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Introduction

The geometry of numbers arose from the problem of Tinding solutions
in inte;ers. of the nroblem of naking one or more functions in several vari-
aples as small as possibles Tlie {irst general method was given by Ch.liermites
By means of his method of continuous variables, he showed how to make a posie
tive definite quadratic form in n variables small, and Ifrom this pesult he
deduced similar incquo.}ities for indelinite quadratic forms and also for
forms of higher derree, The bounds found by him were very large when the
number of variables was .80, aud his nethod sometimes involved a lot of arithe
metice

In his desire to simplily Hermite'!s work, Minkowski wes lead to a
very simple, but powerful, method, based on -eometrical instead of analytie
cal ideas, gnd he called the new theory the Geometry ol Humbers, This theory

. is based on the tio concepts of
1) the point lattice, and
2) the convex domain,.
It will be convenient to euplain his ideas in the two dimensional case, bee
fore beyinning with a more nodern gnd pgeneral n-dinensional theory,

N . /A.\ Let o, ﬂ, a; ,5 be four real
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~ lattice S\ 3 it contcins among




others, the origin
0= (0, 0)
and ‘the poiats _
Pa(%,y)y Q= (%+A,p+d), R=(4,%)
and thesc four points
o0rqnRr
form the vertices of a parallelogram, evicently of crec
aA) =l d- 4 g | >os
d(/L) is.called the cCeterminant of the lattice and . ives o :ecsure for its
finenecs, -
Let next I. be a convex region with centre at 0; it is thus a set
with the properties,
1) if (xl,yl) and (xz,yz) belong to X, so does every point of
the line seynent
(t xl+(l - t)i,, b yl+(1 - t)yz), vhere 0 <t <1,
joining these tiwro points;
2) if (x,y) belongs to K, so does the syrmetrical point (=x, =¥);
3) 0 = (0,0) belongs to X3 and
4) K is a bounded closed set,
.ssume I is of area Je The similcr convex ro_ion X.(0,0) consisting of all

. 2, 1 , o J . .
points (& x, % y) vhere (x, y) belongs to X, is then of area & since it hes

linecr dimensions just hall as l.rge as thoso of I,
Tlext denote by W(u,v), where u,v run over cll integers, the set
of all poinvs

(F x +=tu tAv, Ly +yu -!-Sv), vhere (:,y) belon; s to Lj



Hence K(q,v) is congruent to X (0,0), and similarly situated, but has its
centre at the point (% u #4v, yu *Sv) of.k; also K(u,v) is therefore
of area -g- s
The set X contains the origin O as an inner pointe It is easily
shotm that X contains ancther point (du+/3 v, yu 4 gv) (u,v £ 0,0)
of A if and only if the two congruent sets
K(0,0) and K (u,v)
have at least one point in commony moreover the lattice point is an inner
point of X if and only if the point common to ¥ (0,0) and X(u,v) is an
inner point of bothse
Ilence if no point of A aitferent from 0 is an inner point of I,
then no two of the sets ‘
K(u,v), vhere u, v = 0, #ly #2, eqe,
cdn everlap, as O can be moved into every other lattice point by a transe
lation of the plame which leaves the configura'tiion of all sets ¥ (u,v)
wichangeds Assume this &
Denote now by coOa large positive integer, There are (2004 ZL)2
lattice points of JL such that
lul S, I vl e,
and the sets K (u,v) belonzing to these £ill an area just equal to
(Roo # 1)2 % »
Since K is bounded, there is a constant ¢ > 0 such that every point (x,y)
belonzing to one of these sets K.(w,v) is of the form
(s u? * AV, a)u' 4 Sv')
where

‘u'l 50.34-0, !v’] §(;a-l'-s::.
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Dut the totality of these points lJorm a parallelo;ram similor to O P QR
and increased in the r.tio
T:2(w#c),
hence of area
4(w @ c)2 d(vAv) .
llence .
(2co s 1)z %_§ 4(co + c:)2 d(,/Z.).

‘s s 2 . . . ‘s
Cn dividing by > and allowing oo to vend to infinity, we et

352 a( )

as a necessory coadition that no lattice point % 0 is on inner point of I,
One usually talkes for.J\.tne lattice of 21l points (u,v) with integral co-
ordinates, thus of detoerminont d(JA,) = 1; then J S 4 s the necessary con-
dition that no noint of J«_e:cept 0 is on inmer point of I

The whole proof can immeciately be extended to n Cimensions. We
can further ask whether the constont 4 may be replaccd by a smaller one,
“hile this is not possible for cll convex sets, it can be showm that better
results hold il X is neither a paralleclojram nor a convex hexagon, and line
kowski showred already how to obtoin the best possible inequality for the
case of 2 or 3 dimensions,

In the two boolis by Minkowski already yiven and in his colle works,
Minkowski made many applications to continued fractions and the thcory of
algebraic numbers, DBut in this seminar we shall restrict the discussion to
questions in the jeometry of numbers, and I siall nowr begin with general
results on lattices and point sets which have proved of imwortance in the

modern study of the subject,



Totation

Let Rn be the Juclidean scace of all points
X = (xls 3:20 veey xn): Y = (Ylo y2" ssey yn)" etc.,
with real coorcinates, e use the stondard vector notation and write

. \
=+\Jx§+x§+... "‘Xi

Zor the distance of Il from the orizin

-
i

0= (O, O, s, O)

of the coordinate system; further Il + Y for the points

I+Y=( xl; Vye ::2; Vos seey xn; Yn) )

and t+ « for the point
o= (txl, txz, vaes txn)

where t is any real number, The points

::l’ --2, LA A Y] “1{
arc inde_.endent if no relation

Syigh Bt eee * R = 0
with coelficients not all zero holds. At most n points

~r ~e -
o - L XN J -l
1? 2! >

“ ,

can be inde.endenty and these n points

- (x(k) “gk), “(k))

“x o M1 7 feer
are indepeuncent if anc¢ only il their determinant
x(l) sen X(l)
1 > 7 "n
*
) ()
n ,..’ n

T w————




is dilferent from zero.

Let now

-

<19 112, soe, ::n
be any n indepondent points, Then the set JLoif all points

Xo=owp b sl eee U X (W), Uys eee, =0, F1, 42, vee)
is called a lattice, or more exactly a l}omogeneous latticey; it is the addiw
tive free Abelian group of n.gengro.tors. These n generators

Iil, Xz, ooy I:n
are called o basis of A » ond the qbs.olu'be value
A = | {rps 5 wems 1} >0
of their determinant is called the determinant of .,/L ¢ Any other n points
Yl, YZ’ oney Yn of A for:m o basis of this Inttice if and only if also
d(./(,) = l {YI.’ Yoy ese, Yn} ' H
the determinant is thus indejendent of the special bLasisy moreover necessarily
R
T, = Z:i By 2. (h = 1,2,044,n)
with inte;ral coefficients By- of Ceterminant #1,

A further importont quantity comnected with _A_is the diameterS(JL)
of this lattice; it is defined as bthe smallest dis"bance between any two difw
ferent points of A o Lvidently S (A) is equal to the distance between
0 and the nearest lattice point ;4 0; hence g (-/L) >0 e;:ists,_ as every [inite
part of snace contains only a {inite number of lattice poini?s.

As o consequence of the theory of quadratic forms, wre shall later
prove the {ollowing resuvlte

Bvery lattice _/L contains a basis 121, 312, coay :;n such that

| !::zl oo L3l Ty, al)s

JLl



here yln is a positive constant depending clone on the dimension of the
smace R considered,
- n
If./L is ony homorseneous lattice anc Ko is any point, then the
set of 2all points
Pl g where I & A ,
form what we call an inhomogeneous lattice
= I +A;
0 .
o all X 5 [y, eewy Ky & 185i8 Of L, if Xy, see, i form ome of Ao The
first elenent Xo of sgch a basis can evidently be replaced by any point
I,k X where X € AL, without clenging Le
The determinant and ?he Ciarieter of L are the same os those of /L
aL) = dA), QL) = o (A%
in particular, S(IQ neasures ajcin the smallest distance between any two
distinct points ol Le
srom llinkzowskits theorem on convex bodies, and from the previous
result for homogeneous lattices, it is possible to deduce that every inhomoe

geneous labttice L possesses o basis 2l 3 ., esesy w_ Such tlat
0 1 n

< a(L)

, Ko l nW ] ’Kl' ':;ZI XY l ;\-.n[ § a>n d(L):

here 3)n is the same constant as before, and fﬁn is a fuwrther positive

nunber denencing only on the dinension n of Rn.

Limits of lattices,

JJe can introduce the concept o a conver; ent sequence of lattices
.Al, —/\é‘ ./\_5’ oo

or more generally




Ll’ LZ’ LB’ ses o

If, say, L. has the basis ::C(f); zzgf), coes :;r(f) , and if there exists a lattice
L of basis xo; Xl, oo, Xn such that

linl yj(cr) = ;;k (1.\-.:'0, l,coo'n),
then we say that the lattices L% tend to L:

lim L =1L,

r
I=——>00

This conver;ence eviuently implies that

lim  &(L,) = 4(L)e
X w00

It is easily secen that, in every bounded closed part of space, tlc voints
of the lattices Lr tend just to the points ol L; hence also

lim S(Lr) = S(L)e

I ==>00

On putting Xér)a 0, XO= 0, we pet the analogous de:initions and results for

homogeneous lattices .

The following definition proves ol rreat uses

Definition: An infinite sequence of homogeneous/lattices_A-l,H/Lz,...

(or of inhomo:eneous lattices Ll’LZ"‘°) is called bounded il there exist

two positive numbers c, and c, such that
&~

1

nA

atA) T o S(A) B,

l’

(resvectively

) Fep,  S)Fe,)

for 21l indices r =1, 2, 5, ses o



Basic theorems on latticose

FProm the definition, the following result is obtaineds

THEOREM: Let Jtl’ .A-z, ese (Ll, Lo, .,.) be an infinite bounded

sequence of homogeneous (inhomogeneous) lattices, Then there e:ists in it

a convergent infinite subsequence
S —— i . . - v .

A, A (L, L )
o 2 oS00 ? ¢ oo
rl I‘z rl rz

vhere

<r <r3<ooo.

1<%

Proof: It will De omflcient ‘l:o shbw the assertiomw for tha ine

homogeneous lattice sequence Ll’ Lz, ess o Tor each lattice I, - select
a basis

xgr) : XY). .oy xff)

such that

‘X(r )l __S___(ti_@_)___l_ ‘X(r)l |Xgr)‘ lxl(lr)l s Xn d(Lr) ‘

Then from the hypothesis

,X(r)l g = f}'(r)l ‘é)“—'f for k=1, 2, sae, 0

m
2

¥n

for all re This shows that all basis points are bounded, Ilence we can

(L) z >

seloct an infinite sequence of indices

Tys Tos Tgy eve with ry <r, < Ty < see

such that the n+l limit points



() (e (r,.)

X =1lim X% 3 Xo™ lim X, 7 5 eeey X = lim X 7
? X o} 1 ] 1 noo n
exis‘b.
Evidently

. _ ‘ (r) © (e ) 7 7 (r)y &
{::l’ -‘\-2, ooy --n} = lim Xl ] Xz > S0y ;:n } [

k>0

whence

(s - [ | (2, ()
.(Ll, -»2, ¢ev 0y 4.n JI 2 2 3 *pea -ILn

k-»m
n .
> 2
= lim d(Lr)"-—-—--—>Oo
kw0 k b’n

Hence Ko; Xl, ssey Kn is the basis of a lattice, L say, and then

L= lim Lr »
ke>m k

whence the assertione

10
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Ldmissible and Critical lattices,

Iinkowski studied th:ie relation of a lattice to a convex set; let
us generclize his ideas and consider the relation of a lattige to an
arbitrary point set which nced neither be convex nor bounded,

Let S be any point set in Rn. .is usual, a point X € S will be

called an inner v»oint of S if all points of a certain neijhborhood of X

also belong to S, i.es., if there e:ists a positive £ such that
xes, |x=-vl <€, imlies that also YE S
“Je introduce now the following two slightly different delfinitions

for homogeneous, or inhomojeneous, latticese

Hefinition:A homogeneous lattice JL is called S-admissible if no point of /L »

[l

except possibly O; is an inner point of T,

An inhomogencous lottice L is called S~-acmissible if no point ol
L is an inner point of S,

This distinction is justilied since now 0 ploys no distinctive
role,.

In the honmojensous case, it would be sufficient to comsider only
point sets symmetrical in 0, or denote by

5% = s U(~8)
the set ol 2all points X such thit
X €S or -l €S8 or bothg

then A is clecrly S-admissible if ond only if it is S*-admissible.

Torether with point sets, vre consider al;o sets II of homogeneous
lattices Jd.or sets b of inhomogencous lattices Lo In either case, ire
call the set closed if with every conver ent sequence of lattices it con-

tains the limiting lattice,

-
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Definition l. Let ii be o fixed closed set of homogeneous lattices

_A._, and let S be a noint sete Then we say that § is of the infinite type
Were t0 1. if no lattice in Ii is 3-admissible, and e call S of the finite
type if at least one lattice in 1l is S-u.dmi;siblo e In the {irst case put
Alsli) = o,

and in the second case denote by A(S | M) the lower bound

AN (st = 1400 a(A)
extended over all S-admissible lattices in lls licnce in the socond case

05 AN(S|u) <

Definition 2, Let A be o Tixed closed set of inhomo;eneous

lattices L, and let 8 bo a point set, Then we say that S is of the infinite
type we re to M ii.‘ no lattice in G is Seatnissible, and othervise call S
of the finite types In the first case put
D(S |#y) = o0 ,
in the second case denote by D(S |4b) t he lower bound
D(S | A ) = 1o be (L)

extonded over all S-admissible lattices in A, Tence in the second case;

0D (8| ) <@
In the definitions of A\ (S| M) and D(S |#6 ), it is not essontial that Il
and b are closed sets of latticos, This restriction becores, hovrever,
fundanental for the applications of previous resultse

Delfinition 3: The lattice JL is called a critical lcttice of S

We I's to II if
1) A is S-admissible, and

2) a(A) = A(sl
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Definition 4. The lattice L is called a critical lttice of”

S We e to b if
1) L is Seadmissible, and
2) a(A) = p(s | Ab)

The existence of critical lattices,

The first problem is to decide which sets have cx"i\’:ical lattices,
naturally ncbevery set has this propertye A trivial reason for having no
critical lattice is jiven if _

Al =0or o,
respectively if ‘ )
D(s|AMo) =0o0r 0 o
For if one of these two functions is , then no critical lattices
exist since there are no admissibles onesr; ond if the functions are 0, then
ag/ain no critical lattice exists since every homogeneous or inhomogeneous
lattice is of positive determinante
In the case .
0< AN <o ,
respectively ‘
0< D(8 [A4) <o ,
the position is differents Then a necessary and sufficient condition for
the existence of critical lattices is given by the following theoremss
THEOREIE 1: Assume O < A\ (s | )< e Then § has at least one
critical lattice w.‘r. to M if and only if there exists an infinite
bounded sequence of S-admigsiblq lat'l_:ices
A A, A,

in M such that ' . .
lim d(-/\.r) AN CIE I

I'~>»00
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THEOREME 2: Assume & < D(S |Ab) < ®e Then S has at least one

critical lattice we re to M if and only if there exists an infinite bounded
sequence of S~admissible lattices

‘ Lys Lps Los see
in//é such that

lim d(Lr) = D(S | A4b)e

r=»00

It will be sufficient to prove Theorem 1; since Theorem 2 can be
proved in exactly the same wayse

(&) The condition is necessarye Ior if JLO is a critical
lattice, then the sequence ]

Ay Ag A e

has the asserted properties, ‘

(/3) The condition is also sufficients For let 'Al’ Aa, -/\.3, ooe
Be o sequence as described in the Theorems Since this sequence is bounded;

an infinite subsequence

./&v A\, J&v s ese (V< V2 V<)

exists which tends to a la’bticeJL H and.A- belongs to 1l since M is assumed
closeds ‘e assert tha.tJL is the wonted critical latbice,

For, flrstly, ,
A ) = 11m a(\ ) - lim d(./L ) = A(s] M) .

Secondly./L is S-admisz::ible. If not, there exists & point X A0 of_/L which

is an inner point of Se¢ Dut ¥e can select in each lo.'btice./\.. a point P
s . . rk rk

such that lim P oxists and is = P

kw00 IC
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Therefore, for sufficiently large k; Prkis an inner point of S; contrary
to the assumption thataAL”r is S~admissibles

For the applicatign of this regult, the most interesting cases
are that I is the set of all homogeneous, or 46 the set of all inhomoreneous
latticesy and in these cases we write simpler

A(8) and D(S) .

But before studying these functions; I shall mention the case of lattices
over .lgebraic fields where it is importent to have the more general

theorems abovee

Lattices over an algebraic field,

Denote by

1

£(t) = ‘bM-I-’Cl'bH- + eee # T

11
a fised polynomial with integyal coeflicicnts 1hich is irreducible in the
field of all rational numbers, llo denote by K* the set of all polynomials
in t with real coefficionts with the convention that any two such poly-
nomials are considered as identical if their difference is divisible by £(t)s
and we denote by I the set of all such polynomials vrith rational coefficients,
Then K‘is o finite algebraic field of @egree Il over the ratignal number
field, and K* is a ring containing s iIrom ﬁhe definition, it is clear
how to define the <four operations in X and K*.
et let
n=1UN

where N is any positive integers, /e define the space RH(K) as the set

of all points

X = (x]’.’ xz’ ooy xN)



1a

where the coordinates xl,xz,...xN are in K*. The sum or diffecrence ¢f such
points is defined as usual, cud if x is any eleient of K*, then x X donotes
the point
xX = (x X1s X Xos ey X xN) .

Dvery eleoment x of K*can be written in a unique way in the reduced

form .
x ; (00 (1) b eas b x(ERL)IERD s

thus every point X of RH(K) in the reduced form

X = (X§o)+ x§1)t - x:([“13-1),011-1, . xffIO)* xlgl),c ot xg.f-l)tm.m).

Let now
Xl, Xa‘ s00y ::I-I
be any N points of RN(K ; ve thgn define as tho determinant

. z >
™ L X N )
“ l) 2.’ ’ XU

of these points the ordinary n-th order deternminont in vhich the rows are

glven by the "reduced cocflicients™

0) (1 11 o ‘
x](' )’ x](. >, [ A NN X:E ), e« ¢ 8 g3 3&% )' xN )’ “o0o0y QQH
belonging to the n points

1%=~1 1,

- 12
Xl, ‘le, essy t Xl’ . s -IX-N; t XH, [ XX ¥ ] tF i °

If this determinant is not zero, then the set of all points
L= xgly * X2 + eee + 0,

vihere the coefficicnts

o 1 1), 11 o
xp, = x}(1 R x}g J 4 coet xl(1 g (h = 1,2,400,N)
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run over all elements of K with inteogral coefficients
1 ‘ . 1=1 .
xh(o), xlg ): edoy x1(1 ) (h = 1,2,404,11),

is colled a lattice A over K, and its detorminant is defined by

d(~A-) = ' (X]_s in ecey XN> l > Oe

If we map the point X in RH(K) on the point

(X:(Lo)’ x§1) vgu-l), (o),

s se0g X oo s Xy (1) (lPl))

Xy Te eeeXy

in ordinary space Rn, then A evidently corresponds to a lattice in this
spadé of the same Geterminant, Dut this lattice in Rn will be specialized
and not the most general onc,.(Inhomogeneous lattices can be defined analogouss
1y),

There is no difficulty in delining coaver:ence of lnttices in RN(K)
and to apply now the theorems 1 and 2 to such lattices, since the set of all
lattices over X is closed,

L:iamples of the existence theorcms,

The theory of imhomojencous lattices is much lessc developped than
thet of homojenous ones, Iron now on, I shall then restrict myself to the
considercation of homogeneous lattice point problems in Rn .

srom Theorem 1, it is limediately clear thot every point set.S has
critical lattices if it satisfics the following.two conditions:

1) A(s) < oo;

2) 0 is an inmer point of S,
while the lirst condition is natural, the same connot be said for 2),

Another, even simpler, consequence of Theorem 1 is thot S has a

critical latiice if it has the folloving two properties:
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1) A{s) >0

2) S 4is a bounded dst,
Again 1) is a natural condition, buf not 2)e-

It may be best to sive a numbor of oxamples for the case of two
dinensionsy
1) DRemove from the plane R, 81l circle areas of radius %m‘.th their
contres at the poirts with inte_ral coordinates, For the ‘resuiting open
set S; the lcxl;fcice A of all points with integz_-a.l coordinates is clearly
admissible, hence also every sublatiice of /L & But no other lattice is
admissible; hence A (5) = 4, ./\. is the only critical lattice, and the set
of all adndssib]:e lattices is emxmerabiec

The last example ig di;tinguished by the fact that the Swadmissible
lottice -/Lcdnsists of points all of which have distance -jl from A, It

6
is thus not at all necessary for o critical lattice to have points arbitrarily

e
neatr to its set,
2) One can show that the set
Se¢ O = Xy S
is of deterninant A(S) = 1, and that it has an infinity of critical

lattices, namely ell lattices of the form

-A%:P-uwm)#ﬂgb (4,7 = 0,%1, 32, eav)
where %. is-an arbitrary positive mmiber 4 Dencte now.by S, the subsst of
all points in S which lie at a distance not yrecter than r » 0 from the
origine Then it is exsily shom:x that

A5, 3= 0,

Thus although, for r = o, S tends to S, it is not true that A(Sr) tends
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to A(S)e The functional A (S). is thus not always continuouss
3) The set 8 Just considered is a proper subset of the set
S*: OSXYSI‘I'—Z-]-}-Z .
: : : x*y .
If (%,/3) b >0, A> 0, is any point on the boundary of §°, then >
the lattice _/\_a( of all points ' ‘ o
w( & ,0) + v(0,/) (U, = 0, #1, %2, 44s)
is §"-admissible, and it had the determinant
d(_/tu%) = ot/ >1
On maling og24//32'sufficienﬁly large, we con evidently make the
difference o ﬂ; - 1 as small as vre lilta! but never equal to le Hence
Als¥) =1,
and vhile S*has a continuwous infinity of admissible lattices, it has no
critical latticese
- By a more complicated ::ethed, one cen obtain an (unbounc}ed) point
set with an enumerable set of admissible but no.critical latticesy
4) Denote by € any number such that 0 < 86 <1, and by QG the square ring
e mx (=}, yl)S1.
It is easily seen that
' (1 ire< &y
A(‘Qe) R :
T if &8 = 5 o

\ L

Hence. even for bownded sets L (S) is not necessarily a continuocus functiomal
of Se ¢
5) A star domain is defined as a closed but not necessarily bounded point

set with the following pronertics:



20

b) O = (0,0) is an iumer point, and S is symmetrical in O,

/b) If X belongs to S, so does t X if Ostfl .

X) The boundary of § is a continuous curve which is out by every

line from O in at most one point,

A simpler definition of a star domain is by means of a distonce function
F(X) = F(x,¥),. ie0ey & function with t he following properties

o) F(0) = 0, F(X) 2 0 for all X

A) P(EX)=|t | F(X) for all X and real t

a») F(X) is a continuous funetion of X

ol

1,
i

Fx) = |ay | and p(x) = |x%|
are examples of distance functionse, Of the cofresponding star domains
lxylfl and 'x2y151,
the first is of the finite, the second one of the infinite type.
For star domains, A\(S) has certain continuity nropertiess In
partj.culm', let Sr be again by the set ol all X in 8§ for Which‘ X i s p o

Then, if S is a star domain, then

A(3) = 1in A(g) »
r

=300
This proof, and many other one, all usethe compuctness property of the set

of all lattices,

The povin‘cs' of a critical lattice on the boundary of S.

‘e saw that a critical lattice of an arbitiary set need not have
points arbitrarily near to the boundary of S, On the other hand,_ it is
triviel that if § ¢ F(X) = 1 is o star domnin of the finite type, then, for

& > 0, there exists at loast one lattice point P of every critical lattice
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such that

-

lsF(X)<i+§g

, Here the equality 8ign need not hold, as the ex:ample of the set

S*t (x2+ y?.) ‘,yz <

with 2\ (S*) - Vg\ ghows; for this {s o suhset of
- 5 |x|S1 .

with A\ (S) = r o Dvery critical lattice of § is also critical we ry to

s* 2 but has clearly mo point on tho boundary of § Mol N

Outlook,

#e

The functjonal _A(S,) is ebsily seen %o be an affine invariant
Just as the area v(s) of 8y It has 'bhereforga. interest to study relations
between A\(5) and V(S)s For convex domainsy Iinkowski¥s theorem gives
: ¢ Aes) T ,
vhile for star domnins the Hlankas dnltowski theorem states that
- (s) T2 $(2) A\ ;
enalogous inequalities with 2B jnstead of 4 and, 2% (n) instead of 2 ‘S {2)

hold in Rn ]
.- Other important inequality relations are given by Minkowskifs

theorem on the successive m:.nm& of a convex bodyy; and its recent enalogue

for arbitrary set by CeileRagergs All such rosults and still undigcovered

;‘_ oncs form the subject of the Geonetry of mumbers,

:
]
h
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Thq}rsuaceasive Minima of a Bounded Star Body,

fle intend to prove liinkowski's theorem on the successive minima
of @ bounded convex body (syymetrigal in the origin), but we can define the
successive minima for any bounded star body, Recall that & bounded s&tar
body is a st consisting of those points X in n-dimensional real Fuclidean
space Rn such that F(X) s 1, where F(X) is a contimious function such that
F(0) = 0, P(X) > 0 for X #£ 05 and F(tX) =| ¢  F(X) for real t and all X,

THEOREM « To every bounded star body K: F{X) =1 and to every

e

le.tticeA o there exist n independent points Pl’ Pz, stey Pn g_f_./L and

n positive numbers P, Pys sesy P, With the follawing properties;

(a) F(Pl) = Pqye F’(Pz)" Poe eee F(Pn) * Pyy

<
(b) plspzsooo"Pn ’

(c) if1 Smnd¥n and P £ 0is linearly independent of

Pis Pps eees B¢ then F(P) Tp o
Proofs For every ¢ & O the star bady ¢ K: F(X) So 18 bounfled
e e o )
and so containg at most & finite number of points of . , Hence there exists
a positive number pl'such that F(P) < Pys is satisfied by'no lattice point-
P X O, but that F(Pl) s Py for at least one non-zero httice point Ple
Assume now that for 2 S m S n the lattice points PL’ Pz, Y Pm-l and theé

constants Pys Pgs see, have already been founds Then there exist lattice

Pm-l
points linearly independent of Pl’ Pz, Y Pm-l‘ hence there also exists a
constant P> O such that P(P) < P is satisfied.for no lattice point P ¥ 0

linearly independent of P;, Py, ees, P .y» but that F(Pm) = p, for at least
one lattice point B linearly independent of Pis Poreae ’val’ This proves

(a) and (¢)s The inequalities (b) hold since the successive p's are the
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minima of F(P) on smaller and smaller sets of lattice points,

Definition: The constants Py Pos eeey P in the preceding theorem

are oalled the successive minmima of K3 F(X) S 1 39_./\..

THEOREM; The successive minima depend only on K and./L and are

otherwise uniquely determined,

Proof': Suppose that the independent lattice points Pl’Pz""’Pn
with the constants Pys PpsssesP, and the independent lattice points Ql,Qz,....Qn
with the constants Qys9ps++»q, both satisfy the conditions (a), (b), (c¢) of
the preceding theorem, ile claim then that P1™ 915 Pp= Qos seey P, Qe
Clearly P;® Qs since both must be the minimum of F(P) on the set of all
non-zero lattice points, Assume now that for some m (2 Sms n) we have
P1® G1s Pp™ Gpr sevs Ppy Gys B O
say
Pp = Qe
Now the m-1 points Pl’ PZ’ P Pm-l and als 0 the m points Ql, Qa, ooy Qm
are linearly independent, Hence there is an index/ﬁb » 1 é/ulf m, such

that %ﬁb is linsarly independent of Pl’ Pz, Y Pm~ But then

l.
<
F(Q) = 94~ ay <Pps
contrary to the property (c).

Definition: Any set of n independent points Ql’QZ”"’Qn of /L

satisfying
F(Q) = pys” F(Qp) = Pps eees F(Q) =1, 4

where P1sPpseqesP, 8re the succesive minime of K: F(X) S iE;dA—, is called

& system of sygcessive minimum points of X in AL .

Thus a system of successive minimum points is ay set of n inde~

pendent points satisfying the property (a) of the first theorem of this
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section, where Pys Pps ves, P are the established successive minima, e
now show that a system of successive minimum points automatically has property
(c).

THEOREM: If Ql'QZ""’Qn is any system of successive minimum points

of X 1n_A‘and if P‘¥ 0 is any point of./L linearly independent of Ql’Q2’°"’Qm 1

(15ps n), then F(P) = Py
Proof. The assertion is true for m = 1, since F(2) z Py» if P £ 0.
Assume that for some index m with 2 = m = n there is a non-zero lattice point
P linearly independent of Ql’Qz""'Qm~1 satisfying F(P) < P,* Then p, < P s
since no non-zero lattice point satisfies F(P) < Pye Thus there is a uniquely
determined indeg/U/.z 2 such that
gtv-l< p/“, 2 I/)u.-l-l: e B Pmo
The httice point P is also linearly independent of Ql’QZ”"’%m-land satisfies
F(P) < .
(P) Dy
Further from the definition of the Q's we have
F(Ql) = P1< Puw> F(Qz) = Py < P/W"”’F(S‘q,-l) = B“"l< 13"«'
By the definition of gﬁh this requires that all/pv points
P,Ql,Qz,...’aﬁ"l
are linearly dependent on Pl’ PZ""2§0~1’ where P., 09 vee Ph are the points
of the first theorem of this section, Hence P, Ql, QZ""’9u~l are linearly
dependent, Since Ql’ Qz, cony 3* j8re linearly independent, this implies
that P is linearly dependent on Ql’ QZ""'?L 1° This contradiction completes
the proof.
These basic theorems on the existence of successive minima are true
bounded

for an arbitrary /éar body, For the special case of a bounded convex body,

i.e., a bounded stur body K: F(k) - 1 whose distance function F(X) satisfies
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the additioral condition
F(X + Y) T F(X) + F(Y) ,

ikinkowski proved the inequality

PyPyee by V(EK) = 27 a(A),
where d@/L) is the determinant of the lattice A, This is soretimes called
Linkowski's second theorems His first theorem, namely that A(K) = 2™ (k)
for a bounded convex body K, follows from his second; for if _A_ is K-ad-
missible, then Py 2 1 and hence d(JL) 2 V(K)e Before proving I'inkowski's

second theorem, we need some additional preparations,

A Basis Dptermined by n Independent Lattice Points,

I Pl’ Pz, soe, Pn are n linearly indevendent points of the lattice
A s they do not in general farm a basis for.zﬁ_. However the following
theorem shows that it is possible to find a basis Zl’ZZ""’Zn for the lttice
such that for any m, 1 Sns n, linear dependence of a point in Rn on Pl,
Pz, ese, Pm is equivalent to linear dependence on Zl’ Zz, toe, Zm'

THEOREM: piy Pl, Pz, Y Pn are any n linearly independent points

of a bttice.uﬂ_, we can find a basis Zl,Zz;...,Zn for the lattice such that

= i: s Z (h=1,..o n)
h T e S X sn)s

where each LIRN is integral (1 SkSns n) and 81 h 21 s h = 1,,..,n,
Proof, For m = 1,2,...,n denote by Wm the set of all points

< < <
Z = t.P.+ ees +thm9 O“tl"l,o.o, O-tm-

< <

1
It

'

! ! t < < < ,!' <« ' <
Zat P*coo*tmpm' O-tl'l,ooo’ O“tm_l-l,o<tm"l,

171
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!
is a second point of Nb, then Z is called lower than 72 if the Pirst non~
vanishing one of the diflzrences
‘ 5 to- b,
tmf tm ’ tmnln melf *t0r V1T M1
is negative,
Since the set Wm is bounded, it contains at most a finite number

of points of the lattice /L ; and it does contain such points, for example

the point Pma Hence Wﬁ contains a lowest lattice point, say the point
= S s s s
Zm ’cmlpl+ [ X N ] + /Cmpm, O ‘Jml l’ ®esy 0 'Em,m"l 1, o <’Um 1.

We claim that Zl’ ZZ’ seey Zn as just defined forma basis for.Jq..
(To get a basis it is not essential that Zm be the lowest point of_/L.in Wh,
but only a point of Ain Nﬁ with minimal tm. However the above choice gives
a unique character to the prososs), |

Clearly the n points Zl, Zz, esay Zn are linearly independent and

so every point X in the space Rn can be written in the form

X = tlzl"" ees + ‘thn

with real ccefficients, . must show thut if X is in.Ji_, then tl,tz,...,tn
are integers,

Let this assertion be false and suppose that tm is fractional,
while tm+1' tm+2""’tn are integral (1 s m s n)e Then the assertion is also
tfalse for

X - ([tm] Z * A

m+1%me1 ™ 00 7t tnzn)’

where [x] denotes the greatest integer not exceeding the real number x, There

is therefore no loss of generality in assuming that
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0 < tm <1, tm+1= tm+2
so that X is of the form

X=tZ+'bZ+ e '!'tmzm, O<'tm<lo

By expressing Zl,Zz,...,Zm in terms of Pl’Pz”"’Pm we get

X=t1(rcll 1)+t(b21 22 2)"'... +t(’t P1+ vee * T P)
= u1P1+ u2P2+ ess *+ uum ’
where
,U T = v =
w= By Tyt t Tapteeet B et 1 Y Pt B Sy B © o

In particular, since 0 < tm < 1, we have

<u < T
o] . bmmo

Therefore the point

*
x= (ul- (u]) Py¥ oeee * (um-l- I:u‘rr*.--l]) Pt %l

belongs to both /L and Wm and is lower than Zm. This contradiction shows
that if X is in./L and

X =th1+ ses + ¢ Z

then tl, *l;z,...,tn are integerse Thus 2 Zz,...,Zn form a basis for_/\- o

l)

Since Pm can obviously be expressed as a linear combination of

Zys8peese,Z With Teal coefficients (1 Sm S n), it follows that actually

P 8,,4.%+ 8

17 511210F° 8p1%7% 8g0lps eees B = 5 00t eee + 8 2

with integral Sh1c 15k n s ne In particular

1 > .1 >
sn,c.].:-]_’"”snn_.,&._...l,
nn
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A General Theorem on Bounded Point Sets,

The followinz “hooram provides the simplest proof of I'inkowski's
first theorem and will be crucial in proving his second theorem.

THEOREM: Let S be a bounded set of volume V(S) and ket /A be a

lattice of determinant d(A.)s If V(S) > d(A), then S contains two distinct

points X, end X, such that X - X, # 0 lies in A,

1 1

liinkowski's first theorem follows from this by observing that if

the volume of a bounded convex body K: F(X) S 1 exceeds 2° a(A) = a(2A),

then K contains two distinot points Xl and Xz such that Xl

Then %(Xl- Xz) / 0 lies in. A and is a point of K by convexity and symmetry,

- Xzil 0 lies in 2_/\_.

To prove the above theorem let Zl""’zn be a basis for /L and
denote by D the parallelopiped of all points

< <
X = xlzl+ ese ¥ ann’ 0 « X< 1y000,0~ xn <1,

1
To every point X of S belongs a unique point Q = Q(i) of_/L such that
X=X - Q(X) belongs to De Since S is bounded, Q(X) is one of a finite
number of lattice points, say Ql’ seey Qr' .renote by Sg s for § = 1,4.4,r,

the set of all points X for which Q(X) = Qg and denote by T = Sg = Qgthe

g
congruent set in Dy No two of the sets 8 ¢ have points in common; also V(S‘S )

exists, since Sg is the intersection of S and a certain parallelopiped.

Therefore r
V(s) =) V(Sg) s
§=1
Evidently V(T% ) = V(.S:g ) and hence
r

]

v
il
[
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Now if no two of the setS'T? have & point in common, we have
v r

v(sy =y vir) =W 1) Su(D) = adh),
R=1 S=1

But we are assuming that V(S8) > d(A). Hence two of the sets TS » S8y Ty
and Tz, have a point X* in common. Thus there are points Xl and Xz in$S
such that
=X =X
ST} =X Qe

Then Xl- Xz = Ql- Qz is a non-zero point of‘J«., which proves the theorem,

Obviously the result of the theorem is true in fact for an un-
bounded point set in Rn of volume greater than d(JL), for such a set must

contain a bounded subset of volume preater than d(JL).
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Davenport's Proof of Minkowski's Second Theorem.

The theorem is as follows.

THEOREM. Let X: F(X) <1 be a bounded convex body of volume V(X),

_/\~ & lattice of determinant d(JL))and Py» Pps sesy P the successive minima
of K in A, Then

PyPgees an(K) < 2B d(jL).

Ve first give .avenport's proof, Suppose Pl'PZ""'Pn are a system
of successive minimum points of X in JAg. Then we can find a basis zl’ZZ""Zn

of /L sueh that

P = S Z (h = l,2,...,n)
h tkul nk

with integral coefficients shk(l < k<h < n) and Spy > 1 (h = 1,2,40.,n)

Every point X in the space R can be written in a unique way as

X=X 2% wplot eee X202 [X),%0,000,% ]

with real coefficients xl,xz,...,xn; and X belongs to ,4_ if and only if these
coefficients are integers, We shall call xl,xz,...,xn the coordinates of X,

Clearly if a set S has a volume it is given by

v(s) = a(A) §5 .00 § dx, dxpee e,

where the integrution extends over all points X = [xl,xz,...,xn] in S,

Denote by K, the set defined by F(X) < Ppe From our general theory
of successive minima for bounded star bodies it follows that if a lattice
DPyseceyP

1’72 h-
linearly dependent on Zl’ZZ""’Zh-l’ and hence X, = Ry 1™ o0 = X,= Oe

point X is in Kh, then X is linearly dependent on P 1? hence X is

Now we remark that in order to prove our theorem it would suffice to

construct point sets Kh* (not necessarily convex) with the following three



properties;
-
(&) Bc
(b) if X(h*l)and Y(h*l)are two points of Kh#l* with the same last

n~h coordinates (1 Sh f‘n « 1); then there exist two points X(h)and Y(ﬁh)

in Kh* guch that X(h)- Y(h')n X(hﬂ)- Y(h*l)o

. s, ‘

(e)  VIK,") 2 pypyeeep V(R)e -

For suppose that we ¢an coustruct. sucH sets end suppose

Py Py ese By VIE) > 27 d(A)s

Then
v(k *) > 2% a(A) @ a2

~»

and Rence there oxist two distinct pofots X Mend-¥{®in Kn*such thet

™ ¥ 1166 1n 2 he Thus 3™ ¥(8)) g5 1n A and &

. ! since Kn is

gonvex and symmetrical, and hence the last coordinate of %(X(n)- Y(n) ) is
~

g(=1)_ y(m=1), y(n)_ ¢(m)

simoe 3(xP"1o v(®1)y 15 40 A ona K _,¢ it8 lagt two coordinates must be

(ne1)

-1 nel el
zero, t.e., xn(n )- yn( )and xn-l(n )ﬂ yn-l Continging in this

way we finally cet two distinct points X(l)and Y(l) in Kl*such that
X(n). Y(n>' X(n"l)- Y(n.l) LI T x(z)_ Y(z). x(l)-’ Y(l) .
then 3(x1)e ¥(1)y 15 & non-gero lattice point im §,» & comtradiction,

Thus the construction of sets Kh‘ with properties (a), (b); and (o)

would give Minkowski's second theorem, Actually the sets Kh‘ which we shall
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define will have the property

n~h
* : * P + *
(d) V(Kl ) = pan(K), V(Kh""l )=< ;hl V(Kh ) (h = 1l°°’ln-l)l

which of course implies (¢),

The construction is as follows, /e define Kl*ﬂ Kl' Je suppose now
that Kh* has been defined and proceed to define Kh+l*' Ta do this we find
h continuous real-valued functions {bl(xh+l""’xn)""’ Cbh(xh+1,...,xn)
with domain the projeectijon of Kﬁ on the space spanned by Zh+l""’zn and
ranges such that the point [ Cb 1reres q>h’xh+l’°"’xn] lies in K,» That
such funqtions exist is intuitively quite plausibles However, for Davenpart's
proaf- to be completely satisfactory this should be proved, e shall merely
indicate ¢ne possible method of establighing this existence, Denote by
Kh{°h+1""’cn] the set of points of K with

The1™ Cney? 000 2 XpT O e
Then we could define

Cbl(ch"'l,.."cn)....’ ¢ h(ch‘*l’.."cn)

as those real numbeys such that the point

[¢1).003 ¢h' ch"‘l’.."cn]

is the centroid of Kh[°h+l""'°n]’ i.e.,

SS . ’S X dx, dxpeavdx)

“lenegeerscy e (k = 1,2,p00,h)0
S-S .o 'S AR Ao eqedry

Kplopayseeesc,]

¢k(°h+l’ ey lcn) =
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It can be proved that with this definition the point

[Cb secey by seeesC ]
1 v h? "h+l n

lies in Kh and that(?k(ch+l,...,cn) iin? continuous function of Che12%°°9C,
for k = 1,2,40e,ha However we shall do this, since we shall subsequently
give Minkowski's more elementary proof of his second theorem,

Now if X = [xl,xz,...,xn] is a point of k, we put

@(X) = [¢l(xh+l:°'03xn):°‘°:4)h(xh+1!°"'°:xn)§xh+ll‘°'sxn]'

Thus @}(X) lies in Kh and actually depends only upon the last n~h coordinates
of X« If X = [xl,xz,...,xn] runs through all the points of Kh*, we now

define Kh+1* as the set of points X! = [xl', xz', . xn'] given by

p
Xt = X + (

h+1 N
- D Q= g

or, more explicitly, by
Phe1
Py

X

' = Er 1) §>1(xh+l,...,xn)

L] L [ ] . L L] * L] . [ ] L L] * . . * L] L [

P
h+1l
xh' = xh"‘ ( Ph - l) ¢h(xh+1'coo,xn)
p jo
h+l h+l
f = i - =
a1 T Tt ( Py 1) %pay Py Thtl
P
x ' =x+( htl | 1) x = Bl .
n P, n P, n

It is easy to see thut the function \{)(X) is in fact a one-to-one mapping

E 3
of Kh onto Kh+1.

horeover qD has the property that if X' and Y! are two points of

—
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Kh+l* with the same last n - h coordinates and if X and Y are the correspond=-
ing points in Kh* under the inverse mapping, i.ee, if
=gy, v=97,
then
X=Y=X'-7Yt,
Thus the one-to-one mapping ;Pnlfrom Kh+l*t° Kh* has the property needed to
give (b)..
To prove property (a) we naturally proceed by induction and assume

that Khi:: K o+ Then if X' is in K, s Wwe have

p
}1:;1 - 1) @(X)»

where X € K "= K and @ (X) = K. Hence

Xt = X + (

p +
P(x') SR(X) + ("%LL - 1) F( $ (@)
Phs
< pp* ( g L

- 1) ph = ph+l'

so that X' € K, .o Thus Kh+;G: K, end (a) is proveds

Finally the first part of (d) follows from the fact that Kl*ﬂ Kl is

given by F(X) < Pye Since the cross-section

Fpe1” Cpe12te0¥y” Oy

of Kh* has the same h-dimensional volume as the cross section
Phe1 Ppay

t =
ph ch+l,00l’xn ph n

t 2
hel

of Kh+1*’ the second art of (d) follows, (.ie see this by integrating first

with respect to XypseasXy and then with respect to Kpppeec ey for the two
. * . *
bodies Kh and Kh+1 $

to give the actual volumes), However (d) implies (c), and thus Minkowski's

of course both integrals must be multiplied by d(/\)

second theorem is proved,
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Minkowski!'s Proofy

As in Davenport's proof we £ind a basis zl,zz,...,zn of the Mttice

AL such that
h

Py = g}. 8yl r Sy~ integer, shh2 1 (h = 1,2,4e0,n),
where P]'..Pa,...,Pn is a system of successive minimum points of K in A
Also we represent each point X in Rn in the form

X= xlzl* x222+ edes * ann-‘-‘ {xlgxai‘oochn},

where we call ’xl,xz....,xn the coordinates of X, Again volumes are found by
integrating with respect to XqoXoyeeerX, and then multiplying by d(./\).

A8 earlier let D denote the fundamental parallélopiped consisting of
all points of the form

< < <
X= lel"-sza* eve +ann. 0~ x1< 1, 0~ xz< l,00e,0 = Xn< 1.,

Egr any point set S let us denote by S the set of points X in D such that

X +Q is in S for some Q in ..A.. Thet is, 5 is the point set obtained from
8 by replacing all the coordinates of all points in S by their fractional
partse We observe that the arguments on pps28-29 show that if S is a bounded
point set of volume V(S) and if S does not contain two distinet points X,
and X

sueh that X = X, lies in A, tren v(s) = v(8).

a 1

Wé consider the n point sets
Hia F(X) ¢ % Py (i = 1,,5.,n),’
Since obviously
H1 Yomes Ha = eve = Hn'

wo have

-

H

lc: ﬁzc: se0 CT Hn
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and hence
V() SV, T .. TU(E) T a( ).
1 2 n
Clearly Hldoes not contain two points Xl and Xz such that xl- Xz is in_/\..

For otherwise

2Hl: F(X) < Py

would contain two points Y= 2X1 and Y, = 2X, such that Y;~- Y, is in 2 A3

then %{Yl- Yz) would belong to aﬁl,a contradiction to the definition of Pye

Hence
- n.
V(H,) = V(1) = (zp,) V(K)s
The bulk of the proof consists now of showing that
- > Pia Pt
(A) V(Hiﬂ) = ( ) V(Hi) (L = 1,000 n=10

Py

From (A) hinkowski's second theorem follows at once, for we have

n-l n~2

- - - - p2 PS Pn
V(Hy)eee V(Hn) > v(Hl)... V(Hn_l) (51-) (-13-2-) veo P
and hence (
- _  P,PgeesP V(K)p,P,yeeeP
aA) TR ) TV 22 . 12 o
n 2
Py

Now (A) is trivial if P;,1° Pj» 80 suppose that Py < Py,ye It Xl

and X, are two points of H, . such that X)- X, is in A, then the kst n-i

2 1 72
coordinates of Xl- Xz'mnst be zero; for otherwise Xl- X2= %(ZXI- sz) would

be a point of A which is in
2H;, ¢ F(X) <py 4
and which is linearly independent of Pl’PZ""’Pi’ a contradiction to the

definition of Pi4y® Let M(l)danote the set obtained from the point set M

by replecing the first i coordinates of each point of M by their fractional
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partss (Thus M(n)n ﬁja' Then by what has just been said the set Hi+1(i)

contains no two distinct points Xl and Xz such that Xl- X, is in /. Similarly

for H.(l)c: H, (1) o Thus
i i+l

V(Hi(i)) - v(Hi‘ij = (§,)

I& =] (1)
V{H, . V(H ( )= V(E, 1)
so that to prove (4) it suffices to prove

n-i .
Wy 1+]\ v(ni(l))o

1

Let us define a body H 188 follows:

If [xl,xz,...,xn] runs through the points of H,, then

P-:. jo
i+l i+l
— Xpseeer 5= Eps Xpppeees®y]
i i

runs through all the points of Hi;i+1' Thus if [xl,xz,.s.;xn] runs through
all the points of Hi,i+l’ then

(x X, P1+1 X, Fin x_]

l,nao, 1_9"—5;— l,oho, pi n

runs through a1l %he points of Hi+1a ve claim that

(c) v, . 2 )
and

. p. n-i .
(D) v, U = (22 vy,

i

These two give (B), hence {A), and thus Minkowskifs theorem,
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To prove (C) we need the following lemmeg

LEMMA, If G is & convex point set in R end ¢ 2 1, then

V(&) < v(ET).
This is proved by observing that if P is some point in G, then
G-Pct(G=-P)=%tG=-tP
where G = P means the set obtained from G by subtracting the vector P from

each vector of ¢ (and similarly for t+ G - t P)s Hence

V) =V({E=F) SVET=FD) = V(EDe

Let now Hi[ci+1""'°n] or Hi,i+1[°i+l’°’°’°n] be the set of points

of Hi or Hi,i+1 with
X 1™ CiaproeesX,™ Cpo

Then by the lemma (applied to the space spanned by Zl,Zz,...,Zi, i.e., with
i in place of n) we see that the i~dimensional volume of Hi[°i+l’°°"°n](i)
does not ‘exceed the i-dimensional volume of Hi,i+l[ci+l’°"’°n](i)‘
Therefore by ihte rdtich with respect to Ci,12°0 090, We got the inequality (c)e

the points df Hi+1(l)come from the points of H (i)by multiplying

i,i+l
each of the ¥ast n-i coordinates of each point of Hi,i+1 by pi+l/bi°

Hence (D) follows, Thus Linkowski's second theorem is proved,



T N

39

Reduction of a convex body.

n
Let £(X,,s00,% ) =
1 n i.za’—?rl

B35 X3 ¥y be a positive definite quadratic
form with real coefficients, Minkowski called f(xl,a..,xn) reduced if for
every n-~tuple of integers (gl,‘s",gn) such that (gk'gkﬂ""'gn) have no

common factor

f(gl. cvey gn) 2 akk (k=1,noo,n)

and if

akk""l f 0 . (k“l,lo.,n"l)'

From this definition he proved thut for & reduced form

811 S8 T eev 58

:Zajkfakk (3 <Xk)
®11° P2z ¢ ¢ % S yn D s

and where Yn is a constant depending on n and not on f(xl,...,xn), and D is
the determinant of the mtrix Ha‘ij H of the form,

This reduction can be carried over without much difficulty to the
case of an arbitrary convex body, as we shall show

Let Rn be Euclidean space of n dimensions. e shall consider a
lattice _/Lin Rn generated by n independent vectors Xl,...,}{ne

Let £(X) = f(xl,...,xn) be a real valued function of the elements
of the vector X and satisfying

i) £(X) > 0 except when X = 0, £(0) = O,

11) £(tx) =|t |£(%X), t reel,

i11) £(X+Y) < £(X) + £(Y).
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Let Gk be the set of lattice points

a1X1+ a2X2+ cee + aan (al""’an integral)

such that

(ak’ak‘l-l" ceny an) = 1.

e make the following definition:

£(X) is reduced with regard to the basis X1s K59 eee, X if for

every k and for every Y € Gk

lie shall prove the following result,

THEOREM: For every function f(X) satisfying the conditions i), ii),

iii) there exists a basis Xl,...,Xn for which the body (or the function)
£(X) is reduced.

Proof: Let Yl,.'..,Yn be any basis of the lattice., Then any other

basis Xl""’xn is obtained by a unimodular substitution, viz.

(Xlgooo,.xn) = (Yl’""Yn) U 3

where U is a unimodular matrix (with integral elements and determinant + 1).
Let U = (uluz...uh) where uy denotes the kth column of U, Consider

now the first column ul of all the unimodular matrices U, Choose now ul in

such a way that

L, = f(Xl) = f(Yul)

is a minimum, This minimum exists (from definition of convex body),

Consider now all unimodular matrices U whose first column is ul and

choose the second column u, so that

2
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L, = f(Xz) = f(Yuz)

is the smallest possible, It is obvious that

L <L, .

This process can be continued and we finally obtain a matrix U =l]ul

U, ceo uni‘ in such a way that

2
(Xl’ esey Xn) = (Yl,Clc,Yn) U

and

f(Yul) ff(Yuz) 5 D f(Yun)o

(xl,...,xn) is obviously a basis of the lattice since Y TITN & is one,

1

Further if vy is any column of & unimodular matrix such that Vi is linearly

independent of Uyseeesy gs then

f(vak) > f(Y.uk)o

Let now U be u unimodular matrix whose first k-l columns coincide

k-1
with those of U, Then

)’ E = Ek_ll

where B is an integral unimodular matrix, Consider now the kth column of

Uk-l' ‘Let it be Yy and let the kth column of
E A
NS
be 0]k= E « Since B is unimodular (qk,qk+1,...,qn) =1,
9
Furthermore

%" U Qi »
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Hence

£(Yow) < £(¥ew) = £(Y.U. gy ) = £(X. )

f(X1q1+ X2q2+...+ann).
Now qul+,,‘+annls in Gk end we thus obtain

f(xﬁolk) > £(Y. uk) =L .

It is obvious from Gauss' theorem, that O)k can be quite arbitrary
so long as (qk’qk+l’°"’qn) = 1. e thus obtain from any basis ¥,,s..,Y &

reduced basis Xl""’xn’

Thus if Xl,...,xn is a reduced basis

We shall now prove the following result,

THEOREM: (Weyl - Mehler), If £(X) <1 is reduced with regard to the

basis Xl""’xn then

#(a-1)(n-2)
£(X)) £(Xp) eee £(X)) < 2"(.21)2 %.

where d is the determinant of the lattice and V the volume of the convex

Proof: Let Pl,...,Pn be the successive minimum points and Ml,...,Mn

the successive minimum values of the convex body f(X) < 1, so that

£(p,) =1 (k = 1,440,n)

and Pl""’Pn are linearly independent.

Since Pl""’Pn are lattice points we have
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Pl = a11X1+ a12X2+ see ¥ al X

*® & & ¢ ¢ © ¥ 0 b ¢ o s o e O

Pk B ak‘x * &1{2}L Toees 8’kn n

(\~‘%n = an1Xl+ &n2X2+ ver * annxn
Now Py,ess,P are linearly independent and hence there is a j ,1 < j <k

such that
ajka ajk+1, svo ’ajn

are not all zero (since otherwise Pisess,P, would be linearly dependent)

So let for some j, 1 < j <k
( ajk& ajk+1f°":ajn) = d >0 4
If d = 1 then Pj € Gk and hence
Lk ff(Pj) = Mj < Mk .
If d >1 let us put

a,jr+ g, = O(mod d), lgrk <

ol o

(r = 1,2'000,1{"1)0
Consider now the point
1 .
Q=g (Py% g X+ gpXpb eee + g 1K 1)
This is obviously a lattice point and what is more it is en element in Gk*
Hence

g 8yny
L SRQ) s i)+ byt e v B 1

Mk L+L+...+Lk_

2




Wle shall prove now that
L‘{fekl\/&{ (k= l,qao,n)

where 6, does not depend oa £{x),

Obviously L,= M, €0 thet 9,= l.

1

Let us aszsume “ha%

< < <
Ll - 91 NIl 8 Lz . 92 I\/IZ, ¢ o e 7 Lk_l"' gk"l Mk"l L]

Then if 4 > 1 we have
< Mk 91M1+ 92M2+...+ gk-le-l

2

1" O e Oy

(- - ) 1

(from the property My =My =0 0 0 = Mn).

Hence in this case
o (L2 % B
k o °

Thus in general we have

1 + 9 + e +...+ g
0, < nax (‘1. 1t %2 k-1 \) ,

2 /

so that
3 k-2
Ql=1,92=10009k=(’2-) ? O & & o e o

e have thus shown that
< _ 4 9
I = & M % =(z) .96 =8
and therefore
<
Ll Lz vae Ln “/MlnMIMzo..Mn »

5 lt2+i.om-2 o 3(n-1)(n-2).
M= () =(3)

44
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Minkowskifs fundamental inequality on successive minima gives

n
) Mzo,omff—-‘.‘- .
v

Using the last {two wragualiities ws prove the theorem,

PSR . 2, s ;

In ocnes £(X¥ = f(:hlp..o_.x_; is a quadratic form we can give more
* ad

pracies resuvite.

Let
£ (X) = £ (x scensX ) = ( Z alaxlxa)

be a reduced quadratic form: then applying the theorem (Weyl~Mahler)

- zzn (n‘l)(n'_éz)

o] e

1

11 %22 **° fan —z
v
3 * " . <

where V is now ‘the volums of the Ellipsoid Zaijxixj -1.

en n
va = ’r:.(.fl\_..j I s i D":L .
g Flrdg® P T bP
Hence 2
e 5 22 3) " _Gan »
2 To

811 %22 **° B

where D is the determinant of || a.in .
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The Minkowski-Hlawka Theoren,

Suppose we have a bounded open set K in n-space, whose volume is V(K).
Minkowski's Fundamental Theorem gives a lower bound for /\(X) in terms of
V(K) if X is convex, Hlawka!'s Theorem is an inequality in the reverse di-
réction for a less restricted class of K.

THEOREM: For any open set K in n-space, n z 2, we have

(1) A Sy,
(ii) if K is symmetric in the origin AN Siv o,
(1ii) if K is a star body VAN f_?_}(f_i_)_ s
(iv) if K is a symmetric star body VAN 2?%7 .

The last statement is the Minkowski conjecture first proved by
E. Hlawke [I»@ath.Zeit._ﬂf_(1944)pp.285-312]. Further proofs were given by
HoWeyl (unpublished), C.L.Siegel [Ann,of Math,46(1945)pp.340-347] and
CeA.Rogers [Ann.of Math.48(1947)pp.994 - as well as another unpublished
prqof]. The pr oofs of ileyl and Rogers are of a very elementary nature and
the exposition here follows mainly Roger's unpublished proof (which is very
similar to Weyl's).

Notation: Summations will be over integers or lattice-points according
to context, Z/means exclusion of the origin from lattice-points or zero
from the integers, z* is a sum over all primitive lattice-points. (A point
P of & lattice /\ is called primitive if P is in ./\ but not in k./\_ for
any k > 1.) '

Integrations will be over the whole space, but since we shall be
dealing with functions which vanish except in a bounded region, no questions

of convergence will arise.
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LEMME 1., Let £(§) be a neal valued vontinuous function of positionr -

in n-spatse, vanishing outaide 8ome sphere. Then, given £ > 0, there exists

.

a Ia"ttica/\. such that

sy e, Zlexia § a$ngre . )

For the moment we assume this lemmm, The proof will be given later,

LEMMA 2¢ Let (%) be a real-valued none-négative continuous

function in n-space, vanishing outside a farge sphere. Then, givén & > O,
- e eren g_out ot pherc 1y £1

there exists a lattice A such that,

AT =1, TP <y J PE3E + € .

Proof: This lemma follows formally from lemma 1 on writiug

£(%) = g:,,_(o)np(v,f ), where pu i3 the liébiug function, Difficulties of
> 0

-~ convergence -arige, so we defime /wN(m) by the relation

le- = Z v é
Pq( p~%) v>oﬂn(\>) "‘Wn’

‘It can essily be shown (6.g. by multiplying by 3(3) and compafing coeffis

cients) that |
1 if N, ,N =1
Z/-*b(d)- ‘_ plm =>p > ¥, say(p,M)

dl m Q otherwise
Write

2(§) = I AgOITO ).

By lemma 1 there exists aA such that

S e (x) <j £(€)a€ac,
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Consider the two sides of this relation, Firstly

> e(x) =Z*Z>'_Of<m - S (99 (v 55)
J

350 V>0

-5 * AP(mx) =S " X ,
> ;;0 2 @) ) = R ) >S4 (x)
v>0

since ¥ is positive, Secondly /

ER =§O/‘°N(“)JQP(V§)<1§

- Z,uN(v)v“‘jepcfmf gﬁm fcm‘f)df <7§1'r5) f”ﬂf)d‘f +€.

Thus Lemma 2 follows,
Parts (iii), (iv) of our theorem are easy deductions from lemma 2,
Consider a star body K: F( f) < 1 of volume V < g (n); or of volume

V < 28(n) if K is symmetric, Define

1 it F(E) <1
P(E) = 1 ECE)- if 1<F(g)<1+38
& it F(€)>1+8%

Choose § so small that the volume of the enlarged body C{)( f) > 0 is still

less than }(n) (or 2°§(n))e By lema 2 choose A such that

Z.*Qf’(f) <-<g—l(-n-) J‘?(f)df + & <1 (or 2).

There cannot then be a lattice point other thun the origin in K for this

would give _© > 1, and, if the symmetric lattice point is also in K,

"z
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The results (i), (ii) for an arbitrary body follow in exactly the same way

from lemma 1, on writing
d
£(%) = max (0, 1 -3 ),

where d is the distance of € from K.
It only remains to prove lemma 2, we deduce from the following fact,

LEMMA 3, Let A. be a fixed (n-1) dimensional lattice of determinant

D > 0 in the plane X, = 0. Let &4 > 0, Leét

I(T;) = je [ S f(glgdi-,gn_l,,t)dflovmdfn_l .

It is possible to find P(gl....,gn_l. o,) such that, if A is the lattice

generated by./\: and P, then

; £(%) sD"l Z (e t) .
x # 0 t

n

XeA

Proof: Ve assume, without loss of generality, that /\:is the lattice

of pointg X with integer coaordinates and X, = Oe The left-hand side of our

relation isg’

S-(glgooo,gn_l) = tS_;Z_—. Z f(xl"’ tgl,...,xn-l+tgnﬁfl'°(t)
O Xlo.-xn_l -

where the x, are integers,

If we integrate over all "boxes" and sum, we have

/ a
I(cAT) = S__:: j. . e f(x1+ Uppeee,X ,+ U _l,oL'C)dul... du 1
= b o n- n n-

5= nel 1/t 1/t .
= oo XX % XX
NS ® L Jo © () ¥Eg s eees Xy 1 * B 1 0% 0 )G eende
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/ !
= _(;o.. Jo g)f(xl+ tgl""'xn-l+tgn-l’ AT )dgl...dgn-l'

since the inteyrand is periodic with period %1- in each variable, Hence
/
tZ,J:O I(aut) = L S(glo.o gn-l)dgl"'dgn-l
This relation cannot hold if S is greater than the left~hand expression for

all g; so there are ByrecsBiy such that

8 < Z_I I(ent)
t
Lemma 1 now follows easily. Let D be any large number, Choose an
(n-1)-lattice A of determinant D so that £(€) = 0 at all points of N
except the origin., Complete ,_/\:to a lattice /L as in lemma 3, with ot = %.
Then, by the definition of the Riemann integral we have for sufficiently
small & (i.e., for large D)

T 'r(x) Z); £(X)
.xn 0

X
p~t }__—_,I(oo t)
t

& 5 1(okt)
t

<51(’C)d’c + €

jfw;)d}g + &

1A
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Rogers'Theorem (Lecture by Klfahler)

The problem.

If Ks: F(X) 1 is a bounded star body and.J&_a lettice in Rn’ denote
by
Says e eef
the successive minima and by

Pl’Pz’ LA AN Pn

n successive minimum points of K in./«.. Hence
F(P) = Ay s
and further
F(P) 2wy for all P £ 0 in /L,
F(P) g/ﬁkk'for all P in‘Ji.which are independent of Pl’PZ"'°’Pk-1'

In the special case that K is a convex body, we learned that, by a

theorem of binkowski, (V(K)volume of K)
< . n
(1): M pg .../u,nv(K) 2% a\).
The problem arises whether this inequality, or at least a similar

one with another constant instead of 2n, holds for arbitrary bounded star

bodies. But it is easy to construct exemples which show that such inequalities

do not hold: take for K the interior of 4 sphere with centre at 0 and very

large radius, from which all cones C(P) have been removed. Here P runs over

all primitive points of /L inside the sphere, and C(P) consists of all points
X = (14t)P +€t Y (t Z0)

where & > 0 is a small constant én@ Y runs over the whole unit sphere.

Evidently V(Kj can be made érbitrgrily large, while d(A.) is fixed and

Vs B I U e Nl
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Since, then, (1) cannot be extended in this obvious manner, it seems
reasonable to replace V(K) by another quantity of the same dimension and put
the same question, The most fundamental quantity in the geometry of numbers
is now /N (X), and it is of the same dimension,

We may then put the gquestion:

Does there exist a positive number cy depending only on the dimension

n such that
(2): A /wz.../u,nA(K) Se, a(\)

for all bounded star bodies K and all lattices K, and if so, what is the
smallest allowed value for o, ¢

The first result of this kind was published by Chabauty in C.R,Acad.
ScisParis vol,227(1948)pp.747 - 749 (October 4); he proved (2) with the
constant

n ‘(l"%’*‘ooa"’ -lﬁ)

c = 2
n

for all star bodies and even for more general sets, Already in August last,
before I knew of Chabauty's result, I had found that (2) holds for all bounded

star bodies if one takes

When I met C,A,Rogers in London in September, I told him of my inequality,
and he nearly at once regognized that he could deduce, from earlier work of his

on papers by Jarnik and Knichal, that () holds even with the constant

n-1

even for arbitrary point sets, provided the successive minima are defined in

e sensible way; he obtained thus a better result than Chabauty's, of which,
i



neither of us knew'at the time. I was soon able to prove that Roger's
inequality is best-possible, even if one restricts one-self to bounded star
bodies.
Since for every convex body
v(k) = 2% /A\(k),
Rogers's result implies then

a+ n-1l

< 2
Sy P e ey VE) = 2 aly,
a result not quite as good as liinkowski's. Only if one could show for convex
bodies that

(3) /’u‘l /u‘z (X X bn A(K) f d(-/\.)

would Minkowski's inequality (1) be deducible, But so far (3) is known only
for n = 2, and it is uncertain whether it holds for n z By

I shall to-day prove Rogers! inequality for arbitrary n.

Definition of the minima

Let S be an arbitrary point set iA Rn* \le denote by /ALS, where/u,> 0,
the set of all pointi/pux where X runs over S, For k = 1,2,.44,n, the kth

minimum

/'u’k = (S:-/U
J
of S over the lattice/is then defined as the lower bound of all'/b¢> 0 for which
the set/ﬁbs contains at least k linearly independent points of 44_, and we put
/u,k = 4 00
if no such number/pb exists,. .

It is immediately clear from this definition that
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< < < <
0 '//‘A’l“/‘(’z' es e "/"Jn .

If S is an open star body K: F(X) < 1, then the new/h’s are easily seen to

coincide with the minima as defined earlier. We shall prove that
ne-l

oy fieen i N8) T2 2 a(A)

for all sets, if the left~hand side has a meaning.

The main lemma ,

THEOREM 1. Let S be & point set and /L a lattice in R o Denote by

/U— a positive number and by M) sMppee v, positive integers, and assume that

(a) ml| Ty mz‘ Mgy sems mn_1| m 3

(b) .y f/w.k =/(,,k(s,./l.) for k = 1,2,5ve,n0¢

Then ‘
(1) ANA(S) <+ o0
(2) /anlmZ"" om A(S) T a(A) .

. \ > *
Proofs. (1) Since Sy aemy > 0, there are numbers e with
* : *
0 </w </u.1.. By the definition of/ull, the set/xzus contains no points
;! 0 of,/L; hence/w*'l_/\_ is S~admissible, and so S is of the finjite typev
(2) Let ¥ be any number with

0 < Vv </Lo..

e denote by I_.lc the linear manifold of smallest dimension containing
0 and the points:of /I m AY, m. S .

Hence Lk consists of all points



85

LD S IUI I 4 8
where the fi 'g yyn over all real numbers; and xl. Xz. soep x& are elements
o ajﬂ~{*\ v:ng» By (b) and the.definition of/pbk, Lk is of dimension less
than k, say of dimension-dkt
dk-< X .
By (a), it is cleer that if

pe AN vns,

then

mﬁk P & ..J,\. m Y mk+l

Theal

for is an integers Hence

Lk C 1k+1 if k = 1' 2. Qesyp n.l .»

Henoce we can select a set of lattice points
‘Pys Pysrwees Pn
genereating _/1 such that -
L, is the manifeld generated. by

O, P]."PZ' os ey Pdk (k‘-‘-‘l.z.._.,.n).

Denote now by ,/\_ the lattice of basis

-l 1
Py tiie Ppy: swny oomeee P
1 1’ sz 2 vm n

hence of determinent

d(—/\:) = d('A‘)

I assert thet this lattice 4is S-edmissible. Then let this .be false end let
"% %0

/
be an inner point of_/L 7\ .5, Then X.can-be written as

u u - u
1 + ._E* Pl 4 ees #t
S m 2 veoe ®

Py P

=
X Nm :n
n

1 1



with certein integers W) Moy eees U not all zero. Choose k, with

1l < lcS n, such that

n

uk‘%’o, butuk+1='.' un=00

Then, by (a), the point

bt ™ WMy

\7ka= ml Pl*'oon"' mk P

kEAmvmks.

But since
uk '&’ Oo
this point v ka does not lie in the linear menifold generated by

0, Pl' essy P -1,

end so, since
dk < k,
it does not belong to Lk’ contrary to the definition of Ik'
Since then./\i is S~admissible, we have

a(N ) = nd(A) Z A(S),

v mlmz oo .mn

whence the assertion.

A further lemma.

THEOREM 2: Let Vat k. /Ll/z, cevs oo be any real numbers satisfying
0< pury g wne Sy s
Then there exist & positive number/,«, » and n positive integers
Mys My sees M such that
(1) mI' oy, mzl Mys sees mn-ll m,
(2) /u‘mks/u'k for k=1, 2, eeeyn *

n-1l

< 2
(8) M, g eve g T2 /wnmlmz seem .



Proof: Write

log/u.. Sk
Sk = -—E—é—-zE-w}lence /Aok = 2 (k o 13 2; see n)
r(x) = x - [x]

where [x] is the integer g satisfying gs x< g+l
Evidently

0 if x is an integer,

L

r(0) = 0, r(x) + r(=x)
1 if x is not an integer;

and r(x) = r(y) if x = y (mod 1);
hence
zn: Z‘ r(g 8 <n(n-l) o
h=1 k= l

Hence there is an index h with 1 ~ hS n such that
n
Z—_ r(cg 8 < n 1
k =
More generally, if

S = fSh(mod 1),

then, by the periodiecity of r(x),
n
2 r(§, -5 SEE,
k=1

end we can choose S such that

§s8,,
Sséls ézs,,,s S.

n

hence

Pup

q = (S k-sq]
o
S

(k = 1,2,.0.)!1)

e
/-=2

57
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Then
< < <
0‘ql"'q2 ----qn.
hence the m's are integers and

mll mZ, ma, msg esey I ‘ mn.

n-1
Also
<
6,5 5.-5
whence
thk [ék-g]-&-g < 81{
fMom E 3 = 2 -2 =/""ko
Finally
i j()%</u‘l/k2..'/u‘n
/{A. m esoll}
e e % (8= S5 ,-5])

o r(S 8)<n-l

Proof of Rogers's theorem

THEOREM: ILet S be an erbitrery point set and_/\_; an arbitrary lattioce.
Assume that
Ay (80 ) > 0 and, As):> o..
Then
/u.n(s,_/L) < o and A(S) < co
and moreover n-l

Moy g ses g A(s) =22 a(A).

3 . 2 * .
Proof: Slnce/u.l >.0, the lattice _/L contains no points ¥ 0 of/uzs ir
//«*< /‘1; hence /{_%; A is then S-admissible, whence A (8) < 0,

If further/mn(S,A) = @, put

aatoe Ul Uil TRl LLTR WO Bl AL PR



where N is an arbitrarily large integer > O. Then, by Theorem 1,
A% W) T e

whence A (§) = O contrary to hypothesise -
Construct corresponding tg/ﬁl,...;/on the numberé/u,, Tygess,m

of Theorem 2, so that
n-1
<, 2

n
/"('1/“/2 ooc/l/‘»n - 2 /Ub mlooomnl
Since the conditions of Theorem 1 are satisfied ,
/b'«n ml aes an(S) s d(J\.)

and so
n-1

A e i A(S) T 2 % a4
as asserted,

A slightly improved discussion shows that " 3" can be replaced

by " < " in the last inequality if § is a bounded star body.



L Mean Value Theorem Implying the Minkowski-Hlawke Theorem

Preliminariese.

We shall be interested in the following groups: the group.jﬂl of
non~singular n by n real matrices Y; the normal subgroup~17— 1 of—()- consisting
of the matrices of determinant unity; the unimodular group lﬁ » 1c84, the
subgroup of N £ consisting of matrices U with integral elements and deter-
minant :.1; and the proper unimodular group [“‘l’ ie0s, the subgroup of index
two in fﬁ consisting of the matrices U of determinant 1.

Before we caen even state our mean value theorem we must define in the
space J(l'l
r11, ie6e, & well-beheved set F in 1/1

over P 1’ cover ﬂ 1

element A in -{»1.1 defines a lattice of determinant unity in n-dimensional

s fundamental region F with respect to right multiplication by
1 such that the maps FU, when U runs

completely but without overlappinge Note that each

Ruclidean space (spanned by the column vectors of A). The matrix AU, where
U & rﬂ 1’ of course gives the same lattices Thus F is roughly the space of
all lattices of determinant unity.

In order to define F we shall have to map.lrl.into the space P of positive
real symmetric n-rowed metrices S by mapping Y into Y'Y. Since eny positive
real quadratic form in n variables can be expressed as a sum of squares, it
follows that this is an onto mapping. Iioreover the complete inverse image of
S = Y'Y is the set of matrices OY, where O runs over the n by n orthogonel
metricese

To right multiplicetion of Y ﬁy U corresponds replacing S = Y'Y by
S[U] = U'SU. Thus we must consider equivalence classes of the S under this
operation. We shall sketch the linkowski theory of finding a fundemental

region in the space P with respect to this transformation by elements of (1 .
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Reduction theory of positive real symmetric matrices

For a given symmetric matrix S we choose & unimodular matrix
U= (g(l), ooy g(n)) so thet the matrix U'SU = S[U] equivalent to S has
certain special properties. Among 8ll possible first columns of unimodular
matrices, i.e., among all column vectors of integers with greatest common
divisor unity, we choose g(l) so that /LL1.= S[g(l)] = g(l)'Sg(l) is a
minimume Then among all possible second columns of unimedular metrices having
g(l) as first column, i.e., among all integral column vectors g such that the
greatest common divisor of the two-rowed minors of (g(l)g) is unity, we choose
g(z) so that &b, = S[g(z)] is & minimum. Then among all possible third
columns of unimodular metrices having g(l) end g(z) es the first two columns,
i.e., among all integral column vectors g such that the greatest common divisor
of the three-rowed minors of (g(l)g(z)g) is unity, we choose g(s) so thaet
Mg = S[g(s)] is & minimum. Proceeding in this way we get a unimodular matrix
U= (g(l), eves g(n)) such that/ﬂi,k = S[g(k)] < 8[g] for all possible kth
columns g of unimodular metrices with g(l), vess g(k‘l) as the first k - 1

columns (k = 1, ese, n). Note that
’ /415/"25'"5/“{

Since the element in the jth row and kth column of U'SU = S[U] is
g(j)'Sg(k), it follows that changing the sign of g(k) changes the signs of the
elements in the kth row and the kth column except for the element
/Lbk = S[g(k)] in the mein diegonal. Thus by changing the signs of
g(z). YY) g(n) in turn (if necessary) we can ensure that the elements of the
first row and column of U'SU are non-negative. The metrix U which we have
chosen is generally unique up to replacing U by - U.

Thus we have shown theat in each equivalence cless of symmetric matrices

with respect to transformation by unimodular U there is e matrix S with the
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two properties given below. (iere 8y = Sy
J?(l), o0y /g(n) are the n unit vectors)s First, for all integral column
(k~1)

for k = 1, eee, n and
vectors g such that (Af(l), ceny 1? » g) can be filled out to & unimodular
matrix, ie.e., for all g such that (gk, Byal® *°*? gn) = ], where Byr cees By
are the components of g, we have
k
sle) > s %)) = s

Secondly,

‘slk_>_0 . (k 2 2, ovey n).
We shall denote by K the region defined in the space P by the above conditionse
A matrix in K is sometimes called reduceds.

The region K is defined by infinitely many inequalities which are
homogeneous linear in the coefficients of S, iee., it is the intersection of
infinitely meny half-spaces bounded by planes through the origin, Thus if S
lies in X, so does )\ S for positive scalar ,X s and if S1 and S2 lie in K, s0

does S1 + S That is, K is a convex half-cone with vertex at S = 0. It can

o°
be proved that the infinitely many homogeneous linear inequaelities ere
actually consequences of finitely many, so that K is actually e convex pyramid,
Moreover K contains inner points. For example for n = 2 the region X is
defined by 8, > 81 > 2812 2> 0.

There is & point in K equivalent to any point in Pe On the other hand if
we identify U and - U it can be proved that an inner point of K is never
equivelent to enother point of X, although two boundary points may be
equivalent. Thus the images K[U] = U'KU cover P without overlapping except for
boundary points. Thus K is a fundemental region for the discontinuous
representation S —3 S[U] of the group rﬂ of unimodular matrices Ue Although
K is not compact, it can be shown that only finitely many of its images K[U]

are neighbors of Ke [For more details of the reduction theory see Cs Le Siegel,

Einheiten quadratischer Formen, Abh. iathe. Sem. Hamburgischen Universitgt vole

L%}
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13 (1940) ppe 209-239, §§ 1-3].

Of the infinitely meny reduction conditions those obtained as follows are
especially useful, In the first condition choose g as the n-rowed column
veotor with + 1 in the kth row and 1 in the jth row, where k < j. This gives

5 + 8t ZSjk > 85

‘or -,
[ o5 | < o

4 new coordinate system for the space P.

By successive completions of the square we cen write a positive real

quedratic form S(x] = x'Sx = E Sjkxjxk in the form

2

s[x] = tl(xl +d + d. . X, + ose + d

12%2 13%3 1n*n)
2
+ tz(xz +d + 4o + d )

23x3 2n*n

+ o o o

+t . (

2
n-1 )

xn-l + dn-l, nxn

+tx2,
amn

where t;j >0for j =1, eeey ne In other words the most general positive real
symmetric matrix S has the form T[D]=D'TD, where T is e diagonal matrix with
positive elements t,, ees, t 8and D = (djk) is a triangular metrix with

jk
This is the so=-called Jacobi transformetion.

d.. =0 (1_<__]Ec<j§_n),dj:j =1 (j =1, vees n), d;jk real (15_j<k_<_n).

Since

s, =t.d. %4 td. ®

x “1%1k B *oese FELZ b

it is t rivial that

172
On the other hend it has been shown on page 45 of these notes that there is a

‘SI’:tt XY ) tnislsz ee0 Snt

oconstant Cn depending only on n such that

2
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58, ees 8, <C | 5],

provided S is in the fundamental region K.

Woe shall need the fact that if S is in K, then the djk (1< j< k<n)

and tl/tz, tz/tS, oess tn-l/ tn are boundeds Since

-ase 3

"L %2 s tn=f1% 0 S o
— R . '
E‘I tz tn ]S§ - 'n
we have
5x
].ESEZTE qn (k 2 1, eees n)w
But .
5y
s <l (k=l' ...’n-l)
k+l —
and hence
t s
k < k < C oo

Spel T S/ = B

To prove that the djk are bounded we proceed by induction on je For j =1

we have
8
1k
|y - l";‘ <% (<= 2, aeus n)s
Now for 1< j < k we have

Sjk = tldljdlk 4+ eoe ¢ tj"ldj‘lg jdj-l: e + tjdjk)
so theaet
s t t
- _Jdk . 1 J-1
%5k ‘EJ— €] At * oo +-£3-dj_1o $5-1, x°
Also
8 s t t
sk %5k 1_ g-1 3-1
?3"<337§;Ecn' E;S Cn s 00 “’.b'—;"_<_ Cn'

Hence the boundedness of the djk follows by induction on j.
Instead of tl’ svey tn we introduce the n - 1 ratios
tj/tj+l = qj(J = 1, esep, n =~ 1) and the determinant q, = tl oo tn = 1 S * -

We call qi4 eeey q, end djk (1< j<k<n) the normal coordinates of S. It
h

é
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is ¢lear that S and /\ S have the seme hormml coordinates with the exception
of Qe for all positive scalar fectors A . In the fundamental region K the

normel coordinetes, with the exception of q,» &re bounded.

Integration in.a and .()— 1 -

- "In the Bpace -n- we define a volume element by merely {mbedding the Bpacse

{) in real Euclidean space of ,nz dimensions, ie9¢y we use the volume element

n
dY} b dy .y, @
{ j .I k[=1 k

if we make the linsar transformation Yl- = YC oy Y2 = (0¥, where C is in.()- x

o} - {ou] =] ol o]

Thus {dY} gives & volume element on ) which is unchanged by left or right

we seo that

miltiplication by en element of ﬂ 1 (al’chou‘gh not of course by an arbitrary
element of ﬂ e *

In terms .of this volume element {dY} on ﬂwe define a volume element
d Cdl on -().1 which is inVaria‘nt under right end left multiplication by
elemsnts of .().1. let G be a subset ofﬂ 1 which is measurable in the
J'orda&n sense and denote by G tir;e cone over the base @ consisting of all

S

metrices Y = >\A. where 0 < }\< 1 and A 6 Ge Then

V(G) = {dY}

48 the Euclidean volume of Ge Since {dY} is unchanged by maltiplication by

an element gfﬂ ,¢ it follows that v{ce) = v(Ge) = v(G) for eny C in ﬂl’

®

consequently the formula

‘ v(g) = 5 LN
G

defines an invariant volume element dwl on,-.(l-l. Now if Y is in G, then
Y= 7\A, where /\ = \ Y ‘l/n' o< 7\il. L™ ' Y‘ -l/nY. L & G. Hente

if q) (A) is a real~valued integrable function on the subset G of ﬂl’ we
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éq)(A)dwlf .gq)‘(iﬂ '1/"Y) {dY} . .

obtain

Integration in Pe

We introduce in the space P of positive real symmetric matrices the .

Euelidean volume element {ds} IT dsJk let Q b6 a Jordan measurable
J<k

set in P and let Q* be the complete inverse imege of Q in L) umier the

mapping v—>Y'Y. Suppose h(S) is a real=valued integreble function on Q.

f n(y 'y) { dY}'
Qx>
in terms of an integral over Q. Now the most general positive symmetric matrix

We wish to express

is § = T[D] = D', ‘where T is g diagonedl matrix with positive elemerts
tl' T '-l:;1 and D is a trienguler matrix with ongs ip the main dingomals If

wer denote by fl.’l/2 the diagonal matrix with the positive elements

o 1/2

1 * wedd tnl/z, we can write

5o (7% (1Y)
The most general solution of Y"Y = 8§ isthus Y = O(Tl/zD). where 0 is en
orthogonel matrixes Hence 4o exprbss the imtegral of h(Y'Y) over Q* with
respect to { dY} in terms of an integrel over-Q, we must merbly integrate

with.respect to the % n(n-1) paremeters of the orthogonal groups This gives
5a(v Y) {dY} = Sn)3e {as} .
Q* Q

where j(S) arises from the integration with respect to-the arthogomal groups
] -1 ,
We claim that j(8) = &, ‘s‘ R, where & i's a constant depending only

on ne To show this take h(S) = 1 for all § in Q and @ as e neighborhood of

i
{ S

S whose size tends %o zeroe Then

i(s) = 1 &
e—3s §
Q
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Now if we make the transformation Y —>YC, where C € ﬂ » Wo ses that
S—> ¢'SCe The Jacobians of these transformations are respectively ‘ c ‘ R

C ‘n&-l o Hence

and ‘
3(e*se) = (abs €)™ 3(5),

where ebs C denotes the ordinary absolute value of the determinant ; cl of Ce

Now there exists a C in {) such thet ¢'sC = E, where E is the n by n identity

metrix. For this C we have

abs G = | s"’%

and
3(8) = (avs O)3(x) = | 3| .

where &, depends only on n. Thus we have

5 h(y'y) {dY} =8, éh(s) | s’['%" {ds} .

Q*
The constant &, in the preceding relation can be determined by taking

Q= P, Q% = -ﬂ. , and h(s) = E "TrO‘(S)’ where < (S) denotes the trace of

S. For
2

'f-WJWW) =jﬂn-“y% T
nt {or} ) £ y '

end it can be shown that [ef. Cs L. Siegel, "Uber die analytische Theorie
der quadratischer Formen, Amn. of lathe vol. 36 (1935) pp. 527~606,

Hilfssatz 37]

- TWo(s) o] ~Bfag) - T L G&/2) |
}gﬂ Isi {ds} ‘;};rl R

o,

Hence /
n ’W k/2
an kir-}l ————m‘ 3 .
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Integration in terms of the normal coordinates in P

In applying the formula
S h(Y'Y) {dY} =a 5 h(S) {ds}
Q* Q

we shall find it more convenient to use on the right hend side the normal
coordinetes for S rather than the coordinates s;jk(l < J < k < n). Thus we
must compute l S \-'% {ds} in terms of the normal coordinates qj(l <Ji< n)
and djk(l <Jj<k<n)

First we get {ds} in terms of tj(l < Jj < n) end djk(l <j<k< n)e
To'compute the Jacobian let us arrange the sjk in lexicographical order

Bll, 312, eney Sln’ 522; XXy Snn and the tj and djk in the order

10 dygs sees dyps Bpo dpgs eaen dpps oeen By,

dn--l. n’ tn

Then it is easily seen that the metrix of the Jacobian has zeros above the

main diagonal end that the product of the elements in the main diagonal is

n~l, n-2
tl tz see t o Hence

{ds} n“l R t 1 {dT} {dD}

where {dT} and { } denote the products of the corresponding
differentials,

The task of this section will be completed if we cen express tl’ sees 't:n
in terms of Qys eoes q.. The Jacobian of Qy» eoes Q) with respect to

tl' vses tn is easily computed to be
©1
n-_-b-; = nqlqz eve qn_l.’

so that
n-l, n-2

Pl TR
(ds} N S — = 1 dg; wee dq, {dD}
A9 9y we= Gpay

Now tj = qj cee qn-ltn and hence

n-lt n’

2
£ "1"‘2 oee tn %9 v 94 n
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n_ -l -2 -(n-1)
th T 49 9 et 9 .
Further

n~l, n=2

b1 T e By
n-1 (n-1)+(n-2
q qz( J+(n-2)

. . q (n=1)+ (0-2)*eeetl, n(n-1)/2

n-1 n

. n(0-1)2 8 an-3(ie1)/2
't:n ;f;[ qj

c1)/2 B s (541) /25 (n-1)/2
=gqn(n )/ ;D;qjjn 3(j+1)/2=j (n-1)/:

(a-1)/2 8¢ 5(n-3)/2
4 qu .

Hence f‘ine.lly

[s} % {ds} - -}1- {dD} qnn/ 2-1 dqn'x_ﬁl— (qjj (n=3)/ 2"1<qu-) .

A fundamentel region for { 1 1 modulo r‘l'

Ve have e fundamental region K with respect to the transformations

S— 8[U] = U'SU, where U runs over the unimodular group P
St and U and = U give the same transformati‘on. In

other words the images K[U] cover P exactly twice, K[U] end K{~U] being the
same

In order to get e fundementel region inﬂ with respect to the
transformations Y —9 YU, where U runs over the unimodular group P ) We
consider in ﬂthe complete inverse image K* of K under the mapping Y—Y'Y.
Clearly the images K*U cover_(). exactly twice. Here U and - U give different
transformations, tut K* is symmetric (ie.e., if Y £ K*, then = Y €& K*) and
ecoordingly K*U end K*(~U) are the same. If woe take thet half of K+ consisiing
of those Y in K* such that ¢ (Y) > 0, we get a region H which is a fundemental

region in ﬂwith respect to right mltiplication by r.
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Now let us consider the subgroup jf)_+ of.fﬁl.made up by the matrices
of positive determinant. Suppose Ul is the fixed unimodular matrix which
has zeros off the main diagonal, - 1 in the first row and first column, end 1
elsewhere on the mein diegonal. Put H = M~~~ N, where M consists of those
elements of H which have positive determinent and N consists of those elements
of H which have negative determinant. Then G = l - NU, is a fundamental
region in lr}_+ with respect to right multiplication by the proper unimodular
group f1 1°

Finally F =.‘ﬁ2.1/’\‘G is a fundementel region in lﬁ).l with respect to
right multiplication by fﬁ 1

Let K, be that pert of K defined by ] s} <1lend let K, H, M, N
and G, be the parts of k*, H, 14, N, and G respectively defined beri 2 <l.
Suppose h(S) is an inte_rable real-velued function on Ko such that
h(Ul'SUl) = h(S), for example, a function depending only on the coordinates

tl. cve, t of S. Then since G = ¥ we have

jh(Y'Y) {dy} jh(Y'Y) {dY} + j B(Y*Y) {dy}

U

..’T{h(Y'Y) {dY} + E\{h(upr'ml) {dY}
- 3{h(wmr) {dY} + {h(Y'Y) {dx}
= fh(Y’Y) {dY} = 5 f h(Y'y) {dY}

L}

o}

H K™ ,
= la_ f nes) | s \1/2 {ds} .
X
e}

In particular for h(S) = 1 we get

V(F) = ;{{dY}= = flsl "% {dsz

F Ko

é‘"
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Now for & matrix S in K all the normal coordinates except q, are bounded and
hence for § in K0 all the normel coordinates are bounded. ioreover in the
expression for l S t": {ds} in terms of the normel coordinates, the

exponents of Qys eee» Q or® all greater than -~ 1, Hence

——

Vn= V(F) = jdwl
F
is finitee

Finally we define a new volume element d onﬂ— , @8 follows

Thus ‘SdOJ = 1, !

Statement of the main theorem.

We are now in a position to state our theorem. Let R be the space of
n-dimensionel real vectors x, where n > l. Denote by {dx} the Euclidean
volume element in Re. Ve shall prove in the sequel the following result,

THEOREMs Suppose f(x) is a real-valued function on R which is integrable

in the Riemann sense and vanishes outside a bounded domein. Suppose A runs

over the fundamental region F on I)_ 1 with respect to right multiplication

by r‘ 1 If g runs ove:r all non~zero integral vectors, then

J{;:O f(Ag)} 4 = ij(x) {ax} -

If g runs over all primitive integral vectors, then

¥ ) S {;Z*f(.&g)} d = jf(x) {dx} .

The asterisk denotes summation over the primitive integral vectors. By

e primitive integral vector we mean an integral vector for which the greatest
common divisor of the elements is unity, iee., which is not an integral
multiple of another integral vectors 4lso \g (n) denotes the Riemann zeta

function,
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Hlawka [lath. Zeite, vole 49 (1943) ppe 285-312, Jetz 1] proved that for

every positive & there exists a real n-rowed matrix A of determinent ‘ A[ =]

:%—;f(zxg)i ,Ry:t‘(x) {dx} + € .

However it follows from the first identity of our theorem thet we can even

such that

assert that there exists a real n-rowed A with IA ‘ = 1 such that
Z £(ag) < ff(x) fdx} R
g70 R

Thus if J is en arbitrery Jordan measurable set in R (e.ge, &n open set) whose
volume < 1, we see by choosing f(x) as the characteristic function of J that
there exists in R & lattice of determinant 1 such that J contains no non=-zero
lattice point [cf. Hlawka, ope cite, Satz 2]}, Similarly if J is e Jordan
measurable set symmetric in the origin and of volume < 2, there exists a
lattice of determinant 1 such that J contains no non-zero lattice point.

The second identity of our theorem likewise implies that there exists a

real n-rowed matrix A vith 1 A l = 1 such that
* US"
Cw) > e < ) £) {dx}
g R

Now let B be & star domain in R, i.e., & point set which is measurable in the
Jordan sense and which contains with any point x the whole segment

Ax, o< /\ < 1. If the volume of B is less than g (n), we see by choosing
f(x) in the preceding inequality as the characteristic function of B that
there exists in R a lattice of determinant 1 such that B contains no non-

zero lattice point [ef, Hlewke, op. cite, Satz 3]e Similarly if B is a star
domain symmetricel in the origin and of volume less than 2 g (n), there exists
a lattice of determinant 1 such that B contains no non-zero lattice point

[ef. Hlawka, ope cite., Satz 4], These last two consequences of our theorem

were conjectured by liinkowski but first proved by Hlawka over fifty years later.
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A lemma of estimations

With £(x) satisfying the hypothesis of our theorem consider )
q)()\: 4) = AR z f(NAL)s § (A, 4)= AR Zabs £UNAE),
g7 0 g/ 0
where 0 < )\ <l,AE ﬂl’ and ebs denotes ordinary absolute value. For
fized A and A in a bounded region of {1 | it is not difficult to see thed
the sums here have a bounded number of terms; thus for fixed A\ the function
(M s &) is integrable over any bounded region in ﬂl' We shall show
that ‘é( X » 4) is actuelly integrable over F, which is not bounded, and
thet the resulting integrel is uniformly convergent in )\ o These statements

ere contained in the following lemma.

1EiliAe There exists e function m(4), independent of A , such that

m(A) is integrable over any bounded region in ﬂl' @ (}ﬂ » A) < m(h)

everywhere in ﬁl’ and the integral é\ m(a)d (;Jl converges e
sifice £(x) is Riemann integrable, it must be bounded. Also £(x) vanishes
outside & certain sphere x'x < rz. Hence it suffices to prove the assertion
of the lemms for the characteristic functien of this sphere, namely
1 if x'z < r2
£(x) = 2
& if xtx>r M

With this £(x) the sum :}: £( Abg) = z abs £( A Ag) is just the number

of integral vectors g such that

2> (A ae)t( Mg = Algate) = Alerse) = Aslel,
where S = L'Ae Thus we estimate the number of integral vectors such that
Slg] f_ra )\'2. If S = T[D], where T and D are as before, and gys «ees By
are the coordinates of g, we have
n n “\2
slg] =.1[Dg) = 32;'1' 'oj(gj + kél djkgk) .
Hence
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}gn{§_ —r

X
At 7

# 1 valuess For each value of g, ‘the possible

-k
values of &y 1 lie in an 1nterva1 of length 2r )\ t -1 < and so are at most

=1
Zr)\ -t;n

l‘DiH

and so 8y hes at most 2r )\ult -

1 .- + 1 in numbers Proceedmg in this way we see that

g J=1)\t%
n n
| e TT(ZE+N) < TT[&E+1) =n@),
:j:l . = =1~|; %
J J

where m(4) depends only on r end the coordinates t,, cees tn of S = A'A,

Now by definition

m(a)d ¢, = f«m( {vl “/ngy {ay
F

F
But m(l Yl _l/nY) depends only on r and the coordinates tl' seey tn of
Y'Y = S, where we are changing the meaning of S. Hence we can apply the

formle from page 67 comnecting integrals in and Pe This gives

Fowern P 7
KO

F

1< ty < see < tn it suffices to estimate only those terms in the

expansion of the product of the form

/() |
(glqz ..13)75 517 fasf s1gresn.
K

For k = n the convergence of this integral follows from the formule

‘s}'l/‘?‘ {ds} =% {dD} n/2- “laq T':[L" J(n=3)/2-1 4

=1

Since t

For lgkg_n - 1 we have
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L2 X kK, k
Ba%2 ewe B T % ewe 9 (g eee ) Yy

k _ k/n

2 X 2 -1y -k
gy eee Gy (B ves Gp) TGy (857 e g ") &

we heve

k
Ztlt'z;:.tk)lﬁ )5l {ds}

k n-l . 0
-2 {dp} oo T a3 - es /)ty -k)/g-ldqj)

Since the exponents of Gys evss g 6TE all ‘greater 4han =~ 1 and Qs seer Q
are bounded in K , we sée that the integral f m(A) 4 W, mst converge,
F .

a8 assgerted,

Application of the lemma,

ff(x) dx} - Y,

g R
then for eny A :‘Ln..(-)_1 we have by the definition of the Riemann integral

Jlam PN, 2) = Jlim A z : £( Aig) = lin )\nzf(hz&g) =Y.
- .

~Jo o g f o -%0 e

The reason for this is that the points )\ Lg are points of a lattice of

/
determinant A @ and thus give a subdivision of the sphere x'xﬁra into

If we put

parallelopipeds whose maximm dimension tends to szero with ?\ s Horeover if

4 lies in e bounded region of.().- y+ this maximmn dimension tends to zero
uniformly in A and hence Q( A ¢ &) tends to V uniformlys,

By the lemms the expresgion
_(7\)" .(?&,A)d«w = fﬂn Z £( Aag)d &
\") i{¢ 1 J e y o 1

converges absolutelys Hence we can conolude that the order of supmation and




LL4E D

76
integration can be reversed. liore specifically suppose Fg is a bounded
subregion of F such that

f m(a)d & 1 < € o

F"Fe
Then

abs f}\an(AAg)dwl < £
g¥ o

F=Fg

ALlso if the prime denotes any sum over a finite number of non-zero g we have

AR Z fabs f()\Ag)do.)l j7\ Z abs £( N Ag)db)

F-F "F(_
< fm(A)dw1< e ;
l“"'Fe
hence
abs ¢ A" Z f £(Nbg)aw, ( <€ .
g 7! o] F"'Fe

But
fﬂn f(AAg)dwl AR Z j £( Ahg)d ),

since for A. in FG the number of non-zero terms in the sums is bounded

(for fixed A )e Hence our assertion about the interchangeability of summation

end integration is justified, i.e.
PA) = A7 2. ff(Mg)dwl-
g#o 3

Also since
11m (‘)( A, L) =

uniformly in A for 4 in a bounded region ofﬂ 1* We cen conclude thet

11m KP(%) 1im f¢(}\,h)dwl= dewl= YV .
F F
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More specifically by the uniformity property we heve

i.m f(‘)()\zA)d@J j)\f_';’}o(:)‘(h,«a)dwl-.( Y odoo,.
e

Further smoe abs ¢ (A &) < m(A) we have
j 4>( No» A)dw;s, f n(a)ew, < €

F-Fe . F=Fe r
since ¥ = lim ¢ (x5 A) & 1m(A) we have -
Ao T -
f Y s, < f nAR G, < & v .
F-E. FeF,

Thus our assertion
g, @ N=T

is proved,

Investigation of a certein sume

We consider the sum
&
g PIESTID 2N P VRN
&, P

where the asterisk indicetes sumation over all primitive ;x;tpgral ge It will

turn out to bve sufficient to investn.gate .
™
X = 2, fr(ag)dwl Z fr(m gy {dv}h .
g .

To each primitive g let us dssociate a ,fixed proper unimodular metrix Ug

with the first column ge¢ Then

e Z0 S el oo (o]
v,
g*if( b vl “1/a, {dY} .

wherfa x dervteg the first Golumn of the variable matrix Y in the cone ﬁfg.

The unimodular matrices of the particular form
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)
where u is an arbitrary (n-1)edimensional integral vector and U, is en

arbitrary proper unimoduler (n-l)-rowed matrix, constituteé a subgroup A of
r 1+ The most general element of rl has the form U Ul’ so that the left
cosets of & in F are U A » where g runs exactly over all primitive
n-dipensional integral vectors. Consequently the union of all the FU is o

fundamental region f( &) inﬂ with respect to right multiplioation by

A o Hence

7((1);- f*‘—_f([yl '1/“::) {dY} = _L f(lvl 1/n){dY}

2. T, F(A)

To each non-zero real vector x let us associate a specific matrix Wx
with determinant .1 end first column xe¢ Then any Y in ﬂ has the form

1l y*
Y=Ww
*to Y. /.

(o)

with a rea) (n-1)-dimensional vector y and a real non-singuler (n-l)-rowed
matrix Y e Note that ) Y‘ = \Yol « lioreover if we change the variables
of integration from the elements of Y to the elements of x, y, and Yo. it is

not difficult to verify that the Jacobian of the transformation is unitye.

(o] - (]}

In terms of these new coordinates it is simple to define a mare natural

In other words

fundamental region in..()-.l with respect to right multiplication by elements
of A e In feot right multiplication of Y by an element
1 ut
g 0 U

of A involves leaving x unchanged, replecing y by UO'y + u, and replacing
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Y by Y U s This holds in perticular for .an element Y = A ofﬂ Thus a
fundemental region 1n_(). with respeot to right multiplication by & can
be obtained by taeking all A of the form
1 ¥ i

A=W
x 0 Y s

o
where x is aerbitrary, the cumpénents of "y all lie in the interval (0s 1), and
the matrix ¥, lies in the region Fo corresponding ‘to F in (n~l)-dimensionss
Ife.. F, is the fundementalﬁregion, in ﬁhe gpace of all (n=1)=rowed matrices Ay
with *Ao' « 1 with respset to right mltiplicatiop by the group of proper
unimodular (n-1l)-rowed matrices U e

Since the first colum x of the mitrix Y is unchanged by right

miltiplication by &n element of _A“ end since A sonsists of matrices of
determinent 14 our integral overem can be replaced by thp seame integtal

over the cone spanned by our new fundamental region for a in 1

%(1) - f r(| v} "Ly {d'r} f_( £( | Y"‘l/nx) {dx} {dY}
j 'Yl Y{dY} =YL,

SRANCY
F
Now if u is any positive scalar factor

J‘{dYO} ) u(n-l)a f{dYO} i u(n-l)z Vp-1

uF 'f"o

f J%,| @Y:} - o1 jf’o\ @Yzj -y
uFo F,

Hence

where

Also
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Hence
wrh - n—l
v ‘Y ‘ {iY} = n(n-1)a" 1°
F
j‘Y\ {dY} ‘Yi {dY}
u — - o} o]
Au'—")o A U+au)Fo-uF°
= un-l lim —Zlﬁ"- {dYO}
Boaze T Du,T,
-1)2 -1)2
a1 (u+ &u)(n 1)< u(n‘l)
=y 1im CALYS L
fu—3o AT i
2
= (me1)2 o e 1
(n 1) Vn_l ]
Consequently -
o D=1
Lp-1 ® = Vn1°
This proves that
e
)((1) Y Y n-1"
Now if we replace f£(x) by £( )\x) wo see that Y is replaced by )\ Y e

Hence

KA = AT xa) = ATy

1'

Proof of the mean value theorem.

If g runs over gll primitive integral vectors and k over all natural

numbeérs, then kg runs exactly over all non=-zero integral vectorse. Therefore

VR) = 7\"2: JleA) = A“gk‘“A'“;cu) - K@) G @),

so that k‘)( )\) is independent of )\ Hence

vn=)\_‘)°kp(?\)=({)(l)= f Z‘ £(ag)d W,
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or

st ; £(hgd O o
[o]

which §8 the first identlty of our theorem, &lso

Vi, = fm QN = X - g fZ: £(g)ac,
Y= § ) f 2 rsnws,
F &

#hith is the secoml identity of our theorems .

1
Auxiliary results; the volume of F end of K e

We have ;
- f o\ o D=1
X T @ v, §e
or
v ¢ (al)v,., ¥ (n).
Sinde V. = 1 we see thet the volume v of F is given by

1

) k=2 Y e

This formila for the volume of F gives

f s ‘-1/2 {dS} -2 TT'f(k),

where X is the domain of reduced-.poﬁitive ‘symmetrie matrices with determinant
<1ls Bye procedure analogous to that used to go from Ln—l to vn-l we can

go from the preceding to Minkawski's formule for the volume of K,z

¥ o
‘f {ds} T(.1%"1)&n nil ;E‘; --S—(}%-gé-]f@

|
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* - Non-homogeneous lattives in two dimensjonss

Iet R be an unbounded closed convex .region, not the whole plane of a

half-plane, and not lying inside eny 1nfiniife strip (_i_._.g_ « 8 region of the
form k < as + bys,@). 1ot X be a point of Re Define X = R to be the
.reflexion of R in the point X,

We ghall show that the interseotion R (X~R) is bounded; for, since R
is not the whole plame it has one tec-line. Since it is not a helf-plane it
has & second, and since it does not lie in an infinite strip, these tac-lines
gre not parallel. e mey choose these tao~lines as oblique axes x = 0, y =0
end every point of R satisfies x> 03 y > Oe If X is (as b) then X * R
satisfies g < 2a, y < 2b; BOR (x-R) lies in the parallelogram

0< x< 2a; 0< y<2b

end sb is boundede

G prove

THEOREM If /\ is en arbitrary non-homogeneous lattice, there is & point X

R A (X~R) has thus ‘finite erea, which we call £(X). Our object is to

of [\ in R such that
| £(x) < 43(/\)

Examples.
gy p—————
1.) let Rbe x> 0, yZ O

If X is the point (u, v), £(X) = 4uv. Hence: There is a point of /\

in the region

x>0, y> 0, 2y < a(/N\)e

(This result is due to Davenport and Heilbromn, Journal Lond. Iathe Soce 22

(1947) 53-61. For the generalization to n dimensions see Chalk, Querterly

Journal of Mathe (Oxford) 18 (1947) 215-227 and Mecbeath, Journal Lond. Moths

S0c. 23(1848) 141-147:)

ﬂ ,

il
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2 g, 2,52
2¢) et RBOY> % e f(xs ~ya‘;¢'a§(y-.x )

There is & point of /\ in the- yegion

1/3
o<y~ & < [ga(A N

Exémple (1) shows that the -theorem is best possible, i.g_. the constant &
cannot be repleced by a smaller one without affecting the truth of the .
theorem; however, Example (2) is not best possible, zdz cen be repladed by

2a%,

Points at infinity

I_)__e;&_l Let K be & closed convex region, K is said to contain the point
at infinity 1(Y .5‘) if 3 a /3 such th&t the point (O #t T.ﬁ +% J)
is in K for' all t > O.

(Y, J) is the seme as I(o ¥ , c({) if ¢ > 0, and we assume either
¥ or J is different fron zero.
- Defs 2. Lot (o(,'&'ﬂ ') be any point. The point-set , e )
(L '+t Y ,ﬁ' +% J) t > 0 is called the line-segment joining (d—.'.ﬁ 1)
to 1(Y s d )

We shall now show that, with this convention, the characteristic
property of convex sets is preserved.

LEMMA 1. If e closed convex region K contains two points, of which one is &

—— -

point et infinity, it contains every point of the line-segment joining them.

_1_95_9_25‘_. On applying & suiteble affine trensformetion, assume I(l, O) is the
point at infinity, snd, by & change bf origin, essume (u, O) is in K for all
u > Oe

let (a.‘ b) be any finite point of Ke We have to show (a+t, b) in K for
every positive t. Iet g, s& ¢ nte (qn. 0} is in K for all n>n, > 0. By

convexity
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(1 ~L) (a0 v) # Xa0 0)

iees (att, b-g-) is in Ke letn — o
(a"‘t’ b)e ff C Ke
1EMMA 2, Any unbounded closed convex region K contains a point at infinity.

Suppose, without loss of generality, that the part Kl of K that lies in the
first quedrant (x> 0, y> 0) is unbounded. let K,' be the region into which

K, is mapped by the projectivity

1
L (1)

(1) maps the first guadrant into the triangulaer tegion
x*=0  yv>D .+ yr < 1. (2)
Tt transforms convex subsets of the first quadrent into convék'subsets of (2);

for

Aet o N b+ A4
¢ v ! A,,/u)ismappedinto

- ( Ne + Ao ADde Avd )
R(evo+l) + aL(ovdtlk) ' T A(a+bil) /.z‘(c+d+1) L4
1.0, ) (._)5 Mt + M 1ot ATb? * /"‘&'d')‘
—— }\' +/u_l * A ' +#'
where 7\' = 7\(a+b+l). /(,U -/ot(o*dﬂ),

i“ ¥ +
Thus the mep preserves segments + so convexity. Hence Kl is convexs

Since x + y is unbounded in Kl and

. )
X'+ Y TEEET

there is a point ( ) of the closure K ' of K, , such that = 1,
. 1 1

Let (o(,,/],) be a point of Kl so that OL+/5 < 1l K1 is convex and so

contains every point of the segment

7\4/» ?\.+/U~

*

.?x./u>o

Applying the inverse map of (1),




o 4 S A A
Fa-4 N ra-j8 'T"e-j3 *'}‘:‘F&'}ZTZ')

is inflc.'lf= Kfor/u.> 0, 7\> Os 100 I(? .'Vi)is in K.

LEMMA 3+ The 4 vertices _c_:_i"_g parallelogrem cemmot all lie on the boundery

of Re
f_z_'_ggi Suppose the contrarys Choose oblique axes so that the vertices are
(+ 84 + b)e No point of the 4 regions ‘xl >a l yl > b is in Re Suppose,
for example (c, d) is in R witho > a d > ba Then (a, b) is in the interior
of the triangle (=&, b); (al-b), (¢, d), 80 interior to R, & contradiction,

Hence the point at infinity of R must be 1(+1, 0) or 1(0, +1)e Suppose
it is, say I(0O, 1)s Then there is no point (p» @) in R such that | p| > e;
for if so (p, v) would be in R (lemma 1) for all v > g, contradicting what we
have already proved.

This shows that R lies in the infinite strip l xl <e,e contradiction,
Defe 3

——mpea———

every neighbourhood v of Q» V A B contains points in R and points not in Re

A curve B is sald to cross the’boundary of R et e point Q, if, for

is derived by a translation from R,, the boundarj By of Ry

LEWA 4o If R,

cr't?s_Ses the bou‘ndary of Rz at not more ,then one point.
Proof Let T be the translation that cerries R, into R,. 1let B, oross the
boundary By of Rg» if possible, at P, Qe
_(_:_af_e__.'_t.s Suppose T is not in e direction parallel to PQ. Then P, Q &re an Bl'
so T(P), T(]) are on By«

Py Q» T(P), T(Q) are 4 vertices of a parallelogram on By, contrary to
lemma 3e
Ea_:_s;e__%. Suppose T is parallel to the direction PQ. Choose the x-axis in this
direction, with origin at §, so that

P(=-a, 0)

(0, 0) T:x——)x + ba
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We assume, without Iogs of generality, that s, b > Oa Py @ ars on both
By Bz’ 80, epplying T and its inverse

{(=a*b, 0) is on B,

(b, 0) is on Bz'
(‘;hoose oblique exis of y so that (0y ¢) i8 in R, for some ¢ > 0. Then
(-a=b, 0) (&, 0) (0, O) are on Ry,

8o y # Oy being the only line through the second point which does not

geparate the first fram the 'third, is e tdceline and ¥Vety point vI"B;

a2

o *

satisfies y > 0 : (3)
Again ("a{, 0): (ba O). (0. 0) sere in Rzo Iﬁt me min(a.) b)l By

convexity the triangular region

‘:‘ xél y=o . - (4)
48 containsd in ‘Rz.‘ .

Let v be the neighhourhood of ¢ defimed by the inequality

L".‘. LL’<1.

By (3) every point of l# 5y B, satisfles (4} and so lfes in Ryy But we

supposed that B crossed ]32 at Q, and then, by def's 345 UV n By ocrteins

«

points not in Ra. & contra.dlc‘biont

3

IEMMA 5. The boundery of R hms exactly« two po"ints‘ in commen, with that of

P = Re The boundary of R (P—R). being fini'l‘.e, xnust contein points of the
boundaries of both R end P~Re Thege boundari‘es‘mst therefore intersect at
Ls L', sayy where by symmetry P is t-:;le midpoint of LL'. There cannot be
enother sugh pair 1, M', for then LL'M{* would be vertices of e parallelogyagm,
contrary to lemms 3.

It follows from lomm § that the boundery of R ~ (P-R) consists of

two comnected arss LL*e One of thesey which we call lower boundary, is Pg,rt

b
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of the baundary of Rs The upper bou:_z&ar}r is tha reflettign in P of this,

and is pert of the boundary of P = Re ) :
The lower half of the ‘region R, (P<R) s défined €0 e that patt of
R (P-R) which lies on the seme sidé of the line LL} es thé lower-boundary=

<

arde

.
o

The funttional inequality for £(x).

Let P be an interior point of Re Iet V bs & point on the lower boundary

of R (P=R)s Let U be & point on the line~spment PV such that FU > A BV,
0< N< 1, |

men £(u) < (1= N9)2(P)s
_153_133 We prove this inequé.lity on the gssumption that U is interior end that
V is not at an intersection of the boundaries; but triviel modifications
(or continuity arguments) will cover these cases.
let L, L? b; the intersections of the boundaries of _I}.JP ~ Re let the line
PU\; be called me m meets the boundary of P - R et VI, the reflexion of V in

P end it meets the boundary of U = R &t ¥", the reflexion of V in U.

I. The upper erc LLY consis’cé of two partg 1vt, VL', which lie on oppositi

g_}_c_l_\_e_g of m. Since V is on the lower arc 1LY, V' is on the upper arc, by :

reflexion in P. Ioreover m&does not cut the upper erc at any point other

then V!, for it cannot cut the_;boundar;{ of the convex ;rag‘iozl R 0_(P-R) at more

than two pointse L, L' lie on opposite sides of m by ‘-sylmmet;y,‘ so the arcs

IV', L'V! lie wholly on opppsite sides of me

II« V! is not in U = Re

V" lies on one or other of the line~segments V'P, PV, end so in the

inteyior of R; hence, by refle:fion in Ue V is é.n interior point of U = Re
Suppose, then, if possible that V! were in U = Re Then V" on the segment

s

VV* wauld be en interior point of U = R, contrary to the definition of s
i




II1s At lesst ome of the ercs LV, L1V1 l%es wholly outside U = R.

P - R i8 derived from U = R by a translation; by lemme 4 the ers IL', which‘
forms pert of the boyndary of P = R, crosses the boundary of U = R at not nmore
than one point, Hence either LV' or L'V* does not.oross the boundary of U - Re
Suppose LVt, say, does note Then, since V! is not 1# Y - R, by 1ls neither is
eny point of the &rc LV'e

Suppose that LV' is the arc that lies outside U - R. By I, Lv* lies
entirely in one of the half=planes, ssy r » bounded by the line m. Iet

T f be the parts of R 5 P~ Ry R 4 U *R lying on this same gide of ms

M= rn RnP-R.f"ranU-R- (5)
T hes area if(P) f area £ (U)» '
Iv. (o c ar .

From (5), it suffices to show’tgat c’ C P = Re Suppose there is e point X of
f not in P = Re Since U is in P - R the seguent XU cuts the lower boundary
of P4R at Y, say. Y 18 in € » by convexity; so Y is on the part of the
boundary of P = R that lies in. r/] R, ie0e the arc LV'e This contredicts
the choice of LV' as the afc lying wholly outside U ~ Rs
Now let ,b * ,Z.‘ ,Q" be parallel tac-lines to R, P= R, U = R at
v, Vt, Vs Choose oblique axes with E' es X = O, m 88 y = Oy hchpose sign
so that all points of T , C have non-negaﬁive coordinates, £ ’ A " have
equations x = a, x = A a (&> 0) and every point of f satisfies A a < zx< e
Iﬁt/u be the upper bound of %for ell points (x, y) of (0 o Since 6 is
a bounded closed region th;re is 4 point (b,/q b) say, whete this bound is

attaineds

S
L3

Every point of (° satisfies the inequalities
O_<_y§_/b(x )\asaxf_a; (6)

80 the erea is less than the area of the region defined by (6):
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Consider the trianguler region
04_<_y§_/ux O'S_x.g)\a
Its yvertiges are VI(0s 0)s V"( Ae, 0) and (7\9., .?\./u., 8)s The third vertex
(as well as the first two) s in T, for (b, M b) 18 in £ C T by
definition of by Hence b> A a by (6), and (Aea, Ape)is on the segmedt
joining the origin V' %o (b-p/“ b), end _so (7\6.. 7\/0&&) is in 1T by copvexitye
.Sinoe the three ver‘tices ere in_ T , the whole tx‘iangle is in 'T by con-

vexitys Moreover , no point of it is in e 4 for the second inequalities of
(6), (8) contradict one anothers Hence the regien (8) lies inside W = f’
50 ‘ ‘

¥e) - HW ZEp e A
Combine this with (7):

e(v) < (1= A)2(p),

and “the inequality is es_tg,pli,sheda

LEMMA 6, R contains e point of every lattice.
P adinalibanss. i ol -amnd e ooty ,

Choose axes s0 that I(0, 1) is a point at infinity of R, and so that (O, 0) is
e lattice-pointy Let (&, b) (c, d) be wectora generating the lattice, where
we pssume, without loss of generality, e > 0, b > 0, gd v ba> 0. Iet (ol :/5‘)
be eny point of R Then there is a point (A '.p t ) of R such that
1 oL« QL | > @; for if not R lies in the infinite strip
pl*a< x<O *é&,

cont‘rary to definition of Rs
let p = min (OL , ol'), q = max (ﬁ ;/5 1)y By comvexity (with I{(0, 1) R
contains the region

v>qy p<e<ptols (9)
Chooss e positive integer n such that

- .
e
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Then let m be an integer such that
p<ma+ne<pta

ad+be
a

Wé heve mb + nd = (mesno) E--t- n e >q

Hence the lattice-point (ma+nc, mb+nd) setisfies (9) end so lies in Re
It is now easy to prove the mein theorems Choose, by lemma 6, & point X, of
/\ in Re If £(x) < 4d(/\) there is nothing to prove. If £(X,) 2 2a(/A\)>»
there is a point X, of /\ s other than X in R N (XO-R), by Minkowski's
Fundamental Theorem. We may é.ssuma that X, is in the lower half of the region
R /)(XO-R) since the lattice is symmetriocal about X . Wc; mey essume further
thet X, is at least helf-way from X to the boundary, for if it were not one
of the other lattice~points which ere equally spaced along the lime xo'xl would
satisfy thise |

Then £(%)) < ,; £(X_)s by -the insquality for £(X) with A = % If sgain
ff(xl) 2_4d( )\) we cen repeat the process, and after a finite number of steps

we errive at a lattice<point X which satisfies the theorem,

LR E A G B E i e e e
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