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§1, Preliminary theorems in the calculus of variations, Fallowing

the heuristic remarks of the first lecture, I shall define the index of an
extremal &, joining two fixed points in a manner analogous to the defining

%
of the index of a quedratic form

(101) Q(X) =8a,.X.X, (X) = (x5 esey xm)

Recall that the index k of Q could be defined as the maximum dimension of en
!r-plane on which Q is negative definite, The form Q will be replaced by the

second variation
2

(1,2) I(u) = zﬁal_ﬂ(u, ut Jax
&

]

i based on the extremal By? and the index of I will be defined as follows,
One is concerned with a cartesian space of coordinates (x, Vs eees Vn)o
One admits arcs of the form

v, = ui(x) (1 =1, eeay n)

“where u, vanishes at al and az and is a class D! on the closed interval [al, az];
that is wherse uy is continuous together with ui, except at most at a finite
number of points x at which right and left derivatives of u, shall exist,

For each fixed j (3 = 1, sss, m) lot Uy be a function of the type of

ui above. If the columns (i variable) of the matrix ui. are linearly

* We agree to sum with respect to a repeated index,
All r-plenes will be taken through the origin or null element,
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independent on [al, az] then

(i

l, LI I ] n)

]

v.= o.ui.(x)
rod4 (5 =1, eee, m)

represents an m-plane of admissible arcs.

The index of I is by definition the maximum dimension h of those

hyperplanes of admissible arcg on which I is negative defiunite (io00

negative unlsss (v) = (C)).

le shall evaluate this index of I as the number of conjugate points
of x = a on the interval al< x < az. For this purpose we review a little
of the classical variation theory.

e shall consider a function f with values

£(x; Vs eees ¥y, Pyr esey Pn) = £(x, ¥, P)
defined on & region R in a Cartesian (n+l)-space (x, y) and for arbitrary
(p)e wWe suppose £ of clhss C" on the product space of coordinates (x, ¥» D)o

we consider inteprals of the form

2
&

J(y) = g £(x, v, y')dx
a'l
teken along any arc y,= yi(x) of class D' on [al, az]. Je suppose that the

set of derivatives

fpipj(x, Y, P) (i, 5= 1y eesy 1)

for each fixed (x, y, p), are the coefficients of e positive definite

quadratic form. In this case f is termed positive regular,

The Euler equations take the form

d
= o

(1.2) (o, ¥t) - fy.(x, ¥y, ¥') =0 (i =1, evu, n)

1 1
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Solutions yi(x) of the Huler equations of class C" are called extremals,
Given x° there is a unique extremal for which the initial point (xo, yo)

on R and slope po is prescribed. The family of such extremals takes the form
o .
(103) y1= hi(x) X 2 YO: p) (1 = 13 oo, n)

where h, is of class C" in its arguments.
If (x°, y°) is held fast while (p°) is replaced by & variable set

(b), then (1.3) yields a family of extremals
yi= ki(xl b)

through the point (xo, yo). Let b° determine a particular extremal 8y and
evaluate the Jacobian,

D(kl, ey kn)

= D(x, x°)
D(byy eeey bn)
for (b) = (b°). At x = x° we have
o bki
k'= y" -_— = O’ (i, j = l, se 0, n)
i i b
J
Ok, O,
1 = b,, -..-———:L = 6
Ox éxbbj 1J

so that D vanishes to exactly the nth order in x at x°. In particular D does

X
s

not venish other than for x = x° for | x - x° | e provided 0 < e < &, and

1
ey is a suitably chosen positive constant independent of x° on [al, az].
The points on 8, determined by values of x ¥'x° at which D vanishes are
. . o .o . .
called the conjugate points of (x', y) on 8y The following theorem is

fundamental,
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Theorem l: Let f be positive regular and let g, be an extremal, on

the interval [al, az]. If there is no conjugate point on g of the initial

point of 8¢ then

Jd>Jd
& e, (g # g,)

for every arc g: ¥i= yi(x), of class D' joining the end points of &e in a

sufficiently small neighborhood of )

For a proof of this theorem the reader may refer to the first chapter
of my lectures "Calculus of Variations in the Large." Amer. Math. Soce Coll.

Publ, XVIII (1534).

82, The second variation I, Further information concerning conjugate

points will be obtained in terms of the so-called second variation I. This

is an integral of the form
2

a
(2.1) I(u) = g 2 (W(u, ut)ax

8

1
here 200(u,u') = £2 _ ul ul + 2£° u! u.+ £0 _ uwu, eand th ipt
where (u,ut) Pipjui ul Piyjul u, .Y i%5 e superscrip

zero indicates eveluation of (x, y, y') at the point x on the base extremal

o« The Euler equations of (2,1) take the form
g, q

(2.2) d—i-n - =0 (i=1, «.., n)

and are called the Jacobi equationse They are linear in (u) (u') and (u")

and, under our assumption that f is regular, can be solved for the ug as
linear functions of the components of (u') and (u) with coefficients which
are continuous in x. A solution of (2.2) of class C" is called a secondary

extremal, The set (u) = (0) is such & secondary extremal,
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It is important to see that conjupate values x as defined for a secondary
extremal of a second variation I based on an extremal Bys 2ETEe with conjugate
values x as defined for 3 A link connecting the Euler and Jacobi equations

is the observation of Jacobi that if,
(2'3) yl= Fi(x: b) (1 = 1’ e, n)
is & l-parameter family of extremals which reduces to g, when b = bo’ then

fijii(x, b )

0b

defines a secondary extremal, It is assumed that Fi(x, b) is of class C"

(244) ui(x) =

for x on [al, az] end | b - bol sufficiently small, The proof of Jacobi's
theorem is immediate on making use of the fact that F satisfies the Euler
equations for each b near bo, differentiating these Euler equations with

respect to b, and finally making the substitution (2.4) and the substitution

2
w!(x) = --——-6 Jilx, bo)
1

0x0b

In particular the jth column of the Jacobian of §1

D(hl, cee, hn)

(2.) D(b,, eves D)

= D(x, xo)

evaluated on 8y defines a s<condary extremal
(2.5) uij(x’xo) (ilj =1, eee, n)
which satisfies the initial conditions
= 1 =
uij(xo’ xo) 0 uij(xo’ xo) Sij

and for which the determinent

(2.6) luij(x, xo)l = D(x, xo)
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Instead of using the determinant (2.6) to define vaelues x conjugate to
x, one oould equally well use the determinant Dl(x, xo) of eny n independent

‘secondary extremals which vanish at X s since it is oclear that for x fixed
(2.7) D(x, xo) = C Dl(x, xo)

where C is a non=null constant. A necessary and sufficient condition that
X, be conjugate to X, is clearly that there exists a non-null secondary ex-
tremal for which (u) vanishes at X, and Xy This fact shows that when X, is

conjugate to X0 Xy is conjugate to X The number of independent secondary

extremals for whHich (u) vanishés at X and Xy is called the multiplicity of

X, a8 & conjugate point of'xo. This multiplicity is at most n.
To determine conjugate pairs x, X, relative to any secondary extremal E,

one observes thet, relative to E, I is its own second variation, Hence

relat;ve to E the values x conjugate to X, ere the zeros x of D(x, xo), and

80 are independent of E and agree with ¢onjugate pairs (a, xo) defined for

the base extremal Bye
We continue with a classical lemma,

Lemme. 2.1, If (u) defines non-null secondary extremsl E, and vanishes

at x = a and x = b, then on B -

b
(2t7) S Zﬂd.x. = O.

a
Because of the homogeneity of () in u; and ui we can write the integral
(2.7) as

b
Sa (1 + “:iﬂu;) dx

i

and on integrating by parts as
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a0 Ja=o0

b b
[w, ), 1+ Sa ul, L 4 Oy,

ia

from which the lemma follows,
If xl and xz are two values of x which are not mutually oconjugate there

exist sets of n secondary extremals vij(x) and Wij(x) for which

0

]

1 2
vij(x ) = 5;3 vij(x )

;4

1, _ 2
wij(x ) =0 Wﬁj(x )
There then exists a family of secondary extremels of the form
(248) ui(x) =8y vij(x) + bj waj(x)
on which (u) = (a) at xl, and (u) = (b) at (xz). The representet ion (2.8)

will be of general use,

-~
§3+ The index form. We need to show that I has a finite index. It

is also necessary to show that there is at most a finite set of values x on
[al, az] conjugete to al. For this and later purposes we introduce an index
form Q(z), defined as follows,

We shall consider broken secondary extremals, that is continuous’ ares

made up of a finite sequence of secondary extremals, The corners and end
points on these broken extremals E shall lie at points xj for which

1l 2
(3.1) 875 X< X,< ese <X <X =8

It follows from the nature of the determinant D(x, xo) whose gzeros define
conjugate points oflx° that there exists & positive constant e, independent
of x, on qu, da],4§uch that there is no conjugate point x of X, for which

Ix - xo‘ S e.. we suppose the points (3.1) so chosen that
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nxj- xj+l | < &6 (j = 1’ ev ey m)

One cen prescribe the value of (u) on E at each Xy given by (3.1)., We shall
take (u) = (0) at al and a2. On each interval (xj, xj+1) the secondary ex-
tremal arcs of E can be linearly represented in terms of the values ‘6f (u) at

X, and x a8 in (2.8)s Let the set of q = n(m-1) values of (u)

J+l
(502) [ul(xz), oee, un(xz), weey u'l(xm) oo un(xm)]

be respectively denoted by
[, eeey 2 = [4]

or more specifically by [2"]. When the broken extremal (u) is piece~wise

represented as in (2.8) in terms of the parameters [z"] then

I(u) = Q2] = Q[z"]

where-Q is & quadratic form in the variables [z]s. ile term Q an index form
based on the extremal g,
If (v), more generally, represents an arbitrary arc which is admissible

1 and az) there exists a

2 ; )
on [al, e ] (i,8. of class D' with (v) = (0) at a
unique broken extremal (u) such that (v) = (u) at the points xj of (3.1). The
parameters [z”] are thus uriquely determined by (v) and will be denoted by

[zv] as well as by [zu]. From the minimizing property of each separate ex-

*
tremal arc of (u) we have the relation

(3.5) I(v) > I(u) = Q(z") (u) # (v)

de can prove the following theorem.

* The separate extremal arcs are minimizing without limitation as to neigh-
borhood because the Weierstrass fields involved are without such limitation
for secondary extremals,
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Theorem 3.1, The index of I equals the index of Q. fcr, §1 for

definition].

Let Hs be an s~-plane in the space of admissible arcs (v) on which I is
negative definite. Let K De the r-plane in the space (z) of sets (2') de=
termined by the arcs (v) of H_« It follows from (3.5) that Q is negative
definite on K+ Clearly r S 5. But if r < s there would exist a (v) on H
such.that I(v) < O and (2') = (0). This is impossible by virtue of (3.5).
Hence r = s and the index of Q is at least that of I,

But the index of I is at least that of Q since a (z) £ (0) determines
& broken extremal on which (u) # (0) and

h I(u) = Q(2)

Theorem 3.1 follows.

The augmented index of I is defined as the maximum of the dimensions

of hyperplanes on which I S 0 in the space of admissible arcs (u).

Theorem 3.2 The augcn}gnted index of I equals that of Q.

The proof of this theorem is similar to that of Theorem 3.1 provided
it is true that when (v) # (0) and I(v) = O, then (z') # (0), This is olear
if (v) defines an admissible broken extremal, because the relation (v) # (0)
then implies (z) # (0); but if (v) is not an admissible broken extremal, (3.5)
takes the form

I(v) > I(u) = Q(z")

so that I(v) So implies (zv) £ (0).
Theorem 3,2 follows,
Lemms 3.1, The augmented index of I is at least the number of conjugate

points of al on the interval al< x s e.z .
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Suppose the conjugate points of al include the points c:j for which

1 <Cc, < < ¢ <8.2
a <Ol 2 X r =

Corresponding to cj there exists a secondary extremal (WJ) which vanishes at

o and ¢ . Let (wj) be extended in definition so that

J

(wd) = (0) (o5 Sx 5o

The vector functions (wj) so extended are linearly independent. In fact there
could be no linear relation between these r vectors which effectively involved
(wr), since (wr) # (0) for °. 1 s % = c.» 8nd each other vector (wj) = (0)
on this interval, Similarly (wr-l) cennot be effectively involved, nor (wr-z)
etc., 50 that no proper linear relation is possible,
It follows however from Lemma 2.1 thet I(wj) = 0, and hence I = 0 on

the r-plane with base (Wl), eess (W')e The lemma follows from the definition
of the augmented index.

The following is a particular consequence of the lemma,

Theorem 3.3, There is at most a finite number of conjugate points of

ot on the interval [al, azl.

§4. The nullity of Q and I, The nullity of the quadratic form Q(z)

may be defined as the number of linearly independent critical points* (z) of
Qs An admissible arc which is an extremal** of I will be called a critical
extremal end the nullity of I is defined as the number of linearly independent
critical extremals of I. We wish to prove that the nullity of Q squals that

of I,

¥ That is sets (zl, ces, zq) for which all the partial derivatives of Q vanishs

** We drop the qualification "secondary" when there is no ambiguity.
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To that end let (u) and (v) represent arcs of class D' on [al, az],
and set
aZ
(2.0) H(u, v) = S [£2 uivt +£°  (uwv.otuvt) +£°  u.v.lax
al PPy 173 P35 i 31 y¥y 13
so that H(u, v) = H(v, u) and H(u, u) = I(u).

Observe that
I(u+ev) = H(u, u) + 2eH(u, u) + ezH(v, v)

and recall that a necessary and sufficient condition in the fixed end~-point
problem that the first veriation based on an arc (u) of class D! vanish, is,
that (u) be an extremal,

Hence a necessary and sufficient condition that (u) be an extremal on

[al, a2] is_that the first variation 2H(u, v) = O for every admissible arc (v),

As in §3 an admissible arc (u) determines a set (z) = (z"),

Lemma 4.1, A necessary and sufficient condition that an admissible

broken extremsl (u) be a critical extremal of I is that (z") be a critical

goint of Q.

Let (u) be a critical extreml of I and let (v) be an arbitrary ade

missible broken extremal. Then for any constant e
(4.1) Q2" + e2”) = I(u + ov)
Differentiation with respect to e gives the result

(4.2) 20 Q, (%) = 2H(w, v), (p =1, eee q)
P

Since (u) is an extremal, H(u, v) = O, Since z; is arbitrary we infer that
(zu) is a critical point of Q. The condition of the theorem is accordingiy

necessarys
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Suppose then that (zu) is & critical point of Q determined by an ad-
missible broken extremal (u)s Let (y) represent an erbitrary admissible

1

arc (of class D' with (y) = (0) at a* and az). Then (y) can be represented

as a sum
(y) = (v) + (v¥)

where (v) is an admissible broken extremal and (v*) vanishes at each of the

points xy of (3,1)s Then
(4.3) H(u, y) = H(u, v) + H(u, v¥).

Now H(u, v) satisfies & relation (442) and is null since (z%) is a critical
point of Qs But H(u, v*) is the sum of integrals of the type (4,0) with
limits xj and xj+1, evaluated along an extremal erc of I, and for an arc of
(v#) which vanishes at x:j and xj+l' Hence each such contribution to H(u, v*)
is null, making H(u, v*) null. Thus H(u, y) = O in accordance with (4.3),
so that (u) is a critical extremal,

The proof of the lemms is completes The f ollowing theorem is a con-

sequence of the lemma,

Theorem 4.1. The nullity of I equals the nullity of Q.

The augmented index of Q equals its index plus its nullity as is readily
seen on reducing Q to & sum of squared terms with coefficients *1 using a real
affine transformation, We can accordingly prove the following theorem,

Theorem 4.,2. The augmented index of I equals its index plus its

nullity,
This follows from the equality of the nullity, index and augmented index

of Q@ to those, respectively of I, Since the augmented index of Q equals its

index plus its nullity the same is true of I.
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§6, Evaluation of the index of I, The following lemms will afford the

basis for an evaluation of the index of I,

Lemms, 5.1 Let Q(z, c) be a quadratic form in the variables (z) with

a parameter ¢ on the closed interval [a, b] with the following properties:

(1) The coefficients of the form Q vary continuously with c.

(2) The index h(c) and augmented index k(c) of Q never decrease as

o increasess

(3) The values of ¢ at which Q is degenerate are finite in numbdr,

(4) For ¢ = a the form Q is positive definite.

Then Q(2z, b) has an index equal to the sum of the nullities v(c) of Q

for the values of ¢ on a < ¢ < b at which Q is degenerate,

Let s be a value of ¢ on the interval a < ¢ < b for which Q(z, 8) is
degenerates It is only at such values s that h(c) and k(c) can change, In

particular
(5.1) n(s") = k(s"),

where we indicate a limit of h from the right at s by suffixing a '+',

We shall verify the relations
(5.2) h(s~) = n(s) , k(s) = k(s+).

First h(s") s h(s) by virtue of (2)., But the continuous dep ndence of the
characteristic roots of Q on ¢ implies thet h(s) negative characteristic roots
exist and remain negative for ¢ sufficiently near se Hence h(s”) 2 h(s)e
We conclude that h(s™) = h(s).

We have k(s) s k(s+) by virtue of (2). The continuity of characteristic
roots as functions of ¢ implies that the k(s+) roots which are negative as

+
o tends to s from above, remein non-positive at s, sothat k(s) 2 x(s")e
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Hence (5.2) holdse From the relation
h(s) + v(s) = k(s)
end reletions (5,1) and (5,2) one finds that
- +
h(s ) + v(s) = h(s )

The lemme follows from this relation together with (4), and the relation
h(b") = h(b).

Theorem 5.1. The index of I equals the number of conjugate poinks

of,a1 on the interval al< X< az, counting each conjugate point with its

mltiplicity.

The index of I equals the index of the corresponding index form Q.

To apply the preceding lemma we shall replace the upper limit az of I1byo
where a‘< o S 02 thereby defining an integral I°(u). Here (u) represents

an arc which is admissible on [(al, c)]e To define a corresponding index
form Q°(z) let each value of xj in (3.1) be replaced by a valus x& = cxj/hz,
supposing for simplicity that al= O« On using broken extremals whose corners
and end points occur respectively when X = x5 » Qo(z) can be defined in the
same manner as Q(z).

We shall see that Qc, so defined, setisfies the conditions of Lemma S.1,
provided in that lemma one takes b = az end a > al 80 near al that 1% is po-
sitive definite, Conditions (1) and (4) of the lemma are then satisfied.

Condition (3) is satisfied, since Q° is degenerate only if I° has a
positive nullity. This happens only if ¢ is a conjugate point of al, and we

have seen in Theorem 3,3 that there is at most a finite number of points on

[al, az] conjugate to,al.
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To establish Condition (2) of Lemma 5.1 for Q° it is sufficient to show
, that the index and augmented index of 1° never decrease as ¢ increases: since
these indices are the same for I° and Q°,
To this end let h(c) be the index of I®. There ‘then exists an h(c)=-plane
X in the space of arcs which are admissible on [al, ¢] such that 1° is negative
definite on X, If o' is a value on (al, az] with ¢! > ¢, one can obtain an
h(c)~plane of arcs which are admissible on [al, ¢'] by extending every arc of
X along the x~axis from x = ¢ to x = o', Hence the index.of I° is non-de=-
creasing as ¢ increases. Similarly k(c) is non-decreasing,
The theorem now follows from the lemma and the fact that the nullity
of Qo(z) equals the multiplicity of ¢ as a conjugate point of al.
Since .one can interchange the role. of al and az in the preceding proof,

one has the immediate corollary:

CoroIlary., The number of conjugate points of al on the open interval

(aly az) equels the 'number of conjugate points of az on that intervel.

We shall generalize Sturm's famous separabion theorem to the case where
the number n of ordinates exceeds 1., Sturm's theorem concerns a single sécond-
order differential equation, and such an equation is always the Jacobi equa~-
tion of a suitably chosen form I(u). A lemma is needed,

Lomma 5.2 If in a quedratic form P(z), n of the variables (z) are set

equal to O to define a form Pl(z), then

(6.3) h(P) = h(P,) + r (03 r Shn)

where h(P) is the index of the form P(z ).

It is obvious that h(P) 3 h(P;)s It remins to show that

(5.4) n(p) = n(p)) +=n
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let X be a linear space in the space of coordinates (z) of dimension h(P),
with P negative definite on X. The subspace Y of X on which the n given z's
equal O has & dimension at least h(P)- n. On Y, P1 is negative definite so
that h(P,) is at least h(P)- n, Relations (5.4) snd (5.3) follow.

Conjugate points x of X have been defined by the zeros x %’xo of the
determinant

D(x, xo) = luij(x’ Xo)l

We shall now consider the zeros of D(x, xo) not excepting x = X e Each zero
p.S # X, will be counted with a multiplicity equal to the multiplicity of x as
e conjugate point of X e The zero x = X, will be counted with & multiplicity
n, since there are n independent extremals which vanish at X o It can be shown
that the multiplicity of a zero x of D(x, xo) egquals the ordinary order of
vanishing of D, See Coll, Lectep.47. No use will be made of this fact.

Let (b, c) be an open subinterval of (al, az). Let N(a: b, ¢c) be the
number of zeros of D(x, a) on (b, ¢) counting these zeros with their multi-

plicitiess In accordance with the preceding corollary,
(545) N(b: b, ¢) = N(cs b, ¢)

Since the conjugate points of a point b are isolated one can decrease ¢ slight-
ly without altering the numbers (5.5), Similarly one can increase b slightly.

Theorem 5.3, The number of zeros of D(x, xo) on any open subinterval

(b, ¢) of [al, az] differ for different values of x by at most n.

The lemma follows immediately from the relation,.

BA
"
A
s
L

(5.6) N(a: b, ¢) = N(b:t b, ¢) +r (o

which we shall now prove. In proving (5.6) we can suppose that a is not
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conjugate to b since a sufficiently small increase in b will not’ affect the
numbers N in (5.6) and provide that a and b are not conjugate.

There are essentially three cases to be considered

(5.7) a<b<o (or b<ec <a),
(5.8) a=b (ora-=g3¢),
(5.9) b<a <o,

We begin with the case a < b < ¢ and consider the index form Q: for which
the basic interval is [a, c]e In constructing the broken extremals we can
suppose that for somes j, xja be If one sets the ordinates of the vertices on
xj= b, equal to O, Q: reduces to a sum

b

c
Qa * Qb *

In accordance with Lemma 5,2

(5010) - nlQ] = nlQC] + Q)] + » (05 r Sn)

The left member of (5.10) is the number of conjugate points of a on (a, ¢);
that is on (a, b) and (b, ¢) since b is not conjugaté to a. Thus (5,10) takes
the form
N(a: a,b) + N(a: b, ¢) = N(az a, b) + N(bz b, ¢) + r

Relation (5.6) follows when & < b < ¢3 similarly (5.6) holds when b < ¢ < a,
end holds trivially with r = O when a = b or & = o,

There remains the case b < a < ce To evaluate the zeros of D(x, a) on
(b, ¢) as called for in (5.6), one counts these zeros on (b,a), (a,c) and at
x = a respectively. Thus
(5.11) N(a: b, ¢c) = N(a: b, &) + N(az a, c) +.n.
With b < & < ¢ one can replace (&, b, ¢) in (5.6) by (b, &, ¢), so that from

(6.6)



(5.12) N(b: a, ¢) = N(a: a, c) + r

From (5.,11) and (5.12) one finds that

N(a: b, ¢) = N(b: b, a) + N(b: &, ¢) = r.+n

1

= N(b: b, ¢) = r.+ n,

1
Thus (5.6) holds in all cases; and the lemma is thereby established,

The separstion Theorem 5.3 holds if the open interval (b, c¢) is replaced
by an arbitrary subinterval of [al, ézl. One has only to note that the zeros
of D(x, xo) and D(x, x) on (b, o], for example, are identical with these on
(b, o') if c¢* >c and c'=- ¢ is sufficiently small, The theorem holds for
(b, ¢') and hence for (b, ¢]. |

One oan use ££e properties of the indices of QZ as functions of a and b
to prove that the r-th conjugate point of x = a (if it exists) is an increasing
function of a, and a continuous function of any parameter s appearing in
£f(x, vy, y', 8) with f of Class ™, Or again the r-th conjugate point of x = a

is a decreasing function of the characteristic parameter s introduced in the

next seotion, Details are left to the reader.

8§64 Charspteristic roots and solutions. The characteristic values s of

& quadratic form P(z) = arpzrzp are the roots of the determinent

(6.1) Iarp"' S 8rp, =0 (r, P = 1, seey q)

If one sets

(642) P(z, 8) = P(z) - & zpzp

one sees that (6.1) is the condition that the system of linear equetions in (z),

(643) P, (z, 8) = 0 (p=1, oo, q)
P
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possess & non-null solution (z) for some value s, Such a value s, is called

characteristic, and a corresponding solution (z) of (6.3) & characteristic

solution of I(u) with root 8 The multiplicity of the root 8, is taken as

the number of linearly independent solutions (z) of (6.3) when s = 8¢

A useful form of stetement is that a characteristioc root 5, is a value

of s for which the form P(z, s) has a non-null critical point.

It is this form of statement which we can immediately extend to the
second variation I(u), evaluated on admissible arcs (u).
With (u) and (v) admissible arcs it will be convenient to introduce

the inner product 2

a
(, ) = {uGnG)ax - (1= L)

The analogue of P(z, s) is then
(644) I(u, 8) = I(u) = s(u, u)
or perhaps more suggestively
= H(u, u) = s(u, u)
If one sets

“ (i=1, seny n)
i

L, (u) = d—j?c-nui -0
then the analogue of (6.3) is the Jacobi differential system
(645)! Li(u) -8 = 0 (i =1, ees, n)
(645)" ui(al) = ui(az) =0

A value s and an arc (u) # (0) of class C" satisfying (6.5) are called a

characteristioc value and solution, respectively, of I(u), We shall then refer

to (so, u) as a characteristic set, If in the preceding italicized statement

concerning Q one replaces "eritical point" by "admissible extremal arc" one

has the following definition,
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A characteristic wvalue s, of I(u) is a value of s for which the integral

I(u, s) admits a non-null admissible extremal arc.,

As previously, the multiplicity of a characteristic value 8, of I(u)

is the number of linearly independent admissible extremal arcs of I(u, so).

This number is at most n, since there are just n linearly independent extremals

of I(u, 8 ) for which (u) = (0) at al,
If (u) and (v) are admissible arcs, and if the inner product (u, v) = O,

one says that (u) and (v) are orthogonal, The following lemma is classical,

Lomma 6.1s If (so, uo) and (sl, ul) are characteristic sets for which

g0 £ s’ then (uo) is orthogonal to (ul).

It will be convenient to introduce the bilinear form
(646) B(u, v, s) = H(u, v) = s(u, v) = B(v, u, s).

For k = 0, 1, (uk) is an admissible extremal arc of B(u, u, sk) so that

(647) B, v, 65) = B(v, u¥, sX) = 0

for every admissible arc (v). But by definition of B
B(u, v, s°) = B(u, v, s) + (s*= s°) (u, v)

In particuleaer

0 0 0 0
B(u~, ul, so) B(u~, ul, sl) + (sl- g ) (u, ul)
Since s%% so, and since
1 0O 1 1

03) ,S)=0

0
B(uo, u = B(u, u
o 1 .
we conclude that (u’, u”) = O as required,
The following lemma shows that the number of characteristic roots s
less than a constant ¢ is finite, We already know that the index of I(u, ¢)
is finite.

Lemms. 6.,2. The index of I(u, c¢) is at least the number of distinct

charec teristic roots 8 < ce
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Let

(sl, ul), ceey (8™, u™

be any finite ensemble of characteristic sets (s, u) for which
sl< vee < X" < c. Let X be the linear space determined by the solutions
(W), e, (™)
There can be no proper linear relation between these solutions because of
their orthogonality. Hence the dimension of X is me If
(v) = bP(+F) (p =1, ees, m)

is a non-null arc (v) in X, we have for (p, q = 1, ese, m)

I(v, ¢) = B(v, v, ¢c) = bpqu(up, uq, c)
- bpbq[B(up, uq’ Sp) +* (SP_ c)(up, uq)]

Since (up, sP) is & characteristic set

B(uP, u?, sP) = 0 (p =1, ees, m)
On using the orthogonality relations one then finds that
I(v, ¢) = bPbP(sP- ¢) (v, WP) <0 ;
and therefore the index h z Me
The number of characteristic roots less then ¢ is accordingly finite so
that these roots are bounded below (if in fact there exist any such roots).
The proof of the next lemma involves the following theorem of Kronecker

(Kowalewski, Determinemmten (1909) §102): A quadratic form aijwiwj is positive

definite if, and only if, all m-rowed principal minors

>
(648) b, = dot (a;,) T 0, (154, j5m

Lemma 6+43. There exists an s* such that I(u, s) is positive definite

i{ 8 < 8%,
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I(u, s) is the integral of a quadratic form

(649) 200(u, u') = s uu, o, (i=1, 2, ¢ov, n)

2
with coefficients depending continuously on x, al SxSe « We arrange the
variables in (6.9) in the order (ui, cees uﬁ, Uiy eney un). For m = n the

minors (6.8) for (6.9) are equal to the corresponding minors of the Hessian

matrix
o
(fpipj)
whose associated quadratic form is supposed to be positive definite in the
positive regular problem, end thus are positive. Denote the determinant of
the Hessian by A. Then the leading term of Am for m = n+k is
(-s)kA .
Hence each<Am(m > n) approaches + infinity as -s approaches + infinity. It
follows that if -s is sufficiently large the quadratic form (6.9) will be
positive definite for each xos Lemma 6.3 follows.
To evaluate the index of I(u, s) we make use of the equality of the
index of I(u, s) to that of the index form Q(z, s), as defined in §3, In
order that the construction of broken extremals of §3 be possible we confine
s to & finite interval [a, b]. An extremal (u) of I(u, s) depends continuously
on x, 8, and initial values (x°, u°, uo.). The x-derivative (u') is similarly
continuous: In particular the elements of the determinant D(x, xo) and their
x~derivatives are uniformly continuous in (x, X s s) for x and x on [al, az]
and 8 on [a, b]s There accordingly exists a constant e > O such that there
are no pairs of conjugate points on a subinterval of [al, az] of length less

than e. The construction of §3 is accordingly possible with a single set of

points,
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2
< eee X X <X = a
m

1
8 = x.< X
m+l

172
serving for all s on [a, b].
We can now prove & fundamental theorem,

Theorem 6,1, The index of I(u, b) equals the number of characteristic

roots s <b of I(u, s), each root counted with its multiplicity.

As in the preceding paragraph we construct the form Q(z, s) for
a =85S b, Inaccordance with Lemms 6.3 one can teke & so that I(u, a) and
hence Q(z, a) is positive definite., We apply Lemma 5,1 to evaluate the index
of Q(z, b)e The conditions of Lemma 5.1 on Q are verified as follows:

(1) The coefficients of the form Q(z, s) vary continuously with s,
because for fixed (u), s enters into I(u, s) through the term s(u, u), and
because u, and ui on en admissible broken extremal depend linearly on (2z)
with ccefficients which are continuous in (x, s).

(2) The index and augmented index of Q never decrease a8 s increases
since

a(z, s*) >Q(z, s")

whenever s' < s" and (z) # (0)s This is because s enters into I(u, s) in the
form =s(u, u).

(3) The form Q(z, s) is degenerate for at most a finite set of values
of 8 <b, In fact each such value So is a characteristic root of I(u) since
Q(z, so) and I(u, so) have the same nullity.

(4) By virtue of the choice of a, Q(z, a) is positive definite,

The theorem follows from Lemma 5,1 and from the fact that the nullity
of Q(z, so), equals the nullity of I(u, so), and hence by definition, equals

the multiplieity of s, &8 & characteristic root.
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Corollary 6.1, The number of characteristic values s of I(u) with

s < ¢, equals the number of conjugate points on al< X < az of the point al,

taking conjugate points relative to I(u, s) and counting conjugate points

and charecteristic roots with their multiplicities,

Corollary 6.2. A necessary and sufficient condition that I(u) z 0

for admissible arcs (u) is that there be no negative characteristic roots.

The condition is necessary, for if there are negative characteristic
roots the index of I would be positive, The condition is sufficient because
I(u) = Q(z")
and Q - 0; since the index of I and hence of Q is zero.

Corollary 6.3+ A necssary and sufficient condition that I be positive

definite is that each characteristic root be positive,

It is necessary that no root be negative by the preceding corollary.

If & root is null, I(u) = O on the corresponding characteristic, solution,
contrary to hypothesis.

The condition is sufficient because the positive values of the charac-
teristic roots imply that the index and the nullity of I are zero, Hence the
augmented index k of I is zero, and I is positive definite by virtue of the
definition of k.

The case n = 1, In case n = 1 the determinant D(x, xo) whose zeros

X %'xo determine the points x conjugate to X s reduces to a solution u(x, xo)

of the single second order Jacobi equation such that
= ! =
u(xo, xo) 0 u (xo, xo) 1

Hence Corollary 6.1 gives e classical result: When n = 1 the number of

characteristic roots of I with values less than ¢ equals the number of zeros



on al< x < az of & non-null extremal of I(u, ¢) vanishing at al. The multi-
plicities of the characteristic roots, and of the zeros of the extremal are
all unity in this special case. The generalization to the case n > 1, as
given in Corollary 6.1, is due to the writer,

We have seen that the characteristic roots are bounded below, and are
finite in number on any bounded intervales We conclude with the following,

Theorem 6,2, There are infinitely many characteristic rootss

let r be any positive integer. We shall show that if ¢ is sufficiently
large the index of I(u, c¢) is at least re It thenf ollows from Theorem 6.1
that there are at least r roots less than c.

One determines a suitable value of c as follows, Let E., see, Er be r

l.’
disjoint subintervals of [al, az]. Let (uJ) be an admissible arc which is
null except on Ej’ but is not identically null on Ej' The arcs Ej are clearly

linearly independent. One can take ¢ so large that
I(uJ, c) <0 (3 =1, oee, )
since ¢ enters only through the term =c{u, u). If

(v) = ad(u?) (3= 1, eeey 1)
represents any arc on the r-plane determined by the arcs (uj)
I(v, ¢c) = aJad I(uj, c) <O (a) # (0)
so that the index of I(u, c) is at least r,
The theorem now follows from Theorem 6.1,
The theory which has been developed in the preceding sections can be
applied to situations where the construction of the index f orm Q is not possible,

It is sufficient that the general quadratic form in question be at least as

great as a form of the type studied here. The general theory so obtained goes
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much beyond the calculus of variations and includes integro-differential

systems of great generality with general self-adjoint boundary conditions.

§7. A coordinate manifold M, Problems in the large in variational

theory are geometric in character and this usually means that the spaces in
which the problems are defined are of a type given by overlapping coordinate
systems. ile shall give a set of axioms which define a topological space,
then a Hausdorff space, and finally & coordinate n-manifold.

A topological space T is a set of points together with an aggregate of

subsets U of T, termed open sets of T such that:

(1) The null set and T itself are open.

(2) The union of any aggregate of open sets is open.

(3) The intersection of any finite aggregate of open sets is open.

Iwo topological spaces Tl and T2 are said to be topoclogically equivalent or

the topological images of each other if their points admit a 1 ~ 1 corres-

pondence in which open sets of either correspond to open sets of the other,

Any open set is termed a neighborhood of each of its points.

A topological space is termed a Hausdorff space if each pair of dis-

joint points is in at least one pair of disjoint neighborhoods. A topological
space is termed connected if not the union of two non-void disjoint open sets,

We suppose that M is a connected Hausdorff space that is a coordinate

n-manifold in the following sense, There should exist a subset of the open

sets of M, termed coordinated regions, with the following properties,

(a) The coordinate regions cover M,

(b) Each coordinate region N is the topological image oi a region R in an
Euclidean n-space E o The rectangular coordinates (x) of a point of R

are termed coordinates of the image point on N,
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(¢) If coordinate regions N, end N, with point coordinates (x) and (y)
respectively intersect in N, then sets (x) and (y) which represent the
seme point on N shall stand in a relation

(7.1) v o= yt(x) =y, e, ) (151, vuv, n)

where yi(x) is of class ¢* in 1ts arguments and the transformation from (x)
to (y) has a non-vanishing jacobian, Any subregion N of M will be admitted
as a coordinate region if (b) and (c) are satisfied on adding N to the set
of coordinate regions,
On a coordinate manifold, tensors are defined as usual., In particular
let P be a point of M represented by admissible coordinates (x), (y), (z), etc.

A contravariant vector is defined at P if its n components

- (r)y (p)y (o) ete.
are given at the points (x), (y), (2) in the systems (x), (y), (z), etc.
respectively, and are related as are the differentials (dx), (dy), (dz), etc,
For example,
(7.2) o el (B, i=1, e, n)

axi
A covarjant vector is defined at P if its n components are givem at (x), (y),
(z), etce respectively and are related as are the partial derivatives of an
invariant function
X(X) = Y(Y) = Z(Z) = evses

For example

The integral to be studied has an integrand F defined in each coordinate

systems In typical coordinates (x), F is a function F(x, r) of class c® of
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the point (x) and of & contravariant vector (r) # (0)s In the space (x) one

admits a piece-wise regular arc

x! - xi(t) (o

A

t51) (1 =1, ese, n)

in which xl(t) is of class Cl on each of & finite number of closed subarcs
[a, b] of [0, 1] with

22t 4o on [a b]

The integral has the form
1

(7.3) J - S F(x, %)dt
0
In the intersection of two regions of coordinates (x) and (z) one sets
G(z, o) = F(x, r)

subject to (7.2) so that
1

J = g G(z, 2)dt
)
along any piece-wise regular arc in the space (z),
As is easily shown, a necessary and sufficient condition that the inte=
gral J in the ocoordinate system (x) be independent of admissible changes of

the parameter t is that
(7.4) F(x, kr) = k F(x, r) (kx > 0)

for every real positive constant k. One admits changes of parameter t'= a(t)
in which a(t) is of class C! and 4(t) > O on each of a finite set of cloged
subintervals covering [0, 1]. The interval for t' shall again be [0, 1],

On differentiating (7.4) with respect to k, and with respect to ri one infers
that

(7.5)* r'F (x, kr) = F(x, r)
r
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(7.5)" F ,(x, kr) = F i(x, r)

r r

1 : -
and from (7.5)", on setting F i 5 Fij’
rr
(7.6) riF, (x, r) 2 0
13

It 1ollows from (7.6) that the determinant
(7.7) IFij ] =0

On any piece~-wise regular arc of class C" the Euler operator is

4w _ - . J 2 J
(7.8) Ei(x) =g F 4y~ Fy=F, jx +F ot Py
r X rr r X X

On account of (7.7) the Euler equations E, = O cannot be solved by Cramer's

rule for the ¥ Y. To meet this difficulty one introduces the bordered de=-

terminant
Frae eees Frpy
- [ ] ® [ [ ] - . ij
(709) D . ° . . A uivj
Fnl’ eres an Yy
vl, P vh 0

Here A3 is the cofactor of Fij in the determinant (7.7).

The determinant D vanishes with riui. To see this suppose for defi-
niteness that rl% 0, recalling that (r) # (0). On multiplying the i=-th row
of D by ri and adding to the first row for each i, the elements in the first
row reduce to zero by virtue of (7.6), possibly excepting the last element
riui. Hence the determinant D vanishes with riui. On operating similarly

on the colums of D one sees that D vanishes with rij. For fixed (x) and



30,

(r), D is quadratic in u_, vy 80 that

i

(3.10) Aijuivj = Fl(x, r) (riui) (rjvj)

where Fi does not depend on u, and v 3
In the plane, Fl.(x, r) was introduced by Weierstrass with the -relations,

ij -
(7.11) A Fluivj ,
which follows at onoe from (7,10). Weierstrass's derivation was different,
If one sets ui= ri and vj= ri one has a formula
1.1 3
F A Yrr

I L2
showing the continuity of F, when (r) #(0)s As we shall see, the hypothesis

that FI;( 0, corresponds in the non-parametric form of the integral to the

hypothesis that
gl '
P4P; 7
The Euler operator is a covariant tensor. That is, when (x) and (2z)

are admissible coordinates
h po—
d Oz d
(7.12) -—F.-F.::-—-—E—-G-G
dt i 3 éxi dat oh 28

Relation (7.12) can be verified in detail on using the homogeneity relations

(7.5) and (7.6) and the relation

(7.13) r1F 1 45F

rx xJ
obtained on differentiating (7.5)! as to xY, One can derive (7.12) more simply’
on equating the first variation of J in the system (x) to the first variation

of J in the system (z), Another relation of importance is
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il 4 .
(7.14) X LEEF i- r i-‘“‘ 0.
r X

This relation is an immediate consequence of (7.6) and (7.13) setting r = %,

§8, The Buler equations., To introduce a metric for our coordinate mani-

fold, we shall use a function £(x, r) defined end homogeneous in (r) in each
coordinate system (x), of the precise character of F(x, r) except that f£(x, r)
shell be positive. The f-length s aloné any piece-wise regular arc [x(t)]

will be piven by the integral

t
8 = S £(x, %)dt

o
The Euler equations do not determine the parameter t along en extremal, One
can meke s = ct by adjoining the condition £ S ¢ where ¢ is a positive constant

independent of t. We are thus led to the system

(841) vers Fi-Fi=0
r p.9
(841)" £(x, x) =6

To arrive at the general solution of (8.1) we shall immerse the system

(8+1) in the system

(8.2)1 '&% (Fri + mfri) - (in + mfxi) =0
(8,2)" £(x, x) =¢c,

where m is an unknown function of t to be added to the unknown xl(t). The
relation of (8.1) to (8.2) is _iven by the following lemma.

Lemma 8+1s In any solution m(t) and [x(t)] of (8.2), m(t) is constant.

Henoe if m = O initially, then (8.2) <> (8.1).
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We have established the identity in t

+i, d -
X ( ag F i- F i) a8 0 N
r X

end a similar identity holds for f, Upon multiplying (8.2)' by x* end summing,

one then finds that

dm £ dm

o m f em = 0
r1 dt dt

oi
x f

from which the lemma follows,

We shall proceed to solve (8,2) without limiting m to the value O, It

will clarify matters if we set xia v and write (8.2) as a set of conditions

on (x, r) and m in the form

d

(843)" = (F ; +of i) - (F R i) =0

r r x X

(8.3)" é% x* rl, f(x, r) = o,

f

The system (8.3) can be transformed into an equivalent set of conditions on

]

(x) and on a covariant vector (v) by setting

(804)' v F i(x, r) + mf i(x, r) (i = 1, se0, n)

r r

£(x, r)e

]

(8.4)" c

We 'regard (8.4) as a transformation from (x, r, m) to (x, v), with ¢ a para-
meter of the transformation, We suppose a set (xo, ros mo) given for t = 0O

with m = O, and use (844) to define

viO= Fri(xoa ro)a Oo'-" f(xo: ro) .

With this initial solution (xo, T Vs co) of (844) given, we solve {8.4) for

x and m gs functions
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(805)' r1= Rl(x: Vs C)

(845)" m= Mx, v, o)

of class C" for (x, v, ¢) sufficiently near (xo, L co). The relevant
jacobian of the right hand members of (8.4) with respect to the variables

(r) and m is

iy ~.i . .
J = T ols -Fl(rlf ) (9 .) = -F, £°
rl r‘] 1

and J # 0, since we are assuming that Fl% O,

Under the transformation (8.4), or its inverse (8¢5), (8.3) takes the

form
(8.6)* %"; = ’Y(x, v, ¢)
dv,
(846)" T - Hi(x, v, )
where we have set
(8e7) Hi(x, v) =F i(x, R) + M f i(x, R),

x bs
The parameter c¢ is required to be positive and independent of t.

Lemma 8.2+ The conditions (846) on (x, v) and the conditions (8.3)

on (x, r, m) with ¢ a positive constant, are equivalent under the trans-

formation (8.4) or its inverse (8.5).

That (8.3) implies (8.,6) under (8.4) or (8.5) is immediately obvious,

Conversely let (x, v) be a solution of (8.6)s Let m and (r) be defined
as functions of t by (8+5). Then (x, r, v, r) satisfy (8+4) as functions of
t. From (8.5)' and (8.6)! we have (x) = (r). Relations (8.4) and (8.3) then

imply (8.3).
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Bquatious (8.6) have solutions of the form

i i
(848) x" =h(t, x_, v, o)

v, = ki(t, X5 Vs )

which take on the values (xo, vo) when t = O and for which the functions h* and ki

are of class C" in their arguments for t on an appropriate interval [tl, tz]
and (to, Xo Vs o) sufficiently near a particular initial set of the same
character.

We do not desire the general solution (x, v) of (8.6) but only those
solutions which, under (8.4), yield solutions of (8.2), that is solutions of

(843) for which m = 0, Given (xo, ro), for m to be zero under (8.4), it is

necessary and sufficient that

(8-9) viO =F i(xo’ rO) (i = la s, n)
r

for, on multiplying (8.4)! by ri and summing we have
n rif (x,r)=mf =0
oo 10" "o 00
as a consequence of (8,9). The mecessity of (8,9) is trivial.
To obtain the general solution of (8.1) one then makes the substitution
(849) in (8.8)s On using the relation ¢ = f(xo, ro) of (844)", (8,8) yields
solutions

i i
(8.10) x* =X (%, X » ro)

of (8.1), where the functions X' are of class C" in their arguments for t on
’ g

[tl, tz] and (xo, ro) sufficiently near a particular initial set. loreover

in

(8,11) x> = X'(o, Xgs T,)

1]

oK o

i
Xt(O, Xo, ro).
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The last relation is & consequence of the given initial relation

i i
R (xo, Vs c) & r, end (8.6)*.

§9. The field of extremals through a point. The solutions xt

(1 =1, ess, n) of the Buler equations obtained in §8 require interpretation.
In the space of n-coordinates ri the locus

(941) f(x, r) =1

for a fixed (x) is called the indicatrix of f at (x)e If (a) is a point on

the unit-sphere alats 1 in the space (r), there is & unique point on the ray

r's e et and the indicatrix, namely, & point at the distance

e TS
from the origin. Thus the indicatrix at (x) is a star-shaped (n-l)-menifold
which is compect and contains the origin (r) = (0) in its interior.

In accordance with the homogeneity relation

f(x, kr) =k £(x, r),

£(x, r) can be extended in definition by setting
- f(x, 0) =0

and so extended is continuous without exception in the space (r)e In general
however £(x, r) will have no partial derivatives when (r) = (0). With this
extension the condition f(x, r) < e, where e is a positive constant, defines
e region in.the space (r) which includes the origin, and is bounded by the
(n-1)-manifold obtained by diminishing radial distences to the indicatrix

f(x, r) = 1 in the ratio of 1 to e,

n

The condition f(x, %X) £ ¢ implies that

(9e2) §sf(x, %) S0, 8=t f(xo, ro),
provided one makes s = O when t = 0, and lets‘(xo, ro) denote the initial

values of (X, X)e
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Lemma 9.1. Let [x(t)] be a solution of (8.1) with t on [0, a] and

f(x, %) 2 ¢, Set
i i
t = ktl, x (ktl) ay (tl) (kx > 0)

with k a positive constant, Then yl(tl) is again a solution of the Buler

equations for t, on the transformed interval, with f(y, ¥) = kec.

1

This statement is a ready consequence of the relations t = kt

ll
at = kat,, (§) = k(x),

by i(Ya &) s ¢ i(xo i) £ j(yo i) 5 kf j(xo J.()

r r X X

where (¥) is a t_=derivative and (x) a t-derivative.

1
This leads us to distinguish between an extremel and a solution of the
Euler equation as a particular parametrization of an extremal, Two such solu-
tions are regarded as identical if and only if they are identical as functions
of te Thus [x(t)] and [y(t)] given above are distinct solutions of the Euler

equations when k %'l, but are parametrizations of the same curve or extremal,

The basic homogeneity relation (9¢44)e The solution

(9.3) b = X*(%, Xo T,) (05t Sa) (1 =1, veu, n)
of the Zuler equations yields a class

x* = X*(kt, X s ro) (k >0, 0354 % a/k)

of such solutions all of which represent the same extremal. Here a depends

on (xo, ro). We now establish the following basic identity.
i i
(944) X" (kt, X s ro) = X" (t, X kro) (o

For a solution xl(t) (i =1, «vs, n) of (8.1) to be identical with the right

member of (9.4) as & function of ¢ it is necessary and sufficient that
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xl(O) = xz R ii(O) = krz (1 =1, eee, 1)

The left member of (9.4) is a solution of (8.1) with just these properties.

dence (9.4) holds,

The above functions Xi can be continuously extended by a definition of
x* when (ro) = (0), namely
(945) xi(s, x, 0) = x (1 =1, eee, 1)
The continuity at (ro) = (0) of the extended functions x4 follows from (9.4)
whose left member is defined and continuoﬁs even when k = 0, and gives the
value xi. It is not assumed that %} romains of class C" when the point

(ro) = (0) is added to its domain,

The intervel for t, Let (u) be a contravariant vector of upit f~length,

that- is with f(xo, u) =1, If (ro) = (u) in (9.3), and if we take s = 0 at
(xo), then s 5t in (9.3) and

(9.6) xi = Xi(s. xO. u) (i = l, tee, n)

gives an intrinsic representation of the extremal considereds There exists

an interval

(947) 05s5 o(x,) [e(x ) > 0]

on which (9.6) represents anextremal, The interval limit e depends a priori
both upon (xo) and (u)e But (u) ranges over a compact set, the indicatrix at
(xo), and it follows that & choice e(xOJ of e can be made independent of (u).
This is best seen on recalling the origin of the functions Xi as particular
evaluations of the funotions ho of (8.10)s The limit b in the interval

(0 S¢S tl) for t can be chosen so as to be valid not only for one initial

set (xo, Voo ¢) but for a neighborhood N of a particular initial sete. 4
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compact ensemble of initial sets (xo, Vs c) can be covered by a finite
aggregate of neighborhoods Ne This applies to the case at hand where (u)
ranges over a compact set,

When (u) is not & unit vector, the parameter t in Xi is not s but t where
(9.8) s = t£(x_, ),
as has been seen in (9.2). Hence for
(9.9) 0% t8(x, ) < e(x,) (r,) # (0),
Xi is a valid representation of an extremal arc,

The following theorem establishes the existence of a field of extremals
issuing from the point (xo).

*
Theorem 9.1, There exists a topological transformation T of a neighbor-

hood N_ of (xo) in the n-space (x) onto a neighborhood Ny of the origin in an

Euclidean n-space (y) with the following properties,

(1) The transformation is of the form

[}

(9410) = at(x, v) (1 =1, ves, n)

and is valid for

(9.11) £(x_, ¥) < plx,)

where P(xo) is a pogitive constant dependent on (xo).

(2) The functions Al(xo, y) are of class C' with respect to (y), with

a non-vanishing Jacobians

(3) An Euclidean ray on Ny from the origin to a point (y) # (0) cor~-

responds to an extremal arc on Nx issuing from (xo) with an initial contra-

variant direction (y), and the point (y)‘gg Ny corresponds to the point on

the mxtremal at which s = f(xo, ¥)e

* That is, 1-1 and continuous both ways.
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If one considers sets (y) for which

(9.12) £(xg ¥) < elx ),

then the interval (9.9) for t, with (y) = (r ), includes t = 1, e can
accordingly introduce the transformation

(9~15) Xl(lo xoa Y) = Al(xos Y) = xl

defining A' in this way. Observe that A* is of class C" in (y) for (y) £ (0).
o shall show that A® is of class C! also at (y) = (0), and that
bAi

(9.14)a = (x5 0) = 04

We set (y) = t(u) in (9.13), where (u) is a contravariant vector of unit
f-length, and take t < e(xo) in agreement with (9.12). Then from (9.13) and
(9.4),

(9.14) AN(x , tu) = X7(1, x, tu) = X (¢, x_, u)
For t < e(xo) relation (9.14) holds, more generally, in the form
(9.15) Al(xo, tr) = Xl(t, X0 r)

provided (r) is sufficiently near a unit contravarient vector (u). For, the
condition t < e(xo) implies the condition

t £(x, r) < elx )
if (r) is sufficiently near a unit vector,

On differentiating (9.15) with respect to 9 wo have
i in
(9.16) t =z (x, tr) =—— (¢, x_, r) ( (r) #(0) ).

Recall that
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The right member of (9,16) thus vanishes when t = O. On using Taylor's
theorem with an integral remainder to represent the right member of (9,16)

end evaluating for r = u we have

. {2
(9417) -%%% (xo, tu) = S; g;g:j (at, X g0 u)de

For (u) on the indicatrix and far t < e(xo), the right member of (9.,17) is

continuous in t and (u), not excepting t = O, In particular for t = O the

integrand has a value 5ij independent of (u), and this is also the value of
the integral,

In terms of the variables (y) with (y) = t(u)
s i
t = f(xo, v) ut = ?T¥;§7 Ly f'(Q)]
and the limit of the integrand in (9.17) is again 5ij as (y) tends to (0).

As a funotion of (y) the integral in (9.17) becomes continuous in (y) provided

Gij is taken as the value of the integrend when (y) = (0)s It follows that

the partial derivative of AT with respect to yJ

*
exists , equals 5&3 when
(y) = (0), and is continuous on a neighborhood of (y) = (0).

In accordance with (9.14)a the Jacobian

1

D(A™, oo, AT) _

1 [(y) = (0)]
1 n
D(Y™s eeer ¥ )
By virtue of the implicit function theorem the transformation defined by (9.13)
is topological and satisfies (1) and (2) in the theorem, provided the neighbor-

hood of (y) = (0) defined by (9.11) is sufficiently small. Property (3) of the

* In proving this one makes use of the following fact. Vhen a function H(y)

of a single variable variable y has a continuous derivative on an open interval
[0, b] tending to a limit as y tends to O then H'(0) exists and equals that
limit,
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theorem results from (9.4) on interpreting (y) = t(u) for variable t as a ray
on Ny’ and interpreting Ai(xo, tu), i = 1, ese, n, a8 an oxtremal arc on Nx‘

with an initial contravariant direction (y) where (y) # (0), and with
8 = f(xo, tu) = f(xo, Ve
In Theorem 9,1 we have the linmitation
< < <
£(xg ¥) Sp (x))y (0585 plx)
on the "normal" coordinates (y) and their image points on the extremal arcs
through (xo). The dependence of e(xo) on (xo) can be removed if we assume

(as we do) that our coordinate manifold is compact, in that every aggregate

of open sets covering M contains a finite subaggregate covering M,

J

In fact, the functions Al(xo, y) and their y“Y~derivatives are seen to

be continuous on & product domain (xo, y) defined by conditions of the form

nA

i ‘ o

f(xo, y) S ©19 ‘ xi -a 09 (1 = 1, voey n)
where (a) is a point on the coordinate region Rx while ) and o, are positive
constantss A choioce e of e(xo) such that Theorem 9.1 holds can then be made
independent of the value of (xo), on a neighborhood N of (&) defined by the
conditions

'xi - al \ <e,, (1 =1, eee, n)e
Since M can be covered by & finite aggregate of such neighborhoods N, a choice

of p cen be made independent of the point P (locally (xo)) on M, We thus have

Theorem 9.2, There exists a positive constant P such that the extremal

arcs issuing from an arbitrary point P on M, with O s 8 s e » cover the

closure of a neighborhood of P ina 1 - 1 manner, P excepted, and in some

coordinate region Rx’ with P given by (xo), admit & representation in terms




42,

of normal coordinates (y) with

f(xos y) N (')

as stated in Theorem 9.l.

§10, The combining of overlapping coordinate systems. Our analysis of

an extremal arc will be simpler if we know that the arc lies in a single co-
ordinate system. An extremal arc originating- in a coordinate system (x) may

be continued through any finite sequence of overlapping coordinate systems
making use of the covariant character of the Euler operator and of the in-
variant character of the function f(x, r) used to define f-length s. According
to Theorem 10,1 bélow, an extremal arc g always lies in a suitably chosen
single coordinate system.

Recall -that a coordinate system (x) is defined by a topological mapping
of a coordinate region Rx'in the space (x) onto an open subset of our ¢o=-
ordinated menifold M, Points in two different coordinate regions Rx end R
with the seme image point on M are termed equivalent, The relation between
equivalent points (x) and (y) is (by definition) a one-to=one coordinate

transformation of a given class, here class C" , with a non-vanishing jacobian.

The equivalence relation is transitive; that is, if (x) is equivalent to (y),
end (y) equivalent to (z), then (x) is equivalent to (z),

Let Rx and Ry be two coordinate regions in which a subregion Ri of Rx
is equivalent to a subregion R; of Ry. Let MRx be the image on M of a co-
ordinate region Rx « We seek a coordinate region Rz combining Rx and Ry in

the sense that

= =¥ : 1t
(10.1) MRZ MRx + MRY [ + union ]
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Necessary and sufficient conditions that a coordinate region Rz exist such
that (10.1) holds are as follows.

(a) The set R, admits a 1-1 mapping T onto the union of R_ and Ry, ro-

garding points of Rx and Ry as identical if and only if they have the same

images on M,

(v) The mappings of Rx and of Ry into Rz under T are representable as

coordinate transformations (of Class C™ with non~venishing jecobian and 1-1)

If (a) and (b) hold, a point (z) of R, is made to correspond to the same
point of M as does its image (x) or (y) under T,
With the aid of the above conditions for the existence of Rz we can

establish the following lemma.

Lemma. 10,1e Lot Rx and Ry be coordinate regions in which RZ in Rx is

equivalent to R; under a coordinate transformation§ Y, Necessary and sufficient

*
conditionsg that Ry-EE-E subset of some coordinate region Ry such that

*
(10.2) MRy = MR_ + MRy

are that Y be extensible§§ from e transformation of Rz to a coordinate trans~

formation Y* ggle in such a manner that

%
(10.4) Y (R - RZ:) . (Ry- R;) = 0

%
One can then take Ry as

(10.5) R' =R + YR
y Oy x

*
and require that (x) EE.RI be equivalent to Y (x)e. Relation (1042) then holdss

§ Of the form
(10,3) yh e THx) (1= 1; ver, 13 (x) 10 B
§§ That is, capable of definition over a domain which includes the original.
domain of definition Ri without altering the transformation over Ri as
originally defined,
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The conditions are clearly necessary, To prove them sufficient let
Rx+ Ry dencte the union of Rx and Ry’ subject to the equivalence relation Y,
* *
The region Ry is mapped onto a subset of Ry by the identity, and Rx into Ry

*
by Y + These mappings oombine into a single~valued mapping T of Rx+ Ry into

R; if and only if the ooordinate transformation Y* of Rx is an extension of Y.
The mepping T of R _+ Ry into R; is one-to-one if and only if (10,4) holds.
When Y* is both an extension of Y and satisfies (10.4), the trensformation

T satisfies (a) and (b) and the lemma holds,

A coordinate system containing a given extremal arc E. We can suppose

E covered by a finite set of coordinate regions Ry in each of which E is re=-

presented by functions
i
(10.6) y (s) (1 =1, ees, n)

of class C"' of the s-length measured from the initial point of E. We shall
now prove the following theorem.

Theorem 10.ls Let g be a simple regular arc, of class C"' in terms of

f-length s« There exists a coordinate region Rx in which g is represented

by the x -axis with s = xn on this axis.

We shall first show that the theorem is true for any susaro 8, of g
on which ¢ = 6 <8 < ¢ + e, provided e is a sufficiently small positive
constant,

Let P be the point of g for which s = ¢c. Let 2is ai(s), i =1, ees, n,
be a representation of g neighboring P in a coordinate region Rze For
simplicity suppose that ¢ = O, For at least one value of i, say n, éi(O) % O.
Suppose that (z) = (0) at P. With this understood we make the transformation

of coordinates
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2t = xi+ ai(xn) (1 =1, cee, n=1)
(10.7)

i = a2 (x™)
from & neighborhood of the point (x) = (0) onto a neighborhood of the point
(z) = (Q)s This transformaetion has a jacobian equal to 82(0) at (x) = (0),
and so defines a locally admissible change of coordinates, The imege in the
space (x) of the are gta ai(s) consists of points (x) which satisfy the
conditions

ai(s) = x4 ai(xn) (1 =1, ¢vo, n=1)
(10,8)

a?(s) = a(x2),
Since the n-th condition in (10.8) has no local solution other than xn= 8,
the local solution of (10,8) has the form

1 n-1 n
X = e0e B X ‘=0, X =28 o

The theorem is accordingly true for the subarc 812 if e is sufficiently small,
By virtue of the preceding result g can be covered by & finite set of
overlapping arcs for each of which the theorem is true. The following lemma

then implies the truth of the theorem in general,

Lemma 10.2. Let 8y and gy be two subarcs of g with common inner point

P: s = 5,3 with €y and gy admissibly represented by the X =gxis and yn-axis

respectively in coordinate regions Sx and Sy; with x"= 8 on g, and yng s on

gy. The theorem is then true for the arc g.* gy.

For simplioity suppose that s = O, that (x) = (y) = (0) at P, that in
the sense of increasing s the initial point of gy precedes that of gx; and
that the final point of &y follows that of gy. Equivalence between points

on Sx and Sy neighboring P is given by a transfagmation of the form

(10.9) yh = e 9« mb(x) (1, 3 = 1, eee, n)
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where a;,is a, constant # 0,. and m}(x) is a function of class C™ with a null
differential at.(x) = (0), Singe s = x'=-y" along g near s = O, we see that
az =1, and m°(x) 5 (0) on the % -axis, Without loss of generality we can

suppose that (10.9) has the form
(10410) yh = xi + mf(x) (1 = 1, ece, n)

since a preliminary transformation of the form

ekt

J

. &ould bring this abouts We note the existence of & positive constent e so

small that for | xt | < 2e,.

l%:%-|<1 (i, 5 = 1, ves, B)

To continue we shall need a funotion h(s) which is of class C for all

¥

real values of 8, with

I
[
BA

e), (Inl S1)

20),

h(s) =
h(s) =

(s
,(s

1t
o
nv

Such a function clearly exists,

We replace (10,10) by the transformation
(10.11) vt o= 1t ¢ n(®ntx) (=1, ees, 0)

for (x) on a region Rx to be determinedo To that end observe that on the

> .
xn-axis for xn = -9, one has yp= xn and m;(x) = 0 with

i i
%fa" = 615 + h%xi‘ij- (3= Lyesesn=ls i = 1,40.,n)

-%c;- = 6!11 (i = 1, XXF) n)
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The jacobian J of the transformation (10.11) is accordingly not zero on the

X -axis for x= z ~g, Let Rx consist of those points of Sx for which
(10412) x° > -, lxl | <a < o, (i=1, ¢¢s, n=1)

We can suppose d so small that (10,11) is an admissible coordinate trans=-
formation of R (of class C" with J # 0, and one-to-one),

We now prepare for the application of Lemma 10.1.

The subregion Ri of Rx for which -e - x" < o consists of points (x)
equivelent to points (y) under (10.10) or (10,11). Let the transformation

(10,10) taken over Rz be denoted by Y. Let Ry be the union of the set
RF=YRr
y X
and of the subset of Sy for which

(10013) yn < 0, lyi l <d (i = 1, XN n"l)

* *
Let Y denote the transformation (10.11) taken over Rx' Then Y is an ex-
*
tension of Y, Under Y the xn-axis in Rx is invariant; it follows from the
*
continuity of Y that, if the constant 4 limiting Rx and Ry in (10,12) and

(10.13) respectively is sufficiently small, then
* AR - R%) =
Y (Rx- Rx) (Ry Ry) 0
We conclude from Lemma 9.1 that the set

* *
R =R +YR
y y x

is a coordinate region. On this region the arc gx+ gy is represented by the

yn—axis as required.

The lemms follows, and the proof of the theorem is immedimte.
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§11. Conjugate points, Let g be an extremal arc, As has been seen

in §10, we can suppose that g is interior to a coordinate region Rx'
The extremal g s sauid to afford a proper relative minimum to the inte-

gral J in the fixed end point problems if

(11.1) J(g) < I(g') (g # ')

for any admissible curve g' joining g's end~points in some neighborhood N of g.
As previously, we admit piece-wise regular curves g' of class D', There are
two principal conditions together sufficient that g afford a proper relative
minimum to J, nemely the condition that there be no point on g conjugate to

its initial point, and that F be positive regular. These conditions will be

defineds )
In order to define a conjugate point we need a local parametric re=-
presentation of the indicatrix f(x, r) = 1. Observe that the relation
i
r

on the indicatrix implies that at least one of the partial derivative f
. r
fails to vanish at a point (u) on the indicatrix, Hence the points on the

loocus f(x, r) = 1 neighboring (u) admit a representation of the form
(11.2) rt = ri(v), r1(0) = ul (L =1, evs, n)

where (v) is a set of n~l parameters in terms of which the functions ri(v)
are of class C™ with a matrix of partial derivatives of rank n-l at the set
(v) = (0) corresponding to (u)s We term this representation regular of
class C"', ‘

Let xi= gi(s) be a representation of g in terms of f-length s, Let

(u) = [é(so)] be the unit contrevariant vector tangent to g at a point s = s .
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Let (11.2) be a regular representation of unit vectors neighboring (u),
tengent to extremels issuing from [g(so)] = (xo). In terms of the solutions
Xi(t, X s ro) of the Euler equations obtained in §8 the extremals issuing
from the point (xo) on g with directions neighboring (u) can be represented

in the form

(1103) xl = XI(S-SO, g(so): r<v)) = Hl(sl soo v)
Consider the jacobian

D(HY, ..., E%)

D(s, Vissees¥

(11.3)° M(s, 5.) = —5 [(v) = (0)]

n-1

Observe that for (i = l,ese,n) (j = 1,40.,n~1)

i i 21 i
(11.2)" Ki(s, 8, v) = xl, Bls,, s, v) = ri(r)
L Hi, v)=0 ﬁi s , 8, 0)= ri. 0
(ll 4) VJ(SO’ BO’ ) » vj( o’ B2 ) vJ( )

In accordance with (1l.4) the first column of M(so, so) is [r(0)] = [u],
while the last n-l columns consist of null elements. Using the integral form
of the law of the mean we can factor 8=85 out of each of the elements of

M(s, so) in the last n~l colums, and write
n=1
(11.5) M(s, So) = (g = so) N(s, so),

where N(s, so) is continuous in s and s, on the interval [0, a] of s on g

We shall prove the following

(11.6) N(BO’ SO) = ui, rij(O)‘ % 0 (i = l,.o.,n; j = l,.co,n"l)
v

To establish (11.6) one starts with the identity in (v), f£(x, r(v)) = 1,

valid for (v) sufficiently near (v) = 0. On differentiating with respect to

v and recalling the homogeneity relation we have for each i



Y,

(11.7)! rlj £ (x, u) =0 (5= 1, eau, u=1y
v r
1] i : -
(11.7) ut £ L (x, w) =1
r

Regarding the eyuations (11.7) as linear conaitions on the n vuriables
f , one sees that the "augmented" matrix of the system has the rank n. Jince
r
the equations (11.7) are consistent, the determinant (11.6) of the system must

elso have the rank n, so that (11.6) holds.

The conjugate points of the point s = s, on g are def ined as the points
s # s &t which M(s, so) = 0,
A first conclusion to be drawn from the nature of N(s, so) in (11.5)

is as follows,

(a) If there is no point on g conjugate to its initisl point s = O,

*
then on an extension g of g as an extremal there is no point om g conjugate

*
to & point on g preceding g for which Isol is sulficiently small,

Since there is no point on g conjugate to s = 0 it follows that for
s on [0, a] (the interval for s on g) N(s, 0) # O. But N(s, so) is clearly
continuous in (s, so) for s on [0, a] and |s°| sufficiently small; so that
for s on [0, a] and | sol sufficiently small N(s, so) # 0. Statement (a).
follows from (11.5).

A second conclusion based on our assumption that the coordinate manifola
is compact is as follows,

(b) There exists a constant e > O independent of the point P on k such

that on any extremel g isiuing from P with s = O at P there is no conjugate

point of P on g for which ‘si < e,

To establish (b) we rewrite (11.3) in the form
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X1= Xl[so xO’ I‘('V)]
end the jacobien (11.3)' in the form
(1108) Sn—lQ(s; xO’ u)

proving as previously that
(0, x_, u) # 0.

We observe that Q is continuous in its arguments (s, X u) forls | < o,

and (xo, u) on a neighborhood N of & particular set (x:, u*). Here o, is

s positive constant dependent on N. The product domein, with factors M and
the indicatrix essociated with each point of M, is compact and cen be covered
with a finite aggregate of neighborhoods N. Hence e, can be replaced by a

positive constant e independent of P and of the initial direction of g at P.

Statement (b) follows,

§12, The condition of positive regularity axd the Hilbert integral.

Upon setting

1.J

F. .=F,.(X, r) (i j=looo n)
i 1J ] 3 14

recall that the determinant lFijl = 0, Hence the quadratic form in (z)
(12.1) Fij(x, r)z*zY [(r) # (0)]

cannot be positive definite., More explicitly, it vanishes for (z) proportional
to (r), since

i
r Fij(x’ r) =0

(a) The condition of positive regularity is that when (z) is not

linearly dependent on (r) the form (12.1) is positive.
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A first consequence of positive regularity is that the Weierstrass
function Fl(x, r) is not zero,.

In fact, when F is positive reguler, n-l characteristic roots of the
matrix||Fin must be positive and one root null. Hence the rank ofllFin
must be n-1; we conclude that some cofactor Aij # 0. It follows from the re-
lation

bygm P rir)
that Fl # 0.
If (z) is a contravariant vector, the form (12.1) is invariant so thet

the condition of positive regularity is independent of the coordinates used.

The Weierstrass function E(x, r, q). This function has the definition

(12.2) B(x, r, @) = F(x, @) = ¢'F ,(x, r) [(r) # (0))

r

where (r) and (q) are contravarient vectors. Using the relation

F(x, r) =r F (1) (1 =1, eve, n)
r

one sees that
(12,3) E(x, r, q) = F(x, q) - F(x, r) - (ql‘ rl)F i(x’ r)
r
The terms following F(x, q) in (12.3) are those of & Taylor's development of
F(x, q) about (r) for e fixed (x)
Since F i is a covarient vector we see from (12.2) thet E is an in-
r

variant, Observe that B is positive homogeneous of the first order in (q)

and of the zero-th order in (r), and that
(12.4) E(x, r, kr) = 0 (k = 0)

where k is & constant,



53,

The Weierstrass condition in its strong form requires that

(12,5) E(x, u, v) >0

for (u) and (v) arbitrary distinct unit vectors.,

We shall need the formula
(1206) E(xa r, 'r) = E(x: qd, "'r) + E(x: qs r):

valid for any two non-~null vectors (r) and (q). This formula is verified at
once on using the definition of E,

Lemma 12,1 The condition of positive regularity implies the strong

Weierstrass condition.

We shall regard E(x, u, q) as a function of (q) and expand E about (u)
by means of Taylor's formula with a remainder of the second order. Suppose

first (Case I) that (u) and (v) are linearly independent, Then
(12.7) B(x, u, v) = Hv'- u')(v0- wF (x, W)

where

w =u + o(vi- ui) (0<0<1)

One observes that (w) # (0) since (w) represents a point in euclidean n-space
on the line L joining the point (u) to the point (v) and L does not intersect
the origine Thus Fij(x,w) is well defined.

The right member of (12,7) is positive in accordance with the condition
of positive regularity unless (v)-(u) is linearly dependent on (w). As a
vector in euclidean n~space (v)-(u) has the direction of L while (w) has the
direction of a line joining the origin to a point of L; these directions are
different since L does not intersect the origin, Hence (v)-(u) is independent

of (w) and E(x, u, v) > 0 in Case I.
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There remains Case II where (u) and (v) are non-null but with opposite
euclidean directions. In this case it will be sufficient to show that
E(x, u, -u) > O, This is a consequence of (12,6) on taking (r) = (u) and (q)
as any non-null vector not linearly dependent on (u), using the fact already

established that
(1248) E(x, q, u) >0, E(x, q, =u) > 0.

It follows that E(x, u, v) > 0 for (u) and (v) distinct vectors of
f-length 1, and the proof of the theorem is complete.

The case in which (u) and (v) have opposite directions has been
erroneously treated in the literature, and the errors laboriously corrected
by means of Behaghel's formula. The above treatment by means of (12.6) was

first given by the author.

The Hilbert integral. Consider a (n-l)-parameter family of extremals
of the form

(12.9) = xtx, v) (v) = (v}, vuu, ¥&71)

in which the functions x> (s, v) are of class C" in the variables (s, v) for
s on some interval [sl. 82] and (v) on a region R_ of euclidean (n=1)-space,
with a jacobian

1l n
D(X E) (AN ] X ) % O
D(s, vi,e.., v 1)

It will be convenient to set

vi(s” v) = Fri[x(s" v): ;‘(S: v)] (i = lsuun)

We shall establish an identity in s and (v)
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0y &y _ by b

N ibvk)-()vk Viavh)ac

(12.10) e

analogous to Abel's integral for any two solutions of a linear second order
differential equations Here i =1, ees, n; h, k = 1, ¢eo, n=1; and Chk is
independent of s, but may depend upon (v)e There is thus one relation (12,10)
for each pair (h, k).

To establish (12.10), we evaluate the integral J along an extremal
(v) = const., from s = §,» to an arbitrary s on [81,82], and thereby obtain
a function J(s, v)s Upon differentiating J under the integral sign and inte-

grating the terms involving F 3" Vi by parts in the usual way we find that

r
0J ot 8
et — = [V. ———— ]
Ol 1ot s,

The condition that the second partial derivative of J with respect to vh and

vk equals that with respect to vk and vh, takes the form
i s i s
Oy &7 L 9y &

(12,11) ity .6;1—1 ig;f

81 ®1
On transferring the terms in (12.11) with upper limit s to the left number,
and those with lower limit 81 to the right, the two members appsar equal to
a function Chk with the same value at s as at 8qs and accordingly independent
of 8. Relations (12.10) follows

To define the Hilbert integral we suppose that the region Rv is simply-
connected, and that the family (12.9) is a field of extremals covering a

domain §_ in the space (x) in a 1-1 menner. That is, we suppose that (12.9)

maps the product of the interval [sl, sz] and Rv topologically onto Sx' The
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point (x) on S, has an inverse image

s = s8(x) W = vh(x) (h =1, oo, n-1)

in which s(x) and vh(x) are of class C", One sets
i i
X [S(X), v(x)] =14 (x) (i = 1, X n)

The vector (u(x)) is thus the direction at (x) of the extremal of the field

through (x), end is termed the direction of the field at (x), The Hilbert

integral is a line integral of the form

(12.12) 1= §p, (o) where [P,(x) = F (x, u(x))]
r

In terms of the parameters (s, v) the Hilbert integral takes the form
(12.12) Is{c(s, v)ds + D (s, v)av" (h =1
e = ) 8 h 8, v v == ) ooy n"l)

wherse

c(s, v) = F [x(s, v), %(s, v)] %'(s, v) = Flx(s, v), %(s, v)]
r

. Ot
Dh(s’ V) = Fri[x(s’ v)) x(B, v)] '&;‘E’ (S; V) (b = l""ln-l)

Since Rv is simply connected, necessary and sufficient conditions that

I be independent of the path in the space (s, v) are that

, oD

(12,13)* zh - ésh =0 (h = 1,04.,n-1)
ol D

(12,13)" -&-E - S;-E =0 (hk = 1,...,n-1)

Upon using the function Vi(s, v) these conditions take the form

: & d . Ot
(12.14) re i (Vig;ﬂ ) =0
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6xi
bvk

J
ovh

0
bvk

i
(12,14)" (Vi ) - (Vi gth )=0

Condition (12.14)' takes the form
dxi ngl axi CVi bzxi
FARE T iseE " 3h T "Vigam
x Ov r* Osdv O Os * Os0v
and reduces the identity since, with (s, v) the independent variables,

ov

F = V.3 F,=—t (the Euler equations)
)
r x 8

Conditions (12.14)" are absent if n = 2, For n > 2 they are not satis-
fied in general. In the important case in which the field of extremsals issues
from a point'so< §; on g*, the constant C, = 0 in (12,10); for the partial
derivatives of xi(ﬁ, v) as to vh vanish for s = 8 3 since xi(so, v) = xi.
Hence (12.14)" is satisfied, ile thus have the theorem

Theorem 12,1, The Hilbert integral, defined for a simply connected

field of extremals issuing from a point, is independent of the path of

integration in the field,

From the representation (12,12)! of the Hilbert integral and the fact
that C = F in this integral, we see that along an extremal g of the field
I = J, For along such an extremal dvh= 0, h =1, sss, n=-1,

Corresponding to any point P on M there exists, in acoordance with
Theorem 9.1, a positive constant R(P) so small %hat the following is true,
The family of extremals issuing from P with 0 = s = R(P) covers & neighborhood

of P in & 1-1 menner (P excepted), and has a repregentation of the form

(12415) xt = Ai(xo, ¥ [0 £(x_s ¥) 3 R(P)]
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in a suitably chosen coordinate space (x) in which (xo) represents P, where
the A® are of class C' in the variables (y) end have & non-vanishing jacobian,
It is clear that there are infinitely many choices of R(P),

We term R(P) a field radius at P,

Lemma. 12.2. There is no conjugate point of P at which O < s = R(P)

on the extremals issuing from P,

To establish the lemma one must return to the definition of a conjugate
point in §11, Let (u) be any vector of unit f-length at Ps Let r(v) be a
regular representation of class C" of vectors (r) on the f-indicetrix,
f(xo, r) = 1, neighboring (u) with [r(0)] = (u). By definition of at

al(x,, sr(v) = Xz, s, £(¥)) [0S s S R(P))

The jacobian M(s, so) which by definition determines the conjugate points of
P is

D(X) __D(a) _DA) _ D(y)
D(s, v) D(s, v) D(y) D(s, v) ’

(12.16)

where we have set y1= srl(v), i=1l,ees,n. Here D(A)/D(y) # 0 as we have

gtated in conmection with (12.15), while for (v) = (0) the jecobian

D(y) a1 i i
Mo, u) =% | ¥ T p(0)

is not zero for s > 0, as noted in (11.6)s The lemma follows from (12,16).

s (i = 1,e0e,n3 h =1,...,n-1)

The reader will have noted that in the original definition of a con~
jugate point of & point s on an extremal g the zeros of M(s, so) in (11,3)!
are independent of the choice of the regular representation [r(v)] of cless
C" of the indicatrix f(xo, r) = 1 neighboring the initial direction (u). If

another regular representation of the indicatrix in the neighborhood of (u)
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is used in terms of parameters (v), the parameters (v) will stand in a re-
letion vi= mi(;) (1 = 1,ses,n) to the parameters (v), where the functions nt
are of class C" and have a non-venishing jacobien at (¥) = (0)e The jacobien
M(s, so) will be replaced by
M(s, so) P-g-:i
D(v)
which vanishes at the same points s as does M(s, so).

The preceding relations between conjugate points and fields would be
simpler if & conjugate point of a point P on an extremal g could be defined
as a point Q % P at which the family of extremals issuing from P with direc~
tions arbitrarily near that of g at P fail to cover some neighborhood of P,
This definition is valid in the analytic case as Morse and Litteauer have
shown (Proc. Natl. Acad. Scs. 1932) but no proof has been published in the
non-analytic cese, In the plane, the definition is always valide If Q is
not a conjugate point, & neighborhood of Q is covered in a l-1 manner, but
if Q is a conjugate point is it always .true that there is no 1-1 covering?
The above definition is purely topological and would afford an excellent

topological basis for conjugate point theorye.

8§13, Sufficient conditions for a relative minimum of J.

A "field" of extremals on which the Hilbert integral I is independent
of the path is called a Mayer field.

Theorem 13,1, Let Sx be a region covered by & Mayer field of extremals,

with the uni£§ vector u (x) (i = 1,4..,n) tangent to the extremal through (x).

Suppose that

§ To avoid ambiguity one might call this vector f-unitary since f(x, u) = 1,



60,

(1301) E(xa u(x): Q) >0

for (x) on §_ and (q) # x[u(x)], k¥ > Os Then any extremal subarc g of the

field will afford a proper minimum to J relative to admissible curves on Sx

joining g's end points,

Let & be an admissible curve joining the end points of g on Sx’ of the
form
(13.2) xi = ai(s) (0 SsS b; i = 1,ee.,n)
As we have seen in §12, Jg= Ig; and Ig= I, since we have a liayer field.
Hence
Ja— Jg = Ja- Ia
But

I= S F i(x, u(x))dxi .
r

Hence for xt= at(s) (i = 1, eve, n)

b b
J - Jg = So F(a, é)ds-—-go Fri(a, u(a))éids,
b L ]
(13,3) = g E(a, u(a), a)ds Zo0
°

In accordance with hypothesis (13.1) the inequality in (13.3) holds only if
the arc xi= ai(s) satisfies the differential equations
(13.4) &, u'(x) (i = 1,s04,n)
ds
These equations (13.4) are satisfied by the extremals of the field and
by no other admissible arcs, so that [a(s)] satisfies (13.4) only if the arc
a = ge Hence the equality in (13.3) is excluded when g # ae The proof of

the theorem is complete,
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The condition of positive regularity at a point (x) implies that for
this (x),
E(x, r, q) >0
for any non-null (r) and (q), with (q) # k(r) when k > O,

The strong conjugate point condition on an extremal arc g is that there

be no point on g conjugate to its initial point s = 0. In accordance with (a)
of §11, e point P° on the extremal extension gf of g for which 8,< 0 and for
which Iso| is sufficiently small will have no conjugate point on g. As we

have seen in Theorem 12.1, a family of extremals issuing from P with directions
near that of g* at Po will form a Mayer field covering a neighborhood of ge
Hence we have the following corollary of Thecurem 13,1,

Corollary 13,1, A sufficient condition that an extremal arc g afford

6 proper minimum to J relative to edmissible arcs on a sufficiently small

neighbofhood of g is that g 8atisfy the strong conjugate point condition, and

that F be positive regular at each point (x) on some neighborhood of ge

It is possible to weaken the conditions of the corollary still further
by requiring merely that F be positive regular at each point (x) on go It
can then be shown (see Morse, ope cite, 122~123) that F is positive regular
at each point on some neighborhood of g.

Transversality. In order to esteblish the existence of short arcs

furnishing an absolute minimum to J we shall suppose that F(x, r) > O for

(r) £ 0, e say then that F is positive definite., We shall also suppose that

t
fsF, s8=4J =.j F(x x)dt.
o
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Transversality is a generalization of orthogonelity. A contravariant

veotor (r) # (0) is said to bg cut transversally by a contravariant vector

(dx) at e point (x) if

(13.5) F (= r)ix® = 0 (i = 1,000,n)
r

In the special case in which

(13.6) Flx, r) = (riri)%

the transversality condition (13.5) reduces to the orthogonality condition

ridxi = 0.

Unlike the orthogonality relation, which is symmetric, the transversality

relation is not generally symmetrice. VWhen (13.5) holds, the relation
Fy(x, ax) r" =0
r

does not always holde

This may be seen on supposing that (r) and (dx) are F-unitary vectors.
F N is then the euclidean direction of the normal to the indicatrix K of F
az (x)e We have seen that K is star-shaped, and apart from conditions of
differentiality on F it is arbitrarily star-shaped., With this understood,
one sees that when (dx) is a F-unitary direction tangent to K at a point (r)
on K, then (r) will not in general have the direction of & tangent to K at
the point (dx) on K. Thus the transversality relation is in gemeral not
symmetric,

We are supposing F positive definite and that F = £, Let R(P) be a

"field radius”. On the extremals issuing from P let Z, denote the locus of

points et which J = ¢ measuring J from P, with o < ¢ = R(P). We prove the

following lemmsa,



Lemme 13,1, The locus 2 is a reguler (n~1)-dimensional manifold

topologically equivalent to the n-l-sphere. If [u(x)] is the direction of

+the field -of extremals issuing from P at a point (x) on Zc then

(13.7) F i(x, r(x))dxi =0
r

for every’direction (dx) tangent to Zc at (x).

The extremals issuing from P neighboring an extremal g issuing from P

can be given a representation
=t = x(s, v) (v) = (7 eery &)

of class C" in terms of parameters s = J and (v), with a non-vanishing jacobien

for 0 <8 = R(P)s The locus J = o on these extremals has the representation

xi= x*(c, v)o Since the functional matrix

e

has the rank n~1l, this local representation of Zc in terms of the parameters

(i=l,...,n; h=l,...,n-l)

(v) is regular, 1In terms of these parameters, the integral eslong the ex-
tremals issuing from P is a function
8 ]
J(s, v) = g Flx(s, v), x(s, v)lds.
o
h h
An aro b on Z, has the form v = v (t) th = 1,44e,n)s Since d = 8 = o on Z,

end in particular on b, then for s = ¢ and s vh(t)

0O=J =F i[x, u(x)lx*
r

Relation (13,7) follows,
To show that Zc is a topological;(n-l)—sphere one uses the functions A™

of Theorem 9.1 to represent Zc in the form
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(1.8) = a¥(x,, or) (1 =1, vee, n)

where (xo) represents P, and (r) is an arbitrary point on the F-indicatrix
K at Ps This representation indicates a topological mapping of K onto Zc 50
that 2 , like K, is a topological (n~1)=-sphere,

The proof of the lemma is complete,

In accordance with this lemma we term Zc a manifold transverse to the

extremals issuing from P,

Lemma 13.2, Of the manifolds transverse to the extremals issuing from

PletZ end Z, with O <c < d = R(P), bound a region S, Let a:
e d

x'= al(t), i=1, ceey;, n, be an admissible arc on S leading from a point of

Zc to a point of Z If F is positive definite and positive regular, then

do

Ja exceeds d-c unless a is a subarc g of an extremal issuing from P,

The extremals from P form a field on S when n > 2,.§ is simply con~
nected and the Hilbert integral I for this field is independent of the path,
When n = 2, Z_ is & topological circle for whose tangent directions (dx),
(13,7) holds, Hence I = O along Z,e It follows that I is independent of the
path on S even when n = 2, DMore generelly I = 0, along paths on Zc or Zd
since (13,7) holds, It follows that I is independent of the path joining
Zc to Zd onS .

<
g =

To establish the lemma let g, with c s d , be a subarc of an ex-

tremal issuing from P, e have
Jg= Jg =J-1 = ja E(a, u(a), a)ds

where [u(x)] is the field direction. It follows that Ja~ Jg > 0 except in
the case where a is a subarc of an extremal from F.

This completes the proof,



65e

For fixed P, let the least upper bound of field radii R(P) be denoted

by e(P) and termed the radial field limit at P,

We shall presently show that e(P) is finite and bounded independent
of P on M,

The following theorem is fundamentale

Theorem 13.2. When F is positive definite and positive regular any

extremal arc g issuing from P for which J < e(P) affords an absolute proper

minimum to J relative to all admissible arcs b which join its end points.

We shall apply Lemms 13.2 taking d = Jg in Lemma 13.2., For 0 <c < d
there exists a piece-wise regular subarc b° of b, on S of Lemma 13.2, joining

e point of Zc to a point of Zd' In accordance with Lemms 13.2,

>
(13.9) ch =de~c¢c = Jg- c

Since ¢ is arbitrary subject to the condition 0 < ¢ < d we conclude that

>
ngg.

(12.10) J
Let us show that Jb= Jg only if b = g Let b° be the subarc of b pre~
ceding b° on b. Since b° joins the end points of an extremal arc on which

J varies from C to ¢ we conclude from (13.9) that

(13,11) J 2o,
b
ile have
> >
(13.12) ' Iy 20 o+ d  =e+ (Jg- c) = Iy

b b
so that if J, = Jg the e quality must hold in (13,11) and (13.9), In accordance

with Lemma 13.2, b° must then be a subarc of an extremal issuing from P leading

from Zc to Z Ir J = Jg’ this must hold for each ¢ for which O <c¢ < d,

a° b
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Hence the closed set B must contain an extremal subarc g', issuing from P,
on which s increases from O to de But b can include no subarc other than g!
if Jb= Jg’ since Jg= Jg" Thus b = g's But b joins the end points of g.
Hence g = g' = b,

The proof of the theorem is complete,

Lomma 13.,3. The radial field limit e(P) is bounded independently of P

on M.
We have seen in Theorem 9.2 that there exists a field radius R inde~
pendent of P on M, Let the set of points on M whose J-distance from P is

less than e be termed a J~disc with center P and radius ps Since M is compact,

M can be covered by a finite number m of J-discs of radius pe We are assuming
that M is connecteds On using arcs which are subarcs of extremals on J-discs
issuing from the center of these discs, it is seen that at most 2m such arcs
are required to join any two points on M, Sinée any extremal arc issuing from
P with J-length at most R(P) is minimizing it follows that

R(P) 5 2m P

The lemms follows at once.

The radial field limit e(P) is never a field radius R(P). In fact, the
locus Z of points on extremals issuing from P on which J = P(P) must either
contain a point Q conjugate to P on some extremal issuing from P on which
0<d = P(P)’ or at least two of these radial extremal arcs intersect in their
end points on Z, In any other case it is easy to see that e(P) + e is a field
radius R(P) for e > O and sufficiently small, contrary to the definition of Q(P).

As an example of a radial field limit consider & 2-sphere of unit radius
with J the arc length. Here Q(P) =T , and the point diametrically opposite

to P is conjugate to P on sach extremal issuing from P,



674

As a second example let P be a point on the inner equator of a torus,
Suppose that the circle C generating the torus by revolution has a length 2b,
exceeding that of the inner equator. Then e(P) = b and the two geodesic
semi~circles of C issuing from P intersect again at their ends, at which
J = b measured from P,

We have seen that the radial field limit @(P) is bounded above, and
bounded from zero., One can also prove that Q(P) is a continuous function

of P.

The most important conclusion is that there exists a field radius e >0

independent of P, and that when F is positive definite and positive regular

any extremal arc on M whose J-length is at most p, affords a proper absolute

minimun to Jo

§14., Extremals joining two points, Ve need a formula analogous to a

well known formule for the straight line joining two distinct points (xo) and

(xl) in the plane, namely

1

(14.1) X = (xi - xi)s/% -

2 2 2 2
o X = (x1 - xo)s/% +x

where r is the distance between (xo) and (xl). Observe that the right members

of (14.1) are functions of (xo), (xl) and s, with singularities when (xo) = (xl).
In the case of extremals there may be many extremals joining two given points
(ao) and (al) of M, Speaking generally there are formulas similar to (14,1)
corresponding to each extremal g joining (ao) to (al). The precise theorem

is as follows.
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Theorem 14.1s Let g be an extremal in a coordinate region R , with

J-length s, with end points (ao) and (al), and with (al) not conjugate to

1

(ao) on g,» There exist neighborhoods N and N

1 of (ao) and (al), respectively,

so small that any point (xo) on N can be joined to any point (xl) on N, by

an extremal which is unique among extremals with the following propertiess

The extremal has the form

(14.2) x = (s, X xl) (i = 1,0ee,n)

where %= is of class C" for (xo) on No’ (xl) EE.Nl' and s on some open interval

including [0, 31]. The J~length of the extremal from (xo) to (xl) is a func-

tion s(xo, xl) of class C". The representation (14.2) yields (xo) when s = O,

(xl) when 8 = s(xo, xl), and reduces to g for (xo) = (ao), (xl) = (al) and

for s on [0, 31]o

We seek extremals neighboring g in the sense that their initial points
(xo), directions (r), and J-lengths are near those of g. We suppose that
F(ao, ro) = 1, For fixed (xo) we regularly represent the indicatrix
F(xo, r) =1 for (xo, r) near (ao, ro) in the form r = ri(v, xo)° Here (v)
is a set of parameters (vi, cess vn~l) near a set (0) such that ri = ri(O, ao),
and the functions ri(v, xo) are of class C" for (v, xo) near (O, ao). We are

concerned with the extremals

i i .
(14.3) x =X (s, X s r(v, xo)) (i = 1,0e4,n)
and seek to satisfy the conditions

(i

1, 0":1’-‘-):

it

i .
(1404) X (S’ XO, r(v: xO)) = X;:

near the initial solution s = 519 (xo) = (ao), (v) = (0)s »since (al) is not

conjugate to (ao) on g the jacobian
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DX, e B2 ) 4
D(s, vl,...,vn-l) g

at the initial solution of (14.4). There accordingly exist solutions

s(xo, xl), va vh(xo, xl), h =1, ees, n=1, of (14.4) of class C" for (xo, xl)
sufficiently neer (ao, al). On replecing (v) in (14.3) by [v(xo, xl)] 8
representation (14,2) is obtained with the properties stated in the theorem,
provided NO and Nl are sufficiently small,

The preceding theorem holds under the Weierstrass condition F1 # O
In case F is positive definite and positive regular, and the J=length of the
given extremal arc g is less than a field radius P then g is the unique
absolute minimizing arc joining its end points.

Let the J-distance J(A, B) between any two points A and B on M be de-
fined as the greatest lower bound of the J~lengths of admissible curves
joining A to Be We shall presently see that if A %'B there is at least one
extremal joining A to B whose J~length is J(A, B).

An extremal E(A, B) whose J-length is at most a field radius Q will

be termed elementary, and affords an absolute minimum to J relative to

admissible arcs which join A to B.

The results of Theorem 144l yield the following:

Theorem 14,2, The point on an elementary extremal E(A, B) at which

(14.5) J =t J(4, B) (0 <t =1)

admits & representation in & suitable coordinate region Sx by coordinates

which are functions of class C" of t and of the coordinates of (A) and (B),

The parameter t is called the reduced J-length along E(A, B),
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Theorem 14.3., The end-points P, G of an admissible arc k with J-length

less than e(P) can be joined by an elementary extremals

Let the variable point on k be represented as a function P(s) of the
J~length measured along k from Ps As long as P(s) remains on a J~dise with
center at P and J-radius less than e(P) it is clear that P and P(s) are the
end-points of an elementary extremal, But this is true for s sufficiently
small, and remains true for each point P(s) on k since the J=length of k from
P to P(s) remains less than e(P).

The J-distance J(A, B) satisfies the triangle axiom
J(A, C) = J(a, B) + J(B, C)

as follows from the definition of J(A, B). As a consequence one can prove
the following theorem,

Theorem 1l4.4, The J-~distance J(A, B) is a continuous function of the

pair (A, B).
We shall prove J(A, B) continuous at a pair (Ao, Bo)o By virtue of the

triangle exiom one has
<
J(A, B) = J(a, Ao) + J(Ao, Bo) + J(Bo, B)

Let e be & prescribed positive constant. If A is sufficiently near Ao and

B sufficiently near Bo'

e

J(a, Ao) < 5, J(Bo, B) <

nlo
[ ]

One can see by using a particular coordinate system Sx containing Ao (or Bo)
and joining A to Ao (or BO to B) by a straight line on which J can be estimated.
Hence

Ja, B) S J(a_, B)) + e
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One similarly proves that
<
J(Ao, Bo) = J(A, B) + e
provided A end B are sufficiently near Ao and Bo respectively, The theorem

followsse

The existence of an extremal of minimum type joining A to B for arbitrary

A and B,

Lemma. 14,1, If the first varietion of J vanishes for a piece-wise

regular arc k: x'= x(s) (1 = 1,4..,n) of class D', and if F is positive

regular at each point (x) of k, then k is without corners.

In the classical treatment of the first variation, k is compared with
arcs of a l-parameter family of arcs of the seme character as k, and the
Euler equations derived along k in the integral form

L S -
(14.6) Fi(x, %) = S F o (x, )ds + C, (i =1,uea,n)
r o x
here (14.6) holds on each regular subarc of k with Ci a constant independent
of the subarc chosen. If P is a corner point of k, and if (r) and (q) are

the two F-unit vectors giving the two directions positively tangent to k at

P, then (14.6) implies that

(14.7) F i(x,9) =F ,(x, r)
r r

On multiplying the members of (14.7) by q  and summing one finds that

qu i(x’ q) - qu i(xs r) =0
r r

F(x, q) = ti i(x, r) = E(x, r, q) = O.
r

Since F is regular at (x) the E-function vanishes only if (r) = (q) and the

proof of the lemms is complete.
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- -

k can have no cornerse.

Theorem 14.5. If F is positive definite and positive regular, any

two distinet points A and B can be joined by an extremal whose J-length equals

the J~distance J(&, B).

Let e be a universal field radius for M, and let m be any integer so
Targe that
me>Jm,B)

We shall admit broken extremals k joiﬁing A to B consisting of a sequence of
m-elementary extremals each with a J~-length at most Qe In accordance with
the definition of J(4, B) as the greatest lower bound of Jd-lengths of ad-

missible arcs joining A to.B there exist arcs h whose J-lengths J, differ

h
arbitrarily little from J(A, B)s Any arc.h for which m e > Jh cen be replaced

by an admissible broken extremal k such that

Sg

(14.8) I = dp *

One has merely to select & sequence

(14.9) Pos Pis eeey P (P°= A; P = B)

of successive points on h such that the J-lengths of the successive subarcs

Pi-lPi of h are at most P e The elementary arocs

(14.10) B(P,_, P,) (1 = 1,00e,m)

exist in accordance with Theorem 14.3, and together define e broken extremal

k for which (14.8) holds,

(i) To minimize J among admissible arcs joining A to B it is accordingly

sufficient to minimize J among broken extremals composed of m successive
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elementary extremals, provided always that m e > J(4, B).
A set (P) of vertices of the form (14.9) selected arbitrarily subject
to the conditions that Po= a, Pm= B, and

<
=

(14.11) J(P P,)

i-l’ i o (i = 1,...,m)
will define an admissible broken extremal k(P) joining A to B, Such sets (P)
form a compact subset H of points on the product manifold M@+l. The J-length

of k(P) is a continuous function of the set (P) on H, and so assumes its ab-

solute minimum Jo at some set (Q) of H, It is clear that
J, = J(aA, B).

The broken extremal k(Q) affords a minimum to J among admissible curves
joining A to B in accordance with (i)s It follows from Lemms 14,1 that k(Q)
is without corners, and is accordingly an extremal,

The proof of the theorem is complete,

It is easy to modify the preceding proof to show that there exists a
minimizing extremal joining A to B of a given homotopy type (that is, deformable
into a given arc joining A to B) and affording an absolute minimum to J among
admissible arcs of this homotopy typee The same methods of proof permit one
to establish that there is a closed extremal of any given non~trivial homo-

§

topy type”, affording & minimum to J relative to closed curves of the same
homotopy types For example if M is of the topological type of the torus there
ere infinitely many of these minimizing closed extremals, These minimizing
extremals ere not necessarily unique, but if not unique their existence in

generel implies the existence of extremals of the given homotopy type which

ere no longer minimizing, The latter extremals are properly called unstable,

§ Among closed curves mutually deformable into each other,
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In typical problems they exist with infinitely meny kinds of unstability
and are illustrative of general physical phenomena. The subsequent theory

in the large will solve the problem of the existence and classification of

unstable extremals,

§15, Reduction to & non-parametric integral. The transition from an

integral in parametric form to one in non-parametric form is necessarily
limited to a special class of curves, For our purposes it will be sufficient
to consider a coordinate space Rx of m~variables

1

(15.1) (x 3 veey xm) = [yl’ XX E) yn, x] (n = m—l)

written in the alternative form as indicated, and to consider piece-wise
regular arcs on which " > 0. On such ares it is possible to make the trans-
formation from t to X" as a parametera

For arcs on which X° %'0 the last Euler equation is a consequence of
the first m~1l Euler equations, since one has the identity

i d .
(15.2) xl[ 'a% Fri' in] =0 (l = 1,000,171)

In this way one accounts for the fact that there are m Euler equations in the
parametric form and m-l Euler equations in the non-parametric form.
The integrand in the non-parametric form is defined in terms of the

function
F(xl, seey Xm; rl, see, rm)
by the equation (with n = m-1)
(1503) F(yl’ 0y yn’ X3 P19 seey Pn’ 1) = f(X, yl, eeey yn; Pl, seny Pn)

For these arguments one sees that
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(15.4) F.=f , F,.=f ,
-xh Yn 2 Pn rbrk PpPy

o
for hy kX = 1, seey na The value of J along an arc on which x > 0, and which
has been given a second representation > yh(x) with x"'= x = t is
t x
S F(z, x)dt = S F(Yys eees Vs X5 s eoes ¥}s 1)dx
o o
x
= S £(x, y, y') ax
' o
We have seen in §9 that a s olution of the Euler equations in which t is
e parameter, remains a solution as a function of tl if one replaces t by ktl
and dt by kdtl, {(x > 0)s The formal proof of this makes no use of the fact
that k is a constant, On replacing t by h(tl) and dt by h db, (where the
derivative h is piece-wise of class C" and positive) we infer that a solution
of the Euler equations in which t is the parameter, is replaced by a solution
of the Euler equations in which tl is the parameter, In particular for solu~
tions along which #* > 0.one can change to x'= x a8 & paramoter, and obtain

e solution [yl(x), cens yh(x), x] of the m Buler equations 'in parametric. form.

The first n = m~l of these equations.then become’

d
gxf-Frh(yla coes Tyo X5 YL, eees ¥is 1) - Fxh(yl’ cers Yps X3 ¥is eees ¥1, 1)

d .
='d;fph(x: Y Y') - fyh(xa ¥ .V’) = 0 (h = 1, 00':n)

As we have seen in connection with (15.,2) the m-th Euler condition on F is a
consequence of the other conditions when &> O,

Thus & solution of the Euler equations in parameter form along which

. N m
x> 0, when represented in terms of x = x as the parameter, becomes & solu-




764

tion of the Buler equet ions in nonwparametric form.

We state the lemma,

Lemma 15.1. For rm > 0 the condition that

(1645) F i j(x’ r> leJ >0 (i: J=1; eeey m)
rr

for (z) linearly independent of (r), implies the condition (with n = m = 1)

that

(15.6) ) = £, o (5 s pltw > 0 (b, k S L e n)

for (w) # (0), provided

1 m
(x 3 ooy X ) = [yl, sy yn’ X]

and the sets (r) and (pl, sees Ps 1) define the same direction.
Note first that (15.5) implies Q(w) = 0, If Q(w) = O, the form in (z)

given by (15,5) must vanish for
1 m 1 n
(27, oeey 2 ) = (W, eeep W, 0).

Since (z) must then be linearly dependent on (r) with r" £ 0, we conclude
that (z) = (0). Hence (w) = (0) and the lemma follows.

e edd the following.

The Weierstrass non-singularity condition Fl(x, r) % 0 is eguivalent,

when rm'% 0, to the condition

"fPthl }4 0 (h; k = 1,e00yn; 0 = m=1)

for variables (x, y, p) end (x, r) related as in Lemma 15.1.

This follows from the relation

5 ried
Aij Flr r
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of (7411), on setting i = j = m.

Lemme. 15.2. The conjugate points of a poirt P on an extremal are g

on which im(s) > 0, as defined in the parametric theory, agree with the

conjugate points of P as defined in the non-parametric theory with x = xm.

Suppose that s = 0 at Ps The conjugate points of P on g are the zeros
on g other than s = 0 of the jacobian of a family of extremals§.

i 1
(15.7) xT= x (8, V, eees ) (i = 1,e0s,m3 m = n+l)

issuing from P when s = O. Here (v) = (0) defines g, and evaluated for

(v) = (0) the jacobian

D(x1 vees X))
15,8 2 2 =D_(
( ) D(x, vl,...,vn) l S)

o
characteristically vanishes to the n-th order in s et s = 0, Since x (s) >0
on g, we can take x"= x as a perameter along these extremals provided (v) is
sufficiently near zero. This amounts to a substitution s = s(x, v) in (15.7),

where sx(x, 0) > 0 along g. We set
(15.9) x[s(x, v), v] = ™ (x, v) (i = 1,00e,m)

and observe that
1

D(x s (LN xm) OS D(Tl’ [LLRN] Tm)
(15.10) T = e =— = i =
D(s, V' geee,V ) 0x D(X, V' eeey V )

Since T'= x, the latter jacobian takes the form along g

1

D(T", eess T0) _
Shtea Tl -0 ) [(v) = (0)]

(15,11)
It is clear that Dl(s) and Dz(x) vanish at corresponding points on ge
But the columns of the determinant D2 are solutions of the Jacobi equations

in non~parametric form in accordance with the theorem of Jacobi. Moreover,

§ Taken as in (11.3)' where n is replaced by n-le.
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each of' these columms vanishes at the point x = 0 defining P, Finally

Dz(x) # 0, Accordingly the columns of D2 form a base for solutions of the
Jacobi differential equations which vanish at x = O, As we have seen in con-
nection with (2.7) the zeros of Dz(x) other than x = O define the conjugate
points of P on go

The proof of the lemma is complete.

The index of g as defined in the non-parametric theory is the sum of
the multiplicities of the conjugate points of s = O on the open subarc of ge
wWhen the final end point of g is not conjugate to the initial point of g this
index will turn out to be a basic semi-topolngical characteristic of g It
is important to shoﬁ that this index is independent of the coordinate system
in which the conjugate points are defined,

In the parametric theory a conjugate point 8y of s = 0, defined by the

vanishing of the jacobian Dl(s) of (15.8) may be said to have a multiplicity

equal to the nullity§ of Dl(sl)° The n = m-1 eangular arameters (v) used
in (15,7) may suffer any non-singular transformation near (v) = (0). The
effect will be merely to multiply the jacobian matrix of the last n columns
of Dl(sl) by a non-singular n-square matrixe

To change to any other admissible coordinate system (z) within which g
lies will in effect multiply the matrix of Dl(sl) by the non-singular m-square
functional matrix of the coordinate transformation from (x) to (z), evaluated

at the point s, on ge Neither of thess changes will alter the multiplicity

1

of s, as a conjugate point of 8 = O,

If finally one has an extremal along which im> O one can change to co-

ordinates (x, y) with xmﬁ x as in the proof of the preceding lemma, The matrix

§. The nullity of e determinant is its order minus its rank,
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of Dz(x) is then obteined by multiplying the matrix of Dl(s) by the matrix

of the jacobian
1 n
D(S, V y eee, 'V )

1 n
D(Xy, Vs eses ¥ )

wnder the transformation s = s(x, v). The multiplicities of Dl(s) and Dz(x)
at a conjugate point on g thus are equal, We have proved the following lemma.

Lemma 15.3 The multiplicity of a conjugate point of s = 0 on an

extremal g is independent of the angular parameters (v) used to define con-

jupate points, of the coordinate region in which g is represented, and of anr

admissible change to a non-parametric system of coordinates (x, y)e

§16, Rectifiable arcse. It will be necessary to broaden our class of

edmissible arcs to include arcs which are rectifiable in any coordinate

region Rx in which they lie. Let h be an arc represented by continuous func~-
tions xi(t) (1 =1, eeey m; O S¢S tl). A necessary and sufficient condition
that h be rectifiable is that each x1(t) be of bounded variation. If h is
rectifiable on R it admits a representation xi= ai(c‘) in terms of its
euclidean arc leng’ch§ o with 0 s c’§ b, where b is the totel length of h.
Then éi(O') exists almost everywhere on [0, b] and

él 5131 (i=l,ooo,m)

It follows in particular that ai(c') is absolutely continuous (written A.C.).
However, it is not necessary that xi(t) be A.Ce in order that h be rectifiable
although eny rectifiable arc admits an A.C. representation, as just stated.

If however, xi(t) is A.C, for each i, xi(t) is in perticular of bounded

varietion, so that h will be rectifiable., We shall admit rectifiable arcs

§» See Seks, Théorie de 1'Integrale, wWarsaw 1933; pp«57-60
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and require that x (t) be 4,C, We shall establish the following. (4) If

xi(t) (i=1, eoo, m) is A,C, on [0, tl], then F[x(t), x(t)] is measurable

on [0, %]

To that end, for t on [0, tll, set
r;(t) = [x7(t + 1/n) = x(t)]n, (0 = 1,2, sos)

eatending the definition of x(t) beyond t, in any continuous manner so that

r;(t) is well defined and continuous for each n, For almost all t on [0, tl]

lim r;(t) s x(t) .
n = 0

*
For each n, F[x(t), rn(t)] is continuous end hence measurasble in t, while
for almost all t

lin  Flx(t), r_(t)] = Flx(t), 2()]
n = 0o

Statement (A) follows,

Lemme. 16,1, When h has an A.C, representetion x (t) (i = 1, ees, m)

the integral

ty .
(16.1) 5, = S Flx(t), x(t)]dt
0

exists as a Lebesgue integral,

Under the hypothesis h has a representation ai(c*) (i =1, ees, m)
in terms of its euclidean arc length ¢, Sinoce léll S lulmost everywhere

the integral

o
(16.2) & ! pla(o-) &(o)ldo-
0

exists.§ Howeyer o~ equals an A.C, monotone function o-(t) of t, and

* See Titchmarsh, The theory of functions, Oxford, 1932; p.331
§ Cfe Titchmarah, op.cit., p.333.



81,

§8

according to the Lebesgue theorem®" on change of variable of integration the

integral (16.2) equals the integrals
t1 . do~
(16.3) S Fla(o(t)), 4(o-(£))] 3 at .
o

But for elmost all t on [O, tl]’

axt ad do .
® ° do I (L= Lyeee,m)s

go that (16.3) reduces to (16.1) on using the homogeneity of F(x, r) in (r).

We shall show that the theorems which effirm that an extremml arc affords
e minimum relative to piece-wise regular arcs hold if the arcs admitted in-
clude rectifiable arcs on the given domain, To see this we review certain
steps in the proofs of these theoremse The first concerns the Hilbert integral,
or more generally a theorem on line integralse

Loms 16.2. I P (x) (1 = 1,e.,m) is continuous in (x) on R, and

if the line integral

I= SPi(x)dxi

is independent of the path among piece-wise regular arcs on Rx’ then I is

also independent of the path amonp arcs with A.C. representations xl(t)

(i = l,ooo,m)o
We choose a point (x) = (a) on R and write
(x) i
[ P (x)dx" = H(x),
i

a)
using piece-wise regular arcs from (a) to (x), As is well known, H(x) is of
class C! and

(16.4) H, = Pi(x) . (3 = 1y000,m)e
p .

§§ Cf, Titchmersh, ops cite, pPe377
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To establish the lemms it will be sufficient to suppose that xl(O) = ai and

to prove that

(1645) Hx(t)] = -gt Pi[x(t)] fci(t)dt .
o}

To that end we make use of (16.,4), and with the aid of the law of the

mean infer that
(16.6) i—}%—(—t—u = P, [x(t)] :‘cigt)

at each point t at which the derivatives ii(t) all exist, We note also
that H(x(t)] is A.Co in t. Relation (16.5) then follows from Lebesgue’s
theorem§ on the integral of the derivative of an A.C. function.

In using the Hilbert integral we have found it convenient to represent

our arcs in terms of a parameter
t

(1647) 5 = S £lx(t), x(t)lat,’
o

If t is the euclidean arc length along the arc [x(t)] in (16.7) with
0S¢ S 5, then (16.7) defines a change of parameter s = s(t). For almost
all values of t on [O, tl], cl< 8 < °, where cy and c, are positive constants,
The inverse of s(t) has the same character as s(t) and leads to an A.C, re-
presentation <= ai(s) of the given arc,

The final step in establishing a proper relative minimum involved the
f-unit vector ui(x) (i = 1, ees, m) giving the direction of a lMayer field
at the point (x)., The functions ui(x) are of class C' (at least) at each

point of the fielde We need the following lemma.

Lemmg 1603, E{ h is an arc with an A.C, representation xl(s)

<
(i = l, ¢ea, m3 O s 8 = b) which satisfies the differential equations

§ Of. Titchmarsh, ope cite, Ppe365-366.
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&

(16.8) £ = ul(x) (=1, eiv, m)

[«

for almost all values of s on [0, b] then each xl(s) is of class C" in s on

[0, b] and h reduces to a uniquely defined solution of (16.8).

By the Lebesgue theorem on integrating the derivative of an A.C,

function
8

(16.9) xi(s) = 2 (0) + | wlx(s)les
o
It eppears from (16,9) that h satisfies (16.8) for all values of s, and the
lemme. follows,
With the aid of these lemmas the proofs of the theorems which involve
the Hilbert integral go through when the curve compared with the extremal g

has an A,C, representation, In particular one has the following theorem,

Theorem 16,1e ifhen F is positive definite and positive regular an

elementary extremal arc E(A, B) affords a proper, absolute minimum to J

relative to rectifiable arcs which join A to B,

§17., A non-degenerate critical point of H(x)s The quedratic analysis

with which these lectures began was preliminary to the topological characteri-
zation of the level manifolds of & function near a critical point P by means
of the quadratic form appearing in a representation of H about P, Before
turning to functions of arcs such as J it will be illuminating to study a
critiocal point P of a function H(x) of n variables (xl, cse, xn).

We shall suppose that P is a non-degenerate critical point of H in the

sense that the Hessian of H at P is not zero., We shall assume that H(x) is

of class C"' near P,
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A non-degenerate critical point (xo) has the property that it is

jsolated emong critical points of He. For the equations

(1741) H =0 (i = 1, aee,n)

have (xo) a5 en initial solution, and since the jacobian of the functions H 5
is not zero at (xo), there is no solution of (17.1) other than (xo) in a *
sufficiently small neighborhood of (xo). In particular, if H(x) is defined
on a neighborhood of a compact subset K on which the critical points of H

are non-degenerate then the number of critical points of H on K is finite .

Suppose for simplicity that (xo) = (0)s Employing Taylor's formula

with the integral form of the remainder [cf, Jordan, Cours d'Analyse, vol.I;

po249] we find that

(17.2) H(x) - H(0) = aij(x) XX, (i,5 = 1,e00,5n)

in a sufficiently small neighborhood of (0), where

1
ay4(x) So (1 - u)Hxixj(uxl,...,uxn)du
It follows that

Hx.x.(o)
13

[}
V-

aij(o)

In particular !aij(o)l # 0 since (0) is a non-degenerate critical point.
We shall esteblish the following theorems

Theorem 17.1l. gg_H(x), of class C"', has & non-degenerate critical

point of index k at the point (x) = (0) there exists a non-singuler trans-

formation y,= yi(x) of class C! neighboring (x) = (0) under which

2 2 2 2
(17.3) H(x) - H(0) = -y = eee =¥t Viapt o0 * ¥y
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If the coefficients aij(x) in (17.2) were constant one could obtain a
representation (17.,3) of H by making the classical Lagrange reduction of the
form aijxixj' (See Bocher, Higher Algebra,p.l3l), Proceeding formally, as

if the coefficients aij(x) were constants, we can still effect this reduction

in e sufficiently small neighborhood of (x) = (0). In particular if all(o) # 0,

then the difference§

a, XX, ~—=[a

2
+ see t =
i1 ey 1151 alnxn] bpq(x)zpzq

where p, q has the restricted range (2, ees, n)e The substitution

e, X,

1 .
(1704) zl = ";J'l'a‘ ’ Zz= xz, ooo,zn = xn (J = 1,...,n)
1

yields the relation

2
= + -
8; %i%5% #1121 ¥ Ppgpiq (Ps 4 = 25 eeu, )

If all(o) = 0, but arr(O) # O for some r > 1, a substitution of the
form (17.,4) is applicable after interchanging the variables Xy and X o It

each of the coefficients aii(O) = 0, at least one of the coefficients

alr(O) % O, After a change of variables of the form

X, = X.- X x =X +X
1l 1l r r 1l T

the new coefficientlzll(O) # 0 and a substitution of the form (17.4) will be

possible, Thus in any case one is led to a quadratic remsinder
b_z_z (Py @ = 2,4044,n
PP Q ’ seresn)
to which the same method of reduction is applicable, leading finally to a

representation (17.3).

§ The functions bpq(x) are again of class C',.
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The transformation (17.4) is of class C! near (x) = (0) since alj(x) is
of class C's It has a jacobian 1 at the origine It is accordingly locally
non-singular. We point out that this holds under the hypothesis that H(x) is
of class C™ near (x) = (0); were H(x) merely of class C" alj(x) would be
merely continuous in general, and the transformation would not always be l~1l,

For example, & transformation
z = c(x)x [e{0) = 1]

in which c(x) is merely continuous near x = 0, is not necessarily 1-l,
The preceding reduction holds formally if each coefficient aij(x) is
replaced by aij(O). According to the "lew of inertia" of quadratic forms the

integer k appearing in (17.3) is the index of the form

aij(o) xixj

(See Bocher, opecit., pel46], The proof of the theorem is complete,

H-deformations. We shall refer to a deformation T of a subset A of the

region R on which H(x) is defineds The time t during which T acts shall
increase from O to a. A deformation T of A on Rx during the time interval
[0, a] is defined by a continuous map

Q = (P, t); with P = (P, 0)
of the product Ax[0, a] into R . For P fixed and t variable the image
£(P, t) of [0, a] is celled the trajectory of Ps A deformation is called en
Hedeformation if H is monotonically decreasing on each trajectory as t in-
creases, We say that a point (x) is below ¢ if H(x) < c.

Theorem 17.2. Suppose that H(x) has & non~-degenerate critical point

of index k > O at a point (xo) at which H(xo) = ¢, There then exists a k~cell
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Dk with (xo) in its interior, and on which (x) is below c except at (xo),

and an n=cell Dn oD

X with (xo) in its interior, such that D admits an

Hedeformation of itself onto Dk during which Dk remains point-wise fixed.

TWithout loss of generality, we can suppose (xo) = (0), and refer the

neighborhood of the critical point to coordinates (yl,...,yn) such that (17.3)

holds for yi;;rié< e2 (e > 0)e One can take Dk as the subspace on which

2 2§

2
y1+...+yk e , yk+l=’.-.=y=0,

n

for it is clear that H<c on Dk except when (y) = (0). We take D &s the
n-cell defined by yiyi§ ez. The cell Dn can then be H-deformed on itself

onto Dk by letting

v (8) = (1 = %)y, (5 = k*1,000,m; 0 5% T 1),

Note that Dk = Dn when k = n, and that the deformation of the theorem
is the identity. Vhen k = O, the origin affords e proper relative minimum
to H on Dn'

We now heve the difficult problem of obtaining an analogue of Theorem
17.2 for our integral J taken along rectifiamble curves in the neighborhood of
an extremal g In this connection the following remark will be useful. The
terms of second order in the Taylor's development of H(x) about the origin
are given by the formula

2
4"H - i
\:—;——2‘ exl, ssey me)1 = H i(O) X X °
(5] lg=0 X

This is a consequence of the formula

aH _ i
T (ex) = Hxi(ex)x R
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§18, The index§ function J(z,seee,2 )e Let g be an extremal repre=
1 q 0 P

gsented by an arc [al, az] of the x-axis in a space (x, y) = (x, yl,...,yh)
in which o

a
J = S 1f(xo N y')dx .
a

Here £(x, y, p) is of class C™, for (x, y) in a neighborhood N of g, end (p)
sny set of slopes. Instead of the broken secondary extremals of §3, we shall
here consider a finite sequence of primary extremals joining the point

X = al on g, to the point x = az on g with vertices on (n=1)-planes on
which x is respectively one of the constants

1

a =x°<X<,.oo,x-

2
<x =8
m-l "m *

1
As in §3, we suppose that there is no pair of conjugate points on any one

of the intervals [xj, xj+1]. Suppose also that f is positive regular for

(x, y) on No Let
(18,0) @) = s eees ¥D) (5 = Lyers,mel)

be & point on the (n-1)-plane x = X o With q = n(m=1) set

1

1 1 M -]
(18.) Gl e h e B e ¥R = G ey 1)

If the set (z) is sufficiently near the set (z) = (0) there exists a broken
extremal E; joining the end points of Bq with vertices at the successive
points (y’) defining (z). The value of J on B} will be denoted by J(z,...,zq)

and termed an index function belonging to €o°

As in §3, the set (z) may be used to define a broken secondary extremal
E; with the same end-points and vertices as E;. The value of the second

veriation

§ Introduced by the author,
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1
a

2
S“‘ 200(u, ut)dx
taken along E; has been denoted by Q(z) and termed the index form belonging
to 8o* It is understood that the seocond variation is based on g, The

principal theorem of this section is as follows,

Theorem 18,1, If J(z) is the index function and Q(z) the index form

belonging to Eor then

(18.2) thzk(o) thk = Q(z) (hy k = 1y404,q)

We begin with a lemma,

Lemma 18.1. For (z) sufficiently near (z) = (0), the index function

J(z) is of class C" and has a critical point at (z) = (0).

To establish the lemma let

yi= Yi(x, Z) (i = 1, sy n)

represent the broken extremal E;. On each interval [xj-l‘ xj] the functions

Y, and Y are of class C" in (x, z) for (z) sufficiently near (0), Let w
be one of the variables (z). Suppose w given by a coordinate w = yi « A 8

funetion of x, Yiw will be null except on the intervael [xj-l’

vanish at the end points of this interval. For a fixed h and j, and for

xj+1] and will

is= 1, sen,y Ii,
o I . = -
Yi(xj' z) vy s Yi (xj, z) S;h . [w ¥, 1

It follows that

2
a

(1843) J = ] ax .

- jl[f Y,W+f Y.
a vyt py ixw

On integrating by parts on the intervals (xj-l’ xj) and (xj, x (18.3)

j+1)’
takes the form
XJ."‘
g =[fp_(x, Y, ¥) Yiw} ,

i
X.=
J
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_X.* .

- j _ 3

(18.4) 3, [?ph(x, Y, YX)Jx ) [w=y) ]
J

When (z) = (0), E] reduces to g , and J = 0. That J_ is of olass ¢", and
hence J of class C"', is obvious from (18.4).

Proof of Theorem 18.1l. We shall make use of the formula

2.0

a~J o
(1845) ;;;?— (ezl, eoes ezq) = erzs 2.2, (ry8 = 1,00e,q9)

where the superscript o indicates evaluation, after differentiation, at e = O.

Set
Yi(x, ez) = yi(x, e) (i=1,44.,n)
Then az
dJ .
= = Sal [fxiyie + fpiyiex] dx (i=1,40e,n)

If we set yie(x, 0) = ui(x) we £ind thet (i = 1, .., n),
2.0 2 2

a a
d7J o _o ©._0

(1846) = 5 2] (u, ut)ax + S (£ y., +£ y. lax
dez a'll. al y;" iee p,"ieex

The second integral in (18.6) vanishes since g, is an extremal and

(o]
= fy.(x: 0, 0), fp = fp.(xa 0, 0)3

i i i

f0
¥y

while y?ee vanishes at x = al and az. Hence

d2J° az
(18.7) — =S 1 20) (u, u')dx
de a

It remains to show that the integral in (18.,7) is the index form Q(z).
One first notes that (y:), taken on any one of the intervals [xj-l’ xj], is
an extremal of the second variation based on g_ (Jacobits theorem), Moreover,

as a broken secondary extremal, (u) = (y:)_is determined by (z) since

= oy9 =y
yi(xj: e) eyi » yie(xj.! o) yi
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Here i = 1, ees, nand j = 1, ees, m=le Thus (u) represents the secondary
extremal E; end the integral in (18.7) equels Q(z)e From (18.7)

2.0
d

g =Q(z) ;
de

and (18.2) follows from (18.5).

A primary metric on M. To continue with the analysis of rectifiable

curves near a given extremal g, W need a metric on M, The J-distance J(A, B)
between two points A and B is not suitable since J(A, B) does not in general
equal J(B, A)e We shall introduce a distance

AB = max[J(A, B), J(B, 4)] .

It is clear that AB = BA, that AB = 0 if and only if A = B, and that
AB = AC + BC
The metric defined by distances AB will be termed primary.

As in the Appendix on "A special parametrization of curves", we dis-
tinguish between parameterized curves (written p-curves) and classes of equi-
valent p-curves, termed curve classes or curves. \ie depart from the notation
of the Appendix in that curves will be denoted here by letters, g, gt!, etc.,
while parameterized curves will be denoted by the same letter with the para-
meter as index, = gt, g’t, etce

The Frechet distance between two p-curves gt and r’ will be denoted by
gtrs, while the Fréchet distance between the curves g and r will be denoted
by gre As shown in the Appendix

er = gtrs
and a necessary and sufficient condition that gtrs = 0 is that the curve
class g = r. These Fréchet distances are defined with the aid of the primary

distence AB, so that gqr = rq, and qr satisfies the triangle axioms, Moreover,
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gr = 0 if and only if the curve class q = r.

The total }J.-length )lg; of an arc g is a continuous bounded function
of g on the Fréchet space of arcs ge The maximum distance AB on M is & bound
for Pg' In the representation of g in terms of )x-length it will simplify

metters if we set n =)zgcr‘ end let o~ range on the interval [0, 1]s We term

o~ the reduced )x-length. The set of curves g joining two distinct poir}ts Ag
and Bg on M admits a representation

P = P(o; g) (05 o51)
in which P(o; g) is e perameterization of g in terms of reduced p-length o,
where

P(0, g) = Ag N P(1, g) = Bg s

and where P(o-,g) maps(o, g) continuously into a point on M. Here (o; g)

is an element on the product WX [0, 1] of the Frechet space W of curves
joining distinct points on M and of the interval [0, 1] for o On any com=
pact subset W_ of W, the mapping function P(o, g) is, of course, uniformly
continuous,

_1}_ J-deformation D

e
J N ] m

Let Wo be any compact subset of W, Corresponding
to Wo there exists an integer m so large that for g on Wo successive arcs of
g between points

P(0, ), P(Z: &)y +eey B(%T, &) P(1, g)

of g have J-diameters less than some universal field radius p o We shall
define a J-deformation of g into a broken extremal Em(g) which consists of

the sequence of elementary extremals which joins the successive points

P(‘;‘;'. N g) = Pr 2 (r = 0_,...,m)
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Let hr’ r =1l,se.,m be the r-th subarc of g with end points Pr 1 and
Pr' As the time t increases from O to 1, hr will be deformed into the ele-

mentary extremal E(Ph Pr) as follows, Let h: be the subare of hr on which

-1’
the increment of 6~ is the fraction t of the total increment of o on hr'

At the time t, h: shall be replaced by the elementary extremal which joins

its end points, while the remainder of hr shall be unaltered, This replace-
ment of subarcs of hr’ performed for r = 1,,..,n, defines a J~deformation Dm
of Wo in which g on Wo is replaced when t = 1 by the broken extremal En‘g).

In defining this deformation it is not necessery to explicitly give a para=
meterization of the curve which replaces g at the time t; for we are concerned
with curves and not p-curves. A parameterization in terms of reduced’p-length

is always available if desired,

We now suppose that fixed, distinct points A and B are joined by an

extremal o2 and consider all rectifiable curves g joining A toBona

Fréchet neighborhood N of g e

If the neighborhood N of g is sufficiently small, and the integer m
is sufficiently large, the preceding J-deformation will be applicable to N
even though N is not in general compact. As previously, let Em(g) be the
broken extremal which replaces g under Dm when t = 1,

As in the definition of the index function J(z) belonging to g, let
g, be represented by a segment [al, az] of the x-axis in & coordinate space
(x, y) and let the poin‘bs§

Al =x < X.< b'y <x = 2
R s I T

be the successive vertices of the elementary extremals of Em(go). If N is

§ In §3 we set al= X To set a1= X is more consistent with what follows.,
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sufficiently small (and we suppose this the case) the broken extremal Em(g)
defined by a curve g on N will meet the successive (n~1)=planes x = xj in

points Qj(g), (3 =0, eeey m), which are single-valued continuous functions
of g, and these points Qj(g) will divide g into successive arcs each with a

Jediameter less than the above field radius e.

The J-deformation D . This is & deformation of broken extremals Em(g)

for g on the preceding neighborhood N of g e In this deformation Em(g) is
finelly replaced by the broken extremal E&(g) whose respective elementary
extremals join the successive points Qj(g) (j = 05 o0y m)e The menner in
which the subaroc Qj-le of Em(g) is deformed into E(Qj_l, Qj) is similar to
the manner in which the arc Pr-lPr of g was deformed into E(Pr-l’ Pr)’ and
the definition need not be repeated.

The J-deformation D;. The sets Qj(g) (j = 1,c..,m-1) are determined

by the sets (zl,...,zq) of their y-coordinates, so that the broken extremals
E;(g) can be given a J-deformation by subjecting the sets (z) to a deformation
in which the index function J(z) never increases along & trajectory of a point
(z)s In particular, we can subject the sets (z) to the type of J-deformation
(an H-deformation of points (x)) affirmed to exist in Theorem 17.1e The
deformations Dm’ D&B D; , successively performed in the order written effect
the result affirmed in Theorem 18.2.

Theorem 18,2, Let 8q be an extremal whose end points are not conjugate

and whose index k exceeds O. Corresponding to & sufficiently small Fréchet

neighborhood No 2£.go among rectifiable curves joining the end points of g,

there exists a J-deformation D on No of a sube-neighborhood N C.No of 8y in

which 8 remeine fixed and the terminal image of N is a topological r-disc

of curves g of N on which Jg< Jg except when g = g e
0
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It is necessary to have some knowledge of the manner in which the de-
formation D of Theorem 18.2 affects the r-disc K of the theorems If D left
K invariant there would be no difficulty. Recall that a deformation D of K
gives & l-parameter family of mappings Dt of K, Here D° is the identity and
Dl meps N() K into K, The following theorem is needed,

Theorem 18.3. The terminal mapping

DY: NOK = K—> X

induced by D is deformable into the identity on K with & fixed, and K° - g

(o]

deformed on K-go, provided N is sufficiently small,

Suppose that g in K° is replaced by gt under D at the time t, O St S 1.
If N is sufficiently small the broken extremal gt will intersect the successive
(n-1)~planes x = Xj (j = 0, 1, eee, m) used in defining the index function
J(z), in points Pj(gt) which will vary continuously with (g, t) for g in K
and O S¢ 3 le The points Pj(gt) will determing the set (zl,...,zq) of their
y-coordinates. The final image of (2z) under the preceding deformation D;.Will
determine a point Et in K, if N is sufficiently small.

Let D* be & deformation of K° om X in which g in K° is replaced by E?

at the time te It is clear that Et varies continuously with (g, t) and that

Jg >d > q—t
g g
* *
Hence D deforms K°- g, on K - By° The point g, is fixed in D , As in the

go= éo. Since

)

%
case of D, the initial mapping of D is the identity since g

- * *
gl= gl the terminal mapping of D agrees with that of D, Thus D deforms the

mapping Dl into the identity in the manner stated,
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§19. The lower semi-continuity of the intepgral Jg‘ To show that Jg

is a lower semi-continuous function of rectifiable arcs g on M it will be
sufficient to establish that Jg is a lower semi-continuous function of recti=-
fiable eros on any single coordinate region., This is seen as follows. An
arc g is a finite sequence of arcs g(l), ves, g(h) each of which lies in a
single coordinate system, If a countably infinite sequencse of arcs g, con-
verges to g in the sense of Fréchet each arc g, can be broken up into a finite

(1) (h) (3)

sequence of aros By "9 vees B such that for fixed j, g," ' converges to

g(j) as n becomes infinite, The lower semiw~continuity of Jg at g(j),

(5 = 1,e0e,h) will then imply the lower semi-continuity of J at ge. Our proofs
will accordingly be carried out in a single coordinate region.

The mode of proof is essentially that of MicShane in his thesis

Semi~continuity in the calculus of variations and absolute minima for iso=-

perimetric problems, Contributions to the caloulus of variations, University

of Chicago Press (1930)., e begin with & lemma.

Lemme 19,1, Let [gn] be a sequence of arcs in an m-dimensional co~

ordinate region Rx’ whose euclidean lengths are at most a constant K, with

8, converging in the sense of Fréchet to an arc ge If the arcs [gn] be re=

ferred to reduced arc length t as a parameter (O S¢S 1), there exists a

subsequence [p ] of arcs with representations [xn(t)] (n =1, 2,..s) such

that [xn(t)] converges uniformly as a function of t to a representation

[x(t)] of g« The vectors [ih(t)] and [%(t)] exist for almost all t on [0, 1]

and have uniformly bounded euclidean lengths,

A representation

xl = Xi(t) (i=1,-oo,m§ n""l,éptoo)
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of &, in terms of reduced arc length is such that the euclidean length of
[in] exists and is at most K for almost all values of t on [0, 1]s It follows

that for any two values tf and t" on [0, 1]
i ieen s 1
(19.1) EXCORPRCONIES T

so that the functions X; are equi~continuouss For n sufficiently large these
functions are also uniformly bounded since g, converges to g in the sense of

§

Frechet, It follows from e theorem® of Ascoli that s subsequence [pn] of [gn]
exists with a representation [xn(t)] of p, which converges uniformly in the
ordinary sense to a representst ion [x(t)] of an arc g!'. We see that g'g = 0
so that g! = g. See Appendix ps 10« The vector [x(t)] satisfies the Lipschitz
condition (19.1) so that [x(t)] exists for almost all t on [0, 1] and has a
bounded euclidean length,

Another lemma§§ is needed of which a proof is here yiven considerably

simpler than the one to which reference is made,

lLemma 19.2. Let An(t), (n = 1,2,ess) be an absolutely continuous func=-

tion of t. 0 <t < 1, which converges uniformly to zero with l/h and for which

1

|An(t)| <k (a constant) (n=1,2,4e4)

If H(t) is sny integrable function of t, then

1 .
lim S Ién(t) |H(t)at = 0
n = Q@ [o]

§ Cf. Hobson, The theory of functions of & real variable, Vol, II, p.168
The theorem of Ascoli (or Arsela) requires an obvious extension for the
above application,.

§§ See HObson, _O‘Eo Ej-;t_., Volo II, P.4220
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The lemma is immediate if H(t) is of class C's One has merely %o in-
tegrate A H by parts and pass to the limit,
In the general case let e be an arbitrary positive constant and recall

that there exists a function He(t) of class C! such that

1
S |u(t) - H (£)] at <o
(o]

Then
1 1 1

(19.2) S i mav = j i (1 -8 ) +g LHat .
) ) )
The second integral on the right tends to zero with 1/n and it follows that
1, <
(19.3) lim supe | S £Hat | Skoe
ns=ao 0
The lemma follows from the fact that e is arbitrarily small,

The theorems on lower semi-continuity depend upon the hypothesis that

F(x, r) is quasi-regular, that is that

>
E(x, r, q) 50

for (x) in any coordinate region R _and (r) and (q) non-null vectors., Quasi-
regularity is clearly implied by positive regularity, but not conversely.
It implies that for fixed (x), F(x, r) is convex in (r).

Lemma 19.3. If F is quasi-regular in a coordinate system Rx then -Jg

is lower semi-continuous on the class of all curves on Rx whose suclidean

lengths are at most a constant K.

If the lemma were false there would exist a sequence [gn] of curves on
Rx with euclidean lengths et most K which converge in the sense of Fréchet

to an arc g on Rx for which

(19.4) lim supe J_ < J

n=c fn 8
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We meke use of the subsequence [pn] of [gn] affirmed to exist in Lemma 19,1

and write
1
J = So F(x , in)dt - go F(x, x)dt
1
(19.5) J [F(x . n) - F(x, in)] dt
+ g [F(x, %) = i F(x, %)]db

+ jo (xn- x) Fri(x, x)dt

One precaution must be observed: F i(x, x) is not defined when (%) = (0);
and since this may occur on a set ; of values of t of positive measure we
replace (x) on the set w by a constant non-null vector. Relation (19.5)
remains valid.
From (19.5) it follows that
1
(19.6) lim supe (J_ - J ) = lim sup. S B(x, x, x )dt.
p, 8 o n
For the first integral in (19.5) tends to zero with 1/n since (in) is bounded
in length and (xn) converges wniformly to (K). The last integral in (19.5)
converges to zero by virtue of Lemma 19.2. The integrand of the remeaining

integral is E(x, x, in), so that (19.6) follows. From (19.6) and the quasi-

regularity of F(x, r) it appears that

lim sup, Jp =4

n g

contrary to (19.4).

The lemma follows,
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Theorem 19.1...££ F(x, r) is quasi-regular and positive definite on M,

then Jg is lower semi-continuous on the class of all reoctifiable curves.

As pointed out in the initial paregraph of this section the theorem
is true if true for curves confined to amy coordinate system Rx' According
to the preceding lemma it is true in Rx if one considers sequences g, oo Rx
whose euclidean lengths L(gn) on Rx are uniformly bounded, But if L(gn)
becomes infinite with n it follows from the positive definiteness of F that

Jg becomes infinite with no In this special case the relation
n

lim inf, J_ >4J
&, &
is trivial. The theorem followse
It would be awkward to restate Lemma 19.3 in a form applicable to M
rather than to the coordinate region Rx without further hypothesis on F, or
without using some intrinsically defined metric on M, The following theorem
(which will not be used) makes a natural extension without assuming F positive

definite,

Theorem 19,2, If F(x, r) is quesi-reguler on M while £(x, x)(with

integral I) is positive definite and positive regular on M, then Jg is lower

semi-continuous on the class of curves on M whose I-length ere at most a

constant K,

§

§20, Integral J-length Jg and Peano® J-lenpgth J(g)e We termed a curve

g rectifiable if any subarc of g in a coordinate region Rx is rectifiable in

Rx' The value of the integral J along such a rectifiable arc has been denoted

§ Peano J-length is termed abstract length by Morse, Functional topology
and abstract varietional theory, Mémorial des sciences mathématiques,
Paris (1939), poszo
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by Jg. In euclidean spece Peano (and archimedes) defined the length L(g) as
the least upper bound of lengths of polygons inscribed in ge The Peano
J=length J(g) which we shall now define is é generalization of the Peano
length L(g). For this purpose we assume that F(x, r) is positive definite
and positive regular,

Let gt be any p-curve joining & point A to & point B, Let (P) =
(Po’ Pl’ eeoy Pn) be a set of successive points on gt. Theset (P) will be
termed a partition of gt of norm d if the maximum of the J-diameters of the

arcs PiPi+l is less than d, We term

(20'1') S(P) = ZJ(PiI Pi+l) (i = O: 1: evoy n-l)

t t
a sum approximating J(g ), and define J(g’) as the least upper bound of such

sums for all partitions (P) of gt. ile admit the possibility that J(gt) ey
be infinite. It appears that J(gt) is the same for all p-curves in a curve
class ge We accordingly write
3(g) = 3(e")

The J=-length so defined will be termed the Peano J-length of g.

If the vertices (P) of a partition of gt are a subsequence of the ver-
tices (Q) of a second partition (P) of gt we term (G) a subdivision of (P)
on gt. It is cleaf that the sums S(P) néver decrease with subdivision of
(P) on g%

Theorem 20.1., The Peano length J(g) (possibly infinite) is the limit

of any sequence Sn of sums approximating J(g), provided the norm of these

partitions tends to zero with 1/n.

Let & be any constant, a < J(g). We shall showthat there exists a

positive number d so small that
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(20.2) S(2) >a
for any partition (P) of g whose norm is at most d.

Let b be any constent with & < b < J(g). By definition of J(g)'there
exists a partition (Q) = (Qo, cens Qh) of g such that S(Q) > b, Let d be
chosen so that
(20.3) OQ<nd<b-~-a

Let (P) be a partition of gt of norm at most d. Let each point Q; of
(Q) be replaced by the first point of the set (P) which follows or coincides
with Qi on gt, ordering points by their parameter values t. Each point Qi
will thereby suffer a J-displacement at most d. The partition (Q) will thereby
be replaced by a partition (Q') again with n+l points. It follows from the

triangle axiom that

' z .
J(Qis Q;l.*'l) = J(Qi) Qi+l) - 24 (1 = O,ono,n"l),
whence
(20.4) s(Q') 3 s(Q) - 2dn.

But each point Q! is e point of (P) whence
>
(20.5) S(P) = s(q') .
The relations (2043), (20.4) and (20.,5) yield the inequality
>
S(P) =5(Q) - (b - a)

and (20.,2) follows, since S(Q) > b.
The preceding theorem needs completion as follows.

Theorem 20.2. Any arc with a finite Peano J-length is rectifiable

in any coordinate region in which it lies.
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Let g be any subarc of the given arc which lies in a single coordinate
system Rx' We must prove that g is rectifiable in Rx. |

Without loss of generality we can suppose that ﬁ; is compact and itself
interior to a coordinate region, It follows that the values of F(x, r) for
X on §% and for directions (r) with riri= 1, have a positive minimum K. Let
E be an extremal arc in Rx with euclidean length L(E). On using the integral

for J one sees that

J(E) = K L(E)

A straight line joining the end points of E would then have a euclidean

length d(E) such that J(E) Z K d(E)s Let g be approximated by a broken ex-
tremal composed of a sequence of elementary extremals Ei whose successive

end points form a partition (P) of g of norm not greater than d., The straight
arcs which subtend the arcs Ei will define a polygon with vertices on ge On
letting the norm d tend to zero one infers that |

J(g) = K L(g)

Thus L(g) is finite and g rectifiable,

Theorem 20,3. For a rectifiable arc g the Peano length J(g) and the

integral length Jg are equal.

I &, is a broken extremel with a finite number of vertices then

(20.6) g ) = Jgn .

I &, has vertices given by a partition (Q) of g and is composed of elementary

extremals (of minimizing type)

(20.7) J
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With the aid of (20.6), (20.7) yields the relation
<
20,8 J =4J
(20.8) (g,) =9,

Suppose that the norm of (Q) tends to zero as n becomes infinites Then &,
tends to g end

(20,9) lim J(g ) = J(g)
so that (20,8) and (29.9) imply thet

>
(20.10) I, = 3e) .

From (20,9) and (20.,6) we see that lim Jgn exists, while from the lower
semi~continuity of the integral J-length we infer that

(20.11) limd =J_ .

s? gn g
Thus (20.11) and (20.9) yield the result

J(g) = Iy

which taken with (20,10) implies that J(g) = Jg° This completes the proof,

Corollary. The integral J-length Jg exists if and only if the Peano

J-length J(g) is finite, and in that case J(g) = Jg'

§21. The compactness of'Wc(A, B). Let A and B be two points of M and

let W(A, B) be the Frechet space of sensed curves joining A to B, We shell
prove that the subset Wo of W(A, B) for which J(g) S is compact. Here ¢
is any finite constant and we are assuming that F is positive definite and
positive regular,

This compactness of Wb is a generalization of a theorem of Hilbert on

arcs of bounded length joining two fixed points in euclidean m-space. There
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are two additional difficulties in the case at hand: (1) We are here con-
cerned not with one but with two metrics, defined by J-distances J(P, Q) and
primary distances PQ respectively; the J-~distances enter into the definition
of J-length and the primary distances into the definition of the Fréchet
distance gg'e (2) The application of the classical Ascoli lemme to prove
the theorem requires care since the curves of W(4, B) do not in general lie
in only one coordinate system; a method of proof independent of coordinate
systems is to be preferred,

The first two lemmas concern the relation of J-distances J(P, Q) to
primary distances PQ.

Lomma 21:1, The distance PQ is less than e prescribed positive constant

e whenever J(P, Q) is less than a suitably chosen positive constant d de~

pendent upon e but not upon P and Q.

If the lemma were false there would exist an infinite sequence of pairs
of points P , Qn such that J(Pn, Qn) tends to zero with 1/n, while PnQ,n is
bounded from O for all n. Lst Po, Qo be a cluster pair of the pairs Ph, Qn.
We see that J(Po, Qo) = 0, since J(P, Q) is a continuous function of the
pair (P, Q). Hence P° = Qo so that P°Q°= 0. The distance Pth cannot then
be bounded from zeroe, From this contradiction we infer the truth of the lemma.

Definition of n-sets on ge If g is an arc of finite J-length an ordered

set of n+l successive points on g, including the end points of g and dividing
g into n-successive arcs of equal J-length will be called an n-set on g.

Lerma 21.2. The arcs of W(A, B) on which J is at most & finite constant

¢ are divided by n-sets into subarcs whose diameters (using the primary metric)

tend to zero uniformly with 1/n.

§ See Morse, op. cit., ("Mémorial®™), pe5d.
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Beside the primary diameter referred to in the lemma we introduce the
J-diameter of a set as the least upper bound of J~distances between points
of the set, Observe that the J-diameter of an arc is at most its J-length.
Ir J(g) s ¢ the J=diameters of the aros hi into which g is divided by an n-set
are at most c/h, and so tend to zero uniformly with l/ho It follows from the
preceding lemme that the (primary) diameters of the arcs h, tend to zero
uniformly with L/h. This completes the proof,

The principal theorem followse

Theorem 21.1s The set of curves of W(A, B) whose J~lengths are at most

a finite constant o form a compact subset W, of W(A, B)e

Lot H be an infinite sequence of curves of Wc' Because of the compact=
ness of M there will exist a subsequence Hl of H such that the 2-sets on arcs
of Hl converge to a set of three points on M. Proceeding inductively we see
that there will exist a sequencs Hl’ HZ’ see Of subsequences of H such that

Hm is a subsequence of Hﬁ, and the 2 -sets on the curves of Hm converge to

1
a set of points

0 1 2m
Rm’ Rm’ e P'm

on M, We shall define a p~curve P = P(t) on M with O S¢S 1, For eachm >0
set

(21,1) Plr/2"]) = B (r = 0,1,4.0,2")

observing that the definitions of (21.1) are cousistent for successive values
>

of m¢ If t!' = t" are any two values of t for which P(t) is defined, we see

that

(21.2) J[p(tr), P(t")] Sc 4= ¢"]
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Completion of definition of P(t). Let t* be an arbitrary value of t on

the interval (0, 1), and let t, be an infinite sequence of values of t for
which P(t) is defined and which tend to t* as n tends to o, It follows from
(21.2) that the points P(tn) form a Cauchy sequence relative to the J~-metric
and hence (by Lemma 21.1) also relative to the primary metric. The points
P(tn) converge on M to a point Q independent of the sequence tn converging

to t*., We set P(t*) = Q, and observe that (21.2) then holds for all velues

of t! and t" on [0, 1]. Let g be the curve defined by P = P(t).

Convergence of & subsequence of curves of H to g. Let (ek) be a sequence
of positive constants tending to zero as k becomes infinite. Corresponding
to e, Lemma 21.2 implies the existence of an integer m(k) so large that each

m(k)

of the arcs into which a curve p of Wc is divided by its 2 ~set has a

diemeter at most e,. e suppose m(k) also so large that the arcs of P(t) for

which
-1 <, < r m
(21.3) L S¢S (r=1,¢0.,2")
szk) zmZk)
. . v‘-
have diameters at most e, with m(k) so chosen let Py be a curve of Hm(k)

(k)

such that the respective points of the 2™\5/ set of p, are at distances at
most ) from the corresponding points P;(k) on g If p; is the r~th of the

arcs into which the Zm(k)

-get divides Py and gr is the arc of g for which
(21,3) holds we see that

r < <
= Sek s+ P8 = 3ek .

r
P, &
The sequence P, thus converges to g in the sense of Frébhet,

It follows from (21,2) that the J=-length of g is at most e; and the

proof of the theorem is complete,
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Corollary 21.1. The Peano J=length J(g) is lower semi-continuous

without any restriction as to the finiteness of J(g) or the rectifiability

of ge

The corollary affirms that when g, converges to g as n becomes infinite
then

o s >
lim inf, J(gn) = J(g)

This is true when J(g) is finite since J(g) then equals the integral J-length
Jg’ known to be lower semi-continuous. It is also true when J(g) is infinite;
for no subsequence of J[gn] can then be bounded by a finite constant K unless

J(g) T K, in mccordance with the preceding theorem.

§22., The space W(A, B). The space W(A, B) consists of the set of
curves, p, g, otce. joining a fixed point A to a fixed point B on M, Wé admit
the possibility that A = B and put no restrictions on the curves of W(A, B)
as to rectifiability. With the aid of a positive definite, positive regular
integrand F(x, x), & J-length J(g) has been attached to each curve of W.
J(g) is finite when g is locally rectifiable, otherwise infinite; moreover
IJ(g) 2 0, with J(g) = O if and only if g reduces to the point & = B.

With the aid of J(g) we have attached a primary metric to W with
distances pg which are never negative, null if and only if p = g, and
symmetric (pg = gp). The distances pq satisfy the triangle axiom. In terms
of this metric J(g) is lower semi-continuous even when infinite; that is,

when 8,8 tends to zero with l/h,

Lin inf. J(g ) Z 3(g).
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For each finite ¢ letWc denote the subspace of W on which J(g) 3 ¢, and W;_
the subspace on which J(g) < c. In the last section we have shown that Wb
is compact. We continue with other general properties of the space W.

Lemme. 22.1. No element of W has a neighborhood with compect closure.

Suppose the lemma were falses Then there would exist an element g in W

and e positive constant e such that the set N of points, p of W, for which

uA

pe = e, would be a compact subset of W.

Let h be an arc of diameter e on M, with B an initial point. Let h"1

§

be h reversed in sense. Let &, be the arc
-l.\n
gn = g(h h ) (n = 1,2,...)

That 88, S e is readily seen on parameterizing g so that B on g is represented
by a parameter interval, (not a point) and observing that the distance of
points on hh-l from B is at most e, Since N is compact the arcs p on N can

be given a parameterization on M
(22.1) P = P(o-, p) (05¢S1,pon¥)

in terms of reduced p-length o~ in which P(o-, p) is uniformly continuous,
In particular there exists & positive constant d so small that a subarc of p
on which | Ao l< d has a diameter less than e, Each arc &, is represented

by (22,1)s On &, there is a sequence of 2n consecutive subarcs of diameter e.

§ 1f hl,...,hn are arcs on M in which the terminal point of hi coincides with

the initial point of h then h.h,_ «..h_ shall represent an arc in which

i+1? 172 n

hl is an initial subarc and hn a terminal subarc, and on whith the arcs hi

appear as successive subarcs. If the arcs hi are identical we write

. I
hlhzocohn = (-’11) .
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oince o- is restricted to an interval [0, 1] it follows that 2n < L/d, so .
that not all arcs g are represented by (22.1). The lemme follows from this
contrediction.

The hypothesis of non-degeneracy. We shall assume that each extremal

arc g which joins & to B is non-degenerate, in the sense that B is not con~
jugate to A on ge It is known (liorse, op. cite, "Collogquium Lectures", p.233)
that this hypothesis is fulfilled by "almost all" pairs of points A, B on M
neighboring a given pair Ao, Bo on My It will be shown that when g is a non-
degenerate extremal arc of W, then g is isolated among extremal arcs of W, in
the sense that there are no extremal arcs on W, other than g, in a sufficiently
sme.ll Fréchet neighborhood of ge For this purpose the following lemme is
needed,

Lemma 22.2, If a sequence & of extremal arcs joining A to B converges

in the sense of Fréchet to an extremal arc g, then the initial direction of

g, converges to that of g, and J(gn) converges to J(g)e

(This lemma would be false if stated for a sequence of regular arcs &,
of class C" joining A to B and converging to g)e

Set J(g) = b. Let s be J-length measured along the extremals g eond g
from A. Extending g, &5 en extremal Gn’ if necessary, let P, be the initial
subarc of Gn of J-length be The arcs 8, are given as converging to g in the
sense of Fréchet, Let each arc g, &, and P, be represented in terms of‘Prlength.
A point on g at which <‘p(g) (where P(g) is the total p~length of g) will
converge Lo the point of g with this same parameter p as n becomes infinite;
from this we ses that the initial direction of &, must converge to that of g
as n becomes infinite, With this established it follows from the dependence

of extremals issuing from & on their initial direction and parameter s, that
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p, converges to g in the sense of Fréchet. Hence
(22.2) lim p(g,) = 1im p(p,) = ple) »

If &, extends beyond P, let hn be the subarc of &, in excess of Py’ if P,
extends beyond &, let hn be the subarc of P, in exceas of Bpn® I P,= 8,
let hn be the point B. In any cese the representation of &, and P, on M in
torms of }.z-length includes a representation of hn on which the variation of
P is the number

(22.3) | pe,) = ple) |

which tends to zero with 1/n, Since the arcs g, B P» (n=1,2,00e) farm
a compact subset Z of W, the point Q()J., p) on any one of these arcs with the
parameter }a, is .a uniformly continuous function of R and of the arc p on Z.
Hence Q(}l, p) is an equi-continuous point function of P for p on Z, end the
diemeters of the ares h, must tend to zero with the difference (22,3). Since
the J-length of P, is constantly b, it follows that the J-length of &, must
converge to b; and the proof of the lemma is complete.

We continue with the following lemma,

Lerma 22.3. If g is a non-degenerate extremal of W(A, B) there is no

other extremsl in W(A, B) on & sufficiently small Fréchet neighborhood of g

By virtue of the preceding lemms the theorem would be false only if
there exists a sequence of extremal arcs &, of W with initial directions con-
verging to that of g end with J-lengths converging to J(g)s As seen in §14,
if B is not conjugate to A on g, the extremals issuing from A with directions
sufficiently near that of g f;rm a field near B, or more precisely their sub~

arcs on which

J(g) ~e <8 <d(g) +e
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will form such a field if e is sufficiently small and positive. It follows
that the terminal point of 8, cannot coincide with B if n is sufficiently

large, From this contradiction we infer the truth of the lemma,

Lemma 22.4. The set of extremals on Wc form a closed subset of Wc'

If possible, let g be an arc on Wc which is the limit in the sense of
Fre/chet of a sequence &, of extremal arcs of Wc. Let ‘an be the initial
direc‘l;ion§ of g and s its J-lengthe. The sequence (yln’ Sn) has at least
one 1limit pair (%°, s°)s Let g° be the extremal arc with initiel direction
7 at A end J-length s°s It is clear that g° belongs to W_ and that g con-
verges to go. Hence g°= g and Wc is closed,

From the isolated character of non-degenerate extremal arcs, the com-
pactness of the sets Wc’ and the closed character of the set of all extremal

arcs on Wc we infer the following major result,

Theorem 22.ls The extremal arcs of Wc’ if non-degensrate, are finite

in number.

If each extremal arc of W is non~degenerate regardless of J-length the
total number of such extremals is countable,

These results are illustrated by the sphere, teking J as ordinary
lengths. If A and B are not opposite points on the sphere, B is never con~
jugate to A on eny extremal arc joining & to Be If b is the minimum distance

from A to B there are extremal arcs joining A to B with each of the lengths

b, 2010 + b (n=1,2,...)

§ Represented by a contravariant vector on the F-indicatrix at A.
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§23, The deformation A}b of W, . A point w of W(A, B) which represents

an extromal arc on M will be called a critical point of J(g) on W(4, B) and

the value J(w) will be called a critical value,

In this section we shall establish a basic theorem which is a generali-
zation of a theorem on a function f(xl,..., xn) of n-variesbles of class CV
throughout cartesian n-space. The trajectories orthogonal to the level mani-
. folds £ = const. are given by the differential equations
(23.1) Sfi = -f (x x )

. " x, 12 *ces X,

where the =sign is added in order that when t increases, f is stationary or

decreasing along a trajectory in accordence with the relation

= £ £ (i = 1,e0e,n)
i i
At a critiocal point (xo) of £ the level manifold has no orthogonal trajectory

in & strict sense., Nevertheless the solution of (23,1) for which (x) = (xo)

is well defined and reduces to a point. Let
xi = Xi(t, a-) (i = 1,...,!1)

be the solution of (23.1) which reduces to (a) when t = O, We can define an
f-deformation X by requiring that each point (x) which coincides with (a)
when t = O, shall be replaced by the point [X(t, a)] when t > Os This de-
formation has the fundamental property:

(a)e Under the f-deformation X, each ordinary (mon-critical) point of

£ is deformed into a point at a lower f-level,

We shall not be able to generalize this result for J over all of W,
We shall, however, establish the existence of a def‘orma*l:ion.{l,_c of Wﬁ which

lowers the J-level of every ordinary point of Wc to which it is applieds
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This holds for each finite constant c. The definition of ZSC will denend
on ¢, The amount by which the J-level of a point p is lowered by Z}b will
depend upon p, and, as in the case of the deformation X, Will.not in general
be bounded from zero.

A special convention is needed. In case A = B the point A = B will be

regarded as a null-extremal on M and as a critical point of J on W.

In §18 we have defined a deformation Dm of a compact subset of W (such
as Wé)' In defining Dm use was made of a universal field radius f e A given
arc g on M was divided into m successive arcs ki of equal vaeriation of re-~
duoed/u-length o, measuring o~ from the initial point of ge The values of

<
o~ at the points of division of the interval O S o= 1 were

= N

o-;j = (j = 1..00,111"1)
The deformation Dm wag defined for g whenever the J~-diameter of each arc ki
wa.s less than pe The final image Em of g under Dm was the broken extremsl

whose successive elementary extremals subtended the arcs ki' It can happen

that some of the elementary extremals of Em reduce to points, or that Em= S

This leads us to an important statement.

(b) For m sufficiently large the J-deformation D is applicable to each

arc g of Wc’ and lowers the J~level of g except in the case in which g equals

its final image E under D .
m m

In the exceptional case in which Emf g, another deformation is needed

which lowers the J-level of Em’ provided Em is not an extreml,

*
The deformation§ Dm. Such a deformation is defined exactly as was Dm’

except that each point 05, (j = 1,00e,m=1) of division of the interval

§ Morse, Memorial op. cite, pe59. Cf. The deformation &(r).
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0% =51 is replaced by & point qio < qa, on the open interval preceding 0‘3

and so near o, that the resulting arcs ko

3 i
divided still have J~diamsters less than pe When Em = g, and Em is not an

into which a curve g of Wo is

extremal, there will be some arc kz of Em which will contain a corner point

*
of Em’ and so not be an extremal, Henoce Dm will lower the J-length of Em'

The deformation A . Set
(2342) A =p'D
8e2) ° mom’

understanding that Dm is applied to the arc g of Wo , and D; to the final
images Em under Dm of the arcs g« The time t can be supposed to run from
0 to 2 but we prefer to introduce a new time parameter t'! = t/2 which runs
from 0 to 1. The principal theorem here follows,.

Theorem 23.1ls There is a J=deformation Ac of Wc with the following

properties, If g is on W exnd E(g) is the final image of g under Ac’ then

J(E(g)) is a continuous function of g on L and

(23,3) J(g) > J[E(g)])

whenever g is a non-oritical point of WO; a oritical point of Wc remains
fixed under Ac'

The continuity of the 1mp§ of Ac x I into Wo def ining the deformation
Ac follows from the manner in which the curves of Wo are ropresented in terms
of reduced )z-length (Cf£+ Theorem 4, ippendix) and the way in which elementary
extremals vary with their end points. Cfe. Theorems l4.l1 and 1l4.2. The con~-
tinuity of the function J(E(g)) is a consequence of the fact that the J-length

of an elementary extremal is a continuous function of its end points and that

§ I is the unit time interval,
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the vertices of Em and hence of E(g) vary continuously with g.

Proper and weak J~deformations. A continuous deformation of a set A,

which replaces e point p in A by a point pt, 0S¢ S 1, is called a weak

J-deformation, if J(pt) s J(p), and proper if
t t
J(p’) < Jd(p), (whenever p # p)e

The terminology is open to the objection that a weak J-deformation is not in
general a J-deformation. Understood, this need cause no difficulty.

The deformationsexplicitly defined up to this point have been proper

J-~deformations and hence proper and weaks

TWe shall not make use of the qualification "proper" until we come to
the charaoterization of a homotopic critical point in §27. In the next sec-
tion we shall prove certain theorems where use is made of the deformation Z&ca
The fact that‘fso is & proper weak J-deformation is all that is needed. In
extensions of the theory beyond the fixed end point problem it is frequently
difficult, if not impossible, to set up the required deformations as J=-de~
formations. Proper, weak J-deformations are however available, and it is
these deformations which we shall depend upon from this point one. The word

"woak" could be deleted from the next section.

§24, Weak J~deformations into WS. We are concerned with J(g) for g

on W(A, B) where A and B are fixed points of M, Te are assuming that every

extremal joining & to B is non-degenerate. As has been see in §22, there are

then only & finite number of critical points of J at which J is less than a

given constant. We shall prove the following theorem,
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Theorem 24,1, Let b be & critical value of J and (wl,...,wr) = (w)

the set of critical points of J on W at which J = b, If o > b is any con-

stant such that there are no critical values of J on the interval b < J s c

there exists a weak J-deformation of Wc into a subset of (w) + Wb-' holding

the set (w) fast,

This theorem will be established with the aid of three lemmas, of which
the first followse
We shall make use of the deformation Ac of Wc’ affirmed to exist in

§23, If E(g) is the final image of g under Ac it has been seen that J[E(g)]

varies continuously with g on Wo while

(24.1) ' 6 (g) = J(g) - J[E(g)]

is lower semi-continuous,.

The product deformation Az. Here n is a positive integer. The de-~

formation AE begins with an application of Ac to WO; Ac is next applied
to the resultant terminal image thereby defining the deformation Az of Wc'
Then Ac is applied to the terminal image of Wo under Ai thereby defining
JAY 03 , and so on until AE is defined, Let En(g) be the terminal image of
g under Az. A point p which is given as an image En(g) of a point g on Wc

will be said to have a deformation index n,

Lerma 24,1, If [a, c] is a closed interval of ordinary values of J,

If the lemma were false there would exist a sequence of points p, on
W - W _ such that Q(pr) converges to O with 1/r, Without loss of generality
we can suppose that p, converges to a point p of Wc' There are two cases to

be considered,
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Case I. J(p) <a: In this case J[E(p)] <a and

(24.2) 1im 6(p,) Za - 1n J[E(p_)] = & - J[E(p)] >0

contrary to the choice of [p _le

Case II, J(p) Z a: Since o(g) is lower semi-continuous
>
(24.3) lim o(p.) = J(p) - J[E(p)]

In Case II p is ordinary, so that the right member of (24,3) is positive,
(cfe The 23,1) again contrary to the choice of [pr].

This completes the proof.

The preceding lemma implies the existence of an integer n such that
the terminal image of Wo under zﬁxz is below the level a of the lemma., If
as in the theorem, [b, c¢] is an interval on which b is the only critical

value, then for g on Wo

(24.4) lim max J[E™(g)] = b (g inW_]
n=w g

The limit cannot exceed b by virtue of the preceding lemma, and the value b
is taken on by the critical points W, at the level b, The points W, remain
fixed under Az.

Lemms. 24.2. Let [b, c] be an interval in which b is the only critical

velue, let (w) be the oritical set at the level b and N a neighborhood of (w)

relative to We If =n is sufficiently large Az def orms WQ into a subset

of N + W e
If the lemma were false there would exist a sequence [pr] of points Py
on Wc but not below b, with deformst ion indices n{(r) > 1 which become infinite

with r, while

(24.5) limJ(p ) =b ,
r
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with no p. on N, This statement requires use of (24.,4). Let q,. be a point
such that E(qr) = P.e Without loss of generality we can suppose that P, and
q, converge respectively to points p and g on'ch There are three cases to
be considereds

Case I. J(q) < b, Here J(E(q)) < b and lim J(pr) = lim J(E(qr)) =
J(E(q)) < b contrary to (24.5).

Case II. J(g) = be The point p is not a point w.e The point q is
not a point w,; otherwise q, would converge to w, with 1/r; then E(qr) =P,
would likewise converge to w, with 1/r, since E(Wi) =W, and E(g) is continuous.
This is impossible if p is not a point W Thus q is ordinary.

On making use of the lower semi~-continuity of ©(g), end of the fact

that A o lowers the J-level of an ordinary point q we have
(24.6) lim inf, 0(q.) = ©(q) > 0.

On using the relation (24.5) and the relation lim J(qr) = b (derived from
(24.4) and the equality J(q) = b, using the lower semi-continuity of J) we

see that
(24.7) lim O(qr) = lim J(Qr) - lim J(pr) =b~b=0,

The relations (24.6) and (24.7) are in contradiction, sothat Case II is
impossibles

Case III, J(g) > bs Onaccount of (2444), and the relation
b = lim inf, J(qr) = J(q), this cannot occur,

The proof of the lemma is complete.

Extending a J-deformation locally defined to all of W, We need to modify

and extend the deformation affirmed to exist in Theorem 18.1 in accordance
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with the following lemma, In this lemma we shall refer to the e-neighborhood
of & point p of W, meaning thereby the set of all points g of W for which

Pg<eo

Lemme 24,3, Corresponding to a J-deformation U of the closure ﬁ(e)

of an e=neighborhood N(e) of a Roint p of W, there exists a J=deformetion V

of W for which points initially on & d<neighborhood N(d) of p, (0 <d <o)

are deformed as in U while points initially on W - N(e) are held fast,

In the deformetion U suppose that the time t increases from O to 1,
Under V points g initielly on N(d) or W = N(e) shall be deformed as stated
in the lemma., Let g be a point such that
d§gp§a.
The point g shall have the same image gt as under U until the time reaches
tg, where 1 - tg divides the interval [0, 1] in the ratio in which gp divides

[dy, e]le For t > tg’ gt shall remain fixed, In particular when gp = d, t = 1,

g

=1 « Vhere gp = s, tg = 0 and g is

and g is deformed as under U for O St
held fast for all t. The resulting deformation V is continuous, taking account

of the continuity of U over N(e)s The deformation V is clearly a J-deformation;

and the proof of the lemma is completes

Proof of Theorem 24,1, Theorem 18,1 was stated for locally rectifiable

arcse In reality, with Peano J-length well defined, it can be stated with no
essential change in the proof for .erbitrary arcs on W. Applying Theorem 18.1
so extended to the critical points w, of Theorem 24,1 we can state the following.
If e is a sufficiently small positive constant there exists a weak J-deformation

U, of an e~neighborhood N(e, wi) of w, which holds w, fast, and carries

i
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N(e, Wi) into a subse*l:§ of wi+ Wb_. We suppose e so small that the neighbor-
hoods N(e, wi) (L = 1,eee,r) are disjoint for different values of i, In
accordance with the preceding lemme there exists a weak J-deformation Vi of
W which deforms points initially on N(d, wi), for some positive 4 < e, as does
U; vhile points initially on W « N(e, Wi) are held fast.

By virtue of Lemma 24,2, the defcrmation Az for n sufficiently large

will carry Wb into a subset of

N(d, Wl) + eee + N(d, Wr) + Wb-'

For such an n the product deformation
n
Veor 0y AN c

will carry W  into a subset of (w) + W e

This completes the proof of Theorem 24.l.

§25, The space W(A, B) and its components. A first theorem is as

follows,

Theorem 25.1s If (A, B) is & pair of distinct points on the coordinate

manifold M and (A', B!) a second such pair, W(A, B) is homeomorphic with

W(A', B'),
There exists & homeomorphism of M with itself in which A corresponds

to A and B corresponds to any point B, in a sufficiently small spherical

1

§ Theorem 18.1 is stated for the case of extremals with a positive index k.
In case k = 0 the extremal affords an isolated relative minimum to Js In
this case the above deformation U, can be affirmed to carry N(e, w,) into
W, . The proof of Theorem 18,1 requires a trivial modification at the end
to establish this extension.
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neighborhood N of Be For N can be mapped homeomorphically onto itself in
such & manner that the boundary points of N correspond to themselves and B
corresponds to Bl' Since M is connected and compact & finite sequence of
homeomorphisms of the above sort (including homeomorphisms that move A as well
as B) will suffice to map M topologically onto itself in such & fashion that
A corresponds to A', and B to B'.

The preceding proof fails in case A = B, The following theorem,

elthough different, is adequate for our purposes, and admits the case A = Ba

Theorem 25.2. Let (Al, Bl) and (AZ’ Bz) be arbitrary pairs of points

on M including the cases in which A1= B1 2£_A2= Bz. For the sets

W, = W(Al, Bl) W, = W(A,, Bz)

the homology groups

H

k k
H (Wl, G) H, = H (Wz, G)

are isomorphic. (k = 0, 1, eve)e

We shall presently define a mapping S of Wl into Wz, end a mapping R

of W. into W,, such that RS and SR are deformable onWl and W2 respectively

2 1

into the identity I. To say that RS jsdeformable into the identity on‘Wl,
is to say that there exists a deformation D of Wl’ with a deformation para-
meter t (0 St 5 1), such that the initial mapping of W, into W, defined by
D is I, and the final mapping is RS, It follows from Theorem 7.1 that any
cycle z of Wl is homologous to its final image'ﬁz under D, If S* and R* are
the homomorphisms of H1 into HZ’ and of H2 into Hl’ induced respectively by
S and R in accordance with Lemma 9.3, then

R s* -1, s =1,

* *
It follows that R and S are isomorphisms.
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To define S and R let a aund b be arcs on M leading respectively from

A, to A, and from B, to B,. Under S a curve 8, of W, shall be replaced by

1 1 2 1
a glb, while under R a curve &, of Wz shall be replaced by a-lgzb-l° Under

RS therefore 8, is replaced by

1 1

g = 8 a glb b,

The curve g is deformable into 8, holding Al and B, fast, by shrinking a-la

1

on a into Al, and bb.1 on b to Bl' Thus RS is deformable into the identity.,
Similarly SR is deformable into the identity. The theoreom follows,
The following theorem is needed,

Theorem 25,3, The deformation classes of curves of W(A, B) are fini%e

in number or countably infinite.

The theorem will be established if one can exhibit a countably infinite
subset Z of curves of W = W(A, B), such that eny curve of W can be deformed
on W into some curve of Z,

To that end let (Pn) be a countably infinite, everywhere dense set of
points on M., Such a set is readily obtained as the union of the points with
rational coordinates on each of a finite set of coordinate regions covering M.
Let P be a field radius for M., For each integer m let (Em) be the set of
broken extremals of W whose component elementary arcs have J-lengths less than
es and let (E) be the union of the sets (Em) for m =1, 2, oes « Let (E') be
the subset of (E) consisting of broken extremals whose vertices are confined
to points of (Pn). Any curve of W is in the deformation class of some curve
of (E) and hence in the deformation class of a nearby curve of (E!'), The

theorem follows,
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Eech deformation class of W is a component of W consisting of points
(curves) of W arc-wise connected on W, If the coordinate manifold M is a
sphere, W has but one component. If M is the torus, W has a countably infinite
set of components., In each component there is at least one extremel joining
A to B which gives an absolute minimum to J in that component.

Recall that a deformation of a subset X of W which replaces a point p
of X by a point pt, 05+ S 1, is termed a EgggsJ-deformation if J(pt) Z9(p),
end a proper J-deformation if J(pt) < J(p) whenever pt # Do

The reducibility of W at infinity. We shall say that W is reducible

et _infinity if corresponding to any compact subset X of W there exists a
weak J-deformation DX which carries X into some subset Wc of We Given X, the
deformation Dm of §18 will serve as DX, provided the integer m is so large
that the definition of Dm over X is possible,

In general it will be seen that there exists no one J-deformation of W
as a whole into a set Wé. In fact, if a is a given finite number, in general
cases (the n~sphere for example) there will exist compact subsets X of W which
adnmit no weak J-deformation into Wé. This will become clear in the next sec-

tions,

§26. A positive, non-degenerate, lower semi-continuous function F on a

metric space S.

The preceding study of J on W(4, B) end similar studies of other boundary
value problems in the large make possible an objectively useful choice of

axioms suitable for a theory of a positive non-degenerate, lower semi-continuous

§ A weak J-deformation is not necessarily e J-deformation. The term
J~deformation alone could be dropped.
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function F on a metric space Se These terms will be defined in a new topolo-
gical setting . Here S will replace e component of W(A, B) end F will replace
Je Several defintions are necessary.

An F-neighborhood of & point g of S. Given a metric space S and 8 single=-

valued positive function F defined over S, an F-neighborhood of & point g of
S at which F(g) is a finite number c, will be defined as any set N\ Sc+e where
N is an ordinary neighborhood of g, e en arbitrary positive constant, and
8,4 18 the set of points p of S at which F(p) S ote.
The essential topological properties of non-degenerate critical points

as extremsls motivate the next definition.

Points g with Property C. A point g of S at which F(g) is finite will

be seid to have Property C if there exists a proper, week F-deformation D
(0S4 S 1) of some meighborhood N(g) of (g) such that:

(1) Dg leaves g invariant and deforms N(g) into a (topological)r-disc
K(g) (r z 0) which contains g as an interior point and is below F(g) except
for g when r > 0, and which reduces to g when r = O.

(2) The terminal mapping of Dg’ restrioted to K(g)N\N(g), is deformable
into the identity on K(g), holding g fast and deforming K(g) - g on K(g) - ge

When r = 0, a point g with Property C affords e proper relative minimum
to Fs For in deforming N(g) into g each point of N(g) - g is displaced and
so lowered in F-value since Dg is proper. The integer r is termed the index
of a point g with Property C.

The following are the axioms from which all properties of F and S will

be derived, In accordance with earlier notation Sc- shall denote the subset

of S below ¢, that is the set of points p for which F(p) < c.
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Axiom I, The metric space S shall be arc-wise connected, the function

F positive, and the sets Sc compact for each finite c,.

Axiom II, P shall be reducible at infinity§ in the sense that each

compact subset of S shall admit & weak F-deformation into some subset Sc of So

Axiom III, There shall exist a set (W ) of points v with the following

properties:
(1) Each point w shall have Property C.

(2) The number of points v; below any given constant c shall be finite.

(3) Corresponding to any finite constant ¢ there exists a proper weak

Fedeformation ‘4&0 of S° in which the points of (W) in 8, are

invariant and all other points of Sc are displaced, while the value

of F(E(p)) et the terminal image E(p) of p in S, Yaries continuously

with p in Sc.

The above axioms have been seen to be satisfied by the integral J defined
on a connected component of W(4, B), provided & # B, and the points (7% ) are
interpreted as the extremals joining A to B, provided also that A and B have
been chosen so that each of these extremals is non~degenerate, The integrand
of J is supposed of the positive, positive regular type.

A first theorem followse

Theorem 26+l Axiom I implies that F is lower semi-~continuous .

In particular let P, be a sequence of points in S which converge to a

point pe We must show that

(26.1) lim. inf. F(p ) 2 P(p)

§ Axiom II conditions all sets on which F is unbounded, even if F is never
infinite,



127.

Let ¢ = lim, inf, F(pn). If ¢ = oo (26,1) holds, If ¢ is {inite let e be
any positive constant. There will exist a subsequence [qr] of [pn] such that

[qr] is in Sc o° The set Sc is closed, so that the limit point p is in S__ .

+e C +6

c+e. Since e is arbitrary F(p) S ¢ and the proof of the theo-
rem is complete.
Axiom II implies that every k-cycle in S is homologous to a k-cycle on
some set Sc, and if a k-cycle X on some Sc bounds in S it bounds on some Sa'
The proof of the following theorem is formally the same as the proof
of Theorem 24.l.

Theorem 26.2., Let b be a value of F at one of the points (n ), and

[n ]. the finite subset of points of (W) at which F(v) S b, If there are
N1y at which

no values F(v ) on the interval b <F S 4 there exists a proper weak F-defor-

metion of S into a subset of [VL]b + 8, _ holding the set [VL]b fast,

Theorem 26+3%. Lot b <F < ¢ be an interval on which there are no values

F(W )e TIhe respective homology groups of Sc— end of Y = Sb_+ [Yl]b are iso=-

morphic, with each homology class U in Sc- corresponding to the subclass of

U in Y.

This theorem is & consequence of Lemma 101 of the Appendix once the
following statements have been establisheds

(a) Each cycle x in S,. is homologous in S__ to & cycle in Y,

(b) A cycle z in Y which is bounding in S _ is bounding in Y.

Proof of (a). Let Jﬁxc be the deformation in Axiom III, Then

5Ax=L\xx-x (inSc_)

C
(Cfo Theorem 7.1, Appendix), The value of F at the terminal image E(p) of p

is & continuous function of p, and hence on the compact carrier of x at most
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a constant d < ¢, We may suppose b < d <c. Set x' = Acx. Since x!' is in

Sd we may apply the deformetion D of Sd of Theorem 26.2 to x' with

0D xt =D xt =~ x! (inSd)

Hence x is homologous in S _ to Dx* in Y, Thus (a) holds.

Proof of (b)s Suppose that z = Ow where z is a k-cycle in Y and w a

(k+1)=chain in S,.° 48 in (a), Acz and Acw are on some set §, with
b<d <o, On setting z! = Acz and w!'= Acw and using the deformation D of
Theorem 2642,

Dzt = ODw' , or Dz'~0, (in Y)

But z in Y is deformed in Y under Ac into z!', and 2! is deformed in Y under
D into Dz!, so that z bounds in Y with Dz', Thus (b) holds,

The theorem follows from Lemma 10.1 of the Appendix,

A function F satisfying the above axioms and in particular Axiom III

is termed non-degenerats,.

§27, Property Ce It will be convenient to order the points (%) of
Axiom III in agreement with their increasing F-values, ordering points of (VL)
with the same F-value arbitrarily. Let g be any point of the set (M )e Let
[m ]g denote the finite subset of points of (‘YL) whose order is at most that

of ge Let F(g) = b, Set
(27.1) X(g) =8, _+ [n]g

We shall be concerned with relative (written rel.) cycles in X(g) with a
modulus X(g) ~ go A rel., cycle in X(g) shall always mean & cycle in X(g)

mod.X(g) =~ g3 rel. bounding in X(g) shall mean bounding in X(g) mod. X(g) ~ g,

etc e
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Lemma 27.l. Given e, any rel. cycle z in X(g) is rel, homologous in

X(g) to a rel, cycle in an e-neighborhood of g.

Let B'z be the n-th barycentric subdivision of z. Use is made of the

relation [Cf, Theorem 8,1 Appendix].
(27.2) . bez = Bz = 5 - ebz

Since Oz is in X(g) - 2, sz is likewise, so that 2~ Bz rel in X(g)e Hence
8% ~ z rel, in X(g). Let B’z be written in the form

(27.3) Bz = g0 =u*V (i =1, eee, n)

where u is the sum of the terms g, o; for which o is in X(g) - go Since
n
00 = (B% = v) = u,

v ~ Bz rel, in X(g)e If however n is sufficiently large the norm§ of each
o3 in (27.3) will be less than e, and v will be in the e=-neighborhood of g
(v possibly null). In resume
2z~ B2~ T [rels in X(g)]

and the lemms followse

We shall refer to the r-disc K() associated with a point g which has
property Co For chains in K(g) the modulus will always be K(g) - g, and the
term relative will refer to this modulus. The f ollowing lemmae is proved as
was Lemma 27.1.

Lemme. 27.2. Any rel. cycle in K(g) is rel, homologous in K(g) to a

cycle in an e-neighborhood of g

The case where g has the index O. Both Lemma 27.1 and 27.2 are trivial

in case the index r of g is Os In this case K(g) = g so that the modulus

K(g) - g is the empty set. A rel. cycle in K(g) is then a cycle in K(g).

§ The norm of a singular cell is the diameter of its carriers.



130,

A rel, n-cycle in X(g) in this case is an n-cycle in g plus an arbitrary
n-chain in X(g) - g The k-dimensional rel, homology group of K(g) is the:
k=th homology group of K(g), and consists of & null element except when k=0,

The following theorem is basice

Theorem 27¢le The n-th rel.§ homology group of X(g) is isomorphic with

the n-th rele homology group of K(g); if U is & homology class of relsn-cycles

in X(g), the corresponding homology class U' of rel, n~cycles in K(g) is the

subclass of those chains of U which are in K(g).

The proof of this theorem will be niade to depend upon statements (a)

and (b) which follow,

(a) EBEach.rel, homology class U g_iLX(g) contains at least ome rel, cycle
in K(g)e

In accordance with Lemma 27.1 there exists a chain z of U in N(g)e.
(Cfs Property C)e On making use of the deformation Dg affirmed to exist when

g has Property C, we have the relation of Theorem 7.1 Appendix,

27.4 052=-ﬁz-z~5bz
( ) g g 3

Here ﬁgbz is in X(g) - g since 0z is in this modulus, Bgz is in K(g), and
ﬁgz is in X(g)s Thus z is rel, homologous in X(g) to 'ﬁg(z) in K(g)e
(b) 4 rel, n-cycle x in K(g) which is rel. bounding in X(g), is rel.

bounding in K(g)e

Let U' be the rel. homology class in K(g) which contains x, Let e be so
small e positive constant that points of K(g) within a distence e of g are in
N(g)e By hypothesis in (b)

ow = x mod.[X(g)~ 8]§§

§ As stated, the modulus in X(g) is X(g) - g, thet in K(g), K(g) - ge
§8 The sign = indicates equality up to some chain in the modulus.
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for some (n+l)-chain w in X(g). Let w and x be subdivided so meny times
(say r times) that the norms of the simplices in the resulting chains are less
than e. We have

08w = B 0w = B'x mods [X(g) - g]

From the chain Bw = glo; let «2ll simplices o in X(g) - g be dropped giving

an (n+l)-chain w!s Let x! be similarly obtained from B'x. Then
(27-5) Owt 5 x! ‘ mod. (X(g) - g)

Tt is clear as in the proof of (a) that B'x and hence x! is in U', DMoreover
w! and x! are in N(g), so that one can apply -ﬁg to both members of (27.5),
with the result

(27.6) b-ﬁgw‘ 3 3gx' . mod. (X(g) - &)

The terminal mapping D; of Dg restricted to

e

k° = K(g) N N(g) ,

js deformable into the identity in K(g)} (Property C), deforming K°- ¢ in
K(g) - g, so that

(27.7) Dgx’ ~ x! [rel, in K(g)]

From (27.6) we infer that x! ~ O rels in K(g). with x' each other chain x
in U? is rel, bounding in K(g)e
Statement (b) is accordingly true and the theorem follows from Lemme

1041 of the Appendix.

Corollary 27,1, If g is a point of (7 ) of index r, the Betti numbers

P of X(g) mod, X(g) - g ars & .

§ The sign = indicates equality up to some chain in the modulus.
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By virtus of Theorem 27.1 the Betti numbers of X(g) mod. X(g) ~ g are
the Betti numbers Pk of the r-disc K(g) mod. K(g) -~ g, and equa.l 65 in accord-
ance with Lemma 10,2 of the Appendix.

Homotopic critical points., A point p of S at which F is finite will be

called homotopically ordinary if some F-neighborhood of p admits a proper

weak F-deformation (O S¢S 1) which ultimately displaces p. A point p at
which F is finite and which is not homotopically ordinary will be termed a

homotopic critical point,

We begin with the following lemma,

Lomma 27.3, A point p of S which has the Property C is a hemotopis

critical point,

Suppose that F(p) = b and set
X = Sb- tp o

The proof of Theorem 27,1 and its Corollary show that the Betti number Pk of
X mode X - p is 6? » Where r is the index of p. There is accordingly an
r-cycle z in X mod, X - p which is rel, non-bounding,

If the lemms were false there would exist a proper weak F-deformation
D of some F-neighborhood of Ps which displaces p, By modifying D as in the
proof of Lemma 24,3 one can obtain a proper weak F-deformation Do’ def ined

over all of X and identical with D in its deformation of points of X suffi-

ciently near pe Referring to the rel, cycle z of the preceding paragraph
(27.7) bﬁoz =D 2 -3z~ ﬁobz

Since the carrier of z is below b except at p, and Do displaces p,'ﬁgz is
below b, The chain 5052 is likewise below b, Thus z is rel, bounding in
X in accordance with (27,7). From this contradiction we infexr the truth of

the lemma,
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The following theorem characterizes the points (YL) of Axiom 1II,

Theorem 27.2. The set of homotopic critical points of F, the set of

points of S with Property C, and the set (7 ), are identical.

Lemma 273 together with statement (c) will suffice to prove the theorem.

(¢) Each point p of S at which F has & finite vaelue b and which is not

a_point (v ) is homotopically ordinary,

According to Axiom III there will exist a proper weak F-deformation Zxc
which deforms p into & point below b, and hence displaces pe Thus p is homo=-
topically‘ordinary and statement (c) is proved.

By virtue of Lemma 27,3 and statement (c), the set of homotopic critical
points of S is identical with the set (W ) of Axiom III, A point p which fails
to have Property C is not a point of (% ), and so by (c) is homotopically
oordinary if F(p) is finite, Hence the set of homotopic critical points of S
is the det of points of S with Property C.

This completes the proof of the theorem.

We shall refer to the points (n_) es oritical points, dropping the ad=-
jective homotopice

The reader will of course be well aware that for a function f(xl,...,xn)
of n variables a point (xo) may be a differential critical point without being
a homotopic critical point. For example, the point x = O is a differential
critical point of xs, but not a homotopic critical pointe The preceding
theorems imply that & non-degenerate critical point of a function of n vari-
ables of Class C" is a homotﬁpic critical point; for such a non-degenerate

critical point enjoys Property C as we have shown in Theorem 17.2. The de-

formation used in proving Theorem 17,2 was propere.
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§28, Oritical points of linking or non-linking typess. Let a value of

F at & critical point be termed & critical value, We shall add a classifica-

tion of the critical points (vt) which depends in part on their ordering at
any given critical levels

Suppose ‘g is a critical point with index r. According to Corollary
27.1 there is exactly one non-trivial r-dimensi onal homology class U in X(g),

mode X(g) - ge If U conteins an "absolute"§

r-cycle )\r, g will be said to
be of linking type, otherwise of non-linking type. In the latter caselpr
shall denote any rel. cicle in Us The cycle )\r or the rel, cycle Pr forms
& rel. homology base for rel, r-cycles in X(g), according as g is of linking
or non«linking type.

The following lemma makes the origin of the term "linking" clear,

Lemms 28.1e A necessary and sufficient condition that a critical point

g be of linking type is that the boundary of every rel. k~cycle z in X(g)

bound in X(g) = ge
The condition is proved necessary as follows. Let r be the index of g
Suppose that k = r, when g is of linking type, )\r is a rel, homology base

for r-cycles in X(g), so that a relation
(28,1) Ow =z - a,kr+ u [u in (X(g) - g)]

holds with a in G, and w an (r+l)-chain in X(g)e Relation (28,1) implies that
0z = Ou, so that Oz bounds w in X(g) - ge If k £ r, z is relatively bounding
[Cfo Corollary 27.1], and 0z accordingly bounds in X(g) -~ ge (Cfe Lemma 9.1,

Appendix., )

§ An “absolute" r-cycle is an ordinary r-cycle. The term is used to emphasize
thise



135,

The condition is proved sufficient as follows. According to Corollary
27.1 there exists an r-cycle z relatively non-bounding in X(g)e By hypothesis
Oz bounds & chain u in X(g) - g Hence z - u is an absolute cycle )\r in the
rel. homology class of z, Hence g is of linking type.

Exempless If S is a torus with its axis in a horizontal position and
F the vertical height on S then every critical point of F is of linking typee
If S is a hemisphere with a horizontal base, and F the vertical height on S
then the point of maximum F is e critical point of non-linking type. If S is
the surface of the earth, and F the distance from the surface to the earth's
center, the sets Sc can be supposed flooded with water up to the level c,
A saddle point g of F will be of linking or non-linking type, according as the
flooding of g creates a new island or connects two previous-disconnected oceans.
The latter statement is on the assumption that no two critical points are at
the same level, If there were two or more critical points at the same level
sand these were flooded in some order by a tidal wave the classification
according to the creation of islands or connection of oceans would depend
upon the order of floodinge

The k-th Betti number of a set X, over G, will be denoted by Rk(X, G)e

Vhen the k-th Betti numbers of X(g) and X(g) - g are finite we shall set
AR, =& [X(g), 6] - B [X(e) - g, €]

The following lemma is fundamentals

Lemma 28.2, If the Betti numbers of X(g) - g are fini'be§ and g is &

critical point of index r, then éﬁ‘éRk= 0 except that

§ This is an inductive hypothesis. That the Betti numbers of X(g) - g are
finite will be established by an induction with respect to the ordered set

(7L)-



1364

DR =1 or A -1
g k

gRr-l=

according as g is of linking or non-linking typeas

Case I, g of linking types. The proof in this case consists in showing

that & minimal k-homology base for X(g) is obtained by adding 65 )\r to a

minimal k~homology base B, for X(g) - go To that end let

w = a (k+l)-chain in X(g)
z = a k-cycle in X(g)

u = & k-cycle in X(g) - g
a = an element in G.

(1) Recall that 6l:/\r is e minimal homology base in X(g), mod. X(g) - g.

Hence, given z,

(2842) Ow = z = a&:)\r +u

for & suitable choice of w, &, and u, Relation (28.2) shows that 61;/\r and
Bk form a k-homology base for X(g)e It remains to show that this base is
minimal,

(2) fiihen k = r there is no relation
(2843) 0w = /\r +u,
since )\r would then be rels bounding in X(g). when k # r there is no relation
(2844) Ow = u [for u ~ 0 in X(g) - gl,

for (28.4) implies that w is a re. cycle in X(g)s According to Lemma 28.1
Ow bounds in X(g) - g whenever g is of linking type, contrary to the nature
of ue Thus neither (28,3) nor (28.4) can hold, so that (Sl:/\r with Br’ forms

e minimal homology base for X(g)e
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Case II, g is of non-linking type. For k % r-1l let Bk be a minimal

homology base for X(g) - g When k = r-l, qPr is non~bounding in X(g) - g
(Cfo Lemma 28,1) so that there exists e minimal (r-1)=homology base for
X(g) - g composed of byr and of a set of (r=-l)~cycles Br-1° We shall show
that B is & k~homology base for X(g), including the case k = r-l,

(1) Since 6? Pe is a minimal k-homology base in X(g) mod. X(g) =~ g,

given 2z

(2845) bw=z-a61:'}xr+u

for a suiteble choice of w, &, and u. In (28,5) every chain except aéflpr
is a cycle. Sincelyr is not a cycls, abﬁ = 0, This shows that a k-homology
base for X(g) - g is a base for X(g)e Hence B, is = k~homology base for X(g)

-(recalling that b}ur bounds in X(g))e It remeins to prove that B, is minimal
in X(g)o

(2) Suppose that a relation
(2846) Ow = u.g, # O (u, in B)

holds. Then w would be a rel, non-bounding (k+l)-cycle in X(g)e Cf. Lemma
9.1, Appendix, This is possible at most if k+l = r, But if ktl =1r, w - 2 P
would be rel, b6unding in X(g) for some a in G, (Cfo Corollary 27,.,1.) Hence
the absolute cycle

v - ad = gy =y
would be bounding in X(g) - g (Cf. Lemma 9.1, Appendix) contrary to the nature
of B

r-1°

The theorem follows,

Thus no relation (28.6) holds and B, is minimal in X(g)e

Theorem 28.3. The Betti numbers of each of the sets X(g), 8, and Sc

are finite,
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The Betti numbers§ Rk[X(g)]. Let the critical points (YL) be written
in order Y ,snps eeo e If g = M F(g) is an absolute minimum of F and
. _ 61{
X(g) = g« In this case Rk[X(g)] =0y °
Proceeding inductively we assume that each Rk[X(p)] is finite for
P =N, and seek to prove that Rk[X(g)] is finite for g = M . In case
F(p) = F(g), X(g) - g = X(p) and the Betti numbers of X(g) - g are finite by

inductive hypothesis. If F(g) >F(p), and if one sets F(g) = c, then

(28,7) X(g) - g = Sq.

In accordance with Theorem 26.3, with X(p) = Y therein,

(28.8) R (5,.) = R (X(p)), [k =0, 1, ..ol

end the Betti numbers of X(g) - g are again finite by inductive hypothesis.

It follows from T - .em 28.2 that the numbers Rk[X(g)] are finite,

The Betti numbers Rk(Sc_) o Let g be the last point in (% ) for which

F(g) < co It follows from Theorem 26.3, with X(g) = Y therein, that
Rk(sc-) = Rk[X(g)] [k =0, 1,e00)

The Betti numbers Rk(sc)' Let g be the last point in (% ) for which

F(g) S ¢s In accordance with Axiom III there exists a proper weak F-deforma-

tion of §  into X(g) and the proof of Theorem 26,3 shows that
R (5,) = R, (X(g)) [k =0, 1, ...]

This completes the proof of the theoreme
Lemme 28,2 together with relations (28.7) and (2848) now give the basic

theorems

§ We are dropping the G from Rk[X(g), G] for the sake of brevity,
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Theorem 28.4., If g and g' are successive critical points in 1),

with g' of index r, then

Rr[X(g')] - Rr[X(gj] = +] Case I

or

R__,[x(g")] - Rr_l'[x(g)] = -1 Case II

according as g'! is of linking or non-linking type, while all other Betti

~ £ K
numbers of X(g) and X(g') are equal,

The proof of Lemma 28.2 together with Theorem 26,3 permit us to state
a theorem which is stronger than Theorem 28.4.

Theorem 28.5. If g and g' are sucoessive critical points in (n ) with

g! of index r, then in Cese I a minimal r-homology base for X(g') may be

obtained from one for X(g) by the addition of a suitable r-cycle in X(gt)s

and in Case IT & minimal (r-1)-homology base for X(g') may be obtained by re-

moving a suitable (r-l)-cycle from a suitably chosen minimal (r-1)=homology

base for X(g); while any minimal kehomology base of X(g) for which k # r in

Cagse I, or k = r in Case II, remains a minimal k-homology base for X(g'),

Cases I and II are mutually exclusive.

The following lemma will be used in §29.

Lerma 28.3. If there is a last critical point (g) in (% ) among points

of index k and k+l, then Rk(S) = Rk(x(g)).

This lemms will follow from Lemme 10.1 of the Appendix once statements
(a) and (b) are proved,
(a) Any k-cycle x in S is homologous in S to & k-cycle in X(g).

(b) Any k-cycle z in X(g) which is bounding in S is bounding in X(g).
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Proof of (a)s It follows from Axiom II that x is homologous on S to a
k-cycle x' in some set S, . We can suppose that b > F(g).. From Theorem 26.3

and 28,5 we make the inferences (c) A minimal k~homology base B, for X(g) is

e minimal k-homology base for S, e It follows from (¢) that x' is homologous
in 8, toa k~cycle in X(g) so that (a) is true,

Proof of (b)e It follows from Axiom II that any k-cycle z in X(g) which
is bounding in § is bounding in some set S, with b > F(g)e If Zyseessz 18
& minimal k-homology base for X(g) we have 2~ g2, in X(g)e As stated in (c)
Zyseee,2, is @ minimal k-homology base for S, as well as for X(g), so that
each g, = 0, since z is bounding in 8, . Hence z~ 0 in X(g) and (b) is truea
The lemma follows as stated,

829, Relations between the type numbers Mb’ Ml’ eee and the Betti

numbers Ro’ Rl’ cee When each Mk and Rk is finite, In the next sections, Rk

shall denote the k-dimensionel Betti number of S, We shall introducs the
following additional notation:

Mk = The number of critical points of index k.

ey The number of critical points of index k of linking type.
bk

In this section we shall essume that Mk and R

[

The number of critical points of index k of non~linking type.

K 2T finite for every k.

(k = 0, 1, see)o In the case where S represents a connected component W(A, B)

of the space of paths all known examples yield finite Rk’ but this finiteness

has not been established in general, Among more general spaces S which satisfy

our exioms it is easy to construct examples in which some Rk is infinite,
Example 1: Let Y be the closed sector of the (x, y¥) plane for which

»

L sgs 3L
4 4
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where © is the angle in conventional polar coordinates. Let an open circular
disc with radius 0.1 and center at the point (0, n) be removed from Y for each

positive n, to form a space S. In this space let F =y, Here Ro= 1, R,= o

1
and every other Betti number is O. The subspaces Sc are compact., The critical
points are the origin, at which F has an absolute minimum, and the points

(x, y) = (0, n + 0,1) (n =1, 2, oos) Of index ls Our three axioms on S and

F are satisfieds On each compact subset F is bounded, so that Axiom II is

trivial,

When each Mk and Rk is finite

(29.1)1 g, =8atb (bo= 0)

" = -
(2901) R, =&=b .

Relation (29.1)" is a consequence of Lemma 28.3.

Points of index k = O are isolated relative minima of F, The only re-
lative cycles associated with such points are absolute cycles, non=bounding
only when having the form go , where g % 0 and o is the image of an euclidean
pointe Such critical points are of linking type, so that bo = O

From (29.1) one obtains the relation

(29.2) W-R =b+b . (k = 0, 1, eeu)

from which the following theorem is derived,

Theorem 29,1, When the numbers M snd R _ere finite, M = Rs k=0,1,000

Example 2: We shall pr esently see that the Betti numbers of the space

of paths W joining two points A eand B on an n~sphere, with n > 2, are
(29.3)? R, =1 (x

(29.3)" R, =0 (k # 0 mods n~1)

0 mod. n-1)
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For example when n = 3 the Betti numbers of W are

Ro R1 R2 R3 R4 R5 > .

1 0 1 0 1 0 « o
Let M be any admissible coordinate manifold (cf.§7) which is homeomorphic with
an n-sphere (n > 2), In accordance with Theorem 29,1, one can affirm that
almost all pairs of points A and B are joined on M by a geodesic &y of index
k for each k¥ = O mod, (n-1). According to the earlier theory, k is merely
the number of conjugate points of A on the open arc of &2 end the length of
By in the case of a non-degenerate pair A, B, becomes infinite with k., OChe
cen make a similar statement on replacing the length integral by any integral

Jd with positive, and positive regular integrand,

The ocase of a function F on an memanifold M, The metric space S can be

taken as our m-manifold M, and we can suppose that F is a function of class C"
on M, If one supposes in addition that the differential critical points of F
are non~degenerate (Cfo §17) then F and M satisfy our three axioms on F and S,
In this case there will be no critical points of index r > m. For it follows
from the properties of dimension thet there is no topological r-disc in M for
which r > me Une thus has

(29o4:) 0 =M =N S S Y

A function F of this type is termed non-degenerate. It can be shown that

any function F of class C'™ on M can be approximated arbitrarily closely by
a non~degenerate function F of class C™ in such a manner that the partial

derivatives of F up to the third order approximete the corresponding partial
derivatives of Fl' Note by way of example how x3 is approximated by xs- ox

for e arbitrarily small and positive,
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Example 3: The simplest example illustrating Theorem 29,1 is given
by teking S as a torus in a space of coordinates (x, y, 2z) with the x-axis
as the axis of the torus., If one sets F = z, the existence of four critical

points on the torus with indices such that

Mo.-.: Ro-.: 1 M1= R1= 2 M2= R2= 1

is immediately obviouse

The excess numbers Ek= Mk- Rk' Besides the critical points affirmed
to exist in Theorem 29,1, there may exist other critical pointse This will
occur whenever any one of the numbers Ek’ k=0, 1, ¢se are positive, Given

8 set of integers R 2 O with R°= 1, it is possible to construct a space S

k
with the given Betti numbers Rk end with a function F defined on S such that
Mk= Rk for each ks One may accordingly say that the critical points which

are affirmed to exist in Theorem 29,1 are topologically necessary, given the

number s Ro’ Rl’ cce o

If, however, the space S is given rather than the numbers Rk‘ there mey
exist no admissible function F on S for which Mkn Rk for every ke This
statement is illustrated, rather than proved, by the following example,

Example 4: This example will show that if 8 is a coordinate m-manifold
there need not exist any non-degenerate function of class C"™ on S such that
Mk= Rk’ k=0, eoe o In particular let S be a 3~ménifold M with the Betti
numbers of the 3-sphere, but not the topological image of the 3--sphere§°
Suppose (if possible) that F is a non-degenerate function of class C™ on M

such that

(29.5) M, =R (k = 0, 1, eee,m)

§ For the existence of M see Seifert-Threlfall, Lehrbuch der Topologie, p.4l8
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This would imply -that Mo‘—' 1, Mm= 1 and that Mk= O for ¥k £ 0, or ms The only
critiocal points.of‘ F on M would be the points of absolute minimum and absolute
meximum of F on M, Let 83 be a euclidean 3~sphere, On S:5 let £ equal one

of the euclidean coordinates of the space in which SS liese We can suppose
that the extreme values of f and F are the same, O and 1, If (29.5) held we
could establish & homeomorphism between M and 85 in which each level surface
F = o corresponds to the level surface f = ¢ (0 <c < 1), The particular
correspondence between the points of these surfaces could be explicitly defined
by an appropriate use of the trajeotories orthogonal to these surfaces, start-
ing with a correspondence between these trajectories near the points of ab-
solute minimum of £ and Fs This homeomorphism between U and S:5 is, however,

contrary to our choice of M, so that (29.,5) camnnot hold,

Relations (29.].) can be used to prove the following theorem,

Theorem 29,2, The Betti numbers of the space of paths W(4, B) joining

two distinct points A and B-on an n-sphere M, with n > 2, are given by (29.3).

Let the points A and B on the n-sphere be taken as. any two distinct
points not the extremities of a diameter of M. Let J be the integral of length
on M, If one makes use of the Jacobian M(s, so) of §11 whose zeros s define
the conjugate points of 8,9 oORe finds that the only points s conjugate to A
coincide with the point A' directly opposite A on M, The multiplicity of A!?,
as & conjugate point of A, is the nullity of the determinant M(s, so) at the
point 8 which determines Af, These multiplicities are all n-1l,

Given any integer i > O there is a geodesic g leading from A to B which
passes through A'! exactly i timess If conjugate points are counted with their

multiplicities there are i(n-1) conjugate points of A on g prior to Bs The
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index of g is accordingly i(n=1). Moreover, these geodesics g are the only

geodesics which join A to B on M, Thus

(2946)! ¥ =1 (k = 0 mods n~1)

(29.6)" M =0 (k # 0 mods n-1)

If the values of M_given by (2946) are substituted in (29,1) and use be made

of the fact that Ro= 1, and that R b, are positive on zero, it is found

k* %Kk "k
that the values of Rk are uniquely determined and are given by (29.,3). This
completes the proof of the theorems Cf. Theorem 25.1,

The case n = 2, The theorem remains true even when n = 2, In this
case each Rk= l. The above method of proof fails because the substitution in
(2961) of the values Mk given by (29.6) does not determine the numbers Rk

uniquely. A general proof of the theorem including the case n = 2 is given

by Morse, ope cit., (Colls Lect.), p.247,.

The preceding theorem was established by proving thet the numbers bk
are all zero, that is that every critical point is of linking typee We have
the general theorem,

Theorem 29,3, If each critical point of F on S is of linking type then

the Betti numbers of S are given by the formulas

(2947) R, = M

For example this theorem suffices to determine the Betti numbers of the
torus as in Example 3, In addition this theorem has been used to determine
the Betti numbers of the space of closed paths on an n-sphere, and the Betti
numbers of the symmeiric product of an n-sphere by itself, (Cf. Morse, Opo cit.,

(Colls Lecte), pel91,
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Theorem:29.4, Thé Betti numbers of the spaceg of paths on any orientable

surface of genus p > 0 are all null except that RO = 1,

The case p = 1, It is known that one cen obtain a model for surfegces
of genus p = 1 by identifying the opposite edges of a plane square, In the
plane, and on this model for the torus

dsz = dx2+ dyz »

where (x, y) are rectangular coordinates in the plane, In this model there
are no conjugate points; for the universal covering menifold is the whole
plane, the geodesic. straight-lines, and the straight lines through a point
never meet again, The Jacobian defining conjugate points never vanishes ex-
cept at the initial point of the geodesic, Thus Mk = 0 for k¥ > 0, so that

R. = 0for k > 0,

k -
The case p > 1. This case is similar to the torus except that one cen
goet a model§ for the surfacé as a polygon in & hyperbolic plane of constant

negative curvature, The polygon has 4p sides which are arcs of non-euclidean
straight lines, and these sides are identified in pairs to yield the model

for the surface, The universal coveripg surface is the whole hyperbolic plane,
J is the hyperbolic length, geodesics are the non-euclidean straight lines.
Since the geometry is hyperbolic, geodesics through & point on the universal
covering surface neven meet again so that there are no conjugate pointse As

before Mk = 0 for k > 0, so that Rk = 0 for k > O,

§ See, for example: Morse, A fundamental class of geodesics on any closed
surface of genus p > 1, Trans Amer, Math. Soc, 26(1924) 25-60,




147.

§30. The excess numbers Ek= mk- Rk’ when Mk and Rk are.finite.

Staring with the relationg

(30,1)? ¥ =8 +b (bo = Q)

LTS

(3011)" Rk = ak- bk+l (k = 0, 1,s40)

1
we see-that

- £

(so.z)f E =b+b ) (k =0, 1,0e0)
e) . k- Sk Okl e P
From (30s2) it follows that, Sa e L, e e
2 V' K- s P - m [ Y ,-2111»‘: "
(30.3) E - E;+Ey= ous (-1)" E} (=) by
L] - { . L W b ”» -
Hence (30,3) implies the inequalities
(30.4) E =0 E =0
- (o} o]
< >
Eo- El 0 or E1 Eo
d ) > >
E = El+ E2 = 0 E2 &= El- Eo
i [ X B J [ XX ] [ A ¥ ] .O.‘ oo e 200 ’

(with the signg < end > lternating). This meens thet if E > O then E, > 0

in a compensating manner, and if this compensation is overdone 8o that
H
EO-_E1 0, E2 must compensate, end so on. The relatlons (30.4) oan also be

written in the form

(50‘.5) Mo = Ro

. M-MSR-R
[o) o 1

>
Mo M1+“M2 = Ro- R1+ R2 \ T .

[ AN J [ X N ] ods e e LR N se e
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If S is a coordinate m~manifold bm+l= O, and one has the equality

m m
(30.6) M- M+ M= seo (=) M Ro- R+ R~ oee (=) R

1 72 1 2
which goes back essentially to Kronecker and was used by Poincere and Birkhoff,

We state the following theorems,

Theorem 30,ls Given the numbers Rk >0 (k =0, 1, ose) with R°= 1,

conditions (30.5) on the numbers I, are equivalent to conditions (30.1).

There are no other conditions on the numbers Mk and Rk alonee

Given conditions (30.1), conditions (30.5) are implied, Conversely
conditions (30.5) imply conditions (30.4) and permit LI 2 0 to be defined
by (3043)e Then (30,2) holds, One then defines a, by using (3041)"y 4s a

conse quenc [5]
W o= Bt Re= (bt by )+ (ap= by ) = o+ by

so that (30,1)! is valid,

In terms of the numbers Rk = 0 with R°= 1 there are no other conditions
on the numbers M_beyond the conditions (30s5)s The conditions (30.5) imply
(30.4), and conditions (30.4) imply that E Z 0 for each k and hence

k
M, z R, Z 0. With the numbers M, and R, given, satisfying (3005) with R=1,
it is possible to construct a space S and a function F on S satisfying our
axioms, and such that the type numbers of F are the given numbers Mk. The

theorem follows,

Theorem 30,2 The relations

(3047) E . +E _=E (K =1, 2, oes)

always hold,

Relations (30.,7) are an immediate consequence of (30.2).



145,

§31s The case of infinite M ; R, finite, There can be infinite
K S

even when S is a space of paths W(A, B). The following remarks cen be made

at onceo

The finite M » If and are finite then as previously, usin
ol LA +1 s &

Lomma 2803,
1 1 =
(31,1) Mk ak + bk
114 = -
(3141) R, =8, b g 0

with the consequence

>
(3142) M =R,
ir Mk is finite for k = 0, 1, ees, m+tl, then on setting Ek= Mk- Rk the first

m+)l inequalities

nv

A

ny

follow from (3l.1l)e If M__q» M, M}+1, l\ll.r+2 are finite then (31.1) implies

>
Er-l+ Er+l = B,

as previously, even if all other Mi are infinite.

The numbers Mk(g) and Pk(g)o If g is an arbitrary critical point of F

we set
Mk(g) = The number of critical points of index k in X(g)s
ak(g) = The number of these critical points of linking type.
bk(g) = The number of these critical points of non~linking type.

i

Pk(g) The Betti number of X(g).
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For a fixed g these numbers are finite, and are zero for k greater than

some integer Ne. The relations
(31.3)" u (g) = a(g) + b (g)
" =

are satisfied together with the relations

(3144) E (g) = 4 (g) - B (g) = b (g) + b, (g) T 0

and all their algebraic consequences, as previously.
To establish the fundamental theorem, two lemmes are needed,

Lemma 3ls1, Given k there exists & critical point g of such high order

in (1 ) that there is a minimal k~homology base B, for S in X(g)e For any

such g

(31.5) R, =P (g) +q (q, = 0);

and there exists a minimal k-homology base for X(g) composed of Bk and of 9

aegd
k-cycles zs (L =1, eee, qk) such that each z, is bounding in X(g'), provided

g! > g is a critical point of sufficiently high order in (% ).

Since R, is assumed finite the existence of & base B_ for § in some X(g)
follows from Axiom II, (Cfe. Theorem 2643)s Relation (31,5) then holds. As
a consequence there will exist a minimel k-homology base for X(g) composed of

B, and k-cycles u, (i = 1, eee, k)s¢ Since B, is a base for S there will
L i

k k
exist a k~cycle Vs linearly dependent on the cycles of Bk’ such that the
k~cycle
Zl=ui-—vi (l= 1, s0ey qk)

§ Ve use the sign > to indicate that the order of g' exceeds that of g in (M)
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is bounding in S, It follows from Axiom II that for some critical point g' >
of sufficiently high order, sach zg will bound in X(g')e. It is clear that
B and the Qe k-cycles z, again form a minimal k-homology base for X(g)s

Note: The critical points g and g! affirmed to exist in the preceding

lemma. depend upon k and their order in (n_) may become infinite as k becomes
infinite.

Lemma 31,2, Under the conditions of Lemma 31,1 there exist at least

Q. critical points 8; of index k+l with

A

'B <8< By eee < 8 g’

U

The k-cycles z, of Lemma 31,1 satisfy no proper homology in X(g) but are
bounding in X(g')e If q, > O there is accordingly a critical point g, of least
order, with g < 81 = g!, such that some proper sum e,2.= ¥ is bounding in
X(gl). With change of notation, if necessary, we can suppose that alf 0 If

go is the immediate predecessor of gl in (?l) then the cycles

V2 Zos see, Z
1° "2 Q.

are part of a minimsl k-homology base in X(go), while Yy is bounding in X(gl).
It follows from Theorem 28,5 that gy is of index k+l, and that the cycles

31l.7 Z [ XX] Z
( ) 2’ ) qk

are part of a minimal k-homology base in X(gl).

Ir &= g! then 9= 1, and the lemma is true, If qk> 1, then g, < gty
and one can similarly infer the existence of a critical point g of least
order in (% ) with 8)< B5< g!, such that some proper sum yq= 8,2, based on the
cycles (31.7), is bounding in X(gz). One sees that g, is of index k+l. Con-

tinuing, one arrives at the existence of the critical points 8; of the lemma.,

[}
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The k-th type number of a set of critical points is defined as the

number of critical points of index k in the sete

The fundamental theorem in the caée in which some of. the numbers I are
infinite is as follows,

Theorem 31.l. Suppose that the first r+l Betti numbers

ROR]_, LA A K] Rr (r > 0)

of 8 are finite. Lot H be an arbitrary finite subset of the critical points

of F with type numbers,

no, nl, scey, nr

end n.= O for kX > re. There exists a finite subset K D H of the critical points

k
of F with type numbers

mo, ml’ seey mr

and m, = 0 for k > r, such that

1AV

A

(31.8) m~m

+ 4o (-l)rm

< r
SR - Rt (—1)Rr

e~ m1 o] 1

where the > or < sign in the final relation is to be chosen according as r

is even or odd.

It is clear that Lemmes 31.1 and 31,2 can be satisfied for k = O,1,..0,r
by & single pair of critical points g and g' of arbitrarily high order in (n)o
Since g cen be taken of arbitrarily high order in (7 ) and g' then determined,
wo can take g so that X(g) contains each of the critical points of the given

set H, If one sets
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(31,9) R, = Pk(g) - q (k = 0, eee, T)

Lemme. 31,2 affirms the existence of a set Hk+l of 9 Zo critical points g"
of index k+l, with g < g" S g's. 1ot H! be the subset of criticel points of F

in X(g) with indices not exceeding r., We shall satisfy the theorem by setting

K = I’It + Z IH(+1 (k = O,ooo,r'l)
If m is the k-th type number of X we have
(51010) ]nk = Mk(g) + qk-l (k = O,..._’r)

where q_, = O On setting e = m = R, it follows from (31.9) and (31,10) that

(31,11) o, = M (g) ~P(g) +q _, *q (k = 0, Lyses,r)
Hence

(51.18) o = 0,* 6,= sus (-l)kek= (-1)%[b

1 2 (g) + qk] (k = 0:1:.'0',1')

k+l
The inequalities in the theorem follow from relation (31.13).
S .
The inequalities (31.8) imply that o = O Hence the corollary.
s >
are finite, Mk = Rk'

Corollary 3l.1l, If the Betti numbers Rk

From (31,13) or from the inequalities (31.8) we have
(k = 1,2,noo,r"1)
But the integer r in the theorem can be taken arbitrarily large and the subset

H of critical points can be taken so as to include arbitrarily many of the

Mk points of index k. Hence the Corollary.

Corollary 3l.2, Regardless of the finiteness of Mk—l' Mk and Mk+l

Bon B0 %
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Thet is, if E_ is infinite, one at least of the numbers E or E

k k-1 k+l

must be infinite.
_ We depart from the assumption that Rk is finite and prove the theorems

Theorem 3l.2. If Rk is infinite, Mk is infinite.

If R, is infinite it follows from Axiom II that Rk[X(g)] must become
infinite as the order of g in [ ] becomes infinite; for, each non-bounding
k-cycle in S has a homologous k-cycle on some X(g). But we see from (31.4)

> . > R .
that Mk(g) = Rk[X(g)]. Since M_ Mk(;) for each g, it follows that M is

infinite if Rlc is infinitee.

8§32, Normals from a point to & manifolds Let S be an m~dimensiom 1

regular manifold M of class C"! in an euclidean space of m+l coordinates

(xl, ng (XY xm+l) = (X)o

Let O be & point not on Ms Then the distence from O to M will be a function
F of the point on M of class C" . Suppose that M is regularly represented

neighboring a point P in terms of n parameters (ul, ceas um) in the form
xi = -X-i(u) (i = 1,00.,1’11"‘1)

If O has coordinates (a)

Fe - (- 8,) (= 2,)

Since F is never zero, a critical point of F is a critical point of Fz, and

satisfies the conditions

X,
(32.1) (X, &) -b—u-i = 0 (J =1, eouy m)

J

Since the representation of M is assumed regular the matrix
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)4
(3242) i (L = 1,000 mtl)
o ” au:i ‘ (3 = Lyaes,m)

has the meximum rank m, and the conditions (32,1) are fulfilled if and only
if the vector (X) - (&) is orthogonal to M at the point (X)e

Thus & necessary and sufficient condition thet a point P of M be a

critical point of F is that the vector from O to the point P be normal to M

at Pe

To determine the condition.that such a critical point be non-degenerate,
end to find its index, let the critical point P be taken at the origin in the
space (x), and let the coordinate m-plane X .= 0 be tangent to M at Pe After
a suitable rotation of the XysoeesX axes in the m~plane X +1= 0, M can be

represented neighboring P in the form

a.X.X,

(3263) x = e——

m+1 2 + oan t (i = l,...,m)

where the remainder vanishes with its first and second partial derivatives
at the origin. The coefficients a, are constants. For such of these constants

as are not zero we set

1
r, ==

i ai (1 = 1.0.0,m)

Proceeding by esnalogy with the theory of surfeces (m = 2), we call the

point Pi on the X1 axis at which X 41" rs a center of principal normal

curvature of M belonging to Pe If a,= 0 we say that the corresponding center
Pi is at infinity. The relation of centers of curvature Pi to their base

points P is naturally taken as invariant of any rotation or translation. In

shorter terminology Pi is called a focal point based on Po This term arises
from the fact that light rays emanating from M near P in directions orthogonal

to M intersect the "caustic" at each point P
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We shall prove the following lemms,

Lemma 32.1e A critical point P of F corresponding to a normal OP is

non-degenerate if O coincides with no one of the m focal points Pi of P, and

in case P is non-degenerate its index is the number of focal points of P

between O and P,

Suppose that M is represented near P as in (32.,1), and that O lies at

the point x_,.= o # 0 on the x axise Near P on M we have

m+1 m+l
1
2

F= [xixi + (xm+l- 0)2] (i = 1,...,m)

If one uses (32,3), F takes the form
aix X, 2 i
F = [x X + ( ii - > + .‘.]2

2 z
= [O + xixi(l L oai) + ooo]

X.X

b (]

= 0[1 + i (% - ai) + ooo]

= ¢ +

ii /1
20 (0 - ai) + ane

where the terms omitted are of class C™, and vanish with-their first and
second partial derivatives at the origin.

The quadratic form in this representation of F is seen to be degenerate
if end only if 1 = oe, = 0, that is, if and only if O is at a focal point P
of P We may suppose that o > 0, and we then see that the coefficient in-
volving a, is negative if and only if ai% 0, and if

1
- < g onr ¢c>r, >0
) i i

The lemma follcws.

We have the following theorem,
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Theorem 32.l. Suppose that O is not on the m-menifold M nor a focal

point of Ms Of the normals OP from O to points P on M let Mk be the number

upon which there are k-focal points of P between O and P, and.let Rk be the

k=-th Betti number of M, Then Mk z'Rk and the excess numbers Ek= Mk- Rk

satisfy the inequalities (30.4) and the equality

EO- E1+ de0 (—l)m Em = O.

We seo that the number of normals from O to M is finite and at least
R +R
o

1+ ees *+ Rm

These normals can be regarded as the positions of equilibrium of taut elastic
cords stretching from O to M with their end points on.M, free to move on M
and passing freely through M at any point., The index of the corresponding
critical points can be interpreted as an index of instability, complete sta-
bility arising in the case of index zero and maximum instability arising in

the case of index m.

§33, The three levels of the theory, open fields. The theory of cri-

tical points needs further generality less than it needs effective extension
and application, Basic problems such as the determination of the Betti numbers
of the spaces of paths, and the geﬁeralization of this problem to the spaces

of continuous images of r-discs with prescribed bounding topological (r=1)-
spheres, etc. are typicals In the domain of enalysis, en extension of the
quadratic enalysis of the first sections of these lectures to multiple inte-

grals is needed, and problems in the large, such as the three body problem§,

§ A start on this has been made by Morse and Ewing, Variational theory in the
large including the non-regular case. First and Second Paper, Ann. of liath,
44 (1943). '
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and a non-linear quantum theory based on an extension of the Schrddinger
integral can and should be attacked.

The underlying critical point theory should be developed at three
levels:

(1) A theory of non-degenerate functions.

(2) A theory of homology F-limits without reference to excess

critical points,

(3) A theory of relation between critical groups in the form

of isomorphisms,

Level (1)s The first type of theory is illustrated by the present
lecturess There is a sense in which such a theory is generale It is that
the non-degenerate functions are both metrically and topologically dense
among 2ll admissible functionse This theory is at the simplest level,

Level (2)s The second type of theory is illustrated by the author?s
"Functional topology and abstract variational theory" (Memorial). The funda-
mental theorem is that under appropriate conditions there is in each homology
class a k-cycle at or under a minimum F-level, and at that level there is a
homotopic critical point. Singular cycles ate not adequate for such a theory,

Vietoris cycles ares The theory is based on two hypothesis the Fegccessibility

of the space and the upper reducibility of F, F-accessibility replaces the

compactness of S and the lower~semi continuity of F of the classical minimum
theoryes Upper reducibility replaces the upper inequality in the definition
of continuity,

Level (3!. In a very general theory critical points are too numerous.
One must find order in a maze. In general all type numbers Mk are infinite,

critical points are replaced by critical sets of any complexity, and the
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classification of critical points by indices is replaced by a classification
of critical sets by a countably infinite set of groups of relative cycles
termed "oaps" attached to each critical set. The relations between the type
numbers Mk of the non-degenerate case are replaced by isomorphisms between
groups of caps whose dimensions in the non~degenerate case reduce to the

K %l bk, etc, The theory can be brought to a finitary basis

by the introduction of the notion of "span" of a cycle as in "Rank and span

numbers Mk’ R

in functional topology", Anne of Math., 41 (1940), 419-454, Essentially every
oycle is ignored whose F-characteristics can be specified by limits which
differ by less than e.

Some of the open fields are as follows,.

(e) Quadratic enalysis such as that in §§1 to 6, including multiple
integrals and integral equations with symmetric kernels, Such an analysis
is being developed by liorse and Transue. There is an associated non-linear
analysiseo

(b) Topological problems such as generalizations of the space of paths,
and their relation to homotopy theory,

(¢) Proof that the planetary orbits in the n-body problem are the
reflection of the Betti numbers of the associated space of closed curvese.
Finding thesé Betti numberse

(d) A non-linear quantum theory based on an extension of the Schrédinger
integral.

(e) Related to (d) is a study of singular quadratic integrals whose
Euler equations are of the Fuchsian type (Bessel's, Legendre's equation, 0tCe)e

(f) The Dirichlet problem and minimal surface problem on curved mani-

foldse
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(g) The mathematical meaning and causes of degeneracy, such as the
phenomenon of ellipses on an ellipsoid reducing to the family of circles on
a sphere. There is an underlying topological cause of great applicability.

(h) The meaning and frequency of non~degeneracy in problems of all
types, in particular in minimal surface problems.

(i) The billiard ball problem from the point of view of the critical
point theory.

(j) Critical point theory in isoperimetrioc problems, regarding an iso-
perimetric solution as & critical point on a boundery defined by the isoperi=-
metric condition, and developing a theory of the relations of such boundary
critical points with interior critical points, See for example the theory of

pseudo-harmonic functions in liorse, Topological methods in the theory of fumc-

tions of a complex variable, Annals of Math, Studies.

(k) Various acoessory problems in analysis involving the enalysis of
transversality and critical boundary values.

(1) The search for the simplest non-degenerate function on a given
manifold or space.

(m) The relation of critical point enalysis to topological character-

jstics other than homology classes and Betti numberse



1,

-APPENDIX
A SPECIAL PARAMETERIZATION OF CURVES§

By Marston Morse

le Introduction. Parameterization of curves by means of arc length fails

when the arc length is infinite. The present paper develops the properties

of a special pareameterization of curves which never fails to exist and which
is most ‘useful in applications. The special parameter is called alp-length
and is an extension of a function of sets defined by H, Whitney and applied
by Whitney to families of simple non-intersecting curves, The curves employed
in the present paper are general oontinuous images of & line segment. This
necessitates a slight modification of the definition of Hhitney taking order
into account, The properties of‘P-length developed here are directed largely
towards applications in abstract variational theory. While many of Whitney's

e

ideas go over, there are nevertheless certain sharp differences both in the

proofs and in the results,

2¢ The P:length. Let N be & space of points p, q, r with a metric
which is not in general symmetrice That is, to each ordered pair p, q, of

points of N there shall correspond a number denoted by pq such that pp = O,

pq >0 if p # q, and

<
(1) Pq = pr + rq .

§ Marston Morse, Bulls Amer, lMiath, Soc., vols 42(1936) pp.915-922,

* Hg fhitney, Regular families of curves, Annals of Mathematics, vol.34(1933),
DPpo244-270, Also Proceedings of the National Academy of Sciences, vol.18
(1932), ppo.275-278 and ppe340-342,
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We term pq the distance from p to g Let |pql denote- the maximum of pq end gpe

We term |-pg | the absolute distange between p afid q, We see that_|pq| =1 gpl

pnd thet {pql = pril +1rql « The points of n taken with the distance.|pq|
form a metric space which we d?pot? by | N{ e We_shall use the metriec of N
in def'ining P-lengths, For other purposes, in particular in defining continu~
ity on N and | N| , we ghall use the metric of | N o i
Let t be & number on a closed ~interval*(0, a)e Let £(p, t) be a 'single-
valued (numerical) function of p and t for,p on|N|and t on (0O, Pa.) The funcs=
tion £(p, t) will be termed continuous at (q,.‘“;) if f‘(p, t) tends to £(q, T)
as & limit as |pq| * |4 ~T| tends,to 0. For each value of t on (0, &) end a
point p on| N} et £(p, t) be-a point oh 41}3,#. The {point) function 4(p, t)
will be termed continuous at (g, T) if the distance 4(p, t)d(g, T) tends to O
as & limit as [pgl + |t ~T| tends to O,
Let p(t) be a continuous point function of t for t on (0, a)s We term
p = p(t) a parameterized curve A (written p-curve) and regard two parameter-

Ed

ized ourves_as jidentical if they are defined by the same point function bt

We also say that A is the continyous. image on | Nl of (0,.8)s. In general

curves on I N| will be denoted by Greek letters. o, /2; s:0e9, While points on
i

IN| will be denoted-by letters py &, T, ees o :

z T w3

* For the sake of simplicity we essume that a > 0 and that our p-curves do
not reduce to points, One could hoyvevex admit* p-ourves“wfuch reduce to
pointss The -1engths of such curves is, zero and we would thus admit inter=-
vals (0O, e) for which & = 0, For~such excoptiontl curves Freébhet  distance
is defined 4n the obvious memner. Theorem 2 is obvious if { reduces to a
pointe In the proof of Theorem 4, in case X, reduces to a point, (17) is
an easy consequence of A )\°< prov'1ded 5 is sufflciently small, Other-
wise the theorems and prodf's hold aBs wr’:.’cteh even  when the p-curvbs reduce
to points,

e

% L
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Let A be a p-curve on | N| given as the continuous image p = p(t) of

an interval O s t s as Forn 2 2 let 'bl s tz s ese = tn be a set of n values

of t on (0, a) and let (Pl’ ceey pn) = 8, Dbe the set of corresponding points
pon A, ile term Sn and admissible set of n points on A Let the minimum

of the numbers P.P.yy 88 i ranges from 1 to n-1 be denoted by d(Sn) and let

+1
the least upper bound of all such numbers d(Sn) for a fixed n be denoted by

fln( A)e Following Whitney we then set

(A) (X) (A)
(2) )z)\=f122 +}134 +)14'8 LRI

We term the P the }1-_1_3_&5‘_(:_}}_ of A
We enumerate certain properties of Pn()\) and )1 3
(a) }42()\)
(b) p(A) = 4, and p(X) za

d, the diameter of A .

(c) Pn(/\) tends to O as n becomes infinite.

CRFNESES WHESE

(e) 1If p(t) is not identically constant nome of the numbers )1n()\) is Os

Statements (a), (b), (c¢), and (e) are obvious. To establish (d) let
S, be eny admissible set of n+l points py, ees, P 4 OB A, (n>1), There
is an integer k such that PyPys1”™ d(Sn+l). We shall form an admissible set Sn
on A by removing one point from Sn+1' If x ;4 1 we remove Pye If kx = 1 we

)e

The set of all numbers d(sn+l) is thus a subset of the numbers d(Sn)o Hence

remove p In both cases the pair p , P, Temains and d(Sn) = d(s

n+1* n+l

(d) is true.
Let }J(‘b) be the P-length of the p-curve on A defined by p = p(T) for T

on the interval (0, t). We shall show th&t}l(t) has the following properties.
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(£) /u(t) is a continuous, non-decregsing function of t.

(g) }z(t) is constant on each interval on which p(t) is constant.

(h) }1(1:) is constant on no interval on which p(t) is not constant,
It is clear that/x(t) is non-decreasing, To show that/u(t) is continuous
let n be the p-curve defined by p = p(t) for 0S5t ST< a, and let o be an

arbitrary positive number, There exists a positive number 6 so small that

(3) Ipt) p(T)| 5 2, (TS ¢S T+0 S a),

njo

Let B be the p-curve defined by p = p(t) for 0 St = T +0, Let Si be an ad=-
missible set of n points on 3. Let S:; be an admissible set of n points on n
obteined by replacing each point of Si for which t >T by p(T). No point

of Sr21 is thereby moved e distance greater than e/2., Hence

A

a(s_?)

(4) Fal3) 5 pa(n) e,

Since }l(t) is non-decreasing, (4) implies continuity on the right. Continuiy
on the left is. similarly established, and the proof of (f) is complete.

Statement (g) requires no proofs To establish (h) we assume that there
are values T and v of t on (0, a) with T'> T such that p(0), p(T), and
p(’ri/) are distincts, Let h and k be the p-curves defined by p(t) for t on
(0,T) and (O, 'l:,), respectively, We shall prove that}.lk > Py To that end,
let 2¢ be the minimum value of p(t)p(T) + p(+)p(T') as t ranges on (0, T ),
e observe that ¢ # O since p(T ) # p( ‘C,). Let Sn be an admissible set of
points Pys eees P, oM he We form Sx'1+l on k by adding one point Poe1 to Sn as
follows. If

(5) p,p(T) Zc
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/
we add p(T )e If (5) does not hold we add p(T), and note that
>
(6) p p(T)) = c

by virtue of our choice of ce We suppose N so large an integer that d(Sn) <o
for n > N, For such values of n it follows from (5) and (6) that d(S;ﬁ_l) =

= d(Sn), and hence

(7) J 5)xn(h) .

Since }J.n(h) is not O and tends to O as n becomes infinite, for some value of
n >N,

(8) FaB) < P ()

and for such an n it follows from (7) and (8) that )xn+l(k) >)_1n+l(h)° From
this relation and from (2) it follows that )J.k >}-Lh as stated. The proof of
(h) is complete.

3. Equivalent p-Curves, Let n and E be two p-curves given by the

respective equations

(9) p = p(t) (0

HA
<t
fl

<
a),

b)o

oA
A

(10) q = q(uw) (o

Let H be a sense-preserving homeomorphism between the closed intervals (0, a)
end (0, b)e A homeomorphism of the nature of H will be termed admissible.
Lot u = u(t) be the value of u corresponding to t under H and let D(H) be the
maximum of the distances |p(t)qlu(t)]| as t ranges over (0, a)s The Fréchet
distance 1?.‘5 between ¥ and g is the greatest lower bound of the numbers
D(H) as H ranges over the set of all admissible homeomorphisms H between %

and S o We observe that N § = EWL z 0, and one readily proves that for any

three p-curves YV , i,)\,‘YL)\g Q§+ z>\o
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ile shall say that ul is derivable from 5 if' there exists a continuous
non-decreasing function u = u(t) which maps the closed interval (0, &) onto
the closed interval (0, b) and such that p(t) = g[u(t)]. Two p-curves which
are derivable from the same p-curve v will be said to be equivalent,

Let u(t) be the ﬂ-length of W, from the point O to the point t. Let
t(}l) be the function inverse to }1(17)0 To each value of).x on the interval

0 5).1 =)xn there corresponds a value or intervel of values ‘l:()l). We set

(1) plt(p)] = r(p) , (0Spsp ),

and observe that r(}.l) is single-valued by virtue of (h), §2, We shall prove

the following proposition,

(A) The function r()x) is continuous in}l.

- <, < 5

L = =
Let }10 be a value of )x(t). Corresponding to }10, let 1 t T,z be
the interval of velues taken on by t(),x) at Po (’7-'1 my equal ’L’z). Corres-
ponding to a positive constant e there exists a positive constant ) sQ small
that

(12) Ip(tz3 p(t)| <e, (T §’c§§’C2+ ».

2
As t ranges over the interval in (12), u(t) increases from o to a value

P1 > Poe From (12) we infer that lr(}lo)r(}x)l S e for ).10 5)4 s By Thus r(}x)
is continuous on the right at )J.o. Continuity on the left is established simi-
larly, and the proof of (A) is complete. We shall now prove the following
statement,

(B) The curve v, is derivable from the curve r = r(}x), (0 S P §)ln)c

It follows from the definition of I‘()l) in (11) that p(t) = r[],x(t)],

and the proof of (B) is complete, We term r = r().x) a }J.-Barameterization of n

and state the following theorem,
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Theorem l. Two p-curves are equivalent if and only if they have the

same ),\—garameterization,

I n and § are equivalent, they are derivable from e common p-curve
and will have f—parameteriza’cions jdentical with that of \ « Conversely, if
yLand (S have a common};—-parameterization r = r(}:.), n and & are both deri-
vable from r = I‘(}l) in accordance with (B) and hence are equivalent. We shall

prove the following theorem,

Theorem 2, The Fréchet distence between a p-curve k and & p-curve Y

derivable from E is null,

Suppose y and (S have the representations (9) and (10), respectivelye
Suppose )L is derivable from E under the substitution u = u(t), so that
p(t) = qlu(t)] for t on (0, a)a Let ¢ be an arbitrarily small positive con-

stant and consider the transformation

(13) u = [u(t) + ctl _bTb_c—a.'] . (054t 5a),

This transformetion establishes & homeomorphism between the closed intervals
(0, a) and (O, b)s Denote the right member of (13) by 4(t, ¢), and let A,

be the p-curve

(14) q = Q[ﬁ{(ta c)l, (0 s t = a)e

The Fréchet distance S >~c = 0, For under the transformation (13) corresponding
points of g and )\0 are identical, To show that WLX = 0 we make use of the
<
relation VLK = ALY )\c§ = YL/\OQ If ¢ is sufficiently snaell, points on
¥, end )\c determined by the same values of t on (0, &) are arbitrarily and

wniformly near since g(t, 0) = u(t). Hence 'YL)\C tends to O with c. But YL(S

is independent of ¢ and must then be O. The proof of the theorem is complete.
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We shall now prove Theorem 3.
Theorem 3, If M and § are two p-curves for which TLKS < e, then

s
I)lrt- u3| = 2e,

Let Sn be an admissible set of n points on N e There exists an ad=-

missible set SI’1 of n points on § with distances from the correspondingly
numbered points of Sn less than e; !d(S;) - d(Sn)‘ s 20, and we infer that
l)un( %) —/.1n( YL)lE 26, Upon referring to the definition (2) of F—length we

conclude that Theorem 3 holds as stateds We state the following corollarye

Corollary 1. If % 3 = 0, )1n~=).\3 .

4, Curves. A class of equivalent p-curves will be called a curve class

or a. Curve,
/
Let & and (5 be two cruvess Let W ard ™, be p-curves in the class &,

/
and S and S p-curves in the class (3 e I say that

(15) ny=n s
Relation: (15) follows from the relation

AR EEE G C NS
For VL'Y)_: = 0, since m_end ﬂq: are at a distance O from their common )a-pare.-
meterized curve A in accordance with Theorem 2. Similarly 3 ‘S/= O, Upon
reversing the roles of )Lg and 'vljglwe infer that (15) holds as stateds We

are accordingly led to the following statement and definition,

The distance between any two p-curve classes <\ and 3 equals the dis-

tance between any other two p~curves in the classes o and (5 » respectively,

and will be taken as the distance d\(j between the curves of and (3 .
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Let A be an arbitrary curve with )A-length )1 A A pair (A, }.1) will
. < < 1T e d .
be termed admissible if O PSP For adnissible pairs (A ,)1) let g(A, )1)
be the point on A which determines the }L-length }1 on)\‘ ¢« The following theo~

rem is fundamental, ! F

*
Theorem 4. The point funétion q(A, )1) is continuous in its erguments

on the domain of admissible pairs (A, }J.).
We shall prove (A, ).z) continuous at ()\o, ).10) understanding that ()\o, }10)
is admissible, Let e be an arbitrary positive constant, We shall show that

there exists a pesitive constant 6 such thet if (A R )x) is admissible and

(16) )\/\°<5, ' l};-),\o|<5,
then
(17) dalA, plal X, )-lo)l <e .

To that end we shall subject (S to two oonditions as follows:

~

(1) We take 6.< o/2, If )\)\°< 5, there will exist & homeomorphism
T(s between P-ﬁarameterizaﬁions of A and ’\o in which corresponding ‘points

haveé distances less than (S. If the point },x o A thereby corresponds to M

on )\o) -
(18) lalA, }l)q(")\o. }ll)l <,-§- .
(1) The second condition on O is that § be so small that when
Ipy- po 1 <30, | ;
(19) la( X, plalxe p )] <3

- -

This condition can be satisfied by virtue of the continuity of q()\o, }1) in )1.

* We have not yet shown that for two curves & and B, * /3:: O only if A = [3, °
But this is not necessary to speak of continuity, The proof 'of our theorem
will imply that q(d\,jl) = q((a,)x) when o (3= O,
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With O so chosen I say that (17) holds for admissible pairs (A, }1)

satisfying (16). We introduce T and Py om Ao 88 in (i), and recall that

(20) |q(}1,/\)q(yo,>\°)l§ la(x, plalA s pl+lalh g prlalrg, po) |
The first term on the right of (20) is less than e/2 by virtue of (18) and
the second term is likewise, .provided (19) is applicable; that is, provided
I).ll- /uol < 35. But. under Té & point )1 on A will correspond to & point M
on )\o such that l),l - )11|< 26 in accordance with Theorem 3, Hence

1}11- Po | < 30, (19) is applicable, and the right member of (20) is less than
e. The proof of the theorem is.complete., We conclude this section with the
following theorem,

-

Theorem 5, A necessary and sufficient condition that two p-curves n

and (g have the same P-pare.meteriza‘bion ig that YL§ = 0,

/To prove the condition necessery, let A represent a~}1-parame'berized
curve determined by v end ‘S. Then *L§ 571.)\+ A &. But W A = A \S =0
by virtue of Theorem 2, Hence, the condition is necessary. To prove the
condition sufficient suppose that VL<S = 0and B8t p = p(}x), (0 = B 5)1%),
q= q(}x), (0S P 5).13 ), be P-pa.ra.meterizations of v and § » respectively.
By virtue of Corollary 1 to Theorem 3, P"La }13 e« It then follows from
Theorem 4 that p()x) and q()z) differ by a quantity arbitrarily small in ab-
solute value. Hence p(}x) = q(}x), and the condition is proved sufficient,
Theorem 5 taken with Theorem 1 gives the following corollarys

Corollary 2. A necessary and sufficient condition that two p~curves YL

and 3 be equivalent is that Y\§ = Qe

Another way of stating the corollary is to say that for two curves &

and /3, d\(3=01fandon1yif ok=($o
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Singular’ Homologies

§6o The complex 'E(P)s The theory reviewed here is teken with some

modifications from S, Eilénberg,. Singular homology theory, Annals of Math.

45 (1944) 407-448,
The complex K(P)s Let P be d finite polyhedron with & fixed simplicial
&‘: - - " 5 = 3 Cf
dscomposition. The simplices of P taken without eny ordering of their vertices

3

will be called geometric .simplicese, These simplices will be non-degenerate,

~

that is, the g+l vertices of a gesimplex will lie in no (q-1)-plane.
- E¥Y - ) »
A g-cell of E(P) is an ordered array (vo, eses vqf of vertices of P with

‘possible repetitions, and with the condition that all the vertices in question
= T ;’!, -
lie on a geometric simplex of Pe A g-cell without repetition of vertices is

termed propers with rep;ti'bions ’ degéﬁeratee The f;ee abglian group genserated
by the g-cells of K(P) wi]tl be denot;d by CUK)s There are no rekh tions given
between q-cel;l.s ofd K(P); two q-cells are regarded as the same if and only if
they are given by the same ordered set of vertices, The elements of Cq(K) will
be called g-chains of .K(P)s: To distinguish 'chains.formed:of integral.linear
combimations of the generators, from chains formed with other coefficients
(as defined later) the present chains ey be called integral,

Given a cell, u = (vo,...,vq) of K(P), the boundary Ou will be defined
as the (g-1)~chain

\ i s *
du = ("'1) (VOJOO':{iJOMqu) (i = 0, lsOHoQ)
& &,
the verteéx’ vy being omitted as indicated, That Odu = 0 is seen from the re-
lation i . ¥

o

a(-l)i(-l)j(vo,...,)/j,...,;/i,...,Vq) . (stmmed for- j < i)

\.+

(-l)i(-l)j-l(voaooo,’figoo',fj,ooo,vq) (summed for j > i).

* Ve sum over repeated indices, even if one is an exgonent.

>

R L e,

paaes 5 e L

;,:'_;a,.l..‘&rv

R

e b RAGE L ARG

, 4
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When q = 0 one sets Ou = 0, We extend the definition of Oz to the case where
2 is eny chain n.u, of cd(x) (u; & g=cell of K(P)) by setting
%2 = n O,

We term this extension of the meaning of b, definition by linear extension,

The chains of Cq(K) with vani;hing boundaries are called cycles, Chains ?
cq such that
- od = J2tY

g+l

for éome ¢ are cycles; sinde 00 = 0, ahd ars called bounding cycles. The

group of g-cycles of C3(K) riod. the subgroup "of bounding g-cycles is called

the 'q-dimensional homology group Hq(g) of. K(P), The elements of* HY(K) are

called homology classes. Each g-cycle of Cq(K) belongs to & tmique homology
classe Two g-tycles y and z in the same homology class.are called: homologous N
(written y ~ 2 or y = 2 ~ 0)e The homology w~ 0 is equivalent to the con-

~ . :
dition that w be-a bouyrding cycle, i

§6+ Singular chains in X, Let a non-degenerate g-dimensional simplex

|5 | be yiven in some euclidean space. The vertices of | s | taken in a given
H

order po,...,pq define an ordered q-simplex

e

8 = (po,‘.."“Pq).

..

The ordered (q-1)-simplex

i . X 4
S ==onaoco,x{i"ooo‘.Pq)’r

is the face of s EPE°3%t°‘?i' Given tro ordered g-simplices 8, and 5, there

i .
<t Y0 e Bt &

is a unique affine mapping B(sl, 32) of 8, onto 5, preserving the order :of the

vertices,
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Let X be a topological space. By a singular g-simplex in X we underse
stand & continuous mapping

T . 81-—>-X . .

of an- ordered g-simplex s into X. Two singular g-simplices

) T2 8 —> X,

Tza sz-—a> X
are called equivalent (notation Tla Tz provided Tz B(sl, sz) = Tl. One sees
that the relation of equivalence is reflexive, symmetric, and transitive,

Consequently the totality of all singular g-simplices in X is split into dis-

joint equivalence classes. We might define C(X) as the free abelian group

’ §

generated by these equivalence classess For the present, Cq(X) will be taken

&
as the group with the singular q-simplices in X as generators, and the equi~

velences T,% T, as relatidniss The elements of the group CH(X) are called

integrél singular q-chains,

& chain trensformition I?, Suppose that we have a mspping

L TP =X : 2
of the polyhedron P into X, If u, is a proper g-cell of K(P), ‘a chain
- . N 'S P (s P s P g oo q
&= n.u, will be terméd propers Let C (K)P designate the subgroup of C*(K)
composed of proper chains of Cq(K). The mapping
T}ui:Ti,
defined by T over u, gives e singular simplex in X whichwe denote by T”uio

We shall extend T°® as a chain transformation
(601) 7°: ¢U(K), —> c%(x) o (2 =0, 1,400)

by setting

T° (n.,u,) = n.7° u,.
i'i i i

§ This is largely a metter of notational convenience to avoid having a symbol
both for a singular simplex and the corresponding equivalence class.
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for every proper g-chain n.u, of c%(x),

The boundary 0T°z can be defined by setting
(642) 0r°z = 1°02 (z ¢ cq(KP)]

On applying (6.1)-we have the relation
00Tz = T°00z = O
Thus T° in (6.1) is & homomorphic mapping of Cq(K)p into C%(X) such that
OT° = T0.,
We apply the preceding to the special case in which the polyhedron P
is a non-~degenerate geometric q-simplex Is| o If T: s —> X defines a singular

g-simplex T°s in X then
(643) Ar°s = T°0s = (-1)*rost

‘in accordance with (6.2) and the definition of Os in §5. As previously
001°s =0,

The boundary operator 0 me.ps the singular g-simplex T°s into the singular
(q=1)~chain T°0s, We call a transformation of singular cheins admissible only
if the chain images of equivalent singular simplices are equivalent, The
chain transformation O as defined by (603) is admissible since the equivalence

relation

implies the relation

T 57

o i o o i
181 ° 2%

and accordingly the chain equality

0 = T°
(604) Tl bsl Tz 682 .

PR

I
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Thus

le sl =_bT2 82
in accordance with (6;3) end (6.4), The set of singular simplices in X will

be called a complex S(X),

§7. The deformation homomonphiém D. Before coming to D we need certain

preliminary constructions,

Given a finite simplicial polyhedron P let v be one of the vertices of
P and Rv the closed star of simplices of P incident with ve Let o~ be any
g-cell of K(Pv)‘ Let vo- denote the (q+l)-cell of K(Pv) obtained by writing
out the array of vertices défining 6~ and placing v in front of them all,

If ¢ is e g=-chain n, o7 of K(Pv) one defines the join of v with ¢ as
(741) ve = ni(voi) .
It is clear for q~cells and hence for g=chains that

(7,2) Xve) = ¢ = v0o
When ¢ is a cycle O(ve) = c.

The prism & with base a, Let a be a non-degenerate geométric g-simplex

and A a right prism of unit height with bases a and a's We suppose that A
lies in a (g+l)-dimensional euclideen spaces Points x and x! of a and a' are
said to correspond if x*' projects orthogonally into x. Similarly e geomstric

sub-simplex b of a has a correspondent b' on at, The subset of A which pro-

Jjects orthogonally into b is called the lateral face B with base bs Let v(b)
denote the barycenter of B,
The prism A will be subdivided into geometric simplices as follows,

The lateral faces B will be subdivided in the order of their diménsions‘by

prarey

ppa—
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taking the simplices of B as the straight line join of v(b) with the respec-
tive simplices on thé geometrié boundary of Be In this process the bases a
and e' arg . not subdivided. Let A noW stand for the subdivited prish and B
the ?ubdivided lateral face with base b,

The base a of A is a polyhedron and the corplex, K(a) of §6 is well de-

fined;- similarly K(A)e We shall define a chain homomorphism
{7.3) a1 CYK (a)] = %K (4)] (3=1, 2, euo)

S " .
where the subscript p indicates limitation to proper chains, Let y be a q-cell
. . * * RN . .
and z & q-chain of Gq[Kp(a)]. The image dz of z will be defined by induction

with respect to, the dimension q in such a fashion that

(708) & = v(y)ly'- y = ady]
(7.5) 0dz = z'= 2 ~ a0z *

In (7:;) the notation of a "join",*?s developed in (7,1) and (7.2), is used,
end in (7.5) ;‘ is the image of 2z under the orthogonal projection of the base
a! into the base a. |

TWhen q = 0, Off'= 0z = O, If one defines dy by (7.4), Ody = y'= y in

accordance with (7.2)s If z = n.y, ene sets

(746) dz = nidyi v, .x (a=0)

¥

end (7.5) holds as stateds Assuming then that (7.4) and (7.5) hold for
(q~1)~cells and chains respectively, let y and z be q-dimensional, One de~

fines dy using. (7.4), thus setting dy = v(y)o where ¢ = y'- y = aly, But
Bo = dyt- Oy - dady = Oyt~ Oy - [¥'= Oy ~ adOy] = O

on using (7.5), so that ¢ is a cycle, Henceway = )(ve) = ¢ and (745) holds
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for 2 = y. Onextending the definition of d as in (7.6), (7.5) holds ‘in

generals We have thus established the lemma,

Lomme 7+le The chaein homomorphism d of (703) satisfies the relation

(747) Odz = 2* « z » a0z
Let I stand for the (time) interval O S t = 1 and lot the undivided
prism A be represented as a product a x I. Suppose that a 'mapping
(748) - - Ri:axIe=X
is giw;en, If 8 is an ordered .g-simplex with the vertices of the geometric
g-simplex &, then R°ds will be a singular (q+l)=-chain in X, As seen in (6.,2)
dR°ds = R°Ods

and it follows from the preceding lemma that

(749) 0(R°ds) = R°s? = R°s = R°(d0s)

The deformation D, Suppose that. the image under R of a point (x, t)

ina x I is R(x, t)e For fixed t in I let

Rt: a = X

be a mapping in which Rt(x) = R(x, t)e Let
. D ¢t Xx I X

be a deformstion of X with D(x, t) the image of (x, t) in X x I, For fixed %
let

Dt: X e X

be a mepping in which Dt(x)* = D(x, t)e Let
T s g =X

define a singular simplex T°se Let & mapping R: e x I = X be defined by

setting

i
;1‘,4
| AN
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Rt=D,tT:a—->X (Oétgl)

o s —

for each fixed t. So defined R® cen be regarded as a "deformation" of the
t

mapping T, sirce RO 1t and T is "replaced" at the time t by D Te
Given the si‘ﬂgulﬁr q-s;rnplex o~ = T°s and the éleforme.tion D the singuler

(g+1l)-chain R%ds is determinid, provided R®- DtT.h This mapping of g-cells

o~ = T° in cq(x) into (q%l)=chains in cq+l(X) can be extended linearly to

define & homomorphism

~

(7.10) D :¢¥X) = cq“cl(X)

" o w 1

we designa't;e the image of 2z in Cq'(X) by Dzs In particular our notation implies

A

that

R°ds = Do (rR%= p%r) ‘

1

We write RN
\ -
§ (DlT')°s = Do~

-~

- . -
and term Do~ the final image-of -o- under D, Linearly extended over Cq(X) s D

is a chain transformation . . ‘ '
. 5 cdx) — cUtx) f h
* “f

which replaces s q-chain ¢ in Q&(X) by De in Cq(X). From (7e9) we have

\s TN, :

(7.11) s o =Doa gu Db X
S 3 1 = . : .

3 . ' e . TR A Bi dooL W . - %

and by vi¥tue of the lifiéar externsion of D &nd D &14
. ¥ L e i o .

- " s = B¢ - c'“i:'.&ﬁbé ’ ’ "

where Do is called the final imgge bf &‘uhdér ﬁl B

THe admidsibility. of D, As 'praavf{odﬁiy' indicdt88 5 would not be admitted

as an admissible homomorphism (7,10) unii:eés it were constant over each equi- ‘ a

valence class of singular~q~simplices, T‘w.'b is if T{sl= Tgsz we must show,

-
t
[4
3

£
!

e ey e S S g e =
EEN .
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subjeot to the equivalence relations s that |

= |
[} - (]
(7.12) Dr7s, = DIjs,
To that end let B: 8)—> 8, be the unique linear mapping of 8, into Sge As
previously we define mappings )
Rl:s;xI—éx Rzzssz-—>X )
such that R
t t t_ .t
. R.1 =D Tl.z sl—-a»X R2= D Tye By~ X .
!
Ir 8,~> 8, under B, and-if I is %transformed onto I under the identity, t
8 ma.pping . !
8, X T e 8, X I
is induced under which R1= Rz. The chain equality
# ‘no = -}
. Rldsl desz

follows and this is equivalent to (7.12).
We have thus proved the following theorem.
i;heorem 7ols éc;rresponding to a continuous deformation D of X on X '

- i

there exists a homomorphic mapping

.
- ' p

B: c¥(x) —> c¥*(x)

such that the image of a singular simplex depends only on the equivalence

class and such that for eny chein ¢ in C3(x)
0be = Do - ¢ = 550

where De is the "final image" of. ¢ under D, If ¢ is in a subset X

r

e amn

C X then

1

Do is in the trajectory of Xl under D,

®

——— e ey WL, g R GSERE W amema
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§8, The barycentric subdivision Bz of a chain €. What is needed here

is to know that any singular cycle z is homologous on any subset of X in which

it lies, to a suitably defined barycentric subdivision Bs. q
g Let a be a non-degenerate. geometric g-simplexe The geometric barycentric
subdivision {Ba of a is defined as follows, If a is O-dimensional, let (5& = .

Suppose (>a has been defined for q <k. If a is a k-simplex (pa shall be the

polyhedron obtained by joining the barycenter of a to the (k=1)wsimplices of

- e

the barycentric subdivision of the original boundary (k=-1)=simplices,
We shall now def'ine & chain transformation

- BaE(a) —mE(FR) j

which carries each proper k-cell u of ‘K(a) into a proper§ k~chain

~

(801) Bu ”*Z*ui (i = lpooo,k"'l) 1

* o 3 >
wh?fe lull 2000y | uk+ll is the. set of geometric simplices of /5lul s and
where the linear extension of B to proper k-chains z of K(a) has the property

that OBz = B0z

A st

One defines Bu by an induction with respect to the dimension of u,
setting Bu = u when u is a O~cell, -Suppose that Bz has been defined for all
proper r-chains of K(a) for which r < ke -Let u be & proper k-cell of K(a)

with barycenter v, On using the vertex join of §7 one sets

(802) Bu = vB(Ou)

e Bl

and then extends B linearly over proper k~chains of K(a)es We can show that

(843) 3(8u) = B(d) "

an
The proof of (8.3) is by an induction with respect to dimemnsion proving
3

w

L
. * i
at the same time %Q

§ Kp(a) is the complex of proper cells of K(a)w ;

* As previously | ul shall denote the geometric simplex of least dimension
whose vertices include the vertices of u, ]
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(844) 0(Bz) = B(dz)
for eny proper k-chain z in K(a)s The starting point is the formula (Of,

(7.2))h - e
(845) O(Bu) = B(du) = vO[B(0u)]

When u is O~dimensional, Ou = 0. The induction is automatic, using (8.4) and

the rglation
O[B(du)] = B[O(du)] = o,

L]

assumed valid when the dimension of Qu is less than ke

-The barycentric subdivision of singuler chainse- Let a mapping

- T:g =X
define a singular k-simplex o = T°s, The barycentri¢ subdivision Bo~ of o
is a singular k-cell defined by the right member of the equet ion 4
(8.8) BI°s = T°Bs
One then extends B as e chain transformation§

B: S(X) —> S(X)

by setting B(nici) = n.Bo7. One can prove that
(846) 0Bo- = Blo

e8 follows, We have

OBo- = OT °Bs’ (by definition of Bo-)
; T°0Bs {commting T° and O)
= T°BOs (using (8.3))
= BT°0s ’ (by linear extension of (8.6))
= B (by definition of Oo)

§ That B is constant over any equivalence class follows from the fact that
an affine transformation which carries s into a second non-degenerate
ordered simplex s' carries thé barycenter of s into that of s?',

e ‘
J Y oY

- -

—~

[FORP —
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We have proved the following lemmae

Lomma 8,1y The barycentric subdivision Bz of a singular k-chain is

in eny subset of X in which z lies, and has the property that OBz = BOz,

The chain homomorphism PZ' To establish the necessary homologies
(with moduli §9) between a singular k-chain z and its barycentric subdivision
Bz we shall need the following theorem. Cf, Eilenberg, Op. cite

. Theorem 8,1, There exist chain.homomorphisms

0 c*(x) —> c(x) (k =0, 1,000)

such that the imege oz of any k-chain of Gk(X) is in eny subset of X in which

gz lieg and satisfies the relation

(867) bez =Bz w2 = (obz o

The prism A based on as The proof depends upon a subdivision of the

prism a x I used in §7. In addition to the subdivision of the lateral faces
of this prism introduced in §7, we here subdivide the "top base" a!, replacing
a' by its barycentric division (5&' and then joining the barycenter of the
prism a x I to the simplices on its subdivided bounaary. The base a remains
undivided. Let A denote. the prism so subdivided, Exactly as in §7 we can
prove the following lemma, '

Lemma 842, There exists a chain homomorphism

a*s Ck[KP(a)] — cMx(a)) (k =1, 2,000)

which carries any proper k-chain z of Ck[KSa)] into a proper (k+l)-chain

3
2"z of C¥*1[K(A)] such that

¥
(8.8) 0d'z = Bz! = 2 = a0z .

TR

= j 3 SIS
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Here z' is the k-chain in K(a') whioch projects orthogonally into z in
K(a). N
Let T be the mapping

TMes A e

which projects each point of A orthogonally into a point of ae Let & be.an
ordered g~simplex such that s} = a¢ Let

Ts:s8 =X
define a singular q\-oell o= T°8, The product R = TT mapg A ~—> X, and
induces & chain homomorphism

P c%(x) --a-wcq*l(x)
in which the k-cell o-= T°s goes into the (k+1)-cell

’ Qo = R°d"x
Upon applying the chain transformation R° to the two members of (8¢8) (setting
Yy =8) ;;e find tha‘tg
(8+9) | bfw-:, Bo - o= var
In this application of 1§°; to Bs! in (8.8) we have ysed the .relations
R°Bsxg_;§tR°B_s = (IT)°Bs = T°Bg = B~ _ .-

The equality (8.7) folljgw!s {.:E’xom (849) on -extending @ linearly to k-chains of
o*(x).

Theorem 8,1 follows..

§9. Singular k-chains over a group G, It will now be convenient to
regard the equivalence classes of Qingyilar k-simplices in the topological
space X as the k-cells ¢~ in S(X), Let s},ﬁ(x) be the subset of such k-cells

in 8(X)s Let G be an @belian group with eYements g, A function




‘
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(9.0) - : £t 85(K) — G . -

is called a sing;ulgar k~chain over G provided all but a finite set of values
of z in'G are null, The value z(o ) may be called the coefficient of o
if "one adds k-chains z end w by adding ‘coefficients z(o~), w(o-) for each o

in S (X), one has &n abelian ‘group C (X G) "over G" A k-chain z is regarded
£ - -
as null 1f*each“ooeff1cient is nulls A k-chain ‘may bé given a representation

) - *

5_ ~ =) e + N g K

Sree 2o z = g,0; (£ Iy000,n)
~ -t - : Wt . -
in which the terms written include all o; with non-null coefficients,

-

Equivalently and nearer the hlstorlc origins one could define & k-chain

Lot . =

z in C (X G) by appropriately enumerating the above properties in inverse

order, omitting %He&stateﬁent‘ﬁﬁht % is wfunction of “the type (9.0) since
O kg b .

it is a consequence of the enumerated propertiess The term "the value of 2

at o>", used in funotion theory, parellels the term "the coeffioient of o in

4

5" used in a formal s§hbolic group approachs
Given e finite siﬁblici&l polyhedron P and the complex K(P) one can
. . w4 3 L e b T * - -
similarly define the- groups Ck(K G) of k-chains of K(P) over G,

~

" If o is % ‘k-cell’ in S(X), do- is an dintegraih k-l)-chain in C (X)

with coefflcients 1, =1, or O in the group of integers. If one understands

- f

that ; ~ .
. — e e .,_..l..‘.." g(-o‘) - -go:' row T T z
t‘.he defihiti;'h' A . o
(0:2) COLREACCY

. 2 A \
is meaningful and ylelds 8 (kel)=chain in C 1(X, G)e On using (9.1) and

[ S WY :

the fach tha.t bbo- = 0 one finds that.
0(0z) n'bgi(bci)ﬂa gibbdi =0 ¢
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From the definition of sums and of O it appears that. O(z + w) = Oz. + Ow for

arbitrary k-chains .z and we
The definition over G and in S(X) of bounding k-cycles, the homology

group Hk(Xm G), homology cldsses, etc., is formally -the same 'as Tor chains

over “the group I of integers. . -
The cese of a field G, When G is a field, Ck(X, G) is an abelian

group with operators (See van der Waerden, lioderne Algebra I, p.132), In

addition to the properties of kichains already enumerated we assume that for

8y, b, in G

i
(L = 1,0e0,n)

a,(b,07) & (a;b,)oy

The only subgroups C of k=chains to be admitted are those for which az is in

C when a is in G and z in C,
A base for an operator subgroup C is a set Z of oiements such that any

Vg
element of C is linearly dependent (using coefficients in G) upon some finite

subset of elements of"Z. The number "of elements in & minimum§ bage ‘'is called
In the dases to be’considered éach group-has e

the renk or dimension of C.
countable base, so that its dimension is either a finite integer or the

smellest infinite cardinal, The dimerision of the homology group Ck(X, G) is

called the Betti number Rk of X over G,
A special field, A very simple, finite field is the field GF(2) ‘of

In this ocase the boundary in K(P) of an ordered simplex s is

s = ZE,;i

where the coefficient 1 has been identified with the unit ‘in GF(2),

integers mod. 2,

The

boundary of a linear combination 2 ovef‘GFzZ), of distinet ordered k-simplices

)
P

-§ For the cases at hand the existence of a minimum base is immediate.

Y — .
e n gt s mEE 3i . E. T

By
)
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of K(P), is the sum of the (k=l)=simplices which are incident with an odd
number of k-simplices of z. 1In other words bounding reletions, mode2 do not
depend on the ordering of the Vertices of thé simplices, !

s Cycles mods Ay Let A be a subset of X, A k-thain w in X'whose boundary

Ow is in A is called -a k-oycle moéde Ae If u i8 & (k=1)~chain in X one writes
u~0 (mods A)

if there exists & k-chain w such that

{942) - w=ue=-v (with v in 4).
Since
(943) 0= 00w =20u-~Ov

u is & (k-1)=cycle mode A, We state a lemma of frequent use,
wt ’

Lomma 9e1e If u is (k=1)=chain with u ~ O mods A, then Ou bounds in A,

This follows at once from (9.3) since ‘v is a k-chain in A whose boundary
equails bu, and v is in A, !

An examples Lemma 9,1 can be illustrated as followse Let X be half of
a solid torus in the space of coordinates (x, Ys z)y More spéoifically let

-

d be the circular diso

d(lx-2)2+y2=<rl, z =0

and let the (x, y) plane be revolved about the x axis through 180° so that
d generates a solid half torus X on which z = Os Let d! be the final image
of d in X, Let X be subdivided into curviliflear simplices by first dividing
the circular boundaries. of d and d?, then d and d!, néxt- the semistorus 5

on the boundary of X, and finally X itself, Each simplex x of X may be re-
garded as the "carrier" of ‘4 ¥ingular simplex obtained by & 1 - 1 mapping

of x into & euclidean simplex se In (9‘.2) one can take w eas the sum mod, 2

g m——
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of the 3-dimensiongl singular simplices of X, u and v as similar sums mod. 2

- o

over S and d + 4% respectivelys With A taken as the set on which z <1, (9.2)

holds mod, A and mode 2 The conclusion of the lemma, that bu bounds mod. 2

& &

in £, is obvious, since Ou is the sum of the singular simplicaes "of the oire

o i

-

cular boundaries of d and d!, and bounds in the plane z = O

The carrier of & singular k-chain z, If T: s =X is a singular cell

6‘v~ig:§£v1§h”e=‘imge of | 8| under X will be valled  thé cerrier (o) of o The
carrier of a ochain 2z = gic?.L (£ = 1,;«..,n) in which the o3 represent distinct

equivalence classes axd ho By 0 is defined as
X(z) = Union X("a;.) (4 = 1,000,n)

ES

Recall that the trajectory of a subset Xl of X under a deformation D of X is
the union of the trajectories of the points of Xla It follows from the de=

finition of the (k+l)-chain Dz that Dz is in the trajectory of X(z), With °

Ed ~a

this understood we éan’ stete the following lemme.

Lemme. 9.2, Let 2z bé e singular cycle mode & in X, If there exists

a. deformation D of X such that the final image Dz of z is in A, and if the

*

carrier of Oz is deformed in A, then 'z ~i O-mod. A. =7
In ‘scoordance with Theorem 8,1 - ‘
(944) Wz = Dz = z - DOz

By hypothesis Dz is in A, and DOz is in A since the carrier of 0z is deformed

in Ay That z ~ 0 mode & now follows from (9.4) on re};rring to the definition

¥

- .

(9.2) of an homology z ~ O mode A

-

&

The, following elementary lemma. requires explicit statement,

ier bt ot o =1 e

T e, ST
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Lemma 943¢ If a continuous mapping

St X eemi» Y

of a topological space X into a topological space Y is given, a chain homo~

morghism
%
sT: ¢5(x, 6) —> cX(¥, G)

*
is induced in which a k~chain z in X is repleoed by & k-chain S z in Y, while
* *
08z = 8 Oz

To define S* let Tt 8 == X be a singular k-cell, o-= T°s in X, The

- *
image of o~ under S is defined by the right member of the equation
*
S (T°s) = (ST)°s,
and this mapping of cells shall be linearly ‘extended to chains, We have
* - '
ds e~ = O(ST)%a = (ST)°0s
- o i * *
= (-1)}(sT)°st = (-1)%5™(2%sY) = 50,
* *
The linear extension of this relation leads to the equation 8z =8 bz., end
the proof of the lemme is completeo
> * %
Any chain homomorphism S of the type of the lemma in which 0= 8 b,
carries homologous k~cycles in X into homologous k-cycles in Y. For a

bounding relation z = Ow in X implies the relation

%k
8%z = 50w = 3w

* %k .
in ¥, 80 that S 2 ~ 0 if 2 ~ 0o Thus S induces a homomorphic mspping of the

k-th homology group of X over G into the k-th homology group of Y over G.

The basic isomorphism e If P is a finite simplicial polyhedron, K(P)

is the complex of all ordered gq-simplices 8 such that the vertices of s 1lie

in some non-degenerate simplex of P, A singular g-simplex o~ of S(P) will be

- e s—

| ¥ §
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termed the projection of a proper simplex s of K(P), if ¢~ is defined by the
identity mapping T = I of s onto 8, and conversely s will be termed the pro-
jeotion of o ¢ A singular ke-chain

2 = Siag. (i = 1,400,n)
in which o]

i
be the projection in S(P, G) of the chain g;8; in K(P, Q), and.conversely

is the projection -of a proper simplex s, of E(P) will be said to

g;8; Will be said to be the projectiom in s(P, G) of g,0; in E(P, G),

The following theorem is fundamental,

Thearem 9,1e There exists s chhin transformation

[t K(P, G) —~> 3(P, Q)

in Wh:lch§ each proper k-chain of K(—P, G) corresponds to its projeotion in

S(P,; G), end undér which the k~th homology group of K(P, G) is mapped isomor=-

phically onto the k~th homology group of S(P, G)e There is a proper k-oycle

in each homology class of K(P, G) with a projection in s'(P, G) in ths corres~

ponding homology class of S(P, G)e

This theorem is a consequence of theorems in Eilenberg's paper, op. cit.

-~

The following is the prinoipal application which we shall make of the

preceding theorems Let LY

and Qh the simplicial polygon bounding &t Elementary algebraio methods

ll

suffice to show that the dimensions r, of the respective k~th homology groups

k
r = le It follows from the preceding

of K(Qn, G) are zero, except that r

theorem that the Betti number R, of S(Qn’ G) is similarly zero except that

k

-

R =R =1
o n

§ This is not to imply that f is limited to the proper k-chains of K(P, G).

be a non-degenerate n+l-simplex (n > 0), G a field,
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In partioular there is a non-bounding O-cycle LR and a non=bounding n-cycle
o in S(Qn' G) which form bases for the homology .groups, H°(Qn,- G) and
Hn(Qn~, G) respectively.

" %pe
It is of interest, butfot "essential,

Let 5,,, be en ordered n+l-simplex.such’that lsn and let I be

Al

the idefitity mapping of & ., onto &

+1 +1°

to know that c, °an be taken as the singular n-cycle IOsn+l. If ve Q, is an
arbitrary point and is regarded &g an’ordered. O-simplex,”c ‘can be, teken ds
I°v.

It follows from thé preceding that if X is tHe topological image of an
n-sphere (n*> Q) then .the: Betti numbers of S(X, @) ard all zero ‘oxcept the
numbers R = R = 1, = .

ROLE No Tpr S L. -

In general the Betti numbers ‘which will appear inh the later sections
will be obteinied with' the aid of the .criticel point theory rather than by
reference to a polyhedral complexe One msy -sey that we appréach the homology
groups synthetically rather than édnalytically, JThe sudspaces Wc of W are obe-
tained by letting ¢ increase from-the absolute minimum value of the function J.
One arrives at a knowledge of the homology groups of the spaces Wo by a
synthesis of the topological changes observed in W° as ¢ increases and not
by a simplicial decomposition.and concurrent analysis of a given space WO.

The synthetic method hds possibilities  in topology which have not been fully

exploited,. »

.§lO° Isomorphisms between homology groupse Let X be a topological

space and A e subset of X termed an associated modulus, An n-cycls in X mod,
A will be termed a relative (written rel,) m-cycle in X, _S‘:’gmil:arly, "bound-

ing in X mod, A" is termed “rel, bounding in X", or "rel, homologous to zero".
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If Y isasubset of X it will be convenienf tq associate AN Y with Y as a
modulus, so that a rels cy¢le in Y is a rel. ocycle in X, but in gemsral not

conversely,

Lefmna§10.l. Let X be & topological space with a modulus-A, and Y o sub=~

-
f e

spece of X with & modulus A NY, Let U-be an arbitrary rels homology class

-

of-X, and U' the subclass of chains of U in Y, If "

ot

.. (a) each rel, oyole in X is reli homologous in X to a rel, oycle in ¥,

(8) .If V is a ascond rels homology class of X then

and 1

(b) each rels oycle in Y which is rel, bounding in X is rele bounding ui

in Y, then U' is a rele homology class of Y, and the mapping U - U' defines i;
an isomorphism between the respeotive rel, homology groups of X and of Y,

We must esteblish the following, . 1

(1) The class U! is not ,einpty. L

(2) Chains in Ut are in the same rel, homology class of Y, IE

(3) The class U! is a complete rel, homology class of Y, |

(4) The mapping U = U! is 1 = 1, g#

|

(10,1) U + V! = (U + V)?
The proof is as follows: .
(1) Statement, (1) is implied by (a)e
(2) Let x and y be chains in U'y Then.x and. y are in U and x - y is
rel, bounding in X, By virtue of (b), x - y is rele bounding in Y so that

(2) followss

e o c—

s

§ The lemmas of this seotion are not found in Eilenberg, Ope oite Similar
lemmas in less abastract form were used in the early papers of the writer,
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(3) If x is in U and z is in the seme rel, homology class of Y, then
x - % is rels bounding in Y, and hence rel, bounding in X, Thus 2 is both
a chain of U and in Y, Hence (3) holdse

(4) The class U' cannot be a subclass of distinot olasses U and V.

(5) To establish (10.1) it is sufficient to show that there is a chain
common to both members of (10s1)s Let x abd y be chains in U! and V! respec~
tivalye The mode of adding homology classes implies that x + y is in U+ V',
But x +y is both in U + V and in Yo Hence x + y is in (U + V)?!, and (10,1)
followse

The proof of the lemme is compléta.

I Rk is the k-th Betti number of a topological space X, there exists a
set (z) of Rk k~cycles such that an arbitrary k-cycle is homologous in X to
some finite sum g,z, where z, is in (z) and g; in Go One then terms (z) &
minimal homology base for k-cycles in X over G, Conversely, the number of
oycles in a minimal homology base for k~cycles will be Rk’ A minimal homology
base for k-cycles in X mods 4 is similarly defined.

The following lemma will be used in conjunction with Lemma 10.le

Lemma 10.2, If K is an r-disc with center p, the Betti number R of

k

Kmode K= pis &0 (k=0,1, s0a)s

The proof of this lemma will be left to the reader, Facts useful in the
proof are that the Betti numbers of the spherical boundary of K are all zero
except the O-th and the (r-l)=st, which are 1; the Betti numbers of K are all
zero except the O~th; there exists a continuous deformation of K - p on itself

into the spherical boundary of K.




	Morse_M_1951_IntroductionToAnalysisInTheLarge_Part1
	Morse_M_1951_IntroductionToAnalysisInTheLarge_Part2
	Morse_M_1951_IntroductionToAnalysisInTheLarge_Appendix

