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SEP 15 ‘86 (il

Seminar on Degeneration of Algebraic Varieties

Lecture l: Some background and generalities - . Phillip A. Griffiths

(I) We want to think about algebraic families of algebraic varieties and
discuss what happens when the ''general' variety acquires singularities.
The eventual idea is to replace the non-singular variety by something
simpler such as a Picard or Albanese variety, homology or cohomology '
groups, or a period matrix, and find out as much as possible about the
degeneration of this simpler object.

I want first to make precise the data of degeneration of an alge-
braic variety. The rough idea is that we take projective varieties Vt

given by equations

fl(xo, s X t) =0
oo ; =0
m(xo’ N t)
where the f (x, t) are homogeneous polynomials in xo, .o s XN whose
: a

coefficients are holomorphic functions of t in the unit t-disc A = {t: |tl <1},
and where we assume that Vt is non-singular for t # 0. To make this

more precise, we assume given a complex-analytic variety X together

with a holomorphic mapping f: X —> A which satisfies the following:

(i) there is a projective embedding xCm (ii) f is proper and con-

N;
-1

nected; (iii) if we set Vt = f (t) and X* = X - Vo’ then X* 1is smooth

and f has everywhere maximal rank on X* (we may say that f is

smooth on X*).

We want to use Hironaka's resolution of singularities to arrive at

what we will call a standard situation. First we use Hironaka to resolve

the singularities of X. This is done by blowing up along subvarieties in

VO and so X* is left unchanged. Next, we use Hironaka again to arrange

that the divisor VO on X should have normal crossings. As before this
is done by blowing up in VO so that X* is left unchanged. We are now

in a standard situation

H72044 - M Oy
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x* Cx

fl lf

AaxC A

where X is a complex manifold and f is given by

1 n+l
(N X5 X 0F t
where Xl’ o e es Xn+l are local holomorphic coordinates on X. We

should think of X as a nice 'filling in'' or compactification of X*

over t = 0,
(2) The general program of the seminar is as follows:

(I) Degeneration of curves and Abelian varieties.

These talks will begin next week by Alan Mayer and will in
particular cover some old unpublished work of his and Mumford. This
situation here is fairly well understood and makes a nice story. From
these talks we will also find out what happens in general when we pass

from {Vt}tEA to the family of Picard or Albanese varieties.

(II) The topology of degenerating varieties.

This will be a study of the topology of a standard situation

x*(C X

Ll

A*C A

These talks will be started by Clemens. We are especially interested in

analyzing the Picard-Lefschetz transformation T : Hq(V) —— Hq(V),
which by definition is the automorphism on the homology of a general
variety V induced by displacing cycles around t = 0. In particular

the monodromy theorem, which says that

(TN—I)q+1= 0 (N=4.c.m. of IR i -

will be proved.



(III) Regularity of Picard-Fuchs equations.

Let

x* C X

fl lf

A*xCA

be a standard situation and let E —> A* be the flat vector bundle whose

fibre Et = Hq(Vt, C). Thus E 1is induced from the trivial bundle with
fibre HY(V, €) on the universal covering of A* by the action of
7Tl(A*) £ Z on Hq(V, C) via the Picard-Lefschetz transformation T.

The sheaf of locally constant sections of E is just the Leray direct image

sheaf RY(@).
f*

Now it makes sense to speak of a holomorphically varying coho-

mology class w(t) € Hq(Vt, C) (t# 0), which is by definition the same

as a holomorphic section of E —> A*, It also makes sense to speak of a

holomorphic section of E —> A* which has a finite order pole at t = 0.

The definition is essentially the following: A holomorphic section w of
E —> A* will have a finite order pole at t = 0 if we can find a ''suitable"
divisor Z( X such that (i) the divisors z = 2V, are well-defined,

(ii) the complements Ut = Vt - Z,  are affine varieties, (iii) the restrictions

t

of w(t) to Hq(Ut, C€) are given in the deRham sense by differential forms
¥(t)

0 where (t) is a rational q-form on Vt which is holomorphic in the ‘
t

Zariski open set Ut and ‘which depends holomorphically on te A,
For 6e¢ H (V, Z) and w(t) ¢ Hq(Vt, C) a holomorphic section
of E—> A* withqonly a pole at t = 0, the periods ‘
J o(t)
)
are multi-valued holomorphic functions on A* which arise as solutions

of the so-called Picard-Fuchs equations. We will prove that these D.E.'s 4

have only regular singular points at t = 0 by proving the estimate
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[folt)] < o] 7
)

(IV) Now all of (I) - (II) - (III) are in some sense part of the general pro-

gram of studying the period matrices (to be defined later) of the smooth

varieties Vt as T —> 0. For example, for q = 1 the period matrix of

the holomorphic l-forms on Vt is a g X 2g matrix

Qll “e Ql, 2g

: = Q(t)
Q Q
gl g:2¢g

which satisfies the Riemann bilinear relations

a0’ = 0
120% > 0 0= -foe GL(2g, Q) .

The lattice At in & generated by the 2g columns of Q(t) gives the
Albanese variety as A(Vt) = ((Zq/At. Thus studying A(Vt) and (t)

are closely related. Also Q(t) is locally holomorphic on A* but it is
not single~valued. Analytic continuation of £(t) around t= 0 effects

the change
Q—> QT (T = P.L. -transformation)

on 2. Thus studying (t) is related to the topology of the standard
situation. Finally, the regularity theorem (III) gives a first rather
crude estimate on the behavior of Q(t) as t—> 0.

Now the full asymptotic study of £(t) has by no means been
carried out. Essentially there is only the case q = 1, a little on sur-
faces, and some isolated examples known. It seems almost certain
that a proper understanding of the asymptotic behavior of £(t) will

involve (i) the reduction theory of arithmetic groups (i.e. study of

fundamental domains), (ii) the geometry of certain homogeneous com-

plex manifolds (the period matrix domains) with special attention to




their boundary components, and (iii) the use of what Chern calls

hyperbolic complex analysis (influence of curvature on holomorphic

mappings). These things will all be discussed (according to how much

is known about them) toward the end of the seminar.
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Lectures 2 and 3: Compactification of the variety of moduli of
*
curves =~ Alan L., Mayer

Let Wg = variety of moduli of nonsingular curves of

genus g

Q}é = Siegel upper half-plane of rank g

I‘g = modular group of rank g

’ng = Wg/rg = variety of moduli of principally

polarized abelian varieties of dimension g

S

yg v Ug 1Yo u-?/—o = Satake's compactifica-
tion, with its natural structure or a normal

projective algebraic variety

Assigning to each curve its (canonically polarized) jacobian variety
we have (Torelli's theorem) 772 C ¥ and it is known (Baily) that
WZg is a locally closed algebraigc subfariety of U*. Let72* be
the closure of 77Zg in Vg Let 7?(‘g = the set ofgpoints in ng‘
representing abelian varieties which are products of jacobians of
curves of genera < g, with the product polarization. The structure
of 77(; is given by:

Theorem 1. WZ; = U (7?Zhu7f(i1),

0<h<g

(Previously Hoyt had shown N*nV C W/g v ”Z‘g) The idea
of the proof is that points in 44 appriach agboundary point when the
corresponding curves degeneratge to a curve with singularities, the
boundary point representing the product of the jacobian varieties of
the normalized components of the singular curve. One can reduce
such degeneration to the case where the singular curve is a curve
with nodes, i.e. a reduced connected curve with at most ordinary
double points (nodes) as singularities. To be precise, let
D={ze C]| |z| <1} and byt D—> D by 2 b—> 2,

Definition. A degenerating family of curves is a connected

These talks are based on unpublished joint work with Mumford
done in 1963-64.




proper morphism p: V—> D where V is a normal analytic
surface, and V - p-l(O) is a manifold on which dp # 0. (Thus
for z# 0 p-l(z) is a nonsingular curve.) The family is called
normal if V is.nonsingular and p—l(O) is a curve with nodes.

We can reduce arbitrary degeneration to normal degenera-
tion by the following ''normalization theorem' of Mumford.

Proposition 1. Any degenerating family p: V—> D is
dominated by a normal degenerating family P : V —> D in the

sense that there is a commutative diagram

V——vV
Fo F
U
p—N 5 p

for some integer N > 0 such that {/J - 5—1(0) is the pull-back (fibred

product) of V - p-1(0) via uN: D - {0} — D - {0}.
The idea of the proof is as follows: by the usual resolution

-1
of singularities, we may assume V is nonsingular and p (0) =
r

= nici where the Ci are nonsingular and meet transversally.
i=1
Let N = f.c.m. (nl, c s nr) and let V' be the normalization

of the {ibre product V X D defined by My D—> D, andlet \Y
D ~
be its desingularized model, p: V—> D the obvious projection.

One must show that 15_1(0) is a curve with nodes. One needs two
lemmas.

Lemma 1. Let (x, y) be local coordinates for a nonsingular
point P on a surface, and z = xmyn, (m, n) = 1. Let an = z,
Then the integral closure R of @P[(,] is regular and has local
coordinates u, v with { = uv.

Proof. Let an+bm =1, u= anx-bya, v = gamxby-a
so u = v, v'= x and u, v € R. But ﬁp = ©{x, y} giving

R = ©{u, v}, while clearly { = uv.

s



Lemma 2. Let (x, y) be local coordinates at a point P,
z = xy and t" = z. Then R = (913[:”,] is a normal local ring and
it can be desingularized by [%] quadratic transformations. In the
resolved model, { = 0 defines, locally, a curve with nodes.

Proof. R is the local ring of xy = Z_,n which is singular
only at x = y = { = 0 (char. = 0!) and so normal. Blowing up we

get 3 affine sets

u_: Xn—Z(;%_)n = (-i—) on which ¢ = }%-x
U, yn-Z(;C,’_)n = (ﬁ) on which ¢ = -}%-y
n-2 X,V .
: = (=) (= 1
UC, ¢ (lf_.,)((,) which has the only

singular point, which, by induction on n, can be blown up giving a
locus { = 0 consisting of reduced curves normally crossing.

To complete the proof of Proposition 1, one looks at a point
n, n,
T J

in V lying over a point P ¢ Ciﬁ Cj in V, so z = x ly (the pull-

backs of the coordinate on D) with x, y local coordinates at P.
Let d=(n, n), n'=n./d, n'=n./d, n=n'n' and m = N/nd.
) 1 i J J 1)

Let {’1 = zl/ds LZ = éi/ns ¢ = g]é/m = Zl/N'

V' —> V may be factored into V! V2 V1 V where V1

and normalizing, etc. Adjoining gl

The morphism

is retained by adjoining ¢{
) d i i 7j.d . o

gives (. =x 'y " =(x "y ") so Vl —> V 1is unramified over P
1 n} n; d

and the locus z = 0 gives d curves Cl = nx ly 1, n =1 which

are reduced and cross normally. Adjoining §,2 and normalizing,

we get a nonsingular V2 and by lemma 1 C’Z = 0 will again give
1/ m
2

to obtain V' and blowing up one obtains V where by lemma 2 the

reduced curves with normal crossings. Finally adjoining ¢ = ¢

divisor of { has the desired form.
Remark. The process can be quite complicated, e.g. let

p (0) = a rational curve with a cusp with V nonsingular. We have
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2 2
z = X —y3, Let £ = x/y giving £ =1y, y= 0 as new curves
2
and zzy(gz-y)e Letnz}ésogzo,§='q,'q=0arethe
32
new curves and z = £ n (£ - n). Finally let { = %, ( =2— so

z = n6§,3(§, -1) = gé(g')z(l - {'). So ones has 4 curves meeting
normally but with multiplicities 1, 2, 3, 6 and we must take a 6th
root of z normalize and blow up and down before one obtains 5-1(0)
which should be a nonsingular elliptic curve with j = 0.

Remark. Griffiths has given an analogue of Proposition 1 for
abelian varieties.

Proposition 2. If C is any curve with nodes, there is a normal
degenerating family p: V—> D with pal(O) = C.

Proof. Let lx| <1 and |y| <1 define coordinate neighborhoods
for the two branches of the node x = y = 0. Let VO = DX D, Vl =
{(P, z)e CXD s.t. |x(P)| > Izl if Pe UX}, VZ = analogous space

for Uy' Attach V, to V, U V, along the locus xy # 0 by

(P, xy) in V1 where x(P) = x if x# 0
(%, y)+—>

(P, xy) in VZ where y(P)=y if y#0

to obtain V and let p(‘x, y) = xy for (x, y) ¢ VO, p(P, z) = z for

(P, z)e V, U VZ' This is the desired family. (We have assumed a

single nodle to simplify notation.) This scissors-and-glue approach
was suggested by H. Levine.

For C a curve with nodes let J = Hl(C, 9)/Hl(C, Z) be its
(generalized) jacobian variety. J is the group of (Cartier) divisors
whose restriction to each component has degree 0, modulo the usual
(linear) equivalence. Then:

(1) There is a canonical map of J into f, the product of
the jacobians of the normalized components of C, whose

kernel is of the form (((Z*)k.
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(2) The inner product I{a, B) = (av B)[C] on Hl(C, Z),
called the polarization form, is the pull-back of the
usual polarization form for 3/
(3) J can also be defined as I“/(\C, K)/Hl(C, Z) where K
is the "canonical sheaf',
More generally one may call an extensién of a (principally polarized)
abelian variety by (©* )k a generalized abelian variety. Such a group
may be written as E/L with E = Lie algebra, L = fundamental group
and L carries a ''polarization form' pulled back from that on its
abelian part,

Definition. A normal degenerating family of abelian varieties

(R, 1) is an exact sequence of analytic families of Lie groups over D

0 L —s E @ 0

where & is a vector bundle, < a closed family of discrete subgroups
(which may also be thought of as a sheaf of holomorphic sections of
&) together with a continuous alternating bilinear form I XL —> Z,
such that
(1) For z # 0, Qz = Ez/'fz with the form IZ is a prin-
cipally polarized abelian variety
(2) For z = 0, ﬁo = EO/ZO is a generalized abelian
variety with the form IO.
Proposition 3. Let p: V—> D be a normal degenerating family
of curves. Then there is a normal degenerating family (9 s 1) of
abelian varieties with (} 2’ Iz) Z the canonically "polarized' jacobian
variety (or generalized jacobian variety) of pul(z) for all ze D.
In principle this goes back to the work of Picard and Poincaré, and
work of H. Rauch in this direction suggested developments given

here. There are now generalizations of this in several directions

by Néron, Griffiths, and Murre. The(rather involved) proof can be

outlined:
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1. Using the adjunction formula one shows that
dim Hl _1 (z) @) = const ¥z ¢ D.

2. By a theorem of Grauert, it follows that Rlp* O ) is
the sheaf of sections of a vector bundle 8 .

3. One shows that each fibre p— (z) is a deformation re-
tract of a neighborhood of it, so that the stalk oZa =4
I—I (p (z), Z) where of R p*(Z.)

4. One defines 1: Xf—-% Z by topology, and this is
seen to give the polarization form on each ofz.

5. The extension lemma: this asserts that any section of L

over D - {0} extends to a section over D. This is far
from easy to prove and uses the classical Picard-Lefschetz
theorem (see Clemens' thesis).
6. From this it is not hard to show that f is closed in &
(a fact equivalent to the extension lemma) by examining
the monodromy of the period-matrix, a technique also
used in the next proposition.
Proposition 4. Let (&, I) be a normal degenerating family of
abelian varieties, of dimension g. Then we have a map p: D —> 2/2
defined as follows: For z # 0, p(z) = the point in ,Vg representing

the principally polarized abelian variety (@z, IZ), while p(0) = the

point in ?/,éC V; (g < g) representing the abelian part of (@O, ).
Proof. Choose a basis R ag, ﬁl v Bg, for ,fo such
that ap .- o,,g, Bl .o Bg come from a canonical basis for the lattice

of the abelian part of QO' At any point z # 0 one can complete this
to a canonical basis of ofz by adding B§+l oo {Sg, though not in a

unique way: as we move around the origin in D such a basis will

change via a '"'monodromy matrix" G) f) » With 5 = (8 (S)O>

0 ~
a g X g matrix and S a positive definite k Xk matrix (g+ k = g).
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1
have Bi(z) = Z'Tij(z)q.i(z) where the '"period matrix'" 7(z) = (7. .(2))
1]

The a, ... o.g form a @©-basis for E at each z ¢ D and we

. . - 1 . .

lies in ﬁ/g’ and T(z) = 7(z) - (2_7r1 log z)S is l-valued in D - {o0}.
Applying Riemann's theorem on removable singularities, one sees that
';(z) extends to a holomorphic map D —> H . Then an explicit com-

putation shows that 7(z){mod I" ) approaches lim 7.(2). . . {modT.)
g PP Z_>0( ij7 1<, g g
using Satake's original definition of the topology on 7/;, and this proves

Proposition 4. (This sort of argument has been greatly generalized by
Borel.) One uses the fact that of is closed in E to prove So >0,
which is equivalent with the ""extension lemma'' in the case of jacobians.,
We note that S0 may be interpreted in terms of the topology of p_l(O),
in the case of jacobians. The proof of Theorem 1 now follows:

a) g Let gc¢ 772*. Then, by Baily's results, 3 a degenerating
family p: V—>D suc1g1 that if we let p(z) = {pt. in 77Zg representing

-1
o (z)}, z# 0, then g = lim p(z). By Proposition 1 however we may
z—>0
assume p: V—> D normal and hence by Proposition 3 and Proposition

4 q represents the abelian part of the generalized jacobian variety of
p—l(O) and so € ngumg', gﬁg*

b) :_) Let qe 77Z§ v 770" represent a product of jacobians of
curves Ci of genus gi with >g:§‘1 = g < g. Joining pairs of points as
necessary, one obtains a C of genus g whose normalized components
are the Cio By Proposition 2 C = p_l(O) for p: V—> D some normal’
degenerating family and by Propositions 3 and 4 one has, as before,
p:D—> 7/; continuous with p(0) = q and p(D - {0})C 77Zg, so
qe 77(;-

Definition. A curve with nodes C 1is called stable if C has
no rational nonsingular component which meets other components at
< 3 points.

l. To each C we may assign a unique stable model. If

pi : Vi —> D, i=1, 2 are two normal families which




T
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agree on D - {o} then p;l(O) and pgl(O) have the

same stable model,
2, A stable C of genus g has a finite number of possible

topological structures, each with at most 3g - 3 nodes

and at most 2g - 2 components (g >1).
3. For g>1, C is stable <=> Aut(C) is finite. ‘
4. For any C with nodes we may define an invertible sheaf

C v

C = p=1(0)., If g>1 and C is stable then Ké is very

ample and defines an embedding C <‘—>1P5g_6. '

|
KC, the canonical sheaf, e.g. by K TK.® C9C for i
I
1

Lt t

Let mg = {stable C with nodes of genus g}.
Theorem 2. 7?% has the natural structure of a Q-variety and |
is also a compact, Hausdorff V-manifold.
The idea of the proof is to consider the Chow set Ca of all !
stable curves of degree 6g - 6 in P 5g-6 and take its quotlent by
PGL(5g-6). Proposition 1 and the above remarks show that this gives
a compact Hausdorff space in 1 -1 correspondence with the points of
7;2g, and this can be shown to be a Q-variety in Matsusaka's sense. i
Using results of Schlessinger which imply that ég is nonsingular, i
and the fact that the isotropy groups are finite, one can show that ﬂg
is a V-manifold.
We have a surjective map 7;Zg —_—> 772;, 772~g consists of bi-
regular isomorphism classes of curves with simple singularities,
while Z(* gives us something like birational equivalence classes of
the sa.megcurves. One would expect an analogous pair of compacti-
fication in other cases, e.g. abelian varieties and K3 surfaces. One
should note that the * -compactification comes from a natural quasi-
projective structure which the variety of moduli carries a structure i

closely related to its '"'canonical bundle', and this would seem to be a

general phenomenon. The ~-compactification, on the other hand,
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would seem to come from adding on enough Chow points of singu-
lar varieties to give a compact space (when the quotient is taken--
but excluding enough to give a Hausdorff space) to the Chow variety
dominating the variety of moduli, and this again might be a general
phenomenon.

The point in V; determined by a generalized abelian variety
depends only on the abelian part and ignores the nature of the extension,
which depends on (g-g)g more parameters. However the set of
generalized abelian varieties would not seem to form a nice compacti-
fica.tion‘ of Vg' It seems that generalized abelian varieties have
various compactifications, depending on an additional —;—(g-é")(g-g-l)

parameters. In general if we have a family given by 7(z) =
log =z
2mi

us with the following possibly finite parameters

T(z) + ( )S rg(S) = g - g we have T v —> o0, V 3§+1 leaving
a) Tvu(o)’ v, 4 < g determining the abelian part of the' group
c) Tvu(o)’ 1<v<§g, g+l <u < g determining the (g-g) ex-
tensions by C*
d) Tvu(o)’ §+1 <v<u<g some of which may be infinite,
determining the parameters of compactifications.
There is yet no general theory of such compactifications except in the
case of jacobians. The generalized jacobian variety J of a (stable)
curve with nodes has a canonical compactification which may be de-
scribed as the "linear equivalence classes'' of Weil divisors, of degree
0 on each component, J is not a group but is the union of a set of
quotient groups of J. Let = be the set of nodes of C and COC the
partial normalization of C at OC . Y subsets 0z C C. VOZ we
have J _Z_TO_'E_; J(COZ) = JOZ surjective and say OZ~0r"' if ker(naz) =
ker(w, ,). Then T = U JOZ the union being taken over a set of repre-

sentatives of the equivalence classes. For g = 2, C irreducible

rational with two nodes J = (©* )Z and T is IP1>< 11”1 with the
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following points identified:
(0, a) and (oo, Aa), (a, 0) and (Xa', oo) where \ is
the cross-ratio of the 4 points on ¢ lying over the nodes. Here

A
l_g_g_._ is the finite lim TlZ(
m z—>0

For C = C1 v CZ’ C1 and C2 rational curves joined at

3 points. J again = (€*)  but now the compactification is seem

z) of the period matrix.

2
to be B with 3 coordinate vertices blown up and then identified
with the opposite side of the coordinate triangle. In this case

lim 7 ) = oo.

(z
z—>0 12

For g = 2 then Torelli's theorem holds for stable curves
with nodes with respect to the compactified jacobians, but this breaks
down if g > 3 --e.g. joining an elliptic curve and a curve of génus
2 by one varying point, the resulting curve with nodes varies, while
the (already compact) jacobian is unchanged.

The above suggests types of compactifications for generalized
abelian varieties--in particular a family of compactifications of (C* )g
depending on %g(gd) parameters. In this case it is easy to write
down the -;j-(g~2.)(g=-3) '"'period relation'' which hold for the compactified
generalized jacobian variety of an irreducible rational C with g
nodes. It also would seem that the singular locus of a compactified

generalized abelian variety has i%g(gﬂ) components, while for

Jacobians this number must be < 3g-3 thus impassing topological

restrictions on jacobians.

It should be stressed that in the above we are speaking about
rough empirical indications rather than a complete theory, but it sug-
gests an approach to the difficult problem of finding a '""good' com-

pactification ?{g‘ of Vg’ a problem which has been studied by

Satake, Siegel, PiatetskiY=Sapiro, and more extensively, Igusa.
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Lectures 4 and 5 -- Thomas F. Jambois

Introduction. We will give a proof of Proposition 3'in the preceding lectures.

Explicitly, we wish to construct the family of (generalized) Jacobians associated
to a normal family of curves and show that the family of Jacobians fits together to
form a manifold and is a normal degenerating family of Abelian varieties.

Tfle proof breaks naturally into two parts. In the first part we

analyze the tbpology of the family V of curves and construct a basis of 1-cycles

for the homology of a fibre Ct' The basis contains 2g cycles 61, cees Gg and
S EERRER and is canonical,

: 0 if i f;

e Gi'Yj‘{l. if i=j

In the second part we produce a basis pl(t), RN pg(t) of holomorphic 1-forms on
Ct which vary holomorphically with t. It is important to describe the behavior of
these differentials as t tends to zero. This being done, we construct the family

of Jacobians by using the period matrix

a0 = | oo
b, (0 . b(®)
where p(t) =[ © |and b(t) = (6,(),...,8 (), v,0),..., v ().
p‘g(t) g g

1.1. Lety :V—> A be a proper holomorphic mapping from the connected complex
analytic suface V to the unit disk A in @ such that:

(1) The derivative dyq vanishes only at a finite number of points

Pyre- 0Py all of which lie on C0 = p-I(O).

(2) For each P; -] coordinates (x,y) on a neighborhood Ui of

2
P; such that gp) = x2 (p) -y (p) for all peU and x(pi) =y(p.,) = 0.

1

The two conditions conveniently express the fact that C0 is a



=17 -
curve with nodes.
-1 . .
| 1.2. Each fibre Ct = q (t) is a compact Riemann surface of genus g, except CO

which is connected, consisting of r irreducible components, C .,C . Each C,
r i

E 1, ..
| : ~ ~ ~ T~
has a normalization Ci which is non- singular and of genus g, and C =U C,1 maps
i=l
holomorphically via a mapping A onto C =C_. I p is a double point on C then

0

; + - - ~
A 1(p) contains exactly two points, p and p . If X\ 1(p) C Ci we call p a node

on Ci' If pe ciﬁ Cj, ifj, wecall p a crossing.

1.3, Employing coordinates (x,y) as described in 1.1 near the double point P,
| and choosing ¢ % 0 sufficiently small we define a neighborhood
Ui ={peU.1:| xp) |<e | yp) | <2¢}
isomorphic to a polycylinder. Choosing 8§ > 0 less than both 1 and (e /2)2 insures
that whenever |x] < e and [t| < § then both solutions y to the equation
) .

y = xlt satisfy |y| < 2¢. Let . {t:|t]| <6} and U; e= U:ﬁ"'l(As).

Given any te A_ we have

Ui=Ui ﬂct={p eUizlx'(p)l <ey

2
t 6, € (

p) = x” B+t

- 50 U; is isomorphic to a two sheeted branched covering of the disk {|x|< ¢}

| branched at x = + vt. B

‘Thus, U; is topologically a band, as pictured. A positively oriented circle in the

r 3 2q4i6
x-plane, say x = z¢° and a fixed branch of y determine a loop 6i(t) on Ct,

called the vanishing cycle associated with P, The other choice of branch gives
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-Gi(t). Clearly 6i(t) generates Hl(Uz,Z). As t shrinks to zero we see that the

band U; shrinks to a cone, which is the same as 2 discs meeting at a point.

Finally, we choose 8§ and ¢ small enough to form U; . for each

5, ¢€ if i$j. Thenlet U=U U6 .- The cycles éi(t)
i=1 ’

obviously map to zero under the inclusion homomorphism ig}:H

. i
p, and to insure U5, U

l(ct’ Z)“’Hl(V,Z).
If € is slightly smaller than € , we have ﬁ; _G_C U(lS > While U; — enjoys the same
i :

ropertiés as U . . -
prop O,¢ 3

r
1.4, The map (x,+ Vx ~-t) —~ (x,+x) defines a strong deformation retraction r of
U onto U0 =UMN C0 which maps aUt diffeomorphically onto BUO. The map r

may be extended to a strong deformation retraction of V onto C0 such that

r.=r|C maps Ct - Ut homeomorphically onto C_ ~ U . If U = X-I(U

0 0 then

o

t
)\:E-G—’C -U

0 0 is a homeomorphism,

1.5. The inverse image under the normalization mapping X\ of the cone U0 is a

union of 2d disjoint 2-cells, two cells arising from each double point.
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The maps A, : H.(C - U) - H,(C, - U )

ale 3
5 e

) and (r)), : H _(C —Ut)—*H*(CO-U

0 £k sk t 0

are isomorphisms, and by excision the relative homology group H, (8, C - ﬁ) is
isomorphic to the reduced homology of the union of 2d disjoint 2-spheres. In

particular, H (C,C - U) is trivial, so the following sequence is exact:

~sN A~ ~ o~ ~

0~ HZ(C) - HZ(C’C - U) —~ HI(C - U) —» HI(C) -+ 0,

Accordingly, any basis of Hl (C) may be represented by loops supported by C - T,

- r
and the rank of Hl(a - ﬁ) is 2g~+ 2d -~ r where g = Z g,
i=1

.6, Let B denote the closure of B for any set B. By excision H>'<(Ct’ I—Jt) is

isomorphic to H),< (C - Ut’ aUt) which in turn is mapped isomorphically onto

t

:H, (C, U)-H_(C,, U

is an
sk LA t £ 0’ a

H*(CO- UO’ 3UO) by (rt)*. Accordingly, (rt) 0)

isomorphism. The following diagram is exact along rows and commutative:

0—-H (C)—~H,(C, U)—H (Ut) - Hl(ct) - Hl(ct’ Ut) - HO(Ut)

t
} S Vo v_
2(Cor Ug) =0 = HCu~>H(Cy, Uy~ Hy(Uy)

o
[l
o
ot
p—

0~ H,(C,) ~H

5

It follows immediately that (rt)* : H1 (Ct) - H1 (CO) is surjective with kernel 2/

equal to the image of H

(C,). Hence U is generated by the vanishing cycles.

I(Ut) in H1 ¢

Since HZ(Ct’ Ut) is isomorphic to HZ(E, ﬁ) and since the latter group has

rank r we conclude thatvhas rank d - r + 1.

L7. We wish to show that a basis for Z can be chosen from the vanishing cycles
{6.1} and that this basis may be supplemented by g - k additional cycles to form
the first half of a canaonical homology basis for Ct°

Lemma. Let S be a compact oriented surface and let a »a, be disjoint

1 K

Dog
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regular simple closed curves on S with tubular neighborhoods U , U such

17 Y

that T, is again a tubular neighborhood and T ﬂt—Jj =¢ if ifj. Then the
following are equivalent:

a) The cycles a a, are independent.

TRRREL"
k
b) The set S -U U, is connected.
i=1 !
k
c) The set S -U support a, is connected. !
=l 1 ) o fo if iH .
d) J cycles Bl,...,ﬁk such that ﬁi- Bj =0 and a. ﬁj = if i
k
Proof: Let U =U Ui' Then S - U is a deformation retract of S -U support oy
i=1 i=1

and S - U is a manifold with boundary. Accordingly, H2 (S - U, 0U) is freely

generated by the components of S - U and by excision this group is isomorphic to .
HZ(S,TJ). The equivalence of (a) and (b) now follows from exactness in the following *
sequence:

0— HZ(S) - HZ(S’ U) - HI(U) - Hl(S).
Of course, (b) is trivially equivalent to (c) by the first remark of this paragraph.

Let Fi be a fixed fibre in the bundle -{ji over support a, and let q: and qi- be
!

the endpoints of Fi’ i.e., {q:, q:} = Fiman. The points q-ii- and qi- may be
joined by a path in S - U. Putting this path together with the fibre Fi we get
a loop ﬁi/ and by changing direction if necessary we may suppose a,: Bi/: 1. On

the other hand a.- [3; = 0 when j f= i because then o.j and Bi have disjoint supports.
k .
7 ~ 7~
i = . i . =0 . = .
Finally, we let lfi B.l+ P=i ([32 ﬁ»l)koz! Then (since a, aj ) Bi aj ﬁi aj and
P e s 7 e . . .
-B.=B.-p.+ X -B.)a, B, + X *B.) B.ra_ . If i then the right hand
B, By = BB B BBy B+ T (B By, < g
7

=)
sum is zero and Bi- [33. = (3;- Bj/+ 6;- Bi =0, If i>j the left hand sum is zero and

7 s
61' Bj = ﬂi' Bj - [31- Bj = 0. In all cases then (3.1' (3j = 0 and the lemma is proved.




In the following k=d - r + 1.

¥ Corollary 1: Let 61(1:), ce (t) be an independent set of vanishing cycles. Then

’Aék
§(t) = (61(1:), e ,6k(t)) is a basis (over Z) ofl .

Proof: Certainly 6(t) is a basis over the rationals, Let a . Then a =

):o.iéi (t). Hence, a- Bi =a, must be an integer.

(t)

@orollarz 2: Let 61 Yo s vSk(t) be independent. Then 4g = g-k one-cycles
/ o / -
61(t), cees 6f§(t), and cycles yl(t), e y,.é ), yl(t), cees yk(t) such that

b= (5/, 5, y/, v). is a canonical homology basis for Ct.

Proof: Let (5, 7) be a canonical basis for G represented by simple closed regular

~

curves supported on C - U such that 31’ v ég have disjoint tubular neighbor-
/ -~ ~ ~
hoods. Let (5§ (t), y/(t)) = (rt)>:<1(7\-* 5, >\* vY), and determine the remaining cycles

s
yl(t), ceas yk(t) required for the basis (6 (t), §(t), y/(t), v (t)) by the technique
of the lemma. (We leave it to the reader to verify that 6:(1:), R G/g(t), 61(1:), ces

ék(t) are independent. )
Corollary 3: The cycles 61(t), e 6k(t) are independent if and only if

C0 - {Pl’ . ,pk} is connected.

k . k .
Proof: C. -\UU. is a deformation retract of C. - {pys++.+p,} and C -UUt =
070 0~ 1P K 0770

-~k X
rt(Ct -U Ut).
i=1

/ - / /
1.8, Let A/ = A- {0} be the punctured disc and V = 7 l(A ). Then V' isa C%®
locally trivial fibre bundle over A’ and the fundamental group nl(A/tO) acts

as a group of automorphisms on the homology of the fibre H (Ct ). In particular

0
the positively oriented generator of -n-l(A/, to) determines the Picard-Lefschetz

1

transformation PL : H (C_ ) = H. (C_ ). Since the family C, - U, is trivial
1 to 1 to t t
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for te A) we conclude that PL(§ (ty) = & t,) and PL(Y/(tO)) = v/ (t,) and by

direct examination that PL(5 (to)) =6(.) (if t. e A ). Having constructed the

0 0 ¢

cycles (6/, 8, v, Y) (to) we agree to transport them to every other fibre Ct, t £
by a differentiable isotopy associated with the local triviality of V/. This leads to
a multiple-valued assignment of the cycles vy (t) transverse to the vanishing cycles
§(t). In particular, transporting vy (to) once around the origin in the counter-
clockwise direction leads to PL(y (to)). The transformation PL is well-understqod.

Indeed, for any cycle a ¢ Hl(Ct ) we have:
0

o

d
PL(a) =a + = (6,(to)- o.)6.(t0) (cf. Clemens’
=1t ! lecture below)

By Section 1. 7 there is a 'k X d integral matrix of rank k such that (6*1(t0), ..

6d(t0)) = §A. Letting _é-(to) = (61(t0), e, d (to)) we may express the above equation

d
as follows:

a + 3ty ("Es'(to). a) = a + 8A%A(s: a)

PL(a) = a + 5(t) (tE(to)- a) = a + 6A ‘Al a)

For the vector vy (to) we have PL(y (to)) =y (to) + 6A tA. The matrix M = A tA is

positive definite and symmetric.

2.1. We wish to construct a line bundle L over V whose restriction to each non-
0

singular fibre Ct is the canonical bundle Kt and such that dim H (C,(9-(L/ C)) =g

Then for example, by Grauert’s theorem O = y,6(L) is a free analytic sheaf of

rank g. In choosing g non-vanishing sections pl, ce ,pg of (I we are in fact

0
choosing a basis pl(t), e ,pg(t) of H (Ct,(9‘(Kt)) for each t which varies
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holomorphically with t.

2.2, It suffices to take L =% = canonical bundle of V. For if T* is the holomorphic
cotangent bundle of V, we define:
a :6/*(9/(T*) by a (f) = fdn
B: 0T ~ O30 by Bl) = dureo
Over each open set not containing a double point the sequence
0 —><9ic9’(T*) E@’(?Q -0
is exact and so also is the restriction of the sequence to Ct when t # 0. Thus

' 5(7{|Ct) is isomorphic to @’(Kt) when t # 0.

2.3, Now let D = pf + p]-: + .00+ pz + p:l be the divisor of points on C mapping
b

into double points. Given any vector bundle E over C and section s of E let

E denote the inverse image of E under X\ and let s = so\.

Lemma: Let K denote the canonical bundle of C. Thenﬁz is equivalent to

~

K® LD, i.e. ,@(7'{5 is the sheaf of germs of meromorphic l-forms on C with

D T A

0 o~ ~ ~
polesat D. If p e H (C,@*(K@LD)) then p = w for some w ¢ HO(C,G’(%IC)) if and

: only if res Lp. = -xes p forall i=1,...,d.

P; P

Proof: The section dm determines a sheaf homomorphism BN: &(T ) »0’(7?),

which, however, is not surjective because dr vanishes at points of D. Let s

~ ~ -
be a section of LD whose zero locus is D and define u : & (T ) —><9(7{_®LD 1) by

~ -1 )
b = Bw)®s . Of course, WM is surjective at every point not in D.

If p+ is in D there are a neighborhood U of p = )\(p+) and

2
coordinates (x,y) on U as described in 1l.3. Thus xz -y = and
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dir = 2 (kdx - ydy). Let A+ ={q e U:x( = y(q)} and A_ = {q e U:=x() =~-yl)}
Then (we may suppose) K+ = X-I(A_i_) is a neighborhood of p+'on which ¥ = xo\ is a

coordinate. Furthermore, d;= Zb?(d;- d;) and s = x-e where e is a
—~

nowhere vanishing section of LD on K+. Then dxAdy ® en1 is a nowhere
~3
vanishing section of K@LD'I over A _ and “(}z‘ dx) = [p(% dx /?i] ® et =

(dxAdy) ‘EX@ e-1 which proves u is surjective at p+. u(% dx) = - (dxAdy) © A ® e-1

on X
On the other hand, there is a natural homomorphism )\* :(9’("1\‘*) -
&(ﬁ) whereby )\*d':r = 0, Thus )\*& = k=:=£r (or )x*[(dx) o gl =dx e \) =
d(y ° \)) on K+ and k*& is a nowhere vanishing section of K on K+, so )\*
is surjective. But )\* (a dx + b d;) =0 <=> ula dx + b é’l;'r) = 0 and it follows
that the sheaves @'O'Z@LD-l) and @'(ﬁ) are isomorphic and as a result ﬁ@Lb is

equivalent to X

A section w of §®LD becomes a meromorphic differential upon
dividing by s and it is the residue of w/s of which we speak in the statement of the

lemma. Tracing through the above description of the isomorphism between @'(‘77{) and

6’(I’E®LD) we see that a section p of 7'2: over K_l_UX represented by a(dxAdy) °

corresponds to the differential form -Zla %—{}E on K+ and the form :;— a ix}i on A .

Thus res +p =%a(p+) and res P = -%a(p-). If p =; then (;J: a dxAdy on

P P

A UA where a is a holomorphic function and a = a ° A which implies

a(p+) = a(p-) and res +p = ~-res _:P. Conversely, if the latter condition is

P P
satisfied, there is a holomorphic function on A+UA which lifts to a and therefore

P ='w for some w € HO(C,@'(){IC))-

Theorem: dim HO(C,@'(%| C)) = g.
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0 0 ~ ~
Proof: We have a natural injective map ¢: H (C,O(K IC)) - H (C,@(4)) given by

~ O ~ ~
¢ {0 = w. Let res.p =res P +res P for any pe H (C,&(K)) and resp =
P. P.

i i
(res, Pp,...,res . pP).
1 d d
Define o : (Cd—’@ by c(cl,...,cd) = Zci. The sequence
0 v ¢ .0 ~ S 71 d o
0~H (C,@’(?{_|C)) S>H (C,OH)"S C -C —~0

d
is exact as a result of the lemma, except possibly at © . In fact it is exact at
(Cd as well. Indeed, it is sufficient to show that for each i #1 there exists

0 ~ ~
peH (C,&K)) such that res p = 1 and resp = -l. Here we may assume Py

~

to be a crossing. For if there are no crossings, C is connected and the result is
classical. If there is a crossing we renumber pl, N ,pd so that p1 is 'the

crossing, say, between C. and Cz. There are two cases to consider.

1

Case I. If pj #pl ‘and pj is a crossing, say, between Cj and Cj/ , choose a

shortest possible chain C, ,...,C., suchthat C. is either C, or C_, and C,
i i i 1 2 L

is either Cj or Cj/ and C, MG, # ¢. We suppose C1 =C, and Gj =C
l -

i

Yo+l 1 k

Then neither C2 nor Cj/ appear in the chain. Let Ci = Cl. Each intersection
0

C. MC, contains a double point p. and we.let p, = \ (. )MC, and
t i Yy . 'y g,

p. =X\ (pi YAYC.. . On 51 choose a meromorphic differential ﬁi with a
£+1 £ £

pole at p, * and residue +1 there and a pole at p,  with residue -1 there.
P, P P,

-1 £
This is to be done for £ =2,...,k-1. Let p=p  on G, £=2,...,k-1 and
L £
let p =0 elsewhere. Then res_p =17 -res_-p and res p =0 when k #1
P, P, Py

and k # j.

A
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Case II. The point pj is a node on Cj' Again choose a minimal chain Ci , ..., C,

1 %

connecting either C1 or C2 to Cj where again we assume Cl =C, and Cj = Ci .

"1 k
Of course Ci f C2 so we may let C.1 = Cz. Now let ;:'i be a meromorphic
j - 0 £
differential form on C., having a pole at p. * with residue 1 and a pole at p.
. 2-1 .
with residue -1 for each £=1,...,k-1, On CJ_ = C,1 let pi have a pole at
k k

+ + -
P. with residue +1 and a pole at ejther Pj or pj with residue -~1. Let

p = Pi on Ei £=1,...,k and let p = 0 elsewhere. Then, reslp =1 and
2 £

resjp = -1 as required.
By the Riemann-Roch theorem applied to each c?i we have

dim HO(E,B’(%)) = g- r + 2d and by the exact sequence dim HO(C,@'(%IC)) :E -r +2
-d ¢
=g = g~+ ki

2.4. Any holomorphic section of K trivially satisfies the residue condition of the

lemma and hence is the pull back of a section of 7’(, over C. Thus 4 Pl’, R ,pg/e
HO(C,B'(C |H)) such that the '51/, cee ng/ form a normalized basis of holomorphic

differentials on C relative to/the canonical homology basis ('6\', '\7) selected in

~7 /
Corollary 2, §1.7. If P/ then ip = Ig~. In addition to p there are k

)

independent sections pl, .. .pk of }{ over C and we may suppose that these are
P f ~
chosen so that if p 7! then J p =0.
Py &
Given k double points Pyse- 1Py We call the set of normalized

0
sections {pl, - ,pk}CH (C,O(H |C) associated with p,,...,p, if
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Lemma: Let k=d ~r +1. Then 4k double points pl, ce s which have an

Py
associated set of differentials Pl, e pk.
Proof: Let 72 ={w: w is a normalized section of /| C}. Then 7L is k-dimensional.

If we 7L and # 0 then ®» must have a pole which we suppose to be p1+. Other-

~

wise ® would be holomorphic with zero periods (relative to &) and hence @=0

by standard Riemann surface theory. Thus res . is a non-trivial linear

P
functional on 7L and dim kernel res L k-1, 1 Let res L9 T 1 and choose
P, P
v, & kernel res 4 Adjusting w) by a multiple of w, and continuing we arrive at
, Py
-~ a set OTERERICA associated to Ppre 1Py
Of course, if Py:-..sPy 2re double points with an associated set of
l-forms Wyam s e WO then C - ‘{pl, e ,pk} is connected for otherwise there would
s
be a component & of C - {pl, ce ,pk} and a point P, such that if C is the
~ o ~ ~
closure of C then p,+e C/but p. £C. Then I res w, =1 which is imposs~
i i pec” i
+ 7/ - -
ible (if P, ¢ C and £ =1,...,k then p, € "~ because C is a connected
component).
®1
2.5. Let p =4 where {Pl, - pk} is associated with {pl, ce ,pk}. Then the
p
k

cycles 61(t), ...56 (t) are independent on Ct' As suggested in 1.7 we choose

it

70y @) = (6 (0, 620, Y{() ..., ¥Z0) sothat (), (670, v/ @) = X, E)

0

and cycles yl(t), c e yk(t) such that b(t) = (6/(t), 5(t), y/(t), v (t)) is a canonical
horgelogy basis for @‘1:' Finally choose sections Wps e wg in HO(A- n.*@’(j{))
/
L 50 that the vector w = :.1 restricts to the vector p) at t=0. Let
’ W P

g




p = | p = El where now p/ and p are defined on all of A, Hereafter
w w
g

’
we denote by P, the section of H (Ct’Kt) gotten by restricting p to Ct' Then

the functions /pt s f pt f pt , and jpt are all holomorphic in A,
b g 7 (t) 5 (t)

/

a.ndfpg =1~ /po =0, fpo =0, and fpo = Ik. The last equation merely expresses
/ .

d 5 (0) 5(0)

the fact that the matrix of residues of the differentials 5')‘0 at the points
+ . 1s the identity.

/
Ppo-- ,p; on C/ The matrix B1 = po is symmetric with positive definite

vy (0)
/
0

= fF”VO/ satisfies the Riemann
/ T
85 y7)(0) (5, v)

imaginary part because the matrix of periodsf p

bilinear relations.

The full period matrix §ft) = w, is a multiple valued hgolomorphic

/
b (t) valued on A . We let

/
function on A because fpt is multiple~-
Q) = (A{t),B(t)) where Y (t) A and B are gX g matrices. The above remarks
contain the fact that Aft) = f w, is holomorphic on the entire disk A . Further-
. (67 8) (t) : . .
more, from the Riemann  relations on Ct we know that A(t) is invertible

on A/ . However, A(0) = Ig so A is invertible for all t. We choose a new set of

-1
differentials equal to A "w and denote the new vector by the old letter w. Since

A(0) =1 the vector w, was left unchanged. 'Now the full period matrix

0
Qft) = fwt = (I, B(t)).

b (t) ¢
Bl(t) Bz(t)
It is trivial to check that fwt is still holomorphic. Explicity, B{(t) =

and B1 and BZ are holomorphic functions while B3(t) = fpt is multiple valued.
vy (t)

When continued once around the origin in the positive direction B3 (t) returns to
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[ fon oo

PL(y (t)) y(t) + 8M vy (t)
Thus the matrix Iuriction B3 (t) - ?1117 log t M. 1is a single valued function
Bt) on &7,
Lemma: (Mayer) B/ extends to a holomorphic function on A,

| Proof: Regardless of the branch chosen for B_(t) = ('Z,(t)) the matrix H_(t) =
1}

3 3

‘ Im(B3(t)) is positive definite and symmetric because H(t) = ImB(t) is positive
. ‘ 2miT5j
definite and symmetric. If f{jj is a diagonal element of B3 (t)} then e

24

7 -
t is bounded on A  and single valued. So e JJ extends to a holomorphic

function h{t) on A. Then.h(t) = tmg(t) where g(0) £0 so /ij(t) - %log t

e
| is holomorphic. The integer m being uniquely determined by the condition that
t.. - —m.—log t be single-valued, we have m =m.., where M = {(m..), and we have
| Jj 2l i ij
v s
| shown the diagonal elements of B are holomorphic on A.

rd

Howewver, the same argument applied to the function -2.’3;j +/gi,1 + /ij

': (which has positive imaginary part) shows that /L;j - an ij log t is holomorphic,
e

t which proves the lemma.
E Summary: In the normalized period matrix 'Q = (I, B) all the entries of B are

holomorphic in A save possibly the lower right hand kX k matrix *B3. Then

i / 4 ‘
; B3 =B + % log t "'where B is holomorphic and M is positive definite
E TT

and symmetric. The matrix H = ImB is single valued on g ' 1
, -1 1 H1 (0) 0
Lemma: H = -extemds continuously to the origin and H "(0) = 0 0

] Proof: Let T = (H3 - H2 HIl tHZ)-l (since H is positive definite T is defined).
] -1 S R I -1 Lt
:' Then: H ~ = Hl + H1 H2 T I—I2 H1 -H1 H2 T
-1
T H2 H1 T

_ However, H3 = Im’?Bs) = ImB” - -Iz\ﬁ-n_ log [t]; so lim T = 0 and the lenmma follows.
' t=>0

o wrT R

- —— -




B,(0) 0

2.6, Let B(0) = B_ (0) 0
18 »y 2

~  on T=AXC2 as follows:

and $£0) = (I, B(0)) and define an equivalence relationi

t,%x) ~@t7x7) <=>t=t" and
x -x” = t) (Irln) =n + B{t)m where
n, me Z8 are integral column vectors.
The above relation is well-defined (i.e., does not depend on the choice of branch
chosen for €t)). Let J be the quotient space of 7 under ~ and let pr:’j’—> J
be the projection.
Theorem: a) The relation ~ is closed.
b) The map pr is a local homeomorphism
c) If Ul and U2 are open sets mapped homeomorphically onto U by
pr, = pr |U1 and pr, = pr | UZ respectively then pr{lo PI, is an
analytic isomorphism.
d) J is a complex manifold with a complex structure such that pr is

an analytic map.

Proof: We may agree to multiply £(0) only by vectors (nm) such that the last k

components of m are zero without alterilag the equivalence relation. Then if

x = Qft) C;) =n+ B{t)m, we have m = Hﬁl(t)Im(x) even when t = 0.

a) Let (ti’xi) be a‘sequence of periods in T tending to the limit (t,x). For each
i we have xi = n, + B(ti)mi and if t f- 0 we agree to choose the branches B(ti)

so they approach B(t) in the limit. The sequence of integers m, = H'-l(ti)Im(xi)
being convergent is eventually constant so m, = m if i is sufficiently large.
Then n, =x, - B(ti)mi' If tf£ O the right hand side is convergent so n, is
eventually constant. If t =0 then m =lim H-l(ti)Im(xi) is zero in the last k

t>0

components so lim B(t,)m, = lim B(,)m exists and n is again eventually

t=0 T t.=0
1 1




3]~
constant. In either case x =n + B(t)m for some pair of integral vectors n,m and
(t,x) is a period. This proves part a).

b) Given (t,x) € J~ choose neighborhoods U, and U2 of t and x respectively

1

1

such that t/e U, and x,x7 e UZ => ||x/- x//l l <l2- and ||A(t/)Im(x/- x/)H <5

1 2

Then pr is injective on U = U1>< UZ' For, given (t,/x/) and (t,/x/) in U and

pr(t,/x/) = pr(t,/x//) then x” - x7 =n + B(t/)m = ||m]| = HA(t/)Im(x/ - x//)l | < 13
>m=0 => Ilnll = Hx/- x//ll <1— => n = 0, Furthermore, pr is an open map

2

because:

pr {pr(U)) = U= {t,x + n+ B{t)m) : {t,x) € Un,m ¢ Zg}
If (t,/x/) € U then either t/;é 0 in which case we choose an analytic branch B(t)
/ ’ . . . .
for t near t or t =0 in which case we choose m to be zero in its last k
. e 7 / / / )
components. In either case if x =n+ B(t"')m + x then x” -n - Bt )m is

continuous and it follows that U is open. Thus pr is a local homeomorphism

7

proving (b).

Finally, if pr_:U. = U and pr

'Y : U2 = U are homeomorphisms let

2

(t,x) € U, and choose a branch of B(t) at t if t# 0. Then ‘pr;lf’s pr,(t,x) =

L N

t,x+n+ Bthm). If t /é 0 then B(t) is analytic and prg1 o PTy is continuous

s0 m,n are constant near t so PT, o pr1 is analytic near {t,x). If t =0
then we can choose m with zero as its last components so n + B(t)m is
continuous and both m and n must be constant on a neighborhood of (t, x).
Again the composition pr;1 ° PT; is analytic and this; proves (c). Statement
(d) follows trivially from (a), (b), and (c).

We have thus constructed explicitly a family J of Jacobian
varieties over the disk such that Jt = n--l(t) is the ordinary Jacobian variety of

Ct when t £ 0 and JO is the generalized Jacobian of CO.
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There is clearly a projection of .TO onto J(C) with kernel (C )

so JO is an extension of T by a complex Lie group.

3.0. The above results could also be obtained using the sheaf Tr*Hl (V,@/) (i.e. the

sheaf on A whose sections over U are just the group Hl(n-l(U),@')). It is necessary
1
to show that dim H (C,@) =g in order to apply Grauert’s theorem. This may be

accomplished by referring to the exact sequence:

Oe@/—-» )\-=,<§,_>Q"’o

over C where & is the structure sheaf on C and Q is the quotient sheaf. The -
¢ )
sheaf Q is easily seen to be a skyscraper sheaf supported by the double points

Ppse- s Py Hence the sequence:

0~ u’c,e) ~u’c,ne~ c’- u (¢,0) - H (€, n,&) ~ 0
is exact. The desired result is obtained upon noticing that H* (C, 1r*5') is
isomorphic to H* (E,é?), a fact which follows from the spectral sequence ;f the
fibration A : C ~ C.
Thus the sheaf Tr*Hl(V,@) is isomorphic to the sheaf of germs of
a complex vector bundle E of rank g. Each fibre Et is canonically isomorphié
to H1 (Ct,ﬁ') and in each fibre is contained a lattice Lt = Hl(Ct, Z). Furthermore, 1
the union \UL is a closed complex submanifold of E and it follows that the j
te A

family of groups Et/Lt is a complex manifold. The group Hl(V,@')/Hl(V, Z)

is just the group of global sections of the family J = E/L.
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Lectures 6-10 ~- H. Clemens.

Let W be a non-singular (open) complex manifold and
p:W-—-D
a proper analytic morphism of W onto the unit disc. Put D’ =D - {0} and
suppose that p is of maximal rank on p-l(D’). Suppose further that:
p O = AQU... UAM)
where the A(j) are compact non-singular submanifolds of W meeting trans-
versely. As z approaches 0, each component A(j) of pal(O) is acquired with
a certain multiplicity, which we shall call m(j). Let
AJ)=M{AG):je T}.

Finally set Sz = p-’l(z) for ze D. For ze D7, Sz is a non-singular compact

complex manifold.

If W is any (possibly open) complex manifold and Y is a compact

submanifold of W, let V be an open set in W.

Definition 1: u : V= V(Y will be called a regular normal bundle over VOY
if:
i) u is a Cw-projection everywhere of maximal rank;
ii) for each P e V(\Y, there exists a neighborhood U of P in Y and a
c® -map:
w:p N U)X U~ CF
such that for P“ e U:
a) w( ,P’) is analytic and of maximal rank;

b) w P’ ={Q: w,P*) = 0}.
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Now let M be a closed subset of Y. A mapping u4” : N—- M will

be called a regular normal bundle over M if there exists an open neighborhood

V of M in W ‘and a regular normal bundle
M:V—=>VNY

such that N=,u-1(M) and u” =,u|N.

Lemma 2: Let Y and W be as above. Let
u’ :N-M
be a regular normal bundle over the closed set M in Y. Then u ‘

extends to a regular normal bundle over all of Y.

Proof: Let U0 be an open neighborhood of M in Y such that M’ extends to a
regular normal bundle uo over UO' Let {U} be a finite cover of Y
such that for each Ue {U}:
either i) UC U, and there exists wy : ual(U) X U- ©" which gives
M 0 as in Definition 1;

or ii) UCY - M and there exists a w which gives a regular normal

U

bundle over U as in Definition 1.

Let p_, bea Cw-partition of unity subordinate to {U}. For Pe UMNU"’,

U

put
9wy ,P)lU)

S T G PR

the Jacobian matrix which is non-degenerate by Definition 1, ii).

Let VU be a sufficiently small neighborhood of U in W and define:

r
yU.VUXU ()
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by Yy Q,P) =

2. ®) AU, USP) w, . (Q,P) : UZC {U}}.

Now Yy (Q, P) defines a regular normal bundle over U since the Jacobian

,aYU( ,P)IU\
\ /
awU( ,P)IUP

= identity matrix.

Also yU( ,P) = A(U,U%;P) YU’( ,P) over Pe U(\U’ so that Yy and
Vi determine the same regular normal bundle over U(1U”, This then

gives the lemma.

We shall use Lemma 2 to construct inductively a special system of
- regular normal bundles around the various A(J).
Now a regular normal bundle

M:V-Y

gives at each point Qe V a linear transformation of complex cotangent spaces:

%

I T (vV,Q) = T (@), ).

% % »
The kernel of I is precisely the image of T (Y, u(Q)) under the map u .

Hence we have an exact sequence of complex vector spaces:
s s

b+d

£

0=~ T (¥,P)% T (v, > T wl®),Q) ~ o

where u(Q) = P.
Put Nu) = T'r(V, ) / ,u'l‘ T"‘(Y, ). Then N(u) isa C Oo-cornplex

vector bundle on V and N(u)| 1 is a complex analytic vector bundle which is

s (P)

canonically identified with T (u _l(P), ). Thus we can define

H

d: ASN@) ~ ASTINGu)

A

and can speak of "elosed" and '"exact" sections of ASN(,u).

ALEE AN AT
AR

NI

iy
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Definition 3: Let w be a section of ASN([J) over a set Ug_V. Then w will be
called regular if for any P with Umu-l(P) £ o

i) ol is holomorphic;

uNu @)

ii) there exists a neighborhood UP of P in Y and a closed C°-

section wg of AST'P(V, ) on u-l(UP)ﬂU such that:

)

I (w

) = w| .
0 -1
u (UP)ﬁU.

(Thus a regular section of AN(u) is always closed.)

We now proceed to apply the above to the case Y = A(J), JC {1,...,1]

Lemma 4: Shrinking D around 0 (and hence W around SO) as necessary, there
exists a system of regular normal bundles:
pJ): VQI) =~ A(J)
of A(J) in W and a collection of regular sections:
w(j,J) of N(J) over (V({J) - A(J))
where N(J) = N(u(J)) and je J such that:
i) W=U{V({ :je T}
ii) V@NMNVEK)=VIUK);
iii) w(,J) | has logarithmic pole along A(j);

eZ'rrif w(j, J)

iv)  (x, = ). 5 gives holomorphic coordinates on u (J)-l(P)

je
for P e A(J) such that, for KCJ, u(K) is given on ,u(J)-l(P)
by setting

x, =0 je K

and leaving the remaining Xj constant;

co

v) for K(J, w(j,K) and w(j,J) correspond under the induced map




Picture:

Proof:
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N(J) = N(K);

vi) Z{m() w(§,J):je I} = I/ 2¢i) d log =.

We proceed by induction. Assume we have a system of regular normal
bundles:
pu(J) : V({IJ)—= A(J)
on each J with |J| > s and regular sections w(j,J) over
V() - AG)
such that ii) through vi) are satisfied. It will suffice to construct u (J)
and w(j,J) for some fixed J with |J| =s. Let V =U{V(K) : JC K}.

#
2 i, K
e mif ©§, K) and then by the induction assumption one can define

Put x. =
J
a regular normal bundle:
M) :V-=AJNV
by putting xj =0 for je J and keeping the remaining Xj constant on
u (K)-l(P). By v), u(J) is well-defined. By Lemma 2, u(J) can be

extended to a regular normal bundle:

p(T) : V(T) = A(J).
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D

(It may be necessary to shrink V(K) with K Z J slightly at this point.)

C

Next let M be a compact neighborhood of U {A(K) : J Z K} in
A(J)MNV. Shrinking V(J) around A(J) if necessary, one can find a finite
cover {U} of A(J) - M and analytic coordinates:

Xj,U , je J
such-that p: W— D is given on u(J)-l(U) by
m(j) . _
W{Xj,U 1je J} ==,

Complete {U} to a cover of A(J) by adding the set

U0 =AMV,

Let p., be a Coo-pa.rtition of unity subordinate to this cover and define

U
w(,J) = pUO w() + 1/ Zni)Z{pU d log IS Ue {U}} where w(j) is the
section of N(J) induced by w(j, K) for K? J by the maps

N(EK) - N(J).
Shrinking V(J) and V(K) for K_DJ as necessary, one achieves the
induction step and hence the lemma.
eZTrif w(,J)

Note that the Xj = give holomorphic local coordinates

on u(J) (P) such that
z = cn-{xjm(j) tje J}.
Also we can assume, by further shrinking D if necessary, that {xj} gives an
isomorphism
/.z(J)-l(P) - w{lle < constant Rj :je J},

that is, u (J)-l(P) with coordinates Xj is a polydisc. Having done this we will

write:
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W) =U{V() : |T] >q}
V@) =V@Ea) - Ww(JI] +1) ;5 A°@) =AQ) - W(T| +1)
uoJ) Vo) —> AC(QJ).
and N7(J) > V~(J).
Thus there is a well-defined function
T() : V(§) = [0,1]

given by TG)‘(Q) = lXj Q)| /Rj. T(j) is well-defined since Xj is determined on
u (J)—l(P) up to multiplicative constant. We can extend 7T(j) to all of W by putting
) =1 on W - V(j). We can assume that the V(J) have been so defined that 7(j)
is ¢© on W - (AGYJ OV (§)) and continuous on all W,

Let Vy = [0, l]h - {@,...,1)}. Then we have a map given by the
T():

T: W —>Vlh.

We shall now construct an appropriate retraction and partition of unity on vh
which will '"lift back' to give a '""Retraction Theorem' and a '""Picard-Lefschetz

Theorem'' on

p: W-— D,

In VZ’ let N8 = {(rl,rz) : rllm(‘])r;n(k) =¢}.
N
0
N
€ \
I d

Consider the vector field on (O, l)2 given by

{(rl (t) r,ﬂ (t)

LT, ) : 0< t< 1}



for (rl, rz) € Ns , L(t) = log‘5 t. Use a partition of unity to average this vector

field with the horizontal and vertical vector fields given by:

{(rf(t),rz) : 0<t< 1}, rin(j) =g

{(rl, rg(t)) : 0<t<l}, r;n(k)= £

in order to achieve a C®-vector field 0., on VZ:

Use T, = const. near r

% 1/6; Ty = const. near T@

>

such that:

i) ij is transverse to Ns , for all €7 ;

ii) for the integral curves (rl(t), rz(t)) of ojk :

(rl(t), rz(t)) € Nef(t) = Nt.

Proceeding inductively average on v3:

{(riZ (t), r'g(t), rg(t)) :0<t<1}

near rin(j) - rl;(k) - rll;’n(l)’

{ij (rl,rz), Ty = constant}

near r, =1,

{le (rz, r3) s Ty = constant}

near rl =1,

{o., (r,,r,), r, = constant}
jg 1’73 2

near r, =1

2

to get ij! with analogous properties to i) and ii) above.
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Proceeding in this manner we inductively construct a C ~-vector

field
with the following list of properties:

Property 5a: o is normalto N = {(r.,...,r ):wrl_.n(]) =¢} for all € ¢ (0,1).
Troperty e 1 h j

Denote C(J) = {(rl,...,rh) : r?o)irin(k) for all je J, 1< k< h};
2@ = {lrppennsry) T = 0 for all je J}.

: Property 5b: The integral curves of o give a strong deformation retraction:
: X , 1| —
R :V, x[0,1] =¥
such that:

i f < < :
i) for (rj)e Nel, 0_82_€1<1
ii) R( ,0) maps a neighborhdod of C(J) in (O,l)h onto Z(J)

fér any Jg{l,...,h}.

| By the last property the sets

[interior R( , 0)-12 Gn]
cover Ns for any ¢ # 0. Let Pj be a C oo-partition of unity subordinate to this
cover. Then the pj can be extended uniquely to a partition of unity Pj on Vh

such that:

Property 6: Each PJ. is constant along each integral curve of o.




2

On u (J)_I(P) we have local coordinates x. : eZn-iJ'w(]', J). We can now |
define
Y [0, XR X V-(T) > V()
by b, 05 @) = @, R@ ), 700 MO,

By construction ¢ is independent of the choice of multiplicative constant in the
definition of xj. Also the ¢¥'s f{it together to give a map (which is c® by Definition
3 and Lemma 4):

T: [0,]] X R X W—> W,

Theorem 7: The map ¥ has the following properties:

i) (r, 9, )lS = identity map;

0
ii) \Il(rz, 92, ) o \If(rl, 91, ) = \If(rlrz, 61 + 62, );
iii) wu’@) o ¥=pu"(J) for JC{L,...,h};
iv) p e ¥(r,0, )=re2w16

Proof: i) and ii) follow from Property 5b, i), Property 6 and the definition of W

iii) is immediate and iv) follows from Property 5b, i) and the fact that
-1
p is given on u(J) “(P) by:

c-n-{x;n(j) :je J}.
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Picture: Case of u’(J) (@) for J ={1,2} and m(l) = m(2) = :

x. =0
2
i g
<«
x, =0
1
=~
XIXZ =1 XIXZ =g 3
T
\ _0
\\\a 5]
NY
9
06
xlx2 = ie
or .

where the tops of the various tubes correspond by fixing the value of x and the

bottoms by fixing the value of X,

>

Theorem 7 gives a retraction of W onto S, which coyers the

0
standard retraction of D onto 0. This retraction also " commutes' with the
family of diffeomorphisms:
rl,6, ):S - S ,
z z
induced by the fundamental group of D“. We now wish to partially characterize
the isomorphisms:

als s
b

™ - 9l, m, ) : H"(sz;cc) - H §,;C)
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for ze D’, m=1l.c.m. {m@):j=1L,...,h}.
First we can sum the bundles:
0+ T"(A@),P)~ T (V(),Q)~ N@) = 0
with their complex conjugates to get an exact sequence:

o, sl
b

3 I,,.
0~ L@A@),P) % LvVE)LQ > MJ)y~ 0
where L denotes the complex vector space gotten by tensoring the real cotangent
space with €. Then ¥(,6, ) induces:
0 . p
B :M7(J)—~> M"(J).
But {w(,J), ;G’J)}jeJ gives a frame for M’(J) over (V°(J) - SO) so that Be is

given there by the formulas:

B% (0, 7)) = G, 3) + (0/ mG) , ;

@) 8% @G, 1)

w(i,J) + (8/ m()) P ;
0
B (dp.) =dp..
J J
(These formulas follow directly from the definitions of Pj and ¥.) Put:
o, 3) = U/ 2) G, I) + (. D).

Now from Lemma 4 vi) we have:
(9) Z{m@) k oG, I):je I} =0

where kZ : Sz -~ W is the inclusion map. Let JO = J - {one fixed element of J}.
Let UgA’(J) and let §(K,J,U) be the algebra of closed sections a of
AL(V’(J)mSZ, ) over U such that:

o) =k, 0 (K, )
where K(C JO and o(K,J) = A{c(j,T) : je K}. Let B(J,U) = algebra of sections of

0

(AL (@), P) 8 H (" (@) @)INS, 5 ©))

PeU
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4

Then any element a¢ B(J,U) can be considered as a form on u ’(J)-l(U)m SZ by
pulling «| P back to u ’(J)"l(P)m Sz and then evaluating the coefficient at the

. -1
appropriate element: of Ho(u “(J) (P)mS‘Z ; ©€). We shall denote this form on

U ’(J)-l(U) again by e¢ and the set of such forms again by B(J, U).

Definition 10: A differential form ¢ on Sz will be said to be in normal form if
for each J_C_ {1,...,h} and for each P¢ A“(J), there is an open
neighBorhood U of P in A“(J) such that

d’ l Szﬂ LJ."(J)"’]'(_U).‘
is given by:
where a@pce B(J,U) and TRE QEK, T, U).
We sHall now utilize a conjecture which can be avoided (see Trans.
A.M.S., Vol. 136, pp. 101-103) but which is quite reasonable atid serves to

illuminate the computations which follow:

Conjecture 11: Evefy deRham cohomology class on SZ has a representadtive in

normal form.

Now if ¢ is in normal form, it follows immediately from the
formulas (8) that:

(T™ - identity)q(d)l” coytoyns ) ®
Z

& if q> |J| ‘ (12)

;) i a=|3] -1,

q! @i/ w{mG) s je I} (e ap
0 0
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where pJ = A{dpj K- JO}. Then since the pJ | are restrictions of
0

-1
0 w2 (J) (U)mSz

closed forms p on all of SZ: If ¢ is closed then the a_. € B(J,U) must be

J

J0 0

closed and must piece together to give a deRham class in Ha< (A () ; Ho(u ’(J)-l(P)ﬂ
S_ C)). If we let {yk} be a basis for this last cohomology group and {ylz} be the

b3
dual basis in H (A“(J), 0A"(J); Ho(fibre)), then

Far@Yens Yy =0
For Pe A”(J), put:
-1 . j .
@) ={2c 6,Nu @7 @) 1@ = 0@ %5, ke ).

Then T(®P) has m(J) components Tl(P), .o Tm(J)(P) corresponding to the m(J)
components of (u ’(J)-l(P)ﬂSZ), where:

m(J) =g.c.d. {m():je J}.

Also:
ka(P) “JO = 1/ m(J)) IT(P) nJO
- m(jo)/mm [£6)@Q) = const. for je JO"JO
=t+m( )/ m() 13)
where {jo} =J -7,
If we put T(J) =\U{T(®): Pe A’(J)}, then VTU_)HSZ is a fibre
space over T(J) with fibre a (|J| - l)-dimensional cell and T(J) is itself a fibre

space over an m(J)-sheeted covering space C(J) of A“(J) with fibre a (|J| - 1)~
dimensional torus. Also:
Ed ES 0 =1
HC@;C)=~H (A°(J); H (u”(J) (P)ﬂsz ; ©)).

Thus in homology we have Gysin maps for q = |J| - 1:
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G: HP (A~ (J); Ho(fibre)) —>Hp+q(Sz)
%

G: HP(A (J), dA“(J); H (fibre)) — Hp+q(Sz’ W (g+2))

gotten by putting G(y) = locus of T(P) as P traces out y. Denote by I‘P(J) a
0

basis for HP(A’(J), 0A”(J); H (fibre)). For vy ¢ I‘p(J) let vy’ denote the dual

element in HP,(A’(J); Ho(fibre)).

For each T, (P), put A (P) = some component of

k k
~1
{Qe (U (T) (P)mSz) : Arg xj Q) = Arg Xk(Q), ¥i, ke J}
which intersects Tk(P). (xJ. = ez'“'if“’(j’ J).)
Picture:
Y |
2 W@ e Ns,
Tl(P) TZ(P) where m(J) > 1.
- AI(P) AZ(P)
Then ) Ak(P)pJo = + volume ({rl, ces rlJol) P2 0 and Zrk <1}
=+ U/ q!) 14)
where q = |J| -1.
From this it follows that for the closed form a; on A’(J) appearing in formula (12):
0

=t @)t mGy)) § (g e A TTJOAYIQAPJ ) Yy
z 0

0
. 0
where q = |J| -1.

Hence by (12):
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(Tm - identity)q(d)) = (15)

. 2 gq . ,
i (q.) m ElJl - q+1 Zk(m(J)/TTJm(J))(fszd) A Yk APJO) 'Yk A pJo‘

on Sz - Wi(g+2).

It is perhaps more enlightening to use Poincaré duality and give (15) a

an intersection formula in homology. (14) gives that q! PJ is dual to TP. Then th
0

Poincaré dual of (15) is:

Theorem 16: The mapping

(T _ - identity)? : H , 6, G ~H (5, W+ C) isgiven by
(T_- identity)3(q) =
(D m E{ @)/ mm ) (e G(YNG() : [I] =g+, y e T}

(where r = (2p+q)(q-1)/2 by direct calculation).

Corollary 17 (A. Landman): If n =dim Sz’ T =H,1, )

. S . - .
c H}:d( z: C) H::: (SZ, c)

sk

satisfies the polynomial equation:

Let n = (Tm - identity) : H, (SZ) -~ H, (SZ).

Definition 18: a ¢ H, (SZ) is g~invariant if:

nq(a.) =0,

Lemma l9: For ae H (S) or ae H (S ), a is (g+l)-invariant.
A — q z 2n-q z

Proof: For ¢ e Hq(SZ), locally ¢ = Zak A T, where |K]| < q. Hence just as in

K
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T

formula (12) (Tm - identity)q+1¢ = 0. Now use Poincaré duality and Lefschetz

- duality.

x
%
3
k

Lemma 20;: Let a be (g+l)-invariant. Then « is g-invariant if and only if
aB =0

for all Be nq(H* (SZ)).

(a)

Proof: This is a purely formal result. Using that Tj &)-T. (a) = Tj+£ (a)- T

k k+4

for all j,k, and {, one calculates that:
+1 +1
11 @) + (DY amt@) =q 01 ()-p.

The lemma then follows.

The above lemma gives a weak characterization of g-invariance.

A stronger characterization would follow if we had a more explicit topological

" characterization of 'qq(H* (SZ)).
' Definition 21: a e H* (Sz) is q-vanishing if :
i) @ liesin W(qg+l);
(See Theorem 7 i) and ii).)
' Theorem 22: If q-p = 0 for every q-vanishing cycle B, then a is g-invariant.

f Proof: By Theorem 7 we have a commutative diagram:

ii) @ is in the kernel of the homology map induced by the retraction:

LN 24 - 1 RN T\ Age e S - N A S S S s B




“50=

T
H,(S,) > H,(5 )

/ (23)

Now nq(H* (SZ)) lies in W(q+l) by Theorem 16. Also nq(H* (SZ)) lies in

H, (S o)

the kernel of the retraction map by diagram (23). The lemma now follows
from Lemma 20.
The converse to Theorem 22 has been conjectured by Griffiths for q =1. This

seems to be a difficult problem. At present ohe has the converse only in the case

q=n: .

Theorem 24: If ae Hn(Sz) is n-invariant, then - = 0 for every n-vanishing
cycle B.

Proof: nn(a) = (_1)n(n-1)/ 2

m” Z{m@)/mm() e G(v) Giy): 17| =n+l, v e [O)}
! If nn(a) = 0 then a-nn(a) = 0 hence (a-G(\/))2 =0 for each y. But the

G(y) generate the n-vanishing cycles of dimension n since each component

of W(n+l)f\SZ has the homotopy type of an n-torus.
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SEMINAR ON DEGENERATION OF ALGEBRAIC VARIETIES

Lectures 11 -15: Nilpotent connections and the Monodromy Theorem Applications

_o_f a Result 9_f Turrittin-- N. M. Katz.

Introduction.

0.0 Let §/(=3 be a projective non-singular connected curve, and S =

S - {yl’ .. ’y)r} a Zariski-open subset of S. Suppose that

0.0.0 m:X—+S

is a proper and smooth morphism. From the Qoo viewpoint, r is a locally trivial
fibre space, so that, for s € S wvariable and iZO a fixed integer, the g-vector
spaces ''complex cohomology of the fibre'"

0.0.1 ' Hi(Xs,g})

1
form a local system on sina

This local system may be constructed in a purely algebraic manner,

i

by using the algebraic de Rham cohomology sheaves HDR

(X/s). For each i>0,
i

HDR(X/S) is a locally free coherent algebraic sheaf on S, whose '""fibre' at each

point s € S is the C-vector space Hl(Xs,Q), and has an integrable connection V,

the "Gauss~Manin connection''. From this data, the local system of H' (XS, C) may

be recovered as the sheaf of germs of horizontal sections of the associated coherent

analytic sheaf on Sanal
i anal
0.0.2 HDR (X/s) 86585
0.1 Now in down-to-earth terms, I_-I;)R (X/S) is an algebraic differential

M™2043
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equation on S (classically called the Picard-Fuchs equations), and the local system

of Hl(Xs, C) is the local system of germs of solutions of that equation.
0.2 The Griffiths-Landman-Grothendieck " Local Monodromy Theorem"
asserts that if we restrict the local system of the H (Xs, C) to a small punctured

B3 —_
disc D around one of the "missing' points y € S -5, then picking a base point

e
b

5g ¢ D , the automorphism T of Hl(XS , C) induced by the canonical generator
o =

of -n-l(D'F, sO) (the generator being '"turning once around 5/ counterclockwise')

has a very special Jordan decomposition:

0.2.0 T=D.-U=U D

where

0.2.1 D is semisimple of finite order (i.e., its eigenvalues are roots of
unity)

and

0.2.2 IZJ is unipotent, and (1l -U)H1 = 0 (i.e., the local monodromy has

exponent of nilpotence <i+l)

0.3 We can interpret the '"Liocal Monodromy Theorem' as a statement

about the local monodromy of the Picard¥uchs equations around the singular point
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y, Griffiths, by estimating the rate of growth of the periods as we approach the
singular point Zé(, was able to prove that the Picard-Fuchs equations have a
"regular singular point'" (in the sense of Fuchs) atg .

Given that the Picard-Fuchs equations have a regular singular point
at 3’, the statement that the eigenvalues of its local monodromy are roots of unity
is precisely the statement-that the exponents of the Picard- Fuchs equation at y
are rational numbers. (In fact, Brieskorn [2] has recently given a marvelous

proof of the rationality of the exponents via Hilbert's 7th Problem.,)

0.4 The purpose of this paper is to give an arithmetic proof that the
Picard-Fuchs equations have only regular singular points, rational exponents,

and exponent of nilpotence i+l (for HY).

e

0.5 The method is first to '""thicken"
™
0.5.0 X =+ S8 = Spec (C)

to a family

I
0.5.1 -

1%

_S__ - Spec (R)

where R is a subring of C, finitely generated over Z, S/Spec (R) is a smooth

connected curve which ""gives back' S/C after extension of scalars R< C, and

T:X-> S is a proper and smooth morphism which "gives back" ¢: X — S after
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the base change S — S.
For instance, the Legendre family of elliptic curves, given in

homogeneous coordinates by
2 . 1 2
0.5.2 Y™Z - X(X - Z)(X -\Z) in Spec (C )\,X_(l_——)\—) X P

is (projective and) smooth over Spec (C[\, ) = - {0,1}. A natural thickenin

1
v 2o gy

is just to keep the equation 0.5.2, but replace 9[)\’ ] b and

A(L-N)
replace C by Z[l/Z].

The thickening completed, we look at o (X/8); replacing S by a

DR =

Zariski open-subset, we can suppose

0.5.3 S is affine, say S = Spec (8), and is étale over é}l‘ (i.e., j is

=

&ale over R[\]).

0.5.4 M = DR (X/S) is a free J-module of finite rank.

The data of the Gauss-Manin connection is that of an R-linear mapping

d
0.5. ) . -
5.5 V(d)\) M->M

which satisfies, for f &X , me M

-_=

df

0.5.6 V(cfli (fm) = 31 -

m+f: V(ad—)-\) (m)




— e m——

5- 57

The next step is to prove that this connection is globally nilpotent

on X of exponent itl, which by definition means that for every prime number p,

=

the R-linear operation

(i+1) MM

d P
0.5.7 =
(Vi)
induces the zero mapping of M/pM.

To prove this, we use the fact that, M = H]13R (X/S) being free, we

have
i
0.5.8 M/ pM ~ HDR ():(®£‘p/ §®Ep)

(the right hand side being an X/ péfmodule). The problem is then to prove the
nilpotence of the Gauss-Manin connection in characteristic p; this is done in

Section 5.

0.5.9 The final step is to deduce, from the global nilpotence of exponent
itl, that the Picard-Fuchs equations have only regular singular points, and rational
exponents, and that the exponent of nilpotence of the local monodromy is < itl.

This deduction (13.0) is made possible by the fantastic Theorem 11.10
of Turrittin, which allows us to really see what keeps a singular point of a

differential equation from being a regular singular point.

0.6 The first sections (1 -4) review the formalism of connections. They
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represent joint work with Oda, and nearly all of the results are either contained in
or implicit in [31], which unfortunately was not cast in sufficient generality for the
present appications.

Sections 5 - 6 take up nilpotent connections in characteristic p > 0.
The notion of a nilpotent connection is due to Berthelot (cf.[l]). We would like to
call attention to the beautiful formula 5.3. 0 of Deligne. The main result (5.10) is
that, in characteristic p, the Gauss- Manin connection on HiDR(X/ S) is nilpotent
of exponent <itl (or <2n-itl, if i>n = dim (X/S)).

Section 7 is entirely due to Deligne. He had the idea of using the Carti
operation to lower the exponent of nilpotence of H;)R (X/S) from i+l to the number
of pairs (p,q) of integers with hp’q(X/S) = Hq(X/S, Q)E/S) #£0, and p + q =1i, thus re
lating the exponent of nilpotence to the Hodge .structure. g

Section 8 is a review of standard base-changing theorems, and
Section 9 precises the notion of global nilpotence. Section 10 combines the results
of Sections 7, 8 and 9 to show that H]iDR (X/S) is globally nilpotent of exponent
i+l, or (by Deligne), the number of nonzero terms in the Hodge decomposition of
Hi(XS, C), s any C-valued point of S.

Section 1l reviews the classical theory of regular singular points,
and proves Turrittin's theorem. I am grateful to E. Brieskorn for having made
me aware of the paper of D. Lutz [24], from which I learned of the existence of
Turrittin's Theorem,

Section 12 recalls the classical theory of the local monodromy

around a regular singular point. It is a pleasure to be able to refer to the elegant
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paper [25] of Manin for the main result (12.0).

In Section 13 we establish that global nilpotence of a differential
equation implies that all of its singular points are regular singular points, with
rational exponents (13.0). This theorem was originally conjectured by Grothendieck
(and proved by him for a rank-ore equation on 1:311). Needless to say, that conjecture
was the starting point of the work presented here.

In Section 14, we ''tie everything together', and give the final
statement of the Local Monodromy Theorem (14.1), with Deligne's improvement
on the exponent of nilpotence in terms of the Hodge structure. We also give
Deligne's extension of the theorem 14.3 for non-proper smooth families, proved via
the systematic use of Hironaka's resolution of singularities and Deligne's technique
of systematically working with differentials having only logarithmic singularities

along the divisor at o.

It is a pleasure to acknowledge the overwhelming influence of

Grothendieck and Deligne on this work,

1.0 Let T be a scheme, f: ST a smooth T-scheme, and é a
quasi- coherent sheaf of Q'S-modules. A T-connection on 5 is a homomorthism

{ of abelian sheaves

199 V& ~9g,000 6

such that

¥ e



S e ]

1.0.1 V(ge) = gV(e) + dg®e A

where g and e are sections of @’S and g respectively over an open subset of S,

and dg denotes the image of g under the canonical exterior differentiation

1
S/T’

sections of (g,V).

d: 38 Y The kernel ofv, noted &V, is the sheaf of germs of horizontal

A T- connection V may be extended to a homomorphism of abelian

sheaves
i i+l
Vi /1% &~ Q5% &
S S
by
_ i |
1.0.2 vi(wébe) = dw®e + (-1) wAVe)

i

S/ T and & respectively over an open subset of S,

where w and e are sections of §

and where (OI\V(G) denotes the image of w@V(e) under the canonical map

i 1 i+l
%, 1%, %1% %) ~ Os/1%¢ G

which sends w®T®e to (WAT)®e.
The curvature K = K(g,V) of the T-connection v is the @’S-linear

map

s 2
€V, VG~ Gog 03
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One easily verifies that

Vi V;@®e) =0 A Ke)

i

S/ T and 6 over an open subset of S.

where W and e are sections of
The T - connection v is called integrable if K = 0. An integrable

T- connection v on g thus gives rise to a complex fthe de Rham comp lex of

(EV)

Vi 2
/T®6’S§ -, QS/Te)@Sg

10,3 o——g—»sz; YZ%

which we denote simply by QS/ TS@, g when the integrable T - connection v is
) S

§ understood?

Let Der (S/ T) denote the sheaf of germs of T-derivations of @’S

 into itself. We note that Der(S/ T) is naturally a sheaf of f-'l ((9’T)- Lie algebras,

1
S/T

Let EndT(g) denote the sheaf of germs of fnl(@'T)-linear endo-

kB while, as (O - module, it is isomorghic to Hom o, [ » ).
‘ S Sé S

# morphisms of g We note that EndT(g) is naturally a sheaf of f-l(@'T) Lie

algebras.

Now fix a T- connection v on g; \ /gives rise to an @’S-linear

mapping

\/ : Dex(8/T)~End ..(€)

send, D to V(D), where V(D) is the composite




WA

-/ .l D@1 -
¥ g .00 6 O £ g

We have

1.0.4 \/ (D) (fe) = D(f)e + \AD) (e)

whenever D,f and e are sections of Der(S/T),@’S and g respectively over an

open subset of S. Conversely, because S/T is smooth, any @S-linear mapping
Der (S/T) —~ EndT(g)

satisfying 1. 0.4 arises from a unique T-connectionv.

The T~ connection v is integrable precisely when the mapping
Der (S/ T) -~ EndT(g) is also a Lie-algebra homomorphism. This is seen by
using the well-known fact that for D1 and D2 sections of _D_e_r_(S/ T) over an open

subset of S, we have

1. 0.5 [(Viop, Mp,)1 - VD, D, = ) A D,)(K)

where the right- hand side is the composite mapping

Kol o D—LA—];Ze@ ~
8’, S/ T 68(% sefsg—g

1.1 Let (Q,V) and (j,V') be quasi-coherent @’S-modules with
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T-connections. An 6

g” linear mapping

is called horizontal if

(\AD) (e)) =\/' (D) ¢ (e))

whenever D and e are sections of Der (S/T) and g respectively over an open
subset of S,

We denote by MC(S/ T) the a‘r;_el\ian category whose objects are pairs

(€V) as above, and whose morphisms are the horizontal ones (MC = modules with

connection). The category MC(S/T) has an internal Hom and a ¥ensor product,
constructed as follows;

W, -,
.I_.I_(.).El@/ ((g:m’ (j’V')) = (Hom (g 5() V"EE{}_
S

\/" defined by the formula

Ll.1

V' D)@ ) = V' (D) @) - $(VID)(e))

where D, ¢, and e are sections of Der (S/T), Homs, (g,:}-f) and g respectively
S
over an open subset of S
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<€Vheaﬁvo=£®qjﬂ7w,

/" defined by the formula
1.1.2 V' (D) (e®f) =/(D) (e)®f + e&\/' (D)(f)

where D, e, and f are sections of Der(S/T), g, and _}f respectively over an open

subset of S.
We denote by MIC(S/T) the full (abelian) subcategory of MC(S/T)

consisting of sheaves of quasi-coherent as-modules with integrable connections.

This subcategory is stable under the internal Hom and tensor product of MC (S/T).

We remark that the categories MC(S/T) and MIC(S/ T) have an
: St - T

f

evident functionality #h the smooth morphism f:S5-T. Exgicitly, if f'
—

h

is a smooth morphisth, and
S22
A=
Tx g
&= S' >5S
1.1.3 > £y
= T T

is a commutative diagram, there is an "inverse image' functor

(@ h) - MC(S/T) - MC(S' /T )

1.1.4

(which maps MIC(S/T) to MIC(S'/T")), as follows. Let (£, \/) be an object of
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-

| MC (S/T). Taking the usual inverse image by (g,h) of the mapping

N
LL5 V: &—»szS/T@@S&

gives a mapping

N i ]_ E3
116 g (B~ @h) Qg /T®6S'g (%)
The canonical mapping

1 1

1.1.7 (g, h) QS/T_’QS'/T' ?

EAd
{ tensorized by g (g), gives a map

* 1 % 1 £
118 (g, h) QS/T®6S’g (6)—*95,/T,®gs'g (&).

ot
R

The composition of 1.1.6 and 1.1.8 is thus a mapping (g,h) (V)

%

L9 @0 (V) g (§)~ R, °g, £ ®

¢ b
which is easily seen to be a T'-connection on g (%). The inverse image (g,h) (G,V)
b E3
is, by definition, (g (&), (g, h) ).

One checks immediately that the curvature element

e i — P brmsniins e Mo Y i kit

-
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& * * 2 S
K (§), 1) ()¢ Homg, & (8): O,/ 1,908 ()

. . . ) 2
is the inverse image of K(%,V) € Homs(g, QS/T®8'58)'

1.2 We remark that the category MIC(S/T) has enough injectives, being
(tautologically) equivalent to the category of quasicoherent modules over an appropriate
sheaf of enveloping algebras (the sheaf P-D Diff. of Berthelot [1], or, equivalently,

the enveloping algebra of Kostant, Rosenberg, and Hochschild [19]).

2.0 We define the de Rham cohomology sheaves on T of an object

(£, V) in MIC(S/T) by

2.0.1 Hi- 6/T, €.\ = Rt (S?s'/T®68&)

where 86«615 the de Rham comgplex of (&,$/), cf. 1.3, and qu- are the hyper-

%
derived functors of 1=10f"‘. In particular, HDR(S/T (g V)) = f* gv . As is proved
in [17] and also in [19] , the functors H%R(S/T, ? are the right derived functors
of the left exact functor

0
2.0.2 HDR(S/T, ?) : MIC(S/T) »= MIC(T/T) = (quasicoherent sheaves o}

3.0 Suppose now w: X - S is a smooth morphism. The natural forgetful
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functor

MIC (X/ T) - MIC (X/S)

(€, Vv (€, X/ | Der(X/s))

3,01

allows us to define the de Rham complex of (g, V| Der (X/S)), which we will denote

simpy by &' @ 6 Further abusing notation, we write

X/Ss <

3.0.2 R XI5, (€ \) =R7, Q) /' ® A &)

Exactly as in [31], we may construct a canonical T-connection e

on the quasi -coherent (9’ module Hq (X/S g, V)), the '"Gauss-Manin connection',

i so that the functors HqDR (X/8, ?) may be interpreted as an exact connected sequence
A

of cohomological functors

J MIC (X/T) - MIC (S/T)

[

3.1 Remark. There is no difficulty in checking that these functors are

none other than the right derived functors of

HOR(X/S, ?) : MIC(X/T)—> MIC(S/T)

S

: where the T-connection on H (X/S (g VI Der(X/S) = ‘rr,l<(6vl _DE(X/S))

« defined by using the exactness of the sequence of sheaves on X

|
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e
3.1.0 0 - Der(X/S)— Der(X/T)-= 7 Der(S/T)—~ 0
3.2 For computational purposes, however, we recall the construction

: o q :
given in [21]. of the entire de Rham complex QS/ T®8 HDR(X/S, (g,V)). Consider

the canonical filtration of Q}-(/'T by locally free subsheaves

) _ o
3.2.0 QX/T—F X/T)DF(QX/T)D

given by

i, . #* o1 =i o
3.2.1 F (QX/T) = image of 1 (QS/T) ®®’XQX/T QX/T

By smoothness, the associated graded objects gr1 = Fl/FH.1 are given the (locally

free) sheaves

* i -
3.2.2 gr (QX/T) ™ (QS/T) ®9’XQX/S .

We filter the de Rham complex §.

X/ T ®6Xg by the subcomplexes

i i ,
3.2.3 F Q% egxg) =F Q%) ®8Xg ;

the associated graded objects are the f—l(O’S) - linear complexes

ioe * ol :
3.2.4 gr Q1 ®gX$): m (g, 1) ®GX( X/ 866




i +7- 69

(the differential in this complex is 1® (the differential of QX;Sl ® g)) .
X
0
Consider the functor R 7, from the category of complexes of abelian
sheaves on X to the category of abelian sheaves on S. Apdying the spectral sequence

of a finitely filtered object, we obtain a spectral sequence abutting to (the associated

graded object with respect to the filtration of) J_E_} ™ (QX/T G’ g while

. P,q _ P q
3.2.5 EP 4 = rE grp) REI I ) p) ®o, Q38 ®6X€))

S/T GR"~ (chlsg’exg)

S/T @' X/S gV

q . . .
The de Rham complex of HDR(X/S, (g,V)) is then the complex (El q, d1 9), the

q'th row of“E

[]

terms of the above spectral sequence.

1

3.3 Remark., The zealous reader who wishes to construct the '""leray

spectral sequence' of de Rham cohomology for XT-T-> Sf—> T

3.3.0 24 = 1P s/T, @ /s, (6,010 => HE A/ T, (6,7

without availing himself of the previous remark (whose truth reduces the question
to one of the usual composite functor spectral sequence) may employ the following

trick, due to Deligne.

Let B and C be abelian categories, B having enough injectives, and let
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N : 8B - C be a left exact additive functor. Let K be a complex (K1 = 0 for i0) !
over ﬁ By a C-E resolution with respectto N of K’ we mean an augmented first

quadrant bicomplex

such that, for each i>0, the complex M’ '1 i5 a resolution of K by N-acyclic

objects, and such that for each p>0, the complex
o,. ). 5.
P ) P ) - HP e )~ L

is a resolution of HF (K') by N-acyclic objects.

If K’ is a finitely filtered complex over = )
. 0,,. 1, ..
K" =F K)DOF K")J... ,

then by a filtered C-E resolution of K° with respect to N we mean an augmented

first quadrant finitely filtered bicomplex

M= FO M) SFLM) D L.

such that, for iZ_ 0,

Fi(K') —>Fi(M")




and

gri(K') ~gr (M)

are C-E resolutions with respect to N of F (K') and grl(K') respectively.

Proposition 3.3, Let &, ﬁ, € be three abelian categories, @ and & with

enough injectives, and let

L:@~ 3 , . N ;Z? -C
be left exact additive functors, such that L(an injective) is T;acyclic. Suppose
further that every finitely filtered compex over BB admits a filtered C-E resolution
with respect to N.

Let A DFI(A) DFZ(A) D. .. be a finitely filtered object of (Z. The
spectral sequence of a finitely filtered object for the functor L gives a spectral

sequence

EP’9(a) = RPT) @rPa) = RFF ) a) -

For each g, we denote by Ei’q’(A) the complex

- q .»q
€& YAy, a0 .



Then there is a spectral sequence
3.3.2 2’9 = RP ) (;” 4 (a)) => RPT(NL).(A).

3.3.3 Remark. If B is the category of abelian sheaves on a topological
space S, ( the category of abelian sheaves on a topological space T, and N the
functor fj, where f: S—T is a continuous map, then taking'"the canonical flasque
resolution' componentwise functorially provides every finitely filtered complex over
23 with a finitely filtered C«E resolution with respect to N.

To aply the proposition, we take

@ = complexes of abelian sheaves on X s

ﬁ = abelian sheaves on S

C = abelian sheaves on T
L = l;{OTr*

N ={, ¢

A =

QX/T ®6X€ with the filtration 3.2.3.

Outline of proof: Take a finitely filtered injective resolution I" of A, so that,

for each i>0, F'T' and grl(I') are injective resolutions of FI(A) and grl(A)
respectively. Put K’ = L(I), Fi(K') = L(Fl(I')). Let M'® be a filtered C-E resolution |

with respect to N of K'°, and define a new filtration F on M by defining

%1 (Mp, q) - Fl-p(Mp’ q)
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Now let P°* = N(M''), filteredby F PP’ %) = NE'MP'Y) = NE' "PMP’ ), The
desired spectral sequence is that of the "totalized" complex of P°", with the

filtration F.

3.4 We now recall from [3]1 ] the explicit calculation of the Gauss-Manin

¢onnection, The question being local on S, we will suppose that S is affine.

Choose a finite covering of X by affine open sets {2(01} such that

n 1 .
g+ S° that, on ua’ the sheaf QX/ is a free O _ -module,

each uoz is étale over é S %

. a a
with base {dx1 s e e e dxn}.
For any object (&,\/) of MIC(X/T), the S-modules
111-‘, Q, . ® ) may be calculated as the total homology of the bicomplex of
E VXS @’X

GS-modules

P.q,s, defn _p q
P8 LT Pl 0% )5 0g §)

of alternating Cech cochains on the nerve of the covering {ua}. We will now describe
a T-connection (in general notintegrable) on the totalized comglex associated to the
| picomplex CP{U }, Q3 _® € ), which upon passage to homology yields the Gauss-
o X/s @'X
Manin connection. -
Let D be any T-derivation of the coordinate ring of S. For each
index «, let Do.' € DerT(@’ua,@’ua) be the unique extension of D which kills
a

a . . . . . .
dxl, “ e dxn. Da induces a T-linear endomorphism of sheaves (a' Lie derivative")

‘ .09 L od
3.4.0 D,: ™ s
o o
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3.4.1 D (hdx? A...dx ) =D (b)dxT A . ..n dx
o i i a i i
1 q 1 q
where h is a section of 6X over an open subset of Zéoz' Similarly, Da' induces a

T- linear endomorphism

3.4.2 D : %  ® — 0%  ® 2
(24 U&/S e,&g uals g% &

by
3.4.3 Da (Ww®e) = Da (w)®e + w@V(Da) (e)

where w and e are sections of Q?(/S and g respectively over an open subset
of U .
o
Choose a total ordering on the indexing set of the covering {?/, }.
a

We define a T-linear endomorphism D of bidegree (0, 0) of the bigraded @S-module

cP (g = DP({Z(a}, Qi/s@@f’ by setting

3 2w od i}
3.4.4. Blre N.. .ﬂlgp,szx/s@»axg) -D_

0 0

0 R o
For each pair «, f of indices, we define an @'X-linear mapping of

sheaves (the interior product with Doz -D

‘3)



D e U
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o
i 1
N«
)
‘1}
by
S
3.4, 6 A (D) (hdx Aeeondx ) = . ' I
o, B q A |
(-1) (Da - DB)(xi)dxl Ave oA dxi Ase oA dxq ‘
where h, %,,..., x_ are sections of ., over an open subset of UNU, (We E :
1 q X o g i«
put )\(D)a,ﬁ =0 on 6’X). Similarly, we define an %-linear mapping g ;i
I
L od a-l ik
T 0 o0 61,0 - e 612,02
il
bY -~ liF R
il
E| ; |
3.4.8 )\(D)a’p(w®e) = }\(D),a’p(w)Qe E §
; n'ii
il
We define an (9)’<—linear endomorphism X(D) of bidegree {l, 1) of the bigraded i i
; 11
: [ i
i{as-module c (€ ! 1’;
il
| P - p+1 ; q -1 !l :
5.4.9 D) : CP({2L), 05 88 ~ P )08 28 . il

|
|
|

‘by




e

h

3.4.10 (A (D)), , = (-l)qx(D)a L o ) if. @, <...<a
0""’p+1 0’"1 1’° "

<..., o,

where o is the alternating p-cochain whose value on Zéoz ..M Zé > b

0 p

Notice that {Do: - D_} is a l-cocycle on the nerve of the covering

) B
{ZLQ} with values in Der (X/S), whose cohomology class in Hl (X, Der (X/S)) is

the value at D ¢ DerT(@é,@g) of the Kodaira-Spencer map

: Dex 1, (C, &) ~ H' (X, Der (X /S)). .

3.4.11 p T( %

X/ S

The cochain map A(D) 1is just the cup-product with the representative cocycle

}.

{Da - DB

""The'" Gauss-Manin connection on the bicomplex C° (g) is given by |

3.4.12 D e Der (@, &) - TD) = B+ 2. x
This explicit formula has a number of immediate consequences,

which we will now record.

Theorem 3.5.

3.5.1 [UD) is compatible with the ' Zariski' filtration F__of

= X cp’q(é), hence acts on the associated
p2i

spectral sequence

P,q _ ~P q o ptq 2
3.5.1.0 BP9 PUUYHL L /s, (EVD) => v dx/s, (EV)
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where %R(X/S’ (g,V)) denotes the presheaf on X with values in MIC(S/ T)
&, q D
U sl s, (D |4

3,5.2 /Ta((D) is not compatible with the " Hodge'' filtration FHodge of

= X cPr 4 (g), and does not act on the associated
q>i

|
g)’ Hodge

spectral sequence.

3.5.2.0 Ef 4=y, Qx/s g => Hp+q(X/S (&)

However, [BL(D) does respect the Hodge filtration on HDR(X/ S, (g,V))

to a shift of one, i.,e.,

i-1
F
faZ(D) HodgeC Hodge

("Griffith' s transversality theorem'' ) and so induces, by passage to quotients an

I S-linear mapping
p+q p-1 +q
I 3.5.2.1 F7UD) : grl ageHDR X/ S EN/) ~ g TEE A /8, (EY))

In particular, if the spectral sequence 3.5. 2.0 degenerates (E1 = E ), (this is the
— 0

1 case for example, if X is proper and smooth over S, S is of characteristic zero,

ind €=6;< with the standard connection (cf. 8. 7)) this induced mapping 3. 5. 2.1

i o) : 1%(x, QX/ S@cce) it (x, g§/S®g>
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is none other than the cup-product with the Kodaira-Spencer class

Py (D) ¢ HX, Dex (X/S)).

e . - n . 1 .
3.5.3 If X 1is itself etale over Ay with QX/S free with base {dxl, ce

then

q > ..q :
HE L (X/S, (EV) = BEUT X, Q) S®gX%)>,
and, for D¢ Der (T, &), the action of D) on H%R(X/ S, (§N/) is that

induced from the T~endomorphism D of I'(X, 95(/ S@{%):

D(wde) = Dw)®e+{7(D ) (e)

where D0 ¢ DerT(@S{,@;() is the unique extension of D which kills dxl, cees dxn,
and where « and e are sections of Q;{/ S and 5 respectively over X.

4, Connections having logarithmic singularities

4.0 Let 7 :X—= S be a smooth morphism, and let i: Y < X be the
inclusion of a divisor with normal crossings relative to S, j: X - Y < X the
inclusion of its complement. ''Normal crossings' means that X may be covered

by affine open sets U such that

. n . .
4,0.1 Zé is €tale over AS’ via ""coordinates'"' STERRRE.

, dx }
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4,0.2 Y | U is defined by an equation Xpeo X, = 0 (i.e., Y is the inverse
image of the union of the first v<n of the coordinate hyperplanes in érsl
4,1 We define a locally free @’X—module, Q;{/S(log Y), by giving, as
base over an open set 72 as above, the elements dx1 N ,dXV s dxv+1’ e dxn.
X X
R .

. i i 1 ..
We define SZ;{/ S(log Y) = AI@'X(QX/ S(log Y)). Viewing

X/s(log Y) as a subsheaf

of j*(Q° ), we see that the usual exterior differentiation in j* (Q'S Y/ S)

X-Y/S

preserves QX/ S

(log Y), which is thus (given the structure of) a complex (''the
de Rham complex of X/S with logarithmic singularities alang Y'').

Now let M be a quasicoherent @;{-module. An S-connection on M,

with logarithmic singularities along Y, is a homomorphism of abelian sheaves

1
4,1,0 V: M- (log Y)® M
X/S 6’X
such that
4.1.1 V(gm) =g\/fim) + dg ® m

where g and m are sections of 6)( and M respectively over an open subset of
v V .
X. We denote by M~ the kernel of\A MY is the sheaf of germs of horizontal

sections,

Just as for "ordinary'" connections, we say that v is integrable




I
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if the canonical extensions 1. 0.2 of v to maps

i+1

4.2.0 \VA X/S(logY) 6XM 2y /g @ gY)®6XM

make 2 (log Y)® M into a complex ( '""the de Rham complex of (M, with
© P P

X/ S

logarithmic singularities along Y'").

Let Der Y(X/ S) be the sheaf on X defined by

4,2.1 Der,, (X/8) = Homg (QX/S(log Y), @'X).
Over an open U as above, Der_(X/S) is 8 -free on x—-—a-— yeees X 2 , 0
—Y 1 0x v ox 0x
v V4]
0
T
n

. -1 . .
T Y(X/ S) is a sheaf of f (&) -Lie algebras, and an integrable S-

S

connection in M with logarithmic singularities along Y is nothing other than

an @'X-linear mapping
4,2.2 v: DerY (X/8)—~ Endgy (M)
which is compatible with brackets, and such that

4.2.3 VD) gm) = D(g)m + g\AD)(m

where D, g and m are sections of DerY(X/S),6;( and M respectively over an
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open subset of X.

4.3 We denote by MIC(X/S(log Y)) the abelian category of pairs
(MV), M a quasigoherent ®’X-modu1e and v an integrable S-connection on
M with logarithmic singularities along Y, (The morphisms are the horizontal
ones). Just as before (cf. 1.2), MIC(X/S({log Y)) has enough injectives, and has
an internal Hom and a tensor product.

H

4,4 The de Rham cohomology sheaves on S of an object (M,V) in

MIC(X/ S(log Y)) are defined by

q _ :
4,4.0 Hpp (%/ S(log Y). M) = R4, @}/ g llog ¥) ®9XM).
Thus

44,1 HY - (X/S(log Y), (MNP = m; (MY

and the arguments of [17] or [19] show that the Ha

DR 2T the right derived

0
functors of HDR'

is a smooth morphism, and i: Y & X is a divisor with normal crossings relative

j to T. As in 3.0 there is a natural forgetful functor

4,5 Suppose now that f : S— T is a smooth morphism. Then fr : X—> T
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4,5.0 MIC (X/ T (log Y))~ MIC (X / S{log Y))

(G\)w—> (EN | Der. (X/S))

so that, just as in 3.0, we may define an exact connected sequence of cohomological

functors
4,5.1 I—I%R(X/S(log Y), ? ): MIC(X/ T(log Y)) - MIC(S/T)

by putting, for (gﬁ) an object of MIC (X/ T (log Y))

q > - nd .
4.5.2 HE o %/ S(log ¥), (EN/) = R, (@} o (log Y)@gX‘E,).
4,6 The Gauss-Mamin connection is constructed as before, using the
canonical filtration of Q;{/ T(log Y) by the subcomplexes
i . . ® 1. P i .
4.6,0 F (QX/ T.(log Y) image (SZS/ T) ®6,XQX/ T(log Y)

whose associated graded complexes are

to

1,4, OIS | e
4.6.1 gr (SZX/ r(log Y)) = (&'ZS/ T)®@,XQX/IS(1og Y)

We then filter the de Rham complex of (g,V) with logarithmic singularities along

Y by the subcomplexes
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i i
4.6.2 F'(Qy 7 (log Y)@QXQ) = F (@) pllog Y))@e,,X e
whose associated graded objects are given by
i P i
4.6.3 gr @y, 1 (log Y)@exg) =n Qg T)®®,X(QX/S(1og Y)@O,Xé)

DR

connection on H%R(X/S(log Y), (g,V)) is the complex (Ei’q, di’q) of E1 terms

Then the de Rham complex Q.S/ T®g 2 (X/S(log Y), (g,V)) of the Gauss-Manin
S

of the spectral sequence of the filtered (as above) object £ (log Y)® 8 and the
X/ T 6X
functor I_(On-%.

When S is affine, the Gauss~Mamin connection can be "lifted'" to a

connection on the Cech bicomplex
p q
4.6.4 C ({Z(&}, Q3 ¢ log Y)@G,Xé)

by exactly the same formulas as before, provided that:

4,6.5 we use a covering of X by U's as in 4. 0. 1, and use coordinates
%X,...,x_ on ¢ sothat Y is defined by x....x,6 =0

1 n 1 v

4,6,6 we lift D e Der(S/ T) to the derivation of 6X which extends it and
kills dxl, c e dxn (so that, in particular, the lifting is tangent to Y).

The Gauss-Manin connection acts on the spectral sequence over an
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affine S associated to a covering of X by affine open sets ui verifying 4.0.1

and 4.0.2. (by using the Zariski filtration (3.5.1) of the Cech bicomplex)

6.7 EP9=cPUULKL x/stog V), (E) => B A/ S(og ), (EV)

where qDR(X/S(log Y), (em) is the presheaf on X with values in MIC(S/ T)

given by
4.6.8 ZLVW“’H%R(ZJ/S(]-Og Y), (gV) | 2¢)

5, Connections in Characteristic p>0)

5.0 In this section, we suppose the base scheme T to be of characteristic
p>0, i.e., that p@T = 0. As before, let { :’S -+ T be a smooth T-scheme. Recall

the Leibniz rule
5.0.1 D" (gh) = Z|_, (1D €)D" )

where D, g, and h are sections of Der (S/T),@’S and G(S respectively over an

open subset of S. Putting n = p, we find (being in characteristic p) that

5.0.2 DF (gh) = DP(g) - h + gDP ()

i.e., that the p-th iterate of a derivation is a derivation, so that Der (S/T) is a
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sheaf of restricted p-Lie algebras.

Let (g:V) be an object of MIC(S/ T). Since EndT(g) is also a sheaf
of restricted p-Lie algebras (taking the p'th iterate of a T-endormorphism), it is

natural to ask whether or not the homomorphism
\V: Dex(S/ T) > End.(§)
is compatible with the p-structures, i.e., whether or not it is the case that
VIoP) = (Up))P

whenever D is a section of Der (S/ T) over an open subset of S,
With this question in mind, we define the "p-curvature" ¢ of the

connection v as a mapping of sheaves

5.0.3 w:w(s/T)—»@T(é)
by setting
- 5.0.4 y@) = (VID)F - VOP)

We remark that ¢ '"is'" actually a mapping

$5.0.5 ¥ : Der(S/ T) ~ End (&)
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(i.e., that (D) is S-linear). To see this, we use the Leibniz rule

5.0.6 Vo)™ (ge) = £ (TID" g) (VD)™ " e)

1:

where D, g, and e are sections of Der(S/ T), @’S and g over an open subset

of S. Putting m = p, we get
5.0.7 WD) (ge) = DP(g)e + g (AD))Pe

Since we have also the '""connection-rule!!

5.0.8 VOP) ge) = DP(g)e + gV(Dp)(é),

subtracting 5. 0.8 from 5. 0. 7 gives the desired formula

5.0.9 _ ¥ (D)(ge) = g (D)(e)

We recall that having "p-curvature zero' means having enough horizontal sections.

More precisely

Theorem 5.1 (Cartier) Let £f:S—> T be a smooth T-scheme of characteristic p.

5.1.0 Let Fabs : T—= T be the absolute Frobenius (i.e., the p'th power
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1 mapping on 8’T), and

5.1.1 S(p) = S‘X T , the fibre product of Fabs :T—- T and £:S - T,
TFa.bs

Let F:S5—+ S(p)"' be the relative frobenius (i.e., elevation of vertical coordinates
to the p' th power).
There is an equivalence of categories between the category of quasi-

(p)

coherent sheaves on S and the full subcategory of MIC(S/ T) consisting of

objects (g,V) whose p-curvature is zero. This equivalence may be given
explicitly as follows:
. (p) . .
Let be a quasicoherent sheaf on S °. Then there is a unique

ots

T-connection vcan’ integrable and of p-curvature zero, on F (:7{), such that

. . V
! Fx F (F) "

-

The desired functor is TT(VW—-* (Fﬂ‘ (}f), v ).
can
Given an object (g,V) of MIC(S/ T) of p-curvature zero, we form

(p),

, which is in a natural way a quasicoherent sheaf on S The desired inverse

gV

functor is

(EV) v EV

Proof: The only point requiring proof is that, if an object (g,V) of MIC(S/T) has

S
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p-curvature zero, then the canonical mapping of @é-modules
=k Cd
5.11. 0 F (g~ €

is an isomorphism. The question being local on S, we may suppose S is affine,

Ve dsr}. Consider the F-l(@'

free on {ds
{ Sﬁﬂ

) -

and etale over {\ , with o

S/ T 1’

linear endomorphism P of g, given by

5.1.2 P=x I 1(——“‘2—")W_1V€5—

the sum taken over all r-tuples (Wi’ - ,wr) of integers satisfying 0 _<_Wi < p-L.

One immediately verifies that: .7

.\
5.1.3 P (5)(:@
5.1.4 P |£§,‘7 =
5.1.5 P2 = P is a projection onto g
w
T 0 i
5.1.6 () Kernel of P ﬂi=1v(asi = {0},

the intersection extended to all r-tuples of

integers (wl, .o ,wr) with 0 Swi < p-l

It follows that the mapping inverse to 5.1.1.0 is given explicitly by

5.1.7 Taylor : g—» F* (8Y7)

Taylor (e) “JTI 1((“: ))’

w,
1 W,

T 0
T Mg
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We now develop the basic properties of the p~curvature. .

Proposition 5. 2.

5.2.0 The mapping ¥ : Der(S/ T) —» Ends (6) is p-linear, i.e., it is additive,
and Y (gD) = gpgb(D) whenever g and D are sections of @'S and Der(S/ T) over an

open subset of S.

5.2.1 If D is a section of Der(S/ T) over an open subset Zé of S, the three

T-endomorphisms of ' g l 2,(,

Vo), /o), v D)

mutually commute.

5.2.2 If D and D' are any two sections of Der(S/T) over an open subset

of S, then ¥ (D) and ¥ (D') commute.

5.2.3 Y Takes values in the sheaf of germs of horizontal S-endomorphisms

Proof: To prove that ¢ is additive, we use the Jacobson formula. If a and b are

¢lements of an associate ring R of characteristic p, then

(a.+b)p =aP +pP + Ef;llsi(a,b)
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where the si(a,b) are the universal Lie polynomials obtained by passing to R[t],

t an indeterminate, and writing
5.2.5 ad(ta + b)P " (a) = }:,fz'llisi(a,b)ti'l.

Now let D, D' ¢ Der(S/T). Thenby 5.2.4
5.2.6 D +D')P =DP+ )P + zfz‘llsi(D, D)
and, as the connection v is integrable and the s, are Lie polynomials, we have
5.2.7 Vo + D1)P) =VoP) +V( )P + 2P s, (VID), VD' )
Again applying 5.2.4 , we have
5.2.8 (VD) + Vio' 0P = (Vion? + (Vio )P + 2Ps, (ViD), Vi)
Subtracting, we find that ¢ (D+D') =y (D) + ¢ (D').

We next prove that ¢ is p-linear. For this we use Deligne's

identity for (gD)p.

Propbsition 5.3 (Deligne) Let A be an associative ring of characteristic p,

g and D two elements of A. For each integer n> 0, put
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g(n) = (adD))(g) = [D, [D, ... [Dgl] ... ]. Suppose that the elements g(n), n>0
N ——r”’ -
n times
mutually commute. Then
5.3. 0 | @D)P = PP + g(g?™H®"Vp

Proof: Reducing to the ""universal'' case, we may suppose that g is invertible;

-1 . i
let h =g . By induction, it is easily seen that for each positive integer n, we have

- - m.) _n-
5.3.1 (1) (gD)n =k lD)n =1 2n ZAm-Hh( 1)Dn Emi
the sum being over all n-tuples of integers m = (ml, - ,mn) having 0 iml <m, <

.. <m and Xm.<n, withthe A ¢ F .
- "n i m =p

Consider now the special case of the ring of additive endomorphisms of

), and let D = -;—T, h = zf;g‘xi'rl/ it . Then DF =0,
1

we have h(p-l) = Dp-l(h) =0 and

the field EP(X ves X

0 2 T
0 pwz
and because h = D(k) with k = ZP;ZX.TH_

i=0 lm
PP =0 (since h™'D =-3-). On the other hand, D, D°,...,DP} are linearly

dk”’

independent over K. Putting n =p in 5.3.1, we thus find that for each integer j,

0<j<p,
5.3.2 0=xa T" )
. . - m i:l

the sum being over those m = (m

|

c.om ), 0<m
P -1

<...<m_ with Xm,. =j.

-

e =

;_‘,‘
2] ol
.
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As o0 (p-2) . : : -

S g ,...,8 are algebraically independent over Ep (their values at T =0
being XO’ cees Xp-Z)’ we have
5.3.3 A =0 if m=m,....m ), 0<m <...<m

m — 1 I - P
Zmi < p and each m, < p-1l.
The only possibly non-zero Am in (¥p) are thus A(O, .1, 0) and A(O, 10,0, p-1)
Returning to (*n), it is immediately verified by induction on n that A(0,...,0) =1
and A(0,...,0,n-1) =1, so that 5.3.1 with n = p becomes the desired formula:
5.3.4 @D)P = (D) = 0 PP(nPDP 4 1P 1, Py
-1 (p-1 -
- gPP + g H P

5.4 We now return to the proof of 5.2. Applying 5.3.0to g and D in

EndT(@é), we have

5.4.0 @D)P = gPDP + gaa@)P P . D

-1 b-l
= gPDP + gDP (gP™) . D
whence

5.4.1 VieD)P) = gPVIDP) + gDp'l(gp'l)D ;

Applying 5.3.0to g and /(D) in EndT(E;f;), we have
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/)P = ¢ (VDNP + g (ad(VID)P P D)

¢PVID)P + PP VD)

<

7

S

o
1t

5.4.2

it

Subtracting 5.4.1 from 5. 4. 2 gives the desired p-linearity.

To prove 5.2.1, we remark that D and Dp commute, thus,v
being integrable, so do V(D) and V(Dp), whence (D) = (V(D))p -V(Dp) commutes
with /(D) and V/(DP).

We now prove 5.2.2 and 5.2.3. The question being local on S,

we may suppose that S is affine, and is €tale over .__AIT, so that le/ T is free,
with base {ds,,...,ds_}. We denote by { 9 ey 9 } the dual base of Der(S/ T).
1 T 831 asr
Let
- yand - Phid .
5.4.3 D = 2aiggm. DY = iz~
i i
we must prove that
5.4,4 WD), (@] =0 = [D),\/(D)]
= 2Py =2 = £aP (Vd—))P
But V(D) = Zay =) = 2o (V(asi e,
_ P70 _\\P - 0
(') = Eb; (V(Bsi DY, and V(D) = Ebiv(asi) ;
sothat WD), (0] = ZPHPL(Vig-)P, (V&P =0, and WD), VD)) =
i j
P 9P 72y -
Eaibj“v‘asi” ,V<asj>] 0.
Corollary 5. 5: Let £: S—+ T be a smooth T-scheme of characteristic p,
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(g,V) an object of MIC S/ T), and n Zl an integer. The following conditions are

equivalent.
. . . . 0
5.5.0 There exists a filtration of (g,V) of length < n (i.e., F = all,
F' o= {0} whose associated graded object has p-curvature zero.
5.5.1 Wherever Dl, - ’Dn are sections of Der(S/ T) over an open
subset of S, YO, W(D.). . . Y@dD ) =0,
1 2 n
5.5.2 There exists a covering of S by affine open subsets 2/, and on each
2 "coordinates" wu.,...,u (i.e., sections of @/ over ?/4 such that Ql is
1 T S 2] T
free on dul, Ce s dur) such that for every r-tuple (Wl’ e ’Wr) of integers with
Xw, = n,
1
—, 0 \\PW 0 \\PW_ _
(\/(au ) i T (V(au )Y T r = 0.
1 T
Proof: 5.5.0 <==> 5,5.1 is clear.

— o, - 9 \\P
5.5.1 => 5.5.2 because ‘/’(aui) = (V(aui)) :
5.5.2 => 5.5.1 by the p-linearity of y; for, covering any open set

by its intersection with the covering of (3), we are immediately reduc

to the case in which D1, e Dn € Der(ZZ/ T). We expand each Di

using the given coordinates on 2{

D, =Za..i
i ij auj
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whence

_ s .P 0 0 _\\P
nlf(Di) =X aijr//(au_) =X aij ( auj)) ,

and the assertion is clear.

Definition 5. 6. We say that (g,V) is nilpotent of exponent <n when

one of the equivalent conditions of 5.5 is verified. We say that (g,V) is nilpotent
if there exists a positive integer n such that it is nilpotent of exponent < n. We
denote by Nilp (S/ T) the full subcategory of MIC(S/ T) of objects (g,V)

i

which are nilpotent, by Nilp (S/ T) those which are nilpotent of exponent < n.

oL .
Nilp® consists of those of p-curvature zero. We record for future reference:

Proposition 5.7

5.7.0 Nilp(S/ T) is an exact abelian subcategory of MIC(S/ T).

5.7.1 Each Nilpn (S/ T) is stable under the operations of taking sub-objects

and quotient objects.

5.7.2 Nilp(S/ T) is stable under the operations of internal hom and

internal tensor product, and if A and B are objects of Nilpn(S/ T) and Nilpm(S/T)

ntm-1

respectively, then A ® B and Hom (A,B) are in Nilp (S/ T).

Proposition 5. 8. (%’,V) is nilpotent if and only if for any section D of
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Der(S/ T) (over an open L subset of S) which, as a T-endomorphism of @é{, is

nilpotent, the corresponding T-endomorphism V(D) of el U is nilpotent.

Proof (=>) If DY =0 in Der(Zé/ T), (D) = (VD))p is nilpotent by assumption.
v

By induction on the integer VvV such that DP =0 in Der(U/T), we may suppose
v-l
already proven the nilpotence of V(Dp) (since (Dp)p = 0). But (V(D))p =y (D) +

V(Dp), a sum of commuting (5. 2.1) nilpotents.

(k=) take a finite covering of S by affine open sets U which are &tale over

Tr .
A On each%, choose '""coordinates' u

A . ur (i.e., sections of 6’&, which

1’
. - . 0 \p )
define an €tale morphism &¢ — ér ). Then each ¢ )¥ =0 in Der(d/ T). Let
= duy.

ny, be an integer such that, for each i, (KA 8?1 ))Pnu =0 in EndT(g/Zé) ; and take
i

n = Sup{u}nu. Then (g,V) is nilpotent of exponent inz.

Theorem 5. 9. Let f: S T and f' : S' = S' be smooth morphisms, and
S! g S

5.9.0 vl ]
T & T

a commutative diagram. Suppose T is of characteristic p. Then under the

inverse image functor

5.9.1 (€,h)" : MIC(S/T)~ MIC(S' / T')
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we have, for every integer n2>1
xR . n . n
5.9.2 (g,h) (Nilp (S/ T))C Nilp (S'/ T")
Proof; The proof is by induction on n, the exponent of nilpotence. Suppose
first the theorem proven for v =1,...,n-l, and take an object ({,’;’,V) in Nilpn(S/ T).

By definition there is an exact sequence in MIC(S/ T)

0~ (&' /')~ ()~ (&' K/") ~ 0

with (6' AVARIK: Nilpl(S/ T), (5" AVARK: Nilpnd(S/ T). Pulling back gives an exact
sequence in MI (sr/T")

g.1) (E' /)~ (@h) (EV) ~ @m) (€1 57") ~ 0

and by hypothesis, (g,h)*(g' ,V' ) € Nilpl(S' / T'), and (g,h)*(g” ,V") € Nilpn_l(S' [/ T),

o
B

whence, by definition, (g,h) (£5/) ¢ Nilp (S'/ T').

J . .
Thus it suffices to prove that Nilp is stable under inverse image.

To do this, we make use of the fibre product to reduce to checking two cases.

Case 1 S=8X rI,T' » § = PT), fr = PT,- The question is local on S, which
. . - r . 1
we suppose is affine, and etale over éT' with QS/ T free on dsl, cee s dsr. Then
1 ia @ T : 1 1 f 1 = 8
S' is etale over éT' , with QS/ T free on dsl, ces dsr , where CHI (si). By the



-46-

p-linearity of y, it suffices to check that t//(-é—gT-) = (V(—é—z—-,—))p =0 in Ends' (g*(g)).
i i

0 *en - . . *
But V(as! ) e EndT' (g (é)) is the T' -linear endomorphism of g (g) ~ 5 ®@TgT'
i

deduced from the T-linear endomorphism V(—éa?-) of g by extension of scalars
i

g, -,

Case 2. Tt =T, h=1id, We have the commutative diagram of T-schemes
(cf. 5.1.1)
St g S
\F' F
(p)
g @) 8 4p)

By Cartier's theorem 5.1, any object (£\/) ¢ MIC(S/ T) with p-curvature zero is
(p)

isomorphic to (F'p (:';), v ), where :-7( is a quasicoherent S

-module (namely
can

gv) Clearly we have

o

. sl sk sk (p)>:<
= f
@i @ A, )= E 6T I T,,)
an object of p-curvature zero.

We now prove the stability of nilpotence under higher direct images.

Theorem 5.10. ILet w: X—-+S and f: S~ T be smooth morphisms, with T

a scheme of characteristic p. Let n be the relative dimension of X/S, supposed

o




constant. Suppose S is affine, and consider the spectral sequence 3.5.1.0 associated

to'a covering {Z(&} of X by open subsets etale over :2 and an object (E,V) €

Nilp' (X/ T).
P:q _ Py, ! —> P
5.10. 0 BP' = cPL L L /8, (6N = H2 X/5, (EV),

on which Der(S/ T) acts through the Gauss-Manin connection.

5.10.1 Each term Eb’%e Nilp® (S/ T).
5.10. 2 For each integer i> 0 we put

- 7(i) = the number of integers p with E?o’ i-p £0
Then

v.r(i)

i , .
Hop (X/8, (EV) e Nilp™ " 7(8/ T).
5.10.3 7(i)<i+1, and 7()<2n-i+1
Proof: To prove 5.10.1, it suffices to show each Ef’q € Nilpv (S/ T). But

: P q _ q
5.10.4 EP9- T HDR(Z&iOQ...OZ&p/s, (EV) Iui_oh...rjui)

10<...<1p P

e e e o o

"

oo e e
S P




%

|

=) v
so that we must prove that if (&,V} € Nilp (S/T) and X is %tale over szrsl, then

HL - (X/S, (EX7) e Nilp” 8/ T).

Let us remark first that, if X is etale over A, the Gauss-Manin

n
S’
connection F':'Z on HDR(X/ S, (&,V)) = BTT*(QX/ s ® @Xé) is deduced from an

integrable T-connection on the complex Q'X/ S

@6, g (cf. 3.5.3) which may be
X
described explicitly as follows. Let Q;/ S be free on Xm’ cees dxn, and for each

D e Der(S/ T) denote by D_ € Der(X/ T) the unique extension of D which kills

0

dxl, . e dxn. Then the Gauss-Manin connection is deduced from the integrable

connection

1%: Dex(S/ T) > End_(Q @6}(‘2)

given by
D) (dx, A...dx, ® e) = dx, A...adx, ®V/(D)(e) )
r

Clearly we have

(l"’i(D))p(dxi Aeo /\dx,1 ® e) = dx. A- .. /\dxi ® (WDO))p(e),
1 T 1 T

v
thus the hypothesis (gV) € Nilpv (X/ T) implies that, for any D(l), ce e D( ) €

Der(S/ T), the endomorphism w(Dél)) .. (p(Dg/)) of Q;{/S ®®,Xg is zero, and

hence it is zero on HDR(X/ S, (g,V)), which concludes the proof of 5.10.1.
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To prove 5.10. 2, notice that ;

p,q _ P PTq
5.10. 5 ED'S = gxl  HE/S, (EN), so that

00

HDR(X/ S, (8 »\/)) has a horizontal filtration with T(i) non-zero quotients, each

v
quotient in Nilp (S/ T).

P.q _
El

0<g<n=rel. dim (X/8S). |

To prove 5.10. 3, we observe first that = 0, unless p> 0 and

To conclude the proof, it suffices to show that EIZ)’q = 0 (and hence ;

[t

Ei’q = 0) if p> n. (The problem is that, while 7 : X - S has cohomological

P:q

dimension < n for sheaves, our E2

terms are, a priori, only the Cech co-
homology of certain presheaves. But being in characteristic p will allow us to

éircumvent these difficulties by using an idea of Deligne.
F

1
- abs
Let S —> S be the absolute Frobenius, X(p) the fibre product of ;
#:X>S and F_ :S~S5, and F: X~ %) the relative Frobenius (cf. 5.1.0).

. - -1 P.
The complex QX/S ®6 6 is linear over 1 (65) and over (G’X) ;

it other words, F_(Q X/S 6 6) is an & ®) " linear complex of quasicoherent ]
X
8 (p) - modules. Thus the cohomology presheaves of this complex, % (F, (QX/S @' 8

o e o e iome e e

are sheaves of quasicoherent & ®) " modules. As we have an isomorphism of

Rresheaves on X(P) ' i

P
——

| 5.10.6 rJr xS, (E7) 3161(F*(93{/S®@X€)) il

it follows that the presheaves %;DR (xX/s, ({‘f,V)) are in fact sheaves. Furthermore,

L
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we have

4 , V. ”
5.10.7  EP'9 - HP(x, {Zéa},%%R(x/s,(g,v)) Hp(X(p),{F(Z%)},F=:=%qDR(X/S,(&V)))

1]

( ) . =
wPx®,F JI3 /s, (G

the last equality because F*%%)R(X/ S, (g,V)) is quasicoherent on X(P)’ and
{F(uoz)} is a covering of x (P) by affine open sets. As X(p)/ S is of cohomological

dimension < n, we have E;’q =0 if p > n, which concludes the proof of 5.10. 3.

5.10. 8 Remark: The interpretation 5.10.7 of the Eg’q term of the spectral

sequence 5.10. 0 shows that the zariski filtration it defines on the H;DR(X/ S, (g,V)) is

independent of the choice of covering of X by affine open sets €tale over én.

Indeed, it shows that the entire spectral sequence, from E_ on, is independent of

2

that choice. We do not know if this is true when S is no longer of characteristic p.




6. Connections in characteristic p > 0 having logarithmic singularities

6.0 Let wm: X—> S be a smooth morphism, i: Y>> X the inclusion of a
divisor with normal crossings relative to S, and f: S—=> T a smooth
morphism, with T of characteristic p.

We define Nil;(X/T(log Y)) to be the full subcategory of
MIC(X/T(log Y)) consisting of objects admitting a filtration which has <v
non-zero quotients, each of p-curvature zero. In this context, the p-curvature

of an object (&, V) in MIC(X/T(log Y)) is the p-linear mapping

% : Der  (X/T) —> End_(&)
6,0,1
v(D) = (V(D)P - v (DP)

The proof of 5. 10 carries over mutatis mutandi to give
Theorem 6,1 = 5,10 bis. Assumptions as above, suppose that S is affine,
and let n = rel.dim(X/S). Let (£, V) be an object of MICG(X/T(log Y)).

Consider the spectral sequence 4.6, 7,

7 wP)4d_ AP q p+q .
6.1.0 E>'%=cP{U }, A 5L (X/S(log Y), (£, V) => HD 4(X/S(log Y), (£, V)

which by 5.10.7, has
6.1.1 el - wPx P, r g3 x/s00g ), (2, V)

and, from Ez on, is independent of choice of covering, Der(S/T) acts on this
spectral sequence through the Gauss-Manin connection. Suppose

(E, V)e Nil;(X/T(log Y)). Then

6.1.2 Each term EI;’q ¢ Nil’;(s/'r).
6.1.3 For each integer i >0, put

'r(.i) = the number of integers p Wit‘h Ei'i—p #0,
Then H;)R(X/S(log Y), (£, V)) e Nil’;'T(l)(s/T).

6.1.4 7(i) < i+l and ~(i) < 2n-i+l




e

b2

7. Ordinary de Rham cohomology in characteristic p

7.0 Let m: X—>S be a smooth morphism, i:YS=> X the inclusion of a
divisor with normal crossings relative to S, The structural sheaf O’X’ with

the integrable S-connection "exterior differentiation"

1
7.0.1 dx/s. O/Xﬁﬂx/s

defines an object in MIC(X/S).
We denote the de Rham cohomology sheaves on S of this object simply

HDR(X/S), i, e, by definition

7.0.2 H: (x/s) = Rr (@

DR X/S) ‘

Similarly, by composing 7.0.2 with the canonical inclusion

1 1
D /s g /5!
cohomology sheaves on S are denoted HDR(X/S(log Y)), i.e., by definition

log Y), we obtain an object in MIC(X/S(log Y)) whose de Rham

q _ q .
7.0.3 Hp . (X/S(log Y)) = R ™ (2 sg(log Y))

For any smooth morphism f :S—> T, the objects of MIC(X/S) and

MIC(X/S(log Y)) defined by (UX
objects MIC(X/T) and MIC(X/T(log Y)) defined by (GX, dX/T)' Thus the
sheaves HIqDR(X/S) and HqDR(X/S(log Y)) are provided with a canonical

integrable T-connection whenever f:S—> T is a smooth morphism,

s dX/S) come via 3.0,1 and 4. 5.0 from the

7. 1. Suppose now that S is of characteristic p. As before (5.1.0) we

denote by X(p) the scheme which makes the following diagram cartesian
<PV _W o
7.1.0 (P) m
Fabs
S —>S
(i.e., X(p) is the fibre product of m: X —> S and Fa : S—>S) and we

bs
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(p)

denote by F : X —> X the relative Frobenius, The diagram
X(p

X
i S S

is commutative, and W o F is the absolute Frobenius endomorphism of X,

(p)

p)

_.e,

F o W the absolute Frobenius of X(p). We denote by Y

Y5> X and X(p) __V£> X; Y(p) is a divisor in X(p) with normal crossings

the fibre product of

relative (via 'rr(p)) to S. The spectral sequences of ordinary de Rham cohomology

of X/S may be written (writing # % for cohomology sheaf)

7.1.2 EP*9 - RPy(P (;ﬁ (F ) = erq(X/S

5 /S)) == R:P qm (o

Sy X /s

and that for de Rham cohomology of X/S(log Y) may be similarly written

7.1.3 Ep’ Y10g v) = RPr p)(;f (log Y))) => Rp U (o,

X/S X/S

~

The E2 terms have a remarkably simple interpretation due to Deligne, via
the Cartier operation.

Theorem 7.2 (Cartier). There is a unique isomorphism of (. (p -modules

% (P)
7.2.0 ctig s BNE, 00 )
which verifies
-1
7.2.1 C (1)=1
-1 -1 -1
72.2 C (waT)=C ()AC (1)
-1 -1 _ p-1
7.2,3 c Haw () = the class of £ ar in A x/s)
Furthermore, C = induces an isomorphism of & (p) modules (by
. . X
restricting C-1 to Ql( ) (log Y(p)) CQI( ) (D)
x'P /s x'P_yP/s

(log Y))Hp q(X/S (log YN {I

MR M e DRI 5

=
PR SN
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7.2.4 cl. g

v (o8 Y(p))—effi(de
x'P /s ’

Proof, First, we construct C_l, following a method of Deligne. We need
only construct C—1 for i =1, for then the asserted multiplicativity (2)
will determine it uniquely for i > 1, and for i = 0 the condition (1) and

~linearity suffice.
O @) 4

An -linear mapping

4
X(p)
-1 1
HEY) (p)
x'P' /s
-1
<p))

1

7.2.5 c — " (F .0

>.</s)

is nothing other than a (w (J.)-linear derivation of (¥ (p) into

S X
1 .
A (F>"QX/S)' Making explicit use of the definition of X(p) as a fibre product,

we have

7.2.6 O‘X(p) = O’X ® m (OS) (where TT_I(O’S) is a module over

™ (Og) itself by F_, )

so that such a derivation is a mapping of sheaves

7.2.7 5 : (7X><wr'1(0s)—-——>ffl(9}'</s)

(f, s) —> 6(f, s)
which is biadditive and verifies

5(fs, s') = 5(f, sts')
7.2.8 5(gf, s) = g's(f, s) + f£6(g, ©)
6(f, 1) = the class of fpﬁldf
We define

7.2.9 6§(f, s) = the class of sfpnldf
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The properties 7.2, 8 are obvious; as for biadditivity, we calculate

7.2.10 &5(f+g, s) - 6(f, s) - &(g, s)

11

- -1 -
s((t+g)P Liat+ag) - £ tar - ¢ lag)

d(s ,((f+g)p - g° ))
P

-1
Having defined C =, we must now prove it is an isomorphism. The

question being local on X, we may suppose X is étale over én via

coordinates Xl’ .o xn, such that the divisor Y is defined by the equation

Xl o .Xv = 0, Then F*(QX/S) is the O’X(p)—hnear complex
1]
7.2.11 ) ® K(n)
x(P) L

where for every integer n > 1, K(n) is the complex of Ep-vector spaces with

basis the differential forms-

Oswisp-l for i=1, ..., n
l<a <...<0a,<n

and differential the usual exterior derivative in n variables, Thus

i . i
. . 2 ™~ H °
7.2.1 H (F*QX/S) UX(p) ®E (K(n))
=P
Similarly, F*(Q;(/S(log Y)) is the UX(p)-linea.r complex
7.2.13 &, ,®_ Ln, v
x(P) E,

where for each pair of integers 1 <wv<n, L:(n, v) is the complex of Ep-

vector spaces with basis the differential forms

o ——

e
Y




l<w, <p-1 for i=1, ..., n
=W =

l<a, <...<a.<n
dx. /x. i=1 ,
1/1 ? v
w; =
dXi i=p+l, ..., n

and differential the usual exterior derivative in n variables. We have

7.2.14 Hi(F*(Q;{/S(log V)% )% H(Lx v)

What must be proved, then, is that

a) H°(L(n, »)) =H°(K(n)) = F

1 - -
b) H (K(n)) has as base the classes xf 1dxi, i=1, ..., n
1 N w, i= ]., s V
and H (L(n, v)) has as base the classes 1
Xf wi'1=y+1,...,n

— 1 - 1
¢) H (K(n)) = AH (K(n)) and H (L(n, »)) = AH (L(n, »)).
To see this, we observe that the complexes K.(n) and I_:(n, y) are easily

expressed as tensor products of ''l-variable'" complexes. Namely

K(n) = K(1) ®_ K(1) ®_ @... ®_  K(l)

=p =p =p
——
n times
Lin, p) = L(1, 1) ® ®. (1, 1) ®_ K(l) ® ®
\__ =P =p =p =p
V _’—/
p times n-y times

By Kunneth, it suffices to show

F .l i=0
. =p p_l
H (K(1)) = ZE_‘p (class of x dx), i =1
0 i>2
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F -1 i=0
i . P
H(L(1, )= J_F_‘p class of w=dx/x i=1

0i>2

which is clear.

7.3

7.3.0

and

7.3.1

7.3.2

7.3.3

This concludes the proof of theorem 7. 2.

Thus the spectral sequences 7.1.2 and 7,1.3 may be written

gPr 9 _ gP. (p)( /s

ptq
% R

Q ) =>R

) = Hp+q(X/S

'n'*(Q

p_(p)

(log ¥'P)) — rRP" (@

P, q _
E,’ “(log Y) = R'm % /s

(SZ
x®) g

Suppose now that either of the two following conditions is true,

For each pair of integers p, q > 0, the formation of the sheaves

P p q . .
Rw (QX/S and R'w X/S(log Y)) commutes with arbitrary base
change,
The morphism '"absolute Frobenius" Fabs : S —> S is flat; this is

the case, for example, if S is smooth over a field, or locally

admits a ''p-base'" (cf. 4).

Since the diagram (7.1.0)

7.3.4

is cartesian, and

7.3.5

X(p) W > X
TT(p) l"
F b
q * q
Q =W (Q )
q (p)
Q (log Y'™') = W (Q (log Y))

(log ¥)) = HD d(%X/S(log ¥))

T e———————
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either of the assumptions (1) or (2) implies that, for all p, g > 0, we have

isomorphisms
P.q p (p) ¥ P q
7.3.6 E) " =R'm 3 (p)/s) F_ (R ‘n'*(QX/S))
P, dq _ P (P), 4 (p), _ * p
7.3.7 E,’ “(log Y) = R'm_ (QX(p)/S(log YH) =F (R X/S (log Y)))

Remark., When (1) or (2) holds, the above isomorphisms provide (via Cartier's
theorem 5.1) an a priori construction of the Gauss-Manin connection on the E2
terms of 7.12 and 7,13,

We summarize our findings.
Theorem 7.4, Let m:X —>S be a smooth morphism, i: Y& X the inclusion
of a divisor with normal crossings. Suppose that S is a scheme of characteristic
p, and that either

7.4.0 for each pair of integers P, 9> 0, the formation of the sheaves

p q P . .
R TT*(QX/S) and R'w /S (log Y)) commutes with arbitrary base
change;
7.4.1 the morphism '"absolute Frobenius" \Fabs : S—> S is flat,

Then the spectral sequences 7.1,2 and 7.1.3 may be rewritten

P4 _ ¥ p q p+q
7.4.2 Ez = FabS(R 'rr*(QX/S)) — H (x/s
P, 4 I q p+q
7.4.3 Ez (log Y) = Fab (R (QX/S log Y))) = HDR (X/S(log Y))

For any smooth morphism f:S—> T, these spectral sequences are endowed

with a canonical integrable T-connection, that of Gauss-Manin, which has

p-curvature zero on the terms EI;’ q’ r> 2,

Corollary 7.5 (Deligne), For each integer i >0, let h(i) (respectively

h_(i)) be the number of integers p for which E123,1—p (resp. Eg’l_p(log Y))

Y
is non-zero, (Clearly h(i) and hY(i) are < sup(i+l, 2 dim(X/S)+1-1i).)

Then for any smooth morphism f:S—> T, we have
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7.5.1 H (X/S(log Y)) e Nil hY(i)(s/T)
. 5. DR g ¢ Nilp

i
Nil
7.5.0 Hy o (X/S) e Nilp

8. Base-changing the de Rham and Hodge cohomology

We first recall a rather crude version of the ""base-changing' theorems
(cf. EGA [14], Mumford [29] , and Deligne [6] ).
Theorem 8.0. Let S be a noetherian scheme, and 7 : X —> S a proper
morphism. Let K be a complex of abelian sheaves on S, such that
8.0.0 Kiz 0 if i< 0 and for i>>0
8.0.1 each Ki is a coherent O'X-module, flat over S
8.0.2 the differential of the complex K is 'rr_l(@’S)—linear.
Then the following conditions are equivalent:

8.0,3 For every integer n > 0, the coherent gs—modules ]_E_{n'rr>,<(K) are

locally free.

8.0.4 For every morphism g :S'—> S, we form the (cartesian) diagram

St x., X
S
\X
8.0.4.0 prll

™

Sl
NS

The canonical morphism of base-change,
8.0.4.1 g R (K') —> R%pr

is an isomorphism for every integer n > 0.
8.0.5 Same as 8.0.4 for every morphism g :S' —> S which is the
inclusion of a point of S.
Furthermore, there is a non-empty open subset 7, of S such that, for the
morphism TTLL : -n'-l(a ) —> 1/ and the complex K/7/,, each of these

equivalent conditions is satisfied,



When these conditions are satisfied, we say that the formation ¢f the
E_.nTI‘*(K.) commutes with base change,
Corollary 8,1, Let w:X —>S be a proper and smooth morphism, and
suppose S is noetherian. There is a non-empty open subset U <8, such

that each of the coherent sheaves on S

q P
8.1.0 R W*(QX/S), P, 4>0

n>0

n n .
8.1.1 HDR(X/S) =R TI'*(QX/S), >

is locally free over .

8.2 Let us define the Hodge cohomology of X/S by

n q_ ,.P
.2, X/S) =
8.2.0 Hiodge X/5) T r ™ (O /g)
p+g=n
it is bigraded;
P, q 4 P g
8.2.1 HHodge(X/S) =R 1T*(QX/S)

Corollary 8.3. Let m: X —>S be a proper and smooth morphism, and suppose

S is noetherian. Suppose that each of the coherent O’S—modules

P:q
8.3.0 HHodge(X/S), p, 4>0
8.3.1 HY _(X/S) 0
e DR s B2

is locally free.
Then for any change of base g : S' —> S, the canonical morphisms

of sheaves on §'

* p’ q p’q 1 1
8.3.1 g Hpy g ge /) —> H & (5% X/8)
8.3.2 ¢ H>_(X/S) —> H®_(S'x.X/S")
DR pr'>'%s

are isomorphisms for all values of p, q and n. In particular, the Hodge




and de Rham cohomology sheaves of S'xSX/S' are locally free sheaves on S',

Corollary 8,4. Under the assumptions of 8.1, let
i:Ye—X

be the inclusion of a divisor with normal crossings relative to S. Then there

is a non-empty open subset ¢ C S such that each of the coherent sheaves on S

8.4.0 wa*(sz?(/s(log Y) p, q>0

n n
8.4.1 (H (X/S(log Y)) = R™m (@3 /c(log ¥)) ‘

% /5!

is locally free over 7/, i |

8.5 Let us define the Hodge cohomology of X/S(log Y) by

n _ q p E
8.5.0 HijoageX/Sog ¥)) = 1T R ™ (2 /g(log Y)) :
ptq=n .
it is again bigraded ;lv
. !
P, q -r9 (P
8.5.1 Hp pggeX/Sog Y)) = R ™ 2y /g(log YD) . “

Corollary 8.6, Assumptions as in 8.4, suppose that each of the coherent

sheaves on S

P, q

8.6.0 HHodge(X/S(log Y)) p, q>0
n

8.6,1 Hp p (X/S(log Y)) n>0

is locally free.
Then for any change of base g :S'—> S, denoting by Y' the

fibre product of i : Y&<> X and pT, S XS X—>X (cf, 8,0,4,0), which

is a divisor in 8! 'XS X with normal crossings relative to S', the canonical

morphisms of sheaves on S
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» 9 p,q
8.6.2 g HH odge (X/S(log Y))————>HH ag (s'x X/S'(log Y'))

8.6.3 ¢ 1Y (X/S(log Y)) —> H%R(s'xsx/s' (log Y'))

DR

are isomorphisms for all values of p, g and n. In particular, the Hodge and

de Rham cohomology sheaves of S! Xg X/S'(log Y') are locally free sheaves
on S',

8.7 It is proven in [ 6 |that, if S is of characteristic zero, then the open
subset of Corollary 8.1 is all of S, and the spectral sequence of sheaves on S

P,q _..P,4 ptq
8.7.1 E;"7 = HHodge(X/S —> Hp o' (X/S)

degenerates at El'
Similar arguments, using Deligne's theory of "mixed Hodge structures,"

(unpublished) allow one to prove that, if S is of characteristic zero, then Jt:he

open subset of Corollary 8.4 is all of S, and that the spectral sequence of

sheaves on S

P, q P, q ptq '
PO S >
8.7.2 E HH odge (X/S(log Y)) HDR (X/S(log Y))
degenerates at El'
There is an elementary proof of the fact that the HDR(X/S) are

locally free on S, if X/S is proper and smooth, and S is smooth over a
field k at characteristic zero., It is based only on the fact that the
HDR(X/S) are coherent sheaves on S, with an integrable k-connection

(that of Gauss-Manin' ).

Proposition 8.8, ILet S be smooth over a field k of characteristic zero,

and let (M, {/) be an object of MIC(S/k), such that M is coherent. Then

M 1is a locally free sheaf on S,

Proof, The question being 16cd] on S, it'suffices to prove that, for every closed
point s ¢S, the module M over 61 "is’frée As M is finitely generated over

’ A

@S “by hypothesm it Sufflces to prove that M =M ®@, . CfS K the completion
’ ) S, S ?
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of Ms for the topology defined by powers of the maximal ideal of OS g’ is
A [)

free over gS, o Thus it suffices to prove an analogue of Cartier's theorem

5, 1.

Proposition 8.9, Let K be a field of characteristic zero, K[[tl, cees ’cn]]

the ring of formal power series over K in n wvariables., Let M be a

finitely generated module over K[[tl, cees tn]], given with an integrable
connection V (for the continuous K-derivations of K[[tl, cees tn]] to itself).
Then MY , the K-space of horizontal elements of M, is finite-
dimensional over K, and the pair (M, V) is isomorphic to the pair

(MV ®K K[[tl, eeos tn]], 1 ® d) where d denotes the "identical' connection on
K[[tl, tn]].

Proof. We begin by constructing an additive endomorphism of M. For

i=1, ..., n, let
8.9.0 D.=\7(i)

and for each integer j> 0, let
8.9.1 o 1 (gl p®
T i 7 ati) *TL

For an n-tuple J = (jl, e jn) of non-negative integers, we put

n (i)
oY= T p*

8.9.2 D,
i=1 !
n J.
8.9.3 th—f—I(ti)l
i=1
n j.
8.8.4 07 =TT’
i=1

We then define a K-linear endomorphism P of M

r:- M—m>M

8.9.5 LToT o .

P = x(-1)’t'p) S
J -~
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One successively verifies

8.9.6 P(fm) = f(o)P(m) for £ e K[[tl, ce, tn]] and meM ,
by Leibniz's rule, so that Kernel(P) D (tl, cees tn)M
8.9.7 P(m)= m modulo (tl, e tn)M, so that
Kernel(P) = (tl, e tn)-M
8.9.8 P|MVY = id.
8.9.8 PM) c MY

(by a ''telescoping''), so

2
P =P is a projection onto MY

8.9.10 P induces an isomorphism of K-vector spaces,

P M/(t, ..., 1;}1)1\/1"‘%1\/1v

This shows that Mv is finite dimensional, and that (by Nakayama), the

canonical mapping

v
8.8.11 M ®K K[[tl, tn]]—-—->M

is surjective, To show it is an isomorphism, we must show that if

m m  are K-linearly independent elements of Mv, then there can

EERE
be no non-trivial relation

8.9.12 }_",fimi =0 in M
Supposing the contrary, assume fl is # 0. Then for some J = (jl, v jn),
we have

j

=1 9N\ Y
8.9.13 < T T <8—t—> (f1)> (0) £ 0
L v=1"p

14
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Since the m, are horizontal, applying D(J) to 8,9.12 gives
n j
- 1

8.9.14 O = D(J)(Z:f m,) = > || = 2 Y(f,).m,

jt ot i i
ip=l“yp v
a relation of the form
. = ) 0 °
8.9.15 Tgm, 0 gl( ) £ 0

Applying P to 7.11. 14 gives a relation
zZg.(0m =0
i i

which is impossible. Q.E, D,

Remark 8. 9,16, Heuristically, P(m)(tl, ceos tn) =m (t - tn-tn)

1—1:1, .o
expanded in Taylor series, In fact, 1_:he proof of 7,11 is just a concrete
spelling-out of the formal descent theory (with a section, no less) as indicated
in Grothendieck's '""Crystals and de Rham Cohomology' in '""Dix Exposés, !
Remark 8,10 (an afterthought). Of course when S = Spec(g), X/g proper

and smooth, Y&—> X a divisor with normal crossings, we have isomorphisms

H-_(x/C) ~ H(x*™ ¢

8.10. 1 DR "= =

coT i o ool anal __anal
Hpp (X/C(log Y)) ® H_(X-Y/C) = ~ 1N (X ’Y , C)

For S any scheme of characteristic zero, if w : X —> S is proper and
smooth, i: Y<> X the inclusion of a divisor with normal crossings relative
to S, j: X-Y&> X the inclusion of its complement, then the canonical

morphism of complexes of sheaves on X

8,.10,2 (log Y)%J Q.

x/s X-Y/S

is a quasi-isomorphism (i.e., an isomorphism on cohomology sheaves)

(cf. Atiyah-Hodge [ 0 ]), from which it follows that the maps deduced by
applying the I_{1n>,< to 7.12.2
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8,10.3 H. _(X/S(log Y)) —> H})

L
bR (X-Y/S)

R

are isomorphisms of sheaves on S,

9, Nilpotence over a global base

9.0 Let R be an integral domain which is finitely generated (as a ring)
over Z, and whose field of fractions has characteristic zero, Let

T = Spec(R); we call T a "global affine variety." ILet f:S—> T be a

smooth morphism,
Let p be prime number which is not invertible on S, This excludes a

finite set of primes. Put

9.0.1 T ® gp = Spec(R/pR) = Spec(R @Z gp)
and
9.0.2 S®F =Sx_F

=p Z =p

We have the diagram (in which all squares are cartesian)

soog\s
\

P ’
\Spec(é)

9.1 Let (M, V) be an object of MIC(S/T), with M locally free of

finite rank on S. Taking its inverse image (cf. 1.1.3) in MIC(S@]EP/T@]EP),
which we denote (M@Ep, V@_Ii‘p), we may ask whether or not it is nilpotent,

—

and, if nilpotent, then nilpotent of what exponent ?

We will say that (M, /) is globally nilpotent on S/T if, for every

prime p which is not invertible on S, we have L

|
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9.1.0 M®F , V®F Nilp(S®F /TQF
( =p =p) ¢ P( :p/ :p)

Let p be an integer, y >1. We will say that (M, V) is globally nilpotent

of exponent y on S/T, if, for every prime p which is not invertible on S,

we have
9.1.1 M®F , V®F ) ¢ Nilp” (SQF /TQF )
(MOE , V@E_ P (S®E /TOF

Clearly we have
Proposition 9.2, Let £:S—> T and {' :S' —> T' be smooth morphisms,
with T and T' global affine varieties (cf. 9.0), and suppose given a

commutative diagram of morphisms

S! \g\
9.2.0 £ ?
T h f
\ y
Let (M, /) be an object of MIC(S/T), with M locally free of finite rank
on S. Then
9.2.1 If (M, V) is globally nilpotent on S/T, then its inverse image
(g, h)*(M, V) is globablly nilpotent on S' /T,
9.2.2 If (M, V) is globally nilpotent of exponent y on S/T, then its
inverse image (g, h)*(M, V ) is globablly nilpotent of exponent v
on S'/T'.
We also have the self evident
Proposition 9.3, Let T be a global affine variety, f:S—> T a smooth
morphism, and g : S* —> S a proper étale morphism, Let (M, /) be an
object of MIC(S'/T), with M locally free of finite rank on S'. Then
9.3.0 (M, V) is globally nilpotent on S'/T if and only if (g*M, V) is
globally nilpotent on S/T.
9.3.1 (M, V) is globally nilpotent of exponent » on S'/T if and only if
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(g, M, V) is globally nilpotent of exponent y on S/T.

10. Global nilpotence of de Rham cohomology

Putting together sections 7, 8, and 9, we find
Theorem 10.0. Let T be a global affine variety (cf. 9.0), £:S—> T a
smooth morphism, with S connected, and w: X —>S a proper and smooth
morphism,
Suppose that each of the coherent sheaves on S (cf. 8.2)
P, q
X >
B odge! /S) P, q>0
n
>0
HDR(X/S) n >

is locally free on S (a hypothesis which is always verified over a non-empty
open subset of S, cf, 8.4),

For each integer i >0, let h(i) be the number of integers a such

that H;,Olé;e(X/S) is non-zero, (Thus h(i) is the number of non-zero groups
Hlua(Xs, Q; /C) which occur in the Hodge decomposition of the i'th cohomology
s/ =

group the fibre Xs of m over any C-valued point of S.)

i
DR
the Gauss-Manin connection, is globally nilpotent of exponent h(i) on S/T.

Then for each integer i >0, the locally free sheaf H (X/S), with
Theorem 10.0 (log Y). Let T be a global affine variety, f: S—>T a
smooth morphism, with S connected, m:X —>S a proper and smooth
morphism, and i:Y <> X the inclusion of a divisor with normal crossings
relative to S. Suppose that each of the coherent sheaves (cf. 8. 5)
b, q
HfodgeX/Sog Y))  p, >0
n
HDR(X/S(log Y)) n>0

is locally free on S (a hypothesis always verified on a non-empty open
subset of S),.

For each integer i >0, let hY(i) be the number of integers a
a,i-a

with HHodge

(X/S(log Y)) non-zero. Then for each integer i >0,
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H
the locally free sheaf H;)R(X/S(log Y)), with the Gauss-Manin connection, is E i
globally nilpotent of exponent hY(i) on S/T.
11, Classical theory of regular singular points
11.0 Let k be a field of characteristic zero, and K a field of functions in
one variable over k, i.e., K is the function field of a projective, smooth, 0
absolutely irreducible curve over k. 1L

Let W be a finite-dimensional vector space over K, A k-connection VV ;

on W is an additive mapping

1 ]
o« U, : w ]
11,0.1 V W=——>9Kﬂ£®K

which satisfies

11,0.2 V(fw) = df ® w + £ V(w)

- =

for fe K, we W. Equivalently, |/ "is'" a K-linear mapping

oy
—_—

11.0.3 V : Der(K/k) —> End, (W)
such that
11.0. 4 (V(D))(fw) = D(f)w + £( V(D)) (w) i\

for D e Der(K/k), fe K, and we W. »‘E
The connection is necessarily integrable, i.e., compatible with !

brackets, since = 0,

K/k
If (W,V) and (W', V') are two such objects, a horizontal
morphism ¢ from (W, V) to (W', ¥') is a K-linear mapping of W

to W' which is compatible with the connections, i.e.,

Prage

11.0.5 p(V(D)(w)) = V' (D')(gw))

The objects (W, {/) as above, with morphisms the horizontal ones,

form an abelian category MC(K/k). (NB - this notation is slightly misleading,

Y

rmg_‘
oy
B Pty
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since, unlike what was required in the geometrical case of a smooth morphism
S —> k, we are requiring that W be finite dimensional over K (i.e.,
coherent), rather than just quasicoherent.) Just as in 1.1, MC(K/k) has an

internal Hom and a tensor product,

11.1 Let '2& be a place of K/k (i.e., a closed point of the projective and
smooth curve over k whose function field is K), @' its local ring, m

its maximal ideal, ord tK—>2Z U {0} associated valuation "order of zero

¢

at %." Thus
11.1.0 ¢, ={feK|ord (f) >0}

11.1.1 m ={feK[ordbe(f)Zl} .

§

Let Der (K/k) denote the (@, -submodule of Der(K/k)

bg

11.1.2 Der (K/k) = {D ¢ Der(K/k)lD(man) Cm } .

¢

In terms of a uniformizing parameter h at q# , Der (K/k) is the free (

module with basis hac—lﬂ. In fact, for any function y ¢ K, which is rnot a unit

at Y y-c% is an 0’,3‘ -basis for Der,,(K/k).
11,2 Let (W, V) be an object of MC(K/k). We say that (W, /) has a

regular singular point at ’% if there exists an (, -lattice W, of W (i.e.,

a subgroup of W which is a free (§, -module of rank = dimK(W)) such that

¢

11,2.0 Der (K/k)(W?) C Wy .
1
In more concrete terms, we ask if there is a base e = | . of W
as K-space, such that e
11.2.1 (h-—cl) = Be with BeM (0 )
.2, \V) an )¢ = Be eM

¢

for some (and hence for any) uniformizing parameter h at 7% .

Remark 11.2,2, If /\f is a regular singular point of (W, V )}, there is no




unicity in the lattice W,, which "works'" in 11.2,0. We will return to this
question later (cf. especially 12.0 and 12, 5),
Proposition 11. 3. Suppose

11.3,0 0——=>(V, ') —> (W, V)—> (U, y")—>0

is an exact sequence in MC(K/k). Then (W, /) has a regular singular
point at '% if and only if both (V, ¢ ') and (U, y ") have a regular singular
point at 'L% .

Proof. Suppose first that (V, V') and (U, V") have regular singular points

at % This means we can choose a K-base of W of the form
e
11.3,1 < ;

of W sothat e is a base of V, and f projects to a base of U, in terms

of which the connection is expressed

a (¢ A O e
11.3,2 V(ha)(f_>=<B c> (;)

with AeM (J,), CeM_ ((,). The problem is that B may not be
S ny f
1 2
holomorphic at ’% . But for any integer p, we readily compute
4 e A o e
11,3.3 v (h=) - = - ,
dn n’s B Cty n’¢

and for y >>0, we have h'B holomorphic at '% .

———— .
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Conversely, suppose that (W, /) has a regular singular point at %’
and let W,, be an (J, -lattice in W which "works' for 11.2.0. Then
vNn W, is an O’ -lattice in V (elementary divisors) which works for 11,2, 0,

Similarly, U N (image of W,, in U) is an (), -lattice in U which works

¢ ¥

Remark 11.3.4. The full abelian subcategory of MC(K/k) consisting of

for 11.2. 0.

objects with a regular singular point at % is stable under the internal Hom
and tensor product of MC(K/k).

11.4. Let us say that (W, /) is cyclic if there is a vector we W, such that
for some (and hence for any) non-zero derivation D e Der(K/k), the vectors
w, V(D)w, (V (D))ZW, (V (D))3w, ... span W over K. (We should remark
that for w ¢ W, the K-span of the vectors w, {/(D((w), (V(D))z(w), ... is
independent of the choice of non-zero D ¢ Der(K/k), and is thus a Der(K/k)
stable subspace of W.)

Corollary 11.5. Let (W, V) be an object of MC(K/k). Then (W, V7 ) hasa
regular singular point at 15, if and only if every cyclic subobject of (V/V, V) has
a regular singular point at ? ‘

Proof, "Only if'' by 11,3, "if" because (W, 7 ) is a quotient of a direct sum
of finitely many of its cyclic subobjects (so apply 11.3 again).

11.6 Let (W, V) be an object of MC(K/k), and W% an (G, -lattice in

¢

W. We say that (W, 7 ) satisfies ""Jurkat's Estimate" (J) at 7 for the

lattice W, if there is an integer j, such that, for every integer j>1 and

D, ¢ Der, (K/k), we have (denoting by h a

pp e D y

uniformizing parameter at 1} )

every j-tuple D

v
11.6.0 V(Dl)-V(DZ) V(Dj)(qu) Ch (W)

¥

Let us reformulate this condition, Let DO bean &, 6 base of

D, e Der, (K/K),

1, o o8y J ,%

Der,Lg/(K/k). One quickly checks by induction that for any D

one has
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j
14
V(D)- V(D) « ... - V(D)= = a (V(D))

v=0

with a s e a.j ¢ ¢, . Thus 11,6.0 holds for all j > 1 if and only if, for
some Of% -base Do of Der, (K/k), one has

11.6.0 bis (V(Do))j(W )b (W ) forall j>1

¢ §

In terms of an (@], -base of W _, the condition 11.6,0 bis may be

e
expressed as follows. For each j>1, iﬁne a matrix Bj 3 Mn(K) by

Jo - .
11,6.1 (V(Do))g—ng .

Then 11, 6.0 bis is equivalent to
11.6.2 ord (Bj)zp for all j>1

In applications we will speak of a K-base e of W as satisfying (J)

at qg , rather than of the lattice given by its (;, -span. Also, we will

usually take as (¥, -base of Der, (K/k) a derivation h-i- h a uniformizing

¢ an’

paramefer a‘s %;; altzhoﬁgh we may oééasionally use y:%r- as base, for a
non-zero y which is a non-unit at 1} .

Proposition 11,6,3. If (W, V) satisfies (J) at 137 for one base, it satisfies
it for every base,

Proof, Let e be a base of W and p an integer such that, for all j>1

11.6,3.0 (Y (h%l-))jg = BJ.(;., ord?(Bj) >

Let f be another base of W, so that

-1

11,6.3.1 f=hAe, e=A"f AeGL (K)

1o

We define the sequence of matrices Cj by

4 Ve
11.6.3.2 (V(hdh))—f‘cjf
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We easily calculate the Cj in terms of the "Bj’ By using Leibniz's rule,

4 Vg - 4 A,
11.6.3.3 (V (hzp))f = (V (b)) Ase)
s rmdydtiiay
= T hgy)” ()] Bye ‘
whence i
|
iy i -1
. . = — -B.A
11.6.3.4 Cy =z Olthgg)” (4] B
Since for any element f ¢ K we have
df
11,6.3.5 ord (hﬁ)f Ord'Lda(f) s
11. 6. 3. 4 gives immediately
11.6,.3.6 ord (Cj) ?_mini_o(ord (A) + ord (Bi) + ord (A-l))
i.e.,
11,6.3.7 ord?(cj) >u + ord (A)+ ord (A'l) .
|

Proposition 11,7, If (W, Y ) has a regular singular point at % , then it
satisfies (J) at % . |

Proof. Indeed in a suitable base e, we have

11.7.0 V(h%)g:Bg, BeMn(G ) .

31’*

As the Bj are formed successively according to the rule

d
11,7.1 B. =h—(B.) + B.B
j+1 dh( _]) j

we see that each Bj is holomorphic at QaQ , i.e., ord (Bj) > 0.
11,8 Let a be a positive integer, In the extension field K(hl/a) of K,

1
there is a unique place le/a, which extends qj , and h /2 is a uniformizing

parameter there,




I'%
-75" 5'

Proposition 11, 8,1, Let (W, V) be an object of MC(K/k). Then (W, V)

e et w—ao
S5, T
e ————— e——

satisfies (J) at % if and only if its inverse image in MC(K(hl/a)/k)
1

7;'.

Proof, Calculate the matrices Bj of 11.6.1, using a K-base e of W,

i
satisfies (J) at % !

and h-(;i—h as O"‘& -base, for both (W, V) and its inverse image. They are

the same matrices,

Theorem 11,9 (Fuchs [ 8 ], Turrittin [34 ], Lutz [24 ]). Let (W, V) bea

A W RO me—— m——— ———————n o o ST
—

cyclic object of MC(K/k), we W a cyclic vector, a place of K/k, h a
’? p

-

W). The following conditions are

uniformizing parameter at '? , L= dimK(

equivalent,
11.9.1 (W, V) does not have a regular singular point at % .
11.9.2 In terms of the base

W - M

¥ (B (w)

(V (o)™ ()

of W, the connection is-expressed -

Hao

d L]
11.9.2,0 V(h:ﬁl-)g— O 1

(@]

o

—

L]

.
O -

and, for some value of i, we have ord (fi) < 0. !
11.9.3 For every multiple a of n!', the inverse image of (W, V) in
MC(K(hl/a)/k) admits a base f in terms of which the connection is expressed

(putting t = hl/a) *
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d
11.9.3.0 V(ta)éf— Bi:'
such that, for an integer y > 1, we have

11.9.3.1 B=tYB , B M ,
9 -y -y € n( Olt?l/a)

1
and the image of B in M (k(y)) (i.e., the value of B at 1} /a) is
-V n 3‘ -V

not nilpotent,
11.9.4 For every multiple a of n!, the inverse image of (W, V) in

1/a ) 1/a . 1/a
MC(K(h )/k) does not satisfy (J) at ')ao, (using h as parameter),
11.9.5 (W, V) does not satisfy (J) at —Lf .
Proof (11.9.1 == 11,9, 2) by definition of a regular singular point
(11.9.2 => 11.9. 3), After the base change K —> K(t), % = h, we have, in

terms of the given base e,

0 ) N
1 0
e 1oed. [ .

By assumption, we have ord l/a(fi) < 0 for at least one value of i, while

for every value of j, the integer ord l/a(fj) is divisible by n!. Consider
the strictly positive integer p defined by

n

-1 .
11.9.7 v = max. . (- ord l/a(fj)/n—_])

" t

Consider the basis f of W ®K K(t), t = hl/a, given by

11.9.38

N
il

no
"
>

no

L ——
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We readily calculate (cf, 11.9,6)

d d d d
11.9.9 V (t)f = Vg (Ae) = [(E)(A)]- e + A V(t)(e)
= ([t—dclt(A)]A'1 + ACA'I);.C = Bf

and an immediate computation then yields
1 d
11.9.10 av(tdt):f~B:f

with

2y 0

0

(n-1)y t(n_l)vf t(n-z)vf .
0 1
By definition of y, (11.9.7), we have
11.9,11 ord (t(n"j'””f ) = (n-j-1)y + ord
7 1/a j

[

and, for at least one value of i, we have

(n-i-l)y_, _
Ord’lfl/a(t fl) = -y
Th ite B=t“B , B M .
us we may write y o © n( G?I/a)
11.9.12 g =% 1 5.0, ..., 0ol
J J
so that
g.¢ O for all j
11.9.13 J "ﬁil/a

giQm 1/a for some i

In fact, putting
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we have

o 1 ... 0

0“.'6
TR (OR Nl

1 modulo bﬁl/a
0
0 O 0 1
&y &1 * - ¢ n-1
. . . 1/a
which is not nilpotent modulo ,% . Indeed, we have
11.9.15 det(TI -B )= T" - 3 ). 1", modulo 1/a
e n"to) T T Fiaobit ¢

/a

(11.9.13) is not the case. This concludes the proof that 11,9.2 =>11.9. 3,

1
so that B is nilpotent modulo if and only if each g, em , Which
-V '\3’ J 1/a

(11,9.3 = 11,9,4) We use the base f to test the estimate., Writing

d.j,
11.9.16 (V(taz)):f—Bj:f
we have
11.9.17 B —(ti)B + BB
T 1T AT j

and one checks immediately (despite the confusing notation) that

11.9.18 B.=tYB | with B .¢eM (C )
j ~V] -v] n %l/a
- j 1/a
and B , (B ) modulo rLéa
~v) -V
so that
11.9.19 Ord’ljl/a(Bj) = -pj

so that (J) is not satisfied. To conclude the proof of 11.9, we note that
11,9.4 =—>11.9.5by 11,8.1, and 11.9.5 =>11.9.1 by 11.7.

Corollary 11.9.20 (Manin [25 ]). Let (W, V) be an object of MC(K/k),
1,2 a place of K/k, Then (W, /) has a regular singular point at 1%
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if and only if, for every w e W, the smallest (J,, -module stable under

Der,, (K/k) (cf. 11.1,2) and containing w (if h is a uniformizing parameter
at Y - this is the O’.?-span of w, V(hgdﬂ)(w), (V(h%)) (W), ...) is

of finite type over (J

Proof, If (W, {/) has a regular singular point at 'be then for any element
we W, the K-span of the elements (V(h;l_h ) (w), 1>0, "is' a cyclic object

of MC(K/k) having a regular singular point at 1ag . Letting n, be the
K-dimension of this span, we see by 11,9 that the (), -span of the elements

(V (h—a%)) (w), i >0, is free of rank n, over y . (In fact, the elements
(V(h'&_)) (w), i=0, ..., nl—l form an O;?-base.), '

Conversely, suppose that for every we W, the (,, span of the
elements (V(h (w), i >0, is of finite type. This means that every we W

d
is annihilated by monic polynomial in V(hdh) whose coefficients are in 0’7 ]
hence that the K-span of the elements ('V(h—d~h-)) (w), i >0, is a quotient in
MC(K/k) of an object with a regular singular point at vj We conclude, by
11.5, that (W, ¥ ) has a regular singular point at 45,
| Theorem 11.10 (Turrittin), Let (W, V) be an object of MC(K/k), 1j a

place of K/k, h a uniformizing parameter at 137 , n =dim_(W), The following

K
conditions are equivalent.

11.10.1 (W, ¥ ) does not have a regular singular point at 1{ .

i (11.10.2) For every integer a multiple of n!, there exists a base f of

W ®K K(hl/a) in terms of which the connection is expressed (putting

_ 1'll/a)

d
V (kg = B

(11,10.2.0) { B=t""B , y aninteger >1, and

B—v € Mn( O’%l/a) has non-nilpotent image in Mn(k(?)) .

l 11.10.3 The estimate (J) is not satisfied at 7

|
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Proof, The implications 11,10,2 == 11,10,.3 and 11,10.3 ==>11,10.1 are

obvious, using 11.9.16-19 and 11.8.1 for the first, and 11.7 for the second.
We now turn to the serious part of the proof.

(11,10.1) = (11.10.2) We proceed by induction, (If n =1, we are in the
cyclic case.) If (W, V ) has no proper non-zero subobjects, it is necessarily
cyclic, If (W, V) has a non-trivial subobject (V, /'), we have a short
exact sequence in MC(K/k)

0—>(V, Y')—> W,V )—> (U, V") —>0

with n1 = d1mK(V) <n, nz

By 11.3.0, either (V, V') or (U, V") does not have a regular

= dimK(U) < n.,

singular point at % . So by induction, there exists a basis of W ®K K(hl/a)

of the form (;:e)’ where e is a basis of V ®K K(hl/a), and where f projects

to a basis of U ®K K(hl/a), in terms of which the connection is expressed

'/

(putting t = hl/a)
d. e A O e
11.10.4 Vi) (E) = (B o > )
such that
11.10.5 A=tYA for an integer p >0
-V -—
A_ € Mn (& l/a)
14
if p>0, A has non-nilpotent image in Mn (k(%)) and
-v
1
11.10.6 C=t"C__ for an integer >0
C eM (O )
-T n, %l/a

if >0, then C . has non-nilpotent image in Mn (k(qj)) and finally
) 2

11.10.7 v+T1>0
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h

e
Replacing the basis (S) by the basis ((N,) for N large, we obtain the new
p g F y ¢

connection matrix

a ¢ A o e
11,10,8 V(ta-f—:)(tle) = N (th)
- t B C4+NI -
. N_ . , 1/a
with A, B, C as before (but now t B is holomorphic at 130 ). Clearly
1

this connection matrix 11,10, 8 has a pole at % /a of order sup(y,T), and

A @)

tsup(V’ T)
tNB C+NI

has non-nilpotent image in Mn(k(?))' This concludes the proof of Turrittin's
theorem,

Proposition 11,11, Let

FC~>K—L

be a tower of function fields in one variable over a field k of characteristic
zero, with deg(K/F) < «w and deg(L/K) <w. Let 7 beaplace of L/k, 1#'
the induced place of K/k, and ' the induced place of F/k. Let qj'l, cees 'j'r
be all the places of K/k which lie over the place '?" of F/k.
Let (W, V) be an object of MC(K/k). Then:
11,11.1 (W, V) has a regular singular point at 1?' if and only if the

.inverse image (W ®_ L, VL) of (W, V) in MC(L/k) has a regular

singular point at 3OK
11,11.2 The "direct image" (W as F-space, V|Der(F/k)) of (W, V)
in MC(F/k) has a regular singular point at '%", if and only if (W, V)
has a regular singular point at each place 1{{ oqu.m/kwwhichlﬁ'es over ?_".

Proof. We have (cf. 11,1.2

7

11.11.4 Der_ (L/k) <—— Der  (K/k) @y

* 2



T

and

11.11.5 Der (K/k) <= Der ,(F/k) @ i=1, ... 1 . ‘
'%i '\f 7? %1
To prove 11,11.1, observe thatif W  is an . , -lattice in W, stable 1

under Der '(K/k), then W | Q& & is an @'f—lattice in W®K 1,

stable under Der (L/k). To prove 11.11.2 == 11.11,1, observe that if

W ® Lﬂn is an % -lattice in W ®K 1., stable under Der_ (L/k), then

W N (W ®K L)ﬁo is an (J | -lattice in W which is stable under Der_ (K/k).

Similarly, to prove 11,11, 3, note that if for i=1, ..., r

2 i %3 2

an @  latticein W, stable under Der (F/k). To prove the converse

W is an (@,  -lattice in W, stable under Der (K/k), then &, W (

we simply apply the criterion 11.9.20 of Manin. |
Corollary 11.12, Let K/k be a function field in one variable over a field k

of characteristic zero, % a place of K/k, k an algebraic closure of Kk, ? $
the induced place of Kk/k, (W, /) an object of MC(K/k), and (Wk’ Vk)
its inverse image in MC(Kk/k). Then (W, V) has a regular singular ;
point at Y if and only if (W=, \Y; —1-{) has a regular singular point at ? .
Proof. Use the equivalence 11.10,1 <=>11.10. 3, calculating with a K-base

of W, and a parameter at 1§, .
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12, The Monodromy around a Regular Singular Point

We refer to the elegant paper [25] of Manin for a proof of the following
theorem, which ought to be well~known.

Theorem 12.0. Let K/k be a function field in one variable, with k
of characteristic zero. Let Qf be a place of K/k which is ratiomal, i.e.
kfy? = k. Suppose that (W,y) is an object of MC(K/k) which has, at jﬁ, a regular
singular point, In terms of a uniformizing parameter t at 'bg , and a

basis e of an C%%-lattice “%ﬁ of W which is stable under < (t %E s

we express the connection
d
12.0.1 V(t $D)e = Be, B e Mn(@’%) .

Suppose that the matrix BC#? € Mﬁ(k) (the value of B at 3{ , Wwhose
conjugacy class depends only on the lattice W,,, not on the particular
choice of a base of ng or on the choice of the uniformizing parameter t)

has all of its proper values in k. Then
e

12,0,2 The set of images in the additive group k+/§ of the proper

values of B%ﬁ) (the exponents of (W,v) at }e) is

independent of the choice of §7(t'%g)-stab1e éze-lattice

ng in W.
12,0.3 Fix a set-theoretic section ¢: k+/§ —> of the projection

mapping k+———>-k+/§. (For instance, if k = C, we might
require O < Re(yp) < 1.) There exists a unique C%f-lattice
Wéﬁ of W, stable under Y/ (t %E)’ in terms a base e' of

which the connection is expressed

d ,
12.0.3.1 V(t e’ = ce' Ce Mn((?’,cf)
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and such that the proper values of Cg%b € Mﬁ(k) are all fixed
by the composition T _Prod. o k+/g-—1£—%> k+. (The point
is that non-equal proper values of C(x) do not differ by

integers.)

A
12.0.4 The completion M%E of the ééﬁ-lattice M%f of W above admits

a base € 1in terms of which the connection is simply

il o>

d .~
vt g8 = cap-

Remark 12.1. If we require of ¢ that ¢(2) = {0}, and if BQ£) has
all its proper values in Z, then the matrix C(g? is nilpotent.

Remark 12.2. 1In general, let C@gp =D+ N, [D,N] = 0 be the Jordan
‘decomposition of qu? as a sum of a semi-simple matrix D and a nilpotent
matrix N. Then the conjugacy class of N 1is independent of the choice of .
(And the eigenvalues of D are, modulo Z, the exponents (cf, 12,0,2) at }f.)

anal

Remark 12.3. Suppose k < C, and let 556 be the local ring of germs

A
of analytic functions at g?. Then the base g‘ of W' comes by extehsion of

A
scalars 0;\0!1.&_;0'&9 from a base Sanal of W,gpﬂo, O/Xa}nal. In terms of
this base eanal a multivalued "fundamental matrix of horizontal sections"

b4

over a small punctured disc around g{ is given by
12.3.1 e exp(~C(g) Log )

Thus, when "t turns once around %( counterclockwise," log(t) becomes

log(t) + 2mi, and the fundamental matrix
12.3.2 e7CP
becomes

12.3.3 exp(-2ﬂiC€£))t-C<%D



or, what is the same,

12.3.4 exp(~2miDyexp(-2miN)t >N

In particular, the proper values of the monodromy substitution for "t turning
once around }F counterclockwise'" are the numbers exp(~2ﬂicl),...,exp(-Zﬂicn),
where Oyse++,0, are the exponents at 5( .

Definition 12.4. Let K/k be a function field in one variable, with k
a field of characteristic zero. Let g( be a place of K/k which is rational,

(W) an object of MC(K/k) which has a regular singular point at bf . We

say that the local monodromy at }f is gquasi-unipotent if the exponments at ;f
are rational numbers, If the local monodromy at }f is quasi-unipotent, we

say that its exponent of nilpotence is < v 1if, in the notation of 12,2, we

have Nv = 0,

Definition 12.4 bis. If be is any place of K/k (not necessarily
rational){ at which (W) has a regular singular point, we say that the local
monodromy at }? is quasi-unipotent (resp., quasi-unipotent with exponent of
nilpotence <v) 1if this becomeé true after the change of base k—> k = an

algebraic closure of k, at the induced place 5? of K-k/k.
12.5. An example. Let k =C, K = C(z), (W) the object of MC(K/k) given by

"12.5.1 W, a K-space of dimension, with basis e

102"
In terms of this base, the connection
g e e 0 -z e
12.5.2 V(z iz =B =
e, e, 0o -1 e,

Thus (W,Y) has a regular singular point at the place'be : 2 =0, and its
exponents there (the proper values, mod Z, of B(0)) are integers.

Although exp(2miB(0)) = I, the monodromy of local horizontal sections in

-

=

P ~
. e . r— S S——————

T

T R, WO e
" p Sy 4
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a punctured disc around zero is non-trivial. Indeed, a basis of these (multi-

valued) horizontal sections is

il

v ze

1 2
12.5.3

1
v, = 2ﬁi(el + z log(z)oez)

After a counterclockwise turn around 2z = 0,

V1T

vz———> v2 + v1

In terms of a section ¢: C/Z-—>C which maps Z to 0, the unique o, -

(12.5.4

lattice of 12.0,3 is the ( span of the vectors

kS

To_
el = e1
eé = =ze

12.5.5
2
in terms of which the connection is expressed (cf. 12,.0.3).

ei 0 1 e

d
V(z ) =

1 ] ]
e2 0 0 e2 e2

'
1

n
(@]

Remark 12,6, Returning to the "abstract' case, suppose that }f is a
rational place of K/k at which (W,¥) has a regular singular point, and ng
is an C;%-lattice of W which is stable under Y/ (t %E . Suppose the
completion %}F of Mb( admits a base E in terms of which the connection

is expressed

12.6.1 Tt 498 -t with € e M (k)
If the proper values of C all lie in k, then we may rechoose the base g
A
of W}f so that the connection is expressed
d (A A
12.6.2 v (t dt)e = Ce , C ¢ Mﬁ(k)

and such that C is in the form
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12.6.3 .

where each Ci is a square matrix of size vy whose only proper value is Xi'
In terms of the section ¢, of k+-——> k+/§ we put ni = w(xi) - Xi' Then

we replace the lattice W by the lattice W', whose completion admits as base

£ n *

N\ . A

12.6.4 e' = e

O T on

t I
Ve
In terms of the base %', the connection is expressed il
- C4n. I
1 1. Vl -

%:.)/E\v - : . O 2 Clé\l
0 e

12.6.5 v (t

It follows (the proper values of C' being fixed by ¢) that Vge is the
unique lattice specified in 12.0.3 by the choice of . Noting C and C'
have the same nilpotent parts in their Jordan decomposition, we have
Proposition 12,6.6, Suppose (W,7) has a regular singular point at the
rational place ;%7 of K/k, and there exists an (7 -lattice ng whose

&

completion admits a base g‘ in terms of which the connection is expressed
v (t CENGA with  C ¢ M (k)
dt’ = =7 € *n '

Then the local monodromy of (W,7) at 2#9 is quasi-unipotent of exponent of

nilpotence <v 1if and only if in the Jordan decomposition of C,



=88«

C=D+N, [D,N] =0 (
with D semisimple and N nilpotent, the proper values of D are rational
numbers, and N - o,

Proposition 12,7, Let FC—> K <> 1 be a tower of function fields
in one variable over a field k of characteristic zero. Let % be a place
of L/k, hﬁ' the induced place of K/k, and %" the induced place of F/k.
Let %'1,,%; be all the places of K/k which lie over the place ;ﬁ”

of F/k. Let (W§/) be an object of MC(K/k) which has regular singular

points at each place %i,%]': , and vy >1 an integer. Then:

12.7.1 The inverse image (W@KL,VL) of (W,¥) in MC(L/k), which
has a regular singular point at ﬁ by 11.12, has quasi-unipotent
local monodromy at «/o of exponent of nilpotence <y, 1if and
only if (W,VV) has quasi-unipotent local monodromy at %', of
exponent of nilpotence <.

12.7.2 The direct image (W as F-space, V/Der(¥F/k)) of (W,¥) in
MC(F/k) has quasi=unipotent local monodromy at %" of
exponent of nilpotence <v if and only if (WX?) has quasi-
unipotent local monodromy of exponent of nilpotence <y at
each place %3‘_ of K/k 1lying over %".

Proof. By making the base-change k—> k = an algebraic closure of k,
we are immediately reduced to the case of k algebraically closed. Let t be

a uniformizing parameter at %".

To prove 12,7.1, we choose an %,-M.ttice E&?, in W, stable under

in terms of which the

1t o>

A
w(t %{:— , Wwhose completion T’%\p' admits a base

connection is expressed (putting &(x’ /9(") = the ramification index)

12.7.3 EC' "IV (e %t-)'g\ = C& CeM .
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Consider the lattice ¥$,& C%’ in W @K L; its completion admits the "same"
1 .

base

no>

, and the connection is
d \a .
12.7.4 Egﬁéﬁ")V7(t EE)S = ggpéf )C§ .

We conclude the proof of 12,7.1 by applying the criterion 12,6.6 to the matrices
C and 8(7)/}2')0.
Now let us prove 12.7.2. For each point %{i lying over Tg", we choose

a lattice W _, 1in terms of a base §

Ki i

expressed (writing g = Eﬁ%&éﬁ"))

of whose completion the connection is

d ~ A
12.7.5 g; Vit ) = CagIE; C(}fi) e M (k)
Consider the Ggen-lattice ingﬂ in W considered as F-space., In the natural

i

basis of its completion, consisting of the blocks of vectors

ak&
12.7.6 . (t) Ei , a = O,l,...,éi-l, i=1,...,r

aly

the connection, stable on the span of each block t §i , 1s expressed on
each block as

afe. afe,

(< 1oy 1 1A

12.7.7 vi(t dt)(t S—i) = Ei <C(«fi) +a) t e .

Again, we conclude by using condition 12,6.6, which is satisfied by each of

the matrices C(xg) if and only if it is satisfied by each of the matrices

1
£, <C(Tfi) + a) , a=0,1,,..,&-1.

13, Consequences of Turrittin's Theorem

We are now in a position to apply Turrittin's theorem 11.10 to the study
of globally nilpotent connections.

Theorem 13.0. Let T be a global affine variety (cf., 9.0) and f: S—> T

|
|
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a smooth morphism of relative dimension one, whose generic fibre is geometrically
connected. Let (M,¥) be an object of MIC(S/T), with M locally free of
finite rank on S. Let k denote the function field of T, K the function
field of S. Thus K 1is a field of functions in one variable over a field k

of characteristic zero,

13.0.1 Suppose that (M,Y) 1is globally nilpotent on S/T (cf. 9.1).
Then the inverse image of (M,¥) in MC(K/k) has a regular f
singular point at every place }E of K/k, and has quasi-

unipotent local monodromy at every place }%7 of K/k.

13.0.2 Suppose that (M,V) 1is globally nilpotent of expoment v on

S/T. Then at every place b{ of K/k, the local monodromy of l

the inverse image of (M,Y) in MC(K/k) is quasi-unipotent

of exponent < wv.

Proof. Using 9.3.1 and 9.2, and 11.12.2 and 12.7.2, we are immediately

reduced to the case:

13.0.3 S 1is a principal open subset of é% , i.e., T = Spec(R), and

S = Spec(R[t]'[-g—%B]> with g(t) ¢ R[t]

13.0.4 we wish to check at the place of K = k(t) defined by t =0 ‘

13.0.5 M is a free R[t]{—l——] module \
g(t)

13.0.6 g(t) = tJh(t), with h(t) ¢ R[t] and j >1 (otherwise there

is no singularity at t = 0)

and h(0) an invertible element of R (at the expense of localiz-

ing R at h(0)).
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Suppose that (M) is globally nilpotent, but that t = 0 is not a regular

singular point of its restriction to MC(k(t)/k). Let n be the rank of M,

1
Let us make the base change (putting =z = tl/n')
13.0.7 R[t] |=—=| —> Rz ][1 ] :
g(t). g(z)
By 9.2, the inverse image of (M,Y) on R[z][étz)] is still globally nil-

potent, but by Turrittin's theorem 11.10, there exists a basis m of M

D) ]), which, by "enlarging" g, we may

(over an open subset of Spec(R[z][

suppose to be all of Spec( ) in terms of which the connection
is expressed

. d -1 )
13.0.8 V(z E;)°g =z (A+2zBm , u>1
13.0.9 A ¢ Mn(R) non-nilpotent
13.0.10 BeM (R[z] l:h( ):D (and h(0) invertible in R)

An immediate calculation then shows that, for each integer j > 1, we have

13.0.11 (\7(2 —)) m=zMad 4 2B,)m with B, ¢ M < [z][h( )D

Now let p be a prime number, Recall that in Der(gp[z]/gp) we have
d )p =z %; . Thus the hypothesis of global nilpotence is that, for every
prime number p, there is an integer «(p) such that

a(p)
) M C pM

13.0.12 <(V(z —)p - V(z g—z-)

or, equivalently, using 5.0,9, that, for every prime number p

13.0.12 (z'“P(AP + 2B ) - z Ha -FzB)a(P) e pM_ [R[z]
Ut p n (Z)

Hence looking at the most polar term, we conclude

e

v
I‘I
bl
i
+]
[
a‘
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13,0.13 Ap-a(p) € pMn(R) for every prime p.

Now look at the characteristic polynomial of A, det(XIn - A). According to

13.0.13, its value at every closed point of T = Spec(R) is b and hence

>

13.0.14 det(XI_ - A) = "

which implies that A 1is npilpotent, a contradiction. This proves that t =0
was a regular singular point of the inverse image of (M,V) in MC(k(t)/k).

We now turn to proving quasi-unipotence of the local monodromy at t = 0.
By definition of a regular singular point, there exists a basis m of M

(over an open subset of Spec R[t][g%t)] , which by "enlarging" g, we may

1
su se to be all of Spec(R|[t
PpO all of Sp C< [ ][g(t)

) in terms of which the connection is

expressed

13.0.15 V(e Dm = (A + Bym

with A ¢ M (R), B¢ Mn<R[t][g%—g)“D s

and h(0) invertible in R.

By adjoining to the ring R the proper values of A, and perhaps localizing
the resulting ring a bit, we can assume that the Jordan decomposition is

defined over R i.e. that

2

13.0.16 A=D+N, [D,N] =0

D e Mn(R) diagonal

N ¢ Mﬁ(R) nilpotent super-triangular

Suppose that (M,V) 1is globally nilpotent. For each prime number p, we thus

have

qa \P a \%p)
13.0.17 (v(c EE) - V(2 E?) McpM .




-93-

As before (13.0.11), an immediate calculation shows that, for each integer j > 1

13.0.18 v(ti-j—(Aj+tB)
e dt)‘é‘” i’2

with Bj € Mn<R[t][?%ES]> ,  h(0) invertible in

Now, using 5.0.9 and looking at the constant term of the matricial expression

of 13.0.6, we find

13.0.19 (AP - A)Q(P) € pMn(R) for every prime p

Writing A

D+ N (cf, 13.0,15), we have (because [D,N] = 0)

13.0.20 0= (AP - &P = P _ p 4 P - PP oauto PM_(R)
and, looking at the diagomal terms, we find

13.0.21 (0P - py*P) PM_(R) .

Let d be a proper value of D; then d 1is quantity in an integral domain R
of finite type over 5, whose quotient field is of characteristic zero, such
that at every closed point '3? of Spec(R), the image of d 1in the residue
field Rfy? at /y? lies in the prime field. As is well-known, this implies
that d € RN Q. This proves the quasi-unipotence of the local monodromy.

Now we must estimate the exponent of nilpotence of the local monodromy,
assuming (M,/) globally nilpotent of exponent vy. At a closed pointfyg of

R of residue characteristic p, we have (D being diagonal)
13.0.22 DP = Dmod'(lﬁ
so that 13.0,20 gives (since we may take a(p) =y for all p)

13.0.23 (N - MHV= 0 mod Tﬁ
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But N 1is nilpotent; let us write

13.0.24 a® - mY = DIV - WThHY

and notice that (1 =~ NP-l)v is invertible in Mﬁ(R), so 13.0.23 is equivalent to
13.0.25 W= 0 mod% for every closed point %

which implies that NY = 0 in M_(R). Q.E.D.

13.1 A counter-example (d'aprés Deligne)
Let T: S—> T be a smooth morphism. There is a bijective correspondence

between T-connections Y/ on 69/ and global sections of Qé/

S Namely, to a

T
T~connection 7 on Cz
13.1.0 Vv : (9'3——->Q]§

corresponds the global section of Qé/T

13.1.1 w=/(1) .

Conversely, to a global section ® of Q;/T corresponds the T-connection §7w
on O, , defined by

13.1.2 §7&(f) = df + fw

The curvature Kw of the connection is

w
Ky @é 5 Qé/’r
13.1.3
Kw(f) = f-4dw .
Thus /,, 1is integrable precisely when ® 1is closed.

w

Suppose that T (and hence S) 1is a reduced scheme of characteristic p,

and let W be a closed global section of Qé/ What does it mean that the

T *




-95.

connection V7, be nilpotent? First, since Og is free of rank one, S is
reduced, and the p-curvature Ww(D) of a local section of Dexr(S/T) 1is a nil=-

potent (ﬁg-linear endomorphism of 62 , 1t means that §7w has p=-curvature

zero. By Cartier's theorem (5.1), the CE-SPan of the horizontal (for §7w)

sections of (9; is all of (9‘8

X
of S, and sections fi of (?S over 211 such that fi is horizontal for

, and hence there exists an open covering Ql_
i

Yy » i-e.

13.1.4 w = ~df /£, on ui )

Thus, if T = Spec(gp), and S is an elliptic curve E over Ep s
and ® 1is a (non-zero) differential of the first kind on E, then VQD is

nilpotent if and only if the "Hasse invariant'" of E is 1, 1i.e, if and only if

13.1.6 Card(E(EP)) = 0 modulo p

where E(Ep) denote the group of rational points of E., By the Riemann Hypothesis

for elliptic curves,
13.1.7 Vp - 1 SVCard(E(gp“)) <+/p+1 .

Thus if p > 7, and if E(EP) has a non-trivial element of order two (so that
Card(E(Ep)) is even), 13.1.6 and 13.1.7 are incompatible, and so <z” is not
nilpotent. Thus may we construct counter-examples to the converse of 13.0.

Example 13.2. Let a,b ¢ Z, with a2 # 4b, Consider the projective

and smooth'elliptic curve E over Spec|Z ————l————1 given in homogeneous
= = 2
30(a"=4b)
coordinates X, Y, Z by the equation
13.2.1 v = X(x* + aXz + bz%)

Then the connection in CE given by



st )

f—>df + fw

(where W = d(X/2)/Y/Z 1is the differential of the first kind on E) gives

a connection on the function field of EQ for which every place is a regular
singular point (indeed not a singular point at all) and has quasi=-unipotent
monodromy (namely none at all). However, the connection, far from being

globally nilpotent, induces on the structure sheaf of the fibre over every

closed point of the base a non-nilpotent connection.

Remark 13.3. If we project this example to the x-axis, we get a rank-two

1
counter-example over an open subset of A

7 7 whose inverse image on Q(x) has

singular points precisely at 0,00, and the roots of xz + ax 4+ b, (These

are the points over which the x-coordinate is not étale; compare with 12.7.6-7).

13.4 In the '"positive'" direction, Messing (unpublished) has shown that, if

a,b,c ¢ Q, then the rank two module over

—1 1
z{x’n-x(x—l)] (n ¢ Z so chosen that a,b,c ¢ E[n])

corresponding to the hypergeometric differential equation with parameters

{a,b,c}, is globally nilpotent. Of course here there are only three singular

points, x =0, 1, or oo ,

14, Application to the Local Monodromy Theorem

14.0 Let S/C be a smooth connected curve, and let T: X—>S be a proper

and smooth morphism. Clearly there exist:
14.0.1 a subring R of C which is of finitely generated over Z,

14.0.2 a smooth connected curve §/R, which "gives back" S/C after

the base change R<—> G,




-97-

14.0.3 a proper and smooth morphism 1: X—> S which "gives back"

m: X—> S after the base change S —> S.

Combining 10.0 and 13.0, we find

Theorem 14.1 (the Local Monodromy Theorem).
Let S/C be a smooth connected curve, K/C its function field,

m s X—>S a proper and smooth morphism, XK/K the generic fibre of 1.

For each integer i > 0, let h(i) (cf., 10.0) be the number of pairs
(p,q) - of integers with p + q = i and
BP9 /) = aim, BY(X,OPK /K

image of HER(X/S)’ with the Gauss-Manin connection, in MC(K/Q) (or what

il

P - .
rank@,S an*(QX/S non-zero, Then the inverse
is the same, the K-space H;R(XK/K) with the Gauss-Manin connection) has
regular singular points at every place of K/C (indeed has no singularity
at any place in S) and quasi-unipotent local monodromy, whose exponent of

nilpotence is < h(i).

14.2 Let K/C be the function field of a smooth connected curve S/C, and let

14.2.1 7 UL —> Spec(K) f

P

be a smooth morphism (not necessarily proper).

By Hironaka [18], there exists a finite extension L/K, a proper and

smooth morphism p: X —> Spec(L), and a divisor, i: Y&—> X, with normal I

crossings relative to Spec(L), such that the morphism !

L —> Spec(L)

X

14.2.2 TrL:U_L = U

is the morphism

14.2.3 P|X=Y : X -~ Y——> Spec(L).
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Clearly there exist

14.2.4 a subring R of C, finitely generated over Z,

14.2.5 a smooth connected curve S/R, the generic point of whose

fibre over the given point Spec(C) —> Spec(R) is L,

14.2.5 a proper and smooth morphism p: X—> S, and a divisor

i:

]

€—> X with normal crossings relative to S, whose
fibres over the given point Spec(L) —>S are p: X—> S

and 1i: ¥Y&~—> X respectively,

Applying 10.0 (log Y), 13.0, 8.10, the fact that

L/L) = B (W/K)®L, 11.12.1 and 12.7.1, we find

X

Theorem 14.3 (Deligne). (The "Open'" Local Monodromy Theorem).

i i
HDR(X-Y/L) = HDR(U,

Assumptions and notations as in 14,2,1-3, let m: U —> Spec(K) be a smooth
morphism., For each integer i > 0, let hY(i) (cf. 10,0 (log Y)) Dbe the
number of pairs (p,q) of integers with p+q =1 and dim Hq(X,QilL(log )
non-zero, Then the object of MC(K/g) given by H;R(ZL/K) with the Gauss-
Manin connection, has regular singular points at every place of K/g, and at
each the local monodromy is quasi-unipotent, of exponent of nilpotence

< by (D).
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