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I. Introduction

This paper is in part motivated by the following:

Let M be the KBSA moduli space for smooth varieties X of general

type and with given numerical characters. Then M is quasi-projective

and has a canonical projective completion M.1 The singular varieties

X0 corresponding to points of the boundary ∂M = M\M are locally

described by the requirement to have only semi-log-canonical (slc) sin-

gularities, but very little is known about the global structure of the

X0’s, or about the global structure (stratification) of ∂M.2 A natu-

ral invariant of M is the period mapping Φ : M → Γ\D whose image

Φ(M) is a quasi-projective algebraic subvariety of the complex analytic

variety Γ\D. One seeks a canonical completion Φ(M)e of Φ(M) and

an extension Φe : M → Φ(M)e of the period mapping. We note that

1Our general references for the theory of moduli are of the expository papers by
Kollár [Kol1] and [Kov1].

2One exception is the recent work [F-P-R1], [F-P-R2], [F-P-R3].
1
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if dimX = 2, Γ\D is never an algebraic variety ([G-R-T]) so that an-

alytic methods seem to be required for the study of Φ and Φe. From

the theory of degeneration of polarized Hodge structures ([C-K-S1] and

extensive subsequent works; cf. [Ca]3 for a recent overview), one may

hope that this theory will lead to analysis of the behavior of Φe on

∂M = M\M, and then this information can in turn lead to an under-

standing of ∂M and of the global structure of the X0’s.

Various aspects of this and related topics are work in progress by a

number of people including the four of us, and are the subject of other

papers currently in preparation. Here we shall be concerned with the

study of a period mapping

(I.1) Φ : B → Γ\D

where B is a smooth, quasi-projective variety having a smooth pro-

jective completion B where Z = B\B is a reduced normal crossing

divisor. We assume that the local monodromies Ti around the irre-

ducible branches Zi of Z are unipotent. For example, this situation

might arise starting with a Φ : M→ Γ\D as above and then passing to

a finite covering B of a desingularization of M and completing B to a

B as described. Given (I.1) the image M = Φ(B) is a quasi-projective

algebraic subvariety

M ⊂ Γ\D

of the moduli space of Γ-equivalence classes of polarized Hodge struc-

tures parametrized by the period domain D.4 The primary objectives

of this paper are

(i) to construct a canonical completion M of M as a compact, complex

analytic variety, one that is minimal in a sense to be explained; and

3The volume in which this reference appears contains a number of papers that
provide general references to the material in this paper.

4If we assume, as we may, that Φ has been extended over the Zi where Ti is
trivial, then the resulting period mapping Φ : B → Γ\D is proper, and hence
the image is a closed analytic subvariety. The quasi-projectivity result has a long
history that will be discussed below. One of the earliest results is given in [Som].



3/28/17 COMPLETION OF PERIOD MAPPINGS 3

(ii) to show that the Hodge line bundle Λ → M extends to an ample

line bundle Λe →M .

This provides a canonical, projective Hodge-theoretic object that

may be used to study moduli of varieties of general type. Some early

examples suggest that it can give a very effective tool for this study.5

A consequence of this result and other work in progress is that one

may now define the Satake-Baily-Borel (SBB) completion of the image

of the period mapping Φ : M → Γ\D to be Proj(Λe).
6 Examples

show that this SBB completion can be very effective to organize the

boundary structure of some surfaces of general type.7

We will now explain points (i) and (ii) in further detail.8 To begin, we

recall that given the data (V,Q), where V is a Q-vector space containing

a lattice VZ and

Q : V ⊗ V → Q

is a non-degenerate bilinear form satisfying Q(u, v) = (−1)nQ(v, u),

the period domain D is the set of polarized Hodge structures (PHS)

F • = {F p} of weight n. The conditions that the decreasing Hodge

filtration F • give a Hodge structure is that for each p with 1 5 p 5 n

we have the isomorphism

F p ⊕ F n−p+1 ∼−→ VC.

Equivalently, setting V p,q = F p ∩F q
there is the Hodge decomposition

VC = ⊕
p+q=n

V p,q, V
p,q

= V q,p.

5An informal overview of some aspects of this is given in [G3].
6A Lie-theoretic Satake-Baily-Borel completion of Γ\Dn of Γ\D is also under

construction. It is hoped to be able to relate M and Γ\Dh.
7Some examples are discussed in [G3], and there is currently further work in

progress in this area. Basically the boundary of the Gorenstein partMGor is strati-
fied according to the associated graded of the mixed Hodge structure, modulo the
Hg1-part of that mixed Hodge structure.

8A general reference for period domains and period mappings is [C-M-S-P].
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The relation between the two is F p = ⊕
p′=p

V p′,n−p′ . Defining as usual

the Weil operator by

C(v) = ip−qv, v ∈ V p,q,

the polarization condition is given by the two Hodge-Riemann bilinear

relations {
Q(F p, F n−p+1) = 0,

Q(Cv, v̄) > 0, 0 6= v ∈ VC.
SettingG = Aut(V,Q), the period domain is a homogeneous complex

manifold

D = GR/H

where GR is the real Lie group associated to the Q-algebraic group G

and H ⊂ GR is the compact subgroup leaving invariant a reference

polarized Hodge structure. A period mapping (I.1) is given by a mon-

odromy group Γ ⊂ GZ and a locally liftable holomorphic mapping (I.1)

that satisfies the infinitesimal period relation

Φ∗ : TB → I

where I ⊂ TD is the invariant distribution defined by

Ḟ p ⊂ F p−1.

The differential of Φ is a map Φ∗ : TB →
[n+1

2 ]
⊕ Hom(F p, F p−1/F p)

and we shall denote by

Φ∗,n : TB → Hom(F n, F n−1/F n)

the end piece of Φ∗.
9

Definition: The Hodge vector bundle F → D is the homogeneous

vector bundle whose fibre at F • ∈ D is F n. The Hodge line bundle is

the line bundle

Λ = detF.

We shall frequently refer to Λ as simply the Hodge bundle, but we will

always use “vector” when discussing the Hodge vector bundle. We

9Φ∗,n = Φ∗ when the weight n = 1, 2.
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have chosen Λ as the notation for the Hodge bundle by analogy to the

standard notation λ for the Hodge bundle over Mg.

There are other vector bundles such as those with fibres F p−1/F p as-

sociated to period mappings, but for application to moduli of varieties

of general type the Hodge vector and line bundles are especially impor-

tant due to the identification F n = Hn,0(X) = H0(KX) where X is a

smooth projective variety of dimension n and Hn(X) = ⊕
p+q=n

Hp,q(X)

the Hodge decomposition of its nth cohomology group.

The Hodge-Riemann bilinear relations induce invariant Hermitian

metrics in F and Λ, and denoting by Ω the curvature form in the

pullback Λ → B to B of the Hodge bundle over D,10 the positivity of

the Hodge bundle over B is expressed by

(I.2) Ω(ξ) = ‖Φ∗,n(ξ)‖2, ξ ∈ TB.

Here Φ∗,n is the component of Φ∗ in Hom(F n, F n−1/F n). Thus Ω is a

positive semi-definite (1,1) form, and its null space is the kernel of the

end component of the differential of the period mapping. In particular,

Ω is positive if, and only if, Φ∗,n is injective. This covers the particularly

interesting case of moduli of surfaces of general type for which local

Torelli holds.

It is standard that the data of a period mapping (I.1) is equiv-

alent to that of a (polarized) variation of Hodge structures (VHS)

(V,F•, Q,∇) over B. Here V is a local system with Gauss-Manin con-

nection ∇ : OB(V)→ Ω1
B(V) where OB(V) = V⊗OB, the Fp ⊂ OB(V)

are holomorphic sub-bundles, Q : V ⊗ V → Q is a horizontal bilinear

form and where this data induces at each point of B a polarized Hodge

structure. The infinitesimal period relation (IPR) is

(I.3) ∇Fp ⊆ Ω1
B ⊗ Fp−1.

10A more precise notation would be Φ∗Λ → B. But since we will mainly be
working with the Hodge bundle and the Hodge vector bundle over B we shall omit
the Φ∗’s.
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The Hodge vector bundle F is Fn. We shall use interchangeably the

data of period mappings and of variations of Hodge structure.

Given a period mapping (I.1) and completion B ⊂ B as described

above, we set

ZI =
⋂
i∈I

Zi

where Zi are the irreducible components of the divisor at infinity Z =

B\B. We denote by Z∗I ⊂ ZI the open strata obtained by remov-

ing from ZI the lower dimensional sub-strata. Under the assumption

that the local monodromies around the branches Zi of Z are unipotent

with logarithms Ni, it is well known ([C-K-S1] and [P-S]) that there

are canonical extensions of the Hodge filtration bundles Fp to vector

bundles Fpe → B where the infinitesimal period relation (I.3) becomes

∇Fpe ⊆ Ω1
B

(logZ)⊗ Fp−1
e ,

and where up to a factor of 2π
√
−1

ResZi ∇ = Ni.

We denote by Fe or Fe the canonical extension of the Hodge vector

bundle, and by Λe = detFe the canonically extended Hodge (line)

bundle.

Setting NI =
∑

i∈I Ni we obtain a nilpotent operator to which there

is canonically associated a weight filtration W•(NI) uniquely defined

by NI : Wm(NI) → Wm−2(NI) and Nk
I : Gr

W (NI)
n+k

∼−→ Gr
W (NI)
n−k .11 It is

a consequence of [C-K-S1] that there is over each open stratum Z∗I a

polarizable variation of mixed Hodge structure (VMHS) with weight

filtration W (NI).
12 Passing to the primitive parts of this variation of

mixed Hodge structure gives period mappings

(I.4) ΦI : Z∗I → ΓI\DI .

11We are centering the weight filtration at n, which is the weight of the polarized
Hodge structures under consideration, rather than at zero which is perhaps more
customary.

12In the literature the VMHS is frequently referred to as the limiting mixed Hodge
structures associated to the VHS over B. For the general theory of variations of
mixed Hodge structures we refer to [S-Z].
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We note the important relation

(I.5) Λe

∣∣
Z∗I

= ΛI

where the left-hand side is the restriction to Z∗I of the canonically

extended Hodge line bundle and the right-hand side is the Hodge line

bundle associated to the period mapping ΦI . It is this relation that

relates the canonical extension Λe → B of the Hodge bundle to the

Hodge bundles on the open strata of the boundary Z = B\B of B.

We set

MI = ΦI(Z
∗
I )◦.

Here the exponent ◦ refers to a covering space of the image ΦI(Z
∗
I )

obtained by a Stein factorization of the map (I.4). As noted above,

MI is a quasi-projective algebraic variety, which may be described as a

finite-covering space of the set of equivalence classes of PHS’s given by

the primitive parts of the VMHS arising from the canonical extension

of (V,F•, Q,∇) to B. Basically, MI is obtained by taking the limit-

ing mixed Hodge structures along the open strata Z∗I , throwing out

the extension data in the mixed Hodge structures, and passing to a

finite covering of what is left, the purpose for this is to have connected

components of the fibres of ΦI : Z∗I → ΓI\DI .

Theorem A: There exists a canonical extension M of M , which is a

compact complex analytic variety and where there is an extension

Φe : B →M

of the period mapping (I.1). As a set

M = M q
(∐

I

MI

)
.

In first approximation, M is obtained from M by attaching the as-

sociated graded PHS’s to the limiting mixed Hodge structures arising

from the period mapping (I.1) and describing how these fit together.

The precise statement differs in that we pass to the Γ-equivalence

classes of the set-theoretic mapping described above, and then we pass
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to a finite covering arising from a Stein factorization in the construc-

tion. The mechanism for fitting the pieces MI together in a consistent

way to obtain the structure of a complex analytic variety is the most

subtle part of the construction.

A natural way to try to prove the above theorem would be to show

that there is an extension

Γ\D ⊂ Γ\Dh

of the moduli space of Γ-equivalence classes of polarized Hodge struc-

tures as a complex analytic variety, one to which the period mapping

(I.1) extends and whose image provides the M in the theorem. In the

classical case when D is a Hermitian symmetric domain and Γ is an

arithmetic group such a completion is provided by the Satake-Baily-

Borel compactification ([Sa] and [B-B]). However, in the non-classical

case the construction of such an extension encounters new and signif-

icantly different phenomena that are both Lie-theoretic and Hodge-

theoretic in character;13 it is currently a work in progress that has only

been partially carried out.

Our approach will be to construct M by mapping neighborhoods

U ∼= ∆∗k ×∆` at infinity in B to CN and showing that

(i) the maps µ : U→ CN extend to U = ∆k ×∆` and have image an

analytic subvariety;

(ii) these extended maps have natural compatibility properties (ex-

plained below) when restricted to sub-strata of U; and

(iii) the extended maps glue together in the intersections U∩U′ of the

open sets in B.

We may think of the µ : U → CN as local charts for the image of

the period mapping around the points at infinity.14 They are not local

coordinates in the traditional sense, but operationally serve a similar

13These phenomena are related to the fact noted above that Γ\D is not an
algebraic variety, so that considerations of a different sort than the classical case
must enter into the story.

14To be precise they serve as local charts up to the finite coverings that arise
from a Stein factorization of a holomorphic mapping.
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function. Even in the classical case they seem to provide a different

way of approaching the construction of compactifications.

These maps will first be constructed in case the restriction

ΦU : U→ ΓT\D

of the period mapping is a nilpotent orbit. Here, U = ∆∗k and ΓT =

{T Z
1 , . . . T

Z
k } is the local monodromy group generated by the mon-

odromies Ti around the branches of Zi ∩ U. Denoting by (t1, . . . , tk)

coordinates in ∆∗k, the to be constructed µ will be a monomial map-

ping

µ(t) = (tA1 , . . . , tAN )

where

Aj = (aj1 , . . . , ajk) ∈ Z=0,

tAj = t
aj1
1 . . . t

ajk
k .

Of the properties listed above, the definition and combinatorial prop-

erties of the Aj’s needed to satisfy (ii) are the most subtle and require

both non-trivial results from combinatorics and the relative weight fil-

tration property of limiting mixed Hodge structures.15 We note the

similarity to aspects of toroidal geometry; in fact, one may reasonably

expect that around points of Z the completion has locally the structure

of a normal toroidal variety.

A general period mapping ΦU is well approximated by a nilpotent

orbit and a further argument is used to establish the properties (i)–(iii)

for such a ΦU. The approximation that will be used has evolved over

time from the one in [C-K-S1]; here we will use the version given in

[C-K2].

An interesting point concerns passing from the image of the local-

ized at infinity period mapping to the quotient by the full monodromy

15Basically what has to be proved is that for index sets I ⊂ J the closure in
∆∗J ⊂ ∆∗I of the level sets of the to be constructed µI : ∆∗I → CNI will be contained
in the level sets of µJ : ∆∗J → CNJ , and that the level sets distinguish the associated
graded polarized Hodge structures to the limiting mixed Hodge structures.
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group; i.e., to

(I.6) U
ΦU−→ ΓT\D → Γ\D.

Denoting by H the upper-half-plane in C and by Ũ ∼= Hk × ∆` the

universal covering of U with coordinates (z1, . . . , zk, w1, . . . , w`), we let

S = {(z, w) : |Re zj| 5 1/2 and Im zj = c > 0} be a fundamental

domain for the action of ΓT on Ũ. Then if there were a Siegel set

Σ ⊂ D with the property that the lifted period mapping

Φ̃U : Ũ→ D

maps S to the Siegel set; i.e., that

(I.7) Φ̃U(S) ⊂ Σ,

then there would be only finitely many γ ∈ Γ/ΓT such that the image

Φ̃U(S) meets the translate γΦ̃U(S) of that image; i.e., finitely many γ

such that

(I.8) γ(Φ̃U(S)) ∩ Φ̃U(S) 6= ∅. 16

In this case passing to the quotient by the full monodromy group Γ in

(I.6) would be a finite operation. However, the Siegel set property (I.7)

is not true in general. But we will see that as a consequence of the

results given in [C-D-K] the set of γ ∈ Γ/ΓT satisfying (I.8) is finite, so

that the discrepancy between working with the local monodromy group

ΓT or the global one Γ is a finite set. One may phrase this informally

as saying

Variations of Hodge structure have the Siegel set property.

The second main result in this paper is the

Theorem B: The Hodge bundle extends to a holomorphic Hodge line

bundle on M , and there Λe →M is ample.

In the classical case when D is a Hermitian symmetric domain and Γ

is an arithmetic group this result is a consequence of the properties of

16For the definition and properties of Siegel sets we refer to [B-B]. Informally
Σ may be thought of as an approximate fundamental domain for the action of Γ
on D.
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the Satake-Baily-Borel construction; it is a global one in that sections

of Λ⊗me that give a projective embedding of Γ\Dh are constructed using

modular forms. For the reasons explained above, such an approach is

not possible in the non-classical case. Our proof is in spirit analogous

to the one used by Kodaira to show that over a compact, complex

manifold a line bundle with positive Chern class in the differential-

geometric sense is ample. The proof of the result here depends on some

rather subtle properties of the Chern form Ω of the Hodge bundle. It is

well known that, as suggested by (I.2), the Hodge bundle has positivity

properties. It is due to [C-K-S1] with an important amplification in

[Kol2] that Ω defines a closed (1, 1) current Ωe on B. For the proof of

Theorem B we need to significantly refine this in several ways.

First, since currents are differential forms with distribution coeffi-

cients, the singular support sing Ωe of Ωe is defined, and assuming as

we may that all monodromy logarithms Ni 6= 0 we have

(a) the singular support sing Ωe = Z.

Next, it is well known that distributions and currents cannot in general

be restricted to submanifolds. To get around this one needs a more

subtle notion than just the singular support. Associated to a current

Ψ on a general manifold Y is its wave front set

WF(Ψ) ⊂ T ∗Y.

If W ⊂ Y is a submanifold whose tangent spaces are transverse to the

wave front set in the sense that

TW ⊂WF(Ψ)⊥,

then the restriction Ψ
∣∣
W

is a well-defined current on W . Applying

this to the situation at hand where Y = B and W = Z∗I , in first

approximation we will show that

(b) WF(Ωe) ⊆
⋃
I

N∗
Z∗I /B

;

that is, the wave front set of the Chern form Ωe is contained in the

co-normal bundles of the open strata Z∗I . The proof will also give the
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conditions under which equality holds in (b). It will follow that the

restriction Ωe

∣∣
Z∗I

is well defined, and we then have

(c) Ωe

∣∣
Z∗I

= ΩI is the Chern form of the Hodge bundle ΛI → Z∗I .

We have used the qualifier “in first approximation” because what

will actually be proved is not (b) with the usual definition of the wave

front set, but rather we will have (b) with an extended definition of

what is meant in this paper by the wave front set, a definition that

has for our purposes the all important property that the restrictions

Ωe

∣∣
Z∗I

are defined. We might say that “we have (b) adapted to the

Hodge-theoretic situation at hand.”

With this understanding we may summarize the above by the fol-

lowing

Theorem C: The Chern form Ω of the Hodge bundle Λ→ B extends

to a current Ωe on the completion B of B. There it has singularities

as described in (a), (b), and (c) above. In particular it represents the

Chern class of the Hodge bundle Λe → B.

Regarding the positivity of the extended Chern form Ωe, an interpre-

tation of the analysis behind the properties (a) and (b) above may be

informally expressed as saying that the more singular the extended pe-

riod mapping is, the more positive Ωe is. This heuristic will be further

explained and used in Section VI where we discuss curvature properties

of the extended Hodge vector bundle.

We will give two arguments for Theorem C. The first, in Section III,

will be geometric and essentially deals with the case of 1-parameter

degenerations. The result (Proposition III.9) is a statement about the

curvature properties of the Hodge vector bundle and will be used later

in the paper. An additional aspect of the argument is that it displays

the estimates on the Hodge norms and the resulting connection and

curvature forms giving descriptions that are more precise than the ex-

isting ones in the literature.

There is a short appendix to Section III in which we show that in

the geometric case the Hodge theoretically defined polarizations on
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the limiting mixed Hodge structure coincide, up to constants, with

standard ones derived from geometry.

The second proof given in Section IV establishes the result in full

generality and exhibits in detail how the very special and subtle gen-

eral properties mentioned above of several variable degenerations of

polarized Hodge structures come into play.

It is worth noting that in [C-K-S1] the asymptotic properties of sev-

eral parameter degenerations of polarized Hodge structure, properties

which lead to the analysis of the degenerating Hodge metrics, involve

choosing an ordering of the parameter coordinates and dividing the

universal covering Hk of the parameter space ∆∗k into sectors. Sim-

ilar issues arise — in perhaps a more transparent way — here. The

underlying question is one that is interesting in its own right. Let

P (x1, . . . , xk) and Q(x1, . . . , xk) be homogeneous polynomials that are

positive in the sense that they are positive if all xi > 0. Suppose that

degP = degQ+1. Then the conditions that limxi→0Q(x)/P (x) = 0 be

defined, and therefore be zero, requires special properties of the mono-

mials in Q relative to those in P .17 In the situation at hand, P (x) arises

from the determinants of
∑

i xiNi acting on the associated graded to

the limiting mixed Hodge structures along the ∆∗I . The resolution of

the issue raised above requires a classical result from combinatorics

and linear programming and a suitable interpretation of the relative

weight filtration property of several parameter limiting mixed Hodge

structures.

17For example, limx1,x2→0
x1+x2

x1x2
is not defined.
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Turning to the proof of Theorem B, using the properties of the Chern

form we will prove successively that

strictly nef

Λe →M is big

free.

Here “strictly nef” means that for any curve C ⊂ B

Λe · C > 0

unless C lies in a fibre of the map B →M in Theorem A. These three

properties will combine to give that Λe → M is ample. Of the three

the most difficult is the third. In fact, we shall show that Λe → B is

free, and since Λe is trivial on the connected fibres of B →M this will

give that Λe is free on M as well.

In addition to the three principal results stated above, in Section VI

we will discuss curvature properties of the Hodge vector bundle F → B.

Here although there is only the one result stated below, the main point

is to raise some questions concerning positivity properties of the Chern

classes of the Hodge vector bundle. At the end of that section we will

discuss how these positivity properties enter in important results of

Viehweg and others ([V1], [V2], [Kol2]), together with a few historical

comments concerning the evolution of these properties.

Given a holomorphic vector bundle E → Y with a Hermitian metric

over a complex manifold Y , we recall that there is a unique Chern

connection

D : A0(E)→ A1(E)

with the properties{
D′′ = ∂

d(e, e′) = (De, e′) + (e,De′), e, e′ ∈ A0(E).
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The curvature ΘE ∈ A1,1(EndE) is as usual defined by

ΘE(e) = D2e

where e ∈ A0(E). In terms of a local unitary frame eα for E with e∗β
the unitary dual to eβ and local holomorphic coordinates zi on Y ,

ΘE =
∑

Θα
β̄ij̄eα ⊗ e

∗
β ⊗ dzi ∧ dz̄j

where Θα
β̄ij̄

+ Θ
β

ᾱij̄ = 0. The curvature form is defined by

ΘE(e, ξ) =
〈
(ΘE(e), e), ξ ∧ ξ̄

〉
e ∈ Ey, ξ ∈ TyY.

For e =
∑
vαeα, ξ =

∑
ξi∂/∂zi this is the bi-quadratic form∑

Θα
β̄ij̄vαv̄βξ

iξ̄j.

The bundle E → Y is defined to be positive if there exists a Hermitian

metric such that for non-zero e, ξ

ΘE(e, ξ) > 0.

If we only have

ΘE(e, ξ) = 0

then E is said to be semi-positive. The condition of positivity is too

strong for many purposes, while semi-positivity is too weak. For ex-

ample, the trivial bundle is semi-positive. A more substantial example

is that the universal quotient bundle Q→ G(k, n) over the Grassman-

nian of k-planes in Cn is semi-positive, but is not positive except in the

case k = n− 1 when Q = OPn−1(1).18

From the elementary symmetric functions of the curvature matrix

one constructs the Chern forms ck(ΘE) by

r∑
k=0

ck(ΘE)λr−k := det

∥∥∥∥( 1

2πi

)
ΘE + λI

∥∥∥∥ , r = rank E.

18An important algebro-geometric analogue of semi-positive called weak positiv-
ity was introduced by Viehweg ([V1], [V2]) and has been extensively used by him
and others. A relation between the two is discussed in [P], Theorem 2.21.
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The Chern forms represent the Chern classes of E → Y in de Rham

cohomology. For an index set I = (i1, . . . , ir) with iα = 0 we define the

Chern monomials by

(I.9) cI(ΘE) = c1(ΘE)i1 · · · cr(ΘE)ir .

In the following we will use the notations

• T = TbB for b ∈ B;

• Hn,0 = F n
b ;

• Hn−1,1 = F n−1
b /F n

b .

We then have

Φ∗,b : T → Hom(Hn,0, Hn−1,1),

and we will denote this mapping by

T ⊗Hn,0 → Hn−1,1.

Theorem D: For a variation of Hodge structure (I.1) the Hodge vector

bundle F → B is semi-positive. Moreover, the Chern monomials satisfy

cI(ΘF ) = 0.

We have

• ck(ΘF ) 6= 0 if, and only if, there exist k-dimensional subspaces

A ⊂ T and B ⊂ Hn,0 such that

A⊗B → Hn−1,1

has no left or right kernel;

• c1(ΘF )k 6= 0 if, and only if, there exists a k-dimensional subspace

A ⊂ T such that

A→ Hom(Hn,0, Hn−1,1)

is injective.

Since c1(F ) = c1(detF ) = c1(Λ) where Λ → B is the Hodge line

bundle, the last statement follows from (I.2).

The above raises the general
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Question: What properties of the variation of Hodge structure (I.1)

will imply the positivity of the Chern monomials? This question will

be amplified and refined at the end of Section VI.

In this regard we shall give a heuristic argument that suggests the

result

If Φ : B → Γ\D has no trivial factors and if hn,0 5 dimB,

then chn,0(ΘF ) > 0.

At the end of Section VI we give a brief historical discussion on the

positivity of the curvature of the Hodge bundles up through the period

(roughly the late 1980s) when the two basic properties — the sign

and the nature of the singularities — were developed in the form most

relevant to this paper.19 Since that period the positivity and singularity

structure of the Hodge and related bundles has been and continues to

be a very active and interesting area and there are excellent survey

articles (cf. [P] and the references cited there) on this topic.

II. Construction of a completion of the image

of a period mapping

In this section we will give a proof of Theorem A as stated in the

introduction. We recall that we are seeking to construct a compact,

complex analytic variety that completes the image of a period mapping

as described in the diagram

B
Φ // M ⊂ Γ\D

∩ ∩

B
Φe // M.

(II.1)

The argument will be in number of steps. For the first we localize the

period mapping to a nieghborhood U ∼= ∆∗k ×∆` at infinity to have

ΦU : U→MU ⊂ ΓT\D
19For us most relevant means that the curvature of the Hodge line bundle exactly

detects the variation of the associated graded to the limiting mixed Hodge structures
along and in the normal directions to the strata of the completed period mapping.
It is this geometric property that underlies Theorem B above.
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where ΓT = {T Z
1 , . . . , T

Z
k } is the local monodromy group. We want to

construct a local extension of MU to obtain for U = ∆k×∆` a diagram

U
Φ // MU ⊂ ΓT\D

∩ ∩

U
Φe // MU.

(II.2)

The steps are

Step 1 (main step): We will construct (II.1) when Φ is a nilpotent

orbit. This will be done in several stages — Step 1a, Step 1b, Step 1c.

Step 2: We will extend the construction to the case where Φ is a

general variation of Hodge structure.

Step 3: Finally we will give the construction of (II.1) when the full

monodromy group Γ is taken into account.

Step 1a: We are given a nilpotent orbit

Φ : ∆∗k → ΓT\D

where, for notational convenience setting `(tj) = (log tj)/2πi,

Φ(t) = exp

(
k∑
j=1

`(tj)Nj

)
· F0

with F0 ∈ Ď being a reference point. We set N =
∑

j Nj and denote

by

lim
t→0

Φ(t) = (V,W (N), F0)

the polarized limiting mixed Hodge structure (LMHS). Our basic ref-

erences for the definition and properties of limiting mixed Hodge struc-

tures is [C-K-S1]. Without loss of generality we may assume that the

limiting mixed Hodge structure is R-split, and we denote its Deligne

decomposition by

VC = ⊕Ip,q, Ip,q = Iq,p.

Then

W (N)m = ⊕
p+q5m

Ip,q,
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and for the Hodge filtration F •e of the LMHS we have

F p
e = ⊕

p′=p
Ip
′,q. 20

We ask the question

(II.3)
Which monomials tc11 · · · t

ck
k are constant on the connected

fibres of Φ?

For the answer we first recall that Φ(t) ∈ D for 0 < |ti| < ε. Since

D ∼= GR/H where H is a compact subgroup of GR, the vector field on

Ď induced by the action of a non-zero nilpotent N ∈ g is non-vanishing

on D. Thinking of the nilpotent orbit as given by a homomorphism

Φ : C∗k → GC where the image acts on F0 ∈ Ď, passing to the induced

mapping on the Lie algebras this implies that for 0 < |ti| < ε

Φ∗

(∑
i

aiti∂/∂ti

)
is tangent to a fibre of Φ ⇐⇒

∑
i

aiNi = 0.

We shall write this condition as(∑
j

ajtj∂/∂tj

)
Φ(t) = 0

at the point t in question.

From (∑
i

aiti∂/∂ti

)
tc11 · · · t

ck
k =

(∑
i

aici

)
tc11 · · · t

ck
k

we have the conclusion{
tc11 · · · t

ck
k is constant on

the connected fibres of Φ

}
⇐⇒ (c1, . . . , ck) ∈ Rel(N1, . . . , Nk)

⊥

where Rel(N1, . . . , Nk) is the Q-vector space of linear relations among

N1, . . . , Nk. We may choose a generating set of the c1, . . . , ck where

ci ∈ Z.

20The F0 ∈ Ď is only defined to the action of exp(C ·
∑k

i=1Ni) on Ď. The
fibres Fe of the extended Hodge vector bundle are however well defined, as is the
associated graded Gr(LMHS) to the limiting mixed Hodge structures. Since we
shall only be concerned with the associated graded to the limiting mixed Hodge
structures we hope the ambiguity in the notation will not create a difficulty.
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Step 1b: For each index set I ⊂ {1, . . . , k} we let

∆∗I = {t = (t1, . . . , tk) : ti = 0 for i ∈ I and j 6= 0 for j ∈ Ic}

denote the open strata in the standard stratification of ∆k. Setting

NI =
∑

i∈I Ni and denoting by tI a point of ∆∗I , there is a polarized

limiting mixed Hodge structure

lim
t→tI

Φ(t) = (V,W (NI), FI)

where FI = exp(iNIc) · F0 and with weight filtration W (NI).
21 Taking

the primitive parts of the associated graded to these limiting mixed

Hodge structures leads to a period mapping

ΦI : ∆∗I → ΓTI\DI

where ΓTI is generated by the Tj for j ∈ Ic. The question arises as to

the relation between W (NI) and W (NI∪J) where I, J are disjoint index

sets. The answer is given by the relative weight filtration property that

we now explain.

(i) Since [NI , NJ ] = 0, the map NJ induces a map

N o
J : GrW (NI)

m V → GrW (NI)
m V

on the graded pieces of the W (NI) filtration;

(ii) this nilpotent endomorphism induces a weight filtration W (N o
J)

on GrW (NI)
m V ;

(iii) W (NI∪J) also induces a filtration on GrW (NI)
m V , and the relative

weight filtration property is

(II.4) Wn+m(NI∪J) ∩GrW (NI)
m V = Wn(N o

J) ∩GrW (NI)
m V.

In words:

• NJ induces a filtration W (N o
J) on GrW (NI)

m V ;

• W (NI∪J) also induces a filtration on GrW (NI)
m V ;

• these filtrations agree.

21There is a subtlety here in that the choice of a reference F0 depends on the
index set I and an ordering of the indices in {1, . . . , k} (cf. [C-K-S1]). However,
the associated graded to the limiting mixed Hodge structures are well defined.
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This is a very special property of a pair of commuting nilpotent

endomorphisms of a vector space. That it holds for the Ni arising

from a VHS is a Hodge-theoretic, not a linear algebra, property of the

nilpotent Lie algebra generated by N1, . . . , Nk (cf. [C-K-S1]).22

Step 1c: The action of NI on V induces one on g ⊂ Hom(V, V ) and we

denote by W (NI)g, or just W (NI) when no confusion is possible, the

weight filtration induced by this action. The analogue of the condition∑
i aiNi = 0 in Step 1a is now that the condition(∑

j∈Ic
ajtj∂/∂tj

)
ΦI = 0

on ∆∗I is equivalent to ∑
j∈Ic

ajNj ∈ W−1(NI).

It is here that one sees operationally how passing to the associated

graded of the LMHS’s enters the picture; the condition just above

means that the vector field
∑

j ajtj∂/tj is tangent to the fibres of the

period mapping ΦI . We note that in both cases above the sum is over

all j; in the first sum we have ti = 0 on ∆∗I for i ∈ I, and in the second

sum Ni ∈ W−1(NI). What we want to prove is

(II.5)
For I ⊂ I ′, if tc11 · · · t

ck
k is constant on the fibres for ∆∗I ,

then tc11 · · · t
ck
k is constant on the fibres of ∆∗I′ ⊂ ∆∗I .

The proof will be given by two propositions, the first of which is

Proposition II.6: Set SI = {
∑
aiNi : ai ∈ R and

∑
i aiNi ∈ W−1(NI)} .

Then for I ⊂ I ′

SI ⊆ SI′ .

Proof. Let J = I ′\I. Setting NI =
∑

i∈I Ni, as noted above the nilpo-

tent operator NI induces a weight filtration W (NI) on g. The relative

weight filtration property says that you add the weight of Gr
W (NI)
0 NJ

22Cf. also [S-Z] for an extensive discussion of the linear algebra involved here.
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acting on ⊕
m

End(GrW (NI)
m g) to m. Now∑

i

aiNi ∈ Z(NJ) = centralizer of NJ in g.

Thus for Ni,0 = Gr
W (NI)
0 Ni we have∑

i

aiNi,0 ∈ Z
(

Gr
W (NI)
0 Nj

)
which implies that ∑

i

aiNi,0 ∈ W0

(
Gr

W (NI)
0 NJ

)
.

If
∑
aiNi ∈ W−1(NI)g, then by the relative weight filtration property

we have ∑
i

aiNi ∈ W−1+0(NI+J)(g) = W−1(NI′).

This gives the statement in the proposition. �

Remark: The relative weight filtration property implies the following.

If N,N ′, N ′′ are in the closure of the monodromy cone, then

N ′′ ∈ W−1(N) =⇒ N ′′ ∈ W−1(N +N ′).

Thus∑
j

ajNj ∈ W−1(NI) =⇒
∑
j

ajNj ∈ W−1(NI +Nk) for any k 6∈ I.

The other key to the construction of the monomial charts is a sec-

ond proposition given below following two preliminary lemmas whose

statements are necessary for the formulation of the proposition.

Let Q+ = {(x1, . . . , xk) ∈ Rk : xi = 0} be the first quadrant, and let

S ⊂ Rk be a linear subspace.

Lemma II.7: If S ∩Q+ = 0, then S⊥ ∩Q+ 6= 0.

The proof of this lemma is a consequence of the following result from

classical linear programming.
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Farkas Alternative Lemma:23 For A a real m × k matrix and

b ∈ Rk, of the following two problems exactly one has a solution:

(i) Ax = b where x ∈ Rk and xi = 0 (i.e., x ∈ Q+);

(ii) y tA = 0 and where y ∈ Rm and y tb 5 0.

The second preliminary lemma is

Lemma II.8: Given Q+, S as above, there is a unique partition K of

{1, . . . , k} for which there exist

v1 ∈ Q+ ∩ S, xi > 0 if i ∈ K where v1 = (x1, . . . , xk)

v2 ∈ Q+ ∩ S, x′i > 0 if i ∈ Kc where v2 = (x′1, . . . , x
′
k).

Before giving the proof of the lemma we note that it is possible that

K = ∅, v1 = 0 or Kc = ∅, v2 = 0. From the lemma we have the

Corollary: If Q+ ∩ S = 0, then there exists v = (v1, . . . , vk) ∈ S⊥

with vi > 0 for all i. If Q+ ∩ S⊥ = 0, then there exists v ∈ S with

vi > 0 for all i.

For the proof of Lemma II.8 we have from Lemma II.7 that either

there exists v1 6= 0 in Q+ ∩ S or v2 6= 0 in Q+ ∩ S⊥.

By symmetry it suffices to consider the case where we have v1 =

(v1,1, . . . , v1,k) 6= 0 in Q+ ∩ S. If v1,i > 0 for all i we may take

K = {1, . . . , k}. If not we have J 6= ∅ with v1,i = 0 ⇐⇒ i ∈ J .

For R|J | = subspace of Rk corresponding to vectors with coordinate

entries corresponding to the index set J , we let π : Rk → R|J | be the

orthogonal projection. For e1, . . . , ek the standard basis for Rk, if there

exists w ∈ S with 〈w, ei〉 = 0 for i 6∈ J and 〈w, ei0〉 > 0 for some i0 ∈ J ,

then v1 − εw ∈ Q+ ∩ S and has

(v1 − εw)i = 0 ⇐⇒ i ∈ J ′ with J ′ ⊂ J (i0 6= J ′).

We may assume J is minimal, so v1,i > 0 if i ∈ J c. Then there does

not exist w ∈ S such that 〈w, ei〉 = 0 for i ∈ J and 〈w, ei0〉 > 0 for

23An informative discussion is in Wikipedia:
https://en.m.wikipedia.org/wiki/Farkas’ lemma
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some i0 ∈ J . Equivalently

π(S) ∩
(
Q+ ∩ R|J |

)
= 0

by induction on k, for some v1 6= 0 so that dimR|J | < k. By the above

corollary there exists u ∈ R|J |∩ (π(S))⊥ with coordinates ui > 0 for all

i ∈ J . Lift u to v2 ∈ Rk by taking v2,i = 0 if i ∈ J c. Then v2 ∈ S⊥,

and v1, v2 satisfy the conditions in the lemma for I = J .

To prove uniqueness, if K and K ′ both satisfy the conditions in the

lemma, then we have

v1, v2, K,K
c and v′1, v

′
2, K

′, K
′c.

If K ∩ K ′c 6= ∅ we would have 〈v1, v
′
2〉 > 0 contradicting v′1 ∈ S,

v2 ∈ S⊥. Then K ∩K ′ 6= ∅ and Kc ∩K ′ = ∅ gives uniqueness. �

For I ⊂ {1, . . . , k} we set

SI = {(v1, . . . , vk) : vi ∈ R and
∑
i

viNi ∈ W−1(NI)}.

The crucial second proposition is

Proposition II.9: Let KI be the K associated to SI by Lemma II.8.

Then

SI = SI′ for all I ⊆ I ′ ⊆ I +KI .

Proof. Let v1 =
∑

i∈KI miNi where all mi > 0. Then by the defining

property of KI ∑
i∈KI

miNi ∈ W−1(NI).

From the property of relative weight filtrations we have

W•(NI) = W•(NI+KI ).

Then SI = SI+KI which using SI ⊆ SI′ ⊆ SI+KI gives the proposition.

�

We are now ready to construct the monomials that give the map

µ : ∆k → Cm with the desired properties. We note that

c ∈ S+
I ∩Q

+ ∩ Zk ⇐⇒

{
tc11 · · · t

ck
k is constant on the connected

fibres of the nilpotent orbit correspond-
ing to ΦI

}
.
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If I ⊆ I ′ there are the two cases

(a) I ′ ∩ (I +KI)
c 6= ∅;

(b) I ′ ⊆ I +KI .

In case (a) there is tc11 · · · t
ck
k with all ci > 0 for i ∈ (I + KI)

c and all

other ci = 0. Such a monomial restricts to 0 on ∆∗I′ , and therefore it

can be used as a component of µ. The set of monomials corresponding

to S⊥I ∩Q+ ∩ Zk distinguish the points in ∆I .

In case (b),

S⊥I′ ∩Q+ ∩ Zk = S⊥I ∩Q+ ∩ Zk = S⊥I+KI ∩Q
+ ∩ Zk.

Then since I ′ + KI′ = I + KI every monomial corresponding to S⊥I ∩
Q′ ∩ Zk restricts to a monomial on ∆I′ corresponding to a vector in

S⊥I′ ∩Q+ ∩ Zk.
In summary we have obtained the following

(II.10) Prescription for constructing the monomial map: For

each I use all monomials corresponding to S⊥I ∩ Q+ ∩ Zk with ci > 0

if, and only if, i ∈ (KI + I)c.

When we restrict to ∆I′ where I ⊆ I ′, then the restrictions of the

monomials in the prescription vanish (case (a) above), or they restrict

to monomials corresponding to S⊥I′ ∩Q+∩Zk with ci > 0 if, and only if,

i ∈ (KI′ + I ′)c = (KI + I)c (case (b) above). We note that the crucial

step in the construction is the choice of the exponents in tc11 · · · t
ck
k

exactly corresponds to
∑

i cimi = 0 whenever
∑

imiNi ∈ W−1(NI). It

is this last relation that means we are picking up the associated graded

to limt→∆∗I
Φ(t), and it is the relative weight filtration property that

ensures that the maps fit together across the strata.

This completes the construction of the monomial map charts for the

case of nilpotent orbits.

The final step is for a general VHS to suitably perturb the given

monomial map chart for the approximating nilpotent orbit to obtain a

chart for it. We will turn to this after we discuss the following
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Example: The maximal degeneration in M2 of a genus 2 curve is the

nodal curve24

In M2 a neighborhood of this curve is a ∆3 and we will (i) describe the

corresponding nilpotent orbit, and (ii) illustrate how the above proof

works in this case. The picture is

�
�

t1

t2.

t3

The maximally degenerate curve corresponding to the origin is the one

above, the curves on the axes outside the origin will be

,

those on the 2-planes outside the axes will be

and those in the interior will be smooth. Our conclusion will be that

the monomial mapping is

∆3 µ // C4

∈ ∈

(t1, t2, t3) // (t1t2, t1t3, t2t3, t1t2t3)

We note that

24As usual we denote by Mg the moduli space for smooth curves of genus g = 2,

and by Mg its canonical compactification (Deligne-Mumford) obtained by adding
stable curves C with arithmetic genus pa(C) = g and ample dualizing sheaf ωC .
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• the axes all map to a point.

The curves on the axes have moduli; their normalizaitons are (P1,

4 points) and the cross ratio of the 4 points gives the modulus. But

this parameter is in the extension data of the limiting mixed Hodge

structure and it disappears when we pass to the associated graded.

• the level sets on the faces are parabolas t1t2 = c, etc.

The curves on the faces have two moduli; their normalizations are (E,

2 points) where E is an elliptic curve. The 2 points are in the extension

data of the limiting mixed Hodge structure; the associated graded is

the Hodge structure of E. Note that as c → 0 the level sets tend to

the two axes; this is the compatibility result in this case.

For the computation, we may choose a symplectic basis for V = Z4

with the standard alternating form so that

Ni =

(
0 Si

0 0

)
where

S1 =

(
1 0

0 0

)
, S2 =

(
0 0

0 1

)
, S3 =

(
1 1

1 1

)
.

For example we may take for the vanishing cycles δ1, δ2, δ3 giving rise

to the Picard-Lefschetz transformations corresponding to the Ni to be

those in the picture

δ2

δ3 .

δ1

Here the standard basis for Z4 is e1, e2, f1, f2, where ei corresponds to

δi for i = 1, 2 and fi is the dual 1-cycle to δi. The period matrix for

the nilpotent orbit is 
1 0

0 1

`(t1t3) `(t3)

`(t3) `(t2t3)

 .
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The Ni are linearly independent so that the period mapping has no

positive dimensional fibres in ∆∗3. On the face corresponding to t1 = 0

which corresponds to the monodromy logarithm N1, we have

e1 ∈ W1(N1)V, f1 ∈ W−1(N1)V and e2, f2 ∈ W0(N1)V.

Thus W−1(N1)g takes {
e1 → Zf2

e2 → Zf1

and so it is the set of endomorphisms ( 0 S
0 0 ) ∈ End(V ) where

S =

(
0 ∗
∗ 0

)
.

This gives

N3 −N2 −N1 ∈ W−1(N1)g

and the monomial constant on the fibres is t2t3.

As a final comment we note that

• the image of the monomial mapping ∆3 → C4 lies in the toroidal

algebraic variety

z2
4 = z1z2z3.

As one sees from (II.10), this is as a general feature of monomial map-

pings associated to nilpotent orbits.

Step 2: We want to extend the prescription (II.10) to a general VHS

Φ : ∆∗k ×∆` → ΓT\D.

We shall give an argument in the weight 1 case and then take up the

general case.

In the weight 1 case it is classical (cf. [C-M-S-P] or [Ca]) that a

symplectic Q-basis for V may be chosen so that the period matrix

Ω(t) ∈ Hg has the form

Ω(t) =

(∑
j `(tj)Sj + A(t) B(t)

tB(t) C(t)

)
}g′

}g′′

where

• Sj = tSj = 0 are integral symmetric matrices and
∑

j Sj > 0;
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• A(t) = tA(t), B(t), C(t) are holomorphic and C(t) ∈ Hg′′ .

Here we are using the customary notation Hm for the Siegel general-

ized upper-half-plane of m×m symmetric matrices Z with ImZ > 0.

Let P = space of g′× g′ symmetric matrices, R = spanC{S1, . . . , Sk}
and R⊥ the orthogonal space to R so that

P = R⊕R⊥.

Under a reparametrization t̃j = tje
fj(t) we have

A(t)→ A(t) +
∑
j

fj(t) · Sj.

Thus we may choose coordinates so that Ω(t) has the above form with

A(t) ∈ R⊥ in the above decomposition. Consequently the level sets

for
∑

j `(tj)Sj +A(t) are intersections of the level sets for the nilpotent

orbit
∑

j `(tj)Sj and for the holomorphic matrix A(t). Thus the desired

result in the weight 1 case is reduced to

• the case (II.10) of nilpotent orbits;

• a standard foundational result in complex analysis.

The foundational result is the following

(II.11)

Let F : U → CN be a holomorphic mapping of a neigh-
borhood U of the origin in Cn. Setting F (0) = p ∈ CN by
shrinking U , F (U) will be an analytic subvariety defined
in a neighborhood of p.

Without normalizing as above, for the component

Z(t) =
∑
j

`(tj)Sj + A(t)

of the period matrix we may proceed as follows (ignoring the 2πi fac-

tors):

dZ(t) =
∑
j

Sj
dtj
tj

+ dA(t).

If µ(t) = tc11 · · · t
ck
k is a monomial for the nilpotent orbit, then we have

from

d log µ =
∑
J

cj
dtj
tj
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that

d log µ ≡ 0 modulo the entries in d

(∑
j

`(tj)Sj

)
~w�∑

m

cjmj = 0 whenever
∑
j

mjNj = 0.

If we consider

f(t) = µ(t)eu(t)

then we have

d log f(t) ≡ 0 modulo the entries in dZ(t)

if

(i)
∑
j

cjmj = 0 whenever
∑
j

mjNj = 0

and

(ii) du(t) ≡ 0 entries in dA(t).

If we choose separately µ(t) such that (i) is satisfied and such that

(ii) is satisfied, then f(t) is constant on the connected components

of the Z(t) = constant part of the VHS. The remaining parts fall

under (II.11).

We note the implication of the above argument:

(II.12)

If we perturb the nilpotent orbit to a nearby VHS, then
the level sets will drop in dimension. This is what is ex-
pected by upper-semi-continuity. However the equations
of the level set separate into the ones arising from the
nilpotent orbit (the logarithmic ones) and the rest (the
holomorphic ones).

We will give an argument following (II.14) that suitably interpreted

this implication remains valid for a general weight.

For this we shall use [C-K1] to normalize the expression for the VHS.

For

Φ(t) = exp

(∑
j

`(tj)Nj

)
· u(t) · Fo
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where Fo ∈ Ď and u(t) ∈ GC, we may choose u(t) such that the

normalization condition

Adu(t)

(
1

2πi

)
Nj

tj
+ u(t)−1∂u(t)/∂tj ∈ b

is satisfied, where

b =
⊕
p5−1
q

gp,q

is a nilpotent sub-algebra of gC and gC = ⊕
p,q

gp,q is the Deligne decom-

position of gC relative to the R-split limiting mixed Hodge structure as-

sociated to Φ(t). If the vector field
∑

j aj∂\∂tj with aj = aj(t1, . . . , tk)

is tangent to the fibres of the variation of Hodge structure Φ(t), then

F 0 ∩ gC =
⊕
p′=0
q

gp
′,q

for the limiting mixed Hodge structure gives

F 0gC ∩ b = 0.

The condition that Fo not move then becomes∑
j

aj

((
1

2πi

)
Nj

tj
+
∂u

∂tj
u−1

)
= 0.

Setting bj = aj/tj this gives

(II.13)
∑
j

bjNj + (2πi)bjtj
∂u

∂tj
u−1 = 0.

As above denoting by

S = {(c1, . . . , ck) :
∑
j

cjNj = 0}

the relations among the Nj, we decompose

b = bS + bS⊥

into its S and S⊥ components. Then (II.13) gives∑
j

bS⊥jNj + 2πi
∑
j

bjtj
∂u

∂tj
u−1 = 0.

This gives a bound

‖bS⊥‖ 5 C‖b‖ ‖t‖.
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In other words, by normalizing the u(t) that gives the perturbation of

the nilpotent orbit approximating Φ(t) the component of b orthogonal

to the relations on the Nj is small.

The above estimate may be rewritten

‖bS⊥‖
‖b‖

5 C‖t‖;

i.e., most of b is in the space S of relations among the Nj. Now let

X =
∑
j

bjtj∂/∂tj, Y =
∑
j

b′jtj∂/∂tj

be tangent to the fibres of Φ(t) and chosen so that the bracket [X, Y ] =

0. We will show that

(II.14) Y bS⊥ −Xb′S⊥ ∈ S.

Proof. From (II.14) we have{
Xu = −

(
1

2πi

)∑
j bj,S⊥Nju

Y u = −
(

1
2πi

)∑
j bj,S⊥Nju

which gives

Y Xu =

(
1

2πi

)(∑
j

Y bj,S⊥Nju−
(

1

2πi

)(∑
j

bj,S⊥Nj

)(∑
m

b′m,S⊥Nm

)
u

)
,

XY u = −
(

1

2πi

)(∑
j

X ′j,S⊥Nju−
(

1

2πi

)(∑
j

bj,S⊥Nj

)(∑
b′m,S⊥Nm

)
u

)
.

Using [Nj, Nm] = 0 and [X, Y ] = 0 we have

0 = Y Xu−XY u =

(
− 1

2πi

)(∑
j

Y bj,S⊥ −Xb′j,S⊥

)
Nju

which gives ∑
j

(
Y bj,S⊥ −Xb′j,S⊥

)
Nj = 0

as desired. �
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We want to find functions g that are constant on the fibres of the

integral varieties of the commuting vector fields X =
∑
aj∂/∂tj and

Y = a′j∂/∂tj. The commutation condition is

Xa′j = Y aj

for all j. If we set

g = tc11 · · · t
ck
k e

f ,

then by the above estimates

X = X0 + εX1, Y = Y0 + εY1

where X0, Y0 are tangent to the fibres of the nilpotent orbits and

[X0, Y0] = 0. Then

Xg = (X0 + εX1)g =
( 0︷ ︸︸ ︷
X0(tc11 . . . tckk )

)
ef + tc11 · · · t

ck
k (X0b)e

f

+ ε(X1b)t
c1
1 t

ck
k e

f + ε(X1(tc11 − t
ck
k ))ef

= (X0)tc11 · · · t
ck
k e

f + εefX1(tc11 · · · t
ck
k )

so we want

(II.15) Xf = −εX1(log tc11 · · · t
ck
k ).

Now

Y Xf = −εY X1 log(tc11 · · · t
ck
k ),

XY f = −εXY1 log(tc11 · · · t
ck
k )

while

0 = [X, Y ] = (XaY0)︸ ︷︷ ︸
0

+ε(X0Y1 +X1Y0 − Y0X0 − Y1X0) + (X1Y1 − Y1X1)

= ε((X0 + εX1)Y1 − (Y0 + εY1)X1) + ε(X1Y0 − Y1X0).

Then

X0 log(tc11 · · · t
ck
k ) = 0, Y0 log(tc11 · · · t

ck
k ) = 0

so

(XY1 − Y X1)(log(tc11 · · · t
ck
k )) = 0.

Consequently Y Xf = XY f if f satisfies (II.14) for X and Y .
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We note that if X0g0 = 0, Y0g0 = 0 and if g = g0e
f ,

Xf = −εX1 log g0

is what we need, since this gives

XY f − Y Xf = −ε(XY1 − Y X1) log g0 = 0. �

Step 4: At this point we have constructed local analytic charts corre-

sponding to a neighborhood U ⊂ B around points of B\B where we

have U ∩ B ∼= ∆∗k × ∆` and the VHS is given by a period mapping

∆∗k × ∆` → ΓT\D. Here ΓT = {T1, . . . , Tk} is the local monodromy

group, but the construction must take into account the global mon-

odromy group. In the diagram

B̃

��

Ũoo

��

Φ̃ // D

��
B ⊂ U

Φ // Γ\D

where the tildes are universal covering spaces, we shall first prove

(II.16)
Only finitely many elements γ of Γ outside of ΓT satisfy

γΦ̃(Ũ) ∩ Φ̃(Ũ) 6= ∅.
We shall derive this statement as a consequence of the theorem in

[C-D-K].25 Here we shall use their results in the following form.

We consider the global VHS given by the product

Φ× Φ : B ×B → (Γ\D)× (Γ\D).

In terms of local systems, we think of Φ as given by a local system

VZ → B with V = VZ⊗Q satisfying the usual conditions, and using the

bilinear form Q we identify the fibre Vp1�Vp2 over (p1, p2) ∈ B×B with

Hom(Vp1 ,Vp2). The condition to have a morphism of Hodge structures

v : Vp1 → Vp2

preserving the integral structure is then equivalent to have an integral

Hodge class v ∈ Hom(VZ,p1 ,VZ,p2). The equations that under parallel

25The reference [C-K2] also contains a clear account and discussion of the proof
of the main result in [C-D-K].
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transport v remain a Hodge class in a neighborhood of (p1, p2) in B×B
define a local analytic subvariety in the neighborhood. The theorem in

[C-D-K] has the following consequence:

(II.17)
The condition that there exist an integral Hodge class ζ ∈
Hom(VZ,p1 ,VZ,p2) and with Hodge length ‖ζ‖ 5 c defines
a global algebraic subvariety in B ×B.

This implies that the locus in B ×B where the following is satisfied is

an algebraic variety: There is

v ∈ Hom(V1,p1 ,V2,p2)

with the property that there are determinations

V1,p1
∼= VZ,V2,p2

∼= VZ

such that v corresponds to the identity. Here, “determinations” means

that we identify Vi,pi with V up to the action of the global monodromy

group Γ ⊂ Aut(VZ, Q).26 The Hodge length of such a v is equal to the

Hodge length of the identity and consequently (II.17) may be applied

to give the algebraicity of the locus described above.

We will give a special case of the above that will illustrate the essen-

tial idea behind the proof of (II.17). For this we assume that dimB = 1

and we localize around a point p ∈ B\B where we have the picture

tn

t′n

Here we identify the slit disc with the strip |Re z| 5 1/2 in the upper-

half-plane and think of tn, t′n as being points (t̃n, t̃
′
n) in this strip with

Im t̃n, Im t̃′n →∞. Then

Φ(tn) = Φ(t′n) in Γ\D

translates into

γnΦ̃(t̃n) = Φ̃(t̃′n).

26The issue of whether or not Γ is an arithmetic group does not enter (so that
e.g. Γ could be a thin matrix group).
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By restricting to the strip |Re z| 5 1/2 we have eliminated the local

monodromy around the puncture, and so if tn, t
′
n are infinite sequences

of points tending to the origin in ∆∗ and that are identified by Φ in

Γ\D we conclude that Φ is constant. Thus the image of ∆∗ in Γ\D
cannot look like

. . . . . . . .

The idea in the picture is that the ’s should be approaching the

origin. A similar argument shows that we cannot localize around two

different points p, p′ in B\B to have a picture

∆∗

tn

p p′

t′n

∆
′∗

where Φ(tn) = Φ(t′n) in Γ\D.

For B of arbitrary dimension, the application of [C-D-K] extends to

give the result:

the identifications of ∆∗k×∆` → Γ\D that occur outside of the

local monodromy group ΓT take place along a closed analytic

subvariety in ∆k ×∆`.

This analytic variety will have only finitely many irreducible compo-

nents, and from this we may infer (II.17). �

Remark: Recall that a Siegel set for a subgroup Γ of the arithmetic

group ΓZ = Aut(VZ, Q) is given by an open set Σ ⊂ D such that the

set

{γ ∈ Γ : γΣ ∩ Σ 6= ∅}

is finite. If it were the case that the lift of a VHS Φ : ∆∗k×∆` → Γ\D
to Φ̃ : Hk ×∆` → D maps a Siegel set {|Re zi| 5 c, Im zi = c′} for the
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action of Zk on Hk given by zi → zi +mi, mi ∈ Z to a Siegel set in D,

then the desired result (II.17) would be immediate. We may informally

phrase this property as “Siegel sets for the action of Zk on Hk map to

Siegel sets for the action of Γ on D.” This property is true for k = 1 as

a consequence of [Sc1], but even for nilpotent orbits it fails for k = 2.

Thus it seems that some result such as [C-D-K] is needed to be able to

prove (II.17).

At this point we have completed the proof of Theorem II.1. Among

the principal steps in the argument are

• the use of the relative weight filtration property for a several pa-

rameter degeneration of polarized Hodge structures, and

• the use of [C-D-K] to control the global action of monodromy.

III. Curvature properties of the

extended Hodge bundle (A)

A central ingredient in the proof of Theorem B will be the use of the

curvature properties of the extended Hodge bundle. We will give two

approaches to these. The first, given in this section, will be inductive

on the singular strata of the boundary divisor. Moreover, it will be

restricted to the geometric case arising from a family of varieties, one

of the points being that in this situation the singularities of the Hodge

norms are localizable and visible analytically in a way that is suggestive

of the general case. The second argument is given in the next section; it

provides a proof of the general result, one in which the relative weight

filtration property of several parameter degenerating polarized Hodge

structures plays a central role.

We begin by discussing two general properties of currents that will

arise.27 On an n-dimensional complex manifold Y , we denote byAp,qc (Y )

the compactly supported smooth (p, q) forms. A current T of type (p, q)

gives a linear function

An−p,n−qc (Y )→ C.
27Cf. [De] for a general account and references to the literature.
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The currents we shall encounter will be differential forms ψ whose co-

efficients will be locally L1 functions, and the corresponding current Tψ

is given by

Tψ(α) =

∫
Y

ψ ∧ α.

The differential ∂Tψ(α) is defined as usual by

∂Tψ(β) = ±
∫
Y

ψ ∧ ∂β.

Similarly we may define ∂Tψ and ∂∂Tψ.

For the ψ’s we shall use, we will also be able to define ∂ψ by apply-

ing the formal rules of calculus to the coefficient functions of ψ. The

equality

(III.1) ∂Tψ = T∂ψ

shall mean: first the coefficients ∂ψ computed formally are locally L1

functions; and secondly that we have the equation (III.1) of currents.

A similar notion holds for ∂ψ and ∂∂ψ.

Definition: We shall say that the current represented by a locally

L1 differential form ψ has the property NR if ∂ψ, ∂ψ, ∂∂ψ computed

formally have L1 coefficients, and if we have (III.1) for ∂ψ, ∂ψ and

∂∂ψ.

For example, in C, we have ∂∂ log |z| = 0 formally, while up to a

constant the equation of currents

∂∂Tlog |z| = δ0dz ∧ dz̄

holds. On the other hand, again up to a constant

∂∂ log (− log |z|) =
dz ∧ dz̄
|z|2(log |z|)2

holds both formally and in the sense of currents, so log (− log |z|) has

the property NR while log |z| does not.

In both these examples the coefficients of the derivatives computed

formally are in L1; the difference is that for log |z| we pick up a residue
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term in ∂∂Tlog |z|, while no such term arises in ∂∂Tlog(− log |z|).
28 The

term “NR” is meant to suggest “no residues.”29

For the second property we first recall that a current T on Y has a

singular support sing T ⊂ Y , defined to be the smallest closed subset

such that on the complement Y \ sing T , the current T is represented

by a smooth differential form.

More important for our purposes will be the wave front set

WF(T ) ⊂ T ∗Y.

If W ⊂ Y is a submanifold, then in general the restriction to W of

a distribution or current T given on Y is not defined.30 However if

W ⊂ Y is a submanifold whose tangent spaces are transverse to the

wave front set in the sense that

(III.2) TW ⊂WF(T )⊥,

then the restriction T
∣∣
W

is defined.

In this work we will use a modified version of the wave front set, one

which will satisfy the condition that the restriction property implied

by (III.2) is defined. As an illustration of what will occur, we note as

above that the currents we shall be interested in will be constructed

from locally L1-functions. It may or may not be possible to simply

restrict such a function in the usual sense and obtain a well-defined

function. As a simple example of what will be done below, on ∆ ×∆

with coordinates (t, w), the current given by 1/ log 1
|t| + f(w) where

f(w) is smooth may be restricted to {0} ×∆ to give f(w).

Returning to our Hodge theoretic situation, we localize to a neigh-

borhood U of a point of Z = M\M where for U = U ∩M we have

U ∼= ∆∗k ×∆`

28Note that “∂ log |z| computed formally in in L1” means that ∂ log |z| ∧ α is in
L1 for any C∞ form α.

29The property NR implies that the currents defined by ψ, ∂ψ, ∂∂ψ have vanish-
ing Lelong numbers (cf. [De]).

30A good discussion of this with illustrative examples and references may be
found under “Wave front sets” in Wikipedia.
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with coordinates (t, w) = (t1, . . . , tk;w1, . . . , w`). The period mapping

(I.1) induces

Φ : ∆∗k ×∆` → ΓT\D

where ΓT = {T Z
1 , . . . , T

Z
k } with Ti being the unipotent monodromy

around the local branch ti = 0 of Zi. We recall our notation: For each

subset I ⊂ {1, . . . , k} we set ∆I = {(t, w) : ti = 0 for i ∈ I} and

∆∗I = {(t, w) : ti = 0 for i ∈ I, tj 6= 0 for j ∈ Ic}

where Ic is the complement of I.

Definition: A positive function h defined in U ∼= ∆∗k ×∆` is said to

have logarithmic singularities if

h = P

(
log

1

|t1|
, . . . , log

1

|tk|

)
+R

(
log

1

|t1|
, . . . , log

1

|tk|

)
where P (x1, . . . , xk) is a homogeneous polynomial whose coefficients

are real and are in C∞(U) and are positive in the sense that

P (x1, . . . , xk) > 0 if all xi > 0,

R is a real polynomial with C∞(U) coefficients and that is lower order

than P in the sense to be explained below, and where the conditions

(i) log h has the property NR;

(ii) the current Ωe = (i/2)∂∂ log h is positive and with our extended

notion of the wave front set has the property that

WF(Ωe) ⊂
⋃
I

N∗
∆∗I/U

where N∗
∆∗K/U

is the co-normal bundle of the open stratum ∆∗I in

U.

Because of (i) the current Ωe is defined so that (ii) makes sense. The

extended definition of the wave front set that we use will be explained

below.

In the remainder of this section we will restrict to the case k =

1 where U ∼= ∆∗ × ∆`. This is essentially the case of 1-parameter

degenerations with dependence on parameters. In fact, for notational
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simplicity we shall also assume that ` = 1, so that we are working in

∆∗ ×∆ with coordinates (t, w).

The functions h we shall consider will be of the form

(III.3) h = A(t, w)

(
log

1

|t|

)m1 +
B1(t, w)

log 1
|t|

+ · · ·+ Bm(t, w)(
log 1

|t|

)m


where A(t, w) and the Bi(t, w) are C∞ in ∆×∆ and A(0, w) > 0. We

note that the expression (III.3) is invariant under holomorphic coordi-

nate changes

(III.4)

{
t′ = tf(t, w) f(t, w) 6= 0

w′ = g(t, w) gw(0, u) 6= 0.

As will be seen below, the motivation for considering functions of this

form arises from the periods of holomorphic differentials in a degener-

ating family of algebraic varieties.

Proposition III.5: The function (III.3) has logarithmic singularities.

Proof. Denoting by C the term in parentheses, since log h = logA +

log(m log 1/|t|) + logC the only issue concerns the logC term. In

∂∂ logC =
∂C

C
∧ ∂C

C
− ∂∂C

C2

we shall separately examine the singularities in each term. For the first

the most singular terms arise from

∂

 1(
log 1

|t|

)a
 ∧ ∂

 1(
log 1

|t|

)b
 , a, b > 0

∂

 1(
log
(

1
|t|

))a
 ∧ α, a > 0 and α is C∞.

The first of these are of the order

dt ∧ dt̄

|t|2
(

log 1
|t|

)c , c = 4,
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and hence are o(PM) where PM is the Poincaré metric. The second

are of the order

dt

|t|
(

log 1
|t|

)c ∧ β c = 2 and β is C∞

and are again o(PM).

The terms ∂ logC and ∂ logC may be estimated by the last terms

just above. For ∂∂C/C2, the most singular terms are of the order

∂∂

 1(
log 1

|t|

)a
 ∼ dt ∧ dt̄

|t|2
(

log 1
|t|

)a+2 , a = 1

which is again o(PM).

Note that the estimates in this argument have no room to spare. �

We denote by

Ωe = (i/2)∂∂ log h

the curvature form associated to the function h in (III.3). Then

(III.6) Ωe = mA(v, w)

(
i

2

)
dt ∧ dt̄
|t|2(log |t|)2

+ o(PM)

and assuming that m > 0 it is positive with

sing Ωe = {0} ×∆.

It defines a closed, positive (1, 1) current on ∆ ×∆ (cf. [C-K-S1] and

[Kol2]). As for WF(Ωe), the terms in Ωe not containing a dt or dt̄ are

of the form
γ

(log |t|)a
where γ is a smooth (1, 1) form and a > 0. Thus although it is not the

case that WF(Ωe) = N∗{0}×∆/U
is the co-normal bundle of {0} × ∆ in

∆×∆ in the usual sense, the restriction

(III.7) Ωe

∣∣
{0}×∆

is a well-defined smooth (1, 1) form. In fact, the above calculation

shows that to define (III.7) we use the prescription

(i) in the formula for ∂∂ log h first set dt = dt̄ = 0;
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(ii) then in the remaining terms take the limit as t → 0 (i.e., set

1/ log 1
|t| = 0).31

The point in (ii) is that after (i) is done, in what remains log 1/|t| only

appears in the denominator and with positive powers. We note that

the above prescription is invariant under coordinate changes (III.4).

The calculation in the proof of the proposition gives

(III.8) Ωe

∣∣
{0}×∆

= (t/2)∂∂ logA(0, w).

The somewhat subtle point here is that if we successively set dt = dt̄ =

0 and then log 1/|t| =∞, no terms other than ∂∂ logA(0, w) remain.

We now apply the above to a weight n variation of Hodge struc-

ture over ∆∗ ×∆. Denote the canonically extended Hodge bundle by

Fe → ∆×∆ and let σ(t, w) be a nowhere vanishing holomorphic section

of this bundle. We assume that m is maximal with σ ∈ Wn+m(N)∩Fe,
and denote by σm(w) the projection of σ(0, w) in Gr

W (N)
n+m Fe. Then

σm(w) is a non-zero section of Gr
W (N)
n+m V ∩ F n

e over {0} ×∆.

Proposition III.9: The Hodge norm ‖σ(t, w)‖2 is of the form (III.3),

and

∂∂ log ‖σ(t, w)‖2
∣∣∣
{0}×∆

= ∂∂ log ‖σm(w)‖2.

Corollary: If Ωe is the Chern form of the extended Hodge line bundle

Λe → ∆ × ∆, and if Ω{0}×∆ is the Chern form of the gradeds to the

associated variation of mixed Hodge structure along {0} ×∆, then the

restriction Ωe

∣∣
{0}×∆

is defined and

Ωe

∣∣
{0}×∆

= Ω{0}×∆.

The corollary follows from the proposition by taking σ to be a gen-

erating section of the line bundle Λe → ∆×∆.

We shall prove the proposition in the weight n = 2 geometric case

of a family X∗
π−→ ∆∗ ×∆ of smooth surfaces where σ(t, w) is a section

31This same prescription will be used in the several parameter case in the next
section. The issue will be to have the property (ii), specifically to show that the
limit as t = (t1, . . . , tk) → (0, . . . 0) exists which will require subtle properties of
several variable degenerating Hodge structures.
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of π∗ωX/∆∗×∆ given by a family

ψ(t, w) ∈ H0
(

Ω2
X(t,w)

)
of holomorphic 2-forms along the smooth fibresX(t,w) = π−1(t, w).32 By

base change and semi-stable reduction we may assume that we have a

smooth completion X
π−→ ∆×∆ of the family where the singular fibres

X(0,w) have normal crossings. The local models are

• X(0,w) is smooth and the mapping π is locally given by (x1, x2, x3, w)→
(x1, w); i.e., t = x1;

• X(0,w) has a smooth double curve and the mapping π is given by

(x1, x2, x3, w)→ (x1x2, w); i.e., t = x1x2;

• X(0,w) has a double curve with triple points and the mapping π is

locally given by (x1, x2, x3, w)→ (x1x2x3, w); i.e., t = x1x2x3.

By a standard property of the canonical extension, the 2-forms giving

sections of π∗ωX/∆×∆ are locally Poincaré residues

ψ(t, w) = Res

(
g(x1, x2, x3, w)dx1 ∧ dx2 ∧ dx3

f(x1, x2, x3, w)

)
where g is holomorphic and f is given by

f = x1 − t
f = x1x2 − t
f = x1x2x3 − t

in the three cases listed above. The properties of the extension ψ(0, w)

to a section of Fe → {0} × ∆ relative to the weight fibration are, in

reverse order to the cases listed above,

• ψ(0, w) induces a non-zero section in Gr
W (N)
4 if, and only if, the

double residues of ψ(0, w) at the triple points are not all zero; i.e.,

if

g(0, 0, 0, w) 6= 0;

32As discussed at the end of Section VI similar algebro-geometric considerations
suggested the general form of the singular Hodge metrics and their curvatures for
a degenerating variation of Hodge structure.
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• the double residues of Ψ(0, w) are zero; then ψ(0, w) ∈ W3(N) and

ψ(0, w) induces a non-zero section in Gr
W (N)
3 if the single residues

of ψ(0, w) along the double curve are non-zero; i.e., if

g(0, 0, 0, w) = 0 but g(x1, 0, x3, w) 6= 0;

• the double and single residues of ψ(0, w) are zero; then ψ(0, w)

induces a non-zero section of Gr
W (N)
2 and ψ(0, w) is a holomorphic

2-form on the desingularization X̃(0,w) of X(0,w).

The Hodge norm is, up to a constant, the L2-norm

‖ψ(t, w)‖2 =

∫
X(t,w)

ψ(t, w) ∧ ψ(t, w)

of the holomorphic 2-forms ψ(t, w). Then ‖ψ(t, w)‖2 has an expansion

in terms of powers of log 1
|t| , and the local contributions to the expansion

in each of the above cases are respectively

• ‖ψ(t, w)‖2 = |g(0, 0, 0, w)|2
(

log 1
|t|

)2

+B1(t, w) log 1
|t| +B2(t, w);

• ‖ψ(t, w)‖2 =
(∫
|g(x1, 0, 0, w)|2dx1 ∧ dx̄1

)
log 1

|t| + C(t, w);

• ‖ψ(t, w)‖2 =
∫
|g(0, x1, x2, x3)|2dx2 ∧ dx̄2 ∧ dx3 ∧ dx̄3

where B1, B2, C are smooth functions. This establishes the first part of

the proposition: namely, that the Hodge norms are of the form (III.3).

For the second part we will discuss the above three cases. In the

first case, σ4(w) is a section of Gr
W (N)
4 (LMHS), which is a family of

polarized Hodge-Tate structures along {0} ×∆. The period domain is

0-dimensional and its curvature form, which is

(i/2)∂∂ logA(0, w)

where A(0, w) = |h(w)|2 with h(w) holomorphic, is zero.33 However, of

interest is to observe that the polarizing form on Gr
W (N)
4 (LMHS) is by

definition

Q(N2u, v̄).

33More precisely, one has a family of Hodge metrics on a single Hodge structure
(this one being Hodge-Tate). This defines a Hermitian line bundle on the parameter
space, and the associated curvature form is zero.
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On the other hand

h(w) =
∑

double residues of ψ(0, w)

where the sum is over a subset of the double residues at the triple points

of X(0,w). The identifications of the polarizing form on Gr
W (N)
4 (LMHS)

with |h(w)|2 will be discussed below.

In the second case, σ3(w) is a section of Gr
W (N)
3 (LMHS), which is a

Tate twist of a variation of Hodge structure of weight one. Geomet-

rically, the double residues of ψ(0, w) are zero and the single residues

induce holomorphic 1-forms Resψ(0, w) on the normalization D̃w of the

double curve of X(0,w). In this case there are two potential polarizing

forms

(i) Q(Nu, v) on Gr
W (N)
3 (LMHS) (Hodge-theoretic one);

(ii)
∫
D̃w

Resψ(0, w) ∧ Resψ(0, w) (algebro-geometric one).

We will see in the appendix to this section that, up to a constant,

(i) = (ii).

In other words

(III.10)
On Gr

W (N)
3 (LMHS) the polarizing form arising from the

limiting mixed Hodge structure coincides with the natural

polarizing form on sub-Hodge structures of H1,0(D̃w).

Finally, in the third case the 2-form ψ(0, w) is holomorphic on the

desingularization X̃(0,w) and the polarizing form is just the usual one

given by ∫
X̃(0,w)

ψ(0, w) ∧ ψ(0, w).

At this point we may complete the argument for Theorem C in the

introduction in the special case where we consider only the weight

n = 2 case, and we restrict to the geometric situation where the period

mapping (I.1) arises from a projective family X∗ → ∆∗k×∆` of smooth

algebraic surfaces.

We first consider the case of a 1-parameter degeneration, and in the

corollary to Proposition III.9 we will suffice to consider the case k = 1,
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` = 1 and here, we take a section

σ(t, w) = ψ1(t, w) ∧ · · · ∧ ψpg(t, w)

of detFe where the ψi(t, w) give a framing of the canonically extended

Hodge vector bundle Fa → ∆×∆ that is adapted to the weight filtra-

tion

W (N) ∩ Fe.

As previously noted, that means that we filter the sections of Fe → ∆×
∆ by their logarithmic growth along {0}×∆. Setting h0 = dim I0,0 and

h1,0 = dim I1,0, where we recall the Ip,q are the Hodge decomposition of

Gr(LMHS) along {0}×∆, the calculation in the proof of the proposition

gives that up to a constant

Ωe = (2h0 + h1,0)PM + LOT

where PM = dt∧dt̄
|t|2(log 1

|t|)
2 is the Poincaré metric and “LOT” are lower

order terms.34 Moreover the restriction

Ωe

∣∣
{0}×∆

of the current Ωe is defined and there it coincides with the Chern form of

the Hodge line bundle for the VHS over {0}×∆ given by the associated

graded to the LMHS defined there.35

We now consider the case of a period mapping (I.1) for general k

and `, and we will argue that

(III.11)
The general case may be reduced to it by a succession of
1-parameter degenerations.

Before turning to the argument, we remark an in many ways more

satisfactory proof of Theorem C will be given in the next section. There

the analysis of the behavior of the curvature form in sectors in ∆∗k×∆`

will be given. For example, when k = 2 the sectors will be |t1/t2| > c1,

|t2/t1| > c2, c3 < |t1/t2| < c′3. For k = 3 they are somewhat more

subtle.

34Lower order terms means that the ratio LOT/PM tends to zero as t→ 0.
35This required the non-vanishing of A(0, w) in (III.3).
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Turning to (III.11), the argument will be based on the results in

[C-K-S1] detailing the structure of how several parameter variations of

Hodge structure degenerate. Taking the case k = 2 we shall explain

the meaning of the equation

(III.12) lim
t2→0

(
lim
t1→0

Φ(t1, t2, w)

)Gr

= lim
t1,t2→0

Φ(t1, t2, w).

First, for a 1-parameter degeneration Φ = ∆∗ ×∆` → ΓT\D by

(III.13) lim
t→0

Φ(t, w)

we mean the variation of mixed Hodge structure given by the limiting

mixed Hodge structures along {0} × ∆`. In (III.12) this serves to

define the terms inside the large parentheses on the LHS. The result is

a variation of polarizable mixed Hodge structures along {0}×∆∗×∆.

The “Gr” on the outside means that we take the associated graded to

the mixed Hodge structures. Applying (III.13) to the resulting VHS

along {0} ×∆∗ ×∆` gives a variation of mixed Hodge structure along

{0} × {0} × ∆`, and then we take the associated graded to obtain a

variation of Hodge structure along this locus.

Turing the the right-hand side of (III.12), by [C-K-S1] the limit as

t1, t2 → 0 defines a variation of mixed Hodge structure along {0} ×
{0} ×∆`, and we then take the variation of Hodge structure given by

the associated graded to these mixed Hodge structures. The equation

(III.12) means equality of the two variations of Hodge structure along

{0} × {0} ×∆`.

Lurking behind the above words are subtle properties of several vari-

able degenerations of Hodge structure. Specifically they include

(i) the independence of λ of the weight filtration W (Nλ) for Nλ =∑k
i=1 λiNi, λi > 0;36

36For 2-parameter degenerations it is obvious that the weight filtration is the
same along ones that are not tangent to the axes. It is not obvious that this is
true when the parameter arc is tangent to an axes, or that the weight filtration is
invariant under base changes.
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(ii) the relative weight filtration property of the W (NI) where NI =∑
i∈I Ni for a subset I ⊂ {1, . . . , k};37 and

(iii) the asymptotic analysis of the period mapping in sectors in ∆∗k.

All of these will enter into the proof of Theorem C to be given in the

next section.

We conclude this section by discussing what some of the issues are

that arise in trying to extend the above geometric argument to the

several parameter case.

The setting is a projective family X∗
π−→ ∆∗k×∆` of smooth varieties

X(t,w) = π−1(t, w) where (t, w) = (t1, . . . , tk;w1, . . . , w`) are coordinates

in ∆∗k × ∆`. According to Abramovicz-Karu [A-K], after successive

modifications and base changes the above family may be completed to

X
π−→ ∆k ⊗∆`

where X is smooth and the singular fibres Xw = π−1(0, w) are locally

a product of reduced normal crossing varieties. For the purposes of

illustration we take the case k = 2, ` = 1 of a degenerating family of

surfaces. The strata of Xw together with local coordinates on X and

the mapping π are

X [1]
w (x1, x2, x3, x4)→ (t1 = x3, t2 = x4),

X [2,1]
w (x1, x2, x3, x4)→ (t1 = x1x2, t2 = x4),

X [3,1]
w (x1, x2, x3, x4)→ (t1 = x1x2x3, t2 = x4),

X [2,2]
w (x1, x2, x3, x4)→ (t1 = x1x2, t2 = x3x4)

and similarly for X
[1,2]
w , X

[1,3]
w . The sections ψ(t, w) of the direct image

of the relative dualizing sheaf are locally double Poincaré residues of

4-forms where the two functions in the denominator are the defining

equations of the graph of π. For example, for X
[2,2]
w

ψ(t, w) = Res Res

(
f(x1, x2, x3, x4)dx1 ∧ dx2 ∧ dx3 ∧ dx4

(x1x2 − t1)(x3x4 − t2)

)
.

37This is a subtle and very special property, recalled in Section IV below, of
the relation between the weight filtrations constructed from a pair of commuting
nilpotent operators on a vector space. The proofs of (i) and (ii) require Hodge
theory, including the second Hodge-Riemann bilinear relation.
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The highest order terms in the expansion of the Hodge norm

‖ψ(t, w)‖2 =

∫
X(t,w)

ψ(t, w) ∧ ψ(t, w)

are of the form

A1(w)

(
log

1

|t1|

)2

+B(w)

(
log

1

|t1|

)(
log

1

|t2|

)
+ A2(w)

(
log

1

|t2|

)2

.

The lower order terms are of the form

C1(w) log
1

|t1|
+ C2(w) log

1

|t2|
+D(w).

When we compute ∂∂ log ‖ψ(t, w)‖2 and set

dt1 = dt̄1 = dt2 = dt̄2 = 0

it is possible that we could be left with a term like

log 1/|t1|+ log 1/|t2|(
log 1

|t1|

)(
log 1

|t2|

) ,

which does not have a limit as t1, t2 → 0. Consequently we need

some control of what can appear in ∂∂ log ‖ψ(t, w)‖2. Now log 1/|t1|
corresponds to N1, log 1/|t2| to N2 and log 1/|t1|+log 1/|t2| to N1 +N2.

Thus it is necessary to examine more deeply how the relative weight

filtrations interact; this is the relative weight filtration property and

the issue of how it enters leads us into the next section.

Appendix to §III. In order to prove (III.10) we will describe the

limiting mixed Hodge structure and its polarization for a family of

surfaces X
π−→ ∆ with central fibre

X =
⋃
i∈I

Xi, I = ordered index set
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a reduced normal crossing divisor in a smooth 3-fold X.38 The usual

notations

X [1] =
∐
i

Xi,

X [2] =
∐
i<j

Xi ∩Xj,

X [3] =
∐
i<j<k

Xi ∩Xj ∩Xk

will be used for the desingularized strata of X. The groups that appear

in the complex whose cohomology gives the associated graded to the

LMHS are

Ha(X [b])(−c), 0 5 c 5 b− 1.

We set

Im = GrW (N)
m (LMHS), 0 5 m 5 4.

The Im = ⊕
p+q=m

Ip,q are the E2-terms of a spectral sequence, where the

E1-terms and differential d1, E1 → E1 will now be described in dual

pairs.

For Gr
W (N)
4 and Gr

W (N)
0 , denoting respectively Gysin and restriction

maps by G and R we have the dual complexes

(a) H0(X [3])(−2)
G−→ H2(X [2])(−1)

G−→ H4(X [1]),

(b) H0(X [1])
R−→ H0(X [2])

R−→ H0(X [3])
(III.A.1)

and where initial and terminal cohomology groups are

I4 = I2,2(III.A.2)

= kernel of G in the initial term of the first sequence,

I0 = I0,0(III.A.3)

= co-kernel of the second term in the second sequence,

and where

N2 : I2,2 → I0,0

38A general reference for this discussion is Chapter 11 in [P-S]. Here we will use
the setting and notations developed in [G-G1].
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is the “identity” under the composite map

kerG→ H0(X [3])(−2)→ H0(X [3])→ cokerR.

Here “identity” means the usual identity mapping where we ignore Tate

twists.

Next Gr
W (N)
2 is the cohomology in the middle of the complex

H2(X [1])

R′

%%

H0(X [2])(−1)

G′
77

R

''

⊕ H2(X [2])

H0(X [3])(−1).

G
99

(III.A.4)

As noted in [G-G1], it is a consequence of the Friedman condition in [Fr]

for smoothability to 1st order of the abstract normal crossing variety

X that the above is actually a complex; i.e., that the composition

(R′⊕G) ◦ (G′⊕R) = 0. We will explain this in more detail at the end

of this appendix.

The monodromy maps are induced by

kerG

N

��

⊂ H0(X [3])(−2)

identity
��

in (III.A.1)(a)

cokerR ∩ kerG

N

��

⊂ H0(X [3])(−1)

identity
��

in (III.A.4)

cokerR ⊂ H0(X [3]) in (III.A.1)(b),

and the iteration N2 is (III.A.2).

For the odd weights for GrW (N)(LMHS) the analogue of (III.A.1) is

the pair of dual complexes

(a) H1(X [2])(−1)
G−→ H3(X [1])

(b) H1(X [2])
R−→ H1(X [2])

(III.A.5)
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and

I3 = kernel of G in the first sequence

I1 = co-kernel of R in the second sequence.

Monodromy is given by

kerG ⊂ H1(X [2])(−1)
“identity”−−−−−−−→ H1(X [2])→ cokerR.

Replacing X by Xw we then have the description

F 2
a ∩Gr

W (N)
4 = I2,2 ⊂ H1(X

[2]
w )(−1) is represented by the double

residues of forms ψ(0, w).

F 2
a ∩Gr

W (N)
3 = I2,1 ⊂ H0(Ω1

X
[2]
w

)(−1) is represented by single

residues of forms ψ(0, w) whose double residues are zero.

F 2
a ∩ Gr

W (N)
2 = I2,0 ⊂ H0

(
Ω2
X[1]

)
is represented by the holo-

morphic 2-forms ψ(0, w) whose both double and single residues

vanish.

We now turn to the issue of polarizations. There are two polarizing

forms on the groups

I2,k = F 2
a ∩Gr

W (N)
2+k (LMHS), k = 2, 1.

One is the Hodge-theoretic one arising from

Q̃(u, v̄) = Q(Nku, v̄).

The other is the geometric one obtained by

• first taking limits, we realize the elements in I2,k as singular differ-

ential forms on X(0,w);

• then by taking sequential residues of these forms we obtain holo-

morphic differentials on the desingularized strata X
[1+k]
w of X(0,w);

• finally we take the usual polarizing forms
∫
α ∧ β̄ of holomorphic

forms on smooth varieties.39

The claim is that, up to constants,

(III.A.6) The Hodge-theoretic and geometric polarizing forms co-
incide.

39For 0-dimensional varieties this is just the usual product of complex numbers.
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We shall give the argument for this in the critical case k = 1. The

situation is this:

• we have a family Xt of smooth surfaces specializing to a singular

surface X0 that has a double curve D0 ⊂ X0;

• ψt are holomorphic 2-forms in H0(Ω2
Xt

) that specialize to ψ0 ∈
H0
(

Ω2
X̃0

(D̃0)
)

, which is a 2-form on the normalization X̃0 of X0

having a log pole on the inverse image D̃0 of the double curve on X0.

By what we have seen above, there is an expansion∫
Xt

ψt ∧ ψt = C log
1

|t|
+ LOT.

On the other hand we have the 1-form Res(ψ̃0) =: ψ0 ∈ H0
(

Ω1
D̃0

)
, and

the assertion is that up to a universal constant∫
D̃0

Resψ0 ∧ Resψ0 = C

for the same constant C as in the preceding equation. By localizing

along D̃0 and iterating the integral, this essentially amounts to the

following 1-variable result: In C2 we consider the analytic curve Ct

given by

xy = t,

and on Ct we take the Poincaré residue

ϕt = Res

(
g(x, y)dx ∧ dy

xy − t

)
.

Then locally ∫
Ct

ϕt ∧ ϕ̄t = |g(0, 0)|2 log
1

|t|
+ LOT.

We conclude this appendix with a brief discussion of some of how

parts of [Fr] apply to complexes constructed from an abstract normal

crossing divisor X = ∪Xi to give conditions on complexes constructed

from the cohomology group Ha(X [b])(−c) to be the E1-term of a spec-

tral sequence whose abutment is a limiting mixed Hodge structure. If

D = qi<jDij is the double locus of X, then as in [Fr] in terms of X
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above there is defined the infinitesimal normal bundle OD(X), and a

necessary condition for the smoothability of X is

(III.A.7) OD(X) ∼= OD.

If X is smoothable to be the central fibre in X → ∆, then OD(X) =

OD ⊗ OX(X). The cohomological implications of (III.A.7) then give

conditions that diagrams such as (III.A.4) actually be complexes whose

cohomology is then the associated graded to a limiting mixed Hodge

structure.40 In other words, the condition (III.A.7) is sufficient to con-

struct as in [P-S] the spectral sequence that would arise from X→ ∆.

To keep the notation as simple as possible we shall do the case where

X = X1 ∪X2 ∪X3 where Xi is locally given by xi = 0 in C3. If X is

smoothable so that along the double locus the smoothing is given by

x1x2 = t, then the relation

dt = x2dx1 + x1dx2

translates away from the triple points into

OD12(X1)⊗ OD12(X2) ∼= OD12 .

For a smoothable triple point given by x1x2x3 = t we have

dt = x2x3dx1 + x1x3dx2 + x1x2dx3,

which at x1x2 = 0, x3 = 0 gives

OD12(X2)⊗ OD12(X2)⊗ OD12(p)
∼= OD12 .

From this we obtain the triple point formula

(III.A.8) D2
12

∣∣
X1

+D2
12

∣∣
X2

+ 1 = 0

where D2
12

∣∣
Xi

is the self intersection of D12 in Xi.

40This discussion may be extended to the case when X is locally a product of
normal crossing divisors (such as arise from stable nodal curves), and also to the
several parameter case where X is locally a product of normal crossing divisors
such as arise in the semi-stable reduction constructed in [A-K]. The details and
applications of this will appear elsewhere.
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We now explain how (III.A.8) enters into (III.A.4). In

H2(X [1])

H0(X [2])(−1)

G′
66

R ((

⊕

H0(X [3])(−1)

the map is

(III.A.9) [D12]
∣∣
X1
− [D12]

∣∣
X2

1D12

77

((

⊕

1p

where [D12]
∣∣
Xi

is the class of D12 in H2(Xi). For

H2(X [1])

R′

++

H2(X [2]) = H2(X12)⊕H2(X13)⊕H2(X23)

H0(X [3])(−1)

G

33

the maps are induced by

(III.A.10)

[D12]
∣∣
X1
− [D12]

∣∣
X2
→
(
D2

12

∣∣
X2

+D2
21

∣∣
X1

)
[X12]⊕ (−[X13])⊕ (−[X23])

where as above D2
12

∣∣
X2

is the self-intersection of D12 in X2 and similarly

for D2
21

∣∣
X1

, and where [Xij] is the fundamental class of Xij. The points

here are

• If C is a smooth, irreducible curve on a surface Y , then the restriction

H2(Y ) → H2(C) maps the class [C] ∈ H2(Y ) of C to the self-

intersection number C2 times the generator of H2(C); this accounts

for the first term in (III.A.10).
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• If C,C ′ are smooth, irreducible curves in Y meeting a point, then

H2(Y ) → H2(C ′) maps [C] to a generator of H2(C ′); this accounts

for the last two terms in (III.A.10).

Using the above to compute the maps G′, R′, G,R in (III.A.4) we

may draw the conclusion

The triple point formula for each pair of components of X im-

plies that (III.A.4) is a complex.

IV. Curvature properties of

the extended Hodge bundle (B)

In this section we will give a proof of Theorem C as stated in the

introduction. The argument will be given in several steps and will be

independent from that in the preceding section and from the results in

[C-K-S1] and [Kol2] about Chern forms in the literature.

Step 1: We shall first establish the setting and notations. We assume

given a variation of Hodge structure of weight n

Φ : ∆∗k ×∆` → ΓT\D

where ΓT = {T Z
1 , . . . , T

Z
k } is the group generated by the unipotent

monodromies Ti around ti = 0. The ∆`-factors are parameters that

play no essential role; for notational simplicity we shall assume that

` = 0.

As above, we set

∆I = {t = (t1, . . . , tk) : ti = 0 for i ∈ I}

∪

∆∗I = {t : ti = 0 for i ∈ I, tj 6= 0 for j ∈ Ic}.

The variation of Hodge structure Φ induces variations of polarized

mixed Hodge structure limt→∆∗I
Φ(t) on the open strata ∆∗I , and we

denote by

ΦI : ∆∗I → ΓI\DI
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the variations of Hodge structure obtained by taking the primitive parts

of the asssociated graded to limt→∆∗I
Φ(t).

There are two pictures of limiting mixed Hodge structures that will

be convenient to use. The more common one is the Hodge diamond

picture

r r r
? ?r r
r rr

r

?

?

arising from the Deligne composition ⊕
05p+q5n

Ip,q of the canonically

associated R-split mixed Hodge structure. Here the vertical arrows are

the monodromy operators

NI =:
∑
i∈I

Ni

associated to limt→∆∗I
Φ(t).41

The other is the picture that displays the NI-strings that arise from

the canonical representation of sl2 on

Vgr,I =: associated graded to (V,W (NI)).

Our Vgr,I there is a semi-simple operator

YI : GrW (NI)
m V → GrW (NI)

m V

which on each piece is a multiple of the identity and which satisfies

[YI , NI ] = −2NI .
42

41Sometimes this diagram is rotated to be in the first quadrant in the (p, q)-plane.
42Here we are using that if we have a graded vector space A = ⊕Am and a

nilpotent operator J : A→ A where J(Am) ⊂ Am−2, then there is an sl2 action on
A with J as nil-negative element. Which multiple of the identity on Am depends
on where one centers the weight filtration associated to a nilpotent operator.
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Then there is a canonical sl2 {NI , YI , N
+
I ] with NI as the nil-negative

element. The NI-string picture is

H0
I (−n)

NI−→ H0
I (−(n− 1))

NI−→ · · · NI−→ H0
I

H1
I (−(n− 1))

NI−→ · · · NI−→ H1
I

...

Hn
I

where Hn−i is a Hodge structure of weight n− i and Hn−i(−(n− i)) is

the primitive part appearing at the top of the corresponding NI-string.

It will be convenient to abbreviate this by setting

Vgr,I = ⊕
i
Hn−i
I ⊗ Ui

where Ui = SymiU with U being the standard representation of sl2.

We recall that by the Hard Leftschetz Property of W (NI),

N i
I : Hn−i

I (−i) ∼−→ Hn−i
I

is an isomorphism, and the polarization on Hn−i
I is defined by

QI(u, v̄) = Q(N i
Iu, v̄).

We recall our notations Fe → ∆k for the canonically extended Hodge

vector bundle and Λe → ∆k for the Hodge line bundle where Λe =

detFe. Over ∆∗I we have the Hodge line bundle ΛI → ∆∗I . The bundles

Λe,ΛI have metrics arising from the polarizing forms, and we denote by

Ωe,ΩI the corresponding Chern forms. Theorem C may be formulated

as

(IV.1)
Modulo dti, dt̄i for i ∈ I,

lim
t→∆∗I

Ω(t) = ΩI .

Implicit in this statement is that the limit exists.

Step 2: We will reduce to the case of a nilpotent orbit. Setting `(tj) =

(1/2πi) log tj the variation of Hodge structure is

Φ(t) = exp

(∑
j

`(tj)Nj

)
· u(t) · F0
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where u : ∆k → GC is a holomorphic mapping. The metric is

(v, w) = Q

exp

(∑
j

`(tj)Nj

)
u(t)v, exp

(∑
j

`(tj)Nj

)
u(t)w


= Q

(
u(t)−1 exp

(∑
j

(
`(tj)− `(tj)

)
Nju(t)v, w̄

))

Q

(
exp

[
u(t)

−1
(∑(

1

2πi

)
log |tj|2

)
u(t)Nj

]
v, w̄

)
.

Letting GrW (NI) Fe be the graded vector bundle associated to the fil-

tration on FI → ∆∗I induced by W (NI), then using the identification

GrW (NI) Fe = ⊕
i
Hn−i,0(−i)

if v ∈ Hn−i,0(−i) and w ∈ Hn−i,0 we have

(v, w) =

(
1

i!

)
Q

u(t)
−1

∑
j

(
1

2πi

)
log |tj|2Nj

∣∣∣∣∣
Hn−i,0(−i)

i

u(t)v, w̄

 .

If H is the metric on Λe, then setting xj = log 1/|tj| up to non-zero

constants

H =
n∏
i=0

det

u(t)
−1

(∑
j

xjNj

)∣∣∣∣∣
Hn−i,0(−i)

u(t)

i

=

((
detu(t)

)−1

detu(t)

)n( n∏
i=0

det

(∑
xjNj

∣∣∣
Hn−i,0(−i)

)i)
. 43

When we take ∂∂ logH the first factor is a C∞ form on ∆k. From this

we infer that it is equivalent to prove (IV.1) for a nilpotent orbit.

Step 3: We use the notations

• NI =
∑

i∈I xiNi, NIc =
∑

j∈Ic xjNj;

• N =
∑

i xiNi = NI +NIc .

43The meaning of taking the determinant will be explained in Step 3. Basically
it is the induced mapping on the top exterior powers of two vector spaces that are
identified by a linear mapping.
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Then for the nilpotent orbit the metric in the Hodge bundle is

(IV.2) P =
n∏
i=0

det

((
N
∣∣
Hn−i,0(−i)

)i)
.

Here we are taking a basis for Hn−i,0(−i) and using the corresponding

basis for Hn−i,0 using the identification given by NI . Since the fibre of

the Hodge line bundle is
i
⊕∧hn−i,0Hn−i,0(−i), we see that Hodge metric

has the indicated form. It is a homogeneous polynomial in the xi of

degree
∑n

i=0 ih
n−i,0. We set

(IV.3) SI =
n∏
i=0

det

((
NI

∣∣
Hn−i,0
I (−i)

)i)
.

We will show that there is a factorization

(IV.4) P = SIPI +R,

where PI is the Hodge metric in the Hodge line bundle corresponding

to ΦI and RI is a remainder term to be dealt with later. If RI = 0,

then

∂∂ logP = ∂∂ logSI + ∂∂ logPI

≡ ∂∂ logPI modulo dti, dt̄i for i ∈ I

which, without having to take limits, gives the desired result (IV.4).

From [NI , NIc ] = 0 we have that NIc acts on GrW (NI) V and hence

on GrW (NI) g. Since NIc decreases weights on GrW (NI) V

NIc = ⊕
m50

NIc,m

where NIc,m = GrW (NI)
m NIc . We may write

Vgr ∼= ⊕Hn−i−j
i,j ⊗ Ui ⊗ U′j.

Vgr is notation for the associated graded to a bi-filtration on V that we

do not need to specify in detail, and where

• Hr−i−j
i,j is a polarized Hodge structure whose weight n−i−j depends

on I;

• Ui = SiU where U is the standard representation of sl2 in which

NI is the nil-negative element;



62 COMPLETION OF PERIOD MAPPINGS 3/28/17

• U′j = SjU′ where U′ is the standard representation of sl2 in which

NIc is the nil-negative element.

The action of powers of NI and NIc on V ∼= Vgr are derived from the

maps in the commutative square

Hn−i−j
i,j (−i− j)

Nj
Ic,o
��

N i
I // Hn−i−j

i,j (−j)

Nj
Ic,o

��

Hn−i−j
i,j (−i)

N i
I // Hn−i−j

i,j .

Then H given in (IV.2) becomes the product of terms

det

(
N i
IN

j
Ic,o

∣∣∣
Hn−i−j,0
i,j (−i−j)

)
plus terms involving NIc,m for m < 0. This gives that

(IV.5) P =
∏
i,j

det
(
N i
I

∣∣
Hn−i−j,0
i,j (−i−j)

)
det
(
N j
Ic,o

∣∣
Hn−i−j,0
i,j (−i−j)

)
+RI

where RI consists of terms involving the NIc,m for m < 0.

From (IV.3) we see that we need to compare

Vgr,I ∼= ⊕Hn−i
I ⊗ Ui and Vgr ∼= Hn−i−j

i,j ⊗ Ui ⊗ U′j.

From the definition of the Hn−i−j
i,j we have

Hn−i,o
I

∼= ⊕Hn−i−j,o
i,j

so that in (IV.4)

SI =
n∏
i=1

det
(
N i
I

∣∣
Hn−i,0
I (−i)

)
.

As a consequence of the relative weight filtration property (II.3) we

have

Hn−m,o ∼= ⊕i+j=mHn−i−j,o
i,j .

The metric PI in the Hodge bundle ΛI → ∆∗I arises from the forms

Q(Nm
Icv, w̄) where v, w ∈ GrW (NI) V . Again using the relative weight

filtration property, we see that these terms are the same as those that
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appear in the second factor in (IV.5) that factor being

PI =
∏
i,j

(
detN j

Ic,o

∣∣
Hn−i−j,o
i,j (−i−j)

)
.

This establishes (IV.4) and completes Step 3.

Step 4: We use the notation

hn−i,oI = dimHn−i,o
I .

For a monomial M = xd11 · · ·x
dk
k we set

degI(M) =
∑
i∈I

di.

The following is a key step in the argument:

Proposition IV.6: For P given by (IV.2) and any I ⊂ {1, . . . , k} we

have

(a) degIM 5 nhoI + (n− 1)h1,o
I + · · ·+ hn−1,o

I =
∑n

i=1 ih
n−i,o
I .

If π is a permutation of {1, . . . , k} and

dπ,i =
∑
j

j
(
hn−j,o{π(1),...,π(i)} − h

n−j,o
{π(1),...,π(i−1)}

)
then

(b) Mπ = x
dπ,1
π(1) · · ·x

dπ,k
π(k) = x

dπ,π−1(n)

1 · · ·x
dπ,π−1(n)

k

appears with a non-zero coefficient in D.

The statement (a) says that

The monomials M appearing with non-zero coefficient in P are

in the convex hull of the k! monomials {Mπ}.

This means that the exponents of M in Zk are in the convex hull of

those of the {Mπ}.
We recall our notation

NIc,o = 0-graded piece of NIc in GrW (NI) g,

Vgr,I ∼=
n
⊕
i=0

Hn−i
I ⊗ Ui,

Vgr ∼=
n
⊕
i=0

i
⊕
a=0

Hn−i
a,i−a ⊗ Ua ⊗ U′i−a
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where Ui is the standard representation of sl2 with nil-negative element

NI and U′j is the same using NIc,o. Note that we use the “o” rather

than “0” in NIc,o. We emphasize that the Hn−i
a,i−a depend on I.

The map N i : Hn−i,o(−i) ∼−→ Hn−i,o induces a map

i
⊕
a=0

Hn−i,o
a,i−a (−i)→

i
⊕
a=0

Hn−i,o
a,i−a .

By construction the NI weights of vectors in Hn−i
a,i−a are all equal to a.

Thus

• ∧hn−i,o
(

i
⊕
a=0

Hn−i,o
a,i−a (−i)

)
has weight

∑i
a=0 ah

n−i,o
a,i−a;

• ∧hn−i,o
(

i
⊕
a=0

Hn−i,o
a,i−a

)
has weight −

∑i
a=0 ah

n−i,o
a,i−a.

Consequently, any monomial in det
(
N i
∣∣
Hn−i,o(−i)

)
drops weight by

2
∑i

a=0 ah
n−i,o
a,i−a. Now

det

((
N
∣∣
Hn−i,i(−i)

)i)
= det

((
(NI +NIc,o)

∣∣
Hn−i,o(−i)

)i)
+ terms involving NIc,neg

where NIc,neg =
∑

m<0NIc,m. Any term involving NIc,neg will have

weight that satisfies

2 degIM + d = 2
i∑

a=0

ahn−i,oa,i−a

where d > 0 is the total negative weight of NIc,neg. In particular,

degIM <
a∑
i=0

ahn−i,oa,i−a.

For P =
∏n

i=0

(
det
(
N
∣∣
Hn−i,o(−i)

)i)
we obtain

(IV.7)


P =

∏n
i=0

(
det
(

(NI +NIc,o

∣∣
Hn−i,o(−i)

)i)
+

a linear combination of monomials satisfying

degIM <
n∑
i=0

i∑
a=0

ahn−i,oa,i−a.
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Using the bookkeeping formula

hn−a,oI =
n∑
i=a

hn−i,oa,i−a

we have

n∑
i=0

i∑
a=0

ahn−i,oa,i−a =
n∑
a=0

n∑
i=a

hn−i,oa,i−a =
n∑
a=0

hn−a,oI .

Together with (IV.7) this gives

P =
n∏
i=0

(
det
(
NI +NIc

∣∣
Hn−i,o(−i)

)i)
+ a correction term

where the correction term has degI <
∑n

a=0 ah
n−a,o
I . Combining with

(IV.5) above gives P = SIPI . This establishes (a) in the proposition.

A parallel argument shows that for I ∩ J = ∅,

SI∪J =
n∏
i=0

det

((
NI +NJ,o

∣∣
Hn−i,o
I∪J

)i)

+ a collection of terms with degI <
n∑
n=0

ahn−a,oI .

By the definition of Hn−i
I∪J

det

((
NI +NJ,o

∣∣
Hn−i,o
I∪J (−i)

)i)
6= 0

and

degI

(
det
((
NI +NJ,o

∣∣n−i,o
I∪J (−i)

))i)
=

n∑
n=0

ahn−a,oI .

It is automatically the case that

degI∪J(all terms of SI∪J) =
n∑
a=0

ahn−a,oI∪J .
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Thus

degJ det

((
NI +NJ,o

∣∣
Hn−i,o
I∪J (−i)

)i)
= degI∪J det

((
NI +NJ,o

∣∣
Hn−i,o
I∪J (−i)

)i)
− degI det

((
NI +NJ,o

∣∣
Hn−i,o
I∪J (−i)

)i)
=

n∑
a=0

a
(
hn−a,oI∪J − h

n−a,o
I

)
.

Proceeding inductively on {π(1), π(2)} ⊂ · · · ⊂ {π(1), . . . , π(n)} we

obtain that if N{π(1),...,π(r)},0 is a weight 0 piece of N{π(1),...,π(r)} with

respect to GrW (N){π(1),...,π(r−1)},0 , then
n∏
a=0

det

((
N{π(1)} +N{π(1),π(r)},0 + · · ·+N{π(1),...,π(r)},0

∣∣
Hn−i,o(−i)

)i)
is a non-zero multiple of

xd1π(1)x
d2
π(r) · · ·x

dr
π(r) where di =

∑
a

a
(
hn−a,o{π(1),...,π(r)} − h

n−a,o
{π(1),...,π(r)}

)
.

This is our Mπ. Tracking the correction terms,

D =
∑
π

cπMπ + terms strictly in the convex hull of the Mπ

where cπ for all π.

This proves (b) in Theorem C. �

Step 5: We now have

P = SIPI +R,

R homogeneous of degree = degP and satisfies (a) in Proposition IV.6

Working modulo dt1, dt̄ for i ∈ Ic,

−∂∂ logP =
∂P ∩ ∂P − P∂∂P

P 2

=
(SI∂PI + ∂R) + (SI∂PI + ∂R)−D2

IPI∂∂PI − SIPI∂∂R
D2
IP

2
I

=
∂PI ∧ ∂PI − PI∂∂PI

PI2
+ correction term

= −∂∂ logPI + correction term modulo dt1, dtr for i ∈ Ic
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where

correction term =

(
SI(∂PI ∩ ∂R + ∂R ∩ ∂PI) + ∂R ∩ ∂R

−SIPI∂∂R

)
/S2

IP
2
I .

Since we are working mod dti, dt̄i for i ∈ I, ∂R, ∂R, ∂∂R have the same

properties that R has. In conclusion:

correction term = Correction 1 + Correction 2.

Correction 1:
∂PI ∩ ∂R + ∂R ∩ ∂PI − PI∂∂R

SIPI
.

Correction 2:
∂R ∩ ∂R

S2
I

.

The numerator of Correction 1 has degI < degI,SI , and all monomials

satisfy (a) in Proposition IV.6. The numerator of Correction 2 has

terms in the I-variables that are a product of monomials M1M2 where

each Mi has degI = degI SI and also satisfies (a).

What we need to show is:

(IV.8)

Given a monomial M in the I-variables satisfying (1)
degIM < degI D, and (2) M satisfies (a), then

lim
t→∆I

M/SI = 0.

Note that (1) and (2) for M implies that for some monomial M ′,

degI(M
′M) = degI SI and M ′M lies in the convex hull of the argument

Mπ’s for SI .

Note that t→ ∆I is the same as all xi →∞ for i ∈ I.

Step 6:

Claim: If M ′M is as above, then

M ′M

SI
is bounded as xi →∞ for all i ∈ I.

Proof of Claim: Because the numerator and denominator are homo-

geneous of the same degree, the ratio is the same for (x1, . . . , xn) and

(λx1, . . . , λxn), λ > 0. For simplicity, re-index so that I = {1, . . . , d}.
Let xν = (xν1 , . . . , xνd) be a set of points in {xi > 0, i ∈ J} such that

lim
ν→∞

M ′M(xν)

SI(xν)
=∞.
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Consider a successive set of subsequences such that for all i, j, we have

one of three possibilities:

(i) limν→∞ xνi/xνj =∞;

(ii) xνi/xνj is bounded above and below;

(iii) limν→∞ xνi/xνj = 0.

Now replace the sequence by the following subsequence: Let Iij, . . . , Ir

be the partition of I such that i = j ⇐⇒ (ii) holds for i, j. Order

them so that (i) holds for i, j ← Iν1 , j ∈ Iν2 , j ∈ Iν2 and m1 < m2. We

may find a C > 0 such that 1
C
5 xνi/xνj 5 C if i, j are in same Iν and,

for any B > 0,

xνi/xνj > Bm2−m1 if i ∈ Im1 , j ∈ Im2 , ν sufficiently large.

By compactness, we may pick a subsequence so that

lim
ν→∞

(xνi/xνj) = Cij if i, j ∈ same Im.

Introduce variables y1, . . . , yr and let

xi = aiyr if i ∈ Ir, ai/aj = Ci,j, ar > 0.

We may restrict our cone by taking

Ñm =
∑
i∈Jr

aiNi.

This reduces us to the case |Ir| = 1 for all r, i.e.,

lim
ν→∞

xνi/xνj =∞ if i < j.

It follows that for any B,

xνi/xνj > Bj−i for ν � 0.

Now

xk1ν1x
k2
ν2
· · ·xkανα

xk1ν1 · · ·x
kj
νj

→ 0 if

k1 + · · ·+ kα = `1 + · · ·+ `α and

k1 < `1 or k1 = `1, k2 < `2 or

k1 = `1, . . . , kα−1 < `α−1

Consequently SI = CM{1,2,...,α}+ terms of slower growth as ν → ∞
and where C > 0, i.e.,

(M{1,2,··· ,α}/others terms)(xν) > B.
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Since M ′M belongs to the convex hull of the Mπ, (M ′M/M{1,2,...,α})(x0)

is bounded as ν →∞. This proves (IV.8).

As a corollary of (IV.8), under the same hypothesis,

lim
x1→0 for i∈I

M ′(x) =∞.

We then have

lim
xi→0 for i∈j

(M/SI)(x) = 0;

i.e.,

lim
t→∆I

(M/SI) = 0.

This is what we needed to show; i.e., that

lim
t→∆I

(−∂∂ logP ) = −∂∂ logPI modulo dt1, dt̄r for i ∈ Ic

and that the limit exists.

V. Proof that the extended Hodge line bundle is ample

In this section we will give a proof of Theorem B. We recall the

statement: Given a period mapping Φ : B → Γ\D and a smooth

projective completion B of B such that the local monodromies around

the irreducible branches Zi of the reduced normal crossing divisor Z =

B\B are unipotent, the image M = Φ(B) ⊂ Γ\D is a complex analytic

variety, and in Section II we have constructed a completion M of M

such that the period mapping extends to give a diagram

B
Φ // M ⊂ Γ\D

∩
y

B
Φe // M.

The Hodge line bundle over Γ\D induces Λ → M and there is an

extension Λe →M such that Φ∗e(Λe) is the canonically extended Hodge

bundle on B. The result to be established is

Λe →M is ample.

The proof will be given in two steps, the first of which is a general

result — not related to Hodge theory — and is an extension to singular
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varieties of the classical Kodaira theorem. The second step will extend

the proof of the first to the case where the metric and curvature have

singularities of the type described in Sections III and IV above.

Step one: In this step it will be convenient to change our notation to

better reflect the general nature of the result being proved. Thus we

assume

• X is a compact, complex analytic variety;

• L → X is a holomorphic line bundle having a Hermitian metric

whose Chern form Ω is positive in the Zariski tangent spaces to X.

In fact, we assume that X is covered by open neighborhoods U which

are realized as analytic subvarieties in CN , and that the restrictions

L
∣∣
U
∼= OU are trivialized and the metric in L

∣∣
U

is the restriction to U

of a positive smooth function defined on an open set in CN .

• X̃ π−→ X is a desingularization of X with connected fibres; we set

L̃ = π∗L.

In fact, although it is probably not necessary, we also assume that X̃ is

a smooth projective variety, as this will be the case for our application

to Hodge theory. With the above notations and assumptions we will

show that

Theorem V.1: L→ X is ample.

For the definition of ample we shall use

for any coherent analytic sheaf F → X, we have hq(F⊗Lm) = 0

for q > 0 and m = m0(F).

Finally we shall relax the first assumption above in that we allow X to

be a complex analytic scheme; i.e., we do not assume that the analytic

space (X,OX) is reduced. This is necessary as the proof will be given

by induction on dimX, and even if X itself is reduced we shall see

that in the intermediate steps of the argument the analytic varieties

that arise may not be reduced. The second assumption above should

then be that Lred → Xred has a Hermitian metric with a positive Chern

form as described there. The argument in Step one is an adaptation of



3/28/17 COMPLETION OF PERIOD MAPPINGS 71

the standard one in algebraic geometry; e.g., the one on pages 31ff. in

[K-M].

We begin my noting that

(V.2) L→ X is strictly nef.

Strictly nef means that for any analytic curve C ⊂ X we have

L · C = deg
(
L
∣∣
Cred

)
> 0.

In fact, for any k-dimensional analytic subvariety Z ⊂ X we have

Lk · Z := c1(L)k[Zred] > 0.

The reason for this is that for C̃ = π−1(C) ⊂ X̃ we first have

c1(L)[Cred] = c1(L̃)[C̃red].

Then Ω̃ = π∗(Ω) is non-negative (1, 1) form on X̃ with the property

that for ξ ∈ TX̃,

Ω̃(ξ) = 0 ⇐⇒ π∗(ξ) = 0.

It follows that

c1(L̃)[C̃red] =

∫
C̃red

Ω̃ > 0.

As we will see, it is really the properties (V.2) and (V.3) below that

are needed for the argument.

A second property is

(V.3) L→ X is big.

For us, this is a direct consequence of results of Demailly [De], specifi-

cally his holomorphic Morse inequalities. It also follows from the work

of Siu [Si] on the Grauert-Riemenschneider conjecture. If dimX = d,

then since Ω̃ = 0 and Ω̃d > 0 on a Zariski open set in X̃, it follows

from the Riemann-Roch theorem that the Euler characteristic

χ[L̃m] = cmd + · · · , c > 0.

By Demailly (loc. cit.)

hq(L̃m) = o(md), q > 0

which gives that L̃→ X̃ is big.
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We next have

0→ OX → π∗OX̃ → F → 0

where F is supported on a proper subvariety of X. Since L̃ is trivial

on the connected fibres of X̃
π−→ X, we have

0→ Lm → π∗L̃
m → F ⊗ Lm → 0

which using

H0(X̃, L̃m) ∼= H0(X, π∗L̃
m)

and the big-ness of L̃→ X̃ gives (V.3).

The key part of the proof is to show that

(V.4) L→ X is free.

Asuming this, in case X is reduced the linear systems |mL| for m� 0

give holomorphic — not just meromorphic — maps

ϕm : X → PNm

with

ϕ∗mOPNm (1) = Lm.

Because of (V.2) no positive-dimensional subvariety of X is contracted

by ϕm, so that ϕm is a finite map and this gives the result in this case.

Still assuming that we have V.4 in the reduced case, to give the

argument when X may not be reduced we proceed by induction on

dimX. If dimX = 1 the result follows from

deg
(
L
∣∣
Xα,red

)
> 0

where Xα are the irreducible components of X. If dimX is arbitrary,

assuming as we may that X is irreducible, in the exact sequence

(V.5) 0→ F → OX → OXred
→ 0

the sheaf F has a filtration whose associated graded sheaves Gr• F

are OXred
-modules. Tensoring (V.5) with Lm and using the result

h1(OXred
,Gr• F⊗Lm) = 0 for m� 0 in the reduced case leads, by the

usual spectral sequence argument, to h1(X,F ⊗ Lm) = 0 for m� 0.
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To finally prove (V.4) in general when X may not be reduced we

use the classical argument. Replacing L by a high power, we use (V.2)

to give that there exists a possibly non-reduced effective divisor Y ∈
|L|. By the induction assumption, LY = OY (L) is ample. From the

cohomology sequence of

0→ Lm−1
X → LmX → LmY → 0

and h1(LmY ) = for m� 0, we obtain

H1(Lm−1
X )→ H1(LmX)→ 0, m = m0.

Thus the h1(Lm) are non-increasing for m = m0, and for m = m1 we

will have

H1(Lm−1
X )

∼−→ H1(LmX).

This gives

H0(LmX)→ H0(LmY )→ 0.

Then since LY → Y is free the same will be true for LX → X.

Step two: The proof of Theorem B now may be completed by com-

bining the argument just given with Theorem C as stated in the in-

troduction. We first note that for any irreducible curve C ⊂ M we

have

(V.6) deg
(
Λe

∣∣
C

)
=

∫
C

Ωe > 0.

Indeed, for some index set I the intersection C∗ =: C ∩ Z∗I will be

a Zariski open set in C. From the analysis of the singularities of Ωe

given in Section III (cf. Proposition III.9), it follows that the integral in

(V.6) is defined. By the construction of M , the image ΦI(C
∗) ⊂ ΓI\DI

is a (possibly non-complete) curve, and consequently the integral is

positive.

It remains to show that if dimM = d, then the integral

(V.7)

∫
M

Ωd
e > 0

is defined and is positive. This result is proved in [C-K-S1] with im-

portant amplifications in [Kol2]. It also follows from the calculation in
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Sections III, IV above. In a neighborhood of a point in a codimension

one stratum Z∗i the calculations in Section III easily give the result. In

general one needs to consider possible cross-terms of the form

dti ∧ dt̄i
|ti|2(log |ti|)2

∧ dtj ∧ α

|tj|
(

log 1
|tj |

)a
where α is either C∞ or has a dtj/|tj|

(
log 1

|tj |

)b
term. The first case

is easy, since dt̄j must appear elsewhere in Ωd
e. In the second case,

since both a, b are positive any such term will not cause the integral to

diverge.

Once we have (V.6) and (V.7) the same argument as in step one may

be used to give a proof of Theorem B. �

VI. Curvature properties of the Hodge vector bundle

This section will be divided into three parts, listed just below, fol-

lowed by an appendix.

(i) Generalities on Hermitian vector bundles;

(ii) Proof of Theorem D;

(iii) General issues concerning the Chern forms.

At the end we shall give some general comments, partly of a historical

nature, about the positivity of the bundles arising in Hodge theory dur-

ing the early and middle developments of the topic; these developments

are all that are needed for the present work.

(i) Generalities on Hermitian vector bundles

Given a holomorphic vector bundle E → Y over a complex man-

ifold, to a Hermitian metric in the bundle there is canonically asso-

ciated its Chern connection D:A◦(E) → A1(E) with curvature ΘE ∈
A1,1(Hom(E,E)) and curvature form

ΘE(e, ξ) =
〈
(ΘE(e), e), ξ ∧ ξ̄

〉
.

To interpret the curvature we shall use the associated projective

bundle π : PE → Y with tautological line bundle OPE(1). Here we are
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using the standard convention

(PE)y = PE∗y = π−1(y)

and so that the fibres of OPE(1) along π−1(y) are the 1-dimensional

quotients of Ey. As is well known, for the direct images we have

(VI.1) π∗OPE(m) = SmE, m = 0.

We will denote points of PE by (y, [e∗]) where 0 6= e∗ ∈ E∗y and [e∗] is

the line spanned by e∗. Then

OPE(1)(y,[e∗]) = Ce∗.

Using the conjugate linear isomorphism E∗y
∼= Ey given by the Hermit-

ian metric in E → Y , there is an induced metric in OPE(1). We denote

by ΩE its Chern form, and note that

ΩE

∣∣
(PE)y

is the Fubini-Study form on PE∗y .

At each point of PE the vertical space

V(y,[e∗]) = ker π∗ : T(y,[e∗])PE → TyY

is defined, and using that ΩE

∣∣
T[e∗]

PE∗y is a positive (1,1) form we may

define the horizontal space

H(y,[e∗]) = (V(y,[e∗]))
⊥ ⊂ T(y,[e∗])PE

where ( )⊥ is relative to ΩE. We then have for c ∈ Ey and ξ ∈ TyY

(VI.2) ΘE(e, ξ) = ΩE

∣∣
H(y,[e∗])

(ξ).

This means: e∗ corresponds to e using E∗y
∼= Ey via the metric, and on

the right-hand side ξ ∈ H(y,[e∗]) under the isomorphism

π∗ : H(y,[e∗])
∼= TyE.

The RHS of (VI.2) is the value of ΩE on ξ ∧ ξ̄. In other words,

(VI.3)
The Chern form of OPE(1) is equal to the Fubini-Study
form on the fibres of PE → Y , and on the horizontal
spaces it is identified with the curvature form of E → Y .

As an application of this and as a check on signs, we shall prove the
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Proposition VI.4: If Y is compact and E → Y is positive, then

H0(Y,E∗) = 0.

Proof. From (VI.1) we have that H0(Y,E∗) ∼= H0(Y,OPE∗(1)), so it

will suffice to show that this group is zero. If σ ∈ H0(Y,E∗), then at a

maximum point of ‖σ‖2 we have

(i/2)∂∂ log ‖σ‖2 5 0.

In the fibration PE∗ → Y the (1,1) form (i/2)∂∂ log ‖σ‖2 is minus

the Fubini-Study form in the vertical tangent space, and using the

identification described above it is −ΘE∗(σ, ξ) in the horizontal tangent

space. Our assumption gives −ΘE∗(σ, ξ) > 0, which is a contradiction.

�

As another check on signs we have the following special case of a

result of Bloch-Gieseker ([B-G]).

Proposition VI.5: If Y is compact and E → Y is positive with rank

E = dimY , then any section σ ∈ H0(Y,E) has a zero.

Proof. We assume that σ has no zero and go to a minimum y0 of

log ‖σ‖2 where we have

(i/2)∂∂ log ‖σ‖2(y0) = 0.

This time the term on the left is the restriction to the graph of σ of

the (1,1) form

(Fubini-Study form) + ΘE(σ(y0), •).

The first term is positive of rank equal to dimEy− 1, while the second

is negative of rank dimTy0Y > dimEy−1. Thus (i/2)∂∂ log ‖σ‖2 must

have at least one negative eigenvalue, which gives a contradiction. �

Finally, for use below we have the

Proposition VI.6: If Y is compact Kähler and σ ∈ H0(Y,E) is a

section with ΘE(σ) = 0, then Dσ = 0.
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Proof. We have

∂∂(σ, σ) = ∂(σ,Dσ) = (Dσ,Dσ) + (σ,ΘE(σ)) = (Dσ,Dσ).

Then if ω is the Kähler form and dimY = d,

0 =

∫
X

ωd−1 ∧ (i/2)∂∂‖σ‖2 =

∫
Y

ωd−1(i/2)(Dσ,Dσ) = 0

where equality holds only if Dσ = 0. �

(ii) Proof of Theorem D

The first step in the argument is to show that the curvature ΘF has

a very special form that we now explain. Suppose given complex vector

spaces T, F,E and a linear map

A : T → Hom(F,E).

Assume that T is the (1,0) part of the complexification of a real vector

space and that each of F,E have Hermitian metrics. We are thinking

of the case

(VI.7a) T = TbB, F = Fb, E = (F n−1/F n)b

and where

(VI.7b) A = Φ∗,n

is the first piece of the differential of a period mapping. (To avoid

notational clutter we drop reference to the point b ∈ B.)

Given the above data we define

(VI.8) Θ = A ∧ tA ∈ Hom(F, F )⊗ T ∗ ⊗ T ∗

where tA is defined relative to the Hermitian structures on F and E.

We note that

Θ + tΘ = 0.

We may then define the Chern forms cq(Θ) by taking the characteristic

polynomial of (1/2πi)Θ. In the examples (VI.7a), (VI.7b) above we

have from [G1] that Θ = ΘF . In fact, for e ∈ Fb and ξ ∈ TbB the

curvature form for the Hodge vector bundle is given by

(VI.9) ΘF (e, ξ) = ‖Φ∗,n(ξ)‖2



78 COMPLETION OF PERIOD MAPPINGS 3/28/17

so that 〈A, ξ〉 is Φ∗,n(ξ). We will give a proof of this in the lemma just

below.

The point is that when the curvature has the special form (VI.8), the

Chern forms are non-negative and their vanishing has a linear algebra

interpretation. For this we have the following

Lemma VI.10: The linear mapping A induces

∧qA : ∧qT → ∧qF ∗ ⊗ SqE

and up to a universal constant

cq(Θ) = ‖ ∧q A‖2.

Proof. The notation means

‖ ∧q A‖2 = (∧qA,∧qA)

where in the inner product we use the Hermitian metrics on F ∗ and E,

and we identify

∧qT ∗ ⊗ ∧qT ∗ ∼= (q, q)-part of ∧2q (T ∗ ⊕ T ∗).

Then letting A∗ denote the adjoint of A we have

∧qΘ = ∧qA⊗ ∧qA∗ = ∧qA⊗ (∧qA)∗

and

cq(Θ) = Tr ∧q (Θ) = (∧qA,∧qA). �

In matrix terms, if

A = dimF × dimT matrix with entries in E

then

∧qA =

{
matrix whose entries are the q × q
minors of A where the entries of E
are multiplied as polynomials

}
.

It follows that again up to a universal constant

cq(ΘF ) =
∑
α

Ψα ∧Ψα

where the Ψα are (q, 0) forms. In particular, any monomial cI(ΘF ) = 0.
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We note that

(VI.11)
the vanishing of the matrix ∧qΦ∗,n is not the same as
rank Φ∗,n < q.

In fact, as follows from (I.2)

(VI.12) rank Φ∗,n < q ⇐⇒ c1(ΘF )q = 0.

In the geometric case when we have

Φ∗,n : TbB → Hom
(
H0(Ωn

Xb
), H1(Ωn−1

Xb
)
)

and the algebro-geometric interpretation of (VI.12) is standard; e.g.,

Φ∗,n injective is equivalent to local Torelli holding for the Hn,0-part of

the Hodge structure.

In contrast, the algebro-geometric map corresponding to (VI.11) is

∧qTbB ⊗ ∧qHn,0(Xb)→ SymqHn−1,1(Xb),

which thus far does not seem to fall into the standard theory.

We conclude this subsection with a result that pertains to the ques-

tion at the end of the introduction.

Proposition VI.13: If Φ : B → Γ\D has no trivial factors, and if

hn,0 5 dimB and H0(B,Fe) 6= 0, then

chn,0(F ) 6= 0.

Proof. We will first prove the result when B = B. The general case

will then be done following a discussion of the singularities of ΘFe .

We let σ ∈ H0(F,B) and assume that chn,0(F ) = 0. Then σ is

everywhere non-zero, and we may go to a minimum of ‖σ‖2. From

Proposition (VI.6) we have Dσ = 0, which using (VI.9) implies that

the norm ‖σ‖ is constant and

∇σ = 0

where ∇ is the Gauss-Manin connection. Using standard arguments

([G2]) we may conclude that the variation of Hodge structure has a

trivial factor.

If B 6= B, the arguments given in Section III may be adapted to

show that the proof of Proposition VI.9 still goes through. The point



80 COMPLETION OF PERIOD MAPPINGS 3/28/17

is the equality of the distributional and formal derivatives that arise in

integrating by parts. �

Finally for this subsection, we remark that if L→ B is a positive line

bundle, then for any ε > 0 and even though the metric is singular Fe⊗Lε

is a positive vector bundle and OPEe(1)⊗π∗Lε is an ample line bundle.

It seems plausible that this will lead to a proof of Viehweg’s results

about the weak positivity of the direct images of relative dualizing

sheaves in algebraic fibres spaces.44

(iii) General issues concerning the Chern forms

We consider a variation of Hodge structure given by a period map-

ping (II.2) satisfying the conditions stated there. We are interested in

the behavior of the curvature form ΘF (e, ξ) and Chern forms cq(ΘF )

on B. Their basic properties are:

(VI.14) For any monomial cA(ΘF ), we have that

(i) cA(ΘF ) defines a closed, positive current whose entries are L1 func-

tions;

(ii) the wave front set WF(cA(ΘF )) is defined and

WF(cA(ΘF )) ⊆
⋃
I

N∗
Z∗I /B

;

(iii) because of (ii) the restrictions cA(ΘF )
∣∣
Z∗I

are defined and are smooth

forms on Z∗I which satisfy

cA(ΘF )
∣∣
Z∗I

= cA

(
ΘFe|Z∗

I

)
.

In order to establish these properties we offer the following would

observations:

A: If h is the Hodge metric relative to a local holomorphic frame around

a point of Z = B\B, then we may calculate θ = h−1∂θ and Θ = ∂θ

either as currents or formally by calculus, and when this is done the

results coincide (the property NR in Section III; as noted there, this

implies that the Lelong numbers of the currents θ and Θ are zero.).

44For a treatment of fractional powers of line bundles we refer to [De].
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B: We may restrict the forms cA(ΘF ) by the same process as in Section

IV; i.e.,

• first along Z∗I formally set dti = dt̄i = 0;

• then set log 1/|ti| = ∞; i.e., the limits as t → Z∗I of what is left

after the first step exist.

Proof analysis gives that A can be done by the methods in [C-K-S1]

and [Kol2] or those in Section IV above, and also that B can be carried

out also using the methods in Section IV. The details will be further

discussed elsewhere.

We also note that one PFe
π−→ B if we consider the Chern form Ω of

OPFe(1), then

C: Ω defines a closed (1,1) current on PFe that has properties analogous

to (i)–(iii) above;

D: the push-forward π∗Ω in the sense of currents exists and may be

used to define the Chern forms cq(ΘF ) via the Grothendeick relation.

The details of this will also be discussed elsewhere.

We conclude with a question motivated by the results in [V1] and

[V2]:

Question VI.15: If E → X is a vector bundle over a compact, com-

plex manifold that has a Hermitian metric with positive semi-definite

curvature form

ΘE(e, ξ) = 0,

and if the Chern form

c1(E) = c(detE) = Tr

((
1

2πi

)
ΘE

)
> 0

is positive definite, then is the Kodaira dimension

κ(E) = dimX?

For period mappings we have the related

Question: If Λ→ B has positive Chern form then is

κ(F ) = dimB?
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Both questions may be raised when the stated conditions hold on a

Zariski open set.

Finally one may pose the less specific

Question: Under the above assumptions, are there positivity condi-

tions on the Chern monomials that will increase the estimate on the

Kodaira dimension?

We will conclude this section with some historical comments on the

evolution of our understanding of the positivity of the Hodge bundles

up to the period when the papers [V1], [V2] and [Kol2] appeared; these

works are the ones most relevant to the current work. Early computa-

tions of the curvature of homogeneous vector bundles over flag domains

appeared in the 1960s and showed that their behavior in the Hermitian

symmetric and non-Hermitian symmetric cases were quite different (cf.

[G-S1]). The computations of the curvature for the Hodge bundles and

tangent bundles over period domains given in [G2] and [G-S1], [G-S2]

then made the point that when restricted to integral manifolds of the

infinitesimal period relation the curvatures had positivity properties

analogous to those in the classical Hermitian symmetric domain set-

ting. In particular the Hodge vector bundle was semi-positive and the

Hodge line bundle had positive curvature if the differential of the pe-

riod mapping had suitable injectivity properties. The paper [Fu] was

an important development here. As discussed above, for a variation of

Hodge structure the Hodge vector bundle is almost never positive and

the understanding of just how positive it actually is under geometrical

assumptions on the differential of the period mapping seems to be still

incomplete.

The next stage was understanding the behavior of the Hodge metrics

and curvature forms when a variation of Hodge structure degenerates

along a normal crossing divisor. Here the works [Sc1], [C-K-S1] and

[Kol2] played a major role; it is worth noting that both [C-K-S1] and

[Kol2] were in part motivated by algebro-geometric questions related to

the Iitaka conjecture and where the singularities of the Chern form of
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the Hodge line bundle entered in a crucial way (cf. [Ka1], [Ka2], [Ka3],

[U1], [U2], [V1], [V2] and the references cited in those works).

As a historical note, the indication that the curvature forms had

Poincaré metric singularities may have originally come from the reg-

ularity of the Gauss-Manin connection (cf. [De]). Namely, the result

that the periods of algebraic differential forms had logarithmic singu-

larities in a degenerating family {Xt} of algebraic varieties implies that

the Hodge norms, given up to a constant by

‖ψt‖2 =

∫
Xt

ψt ∧ ψt

where ψt is a holomorphic n-form on Xt for t 6= 0, are of the form

‖ψt‖2 =

(
log

1

|t|

)m
h0(t)

where h0(t) is positive and where it together with ∂ log h0 and ∂∂ log h0

are bounded (cf. the discussion in Section III above). Then up to a

constant

∂∂ log ‖ψt‖2 = m∂∂ log(− log |t|) + LOT

where ∂∂(− log |t|) = dt∧dt̄
|t|2(log |t|)2 is the Poincaré metric and LOT are

lower order terms. If instead the Hodge norms had singularities like

‖ψt‖2 =

(
1

|t|α

)
h0(t), α > 0

then the curvature form would have had terms like

∂∂ log |t| = δ0dt ∧ dt̄

and therefore one would have picked up contributions given by currents

with non-zero Lelong numbers in the Chern classes of the Hodge bun-

dles. Thus the difference between ∂∂ log(− log |t|) and ∂∂ log |t|, i.e.,

the difference between periods having logarithmic singularities and hav-

ing poles, suggests the mild singularity behavior of the curvatures of

these bundles.

The main result of this work is the existence and ampleness of the

extended Hodge line bundle

Λe →M.
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It may be viewed as an extension of the earlier positivity-type results, a

main point being that Proj(Λe) exists and may be exactly described as

the general analogue of the Satake-Baily-Borel compactification in the

classical cases.45 From an exterior differential system perspective, the

maximal integral varieties Ωe = 0 of the extended Chern form define a

foliation of B by complex subvarieties whose quotient by contracting

the connected leaves of the foliation exactly captures identifying the

limiting mixed Hodge structures that have the same associated graded.

The main issue here is to make sense out of the exterior equation Ωe = 0

when Ωe has singularities.

Finally we note that the curvatures of the Hodge bundles and their

singularities is currently an extremely active and interesting topic; we

refer to [P] for a recent survey paper with references to some of the

current work in this area.
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