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§ls Analytic geometry of n dimensions.

Euclidean space of n dimensions En is the vector space (over the
real numbers) consisting of n-tuples of real numbers with addition, multi-

plication by scalars, and inner product defined as follows:
(alx seey an) + (bla seey bn) = (al+ bl' seey an+ bg) H
p o&(al, cees an) = (oxal, ...,aan), K real ;

(al’ cavy an) s (blf se0, bn) = a1b1+ vss + &nbn .

@cpt. Re’dd @ NSV Sclool of Mere,

lie shall use small roman lettetrs without subscripts to denote elements of
En. subscripts being used to designate the coordinates. Thus a = (e’l'°'°'a’n)°”
We shall use lal to mean (a a.)% end refer tola - bl as the distance be-
tween a and b. Clearly aba(e °* b) Slallbl. If a£.0, we call le.l-l a

the direction of a, Elements of En will be called either points or vectors,

JE18'54

By @ linear manifold in En we mean any one of the following equiva-

lent concepts: -
NN

< (1) a non-empty subset of E_ such that if & and b belohg to the set,

then Aa + (1 - A) b belbngs to the set for any real A 3
130780
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(2) @ set of points in E obtained from a subspace of E_ by aedding

a constant vector to each element thereof’;

(m)

(3) a set of points of the form Aoa(o)# vee + A 8"/, where

a(o), ces, a(m) are points of En’ Ao’ "”‘xm run over &ll

real numbers such that A + ...# % =1, snd 0 Snna;

(4) o set of points of the form b(°)+ Plb(1)+ eee + pmp(m)

s Where
b(o), b(m) are points of E run over all real
y oo, . P n? Pl’ ere, Pm !
numbeys, and O Snin
By the dimension of & linear manifold we mean any one of the folléwipg, which
are equivelent: the dimension of the subspace in (2) (called the parellel

subspace), the minimal m in (3), or the minimal m in (4). By a straight line

in En we mean § linear manifold of dimension one, i,e., either of the follow-
ing, which are equivelent: & set of points of the form b + A ¢, where ¢ f’o
and A runs over all real numbers, or a set of points of the form Aa + (1=A)b,
where a # b and A runs over all real numbers,

By a plane we mean either of the following, which are equivalents:
& linear manifold of dimension n-l, or & subset of En which can be character-
izeld ag the set of points x in En satisfying an equetion of the form u * x = u s

where u ia a fixed vector from E and u, is & fixed real number. We say that

lul’l % is the direction-vector of the plane; it depends on the equetion

used, although determined up to multiplicatjon by 1. 1t jul =1, we say

that the equation u * x = u, is in normal form. with respect to the plane

*

.
u X=uo

the set of points x such that u ~x 2 u, is called the closed positive half-
" space,
oW v " x " "owex . u, L ¥ closed negative half-

space




the set of points & such that u * x > u is called the open positive half-
space,

terror o x " wex<u " " " open negative half-
8pace,

A lingar manifeld can be characterized as the intersection of a set of plares
having at least one point in common; the minimum number of plares is n -(the
dimensiqn),

For the facts quoted ubove see Steinitz, J. Reine Angew, Math. vol,143
(1913)99.131*149.

I‘)‘ &(0)* ceey a(m) are m+l points (O 5 m 5 n) lying in no m-1 dimen=

(o),

sionel linear manifold, then the set of points A a . 4-Am§(m), where

,\O, "”"\m run over ull sets of non-negative real numbers with sum 1, is
called the m-éimplex determined by<q( ), e0ey a(m). The segment joining two
distinct points a and b is the a-51mplex detqrmined by &« and b, i.e., the set
of points of the form Aa +(1- A)b, S AS1. The ray from b in the di-
rection ¢ is the set of points of the form b + Ac, A z 0

We recall the definitions of interior (or inner) éoint of e set, ex-
terior (or outer) point, frontier (or boundary) point, pluster (or 1imit)
point, closed set, open set, derived set gr p set, closure of a set, etc, A
set which is not the null set or the whole space E has a nop-empty boundary.

" A simplex in En has interior points if and only if it is an n-simplex.

The interiors of n-simplices form a system of neighborhoods in En equivalent

to the usua] spherical neighborhoods,



§2. Basic ptoperties of convex setss

This section is mainly devoted to those properties of convex sets
which are just as easy to prove im a general normed linear space as in a
Euclidean spaces In subsequent sections we shall restrioct ourselves to
Euclidean spaces, so that the generality of the present section is essenti-
ally a luxury. .

L convex set in a normed linear space E [cf. Banach, Theorie des

opérations linéaires, Warsgw, 1932, p.53) is a set of points such that if

a and b belong to the set, then Aa + (1= A)b belongs to the set for
0= A s 1, Clearly a set is convex if and only if every straight line in-
tersects it in the null set, a point, & segment with or without either end-

pof t, a ray with or without the endpoint, or the whole line. The intersectian

o
t

of two convex sets is convex, A linear menifold is convex., An open or
closed half-space (with respect to a plane) is convex. A4 set of points of
the form Aoa(0)+ ces 4-,Apa(P)’ where p 3 0 and )b’ voey Ap run over all
sets of non-negative real numbers with sum 1, is convgx.

THEOREM 1, If a convex set K contains the points a(o), sory aﬁp),
(o)# °

ve + Apa(p), where

then it contains ell points of the fornm Aoa

Ag? **» Ap are non-negative numbers with sum 1.

Proof3y This theorem is true for p = 1 by the definition of convexity.
Suppose now that the theorem has been proved for 1, 2, .ss, p-l. If
At eee ¥ Ap-l = 0, there is nothing to prove. If A\ + .us + AP_1= A>0,

then by induction
Qo o)y . 4 Dl (pe1)
A * A

belongs to K. Since A+ Ap = 1, it follows that



,\(%\2 a(°)+ coe —):-{-)\:-];a(p-l)) + )\pa(p) ’

or Aoa(°)+ deo * Apa(p), belongs to K, ge.e.de.

THEOREM 2., If a convex set K contains more than one point, then K'= K,

Proof: We must show that if a € K, then & € K's But if b is a point
of K distinct from a, all points of the segment joining a and b belong to K
and thus a is a cluster point of K.

THEOREM 3. If & convex set K is not the whole space E, then (E - K)' =

“=E~Ko
Proof; We must show that if a &€ E-K, then a & (E~K)', Suppose
g £ (E-K)'s Then we could find a sphere with center a conteining no points ‘
of E-K other than a. Joining two diametrically opposite points inside the
sphere would show that a € X, a. contradiction.

THEOREM 4. If a convex set K contmins more then one point but is not

the whole spece, Front K = K'~ (E = K)',

i .
‘Proof; By Theorems 2 and 3 we huve

Front K» K~ E~ K = K ~(E - K)'.

THEOREM 6o Let R(x) denote the distance of a point x from the convex

L ————

set K. Then the function R(x) has the property

RO{1 =AY x +2y) T (1 - A)R(x) +AR(y) for 05 3 T3,
Proof: There exist points x!', y' of K such that

Ix-xt| <rx)+6, ly -y'] < R(y) + 6,

6 being any given positive number. Then (1 = A)x'+Ay' is in K end

F{Q ~A)x + Ay = {@ =X+ Ayt3 | = (1 =ANx = x') +A(y = ¥) |
S@a-A)fxex ealy -yt ] <@ - MR(x) + ARGy) + &



J

Since S is arbitrary, our theorem is proved.

THEOREM 6, Let r(x) denote the distance of a point x from the comw-

plement E - K of the convex set K Then if O s A S 1 and x and ¥ are

in K, we have
r({1-A}x+ Ay) T (1 -A) r(x) + rly).

Proof: We may assume 0 < A <1l .o If r(x)=r(y) = 0, there is

nothing to prove. If r(x) # 0 and r(y) # 0, then x + u is in K for lul < r(x)

end y + uis in K for lul < r(y); hence (1 =« A)x +Ay + u is in K for

ful < (1 - A)r(x) +Ar(y), so that the theorem is proved in this case, If
r(y) = O but r(x) # 0, then, since y is in K , there is & point y' of K
such that |y - y'l < ) , Where 6 is eny piven positive number less than

(1 =A)r(x)e Now x + u is in K for [ul! = r(x) end hence (1 =A)x +Ay'+ u

is in X for Ju |l < (1 ~A)r(x). Thus

r({1-AYx+Ay") T (1 -A) r(x),

so that

r({1-AYx+Ay) 2 (1 -A)r(x) -6,

Since 0 is arbitrary, the theorem is proved,

THEOREM 7. If a is an interior point of a cofivex set K and b is any

S t———— —u— sto— ———

point of K, then (1 - A) & + Ab is an interior point of K for 0 S A<l

Proof': By Theorem 6
r(§1-AYa+Ab) 2 (1 -4A)r(a) >0

and hence the point (1 - A) a + Ab has positive distance from E - K.

THECREM 8, I K is & convex set, a € Int X, and b ¢ Front K, then

the point (1 =A)a +Ab = & + A(b « &) is interior to K for 0 = A < 1 and

exterior to K for A > 1,




Proof': The first part of the conclusion is contained in Theorem 7,

If (1 = A) & + Ab were to belong to K for some A > 1, then by Theorem 7
~1 -1
(L=A")a+A {(1-A)a+Adb} =b

would be an interior point of K, a contradiction.

THEOREM 9, If K is & convex set, Int K is also convexX,

Proof: This follows from Theorem 7,

THECREM 10, If K is a oonvex set, K is also convex.

Proof't Suppose a € K, b € K, Then for any § > 0 there exist u, v
such that ful< 6, Ivl< 6, e +uck b+veK Thus for eny A be-

tween O and 1 we have (1 =A)(a + u) + A(b + v) € K and
(1 =A)a +u) +A(b +v)} = {(1=A)& +Ab}]
= l(l—)\)u+/\v!<(l-)\)6+/\5=5.

Sinos 0 is arbitrary, (1 -A)a +Ab is in K .

THEOREM 11, If K is a convex set such that Int X is non-empty, then

Int X = Int K and Front X = Front E = Front (E - K).

Proof: Clearly Int K c Int K. On the other hand K = Int KU Front K
and by Theorem 8 no frontier point of K can be an interior point of K. Thus
Int K = Int K. Finally

Front § = k « Int E = E~Int K = Front K .

THEOREM 12, If a convex set K has interior points but is not the

whole space, then there are points exterior to K, that is, K is not the

whole space.
Proof: Since K is not the null set or the whole space, Front K is

non-empty. Thus this theorem follows from Theorem 8.
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As remarked at the beginning of this section the above theorems(and
their proofs) are valid for any normed linear space over the real numbers,
We conclude this section with some remarks about the Euclidean case, After
this section we shall consider the EBuclidean case exclusively, although some
of our proofs hold more generally,

The dimension of a convex set in Euclidean space En of n dimensions
is the dimension of the smellest linear manifold conteining the set, By
Theorem 1 an m-dimensional convex set contains an m-simplex, but does not
contain an (m+1)-simpkax. Accardingly a convex set in En has interior points
if and only if it is n-dimensional, Hence a convex set in En without in-
terior points lies in some (n-1)-dimensionsal linear manifold, Thus in the
Euclidean case the condition in Theorem 11 and 12 that Int K be non-empty
mey be dropped., Hence we have the following result,

THEOREM 13, If K is any convex set in Euclidean space En’ then
—————-———-—_-—- N —t—

Int XK = Int X and Front K = Front K= Front (E -~ K); if in addition K is not,

the whole space, K is not the whole space,

§3. Tac-planes of convex sets.

Weo say that the plane u * x = u, is a bounding plane of & set M in

En if either

sup u >z < u, or inf u ez > u, .
z2 e M 2 €M

Wie say that the plane u ¢ x = U, is & tac-plane of a set M in En if either

8up u * z = u or inf use z = u .
ze M 2 €M

Clearly a plane is & bounding plane (or tec-plane) of M if and only if it is
& bounding plene (or tac-plane) of M, A set I has at most two tac-planes

having a given direction.



THEOREM 14, If g set M with an interior point a has a tac~plane

through each boundary point, then M and Int M ere convex,

Proof: 1If M is the whole space, M has no tac-planes and hence no
boundary points; thus Int M must also be the whole space and the theorem is
trivial in this case, Henoe we may assume that there exist points ¢ not in
M. Then there exists a boundary point b on the segment joining a and c}
clearly b ¥ a, b £ 6y The tec~plane T to M through b does not contain ¢,
for otherwise it would contain the interior point m, which is impossible,
Hence the closed half-space of 7] containing a includes M but does not con-
tain c. Since c¢ is any point exterior to M , we see that M is the inter-
section of all closed half-spaces containing M, Thus M is convex. * Now
Int M= Int & » 8ince a boundary point of M has a tac-plene through it and
cannot therefore be en interior point of M. Hence by Theorem 9 Int M is
convex, This proof must be modified slightly for El'

THEOREM 16, If ¢ is a point erterior to a convex set K, there is a

unique point p EE.R closest to ¢,

Proof'; There is at least one point of K whose distance from ¢ is mie
nimum, since X is closed, Suppose there were two distinct points p and q

of K having the minimum distance from ¢, Then, since
2 2 2 2
Flp-ol®+dlg-cl®=|dp-0)*+Ha-c)’|3p~0)=3(q- o)
2 2
= [3p+a) -]+ |30 - ),

the point %(p + q) would have a smaller distance from c, & contradiction,

THEOREM )6. Suppose c is a point exterior to & convex set XK and p is

the point of K closest to c, Then the plane

M s(c-p)e (x-p)=o,
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is a tac-plane of K such that ¢ lies in the opéen positive half-space thereof

and K lies in the closed negaetive half-space. Also the plane

WTé : (c-=p)e(x=-c)=0,

is a bounding plane of K such that X lies in the open negative half~-space

thereof.,
Proof'y Clearly c¢ lies in the open positive half-spece of’ﬂi. To
see that K lies in the closed negative half-space of 7T1 we notice that for

O< A <1 the point (1 ~A)p +iz =p +)(z -~ p) is in K for z € K and thus

le-plP <lc-p-Alz-p)%= APlza=plf - 2A(o = p)e(z - p)*le = pl?

or
Eal K
(c=p)e(z-p)<zirlz-pl".
Since A can be arbitrarily small we must have
<

(¢ «p)e(z~-p)-0
for any z in K. Thus the statement about 'ﬂi is proved. To see that 'ﬂ% is
& bounding plene of K we need only observe that

< 2

(c-p)ez-(c-p)ep=(c-p)soc~|oc-~p|

for any z in K.

THEOREM 17, If K is & convex set, K is the intersection of all closed

e

half-spaces containing K.

Proofs By Theorem 16, if ¢ is exterior to K there exists a closed
half-space containing K but not ¢,
THEOREM 18. If b is & boundary point of a convex set X, there is at

e + o Y

least onp tac-plane of K passing through b,
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Carathe/odory' s Prooft (Cf. C. Curathe’odc;ry, Re;1d. Circ.M&t,PaYermo
v01.32(1911)pp.195-201 or L. L. Dines, Amer.kath,Monthly vole4t(1938 )ppe
199-209). By Theorem 13 there exists & sequence of points {b(k)} exterior
to K tending to b. By Theorem 16 there is a bounding plene of K through b(m).

Thus we cen assert the existence of & plane u(k)o X = uo(k)such that

u(k)o b(k) = uo(k), u(k)- Z < uo(k) for 2 ¢ K, ,u(k)‘ =1,

Since the unit-sphere in Euclidean space En is compact, we may assume that

the point u(k)tends to a limit u as k goes to infinity. Since

(x) (1), () 5 )]
0

abs u = abs u

abs uo(k)is bounded and so we may assume that the number uo(k)tends to a
limit u, es k goes to infinity. Clearly

u.b::uo, u'zfuofOTZGK, ‘ul=1!

end so u ¢ x = u, is the equation (in normel form) of a tac-plane to K
passing through b,

McShane's Proof: (Cfs Te Botts, Amer,Math, Monthly vol.69(194Z) pp.
532-533, Botts also gives another nice proof)s. Let S be the set of points
x such that [x - b =1, 1If R(x) is the distance of a point x from X, then
R(x) S lx - vl and hence R(x) 1 for x € S, Since R(x) is continuous and

S is compact, there is a point ¢ € § such that
<
R(x) < R(c) for all x ¢ S,

" We claim that R(¢) = 1. In fact if §is a given positive number less than
1, there exists (by Theorem 13) a point d exterior to K such that ld - bl < é.
Suppose M : ue x = u, is a bounding plane of K through d such that lul=1

and K lies in the negative open half-space of TT . Thus
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wrday 4, |uj=1, sup_ (u*z) <u .
2 z2€eK
Since in particular u * b < W oa we have

‘0<uo-u-baug(§~b)fld.b| <6,

Hence for any z in K we have

fu+b -z Sue (W+tb-2)>l+rusd-u >1- 6 .

Thus u + b is a point of S such that R(u + b) > 1 - § . Hence R(c) >1 « 0
end, since O is arbitrary, R(c) = 1 as claimed, Now fc - b| =1 and hence
b must be the unique point of K closest to the exterior point c. By Theorem

16 the plane through b perpendicular to ¢ - b is a tac-plane to K.

84, Convex hulls and convex closures,
The convex hull H(M) of a point set M is the smallest convex set con-
taintng M, that is, the intersection of all convex sets containing M, The

1 . .
8 the smallest closed convex set con-

convex closure C(M) of a point set M 4

taining M; that is, the intersection of all closed convex sets containing M.

THEOREM 19, 1(H) < B({) = H(M) = c(M).

S

Proof: By Theorem 10 R() is convex as well as closed,

e shall prove luter that H(T) = C(M) if M is a bounded set in E_.
If M is unbounded, H(M) can be properly contuined in C(M); en example of
. I -2
this is the set of points (xl, xz) in B, such that x, = o X1 ,

THEOREM 20. M, H(M), and ¢(M) have exactly the same tac-planes and

bounding planes and are contuined in exactly the same closed half-spaces.

Proof: For each non-zero vector u the set of points x such that

: < <
inf wez~-uex-5s5Up u-*2
z €M zeM
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is a ¢losed convex set containing M and thus contains H(M) and C(M), Hence

inf ue*sz s inf ue®* 2z = inf u*®*z

ze M z € H(M) z € (1)
and
sup u e z = sup ue g= sup u-*z
z e M z € H(M) 2 e C(M)

In view of the definitions of tac-planes, bounding planes, and closed half=-
spaces, this proves the theorem.

THEOREM 21. C(M) is the intersection of &ll closed half-spaces cone

taining M.

Proof: By Theorem 17 C(M) is the intersection of gll closed half=-
gpaces containing C(M)e But & closed half~-space contains C(M) if end only
if /it contains M.

THEOREM 22, C(M) is the set of points through which pass no bounding

-

Jplanes of M.
Proof: If c¢ is not in C(M), by Theorem 16 there is a plane through c
which is a bounding plane of C(M) and therefore of M. If ¢ is in C(M), no

bounding plane of M can contain ¢ by Theorem 20.

THEUREM 23, H(M) is the set of all points expressible in the form

a—— .

)\oa(o)-b coe ¥+ )\P a(p), )\0 Z O, cosny )\p 2 O, }\o"' o +AP =] s

where p is any non-negative integer and a(o), eeey a(p) are any points of M,

Praof: Let K be the set of points expressible as above, Clearly

Mc X and X is corvex, By Theorem 1 K « H(M). Hence K = H(M),

THEOREM 24, Suppose

- A gal0) N (p) -
c-—)\oa + 200 l>\p& s f\o>03 »esy )\p>0,(\°+ eve "')\p 1,



[
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and suppose r is the dimension of the smullest linear menifold containing

(o)

8" Yy sesy a(p). Then we can find r+l or fewer of the points a(o), seey a(p)

in terms of which ¢ can be expressed linearly with positive coefficients

whose sum is unity.

Proof: If p = r there 1s nothing to prove, so assume p > r. Then

(1), glo), a(P)

the p vectors a (XYY - a(o) lie in a subspace of En of dimen-
sion r and thus satisfy a relation of the form

,pl(a(l)' a(O)) * e +;Pp(a(p)' a(0)) =0,
where not all the u's are zero. If we put Po = Pq = oo - PP we have

Poa(o)‘, . +Fpa(P) =0,

Pt oo +Ipp = 0, not all n's zero,
Let V¥ be that one of‘pb/ko, esey PP/AP which has largest absolute value,
(If several have the maximum absolute value, any one mey be teken). Since
v ;( 0 we may write
(o) (p)
e = (A, = p/W) & % el + (A, yp/\i) afl
where the coefficients are non~-negative and have sum 1 and at least one of

them is zero, Since this process may be repeated, our theorem is proved.

THEOREM 25, Suppose r is the aimension of the smallest linear mani-

. fold contuining a set M ig_En. Then H(M) is the set of all points ex~

pressible in the form

Ao a(°)+ oae *'Ar a(r)’ ); z 0, ---aa\r J 0, Ao+ M "Ar =1,

(o) (r)

Wwhere &' ‘, ees,y & are any points of M.

Proof: This follows from Theorems 23 and 24,

THEOREM 26, If M is & bounded set in E , H(M) = c(31).

Proof: By Theorem 19 we need only prove that H(M) is compact and

therefore closeds Suppose ic(l)§ is a sequence of points of H(H). By
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Tf&eb;‘em &5 each c(i) can be expressed in the form
: oi - i > >
O(i)a Aoi a( )* Y ¥ "Ani a-(n )’,\Oi- O,lﬁ.‘)\ni- O' Aoi"' oo + Ani = l

(oi) (ni)

whare 8' "/, see, 8 are points of ‘M. Since M is compact, we mey (by

-~

taking subseéuences) assume that therd exlst points a.(o),-...,.a.(n)of M such that
qlod) (o) (1)

converges toa" ‘, a converges to a(l),'etc., as i1 goes to infinitys
Since the gequences i/\oi} s oasy ’{)\ni} are bounded, we may likewise gssume
that there exist non-negative real numbers /\o’“ toes )\'1‘_1 such that )\oi cons

verges to Aot A
o(1)

14 converges to 1\1, eté, Clearly )\04' cee * )\n = 1 and
converges to

c ® ,\0 a.(o), * qe0 *+ /\n a(n)'

which is in H(}M), since e.(o), cony a’(n) are in M,

THEOREM 27, If T ig a taceplane of M, then T ~ H(M) = H(TT A M).

Proof: Let the equation of 1] be u  x = u, and suppose sup u * z = u,
. reM
If ¢ is a point of T~ H(M) it can be expressed in the form

c = /\o a(O)s e + /\r a(r)' /\O >‘,0) o0y /\r > O, )\8"' 9o +/\r = 1,

(o) (r) (1)

: <. =<
for some r, 0 ~ r = n, where a are in M. If uea‘“‘<u

-
TR XS X a
o)

for some i, then .J
uso=A u-a(°)+;..+/\u-;(i')</\ U+ YA u =
) r ~ "% "o ° r o 0
end ¢ would not be in T, Hence u * a(i)‘a uo for 1 # 0, «se, r; that is,
each a(i) is in T~ M, and so ¢ is in H(TT A M)

THEOREM 28, If M is a bounded set in B end T is & tac-plane of N,

then M AC(M) = C{TT~H)a

Proof3y By Theorem 26 end 27

T Ac) =T ~u(l) = B(T~AR) = KT~ = c(TT AT
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§5,.Guage functions,

In this section we shall be concerned with convex sets in En having
inner points.

If a is an inner point of a convex set K, the guage function (or dis-

tance function or Minkowski functional)F(x) of K with respect to a is the
greatest lower bound (inf) of all positive A such that a + )Tl(x—a) is in X,
Clparly F(x) = 0 if x = a or if x # a and there is no boundary point on the
ray from & in the direction x - a. If x % & and there is a boundary point
b on the ray from a in the direction x - a, then by Theorem 8 F(x) =
=|x-a|/|b-als Also in this latter case F(x) is the least upper bound
(sup) of all positive A such that a + Arl(x - 8) is not in K. Thus
F(x) <1 if and only if x € Int K, F(x) = 1 if and only if x € Front ¥, and
F(x) > 1 if and only if x ¢ E - K,

Without loss of generality we take a = O throughout the rest of this
section. Thus we tacitly assume that our convex sets have the origin as an
inner point,

THEOREM 20, The gtage function F(x) of a convex set K with respect

to the origin has the following three properties:

(a) F(x) T 0 for each x in E ;

(b) F(px) = p F(x) fgf_y'f 0;

(c) Flx+y) SP(x) + F(y)s

Proof': Froperties (a) and (b) are obvious from the definition, If
F(x) = F(y) = 0, then 26’lx and Zé‘ly ere in K for any positive O, so that
6‘1(x*y) is in K for any positive § and F(x+y) = 0. If F(x) £ 0 but F(y) = 0,
fF(x)}’lx is a boundary point of K and 30 F(x)}uly is an inner point of K

for any positive 6; thus
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F( {r(x)}x + T 8P y) <1,
F(x+y) < (1+8)F(x), eand, since § is arbitrary,
F(xty) SF(x) = F(x) + F(y).
If ¥(x) £ 0 and F(y) # 0, then {F(x)}"lx and {F(y)}‘ly ere in K, so that
F (ch‘(;%m {Fe} e + 20 {F<y>}‘1y> S

and

F(x+y) S F(x) + Fy) .

THEOREM 30, If F(x) is any real-valued function on E_ having proper-

ties (b) and (c¢) of Theorem 29, thren there exists a non-negative number P

such that abs F(x) fﬁ I x| ; moreover F(x) is continuous,

(1)

Proof's Suppose e s sesy e(n) are the unit vectors in En' Then

n

x =3 x o) 05 (abex,) (2011,
i=1 i=1

(1)

is chosen as that of the coordinate x,.

where the sign before e i

Let o be

the maximum of the 2n numbers F(¥ e(i)), i=1, +s., ne Then

F(x) S i F( {abs xi} {Z (i)} ) = L (abs x, ) F(& e(i))

i=1 i=1

fcha.bsx fo*nE(Z: )ztc'nlxl

i=1 i=1
Since 0 = F(0) = F(x) + F(-x), we have also

F(x)E—F(—x)f-d* n%,~x’=-o~ n%'x’.

(]

Thus the inequality of our theorem is satisfied withJo = oo n®, The con-
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tinuity 8f F(x) at x = & follows from the inequalities
-p lx] S . F(=x) SF(tzr.ﬂt) - F(a) fF(x) SP Ixt .

THEOREM 31, If F(x) is any real-valued function on E having proper-

T )

ties (a), (b); and (6) of Theorem 29, then the set {x lF(x) <1l}is en

open convex set including the origin and the set {x.' F(x) = 1} is a closed

convex set having the origin as imner point; moreover F(x) is the guage

funttion of both these convex sets.

Proéf; By Theorem 30 F(x) is continuous end thus the topological
statements follow, since F(0) = O, To show corvexity we merely observe

that if F(x) < 1 and F(y) < 1, then for O0-< A <.l vye have
F(Ax + {1=AYy) v P(A x)* F({1-A}y) = AF(x)+ (1-A) F(y)-<1;

similarly if F(x)-S.1 and F(y)'$.1, then F(Ax-+ {1-A}y)-S 1 for

0< A <1, Condition (b) shows that F(x) is actually the gusge function
of {xl F(x) <1} and {:och(x)-f 1) (and’ that the second of these sets is
the closure of the first), \

THEOREM 32. If F(x) is the guage function of the convex set K

with respect to the oriﬁ}g, then K is conteined in the sphere [x | s y

if end only if F(x) has the property F(x) ?P'l Ix}.

Proof: Suppose F(x) if’llxl.; then if x is in K, F(x) T1 and so
| x| f_p . Suppose K is contained .in lxl"fy ; - then 1if | x| =p ,» F(x) Y
hence by homogeneity F(x) ?P'l Ix| for any x.

THEOREM 33+ If F(x) is the guage function of the convex set K with

respect to the origin , then K is symmetrical with respect to the origin

if and only if F(:z) has the property F(-x) = F(x)a




19

Proof: Clear,

THEOREM 34, If F(x) is the guage function of the convex set K with

respect to the origin and if K is symmetrical with respect to the origin,

then the points of En for which F(x) = O form a linear subspace.

Proof; If F(x) = O and F(y) = 0, then for any real A we have

F(Ax + {1=A}y) = F(Ax) + F({1-A}y) = (abs A)F(x) + (abs{l-A} ) F(y) = O.

THEOREM 35 The boundary of a bounded convex set K with inner points

is homeomorphic to the surface of the uhit sphere in En'

Proof's Suppose the origin is an inner point of K and let F(x) be the
guage function of K with respect to the origin. Then x - {F(x)}nlx is a
one-to-one continuous mapping of the unit sphere onto the boundary of X and
hence gives a homeomorphism. Actually the inverse mapping from the boundary

to K to the surfuce of the unit sphere is simply x = ]xf-lx .

§6. Tac-functions,

In this section we shall be concerned with convex sets in En which
are bounded,

The tac~function G(u) of a bounded convex set K is a real-valued

function on En defined as followss

G(u) = sup u * z ,
z ek

Clearly K and K have the same tec~-functione

THEOREM 36, If K is a bounded convex set and G(u) is the tac-function

of K, then for u % 0 the pleme u * x = G(u) is the unique tac-plane with

direction number fu’~lu and positive open half-space free of points of K.
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Proof; This follows from the definition of tac~plane and tac-function.

THEOREM 37. If K is a bounded convex set and G(u) is its tac-function,

K is the set of all points x such that u * x s G(u) for every u; in other

words K is the intersection of the closed half-spaces u * x = G(u).

Proof: Cf. Theorems 16 and.l7,

THEOREM 38, The tac~function G(u) of a bounded convex set K has the

property

6(u) + 6(-u) = 0,

with equality if and only if u = O or if u # O and K lies in the plane

uex=0G6(u)e

Proof: 1In faot

G(u) =supuez= inf Wez=-n sup (=u * z) = - G(~u).
z €Kk z¢ K ze€ K

THEOREM 39. If ful = 1 the tac-function G{u) of & bounded convex set
ZIBOREM 8P« 1L

K is the distance from the origin to the tac-plane u » % = G(u), the distance

being reckoned as pbsitive or negative according as the origin is in the

negative or positive open half-space of u * x = G(u), (XK is in the closed

negative half-space of u « x = G(u)),
Proof's In fact the vector G(u) u is the shortest vector from the
origin to the plane u « x = G(u).

THEOREM 40, Eﬁ_G(u) is the tac-function of & bounded convex set K

and H(u) is the tac-function of & bounded convex set L, then G(u) N H(u)

for every u if and only if K ¢ L.

Froof s+ This follows from Theorém 37 and the definition of tac-function.

THEOREM 41, If G(u) is the tac-function of a bounded convex set K, then

the tac-function of K + & is G(u) + a * u.
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Proof:y In fect

sup u®* 2 =s5up u°*(yta) =supucey+uc’ae,
z € K+a YyekK yek

Some examples of tac~functions are as follows, The tac~function of
e point a is a ¢ \4, that of the unit sphere is lu I, that of the segment

from a to b is max(a ° u, b * u), that of the segment from -a to & is 'a o u| s

n
that of the cube mgx ka‘ S1 s E:; ‘uk‘, that of the octahedron
k=l,....n k=1 :
Zn Ix. ] S114 lu, |
- § nmax .
k=1 xk k=l1ooo,n uk

THEOREM 42, The tac-function G(u) of a bounded convex set K has the

properties
(b) G(pu)=pc(u) for pZo0;
(¢) G(u+v) = g(u) + G(v).
Proof: Iroperty (b) is obvious from the definition of teac~function,

As for (c¢) we have

sup (u*v) ® 2z ~sup U o z 4+ sUp V ¢z .
z¢ K z €K z2e X

We wish to show thet any real-valued function on En with properties
(b) and (c) is the tac-function of some bounded convex set, For this purpose

we need & theorem on the tac~planes of a convex cone. A convex cone with

vertex a is a,convex set (; containing a and points other than & such that

if b aand b e C, then
(L«A)a+Ab=a +A(b - a)

is in C for any positive A .

THEOREM 43, Any tac-plane of & convex cone passes through the vertex

of the cone,
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Proofs Supposé u ® x = u, is a tac-plane of the convex C with ver-

tex a and suppose sup U ¢ & = U . Then u * a s U e Thus if a does not lie
ze C
opu+ex = uo we must have u *» a = uo - 6, 5 > 0. Stince sup u * g = uo,
z €0
there is a point b of C such that u b=y -8 §, where 08 6 <1 . Now

for any positive A the point (1 =A)a +Ab is in C. But the quantity
uef{(Q~A) +AbY ~u = (1 -A)(uzF0)r Au- 0 06) - u= {1-e)A- 16

is positive for large A , a contradiction. Hence u ® a = W

THEOREM 44, If G(u) is any real-valued function on En having proper-
B e e e e — ” >
D i sanad

ties (b) and (c)Aof Theorem 42, then the set K = {xl wex- G(u) for every d}

is a closed bounded convex set of whizh G(n) is the tac-functione (By

Theorem 37 X is the only such set).

Proof: (Cfy Rademacher, Sitzungsberichte der Berliner Mathematischen
Gesellschaft 20(1920) 14-19)e That K is closed and convex follows from the
fact that it is the intersection of closed half-spaces. To prove boundedness
we note that by Theorem 30 G(u) is continuous end so has & finite meximum o
on the set Ju) = 1. Hence for every u with lul =1 the set K is conteined
in the helf-space u s x S » In particular if x %'0 and x € K, then
Ix/™x e x T o or /x| T o . Thus X is bounded.

To show thut G(u) is the tac~fupction of K we need only show that

for each fixed u, there exists an x such that

Wexa=o(d), usx s G(u) for any u .
(In particular, this will show that K is‘non-empty). To this end consider

the set W in En+l consisting of those points (u, un+l) a(ul, sees W uh+l)

such that u 12 G(u), The set W is & convex cone with vertex at the origin;

+

> > . .
for if u ., * G(u), then A Woer” A G(u) for eny non-negative A , and if
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w_ .2 c¢(u) and v 13 G(v), then /\un+l+ (1 -A) LAY Z AG(u) + (1L =A)6(v) =

n+l +

= G(Au) + G({l +A }v) Z 6(Au +{1 -/\lv) for 0 S AT 1, If we put
an+1= G(u), the point (U, an+l) is a boundary point of W, There exists a

tac-plane T to W through (u, u

n+1)° By Theorem 43, TU passes through the

origin and henge has the form

a *® u+a

n+1un+1 =0,

where a is an n-dimensional vector such that (a, an+l) is & non-zero (n+l)-
dimensional vector. iie may assume that W is in the closed positive half-

space of T . Thus we have

-
a ¥ u+a

3 .= z
n+1%nsl 0, &a*u-+ 8411 0 for (u, un+l)€ W

: ; . z
For any given u the point (u,un+1) ig in W for large Woppe and hence CIEY C.

If an+lwere zero, a ¢ u would be non~negative for all u, so that in particu-

lar & ¢ (-a) = O and & = 0, & contradicion to the fact that (e"aml) is a

s’

non~zero vector, Hence we have Be1” Oe¢ If we put x = 841 B VB have
- - - - <
Tau=u ., XoUu-uw. for (u,un+l) EW o
In other words
Feus=GU), Tru~u . if u . = G(u) (for any u)
: n+l n+l *

Thus
xe+u=06(u), x-° ufG(u) for eny u.
Accordingly Theorem 44 is proved,

THEOREM 45, If G(u) is the tac-function of & bounded convex set K,

Sty

then K contains the sphere Ix| < p if end only if G(u) has the property

G(u) Tp luj.
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Proof's 1II the sphere | x| < p is contained in K, then T%T u is in

K for every non-zero u and hence

G(u) = sup_ (u ¢ x) Tue (ng u) =p Juf .

x€ K
If G(u) has the property G(u) E.P ul , then for each u the half-space

wex= G(u) contains the sphere | x| S,P , for if| xl S.P , then

< -
u-*x-<- lullxl = p lul T 6(u) . since B = {xlu e« x 5 6(u) for every ut,
it follows that K contains the sphere | x | 5\9 end hence K contains the

sphere x| <p {by Theorem 13),

§7. Polar reciprocal convex bodies.

Throughout this section a guage function will be understood to mean
e guage function with respect to the origin.

A convex set in En has both a guage function and a tac-function only
if it is bounded and has the origin as inner point, In this section we conwe-
sider convex sets with these properties and the additional property of being
closed (so that no two distinct sets will have the same guage function or
tac-function)s A convex set which is bounded, closed, and has the origin
as inner point we call a convex body,.

THECREM 46. If F(x) is the guage function of & convex set K having

the origin as inner point, then K is bounded if and'only if F(x) > 0 for
x £ O, ‘

Proof: If F(x) > O for x # 0, then F(x) z_p-lx, where P-l is the
minimum of the conmtinuous function F(x) on the set | x| = 1. The result

then follows from Theorem 32,
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THEOREM 47, If G(u) is the tac-function of a bounded convex set K,

then K has the origin as jnner point if and only if G(u) > 0 for u 4 O,
Proofs Cf. Theorem 45 and the proof of Theorem 46,

THEOREM 48. Both the guage function and the tac~function of a convex

body have the following three properties:

(a*) H(x) » 0 for x £ 03
(b)  H(px) = p B(x) for p ¥ 0
(e) EH(x+y) 5 H(x) + H(y).

Moreover any real valued function with these three properties is both the

guage function of e unique convex body and the tac~function of a unique con-

vex body,

Proof; Cfe Theorems 31, 44, 46, 47,

THEOREM 49. If a convex body K has guage function F(x) and tac-function

G(g), then the convex body L with guage~function G has tac-function F.

Proof: Since

. ’ x
G(u) = supue*x= su EFT—T ’
Xe K X fPO x
we have

uoex = G(u) F(x) for any u and x,

where for each non-zero u equality holds for at least one non-zero x, More=~
over we claim that for each non-zero x equality holds for at least one non-
zero u, For by homogeneity we may take F(x) = 1, so that x is e boundary
paint of Ke Then there exists at least one tgc-plane of K passing through x,
that is, there is at least one non-zero u such that u ¢ x s G(u), Thus our

assertion is proveds It follows that
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-

u ‘X
F(x) = sup oy T oW uex,
w70 Glu uel
and henge F(x) is the tac~function of L.
t/hen two convex bodies are so related that the guage function of one

is the tac~function of the other, we sey that they are polar reciprocal

convex podies. Polar reciprocity can also be defined more generally for
closed convex sets including the origin, without meking use of guage functions

and tgc-functionse.
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ie will denote the inner product of two vectors x and y by Xye

we will call a closed halfspace, and which is characterized by the require-

ment that the inner product of any one of its points with a is less than or

equal to 1,

If, in particular, a is the origin, then the corresponding half- N

space is the whole space. :e observe that a closed half-space in our present

terminology always contains the origin. '5

Definition: Let S be any point set in the space. We define its

polar reciprocal set S*, to be the set of all points a such that their corres-

ponding half-spaces contain Se Formally S* = {a‘ X € S=>ax = 1 }.

Examples:

l.

2.

Se

S is the set of one pointe. Then S* is the closed half-spece
determined by this point. In particular {O_}* = the whole
space,

Let S be a linear subspaces Then S* is the orthogonal linear

subspace.

Let C(r) denote a closed solid sphere with radius r and with

centre at the origin, Then C(r)* = 0(%0 .
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§2. Theorem: S* is closed, convex and contains the origin.

rroof: The proof is more or less triviale We prove only the con-
vexity. Let 8y and 8y be elements of S*. Therefore, for all x € S we have
a X S1o Let 0= L 1, We get : For all x € S: {eca+ (1 -oa)az]x S
whigh proves that S* is convex.

§3¢ Theorem: A C B :$A:‘= oD B*.

Proof: Let a ¢ B*. This means that for all x € B we have ax s 1

so that in particular ax < 1 nolds for all x € A« Therefore a ¢ A*.

84, Theorem: l, S bounded =» S* hgs the origin as inner point.

2o S has the origin as inner point => 3" bounded.

Proof: 1l. Let S be contajned in C(r)s Then (Theorem §3) s* con-
*

tains C(r) = C(%—).
Proof;y 2, The other way around,

§5o Theorem: 8™ = convex closure of ({o}us).

Proof: S** is the set of all points x for which it is true that
all a whith the property y € S => ay s 1 also have the property ax s 1,
or in other words: S** is the set of all points x which are contained in all
closed half-spaces which contain S. Thus S** is the intersection of the
closed half~spaces which contain S, and the theorem now follows from a re-
sult on convex closure which has been proved earlier in this seminar (pel3)e

§6. Theorem: (U;S,)" = () s}

Proof: First, assume & ¢ (U S‘*)*.

Thus: For all x € U S, we have ax =1 ’

or: For all x ¢ S we have ax = 1 .

Therefore: & ¢ Sy o But this holds for any o , so that &€ ﬂs: .
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Secondiy assume a ¢ /() S; v It is easy to verify that the previous argument
can be done in the opposite direction,

§7¢ TFrom now on we are going to restrict ourselves to considering
only closed, convex sets containing the origin. Denote the class of such
sets by X . According to theorem §2 the polar reciprocal of any set is a
set in 'j{ o e are going to show conversely, that any set in Y is the po=-
lar reciprocal of some set and more specifically of a unique set in T 4
This follows 4t once from the following theorem

§84¢ Theorem: If X & "W, then K s K.

Proof: Direct consequence of theorem §6 and the definition of k'

¥ *
§9s Theorem: I Kd\c—_ K then (ﬂKd\) = convex closure of U K, »

B

Proof: Theorems §8 and §6 give

Mr, = Nx* = (v )"
Thus (QK ) - (U X )** which according to Theorem §56 is = convex closure
of ({0} U UK ) = convex closure of U K
§10, For convex cones there is’ some confusion of terminology

in the literature, If K is a convex cone with vertex at the origin then
in our notation K* ] {a l x e ‘K = ax 31 _} s Which 18 equivalsnt to saying

= {a lx ¢ K = ax = 0}, because of the fact that ¥ is a conee This is
the definition adopted by Bonnesen-Fenchel, Some authors have instead

K = {a ' X € KE=Dax = 0} which is the cone obtained from ours by a re-

flection in the origin,
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IIIs The Coefficient Problem for Analytic Functions

with Positive Real Part.

§1¢ Ve are pgoing to consider a special problem of the following

general type: Let S be & set of functions analytic in the open unit circle,

Assume also

(a) 8 is convex, that is, f

. < < e -
1€ Sy f, €8, 0= A= 1~—~>o§fl+ (1-eR)f, € 5.

(b) S is compacte Here is meant compact in the topology in which conver-

(

b)

gence is defined as uniform convergence on every compact subset of the
opea unit circles (This is equivalent to saying: S is normal and con=-
tains all its iimit functions, and the infinite constant is not a limit-
function)e

§2. Examples: (a) S is the set of functions with modulus bounded
by 1 or: £ e S<&= |£(x)| 51 for all x with Ix|< 1.

S is the set of functions which take the value %-at the origin and which’

have real part = O, In this example the requirement £(0) = & serves

the purpose of preventing the infinite constant from being a limit

functiones The peculiar choice of % instead of 1 will be explained

-

laters The coefficient problem for this class of functions is the

problem we are going to consider, But first some general considerations,

[o8)
§3¢ Each function of S can be written as a power series :Z: cv:xv

v =0

convergent forl x| < l, Counsider in a 2n + 2 dimensional Euclidean space

E

2n+2

the set K2n+2 of all points with the property that their coordinates

0 ;
ao,bo,al,bl,...,an,bn correspond to & power series zz: e, x” € S with

c

v

v
< < v=0
a,~1 bV for 0O - V «n ,
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Proposition: K2n+2 is closed and conveX.

Proof: Let X, € K2n+2 and X, =>X, Y2123 esee o« Choose
corresponding functions fv € S so that the coefficient sequence of ﬂv
begins with something corresponding to the coordinates of x.,. S being
compact,we can choose a convergent subsequence of the sequence {fu} « Ob~
viqusly the limit function corresponds to the point x which therefore has

to be in K « The convexity part is easy.

2n+2*
§4, If S is known then the convex sets K2n+z can be constructed
(at 1east.theoretically) for every value of n = 01 2 eeee o Conversely,

if the sets K are known for an infinite number of velues of n, then the

2n+2

set S is determined, or in other words, two different sets Sy and Sz can not
give the same sets K2n+2 for an infinite number of values of n, This means
that the knowledge of an infinite number of sets K solves the coefficient
problem for the set S, In order to prove this we assume that

£(x) = VE:fO (a,-1b)x is an olemont of S, and that S, and §, give the
same sets K2 5 forn = Ny, Do Ngy ase o #e shall prove that f & SZ'

n+

Let fn ’ fn s sae be functions € 82 with their coefficient sequences
1 2
starting with (respectively):

&g = i bO s 8y " i bl y e anl- ib .

&"ibop 'ibl,oon,a"'ib

0 "1 ) 2

6o r 0 8 0 6 0 a & ey s o s e s e v & o @

S2 being comne.cs, ‘She sequence {fnvf has a convergent subsequence tending to
a function g ¢ 33“ But the convergence is uniform so the coefficients of
the functions also converge to the coefficients of the limit function which

gives g = £ and f € Sz.
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§5¢ e shall now detérmine thé sets 1{2&*2 for the set S of Example

2(b)s In this case &y %— ” bo = 0, 80 it is enough to consider points in

E, with coordinates (al, b.» 85 bz, vees B, bn). Denote the set of such

2n
points L, n® ‘These are the sets which solve the coefficient problems The
determination of these sets is due to Carathdodory (Rend, Circ. Mat, Palermo
v01432(1911)pps193 = 217), who proves the following theorem .

?heorem; LG is ’equal to the convex hullr of the curve which is

Tpprrr———r
reprosented by the equations
i A

{xvaoos v 6

yy *#sin v @

where xl, y’l, xz, yz, cony xn, yn are the cpordinates of avpoint in Ezn fo_li_cl

© & real E&&rameter.

Proof:s Denote the hull of the curve by H n® e first prove

2
H, ©1L,, Let pe H, o Then there exist A, with A, 2 Oand §_ A, =1
2n~ “2nf P € Hone 1Y T o P
and pointp pF on the curve so that p = pa A }1;?}1, {We can always assume that

J runs from O to n, but this is not gssential for the proof), Let QP be

values of the parameter corresponding to the points p}1
0 -ive
Now, observe that the function x.}l(x) =2+ o P xV has
Vsl
the coefficients %‘, cos 8~ 1 sin9_ , cos 29}1- i sin 29}1, «es @and therefore

po
corresponds to the point p}la Further, =-)()i(0) =2and R e x}l(;c) is not

negative, for

1

5 !
lea t x

XP(X) = -% +

and the funeciiww 2z = ?.MJ;-? maps the unit circle conformally on the half-

plane R e & > % « Therselure, the function f(x) = Z )\)A )3‘(X) satisfies
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£(0) = %, Re (f(x) 2 0 and thus f € S.

On the other hand f has a coefficient sequence which corresponds to p.
Hence p € LG.

The second part of the proof is to prove that L Assume

2n < Hope
p= (al, Bis seey 8, bn) € L, 4 Therefore, there is a function f & S whose

coefficienys start with 3, &= i bl’ &, i bz, seey & = i bn' Put x a r * eig

end R e (f{x) = U(r; @) = L+ ‘i (e.V cos v & +b sin ve)rY . We have
Vsl

U(0; ©) = % and U(r; 6) Z 0. Now Euler's formules for the Fourier coeffi-

cients gi‘\ve :
T

12'
F{U(r:e)denl ,

2

_f U(r; ©)cos v d @ = e, r” (V= 1,2,000e),
)

27

1-1;; j U(r; ©) sin vo d 8 = b, rY (V=1,2,000)e
°

A

As 1—% is a positive function of. 8, we can consider it as defining a positive
mass distribution over the curve (cos €, sin @, see, COos n O, sin. n 8),
The first of the above equations tells us that the total mass is 1 and there~
fore the point (al r, bl Ty eesy anrn, bnrn) has to belong to the convex
hull of the curve, that is to HZn' As H2n is c.lvo‘sed (the convex hull of a
closed bounded set) we can let r tend to 1 and get the result p ¢ H, » which
proves:- thp theorem,

§6+ we shall now consider the corresponding coefficient problem

for polynomialse Let £(x) be a polynomial of degree n and suppose f(x) € S

n
thet is £{x) = $ +2_ ¢, x’ where R e £(x) = 0. DLenote by M, the set of
v=l
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points in Ezn such that the corresponding polyngmial is € S, In the nota-
tion from the previous lecture we have 3

Theorem; MZn - -% I";n

Proof: Let q(©) be the point {cos &, 8in &, eaey c0s n 6, sinn )}
Let p = (al, bl’ seas 8 bn) be a point in EZn' The 2ecessary and suffic i8nt
condition that p be in M, is, by definition R e(} + Z(ay- i bv)x") Z0 '
or, if we putlx sr e eies 5+ i(a cos v@ + b, sin\;zlj r’ T 0forr<ls
But this is equivalent to sayin\;'ihat this expression is 3 O forr =la
Assume namely thet it is = O for r < 1, Letting r tend to 1 we get = O for
r =1, On the other hand, suppose it is Zoforr = 1; then the minimum
principle for harmonic functions tells us that it is Zo0forr = 1, e see

thus that p is in MZn if and only if

b

n X
2+ > (a, cos v& + b, sin vQ)ZO,
v=]

which cen be written s 5+ p * q(8) Z 0, or p € %, & (=2p) * q(®) S
for all @ , that is «2M, = iq(e)}* = (convex closure of {q(@)})* o L;n »

which proves the theorem,
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Let M be an arbitrary set in an n-dim Euclidean space, En.

Definitions A point p € E® has the k-point property (k - p.pe) with
respect to M if there exist k (or fewer) points QysQps0002) € M such that
p £ H(ql’ ey qk) (= the convex hull of the finite set {ql,...,qk} e

If é has the k = p.pe with respect to M, then p &€ H(M).

Definition. If every point p & H(M) has the k - p.pe with respect
to M, M is said to have the k = pepe

Exemples: Take n = 24 If M consists of the three vertices of a
triangle, M has the 3 = pe.pe but not the 2 - pepe If M is the whole boundary
of the ﬁriangle, M has the 2 = pepe but not the 1 = pape (A set has the
1 - pepe if and only if it is convex).

Now there is a well-known theorem (cfe pel4d of these notes) which in
this terminology may be stated:

Theorem l, Every set M CE® has the (u+l) = peDe

The number n+l in this theorem is best possible, for we can take M
to be the n+l vertices of an n-simplex. However, if we know something about
the connectedness of the set M, it may be possible to lower the number n+l

to ne To show this will be the subject of this lecture., We will consider
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two cases. Firstly we take connectedness in the topolorical sense. In this

case no further restrictions are necessary on the set M, (Theorem 2,)
Secondly, we introduce a new, weaker notion of connectedness, but then we
must take M compact (Theorem 3.)

3

Theorem 2, If M < E® hag at most n components (in particular if M

is connected), then M has the n =~ p.pe

Exemple: If M is the union of the coordinate axes, M has the n - p.ps
but not the (n-l)= pepe Hence the number n in this theorem is best possible,

Proof of Theorem 24 If n =1 the theorem holds, since on a line every

connected set is convex.
Suppose n Z 2, Let p & H(M) be a point which does not have the n = p.ps
with respect to Me By Theorem 1 we have

>
p= alq1+ eas + an+1qn+1, a.i = 0, Zai =1,

Here {ql, seay qn+1} c M can not lie in any (n-l)-plane (use Theorem 1 with

n-1 instead of n) and a,> Os Change the coordinate systef so that p is the

i
origine Then

(1) Byt ees F 800,090, 83 >0, 2 a1,

and there is no other linear relation between Qg see Qg e

Now for (1 = 1, ..., n+l) define the sets

<
Ai {rl r = blql+ eve + bi"lqi-l+ bi+1qi+l+ eee + bn+1qn+13 bk - 0}-
We have
(1) U A, = E

i

For ey qi(ivl,...,n) are n independent vectors, so for any r & En, we have

T =0y toeee o %41t

Using formula (1) we easily prove (i)e
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iAIntAjao (1 £ 3)

Take & point r ¢ Alrs Azo

(i1y Int a

<

<
re bzqz + bsq:5 + eee = clql+ C;q; + osse bk -0, o * 0.

We must hate bz = O-and o, = 0, for otherwise there would be another linear

relatioh emong Qys Fes, Q Hence r £ Bdry Alr\ Bdry Azs

ir+1*
(iii) (sB8ry Ai)r\ M=0

For if q_ & (Bdry Ai) ~ M we wpuld have

%™ Pyt oo + 1y 195 0% Pt ver F BBt DeanG gt oee))

But then

p=0=qo-b1q_l v ¢

which would mean that p had the n - peps

(v) A, ~H #0
For the point g, belongs to this sets (From formula (1)).

Georetrically the 5ats*Ai ceh be described as foliowss {-ql ave eqﬁ+1}
are the wvertices of ah nw~simplex with p a8 en interior points, Ai is the
(infinite, convex) con® from p through the (m=1)=face Opposite to "q»

Now we have from (i) and (iii)

M= (Int Alf\ M) ) see u(Int An+lf\ M)l

(i1) and (iv) show that this is a mutual séparation of M into n+l nonevoid

sets open in M« This cohtradicts that M does not hate more thah n componentse
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Definitions A set M is called convexly connected if there is no
(n-1)-plane W such that T A } & O and M contains' points in both half-
spaces determined by LA

Exemples, fToke n = 2, 1) M consiats of & number of concentric
cireless 2) M consists of a hyperbola and one of its asymptotes.

The union of cdnvéxly conhétted sets having & poitit in common is
convexly connected, Héhce we ¢an make thé folldéwihg definition:

Definitions Let M bé any sst i E°, p & Mi The union of all convexly
connected subsets of M containing pise convexly connécted set MP s Which
we call a convexly oonnected components

If q & Mp then Mp 3 Mq' ‘ i{'tj;ce' thers 18 a unigué decomposition of

M into convexly connected componéntsg

Examples n = 24’ Lot -(r'pfj be poléfr coordinates, Take

2A

ayw {lrge) 0<¢ %1, B8 %o < F 4201} (1m01,2),

M-A-ou Al_uaz-‘

This set M is convexly connected (¥ut not connetted); Hencs there is only
one convexly cannected componenty The ofigin does not hdave the 2 < pepd
This example shows, that the following theorém may be false for riox-compact

sets,

Thegrem 3. If Mce E" is compact .and_has, &t most n convexly. connedted

components (in particulay if M is convexly connécted) then M has thé. . = pepe

. a . ‘ 5
Theorem 4. Supg_os,e,_, Mc E is cofipagt, p .£ H(M); p does not have the

R - pePe Then for every set. Qys seiy q’n+l £ M ’M P& I.I(ql"’;"""‘gx'wl):

there is an (n-1)-plane through p not Antersenting M separating. 941 £rdm

q1. ven, qno
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Theorem 5. Suppose M c E® is compact, p & H(¥), p does not have the

I - peps A is a closed subset of M, p ¢ H(A). Then there is an (n-1)-plane

T through p such that

TAAM=0 and T~ HA) =0.

Prcoefs: ie prove Theorem 5 and show Theorem 5 => Theorem 4 =>> Theorem 3,

(1) Theorem 4 implies Theorem 3, For suppose Theorem 3 false. Then there

is a point p & H(M) which does not have the n - pspe Then by Theorem 1 there
are q,, ess; 9 .5 € M such that p g H(ql, ooy qn+1)' Theorem 4 (used n+l
times) shows that Ays eees Gy belong to different convexly connected come
ponents. Hence there would be at least n+l such components which is a con-

tradiction,

(ii) Theorem 5 implies Theorem 4, For let Gys eees Q. be given, Then
take A = {ql, ceny qn} o Theorem 5 then gives us a plane T + This se=
parates %4 and A, since p & H(ql, seey qn+1).

(i1ii1) Proof of Theorem 5, By meking use of the compactness of M we can

construct M1 o M, so that Ml is a finite union of solid spheres, and so that
p does not have the n ~ p.pe with respect to Ml' We suppose this alr eady
done, so that M is the union of a finite number of solid spheres. We can
also suppose that A contains interior points,

Now consider the set of (n-1)-planess
S = {’IT,‘ l P £ T » T is bounding plane or tac-plane of Al
This is a compact set in its natural topology(the topology of the corres=
ponding normalized direction vectors), Define on it the non-negative valued

function V(T ) = the volume of the part of M which lies in the half-space

determined by T not containing A. There is a plane T:l such that
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V( T[,‘l) = Zalebs V(n‘)o

We claim that this plane 1tl or a plane near it satisfies the conditioms
of Theorem 5, There will be two cases.

Firstly 'Kir\ M= 0. Then Ttl can not be a tec-plane to H(A) since
A is a closed subset of M, Hence ’Ei is a bounding plape, and TClr\ H(A) = 0.

Secenily 'WI/\ M~ N#O., Then p ¢ H(N), since N is a subset of M
(use Thecram 1 with n-1 instead of n), Hence there is in 7?1 an (n~-2)wdimen-
sional bounding plane B of N passing through p and dividing ﬂi,into the
two (n-1)-dimensional closed halfspaces 7511:3 N and Riz o We will show
that we can turn Wi around B a sufficiently small angle so that the plane
we get does not intersect M,

This is possible with TTiz in both directions since Tflzf\ M=0
and M is a compact set,

This is possible with Trll in the direction into the side of 7ti not
containing A, For, since M is a finite union of solid spheres, there would
otherwise be a plane T with V(T ) < V(Ttl).

The plene we have gotten in this way must still belong to S (A lies
completely in one of its half-spaces)s For the same reason as before it
must be a bounding plane, This complétes the proof of Theorem 5 and hence
of Theorem 3,

Historical Note. Theorem 2 was first proved for compact sets by
Fenchel [Mathe Anne vol.101(1929)pp.238-252], He used the method with
covering of the set with solid spheres which we here have used to prove
Theorem 5., For non-compact sets Theorem 2 was proved (in essentially the
same way as here) by Le Ne He Bunt, Bijdrage zot de theorie der convexe punt~

verzamelingen; Amsterdam, 1934,
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le Theorem of Blaschke,

This theorem shows that the set of all bounded closed convex sets
in E is locally compact, if topologized by & natural metric, to be described,
Tt is best understood as a special case of a similar result for general
boundéd sets in E e

"The metric is defined as follows. Let A be a bounded closed set in
n

E's Let A(P) be the union of all closed spheres of radius $ > 0 with centre

in Ae The distance d(4,B) between two such sets A,B is defined by
d(A,B) = inf A > B, B Al

It follows easily from the definitions of distance and closed set that
1) d4(4,B) =0 <> A=B.
2) d(A,B) = d(BsA)
3)  d(4,B) = d(a,C) + d(B,C) «
A seguence {AV} of such sets is said to converge to the bounded

closed set T (lim A= T) if lim d(A‘), T) = 0.
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Selection Theorem,

Let W be a fixed closed cube of E  and let there be an infinite set

of closed subsets A of We Then there is a sequence of sets Av contained in

this set such that

llmAv s T

We prove first (a) (completeness): Let A be a Cauchy sequemee; §,¢J,
for £ > O there exists an N such that, for all v, p >N, d(Av 'A}z) < € o
Then there is a non-empty set T such that lim A, " T o

(o 0] . Q0
Proof: Put S = ) A,; T, =8§ . Then 7D Ty ,q SO T e () T,

v =k i=1
is a non-empty closed set. We assert
(%) lim Tk =T
for otherwise there is an & > 0 such that the set Dk = Tk -(in€ 'r'(e))n Tk
is not empty for every k. Now Dk is closed and DkD Dk+1' Hence

D = D, Dy A Dy N ees is closed and non-emptys Now D, O (int T(E)) =4,
soDAT =43 but D c T,=>D T, & contradiction ,
Now it follows from (<\) that, given & > 0, there is an M such that

>
T(E) o Tm for allm< M, Since Tm:> Am, the relation

(2 ()™ *n

holds for all m z M. For this same & , there exists by hypothesis an M'

> >
such that (Am)(E)DAv for ¥ = m< M., Hence (Am)(&)b T or
(y) (Am)(&)DT for all m > M'.

() and (y ) show that d(T,A ) = & for all m = max(M,M'), so lima =T
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Now we prove assertion (b) (compactness): There exists a sequence
contained in each infinite system of closed sets of W which converges to a
closed set T,

Proof: Without loss of generality take W to be the unit cube.

By ith subdivision, W is split into zin closed little cubes of side length
2-1. Consider the set of all aggregates of these little cubes, The number
of possible aggregates is finite: 2 " o Now associate with each A of our
system the aggregate of little cubes which have points in common with A, At
least one such aggregate occurs infinitely often.

Let {Alv} be an (infinite) sequence of sets of our system, each
element associated with the same agyregate in the first subdivision. Then
let {Az\)}be an (infinite) subsequence of '{Alv} » each element associated

with the same éggregate in the second subdivision, etc. Thus iA } is

i+l,»
an (infinite) subsequence of {Ai‘)}.
< i .

Then d(Aiv ’Aiﬂ) - \/n/? s and, since {Ajv} is a subsequence of
{ Ai“} if j > i, we have d(Ajj’Aii) 3 \/n/?l for j > i. Thus the sequence
iAvv} is a Cauchy sequence and (b) follows from (a).

The theorem of Blaschke is the same as the selection theorem proved
above with the words "closed set" replaced by "convex closed set" everywhere,
It suffices to show, therefore, that a limit of convex closed sets is convexs

Let {B»} be a sequence of convex closed sets and let lim B\)= Be Suppose

that p, q are points of B and let £ = d(B,Bu). Then
Ps 9 £(B ). yv=>AP + (1~A)q & (B,) AP * (1= A)g £ (B)
’ vI(e,) V(€)= (2€,)

Since € —> 0 and B is closed Ap + (1~ A)g € B and so B is convex.
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2, Compactness of affine classes.

2,1, Linear combinations of ¢onvex bodies.

In this paragraph the term "convex body" will denote a bounded
clogsed convex set with inner points in B .

If Ki’ K2 are two convex bodies, and A, ) are real non~negative
numbers, we denote by AK,+ pK, the set of points Ax + py, where x g K,
¥y & K. Clearly )\Kl"- )J.Kz is a convex body.

Let H,, H, be the tac-functions of ¥, K, respectively. Hl(u), Hz(u)

2
are the maxima of u.x for x in Kl’ Ky respectivelys Hence the meximum of
u (A x + py) is /\Hl(u) +).xH2(u); i.0,, the tac-function of AK;+ JK, is
AH* pH,
It follows from Theorem 40 (Chapter I of these notes) that
> >
K+ ME' D K+ pRt —> H1+ pH' = Ho+ pH! = = H, pan S Ky, DKy

e

and that
E. DK K. O K! _._:% AK.+ pk, D AK
1 i’ 2 2 Kl ¥} i *) Ké

Finally we note that the metric defined in §1 of this chapter can,

for convex bodies, be written in the form
d(Kl.Kz) = inf P[Kl+ PS DKy K 95D KI] .

where S is the solid unit sphere with centre O.
242 The space of affine classes, .
' Consider the group G of affine transformations o= of En, given by

n
(O‘X)i = Z ¢~J xj + 03.0 ’

- L
h
.

where det (O?Lj) (1,3=14000,n) is different from zero.
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Each ¢~ induces in a natural manner a transformation (which we shall

also call o ) of the space C of all convex bodies in En. The relation is
ox £ 0K &<>x £ K
Now introduce the equivalence relation
K1~K2<———$Kl = 0K, for some 0" g G .

This divides the elements of C into equivalence classes which we shall call

affine classes, The affine classes then form a topological space C* by the

usual identification; i.e., a set of classes is open in c* if end only if
the union of classes of the set is open in Ce The main result of this sece
tion is

Theorem. C* is compact and metrizable.

2.3+ The invariant P e

The proof of the assertion about ¢’ depends on the introduction of a
real-valued function f(Kl’KZ) which is affine invariant in both variasbles
separately, i,e. it is a function of pairs of elements of C*.

Because of the continuity properties of the boundary, each convex
body K has & well-defined volume (or content) V(K) with the properties:

1) If K, DK, then V(K,) = V(K,), with equality only if K,= K.

1 1 72
The last assertion is proved as follows: Suppose Kl:D K2' but K1 f'Kz .

let p & Kl- Kz, q & intK, < intK,, Since K2 is closed, the segment pq inter=~

1 1
sects the boundary of K2 at r # Po Then r g intKl(Chapter I, The 7) so there

is a sphere with centre r in K Since K2 has a tac-plane at r, half of the

l@
sphere is in K,~K,, 80 V(Kl) > V(Kz)c
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2) V(o K) = |det o | »V(K)s

3) ¥V is a continuous function on L.

Proof: Suppose that K€ K' + £8, K' <« K + €8, Choose an imner
point of K @8 origin O Certainly K D AS for some A> 0, 80 (cfs2.1)

7

g
K'cx-r—g-x, Kck +5

:—:.}K'C,K+-§-K, (1-—;—)K+-§:KCK'+—§TK
- (14‘-;3;-')K=>K'3(1--§-)£

=3 (1 + ) V() Tv() T Q-5 ),

and the continuity is proved,

Now define
V(o Kl)

V(Kz)

where o runs over all thoss elements of G such that chl:) Kz .

- Lemms 1, The bound p(K,,K,) i5_ectually attained, ise, there is a

o~ & G such that o"K) D Ko, and v(rrxl) =9 V(Kz).

Proof: There is a sequente of bodies {O'vxl}with the properties
o; K, 2 Kpylim v(o;,xl) = p V(K,)
V =500
It suffices to show that the set £ of o & G such that

oK, DK, [det o= S a

1 2

is compact, for each positive A« For, if we write A = 9 'V(K2 )/V(Kl) + &,
all but a finite number of elements of the sequence e belong to » o Hence
we may gssume that lim o~ =T & G, 80 l.:lm(o"y Kl) = TK), 80 TK; D Ky,

V(T Kl) =9 v(xz).
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. 2
The spave G is homeomorphic to an opén set of o *n, namely the
whole space with the algebraic manifold ldet o-| = O removeds It suffices
2
to show that Z is bounded and closed in En +n‘

Let Sl be a sphere containing Kls S

i o€ )

& sphere contained in K,« Then

? 2

d‘Sl DSZ

but Sl= 'tlS, Sz= ‘czs, where tl" ’L‘z are affine transformations and § is the

unit sphere with centre at the origin. Hence

!

’t;lo-’tlsns, fdet & |54 (*)

Let Zl denote the subset of G whose elements satisfy (*)e Since Z is a
closed subset of Zl" it is enough to show that Zl is compact,

Now let U denote the orthogonal group, which leaves S fixed and is
a campact subgroup of Gé¢ ANy n X n matrix is the product of an orthogonal
matrix and a positive symmetric matrix (Chevalley, Lie Groups, pe 1l4)e The
symmetric matrix, by the usual reduction of quadratic forms, can be written
in the shape o d o', where d is'a diagonal matrix and o is orthogonal,

Applying the same transformation to the element 'D'z"lc'fi of G, we have

-1 -1
Tz o-T.'laolS 0, 0y» 0280‘

where the homdgeneous part .of 8 is a diagonal matrix, i.e. g = 0if j # 0, i,

iJ

Hence

-1 -
Zl =1, CPAN T’ll (*%)

where /\ is the set of all y such that

s o Ss, laet § 1= TS, | 2 ar.
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A is bounded and closed, for, applying S > § S to the centre of S and the

unit vectqrs, we have
2 8% S1 (8,480 % laetd 12 4
io i1 Yio *

Since O,A are compact and the operations of inversion and left and right
translation are homeomorphisms, it follows from (*%¥) that 2 1 is oompact.
Thus Lemma 1 is proved,

From Lemma 1 and property 1) of the volume, it follows that

p(E), K,) T 1, with equality only if K~ Ep e

V(o-'ClKl)
$( T,K)» 'CZKZ) = inf for o~ T,K; D Tk,
v(t.K,)
272
but
-l
o T,K D T2K2¢==> T, o T,K DK,
end

V(e T8) V.(Fc;.l"" T1%)

V( 'csz) r. V(Kz)

by property 2) of V(K)s Since 't.;]' o T, runs over G if o= does,

PUT Eps TK,) = pKyaKy)

Thus $ is really a function on C*x c*. Now suppose that we have three

bodies Kl’ sz X For suitable o, o' we have

3.
) V(oK) ) V(o 'K,)
P8y efs V(K,) s Pligefg V(K;)

where 0‘K1:K2 s O"'K2 :)KS 80 o"o‘KI:) o"Kzsz .
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Hence
V(cr'o'Kl) V(o*‘chl) V(c-'Kz)

K, ,K,) = ¢« —
pliy oK) V(K,) V(o 'K,) v(E,)

= _p(Kle )_p(Kz,K:5 )e

Lemmne 2, P(Kl’Kz) is a continuous function on C X C.

Proofy We have to show that.?(Ki,Ké) -—>‘P(K1,K2) as K1 — Kp»

K?

5 K « The inequalities

PCRLIES) = p(RYLE, )p(K, 4K, )p(K,, KL )
(K sE,) = p(E K] PRI, K3 )p(KY,K, )

show that it is enough to prove that if K'=s K, then
PIE,E') =>1 and p(K',K) => 1 4

Suppose that d(K,K') = £ o Then, as in the proof of continuity of the
volume, we have

£
(1 *T)K'DK’ D(l-‘—i—)K

Since the expansion by (1 % ::-), 1 can be regarded a8 a transformation of G,
< € \n < -n
PGLE) T+ )% p(r,E) 5 (-4

and Lemma 2 is proved,

Lemma 3, y(Kl,Kz) is bounded,

Proof: Let T be the simplex of largest content contained in Kl’
vertices 8 28 9000y8 o Let ?T,o be the plane through e, parallel to the
face opposite e e Then Tto is a tac-plane of Kl’ for otherwise there would

be a point el of Kl on the other side of ’IT.O from s and the simplex

Q.éal...an would have larger volume than T. Similarly there are planes
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Til,'Eé. a.g,ﬂfn through a,p Bye wses 8y end these, with T boynd a simplex
Tt guch that T4 > K amd V(T1)/V(T) = o°
Hende '
<. n

p(TaKl) f(KlsT) -n .

So
< n < n
j’(KlnT) -n , f(T;KZ) *n

< 2n

\ P(KI’KZ -n

This provés Lemma 3.
The compactness of C* now follows easilys Consider the subset B of

C consisting of those convex bodies X such that
EcT, V(K)=a V()

The mapping of B into C* whore each element is mapped on the class to which
it-belongs is continuous, and, by the proof of Lemma 3, onto. But B is
. compact, by Bleschke's theorem and the continuity of V, so C* is compacte

Now consider the function
D(E,K!) = log 9(K,K') + log p(K*,K)e

This is a metric forthe set of affine classes and characterizes them as a
metric space C's Consider the mapping

P C* o (1
where each affine class, considered as an element of c*, is mapped on the
same class, considered as an element of C's An open set in C! is the union
of spheroids about all its poinfs, and thus ocorresponds, since p is a con-

tinuous function on c*, to a union of open sets in e Thus \p 1s continuous.
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Y is a 1-1 mapping of a compact space onto a metric space;
therefore  is a homeomorphism, Thus C* and C! give rise to the same

topology of the set of affine classes and this proves our assertion.



524

THE INSTITUTE FOR ADVANCED STUDY
Princeton, N.J.
1949 = 1950
SEMINAR ON CONVEX SETS
VI. The Packing of Convex Bodies in Euclidean Space.
by
Ce Ae Rogers

§1. Introduction. Let En be the real Euclidean n-dimensional space

of points X = (xl,...,xn). By a convex body we mean a set of En which is

Let K be such a convex body and suppose

Teke a large cube S of side s and volume V(S) = sn.

non-empty, bounded, open and convex,
the origin 0 is in K.

Teke points Xl""’%& in S such that

E+X . C S, for A= lyeeey L
(K+X ) (K+X ) is empty, for 1 S < f
We call this arrangement of sets K + X sesesk + %@ 8 packing of £ sets K

into Se The density of the packing is defined to be

£ .v(x)
V(s)

We write
LV(K)

»S) =
e(K ) = max (E)

the maximum being taken over all packings of K into S, and we write

K) = T?_- K,S .
(3() s_;r:o p(K,8)
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We call e(K) the density of the closest packing of K. For alternative de-
finitions of Q(K) see Hlawka, Monatsh, fur Mathe, 53(1949), 81-131,

We have the triviel result £ V(X)/A(S) = 1, so that o(k) 51 for
any convex body Ke Note that when K is a cube we have e(K) = 1,

In section 2 we find a simple lower bound for Q(K). In section 3
we discuss the case of the packing of convex domains in the plane, In sec=-
tion 4 we use Blichfeldt!s method to obtain his bound for Q(K) when X is an
n dimensional spheres In section 5 we show how Blichfeldt's method may be

used to obtain a bound for the minimum of the product of n linear forms.

§2¢ A lower bound for p(K)e Let K be a convex body containing the origin ()

Suppose that the sets K + Xl”°”K + XZ. form a packing of K into a large
cube S with side s, and that ,Q is as large as is possible, so that

Q(K’S) = m.
V(S)

Let DK = K + (=K) be the difference set of K, that is the set of all points

of the form X ~ Y where X and Y are points of K. Consider the sets

DK + Xl,no¢,DK + X .

L

These sets will overlap in general, e prove that, when s is sufficiently
large, they cover most of the cube S. Let d be the diameter of K, Let St
be the cube of side s = 2d centrally placed inside S. (Here we suppose that
s > 2d)e Let X, be any point of S!' Consider the sets K + Xo,...,K + X, e
As Xo is in 8! it is clear that K + Xo is in S. So the sets X + Xo”"’K + X

Y4
are all contained in S. By our choice of £ it follows that two of these
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sets have a point in common, So for some integer.A with 1 5 %»5,£ and
for some point Y we have

Y is in both K + Xo and K + XA
So both Y =~ Xo end ¥ = XA are in K, Hence the point

Xo- XA = (Y - Xk) - (Y - Xo)
is in DK and the point

Xo = (Xo~ XA) * XA
is in DK + XA ¢ Thus every point of S' belongs to at least one of the sets
DK + Xl,...,DK + xx'. Compering volumes we have

(s = 2d)" S ¢ v(DK).

So

LV(K) > V(K) -2d4,
0(Ks8) = 753 2V(DK) (=)

Taking the upper limit as s tends to infinity we obtain

(X) > V(K)

T V(K) °

In the particular case, when K has (J as centre, we have DK = 2K so that
o(K) = (3)" .

We remark that this lower bound for P(K) can be improved by appli-
cation of a theorem stated by Minkowski and proved by Hlawka, Math, Zeitschre,
49(1944), 285-312; or by application of refined forms of Hlawka's theorem
due to Mahler and to Lavenport and Rogers, Duke, Math. J., 13(1946), 611-621

and 14(1947), 367-375. But these improvements only show that

Q(K) 2 ch(K)/V(DK),where the sequence C12C5seee is boundeds
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§3« We consider the problem of the closest packing of plane convex domains.

(I am preparing a detailed account of the work described in this section for
publication,) Before we can state the main result we need to introduce and
discuss the concept of a lattice packing. Let XK be a convex domain (iece &
plane, non~empty, bounded open and convex set) containing the origin T. Let
N be any lattice with the property that, if X and Y are any two distinct
points of /«\, then the sets K + X and K + Y have no point in conmon. If S is
a8 square of side s with G as centre, the system of sets K+Xl,...,K+X is said

L

to be a lattice packing of K into S with lattice A s when Xl""’%& are just
those points X of A for which K+X is contained in Se It is clear that such

a system K+Xl,...,K+}§z forms a packing of K into S with density

L V() ,
v(8)

in the sense we introduced in §l. The density of the closest lattice packing

of X into S is definsd to be
* — AV(K
o™ (K,8) = B V(S

the upper bound being taken over all lattice packings of K into S. The densi-

ty of the closest lattice packing of K is defined to be

* —— *
K) = 11 K,S) o

Comparing this definition with that of Q(K) we see that
* < <
P (k) - P(K) -1.

Now e*(K) is not too difficult to evaluate., Let D(K) be the lower

bound of the areas D(/\) of the fundamental parallelograms of the lattices /\ s
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such that, if X and Y are distinct points of /\ » then K+X and EK+Y have no
point in commons Then this lower bound is attained and there is a lattice
/Nb of this type with D(/\o) = D(K)s Now consider any lattice packing

K+X1,...,K+X with lattice A into a large square S with sidess. To each of

£
the points Xl,...,xe we assign e neighbouring fundamental parallelogram of /\,
so that these parallelograms fit together without overlapping. The parallelo=~

grams together are contained in a square of side s + 2d and contain a square

of side s = 2d, whbre d is the diameter of the parallelograme Thus

(s-2a)% 5 2 D(A) S (s+2d)? . (1)

Using the lattice f/\o we get

2
() = 57 AP 2l (o 2o

2

V(K 2do
5ty (2 =5 )

Letting 8 > o0 we obtain

* V(X
(x) = 2

('K)' *
But applying (1) to a lattice //\(s) for which £ has its maximum value we get

A (x,8)V(k v(x 2d(s) \°
(G 5 10 (), 20)

g (k5 = BATEY

< (&) (), 24(s) )P
D(K 8

Now it is clear that, if we choose a suitable fundemental parallelogram for
/\(s), we have d(s) = o(s) as s =—> ; otherwise £ could not possibly have

its maximum value for the lattice /\(s). Thus we have
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Combining these results we have

<3

5%%% = o"® Topx) T1. (2)

For a more detailed discussion of these and of alternative definitions
of e(K) and e*(K) we refer the reader to a recent paper by Hlawka, Monatsh.
fir Math., 53(1949), 81~131 (but see also my review in Math. Rev,, 11(1950),12)e
We remark that D(K) is in fact the 'critical determinant' of the set
DK = K+(#K),; it is a relatively essy quantity to find, when K is knowmn ex~

plicitly.

Until recently Q(K) was only known for a few sets K, When K is a
parallelogram or a convex symmetrical hexagon there is a lattice packing of
K, which covers the whole space, except for a set of measure zero., In this

oase we have the trivial result
* [l
g (k) = p(K) = 1%
lie also know Q(K) when X is a oircle,or ellipse, In fact Thue proved in
1892 that in this case

o"(K) = p(k) = % : (3)

[A« Thue, Forhandlingerne ved de Skendinavske Naturforskeres, 14(Copenhagen,
1892), 352=353 (in Norwegian); for a more complete and accessible proof see

Ae Thue, Skrifter Videnskabo-Selskabet 1 Christiania, liath.-Nat.Klasse, 1910,
Noels] Proofs of this result have also been given by Féjes 1éth (Meth, Zeit, ,
46(1940), 83-85) and by Segre and Mahler (Amer.Math,Monthly, 51(1944),261-270),

A couple of years ago I was able to prove that, for any convex domain K,
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p (K) = p(K)s (4)

In this seminay I gave a detailed proof of this results But the proof is
very complicated and was only intelligible because it was eccompanied by
o large number of diagramss it is not suitable for reproduction in these
notes. So I mepely make a few remarks about the preof.

The proof is 1nﬁuptive and if seems to be necessary to prove a re=
sult which'is rather mor; preocise than the result (4), but which applies
only to strigtly convex dom;ins. A domain K is said to be strictly convex
if it is such ;pha,t, for every paipr of disti_nc*b pointg A, B on the boundary
of K, every inper point C of the line segment AB is }n Ky W prove

. 4
Theorem'gl Let X be an qug bpunded strictly convex sete .Let

XO’ Xl’ coey Kna 50, nfl' r.., xn? be points Such that;
(1) Bglzgo& xo l...X is a Jordan polygon bounding a domain
,’E o,t’ area V(TC)s

(2) the sets K+X. _,8nd K+X heye a common boundary point,

€ -

"a

48131 ny

(3) the points X SETLLLY® S lie in the imterter or on the boundary

of T3 and

(4) the sets K + X, and K + X have no points in common, if

< <
lewr<g -~ n+m.

Then

n-1) D(K) < v(10). (5)

Qfr

(m +

Here one should think of the sets K+Xl,.¢,,K+X as forming a rigid
frame and of the sets K+X +1.-.o,K+X as forming a paeking of m sets K

into the region bounded by the frame,
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We first remark that it is easy to deduce the result (4) for any
strictly convex domain K, once this theorem has been proved. Consider a
large square S5 of side s, Let K+Y1.u. ,AK+Y£ be a packing of the largest
possible number of sets K into S Let d be the diameter of K, let dl and
d2 be the lengths of the longest chords of X parallel to the x., and x, axes

1
respectivelye Choose integers n,, 1, such that

(p= 1)a,< s +2d s nd, , 1=1,2,

Then it is clear that we can choose points XO‘XI""’Xan'l-znz

satisfy the conditions (1), (2), (4) with

= XO such that

the sets K+X0,ou.K+X2ﬁl+2 n,

n = 2n1+ an, where T is the rectangle X X lX n, +n2X2 n, *nzxznl +2n2= XO with

sides nldl‘ nad2 centrally placed round the square Se Taking Xn 1" Yl'

es0 X . =Y ,m=,0 we see that the conditions of Theorem 1 are satisfied,

n+m. 9
Henoe
<
(£ + n,+ n,- 1) D(K) = V(TT) = nldlnzdz
and
(K,5) « 2WE) 5 V(K) 219050,
pLEs V(S) D&Y T2
< V(X) 2d + dy 2d + d2
S (14 == )1+ ——%).

Thus letting s ==> 0o we have

V(K
CRS o

Combining this with (2) we obtain

V(K)

-—‘(—r"'(’(K)"e(K)'lo (6)
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(nce this has been established when K is strictly convex it can be extended

to all convex K by simple continuity argumentse

We now consider Theorem lo We first remark that for any points X, Y
the sets K+X and K+Y have a common point (or a common boundary point) if
and only if the sets -é— DK+X end & DK+Y have a common point (or a common
boundary point)e It follows from this remark that the truth of Theorem 1
for the domain % DK implies the truth of the theorem for K¢ Thus we have
only to prove the theorem in the case when X has (0 as centres For the
rest of this section we confine our attention to this case,

It is clear that in proving Theorem 1 we may suppose that m has its
maximum possible value for the given XO,Xl,-.o,Xn. So we mey insert the
extra condition that

(5) it is not possible to find points ZO' Zl.o.o,Zm in or on the

boundary of TU such that no two of the sets K+X1 0000 KK

K+ZO,...,K+Zm have a common point,

It is also clear that we may insert the extre condition that

(6) it is not possible to find points Z.,Z,,04e,Z_ in or on the
1272 m

boundary of TU such that no two of the sets K+Xl,.o.,K+Xh,

K+Zl""’K+Zm have a common point and such that the sum of the

second coordinates of Zl""’zm is less then the sum of the

second coordinates of xn+1,...,xh+m.
After these extra conditions have been inserted Theorem 1 may be
proved by induction on m, Suppose that m 2 1 and that the modified form

of Theorem 1 is true for all smaller values of me Then it follows from the
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condition (6) that it is possible to choose integers r, s with
< < .
O0~r<s -n and a sequence of points Zl‘."’%é from the points xh+l’ coey

xn+m such that K+X touches K+Zl, K+Z1 touches K+Zz,o... and K+%e touches

K+X o (We say that two sets touch if they have a common boundery point
without having a common point.) ¥e may arrange that Zl"“'%{ are distinct,

Then the broken line XerZZo..§£XB divides the polygon T into two subpoly-

Ve
gons ‘tl and T,e The sets K+#X .,

K+%€ will be distributed between the polygons ’Hl and sz. It is easy to

see that we may apply the modified form of the theorem to the polygons qtl

""’K+xh+m other than the sets K+Zl,...,

and ftz and that if we combine the inequalities so obtained we get the ine
equality (5)e¢ Thus the theorem may be proved by induction provided we can
prove the modified form of the theorem in the case when m = O,

In fact it is convenient to prove a slightly more general result by
an inductive methods ile prove the following lemma.

Lemme. 1, Let K be an open strictly convex set with (0 as centre.

Let 0 = o-< 1, and let Z, X)s eess X, Do points, with n = 3, such that:

(1) the polygon X,X,seeX X, is a Jordan polygon bounding a domain
172 "l

T of area V(T );

(2) the sets K+X, and K+X 1 touch for r = l,eseyn~l and o" K+2

touches K+X, and K+Xn;

1
(3) no two of the sets o’ K+Z, K+Xl,...,K+Xn have & point in common;

(4) there is no point Y in or on the boundary of TU such that no

two of the sets K+Y, K+X1,...,K+Xn have a point in common,

Then

V() ¥ (4 ne1) D(K), (7)
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If we take ¢"= 0 in this lemma we obtain the modified form of Theorem 1
in the case m = Q.

It is rather awkward to prove this lemma rigourously; but the ides of
the proof is quite simples The proof is by induction on ne We vary Z and
o~ moving Z between the points Xl and Xn towards 1 or into U s taking care
to ensure that o K+Z continues to touch K+Xl and K+Xn, and continuing the
movement until o K+Z comes into contact with one of the sets K*Xz,...,K+Xn_1.
say the set E+X o It follows from the condition (4) that we will have o< 1
when o K+Z reaches its final positions. It is possible to show that the tri-
angle XIXth will be contained in . Thus T will split up into the tri-
angle XIXan and two polygons Tfl and sz with vertices X1X2°"erl and

err+l"'xnxr (these polygons will sometimes degenerate to a line taken

twice)o We are able to apply the lemma with a smaller value of n to the

polygons ‘%i and T,_, e apply Lemme 2 stated below to the triangle X

2 erh'

1
Adding the inequalities obtained in this way we arrive at the inequality
(7)e In the initial case, when n = 3, we necessarily have r = 2, and the
inequality (7) follows from Lemme 2 without use of any inductive hypothesis,

Thus we can prove Lemme 1 by induction provided we can prove Lemma 2.

Lemma 2, Let K be an open strictly convex set with U as centre,

Let 0 = o"< 1, and let 2, X , X,, X, be points such thats

3
(1) o K+Z touches K+X_ for r=1,2,3;
Pt T eto—

(2) no two of the sets K+X , r=1,2,5 have a point in common,

Then, if V(T) is the area of the triangle T with vertices Xl, Xz, XS’ we have

V(1) 2 % D(K), (8)
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It is easy to reduce the problem of proving Lemma 2 to that of proving

the lemma in the special case whemn two of the sets K+Xl’ Ksz, K+X3 touch,

say the sets K+X1 and K+X2. In this case we write

Y
4’,‘ P
Trg = 057 %)+ o(Xgm Xy) %,
4%%42;
for r,s = 0, : 1, - 2y oee o Ue prove that no two of the sets ‘;>
%,
+ +
K+er I‘,S=O,-l,-2, [ X XY

have a common point. Since the points er, r,s =0, - 1, : 2, form a lattice

with fundamental parallelogram X X. X of area 2V(T), it follows from

vo*10* 1101
the definition of D(K) that 2V(T) = D(K)s This implies (8), and enables us

to complete the proof of the theorem,

§4. 1In this section e consider the problem of the closest packing of

spheres in n-dimensional space, Although the closest lattice-packings of

n~-dimensional spheres are known for n s 8, the closest udrestricted packing
is uninown for n & 3, Every physicist knows that the method used for stacke
ing cannon balls (or oranges) is one of the élosest packings of 3=dimensional
spheres, but it has never been proved that there is not a packing which is
closer than this well known packing.

In this section we use Blichfeldt's method to prove his result
[H.F.Blichfefdt, Trans.Amer MetheSoce, 15(1914), 227-235, Theorem 2; see
also He F» Blichfeldt, mathe Annalen, 101(1929),605-608} giving an upper

bound for e(K) when K is an n-dimensional spheres
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Let S be a large cube of side s and let K be the sphere with centre (J
and radius 1ls Let K+X1,....K+X£ be a packing of yd spheres K into S
Blichfeldt's method is to replace each sphere by a somewhat larper spherical
distribution of matter, to show that the total density at every point of
space is not too larges This gives an upper bound for the amount of matter
in a cube slightly larger than S and leads to an upper bound for the number
of spheres in S,

liore explicitly we introduce mass - distributions Ml,c..-,_M the density

pa
of the distribution M)‘ at the point X being given by

2-|x=%x1°, 1£lXx-%x15V73
e (X) = g S
0 ] if'X'Xk“" 2:

for A =1,,ee, , where|X = X)\‘ denotes the distance between the points

X and X)\ » Ule take an arbitrary point X and show that the total demsity

~

f
X) = (X
p(X) & o %)

at X is not too large. Let Yl""’Ym be those of the points Xl,...,X for

L
which

Then

We want to show that l-}'{' - YPlz is fairly large on the average. We have to
use the fact that the spheres K+Yl,...,K+Ym do not overlap, that is the

inequalities:

IYP-le z2, if).l;(\),)x,v=l,...,m.



65

Write Z = Y}l- 'X = (Z](.P),...,Zzg}l)) for }l = lyeee,ms Then
>

or

TR LR A O NS N

foz!/u £V, ).1,\) = l,ese,me Summing these inequalities over all pairs }u,\) »

we have

En: (zz(_}l)- zz(‘\)))2 z 2m(m=1),

1= o <V m ral
Re-arranging the left hand side this yields
n

S {(m—l)—i(zf)’l))z - 2 > . zfj‘)zf)’)} > 2m(n-1)

r=1 p=1 1 )A<\)-m

or

m m
> {a s @ - (07 )P} 2 e,
ral }4=1 }1=1

Thus

so that

By our choice of the mass-distributions (which was in fact suigested by

this inequality) we deduce that
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@ =5 {2-(%-1l?
e }Fli 13

m
=> {2~z tz‘sfz.
o

The inequality e(i) S 2 is valid for all points Xe If X is not in
the cube S!' of side s+2\ 2 centered round 8, it is clear that e(i) = O,

So integrating over the whole space we have

g(’(x)dx : L, px)ax = -(s' 2ax S 2(s + 2V 2)"
But we also have

£
ge(x)dx = S}\Ll Q/\(X)d.x = 0w,

where M is the total mass of one mass distribution. So
< 2 o\

Now let Jn be the volume of the unit sphere K in ne-dimensional space,
Splitting the mass-distribution into spherical shells, we see that

V2
M= g (2 - rz) dJ, o
0

V2
n JnS {Zrn 1— rn+%§dr
o)

n n+2 V??
n" n n+s o

1)

s, 22
n+2

80 the density of the closest packing of K into S satisfies
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Adn < n+e2

ey 40

) .

Q(KJS) = 2\8[2 )

Letting s tend to infinity we obtain the result that

< n+2 (9)

&) = —mmyE
This should be compared with the result

o(x) 2 -—i-,; (10)

oBtained in §2e« The inequality (9) has been improved by Blichfeldt and by
Rankin, [H.F.Blichfeldt, LiatheAnnalen,101(1929), 605-608, ReAeRankin,
Anhals of Mathe, 48(1947),1062-1081,] but the improvements are very small
when n is large. The result (10) has also been improved slightly when K
is a spheres [He Davenport and CsAsRogers, Duke liathed.,14(1947), 367-375,

Theorem 2. ]

§5+ In this section we obtain an upper bound of the minimum of the product

of n real linear forms by application of Blichfeldt!s methode Let

xi = ailu1+ eept &inun ? i= 1, eeey n (ll)

be n real linear forms with determinant 1, We want to prove that there are
integers Upsese, U not all zero such that the product XyeoeX is fairly
small numerically,

Let /\ be the lattice of all points X with coordinates given by (11)

where Uysoee,u take all possible integral values., We take a large cube
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S of side s Let Xl,...,X£ be the points of A\ vwhich lie in this cube,
Then, as /\ has determinant 1, we have

Iusn(l-l-o(l)}, B B ==> M,

We choose an integer m 2 2 end a number ¢ with 0 < € <1, Let K be

?zL Ixil <4 ,

i=1

the region

where

d=3{m-1+¢ )(nz)}l/“.

Consider the bedies K+Xl,...,K+X£ +« These bodies are contained in a cube

of volume (s + Zd)n; their total volume is

£.2° dn/nl = snfl + o(l)} (m=-14+&),

S0, provided s is sufficiently large, the total volume of the bodies will
e

be greater than (m - 1) times the volume of the oube containing the bodies,
So there is some point which is in at least m of the bodies, Suppose then
that X is a point in the bodies K+Y}1, )1 = l,4ee,m where Yl""‘Ym are sew

lected from We points Xl,.o.,}se o Then we have

Ei:lylg_}l)'xil <d , }1=1,...,m.

Write Zu » '!{)1 ~ X, 8o that
/
n

()—l)l
Z |z <d, % lypeesa (12)
e A
Now, if o A\, the point Z}x - ZV = Y}l - Yv is a lattice point other than U,
We want to show that

n
T - o)

i



69

is small for some integers P Ve To do this we show that the product of
ell such products is small,
Let Km be the least positive humber such that

15, 5,0 2 f = };‘T 5,3,

for all real numbers fl"”' Sm- It does not seem to be easy to obtain

lf}4<\)fm

e good estimate for Km when m is large. But I was able to prove [C.A.Rogers,

Acta Hath., 82(1950), 185-208, Lemma 5.) that

1
~— 3.2 2 —

o 2ve 16

Using the inequality (13), the inequality of the arithmetic and geometric

means, and the inequality (12), we obtain

TT . Tl o ’tf[{%}n{'ﬁ T

15J.1<v-m i=1

[~/ K_\n % m(m-1)
= (-2%) (m=-1+ a)(nz)] .

So for som; )x, V with ),1;! VY we have
n K \n
‘ﬂ 2P o eV cm-1ve )(n:)(i-’g-) .

Thus for each integer m Z 2 and for each £ with 0 < £ < 1 we can first

find a lattice point X other than of satisfying
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E \n
]Xlogqxn‘ < (m -1+ E )(n!)(%) . (15)

If we take m = [n log n} and use the inequality (14) we see that the right

hand side of (15) is less than or equal to

(_.._.—--422_6 + o(l)) B (16)
as n = 0. It is conceivable that one can always find a lattice point
X other than O satisfying
ENTEN | S M
where
M = Jo(L)\®
as n —=> 00, but the result given by (15) and (16) is the best result known

[see C.A.Rogers, Acta Liath., locecit., and references given there.] at the

moment for large n .
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THE INSTITUTE FOR ADVANCED STUDY
Princeton, Ne Je
1949 - 1950
SEMINAR ON CONVEX SETS
VII., Convex Sets in Linear Spaces: Two Applications of
Zorn's Lemma,

Talk by BoJe Pettis, notes by V. L. Klee.

§1. Kakuteni's theorem on decomposition into convex sets.

By a linear system we shall mean a module over the real number field

(or what Banach calls "espace lindaire",) The following result, due to
Se Kakutuni {1}, seems to provide the simplest approach to the separation
and support theorems on convex sets:

{(1.1) Suppose that A and B are disjoint convex sets in a linear

system L, Then there are complementary convex sets C and D such that ¢ o A

end D DB,

Proof: Let Z be the family of all pairs of convex sets (X,Y) such
thet X D4, Y OB, and X Y = N, write (X,Y) < (X',Y') if X € X' and
Yc ¥Yt's 2 is partially ordered by "<" and each totally ordered subfamily
has an upper bound in Z, From Zorn's lemma it follows that there is in Z
a meximal element (C,D). Consider an arbitrary point p € Le Jriting xyz
to indicate that y € [x,z] (the line-segment including its endpoints) note

that we cannot have simultansously pe and pd,c, for c¢,'s in C and 4,'s

ldl 272 i i
in D, for this would imply that [ol,cz] intersects [dl,dz], contradicting

the fact that C() D is emptye Suppose, then, that pc cannot subsist and

1%
let D! be the convex hull of D U ip‘g. Then (C,D')€& Z, so from the maximality



72

of (C,D) it follows that D =« D'y Hence CU D = E and the proof is complete.

§2. The separation theorems

A linear proper subset of a linear system will be called a subspace
and each translate of a subspace is a variety. For a subset X of a linear
system, lin X will denote the union of X with the set of all points y such
that- [x,y) < X for some X, x° @ B e 1in(E-X)s As & first lemma for proving
the separation theorem, we have

(2.1) If C and D are complementary oconvex subsets of the linear

system L and M = 1in C () lin D, then either M is a maximal variety or M = L.

Proof: X convex implies lin X convex, so M must be convex, Now
let x and y be distinct points of M and suppose y € (x,2)e If z:ﬁ M then
2z ¢ 8° where 8 is either C or D But then it follows easily that y & 8°
which is impossible, Thus each line determined by two points of M is con~
tained entirely in M and M must be a variety. We may suppose without loss
of generality that ﬁ € Mo Now let p& IlmMs say p& Co. Then «p & Do. But
then [x,-p] intersects M if x € C and [x,p] intersects M if x ¢ Do Lenoe
M+ Rp = L, so either M is a maximal variety or i = L,

Following Hille, by topological linear space we mean a linear system

with an associated topology for which x + ty is continuous separately in

x, t, and yo To each maximal variety M cecrresponds a linear functional f ff 0
and a constant o such that M = [f3c] & {x\f(x) = o}, Mis called a hyper-
plene if £ is continuous. If XcC [fgftc] or X< [f;zc], we say that X is
bounded by M.

(202) In a topclogical linear spacs, a maximal variety is a hyper-

plene if and only if it bounds some convex body (i.e., a convex set having

interior points.)
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Proof: If [f;c] is a hyperplane then f is continuous and hence
[£3>c] is a convex body bounded by [f;c]. Suppose conversely that £ ¥ 0
and [£;0] bounds a convex body Ke Since K cannot intersect both [£;>0]
and [£;<0] we may assume that KC [f;i'o]. Let pe [£31], Then K + p is
& convex body contained in X = [£3>0] and it follows easily that X is open.
Now for each open interval (a,b) < R we have f-l(a,b) s [X + ap]() [~X + bpl,
which is open. Hence f is continuous and the proof is complete.

If {f;0] is a maximal variety in the linear system L and A and B are
subsets of L, we say that [fj;c] separates A from B provided either A [f;zc]
and B c[f;ﬁc] or AC [f;fc] and Bc[f;zc].

(243) (Separation Theorem) Suppose thet E is a topological linear

space, A is a convex body in E, and B is a convex subset of E which does not

. A ——————————,  ————  S—oors

intersect the interior of A. Then A and B can be separated by a hyperplane,

Proof: By (1l,1) there are complementary convex sets C O Int A and
DD Bo Let M= lin C() 1lin Do The continuity axiom for topological linear
spaces implies that A% is non~empty and hence I # E; Thus from (2.1) it
follows that M is & maximal variety, and clearly M separates A and B, That
M is a hyperplane follows from (2.2).

The separation theorem has a number of interesting consequences,
some of which will be developed in VIII, At present, however, we need the
following result for use in proving a theorem on extreme points of convex sets,

(2+4) Suppose that E is a topological linear space with the property

that for each x # f there is a continuous linear functional £ on E such that

£(x) # Oo Then if K is a compact convex subset of E and pe E-K, there is a

continuous linear functional g on E such that g(p) > sup

v & 1BY)e

|
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Proof: From the hypothesis on the existence of continuous linear
functionals, it follows that for eech g & K there is a half-space [fj<c]
which conteins q but not ps. Since K is compact it is covered by & finite
number of such half-spaces, end the intersection of the corresponding comple~
mentary open half-spaces (those of the form [£;>c])is an open convex set

which contains p and misses K, Then the desired conclusion follows almost

at once from (2.3).

§3, Kelly's theorem on extreme points.

If K is a convex subset of & linear system, then by an extreme point

of K is meant a point y & K such that whenever x, z€ K, ¥ ¢ {x,z). A well-
known theorem due to Ms Krein and D, Milmen [2] asserts that if E is a Banach
space and K is a bounded regularly convex subset of the adjoint space E*, then
K is the closed convex hull of its set of extreme points. In a paper which
has not yet been published, JeL.Kelley has generalized the theorem as follows:

(3,1) Let B be a topological linear space with the property thet

for each x f’ﬁ'there is & continuous linear functional f for which f(x) # Oo

Let K be & compact convex subset of E, Them K is the closed convex hull of

its set of extreme points.

Proof: Let Z be the class of all closed subsets X of K which have
the property that if a line segment s of K has e non-endpoint in X, then s C Xe
7 is non-empty, since K€ Z. Z is partially ordered by set inclusion and the
intersection of each totally ordered subclass of Z is in Z. Hence by Zorn's
lemma Z has a minimal element Mo Now suppose M contains two different points,
x end y. There is a continuous linear functional f on E such that f(x) A E(y)e

Let M!' be the subset of M on which f attains its meximum value. Since M is
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compact, M' is non~empty. Now if s is a line segment in K which has a non-
endpoint in M!, then by the definition of Z, s < M. But then from the defi-
nition of M' it follows that s & M!'e M! cannot contain both x and y, so M!
is a proper subset of M and M'€ Z, contradicting the minimality of Me Thus
M contains a single point, which must be an extreme point of K. We have
shown that X must have at least one extreme point.

Now let K' be the closed convex hull of the set of all extreme points
of Ke We know that K! is non-empty and wish to show that K' = Ke The
assumption that K!' ¥ K implies (by use of (2.4)) that there is a continuous
linear functional £ on E such that if Y is the set points at which I attains
its maximum on K, then YN g = A, But the result of the above peragraph
implies that Y has at least one extrems point and clearly this must be an
extrome point of K also, which is a contradiction. Thus the proof is complete,

(Since each bounded regularly convex set is compact in the weak*

topology, (B3.1) implies the Krein-Milman result.)
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§1. Some consequences of the separasion theorem,

—

Tn this section we will dowvelop scre ronsequences of the ssparation
theorem, whose proof was presented by Professor Pottis, Let us first stete
this theorem as

(1,1) Suppose that E is a topological linear rpace (in the sense of

Hille), A is a convex body in E, and B is a couvex sunset of E which does

——— Y S —————  ———  S— ————

not intersect the interior of A. Then A and B can be separated E}L & hyper=

plane,
(142) to (1.5) below follow immediately from (1.1).

(1.2) Suppose that E is a topological linear space, C is & convex

body in E, and V is & veriety which coatains no interior point of Ce Then

Cis bounded lo_y__ e hyperplane which contains V.

(1.3) Ina topological linear space, & convex body is supported by &

—an

hyperplane at each of its boundary points,

(1e4) A variety in a topological linear space is contained in some

hyperplane if and only _:Ei its complement contains some comnvex body.

(1.6) There _'J:_.f.__a._non-trivial continuous linear funotional on a topo-

logicel linear space E if and only if some proper subset of E is & convex

body.
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For normed spaces, (l.1) is due to Tukey [8], (l.2) and (1.3) to
Mazur [7]e (1.5) was proved by LaSalle [6] for Heusdorff linear spaces (in
the sense of Hille),

A subset X of a normed linear space E will be called & distance~-set

if to each y ¢ E corresponds at least one q € X such that flq =« yil=
=1n.f'xex”x-y”.

(1e6) In a normed linear space E, a convex distance-set is supported

by & hyperplane at each point of a set demse in its boundary.

Proof: Let p be an arbitrary boundary point ¢ the convex distance~
set C, and let ¥y be a sequence of points of E-C such that ¥{=>p. For each

i let 9, be a point of C which is nearest to Yo and let S, be the sphere

i
having center y, end radiusllyi- qill. From (l.1) it follows that S, end C
can be separated by a hyperplane Hi which clearly must support C at g

And since q;—>P the proof is complete,

In [5], (1.6) was proved by the author in a somewhat different way.

Bourgin [2] calls a set C € E regularly E convex if for each x € E=C

there is a continuous linear functional f such that f(x) > supoé:cf(c). We
have the following result, proved by Bourgin for Hausdorff linear spaces.

(1s7) EELE_topological linear spece, each closed convex body is

regﬁlarly E convex.

Proof: Suppose that C is a closed convex body and x € E~C, Let z be
an arbitrary interior point of C. Then the line segment (x,y) must fail to
intersect C for some ye€ (x,2)e Let [f;c] be a hyperplane which separates
(x,y) and C; say (x,v:< [£3 z c] and Cc [f; s o]e We wish to show that f£(x)

> 6. Suppose not, Then we have f(x) s c, £(y) 2 o, and f£(z) S ¢ with
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y ¢(x,2), and hence £(x) = £(y) = £(z) = co But then z£[f; o], which
contradicts the fact that z € Int C and completes the proof,
For normed spaces, the following result was proved in [5] by the

author:

(1.8) In a locally convex Hausdorff linear space E, each closed

convex cone ;‘ E is supported at its vertex Pz_ & hyperplane.

Proof: Let C be a convex cone of the type described and pé¢ E~Cs Then
there is & convex open set U such that p¢ UcE-C, and by (l.1) U and C oan
be separated by a hyperplane He It is easy to see that the translate of H
which contains the vertex of C must actually support C.

(1.9) Suppose that A and B are disjoint convex subsets of the locally

convex Hausdorff linear space E, A is weakly compact, and B is closed, Then

there is a continuous linear functional f on E such that infaeAf(a.) >

sup, . Bf(b)°

Proof: Let Ew denote the space E in its weak topology. As Bourgin
has noted [2], Ew is a locally convex Hausdorff linear space and a convex
set is closed in Ew if and only if it is closed in E, Since Ew is a wniform
space, A is a compact and B a olosed subset of E_, 1t follows from a result
of Bourbaki [13ppel11=112] that there is a convex set V 3 £ such that V is
open in E_ (and hence in E) and (A + V)N(B + V) =/\. . Then by (1.1) we
can obtain & hyperplane [f;c] which separates these sets. Clearly either
£ or -f has the desired property.

This result constitutes a strengthening of Bourgin's theorem [2;
pPp=643~646] that each closed convex set in E is regularly E convex, and also

an extension of Tukey's separation theorem for weakly compact sets (8], which
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was proved by him for normed spaces only,

(1.10) Suppose that K is a closed, locally weakly campact, convex

subset of the locally convex Hausdorff linear space Es Then at each point

of a set dense in its boundary, K is supported by e hyperplane,

Proof: (For normed spaces this was proved in [5] by showing that K
is a distance-set and then applying (1.6)s The proof here is quite analogous.)
Let p be an arbitrary boundary point of X and U an arbitrary neighborhood
of ps We wish to show that K is supported at some point of U {\ K,

From our hypotheses it follows that there is a convex open set V such
that pe V< Vc U and VN K is weakly compacts Let p ¢ V-K and let W be a
convex open set such that p€ Wc W V-K, Let Z be the class of all closed
convex sets C such thet We C <V and cN XK ;‘.A_. Then V € Z and Z is
partially ordered by set~inclusion. Now suppose Z!' igs a tctally ordered

subolasgs of Z and define C!' & ﬂ Ce Then C! is closed end convex and

Ce !
W< ' c Vo And the collection of weakly closed sets {_C NEK l CeE Z’} has
the finite intersection property, so from the weak comnactness of V() K it
follows that C*N K # A« Hence C'€ 7,

Now we can apply Zorn's lemma to obtain a minimal element M of Z.
M is a convex body since WC M, Thus if we can show that K () Int M =./\.,
we obtain by (1l.1) an hyperplane which separates K and M, and thus supports
K at each point of KMl M C U, which completes the proofs. So suppose that
2€ X{) Int M, Then there are points x and y of Int M N K such that ye¢ (x,z).
We see from (1l.,2) that there is a hyperplane [f;c] such that £(y) = ¢ and
We [f3 5 ¢l Now let M= U0 [£ S¢)l. Then M€ Z but x ¢ M, which
contradicts the minimality of M and completes the proof.
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To show that the compactness requirement in (1.10) cannot be entirely
omitted, Dieudonné [3] gave an example in the space A of two disjoint
bounded closed convex sets which camnot be s eparated by a hyperplane, The

corresponding question with respect to (1,10) is still open.

§2« Non-support points of convex sets. For a convex subset C of a linear

space, let N(C) denoto the set of all points of 0 at which C fails to be
supported by a hyperplanes. In a finite-dimensional normed space, N(C) is
empty if and only if C 4is aotually contained in some hyperplane, For ine
finite-dimensional spaces, however, this need not be the case, as we see
from the exemples below,

(a) In the space 2P (p z 1) let E, be the set of all points which

1
have at most a finite number of non-gero coordinates, Let X be the collece
tion of all points of ,Zp which have exoclusively non~negative coordinates,.
Then X N El is convex and is supported by a hyperplane at each of its points,
but is not contained in any hyperplane.

(b) Let E

be the space. Then X ﬂEl is closed in B, and is sup-

1 1
ported by a hyperplane at each of its points, but is not even contained in
& variety of El’

(¢) Let X be an uncountable set and let E be the space ,ZP(X). Then
E is a non-separable Benach space, Let K be the class of all non~negative
functions in Es Then X is closed, convex, and supported at each of its
points, but not contained in any variety.

The question remeins open as to whether such an example of a closed

convex set can exist in a complete separable normed linear space, Each of
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(a), (b), and (c) fulfills two of the three underlined conditions.) We shall
see, however, that if C does have non-support points it must have a lot of
them,

(2.1) Suppose that E is & topological linear space and C is & convex

subset of E for which N(C) is not emptyeThen N(C) is a dense convex subset in C

Proof: Let x € N(C), y € C, and z€ (x,y)e Clearly each hyperplane
which supports C at z must contain x, so there can be no such hyperplans
and we must have (x,y)C N(C), which clearly completes the proof.

(2.2) Suppose that in a linear space, © is a convex set which at some

——

point x € C has a unique supporting hyperplane. Then either C C H or N(C)

is non-emptys

Proof: Suppose there is some point z € C-H and let yé€ (x,2)e If
v € N(C) then C is supported at y by a hyperplane H'. But then H' supports
¢ at x, so by hypothesis H' = H and hence y € He But then also Z € H, which
is a contradiction,.

(2,3) Suppose that C is & convex subset of the separable normed :

linear space E and that N(C) is non-empty. Then N(C) is & residual G(S -s6t

in C.

Proof: For each v € C let Kv be the cone from v over Ce Suppose vs
is a sequence of points of C for which vi—-> ve C and let y € Kv' For some
k>0endxe Cwe have y = v + k(x - v)s But nowyi-»ywhere
yi= vyt k(x ~ vi)e Kvi, 80 ¥ € lim inf Kvi. Thus the mapping Kv‘ veC, and
hence also the mapping Ev | ve ¢, is lower~-semi-cont:nuous. Now from (1.8)
it follows that -K'v= T if and only if v € N(C), and since N(C) is dense in C
the mapping fv| vE C is continuous precisely et points of N(C) But then

the desired conclusion follows at once from a theorem of M.K. Fort [4],
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§4., A generalization of the soparation theorem, (Although most of the proofs

of this section are valid in every topological linear space, the theorems
will be stated only for a finite-dimensional Euclidean space E.) A collece
tion of n+l convex subsets of E will be called an n-set in E provided each
n of the sets have a common interior point, although the intersection of
all n+l interiors is empty., The separation theorem says that if { c o? Clg
is a l=set, then Co and Cl can be separated by a hyperplane, This result
is generalized below by showing that if {co’""cn} is an n-get, then there
is variety V of deficiency n in E such that V intersects no set Int Gi.
although in each direction away from V, V has a translate which intersects
some set Int C,.

i
The following result will be useful in the sequel,

(3.1) Suppose that CosoeesCy are clogsed convex subsets of E, each n
of which have a point in common, and that Vigo Cy is convex, Then there is

& point in common to all C,'se

Froof': We may assume without loss of generality that all the Ci's

are compact, For n = 0O the theorem is trivials Now suppose it holds for
k
1=1%

are disjoint compact convex sets, so can be separated by a hyperplane H dis~

n = k=1 and consider the case n = ke If ﬂ 1;0 Ci=/\. then Co and P =ﬂ

joint from both of them, Let C,'= C,/VE(L 51 5 k), For en arbitrary in-

i

teger j between 1 and k let X = nl < Since each k of the

15k, 143 5%
ci’s have a point in common, X intersects Co. And since furthermore PC X,

k
. C ] '
1Sy 143 G £ A, But V, 5, C,

is convex, so it follows from the inductive hypothesis that 011:1 Ci' ;‘-/\.

X must interseoct H and hence f\ 1S

Since this contradicts the fact that P/ H =J\., the proof is complete.
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I X X;p eve. X are points of E, [xo, Xys sees xn] will denote
the convex hull cf the set {xo, X1s eess xn} ’ (xo. X1s vess xn) g
[xo, Xys sees xn] - {xog » etce, (" = " is used for both set and vector
differences, since in each case the meaning is clear from the context, "+"
is used for vector sum, "U" for set union,)

The proof of our theorem is effected by means of two lemmas, the first
of which is the following:

(3.2) Ir {Co,...,cn} is an n-set in B, then there are convex sets

Ki 2 ci auch that fKo,...,Kn} is an n-set which covers E,

Proofs We will show that if x is an arbitrary point of E then there
are convex sets Ci' D Ci such that {co',...,oi'} is an n-set and, in addi-
tion, x € uizo Cyte (342) follows from this fact by a straightforward
application of Zorn's lemma,

For o = 3 s n, Dj = ﬂ i;(jInt c If from some J we cannoct have

i.
d, &(C. %), with d,¢ D, and ¢, & C,, then we merely let C! be the convex

J J J J J

hull of (J‘_j U {xf, Gi’= Ci for i;"-{ , and the sets Gi' will have the desired
propertisse Suppose this is not the cases; that is, that there are points

<, <
do’“"dn’co’“"’cn such that for o = 1 = n, cs & Ci’ and d, & Di/\ (oi,x).

i
For each j let Xj= (cj’do’""djol’djﬂ’""dn)' Then Xj < Int Cj. But
by usse of Cramer?s rule it can be shown that all the Xi's have a point in
common and hence that ﬂ izo Int Ci;l _A_o which is a contradiction completing
the proof of (3.2)e

A linear subset of E is called a subspace, and each translate of a

subspace is a verietys The deficiency in E of a subspace (and of its transe

letes) is the dimension of a subspace complementary to it,



86,

(3.3) Suppose that {Ko,...,%lis_ en n-set which covers E and that

' n
Ve ﬂ1=o

n

Proof: Let W=E = U, = Int K, and (for each j) 7cj= ﬂi;‘a' Int Ko

From {3.1) we see that V is non-emptye We show first that V c We For if

'I'{'i. Then V = E = Ui:o Ky» &nd is a variety of deficiency n in E.

not, there is & point p and an integer j such that p ¢ V NInt K Let

jl
qQ & ’R’jo Then, sinoe for each 1 ¥ j we have p ¢ T{i and g £ Inb Ki’

(p,q) chjo But also p ¢ Int Kj’ so (p,q) intersects Int K, and

J
{‘\ n

ymo It Ky A, which is a contradiction,

To see that We V, let ¥y ¢ Wand z € T, for some jo Consider an

J
arbitrary point x such that y & (x,z)e If, for any i ;( Jox¢ Ki’ then we

have y £ Int Ki’ which contradicts the fact that y ¢ We Hence x ¢ X Thus

3
we have shown that y ¢ 'K'j for each j, and consequently y ¢ Vo Since Wc V
and Vo W, V=T,

Obviously V is convexe To prove that it is actually a variety we must
show that if y ¢ V, 2 &€V, and y & (x,2), then x &€ Vo But if x 4V, then

(since V = W)x & Int K, for some j and hence y & Int K,j » Which contradicts

J
the fact that y € Wo Hence V i3 a variety and it remains only to show that
the deficiency of V in E is n,.

We assume without loss of generality that V contains the origin, Let
S be a subspace of E complementary to Ve Each point x of E has a unique
expression in the form vx-l- x* where Ve £ V and x* £ Se¢ From the fact that
V =W it follows that no translate of V other than V itself can interssct

i
in Sy Now Helly's theorem applies to an arbitrary finite collection of

all the sets K,s This in turn implies that {Ko*. Kl*, seey Kn*g is an nwset

convex sets even though they may not be compact, so we can conclude that

S is at least n-dimensional,
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If Py € 'ﬂ.’i for each i then the variety U determined by {Po""’PnS
is n-dimensional, Lot x be an arbitrary point of E, For a sufficiently
small positive t we have p, ¥ tx & 'it’i for each i, Now for each 1 let

K
iy

must intersect U # tx, From this it follows that V must intersect every

&, N U+ tx)e {Kot. Klt, cees Knt§ is an neset in U+ tx, so V

translate of U, and hence that the defiociency of V in B is no greater than
ne This completes the proof of (3.3)e

Thoorem: If {C_yee05C,} 18 an n-set in B, then there is a variety V

of deficiency n in E such that

(a) V intersects no set Int C,;

(b) 1if V' is any variety of defiociency nel which ocontains V, end H

ig either of the halfegpace into which V separates V', then H

intersects some set Int Ci.

~ Proof: Let the K,'s be as in (3.2) and V as in (B¢3)s For sach

i
J let By € D:j = mi;‘jci and let S be the variety determined by {zo,...,zn} R
S is a variety which is intersected by V in a single point P, and 6=
w [zo.o..,zll is an n-simplex whose boundary (relative to S) is contained
in the wnion of the C,'s, In fact, if P, is the face determined by {2 Jli/;)} .
then F,c Int C

J 3
contains V, then V¢ intersects S in a line through pe Hence to prove the

Now if Vt is a variety of deficienoy n-1 (in E) which

Theorem we need merely show that P& ¢~ But if P ¢ ¢’ then for some J

there is a point q £ F, such that either q & (P,zj) or z, & (qyP)e 1In the
J

first case this implies that p &€ ., in the second that 2

J J
either case that /N i: ° Int Gi ¥ A, which is a contradiction completing the

e Int Cj, so in

proof.
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Partial lis of errata

Page 18, Theorem 32, Should be compared with Theorem 486,
Page 23, Thearem 45. Should be compared with Theorem 47,
Page 16, line 26, Replace "guage" by "gauge",

Page 34, line 11, Replace "r = 1" py mp o 1r,
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