Hodge line bundle
arose in the work of Arakelov ([Ara71]). For 1-parameter families it gives an upper
bound on the degree of the Hodge line bundle in terms of the degree of the logarithmic
canonical bundle of the parameter spaces.23 This result has been extended in a number
of directions; we refer to [CMSP17], Section 13.4 for further general discussion and
references to the literature.

One such extension is due to [Zuo00], [VZ03] and [VZ06]. This proof of that result
centers around the above observation that the curvature of Hodge bundles has a
sign on the kernels of Kodaira-Spencer mappings. There is a new ingredient in the
argument that will be useful in other contexts and we shall now explain this. As
above there are singularity issues that arise where the differential of Φ fails to be
injective. These may be treated in a similar manner to what was done above, and
for simplicity of exposition and to get at the essential new point we shall assume

22The decomposition of gC into the primitive sub-spaces and their images under powers of N
depends on the particular N . The Hodge metric on g−1,−1 is only definite on the subspaces arising
from the primitive decomposition for such an N .

23Using the above notations, the logarithmic canonical bundle of the parameter space is KB(Z).
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that Φ∗ is everywhere injective and that the relevant Kodaira-Spencer mappings have
constant rank.

The basic Arakelov-type inequality then exists at the curvature level. For a varia-
tion of Hodge structure (V,Q,∇, F ) over B with a completion to B with Z = B\B
a reduced normal crossing divisor, the inequality is

(II.E.24)

(
curvature of

det Grp V

)
5 Cp

(
curvature of

det Ω1
B

(logZ)

)
where Cp is a positive constant that depends on the ranks of the Kodaira-Spencer
mappings. Here we will continue using the notations

(II.E.25)

{
Grp V = F pV/F p+1V,

Grp V
θ−→ Grp−1 V ⊗ Ω1

B
(logZ).

The second of these was denoted by θp above; we shall drop the “p” here but note
that below we shall in this argument alone use θ` to denote the `th iterate of θ.

Proof of (II.E.24). Using the integrability condition (II.E.9) the iterates of (II.E.25)
give

Grp V
θ`−→ Grp−` V ⊗ Sym` Ω1

B
(logZ)

We use the natural inclusion Sym` Ω1
B

(logZ) ⊂
`
⊗Ω1

B
(logZ) and consider this map

as giving

(II.E.26) Grp V
θ`−→ Grp−` V ⊗

(
`
⊗Ω1

B
(logZ)

)
.

There is a filtration

ker θ ⊂ ker(θ2) ⊆ · · · ⊆ ker θp+1 = Grp V

and Grp V has graded quotients

ker θ,
ker θ2

ker θ
, . . . ,

Grp V

ker θp
.

The crucial observation due to Zuo ([Zuo00]) (and what motivates the above use of
`
⊗ rather than Sym`), is

ker θ`

ker θ`+1
↪→ Grp−`+1 V ⊗

(
`
⊗Ω1

B
(logZ)

)
lies in Kp−`+1 ⊗

(
`−1
⊗ Ω1

B
(logZ)

)
where

Kp−`+1 = ker
{

Grp−`+1 V
θ−→ Grp−` V ⊗ Ω1

B
(logZ)

}
.

(II.E.27)

From this we infer that

(i) Kp, Kp−1, . . . , Ko all have negative semi-definite curvature forms;
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(ii) ker θ`

ker θ`−1 ↪→ Kp−`+1 ⊗
(
`−1
⊗ Ω1

B
(logZ)

)
which gives

(iii) det
(

ker θ`

ker θ`−1

)
↪→ ∧dp,`

(
Kp−`+1 ⊗

(
`−1
⊗ Ω1

B
(logZ)

))
.

Using

(iv) det Grp V ∼=
p+1
⊗
`=1

det
(

ker θ`

ker θ`−1

)
and combining (iv), (iii) and (ii) at the level of curvatures gives (II.E.24). �

Note: In [GGK08] there are results that in the 1-parameter case express the “error
term” in the Arakelov inequality by quantities involving the ranks of the Kodaira-
Spencer maps and structure of the monodromy at the singular points.

III. Singularities

III.A. Logarithmic and mild singularities.
As our main applications will be to Hodge theory, in this section we will use the

notations from Section I.C. We recall from that section that

• B is a smooth quasi-projective variety;
• B is a smooth projective completion of B;
• Z = B\B is a divisor with normal crossings

Z = ∪Zi
where ZI :=

⋂
i∈I Zi is a stratum of Z and Z∗I = ZI,reg are the smooth points of

ZI ;
• E → B is a holomorphic vector bundle.

A neighborhood U in B of a point p ∈ Z will be

U ∼= ∆∗k ×∆`

with coordinates (t, w) = (t1, . . . , tk;w1, . . . , w`).
We now introduce the co-frame in terms of which we shall express the curvature

forms in U. The Poincaré metric in ∆∗ = {0 < |t| < 1} is given by the (1,1) form

ωPM = (i/2)
dt ∧ dt̄

|t|2(− log |t|)2
.

We are writing − log |t| instead of just log |t| because we will want to have positive
quantities in the computations below. As a check on signs and constants we note the
formula

(III.A.1) (i/2)∂∂
(
− log(− log |t|)

)
= (1/4)ωPM.

The inner minus sign is to have − log |t| > 0 so that log(− log |t|) is defined. The
outer one is to have the expression in parentheses equal to −∞ at t = 0 so that we
have a plurisubharmonic function. For

ϕ = log(− log |t|)
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the curvature form in the trivial bundle over ∆ with the singular metric given by e−ϕ

has curvature form

(III.A.2) (i/2)∂∂ log(e−ϕ) = (1/4)ωPM.

Remark: The functions that appear as coefficients in formally computing (III.A.1)
using the rules of calculus are all in L1

loc and therefore define distributions. We may
then compute ∂ and ∂ either in the sense of currents or formally using the rules of
calculus. An important observation is

(III.A.3) these two methods of computing ∂∂ϕ give the same result.

This is in contrast with the situation when we take

ϕ = log |t|

in which case we have in the sense of currents the Poincaré-Lelong formula

(III.A.4) (i/π)∂∂ log |t| = δ0

where δ0 is the Dirac δ-function at the origin. Anticipating the discussion below,
a charateristic feature of the metrics that arise in Hodge theory will be that the
principle (III.A.3) will hold.

Definition: The Poincaré coframe has as basis the (1,0) forms

dti
ti(− log |ti|)

, dwα

and their conjugates.

Definition: A metric in the holomorphic vector bundle E → B is said to have
logarithmic singularities along the divisor Z = B\B if locally in an open set U as
above and in terms of a holomorphic frame for the bundles and the Poincaré coframe
the metric h, the connection matrix θ = h−1∂h, and the curvature matrix ΘE =
∂(h−1∂h) have entries that are Laurent polynomials in the log |ti| with coefficients
that are real analytic functions in U.

Proposition III.A.5: The Hodge metrics in the Hodge bundles F p → B have loga-
rithmic singularities relative to the canonically extended Hodge bundles F p

e → B.

In the geometric case this result may be inferred from the theorem on regular sin-
gular points of the Gauss-Manin connection ([Del70]). In the general case it is a
consequence of the several variable nilpotent orbit theorem ([CKS86]). More subtle
is the behavior of the coefficients of the various quantities, especially the Chern poly-
nomials P (ΘF p), when they are expressed in terms of the Poincaré frame, a topic
analyzed in [CKS86] and where the analysis is refined in [Kol87], and to which we
now turn.

We recall that a distribution Ψ on a manifold M has a singular support Ψsing ⊂M
defined by the property that on any open set W ⊂ M\Ψsing in the complement the
restriction Ψ

∣∣
W

is given by a smooth volume form. A finer invariant of the singularities
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of Ψ is given by its wave front set24

WF (Ψ) ⊂ T ∗M.

Among other things the wave front set was introduced to help deal with two classical
problems concerning distributions:

(III.A.6) (a) distributions cannot in general be multiplied;
(b) in general distributions cannot be restricted to submanifolds

N ⊂M .

For (a) the wave front sets should be transverse, and for (b) to define Ψ
∣∣
N

it suffices

to have TN ⊂ WF (Ψ)⊥.
In the case of currents represented as differential forms with distribution coeffi-

cients, multiplication should be expressed in terms of the usual wedge product of
forms. For restriction, if N is locally given by f1 = · · · = fm = 0, then for a current
Ψ we first set dfi = 0; i.e., we cross out any terms with a dfi. Then the issue is to
restrict the distribution coefficients of the remaining terms to N . Thus the notion of
the wave front set for a current Ψ involves both the differential form terms appearing
in Ψ as well as the distribution coefficients of those terms.

Definition: The holomorphic bundle E → B has mild logarithmic singularities in
case it has a metric with logarithmic singularities and the following conditions are
satisfied:

(i) the Chern polynomials P (ΘE) are closed currents given by differential forms
with L1

loc coefficients and which represent P (c1(E), . . . , cr(E)) in H∗DR(B);
(ii) the products P (ΘE) · Q(ΘE) may be defined by formally multiplying them as

L1
loc-valued differential forms, and when this is done we obtain a representative

in cohomology of the products of the polynomials in the Chern classes;

(iii) the restrictions P (ΘE)
∣∣
Z∗I

are defined and represent P
(
c1

(
E
∣∣
Z∗I

)
, . . . , cr

(
E
∣∣
Z∗I

))
.

We note the opposite aspects of analytic singularities25 and mild logarithmic sin-
gularities: In the former one wants the singularities to create behavior different from
that of smooth metrics, either with regard to the functions that are in L2 with respect
to the singular metric, or to create non-zero Lelong numbers in the currents that arise
from their curvatures. In the case of mild logarithmic singularities, basically one may
work with them as if there were no singularities at all. An important additional point
to be explained in more detail below is that the presence of singularities increases
the positivity of the Chern forms of the Hodge bundles, so that in this sense one

24A good discussion of wave front sets and references to the literature is given in Wikipedia.
We will not use them in a technical sense but rather as a suggestion of an important aspect to
be analyzed for the Chern polynomials of the Hodge bundles. The term here is being used in a
somewhat different context than that used in the theory of D-modules.

25These are singularities that are in L2 relative to weight functions e−ϕ where ϕ is of the form
log(|f1|k1 + · · ·+ |fm|km)` for analytic functions fi (cf. [Dem12b])].
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uses singularities to positive effect. Of course one has to be careful: The singulari-
ties increase positivity so long as they are not bad enough to make the Chern forms
non-integrable, in which case they cease to represent the Chern classes.

The main result, stated below and which will be discussed in the next section, is
that the Hodge bundles have mild logarithmic singularities. This would follow if one
could show that

(III.A.7) When expressed in terms of the Poincaré frame the polynomials P (ΘE)
have bounded coefficients.

This is true when Z is a smooth divisor, but when Z is not a smooth divisor this is
not the case and the issue is more subtle.

Main result.

Theorem III.A.8 ([CKS86], with amplifications in [Kol87], [GGLR20]): The Hodge
bundles have mild logarithmic singularities.

The general issues (III.A.6)(a), (III.A.6)(b) concerning distributions were raised
above. Since currents are differential forms with distribution coefficients, these issues
are also present for currents, where as noted above the restriction issue (III.A.6)(b)
involves both the differential form aspect and the distribution aspect of currents.
This is part (iii) of the definition and is the property of the Chern polynomials that
appears in [GGLR20].

A complete proof of Theorem III.A.8 is given in Section 5 of [GGLR20]. In the next
section we shall give the argument for the Chern form Ω = c1 (ΘdetF ) of the Hodge
line bundle and in the special case when the localized VHS is a nilpotent orbit. The
computation will be explicit; the intent is to provide a perspective on some of the
background subtleties in the general argument, one of which we now explain. This
special case in fact captures the essence of the general situation.

We restrict to the case when U ∼= ∆∗k = {(t1, . . . , tk) : 0 < |tj| < 1}, and setting
`(tj) = log tj/2πi and xj = − log |tj| consider a nilpotent orbit

Φ(t) = exp

(
k∑
j=1

`(tj)Nj

)
· F0.

Following explicit computations of the Chern form Ω and of the Chern form ΩI for the
restriction of the Hodge line bundle to Z∗I , the desired result comes down to showing
that a limit

(III.A.9) lim
xj→0

Q(x)

P (x)

exists where Q(x), P (x) are particular homogeneous polynomials of the same degree
with P (x) > 0 if xj > 0. Limits such as (III.A.9) certainly do not exist in general,
and the issue to be understood is how in the case at hand the very special properties
of several parameter limiting mixed Hodge structures imply the existence of the limit.

In more detail, a general VHS may be locally written as a nilpotent orbit times
a holomorphic expression (cf. (5.2.3a) in [GGLR20]). The singularities of the Chern
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forms arise from the nilpotent orbit factors (cf. loc. cit. for the computations that
establish this). The major issue is to pass from the nilpotent orbit to the product of
SL2-orbits. For 1-parameter degenerations this is already quite subtle. In the several
parameter case the level of subtlety greatly increases. This is where the sectorial
analysis in [CKS86] enters. An exposition of this is given in section (5.3) and (5.4)
in [GGLR20]. Part of the point in the present discussion is to replace the sectorial
analysis by a conjugation whose central point is the conceptual one provided by
RWFP.

As an application of Theorems II.D.12 and III.A.8, using the notations from Section
I.C we consider a VHS given by a period mapping

Φ : B → Γ\D.
Denoting by

Fe → B

the canonically extended Hodge vector bundle we have

Theorem III.A.10:

(i) The Kodaira-Iitaka dimension

κ(Fe) 5 2hn,0 − 1.

(ii) Assuming the injectivity of the end piece Φ∗,n of the differential of Φ,

κ(Sh
n,0

Fe) = dimPShn,0Fe;

i.e., Sh
n,0
Fe → B is big.

Proof. It is well known [Gri70], [CMSP17] that the curvature of the Hodge vector
bundle has the norm positivity property. In fact, the curvature form is given by

(III.A.11) ΘF (e, ξ) = ‖Φ∗,n(ξ)(e)‖2.

Concerning the singularities that arise along B\B, it follows from Theorem III.A.8
that we may treat the Chern form ω of OPFe(1) → B as if the singularities were not
present.

The linear algebra situation is

(III.A.12) T ⊗ F → G

where dimT = dimB, dimF = hn,0 and dimG = hn−1,1. By (III.A.11) condition
(II.D.7) is equivalent to the injectivity of Φ∗,n, and Theorem III.A.10 is then a con-
sequence of Theorem II.D.12. �

This result gives one answer to the question

The Hodge vector bundle is somewhat positive. Just how positive is it?

Since in the geometric case the linear algebra underlying the map (III.A.12) is ex-
pressed cohomologically, in particular cases the result (i) in (III.A.10) can be consid-
erably sharpened. For example, in the weight n = 1 case the method of proof of the
theorem gives the
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Proposition III.A.13 ([Bru16a]): In weight n = 1, (i) κ(Fe) 5 2g − 1, and (ii)
S2Fe → B is big.

Proof. In this case D ⊂ Hg where g = h1,0 and Hg is the Siegel generalized upper-
half-plane. We then have

• T ⊂ S2V ∗;
• G = V ∗;
• T ⊗ V → G is induced by the natural contraction map S2V ∗ ⊗ V → V ∗.

For any v ∈ V the last map has image of dimension 5 g, and therefore the kernel has
dimension = dimT − g. This gives (i) in the proposition.

For (ii) we have

T ⊗ S2V // V ∗ ⊗ V
∩

S2V ∗ ⊗ S2V.
c

55

For a general q ∈ S2V the contraction mapping c is injective, and this implies (ii). �

At the other extreme we have the

Proposition III.A.14: Let Md,n denote the moduli space of smooth hypersurfaces
Y ⊂ Pn+1 of degree d = 2n + 4, n = 3. Then the Hodge vector bundle F → Md,n is
big.

Proof. Set V = Cn+2∗ and let P ∈ V (d) be a homogeneous form of degree d that
defines Y . Denote by JP ⊂ ⊕

k=d−1
V (k) the Jacobian ideal. Then (cf. Section 5 in

[CMSP17])

• TYMd,n
∼= V (d)/J

(d)
P ;

• FY = Hn,0(Y ) ∼= V (d−n−2);

• GY = Hn−1,0(Y ) ∼= V (2d−n−2)/J
(2d−n−2)
P .

It will suffice to show

(III.A.15) For general P and general Q ∈ V (d−n−2) the mapping

V (d)/J
(d)
P

Q−→ V (2d−n−2)/J
(2d−n−2)
P

is injective.

Noting that d− n− 2 = n+ 2 and that it will suffice to prove the statement for one
P and Q, we take

Q = x0 · · ·xn+1,

P = xd0 + · · ·+ xdn+1.

Then JP = {x2n+3
0 , . . . , x2n+3

n+1 } and a combinatorial argument gives (III.A.15). �

Remark III.A.16: The general principle that Proposition III.A.14 illustrates is this:
Let L→ be an ample line bundle. Then both for general smooth sections Y ∈ |mL|
and for cyclic coverings X̃Y → X branched over a smooth Y , as m increases the
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Hodge vector bundle F → |mL|0 over the open set of smooth Y ’s becomes increasingly
positive in the sense that the k such that SkF is big decreases, and for m � 0 F
itself is big.

III.B. Formulation of the result. We consider a variation of Hodge structure given
by a period mapping

Φ : ∆∗k → Γloc\D.
Here we assume that the monodromy generators Ti ∈ AutQ(V ) are unipotent with
logarithms Ni ∈ EndQ(V ); Γloc is the local monodromy group generated by the Ti.

For I ⊂ {1, · · · , k} with complement Ic = {1, . . . , k}\I we set

∆∗I = {(t1, . . . , tk) : ti = 0 for i ∈ I and tj 6= 0 for j ∈ Ic}.
From the work of Cattani-Kaplan-Schmid [CKS86] the limit limt→∆∗I

Φ(t) is defined
as a polarized variation of limiting mixed Hodge structures on ∆∗I . Passing to the
primitive parts of the associated graded polarized Hodge structures gives a period
mapping

ΦI : ∆∗I → Γloc,I\DI

where DI is a product of period domains and Γloc,I is generated by the Tj for j ∈ Ic.
This may be suggestively expressed by writting

lim
t→tI

Φ(t) = ΦI(tI).

However caution must be taken in interpreting the limit, as the “rate of convergence”
is not uniform but depends on the sector in which the limit is taken in the manner
explained in [CKS86].

We denote by Λ → ∆∗k and ΛI → ∆∗I the Hodge line bundles. The Hodge-
Riemann bilinear relations give metrics in these bundles and we denote by Ω and ΩI

the respective Chern forms. The result to be proved is

(III.B.1) lim
t→∆I

Ω = ΩI ,

where again care must be taken in interpreting this equation. In more detail, this
means: In Ω set dti = dt̄i = 0 for i ∈ I. Then the limit, in the usual sense, as t→ ∆I

of the remaining terms exists and is equal to ΩI . We will write (III.B.1) as

(III.B.2) Ω
∣∣
∆∗I

= ΩI .

The proof of (III.B.1) that we shall give can easily be adapted to the case when
the period mapping depends on parameters.

The limit can also be reduced to the case when Φ is a nilpotent orbit. This means
that

(III.B.3) Φ(t) = exp

(
k∑
i=1

`(ti)Ni

)
F

where F ∈ Ď and the conditions

(i) N : F p → F p−1,
(ii) Φ(t) ∈ D for 0 < |t| < ε
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are satisfied. This reduction is non-trivial and is given in Section 5 of [GGLR20].
The main points in the proof of Theorem IV.B.8 in the nilpotent orbit case are as

follows:

(a) without changing the associated graded’s to Φ and ΦI we may replace the F in
(III.B.3) by an F0 such that the limiting mixed Hodge structure is R-split;

(b) in this case NI can be completed to an sl2 which we denote by {N+
I , YI , NI};26

(c) the YI-weight decomposition of NIc is

NIc = NIc,0 +NIc,−1 +NIc,−2 + · · ·

where NIc,−m has YI-weight −m, m = 0;
(d) if all the NIc,−m = 0 for m > 0, then there is an slc2 = {N+

Ic , YIc , NIc} that
commutes with the previous sl2, and the result (III.B.1) is immediate;

(e) in general, by direct computation we have

ΩI ≡ Ω +R mod dti, dt̄i for i ∈ I

where the remainder term R consists of expressions Q(x)/P (x) as in (III.A.9),
and then direct computation using the relative filtration property and the fact
that for m > 0 the NIc,−m have negative YI-weights gives the result.

III.C. Proof of the result.

Weight filtrations, representations of sl2 and limiting mixed Hodge struc-
tures.

The proof of (III.B.1) will be computational, using only that Φ(t) is a nilpotent orbit
(III.B.3) and that the commuting Ni ∈ EndQ(V ) have the relative weight filtration
property (RWFP), which will be reviewed below.27 The computation will be facilitated
by using the representation theory of sl2 adapted to the Hodge theoretic situation at
hand. The non-standard but hopefully suggestive notations for doing this will now
be explained.

(i) Given a nilpotent transformation N ∈ EndQ(V ) with Nn+1 = 0 there is a unique
increasing weight filtration W (N) given by subspaces

(III.C.1) V
W (N)
k := Wk(N)V

satisfying the conditions

• N : V
W (N)
k → V

W (N)
k−2 ,

and with the notation to be explained just below

• Nk : Gr
W (N)
n+k (V )

∼−→ Gr
W (N)
n−k (V ) (Hard Lefschetz property).

26There are two ways of doing this—one is the method in [CKS86] and the other one, which is
purely linear algebra, is due to Deligne.

27The proof in [GGLR20] uses the detailed analysis of limiting mixed Hodge structures from
[CKS86], of which the RWFP is one consequence. Part of the point for the argument given here is
to isolate the central role played by that property.
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The associated graded to the weight filtation is the direct sum of the

Gr
W (N)
` V := V

W (N)
` /V

W (N)
`−1 ,

and the primitive subspaces are defined for ` = n by

Gr
W (N)
n+k,prim V = ker

{
Nk+1 : Gr

W (N)
n+k V → Gr

W (N)
n−k−2 V

}
.

Remark that the two standard choices for the ranges of indices in (III.C.1) are{
0 5 k 5 2n (Hodge theoretic)

−n 5 k 5 n (representation theoretic).28

We will use the first of these.
The weight filtration is self-dual in the sense that using the bilinear form Q

(III.C.2) V
W (N)⊥
k = V

W (N)
2n−k−1

which gives

V
W (N)∗
k

∼= V/V
W (N)

2n−k−1.

(ii) A grading element for W (N) is given by a semi-simple Y ∈ EndQ(V ) with

integral eigenvalues 0, 1, . . . , 2n, weight spaces Vk = V
W (N)
k for the eigenvalue k, and

where the induced maps

Vk
∼−→ Gr

W (N)
k V

are isomorphisms. Grading elements always exists, and for any one such Y we have

• [Y,N ] = −2N ;
• there is a unique N+ ∈ EndQ(V ) such that {N+, Y,N} is an sl2-triple.

The proof of the second of these uses the first together with the Hard Lefschetz
property of W (N).

We denote by U the standard representation of sl2 with weights 0, 1, 2. Thinking
of U as degree 2 homogeneous polynomials in x, y we have

• weight xayb = 2, a+ b = 2;
• N = ∂x and N+ = ∂y.

We denote by

Ui = SymiU ∼=

{
homogeneous polynomials

in x, y of degree i+ 1

}
the standard (i + 1)-dimensional irreducible representation of sl2. The N -string as-
sociated to Ui is

{xi+1} → {xiy} → · · · → {yi+1}
where N = ∂x. The top of the N -string is the primitive space.

Given (V,Q,N) as above and a choice of a grading element Y , for the sl2-module

Vgr =
2n
⊕
k=0

Vk

28Thus W`(N) End(V ) = {ϕ ∈ End(V ) : ϕ : V
W (N)
k → V

W (N)
k+` }.
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we have a unique identification

(III.C.3) Vgr
∼=

n
⊕
i=0

Hn−i ⊗ Ui

for vector spaces Hn−i. The notation is chosen for Hodge-theoretic purposes. The
N -string associated to Hn−i ⊗ Ui will be denoted by

(III.C.4) Hn−i(−i) N−→ Hn−i(−(i− 1))
N−→ · · · N−→ Hn−i

and we define

(III.C.5) the Hodge-theoretic weight of Hn−i(−j) is n− i+ 2j.

The representation-theoretic weight of Hn−i(−j) is 2j. It follows that Hn−i(−i) is
the primitive part of the Ui-component of Vgr.

Relative to Q the decomposition (III.C.3) is orthogonal and the pairing

Qi : Hn−i(−i)⊗Hn−i(−i)→ Q

given by

(III.C.6) Qi(u, v) = Q(N iu, v)

is non-degenerate.
(iii) We recall the

Definition: A limiting mixed Hodge structure (LMHS) is a mixed Hodge structure
(V,Q,W (N), F ) with weight filtration W (N) defined by a nilpotent N ∈ EndQ(V )
and Hodge filtration F which satisfies the conditions

(a) N : F p → F p−1;

(b) the form Qi in (III.C.6) polarizes Gr
W (N)
n+k,prim V

∼= Hn−k(−k).

The MHS on V induces one on EndQ(V ), and (a) is equivalent to

N ∈ F−1 EndQ(V ).

We denote by

VC = ⊕
p,q
Ip,q

the unique Deligne decomposition of VC that satisfies

• Wk(N)V = ⊕
p+q5k

Ip,q;

• F pV = ⊕
p′=p
q

Ip
′,q;

• Iq,p ≡ Ip,q modWp+q−2(N)V .

The LMHS is R-split if I
p,q

= Iq,p. Canonically associated to a LMHS is an R-split
one (V,Q,W (N), F0) where

F0 = e−δF

for a canonical δ ∈ I−1,−1 EndQ(VR). For this R-split LMHS there is an evident
grading element Y ∈ I0,0(EndQ(VR)).
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Given a LMHS (V,Q,W (N), F ) there is an associated nilpotent orbit

∆∗ // ΓT\D

∈ ∈

t // exp(`(t)N)F

where `(t) = log t/2πi and ΓT = {T Z}. Conversely, given a 1-variable nilpotent
orbit as described above there is a LMHS. We shall use consistently the bijective
correspondence

LMHS’s ⇐⇒ 1-parameter nilpotent orbits.

Since

detF0 = detF

without loss of generality for the purposes of this paper we will assume that our
LMHS’s are R-split and therefore have canonical grading elements.

(iv) Let N1, N2 ∈ EndQ(V ) be commuting nilpotent transformations and set N =
N1 +N2. Then there are two generally different filtrations defined on the vector space
GrW (N1) V :

(A) the weight filtration W (N)V induces a filtration on any sub-quotient space

of V , and hence induces a filtration on GrW (N1)
• V ;

(B) N induces a nilpotent map N : GrW (N1)
• V → GrW (N1)

• V ,29 and consequently

there is an associated weight filtration W (N) GrW (N1)
• V on GrW (N1)

• V .

Definition: The relative weight filtration property (RWFP) is that these two filtra-
tions coincide:

(III.C.7) W (N) ∩GrW (N1)
• V = W (N) GrW (N1)

• V.30

We note that N is the same as the map induced by N2 on GrW (N1)
• V , so that (III.C.7)

may be perhaps more suggestively written as

(III.C.8) W (N) ∩GrW (N1)
• V = W (N2) GrW (N1)

• V.

In more detail this is

Wk(N)(V ) ∩Wm(N1)(V )

Wk(N)(V ) ∩Wm−1(N1)(V )
= Wk−m(N)(GrW (N1)

m (V )).

The RWFP is a highly non-generic condition on a pair of commuting nilpotent trans-
formation, one that will be satisfied in our Hodge-theoretic context.

(v) Suppose now that Y1 is a grading element for N1 so that the corresponding
sl2 = {N+

1 , Y1, N1} acts on V and hence on EndQ(V ). We observe that the Y1-
eigenspace deomposition of N2 is of the form

(III.C.9) N2 = N2,0 +N2,−1 + · · ·+N2,−m, m > 0

29N was denoted by N2 in the introduction.
30There is a shift in indices that will not be needed here.
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where [Y,N2,−m] = −mN2,−m. The reason for this is that

[N1, N2] = 0 =⇒
{
N2 is at the bottom of the N1-strings
for N1 acting on EndQ(V )

}
.

It can be shown that there is an sl′2 = {N+
2 , Y2, N2,0} that commutes with the sl2

above. Thus

(III.C.10) Given N1, N2 as above, there are commuting sl2’s with N1 and N2,0 as
nil-negative elements. Moreover, N2 = N2,0+(terms of strictly negative
weights) relative to {N+

1 , Y1, N1}.

The N2,0 here is the same as the N above. It is the “strictly negative” that will be
the essential ingredient needed to establish that the limit exists in the main result.

III.D. Calculation of the Chern forms Ω and ΩI.

Step 1: For a nilpotent orbit (III.B.3) holomorphic sections of the canonically ex-
tended VHS over ∆ are given by

exp

(
k∑
j=1

`(tj)Nj

)
v, v ∈ VC.

Up to non-zero constants the Hodge metric is

(u, v) = Q

(
exp

(∑
j

`(tj)Nj

)
u, exp

(∑
j

`(tj)N

)
v̄

)

= Q

(
exp

(∑
j

log |tj|2Nj

)
u, v̄

)
.

Using the notation (III.C.3) the associated graded to the LMHS as t → 0 will be
written as

(III.D.1) Vgr =
n
⊕
i=0

Hn−i ⊗ Ui

and

F n =
n
⊕
i=0

Hn−i,0.

For u ∈ Hn−i,0(−i) and v ∈ Hn−i,0

Q

(
exp

(∑
j

log |tj|2Nj

)
u, v̄

)
=

(
1

i!

)
Q

(∑
j

log |tj|2Nj

)i

u, v̄

 .

Setting

xj = − log |tj|
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the metric on the canonically extended line bundle is a non-zero constant times

(III.D.2) P (x) =
n∏
i=0

det

(∑
j

xjNj

∣∣
Hn−i,0

)i
 .

Here to define “det” we set N =
∑
Nj and are identifying Hn−i(−i) with Hn−i using

N i. Note that the homogenous polynomial P (x) is positive in the quadrant xj > 0.
The Chern form is

(III.D.3) Ω = ∂∂ logP (x).

Step 2: Define 
NI =

∑
i∈I

xiNi, NIc =
∑
j 6∈I

xjNj

N =
k∑
i=1

xiNi = NI +NIc

and set

P =
n∏
i=0

det
(
N
∣∣
Hn−i,0(−i)

)i
.

Denoting by

Vgr,I =
n
⊕
i=0

Hn−i,i
I ⊗ Ui

the associated graded to the LMHS as t→ ∆∗I , we define

PI =
n∏
i=0

det
(
NI

∣∣
Hn−i,0
I (−i)

)i
.

Taking NI = N1 and NIc = N2 in (iv) in Section III.C, we have

NIc,0 = weight zero component of NIc

where weights are relative to the grading element YI for NI . Decomposing the RHS
of (III.D.1) using the sl2× sl′2 corresponding to NI and NIc,0 by (III.A.10) we obtain

(III.D.4) Vgr
∼= ⊕

i,j
Hn−i−j
i,j ⊗ Ui ⊗ Uj

where Hn−i−j
i,j is a polarized Hodge structure of weight n − i − j. Note that this

decomposition depends on I. On Hn−i−j
i,j ⊗ Ui ⊗ Uj we have a commutative square

Hn−i−j(−i− j)
N i
I //

Nj
Ic,0
��

Hn−i−j
i,j (−j)

Nj
Ic,0

��

Hn−i−j
i,j (−i)

N i
I // Hn−i−j

i,j .
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Using (III.D.4) this gives

P =
∏
i,j

det
(
N i
IN

j
Ic,0

∣∣
Hn−i−j
i,j (−i−j)

)
+R

where the remainder term R involves the NIc,−m’s for m > 0. We may factor the
RHS to have

P =
∏
i,j

det
(
N i
I

∣∣
Hn−i−j
i,j (−i−j)

)∏
i,j

det
(
N j
Ic,0

∣∣
Hn−i−j
i,j (−i−j)

)
+R

which we write as

(III.D.5) P = PI · PIc +R

where PI and PIc are the two
∏

i,j factors. We note that

(III.D.6) the remainder term R = 0 if we have commuting sl2’s.31

We next have the important observation

Lemma III.D.7: PIc is the Hodge metric in the line bundle ΛI → Z∗I .

Proof. This is a consequence of the RWFP (III.C.7) applied to the situation at hand
when we take N1 = NI and N2 = NIc . �

By (III.D.6), if we have commuting sl2’s, then R = 0

Ω = −∂∂ logP = −∂∂ logPI − ∂∂RIc

≡ −∂∂ logPIc modulo dti, dt̄i for i ∈ I
≡ ΩI

and we are done.
In general, we have

(III.D.8) Ω ≡ ΩI + S1 + S2

where

(III.D.9)


S1 =

∂PIc ∧ ∂R + ∂R ∧ ∂PIc − PIc∂∂R
PIPIc

S2 =
∂R ∧ ∂R
P 2
I P

2
Ic

.

Step 3: We will now use specific calculations to analyze the correction terms S1, S2.
The key point will be to use that

N = NI +NIc = NI +NIc,0︸ ︷︷ ︸+
∑
m=1

NIc,−m︸ ︷︷ ︸
where the terms over the first brackets may be thought of as “the commuting sl2-part
of NI , NIc” and the correction term over the second bracket has negative YI-weights.

31To have commuting sl2’s means that N2,−m = 0 for m > 0.
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We set
hn−i,0I = dimHn−i,0

I

and for a monomial P = x`11 · · ·x
`k
k we define

degI P =
∑
i∈I

`i.

Lemma III.D.10:

(i) For any monomial P appearing in P

degI P 5 nh0
I + (n− 1)h1,0

I + · · ·+ hn−i,0I =
n∑
i=1

ihn−i,0I .

(ii) If π is any permutation of 1, . . . , k and

`π,i =
n∑
j=1

j
(
hn−j,0{π(1),...,π(i)} − h

n−j,0
{π(1),...,π(i−1)}

)
then

Pπ := x
`π,1
π(1) · x

`π,2
π(2) · · ·x

`π,k
π(k) = x

`π,π−1(k)

1 · · ·x
`π,π−1(k)

k

appears with a non-zero coefficient in P .

Corollary: The monomials appearing in P are in the convex hull of the monomi-
als Pπ.

Proof. For Vgr,I = GrW (NI) V we have as {N+
I , YI , NI}-modules

Vgr,I
∼=

n
⊕
i=0

Hn−i
I ⊗ Ui.

Decomposing the RHS as sl′2-modules we have

Vgr,I
∼=

n
⊕
i=0

Hn−i
a,i−a ⊗ Ua ⊗ U′i−a

where the Hn−i
a,i−a depend on I. The map

N i : Hn−i,0(−i)→ Hn−i

gives
i
⊕
a=0

Hn−i,0
a,i−a (−i)→

i
⊕
a=0

Hn−i,0
a,i−a .

The YI-weights of vectors in Hn−i,0
a,i−a are equal to a, and thus ∧hn−i,0

(
i
⊕
a=0

Hn−i,0
a,i−a (−i)

)
has weight

∑
ahn−i,0a,i−a and ∧hn−i,0

(
i
⊕
a=0

Hn−i,0
a,i−a

)
has weight −

∑
ahn−i,0a,i−a. As a conse-

quence

any monomial in det
(
N i
∣∣
Hn−i,0(−i)

)
drops weights by 2

∑
hn−i,0a,i−a.
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We have

(III.D.11) det

((
N
∣∣
Hn−i,0(−i)

)i)
= det

((
(NI +NIc,0)

∣∣
Hn−i,0(−i)

)i)
+ T

where T = terms involving NIc,neg. For any monomial P in a minor involving the
NIc,neg of total weight −d,

2 degI P + d = 2
i∑

a=0

ihn−i,0a,i−a, d > 0

and so

degI P <

i∑
a=0

ahn−i,0a,i−a.

Putting everything together, we have (III.D.10) where

(III.D.12) T =

{
linear combinations of monomials P

satisfying degI P <
∑n

i=0

∑i
a=0 ah

n−i,0
a,i−a

}
.

Using the bookkeeping formula hn−i,0I =
∑n

i=a h
n−i,0
a,i−a we obtain

n∑
i=0

i∑
a=0

ahn−i,0a,i−a =
i∑

a=0

n∑
i=a

hn−i,0a,i−a =
n∑
a=0

ahn−a,0I

which gives

P = PIPIc +

(
correction term with degI <

n∑
a=0

ahn−a,0I

)
where degI PI =

∑n
a=0 ah

n−a,0
I and degI PIc = 0, giving (i) in (III.D.10).

A parallel argument shows that for I ∩ J = ∅

DI∪J :=
n∏
i=0

det
((
NI +NI,0

∣∣
Hn−i,0
I∪J (−i)

))i
+ a correction with degI <

m∑
a=0

ahn−a,0I .

By the definition of Hn−i
I∪J ,

det

((
NI +NJ,0

∣∣
Hn−i,0
I∪J (−i)

)i)
6= 0

and

degI

(
det

((
NI +NJ,0

∣∣
Hn−i,0
I∪J (−i)

)i))
=

n∑
a=0

ahn−a,0I

53



while automatically

degI∪J(all terms of DI∪J) =
n∑
a=0

ahn−a,oI∪J .

Thus

degJ det

((
NI +NJ,0

∣∣
Hn−i,0
I∪J (−i)

)i)
= degI∪J det

((
NI +NJ,0

∣∣
Hn−i,0
I∪J (−i)

)i)
− degI det

((
NI +NJ,0

∣∣
Hn−i,0
I∪J (−i)

)i)
=

n∑
a=0

a
(
hn−a,0I∪J − h

n−a,0
I

)
.

Proceeding inductively on {π(1)} ⊂ {π(1), π(2)} ⊂ · · · ⊂ {π(1), . . . , π(k)} we obtain,

if N{π(1),...,π(`)},0 = weight 0 piece of N{π(1),...,π(`)} with respect to GrW (N){π(1),...,π(k)}

then
n∏
i=0

det
((
N{π(1)} +N{π(1),π(2)},0 + · · ·+N{π(1),...,π(k)},0

∣∣
Hn−i,0

)i)
is a non-zero multiple of x`1π(1)x

`2
π(2) · · x

`k
π(k). This is our Pπ. Tracking the correction

terms we have

P =
∑
π

CπPπ + terms strictly in the convex hull of the Pπ

where Cπ 6= 0 for all π. This proves (ii) in III.D.10. �

Step 4: Referring to (III.D.8) and (III.D.9), from Lemma III.D.10 we have:

(a) R1 has degI R1 < degI PI , and all monomials satisfy (i) in III.D.10.
(b) R2 is a sum of products of monomials P1P2 where each degI P < degI PI and

Pi satisfies (i) in III.D.10.

To complete the proof we have

Lemma III.D.13: Given a monomial P in the I-variables satisfying degI P < degI P
and (ii) in Lemma III.D.10,

lim
t→∆∗I

P/PI = 0.

Proof. Implicit in the lemma is that the limit exists. We note that t→ ∆∗I is the same
as xi →∞ for i ∈ I. We also observe that the assumptions in the lemma imply that
there is a positive degree monomial P ′ with degI(P

′P ) = degI PI and where P ′P lies
in the convex hull of the Pπ’s for PI . Using this convex hull property we will show
that

(III.D.14) P ′P/PI is bounded as xi →∞ for i ∈ I.

Since limxi→∞ P
′(x) =∞, this will establish the lemma.
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We now turn to the proof of (III.D.14). Because the numerator and denomina-
tor are homogeneous of the same degree, the ratio is the same for (x1, . . . , xk) and
(λx1, . . . , λxk), λ > 0.

For simplicity, reindex so that I = {1, . . . , d}. Suppose that xν = (xν1, . . . , xνd) is
a sequence of points in (xi > 0, i ∈ I) such that

lim
ν→∞

P ′P (xν)

DI(xν)
=∞.

Consider a successive set of subsequences such that for all i, j, we have one of three
possibilities:

(i) limν→∞ xνi/xνj =∞;
(ii) xνi/xνj is bounded above and below, which we write as xνi ≡ xνj;

(iii) limν→∞ xνi/xνj = 0.32

Now replace our sequence by this subsequence. Let Ii, . . . , Ir be the partition of I
such that

i ≡ j ⇐⇒ (ii) holds for i, j

and order them so that (i) holds for i, j ⇐⇒ i ∈ Im1 , j ∈ Im2 and m1 < m2. We may
thus find a C > 0 such that 1

C
5 xνi/xνj 5 C if i, j in same Im, and for any B > 0

xνi/xνj > Bm2−m1 if i ∈ Im1 , j ∈ Im2 , ν sufficiently large.

By compactness, we may pick a subsequence so that limν→∞(xνi/xνj) = Cij if i, j ∈
same Im.

Now introduce variables y1, . . . , yd and let

xi = aiym if i ∈ Im, ai/aj = Cij, ai > 0.

We may restrict our cone by taking

Ñm =
∑
i∈Im

aiNi.

This reduces us to the case |Im| = 1 for all m, i.e.,

lim
ν→∞

xνi/xνj =∞ if i < j.33

Thus for any B,
xνi/xνj > Bj−i for v � 0.

Now
xm1
ν1
xm2
ν2
· · xmdνd

x`1ν1x
`2
ν2 · · x`dνd

→ 0

if m2 + m2 + · · +md = `2 + `2 + · · +`d and m1 < `1, or m1 = `1 and m2 < `2, · ·.
Thus

PI = cM{1,2,...,d} + terms of slower growth as ν →∞, c > 0,

32In effect we are doing a sectoral analysis in the co-normal bundle to the stratum ∆∗− I, which
explains the wave front set analogy mentioned above.

33In effect we are making a generalized base change ∆∗d → ∆∗k such that for the pullback to ∆∗d

the coordinates ym go to infinity at different rates.
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i.e.,

(P{1,2,...,d}/other terms)(xν) > B.

Since P ′P belongs to the convex hull of the Pπ, (P ′P/P{1,2,...,d})(xν) is bounded as
ν →∞. This proves the claim. �

Example III.D.15: An example that illustrates many of the essential points in the
argument is provided by a neighborhood ∆3 of the dollar bill curve34

$ ←→ with the dual graph

in M2. The family may be pictured as follows:

one nodal curve
on the coordinate
plane

two nodal curve on
the coordinate axis

dollar bill curve
at the origin

-

A
A
A
A
A
AK

smooth curve

in ∆∗3

Figure 1

With the picture

δ1

δ3

δ2

each of the coordinate planes outside the axes is a family of nodal curves where one
of the vanishing cycles δi has shrunk to a point. Along each of the coordinate axes

34The name originates from symbolically drawing the curve as $.
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two of the three cycles have shrunk to a second node, and at the origin we have the
dollar bill curve.

We complete the δi to a symplectic basis by adding cycles γi.
35

γ1 γ2

The corresponding monodromies around the coordinate axes are Picard-Lefschetz
transformations with logarithms

Ni(µ) = (µ, δi)δi

and with matrices

N1 =

(
0 1 0

0 1

0 0

)
, N2 =

(
0 0 0

0 1

0 0

)
, N3 =

(
0 1 1

1 1

0 0

)
.

Setting as usual `(t) = log t/2πi, the normalized period matrix is

Ω(t) =

(
`(t1) + `(t3) `(t3)

`(t3) `(t2) + `(t3)

)
+

(
holomorphic

term

)
.

The corresponding nilpotent orbit is obtained by taking the value at the ti = 0 of the
holomorphic term, and by rescaling this term may be eliminated.

Setting L(t) = (− log |t|)/4π2 and PM(t) = (i/2)∂∂ logL(t), the metric in the
canonically framed Hodge vector bundle is the 2× 2 Hermitian matrix

H(t) =

(
L(t1) + L(t3) L(t3)

L(t3) L(t2) + L(t3)

)
;

in the Hodge line bundle the metric is

h(t) = L(t1)L(t2) + (L(t1) + L(t2))L(t3)

= L(t1)L(t2) + L(t1t2)L(t3).

Setting

ω = ∂∂ log h(t) = ∂∂
(
log(L(t1)L(t2) + L(t1t2)L(t3))

)
ω3 = ∂∂ logL(t1t2)

we will show that

(III.D.16) ω
∣∣
t3=0

is defined and is equal to ω3.

35Here γ3 is not drawn in.
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Proof. Setting ψ = ∂h/h and η = ∂∂h/h we have

ω = −ψ ∧ ψ + η.

Now

ψ =
∂ (L(t1)L(t2) + L(t2t2)L(t3))

L(t1)L(t2) + L(t1t2)L(t3)
.

Setting dt3 = 0 the dominant term of what is left is the left-hand term in

∂L(t1t2)
L(t1)L(t2)
L(t3)

+ L(t1t2)
−→ ∂L(t1t1)

L(t1t2)
,

and the arrow means that the limit as t3 → 0 exists and is equal to the term on the
right.

For η, letting ≡ denote modulo dt3 and dt3 and taking the limit as above

η ≡ ∂∂L(t1t2)
L(t1)L(t2)
L(t3)

+ L(t1t2)
−→ ∂∂L(t1t2)

L(t1t2)
,

which gives the result. �

We next observe that

(III.D.17) ω3

∣∣
t2=0

is defined and is equal to zero.

Proof. The computation is similar to but simpler than that in the proof of (III.D.16).
�

Interpretations : The curves pictured in Figure 1 map to an open set ∆3 ⊂ M2.
The PHS’s of the smooth curves in ∆∗3 vary with three parameters. Those on the
codimension 1 strata such as ∆∗2 × ∆ vary in moduli with two parameters. Their
normalizations are

E

q

p
-

and their LMHS’s vary with two parameters with{
Gr1(LMHS) ∼= H1(E)

Gr0(LMHS) ∼= Q

and where the extension data in the LMHS is locally given by AJE(p − q). Thus
Gr(LMHS) varies with one parameter and for the approximating nilpotent orbit is
constant along the curves t1t2 = c. This local fibre of the map M2 → P is part of the
closed fibre parametrized by E.
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Along the codimension 2 strata such as ∆∗ × ∆2 the curves vary in moduli with
1-parameter. Their normalizations are

q
p p′

q′
-

and the moduli parameter is locally the cross-ratio of {p, q; p′, q′}. The LMHS’s are
purely Hodge-Tate and thus Gr(LMHS) has no continuous parameters. In summary

• Φe is locally 1-1 on ∆∗3;
• Φe,∗ has rank 1 on ∆∗2 ×∆;
• Φe is locally constant on ∆∗ ×∆2.

As c→ 0 the fibres of Φe on the ∆∗2 ×∆ tend to the coordinate axis ∆∗ ×∆2 along
which Φe is locally constant.
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