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LECTURES ON QUANTUM ELECTRODYNAMICS

by
PAJMDirac

The course is to be devoted prinecipally to the guantum theory of
fields. As an introduction, there is a brief presentation of the gemeral
principles of quantum mechenics which follows closely that given in the lec-
turer's "Quontum lechanics" (Oxford University Press, 1930). In reporting
this part of the work, the editors have decided that it is not worth while to
duplicats extensively the basic presentation as given there. Instead there-~
fore, a brief outline is given with page references together with notes on ad-

ditional material or varied treetments which are not given in that work.

I'd
I. General Principles of Quantum Mechanics

e - e — o i o o -

l, Introduction of concent of State

The first basic concept is that of state of a dynemical system (Chap-
ter I). One may think of the state as referring to a particular instant of
time, relative to a particular Lorentz frame, or as referring to the whole de-
velopment of the dynamical system throughout all time. These may be called the
S-dimensional and 4-dimensional meanings of the word respectively.,

Thich is preforable? Perhaps the 4-dimensional, since it is a rela-
tivistic concept, whereas the 3-dimensional is a particular section through the
4-dimensional obtained by introducing a particular Lorentz frame, But the the-
ory has had its principal development through working with the 3-dimensional
meaning in tho foroeground. So perhaps the 3-dimensional meaning is more funda-

mental then would appecar if it‘is o m%§e section of the 4-dimensional state.
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Here is a clash between the quantum.thgory and the theory of relativity.

The theory of the three-dimensional view is adequate for the.non-rela-
tivistic theory. It divides naturally into (1) study of relations between
states at a given instent and (2) the relation of the succession of states de-
veloping at successive instants,

Principle of superposition requires that the sum of two states shall
be a state, that a meaning be aseribable to such a sum. From the prineciple of
superposition for 4-dimensional states it follows that a linear relatioﬁ be-

tween 3-dimensional stotes remains invariant in time.

2. Properties of three-dimensional states

The states may be pictured as vectors in an appropriate space. Only

the direction of the vector has physical meaning. The vector space is complex

_in the sense that the components ‘of vectors may be complex numbers. A vector

represents the some state whon multiplied by en arbitrory complex number.

Thero followed in the lecturos a brief presentation of the main points
contained in Chapters 2, 3, 4, and 5.

K more restricted ‘definition of obscrvable was givén in the lectures
than in tho book. (Comparo pp. 25=-33.) There any linear operator was admit-
ted to the status of obsorvable. In tho loctures tho term observable is re-
stricted to include the roality condition (19), pe. 29; i.e. on operator must
satisfy Eq. (19) in order to be an obsorvablo.  Another rostriction is made
with regard to the expansion thooram (p. 37). The concept, observable, is now
further restricted to those lincor oporators for which the cxpansion theoren is
valid.

Onc point not treated in the book, which was troated in the lectures

was that of the approximete treatment of a continuous speotrum of eigenvalues
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by replacing it by a discrete set. Suppose we replace the continuum of eigen-
values of f , between §' and §' + d§' by a discrete number of eigenvalues
in this range in such a way that the disorete number in this range is s(§ tage
where s( g') > 0, for all E'. Then if F(g ') is any function of § ' we shall
have, approximately, ' .

?t' g = (g sCgr) ag
so that the discrete case is the same as the continuous with & weighting func-
tion s(g ').  From this it follows that if (g '/)D is the represent;tive of a
state in the discrete representation, and (f'/@ is that in the truly continu-
ous representation, the relation is .

] :_-J____. ( l)
(1) = 7y L1

Similarly matrix components in the two schemes are related by

(51t 57); = (5 /%1¢")

/

Y 5(5‘}5(3”’7

rd
3¢ Displacement operators

The displacement of a state or an observable is a perfectly definite
process physically. Thus to displace a state or observable through a distance
g‘x in the direction of the x-axis, we should merely Ba#e to displace all the
apparatus used in preparing the state, or all the apparastus used to measure the
observable, through the distance 8 x in the direction of the x-axis, and the
displacoed apparatus would define the displacod state or observeble. A dis-
placed state or obsorvablc is uniquely determined by the undisplaced state or
observable together with the direction and the magnitude of the displacement.

The displacement of the \L/ -vector is not such a definite thing though.

If we toke a certain V/ ~vector, it will represent a certain state and we may

displace this state and got a perfeetly dofinite new state, but this new state
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will not determine our displaced \-]J . but only the direction of our displaced
\U . We help to fix our disp}aced \}/ by requiring that it shall have the
seme length as the undisplaced, but even then it is not completely determined,
bx.rb can still be multiplied b3; an arbitrary phase factor. We require further
that the superposition relations between states remai'n. invariant under the dis-
placement., Thus, if before the displacement we h;a.ve

Yo =it W,
we require that for the displaced states

S —~ ~

% = °1W 1% ¢ \'1/2
This condition is satisfied only if the phase factor by which the displaced
'&}J 's are multiplied is the same for all states,

Corresponding to a displacement we may define an operation on \// and

on an observable g .

L]

Dx«?/ = lim SX""°\P?5:‘Y and DX(P = lim CES——CQ
X X

e
DX{ =lim§x—)o j_g
S _rf\/ 7(
If instead of \P we take € W, we get s
¥~ ~ y o~
D*‘*P':lm QL\P-—\V =11m\lj‘w+lm_€t~/\{J
§ x 5 X 5 x
= D\ + ia \{/
where

a = lim ___ﬁx‘ , Which must exist.
O X

a4
Since \P linear function of \V g = A\V, DX\V = dka , Where
dx = linear operator acting on \V. Suppese @h \VQ = ¢, then ’(\élh WQ = Cae
Subtracting and going to the limit (Dx (P'*l) {Q 4o CPh_( D‘ (Pe ):,_ 0

KD"‘ (PW-\)(,‘;\"/Q t (P’R- DL~; \:qu O  for arbitrary \.VQ




Hence

D, (Pk?. -~ CP*"- o«
On the other hand, by its definition
D« Qg
e~ B d

or X

conjugate imaginary te D« \*V.h,

i

conjugate imaginary to d" Wn,

conjugate imaginary to dx

i

Therefore d)(

il

i X Hermitian operator.

For observables we have
§ \Va = ‘\Vb
Hence (Dxf)\.})ou-l- ED\‘\V&.: DXWb

(ng)\‘yo. + de%,= 0{%“//0 = dlx(qu@)
"' ngzdxgjgdx

It is to be observed that an addition of ia W to D \—V does not alter this,

Suppose x,y, z = coordinates of the center of gravity of a system.

/OX ) Plj, Pf‘-'« = momenta.,

Dit= Ao L=% . fim (x-dx) =% - _
D ¥ o X

ij=Dx%~_O
oodx - dys - ), etc

We find in this way that
( % dx - /3)( commutes with everything and is therefore a number.

Since 0()1 is already undetermined up to a constant, we can identify

/OXELhdx

* e
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If we consider two operations, Dx and Dy’ woe have, in general,
DD A = Dy A+ i,
since the phases may change differently in the two orders of operations.

Considering rotations in a menner similar to displacements, we have

DEAP = Mo %i// undefined up to iaﬁu_

We also introduce df by the equation df A = DE A s ete.
Thus we obtain

d d - d,{ d§ = 4 + ."uaLg ; and two similar relatioms.

£ 1
We can get rid of iaf by re-defining d f etes thus:

*
d, = d, + ia ., etec.
f I §

Considering combinations of robations and displacements, we have:

de, dz]‘dg.l 4 [[dz, dgl‘dxl +D:d§ ) dx;l\d;} - 0

or
[113 , d§} * [d 4 ( ), dxl + [number, dzl= 0
'{,. ol [L’o‘a,r£§}::o
TL\ere §ore [d' ,La\d'.);l: 0, etc.

The scheme usually assumed is the most genoral in free space. In an exter-
nal field (in particular, in a magnetic field)

dxd% - d‘éd)‘ = lbi




4. Change of state in time

We have not only superposition of states in 3-dimonsions, but alse in
4~dimensions, Considered from 3-dimensional point of view this means that
states, that are linear combinations of other states at one instant of time, re-
main so at all times. This requires that all states change with time accerding
to law

k+ztl = A \félvmere A= A(tl, tz) is a linear operator. For
= Ott, this becomes

4y = WY

where, by analogy with the classical theory, H is called the Hamiltonian of the

tz - tl

system, even for systoms having no classical analogue. Ve assume that the
linear operator H is an obsorvable (llormitian, etc.). Similarly
‘s\ (]
“‘-1R-Z:§> = Q? }4
o
Both are called Schr8dinger's wave equations. If H ig8 o consbtant,

-« HE
\ij‘f‘ -~ e ] \VO

For o represontation :

44
hd (40 = §igiHigugn
is the practical way of statoment.

Stationary Vs \+)for which CL;f) is parallel to M .  Thus, for
wt

stationary k¥)

dW_ AW
sr ¥4 \L} - l.*% A.\+)
Lience, stationary\q) is an eigen \+} of II. Only for very spccial way of ¢
entering into H can there bo stationary states. The above is Schrédinger's

picture,
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In Heisenberg's represcntation the state veetor is at rest but opera-
tors are considered to be functions of time. In a scnsc it corresponds to
keeping a vector fixed with coordinates rotated. In SchrBdinger's picture all

operators are fixed (q, Lk ZD— , ete.).  Thus:

Schr8dinger lHeisenborg
States as
vectors moving fixed
Dynamical
] variables as
] linear opcrators fixed moving

A vector \’." fixed in Neisenberg axes will appear as moving:
| (had . — HWY
ot
where H is now the same function of moving oporators, as beforc it was of fixed.
This is because Heisenberg axes arc considered as moving. We now have
td
§ fixed in any coordinate system, LV(L fixed in the samc coordinate systom
= \Pb , fixed in the samc coordinate systom

Then

Ltctﬁ\ym+tﬁ§’dLP’ (h AW
TS Lt

or

' B AS g - FHYL = - H Vo= = H e

Honece M

which is the lleisenberg form of tho equations of motion. This unanalogous to

[§ H]

f In Schr8dinger's reprosontation we have no such a comparison. VWhon ? contains

the classical

t explicitly, this becomes

a_gzaﬁ%ﬂu(gH—Hf)




If we put E = H, we obtain
dht - p = .o
At ¢
If f cemmutes with H and does not contain t explicitly, f is a con~
stant of the motion. Vhen H is made diagonal, any diagonal matrix will commute
with H and will therefore be a constant of the motion.
: 1 '
(4T HIoL") = H' dwa” H= Hw)
M ' vy ' " ' H” 2t
R A [at) = (] S-S - (O )

«{ Ho"’ Ho”) t/ﬁ

] [%t Wigh")

so that ( O(‘/ {/O( ") = const. ©
while in Schrédinger's picture
(0(' l fld“ ) = constant
Classically, when we oniy kmow that a systom is in ene of several pos-
sible states, distributed according to probability. Then, if P is the proba-
bility density in phasc spacc = probability of ono system being in a plase (in
phase space),
dp-—Lp H]
Corrosponding thing in Q.if. whon ( f/l), ( 5‘/2), ote. are possible
states, let
Pﬂ = probability of boing in m-th state
12p 2o,
Corresponding to f we have
f
(s'1plg)= 2 (51m) R, (m[g")
g
hdp- He ¥ f

which is another way of deseribing cquations ef motion.

and

We may normalize §7 classically thus

fpipep =1




So that

Ave. )(- = j)c x C{Pdﬁ ; ete.

j(glj pre)ds =1 =5 /(f"/m)/%(m}f'ﬂ/f/:,;%

111

Ave. L = 3 ){ P mighds (5)xlg)yd3"(£7m)

= (s 24 ') d ¢
so that
( fl/]ojf/) [/15,/ = probability of 5 lying in &/ 3 ’
It is intercsting to comsider at this point the question: In whak
sense, for o dynamical system of n degrees of froedom, a cell of volume
in phase space is oquivalent to a state. One way is o enclose the system,
say a particle, in & box. Thensthe mumber of states corrosponding to d./o is
K_/_f‘_{b , where ‘Y/— is the volumc of the box. Consider differcnt eigen states
ofl;? m is specificd by numerical value of p. Thon, the probability
Pfg,/o’ﬁfp’ = 73;' 6{—75, o
(Sl g = [ 4t (P1EY)
In reprosentation in which 4. is diagonal
FIENET figrip) Boab (p'19)
(§)P)= 4, e BRI
g ] Fh fIPIE Paap
S

' Voo D . . . .
): 5 [
( IZ_ /|D) — |/ ¢/) density of particles in coordinatc space
ﬁ”l p!
1

B,
N e density in phase space
M

Change now to discrete states

(3'1p1g") = %%;'//J')D& (P19)p
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where P_, = probable number of systems in state p'.

17

Hence —1; = density for one system in state p?
and HA? = volume of one state.
Thus, this is connected with the difference in normalization bebtween continu-
ous and discrete states,

finally, when we go over to relativistic point of view, and are deal-
ing with a single particle, time must be treated in the same way as the other
variables. We should rewrite (x y z/)t (xyz%/)s
and the Schr8dinger equation becomes

LF%(¥qzt)): Hxyztr)

H must therefore be linear in :2_. s k=1, 2, 3.
dX K

II. Method of Treating of Assemblies of l.arge Numbers of Particles

Tris method? although applicable primarily to a system of particles
without interactions, may be extended to the cose when each of the particles
(or systems) interacts with an outside system, thus providing an indirect in-
toraction. Secondly, such a systom in its equations is similar to a fileld --
thus providing a mathenatical annlogy upon which the Q.M. of fields is based.

Chicef applications are to the systoms
a) Photons + atom = atom + ficld
b) Electrons + field = clcctrons with interactions
Unsatisfactory feature is that there is no accurate theory of interaction of
electron and photon.

For each kind of particle the \%) functions are cither all symmotrie
or all antisymmotric in thc coordinates of the particles. There is no theory

to tell which it nust be. Experimontally we have
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For symmetrical -~ Einstein-Bose particles (photons)

" (electrons)

For anti-" -- Fermi

The main idea of the method 1s to introduce a large number of similar
particles and to introduce as dynamical variables numbers of particles in speci-
fied states (described by the value of q, say)

1 noon (a)
q ?b s
i (e)

number of particles in state g .

,... q

il

llew variables are n,

For symmetrical case né =0, 1, 2, vou D

For anti- " " n! = 0, 1.
The na's can be treated as dynamical variables, but they are not suf-
ficient. All n.'s commute with each other. To get a complete set we must in-

troduce also other wvariasbles.

By analogy with harmonzc oscillator, H = %(p2 + qz) which has eigen-
values A 7;)5275 A ,li-—l_ has eigenvalues 0, 1, 2, ... . Thus, apart
from trivial changes n, = Hemiltonian of a harmonic oscillator. Take repre-

sentation in which n, is diagonal

i 0000 ..
'}/\”__b—. 0100 .,.
& 0020 ..
\‘ » o e e e
\
Introduce
/ 0000.. 0100 ..
Lwlr !
(49 ~ Ly
4 :( 1000.. ez o0010.,
{
\ 0100 .. 0001 ..
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for each value of a, Let these commute with wvariables for other values of a.

: ' Wy - LW
e,b w—aeuura, _ i ,) (f( Qe L au&: i—

‘Wa, Lura - Wa, -qu

Ne e - (Nat!) ; Mge = (Ma-1)
e ™= et fing e W fna-)

Introduce also

’/2_ l._\zU~ -t Wy ’/7__
-ga_: (ﬂa# | ) ¢ a‘.__- e /nCL
(enalogue of p + igq)
hul LLU-a ”7_ ”')_ L.W"a_,
g“ (”?a‘rl) - Na (analogue of p - iq)

—

The new set of v'ariables, fq_ and ga, , are sufficient to describe any symmet-
rical function of dynamical variables -- the only kind heving a physical mean-

ing. The problem is then to oxpress an arbitrary symmetrical function of p's
-

128
Let the function be 1, = _4, T !y (special kind of function) where

and ¢'s in terms of f& and

Un, depends only upon the var 1'\oles of one particls. Let ULH = \V,_

(Fgr o Falt)

then

(%;)%—IL""[Z;M;ZI ) “‘?ZJ/,\%' z !%:“'""Z;ll){%:,""(?"“)

« / " '
:‘“24(0 U;r %%1,...%m.--zﬂll)
because of the form of U How, since n's are functions g's only,

(05Nl Y s AL g gl )

Since we wish 'bl"at whenever

} .
/i e g% / )[ = _j,_
we should have‘b

Z (M'%m»)/?‘% £
2

<”
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we obtain

(R —

NI
Thus ., ) .
/ / < < _y Y, P ,r* y
nlo]2) = V19, )(n Mg /
(77, }2) fz’(ia i’t Z' 7)5,‘7“//

Let (gkk) Uh. (b)) = I)Zb , Since UfL is the same function for all

particles, but of different variable T./Ta b 1s independent of r, Then
m. U N U, (7, Wy e 0D v"/')( ot
(')\Im,l_nlu'l)f' Zha aa(’n,ﬂi"").}.)""z)?a_ Qb( " 2 B "
a a,b a
e b
or

y ' W
U Z”x aa t 2] /y}c‘gl 7)b*"")"'Q ‘-’-L bJab

a*Ho

/ <~ llv
= Zéh‘“ "(Mprl-dap) Uy ©
[~R

2 5. Ut

Supnose cach system satisfies equation

vy 2
Mza: H W
! '3-<” //7,/'7./ (/
Lka%(%ﬂ 4(‘2 /?)}

what are the Heisenberg equa’tlons of motion for E 'Se

H=Z#/\, = 2,
aob

(e, b need not be eigenstates of H.

LU/-ZL - Wy

¥

or

L

>a, /L/Qb >h

They are eigenstates ofg 's.) Then,

since

g&. fb" gbZL:D

gb Sa= g@b
? H- Hgm* ZECaHQb zgb Zi Habgb
b

and
f&. E,b -
s,

l

)*‘.




which is formally the same as eq. for (%l), but each § a'is an operator,

Thus, the main idea,-~ Take a wave equation for e single particle, solve it,

assume that the wave functions do not cammute. Analogy also holds for trans-

Z(Q(A), %\a)) g’q}
a
Here Q's have the eigenvalues A ~- this is the analogue of
(A) _ 1 A) ) /8
(@™ )= 2 (150§

—_— a)
Also ga ia. - M o (enalogue to ‘(Cz, “

It is important that phases of E{ 's are dynamical variables and can be ob-

formations

served. Thus, the idea of superquantization corresponds to giving phases a

physical meoning -- which is necessary to a ficld theory.

IiT. Quantum Thoory of Flelds

o —

AP e v e ) a

The goneral method is to pass,from the oquation of motion (SchrBdinger
eq.) for a single particle

L 7: w )= SRR

()[.’
to the quantlzed equation

k4w = ST TED )
where § (o ’dfaro overstol sds:tisfying the commubtation rules
‘fw‘ JEWy - fly') Sy =D
T W'y s M) (2)
E') TW - Tl ) Tl = Ol
If the particle has a spin, or polarization, the Schr8dinger equation

chg%s (Y= 2 f(x’ﬁ'/H/X”F")JX”(K"A‘"/) (3

is

0—’/
where x' arc the coordinates, (J~ ' the spin of the particle. The super-quan-

tized equation is thon
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Lﬁdé: Sude) = Zﬂx’o"/ HIZ'r") dx" Tix» o) 1)
with the cammutation rules . l

SU0) SR~ BT EKE) = SR B gt 1S
Equation (4), being a Heisenberg equation of motion, can be compared with the

corresponding classieal equations,- in this case with Maxwell's equations. It

is not quite of laxwell's form, since the eqs. div. E = 0 and div H = O are not

L3

of this form.
We suppose that a photon Has spin variables commuting with mamentum,

but not with position varisbles. Egquation /(3) camnot then be written. We

’

cen, however, use momentum variables:
L 7{ ‘d%: ( P,rl) - Z 4[479',‘0"/@/'/)}7”5’") dﬁlfp rp__ />
a,ll

A )= 2 o L) AT S

For ¢omparison with the classical theory, we must thus resolve Maxwell's field

and

into Fourier's components a, b, .. referring to states of light quantum (defi-
nite momentum and spin). We use the wave vector X =_‘_pé‘/ , With ka = k associ~-

ated with a state 8. Then

; = ZI/E'QW[ few%—- f)/a]d’é&

where a/ a contains time dependence., The sum being over the two states of

polarization. The direction of g o is essumed to be determined by the state

& Similarly
R s DR, [ #a1 - dﬁ]dfféa
It is cohvenient to go over to a sum, by the old device of introducing

S = number of discrete states per unit volume of ka space, about k . Thus

‘N g, g:—gjg&m[&'z* (Ya_]sq:-/

The energy can then be expressed in the form

(g atydr = 2 ()

&7
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The expression in parenthesis (.....) is the energy belonging to the state a,

and can be put equal %o 'fi Pﬁ;jk25b The classical calculation then yields

Bl = TR = (2 hvanasa)™

E . :71: Z; (%QV&)//L 77[:/1(’,0'1,[%@',(.-—-.{&] Sc:/h—()(&.
7 Ce

where O(a’= unit vector in the direction of é; « To get Hermitian operator
a .

Thus

we must replace

I} “7-" dx (J. -Lbyd/ L. l.bﬂ‘x -(' ga / —L.équ[/_‘_ L{&.
AN 0w Thyt- ¥o] vy et e de e%a”or e e phe

where )1 and a/ are the only non-commuting quantities. The second expres-

sion differs from the first merely in the physical meening assigned to 77 o

Since
Ol.. s b/ UOD d/
7/1 Co ¢ [ L OIOD-\\\
= ' = o =/ DOl O°
L }c )DD )e_ UDUI'
o) o - /
& D O D o
<Oy, 0
€N = PR 4
0 with the same form for n<e
O

This is not convenient. We shall therefore use the second expression for

2% cos [ Rar U - ¥a] e
Now o= € - ¢ K%&.qqc:‘ I }; 7411 ‘

Thus
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This is the transformetion from the momentum variebles, to coordinates. The
corresponding transformation for a single photon is impossible.

Now

", -l bd"')"\&b'll’)
[EU‘—) ,E,m )]"“"‘ Z f\ \} o/agb(bm} & dah
R WA

-1
| \ } Ir
= 1 S Volat Yam St [RoAL=2]Sa
T &
because each term cancels with one obtained by reversing k and keeping polariza-

tion constant. Slmllarly [H H ]-— 0. On the cbther hand

[ 42y, Hp) T = 2 Vi a0 B Seuclh o (X )] S
Sum for the tws direo‘blons of polarization. For one O< ,/5 for the other

0< “"/)) v 0(1/3% 1e§§s’to o(e/g,m— "‘/m/é'g 1t £ = m this is

zero. If :(and m-are at right engles
o( —_— (oA kﬂ ) = ‘& “
Lfom " gy

Wheref m, n is the right-hended system. Then

I:EQ(Z ﬂ 174)]’_._. VA, 758’7 &uUQQ?{X )(")]S‘L rji):f/o;&,./e“w

7

more explicitly
[ gu' '3 ) 3’3’55’)]—— 47}‘95 x’-x")§<9’i;”)§(;’—(%")
472, -1
25’
The Hamiltonian for tHe field is

zmﬁ%=% Ve T Ba

a

Expressing this in terms of E a.nd_‘ ‘5 one obtains




Z 2 / ST el
He - & J(ES U2 4 1

which shows that the first term alone is not a suitable expression for the quan~
tun theory Hemiltonien. As the last term is & constant (although infinite) it
does not affect equations of motion. Thus, equation of motion of gx

(prime refers to point x'y'z'),
/ / / v by = /
d 5< B [gx; ’L/F]“/[é;,% *W;ZJJX/

[Ex) %/// ?.] X///[é;)%///] [ 7

= 27‘%,/ " hix- x”)glg 3")5/3 -3")
J & ,7%“”7 - 57 27
There ored gx’ o g;

which corresnonds to c:orreé3 Maxwel equatlon.
P Now consider extension of properties of potentials. The extension is
not trivial, since potentials are not uniquely determined in terms of the field
quentities. The extension is necessary when interaction with charges is later

considered.
We use A for the veetor and AO for the scalar potential. It is cus-

~
tomary to assume ¢ 140 + div A = 0, but we will neglect this at present and

2T
consider it later. We have A/u s /U =x, ¥, z, O. In terms of Fourier's

fﬁ,m Coaldyp + 270t - #- 2] 4k
This implles D A/U =

One needs to find the commutation relations for two different times, as

camponents

well as two different places. Going over to sum

A/U: % Aﬂﬁ@}o[d’k+27ukt oéljsk
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To make this into a Hermitian operator we have to split cos into exponentials,
and put A///L to the right of one of them, as with field guantities.

-~ (Lamvt - Ax] LT vt ;@»x']{ s 1y

A/u-*- %évyke + Tk K

wher977 's are anplogous to f 's. We could wrij:e*

Aw ‘%5 ?M e Fr, Suke P

and therefore 3 2][( )Jle,-é_
The. 's are dynamical veriables not. involving time explicitly, so

¢

T - r;’j I’FJ, bus

72 12 +[7///7/F]

Suppose g andj%l given, for plane wave in x«direction

. g - )/43 _— >Ao
gives j T ?

/)2
gg/ 2/”_}_) 27___ [flj) 54,

£ % 55 /‘.7{7“'“7
5,5 - 53, ~ L

/6717 )/
ThlS is all we get from the theory of field quantities. It tells

nothing of ff and ; . Nabtural assumption is to take

- 5z.- 1

6 T4V
§o€ - 5o§ - W

The minus sign in the last relation is required for relativistic invarience.

It

!
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With plus sign the commubation rules are like for (p + iq) of ordinary

harmonic oscillator. The ?0 is 1iice the (p + iq) of a harmonic oscillator
of negative mass.

Contribution to HF of a wave in x-direction is

He= 16TtV *(5 5, + )
F (5% = 3,5
but this does not give the correct equation of motion of the § 's. Instead,
we take _

2 - —

Hr= TtV 58 8. 5+5.8,—2,%. )
7847 3°3 7 =2

The 's with different suffixes are assumed %o commute, This leads to

[A,,u) 41)7: O

for the same t:'m' Also

Z ) ,A,/“[iu)] = 0 for A # 1j

LA#‘
On the other hand %) ‘) /{U).] /
, 0T s b (x-S
7
[ A9, 45270 ] = AP TED
+for/U = x, ¥y, 2z, m"nusfor//=0
o sae [ AKX 2Tt “J‘Wi
<%V

—

= X 7 {g(“ xt )+ (=" - S{,x- " -t t)};
X = x|

since @ 27T 5(&.) Hence, for t! = t" the result is

[A,u; A/)j =

For t" > %' the above result’ is

=4 2 S (-xm (-7)Y]

I
¢ QX

and for t" < &

— 2SR (2L47)7 ]

N
we used the fact that for a > 0O

-
2 gy §(x-a) 4—&()@/"-)?
0 (X ) oza,z(
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We also want
ZEA/’/ dﬁ//]: i/m[aé'(x’- 74”)]%: T X1

Also

P

128,38
Put Hp f(A/) 7;‘/) 5

'z&fg—t/ = [A/‘})HF:]: £

2t
d%‘éﬂ = [ 20, He [ = VAL

The above commubation rules for the A's imply

__/,.f)%\;;,éz;é,aawjzfiﬂé-—é?

then

H
—
-
fav]
-
¢}

So far the four components of A/J “are trested as four independent scalars.

To meke this fit with Maxwell's theory we have to add
dir A + 240 = D (%)
' )t

This, however, is inconsistent with the commutation rules already established

for A's. We had
[A/,/ = £ 9 dex-2)
But (*) would imply
LA, dur A"+ 240 [ = 0
LA' div .A{]=o so we get

I A - X(X YI)%O
[Ao, dor At Mo] [Ass 220 ]9

which is inconsistent with (*)
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-

Instead of (%) we assume, with Fermi, that _ .

- ”(’MEAJE%«’?&)L[ _p

is a condition on (7U , We shall call this the stipplementary condition, It
means that the space of all possible L// 's is larger than the space needed to
represent actual states. All linear operators must then leave this space in-
variont.  Supplementary conditions occur in other places. Thus, in the the-
ory of many similar particles there is a supplementary condition of antisymmetry,
or symmetry.

Supplementary conditions must be not too stringent. If we have two

such conditions U(-// = 0 and VW = 0, they must be consistent.
L IUIYeo

[ [yl U]W=0 ; [MVIVIY-0 ) cte
All these must be consistent. 7 If after a certain number of these constructs
no new conditions arise, we may teke it that our conditions are not tm? strin-
gont. E:-cample of too stringent conditions: /C’L,U = 0 and LP = 0; hence
(pa - )V =0 .. FY oo "W oo, sine ("I%bgt‘ H)W: O
the condition U W = 0 tmplies [t ’ff% -H U] P= 0 ete.

In Heisenberg's representation LP is fixed, but div A + A, is a fune-
tion of time. Honce, making Fourior resolution of div A + :‘&0 and applying
each component to \U and equating to zero, we will get an equivalent condi-
tion. Take the special case of one component, along x-axis. The supplementa-
ry condition becomes:

(Wx“‘/yo)'(p‘—’O and. (7/-;-—77:)W;0

To see if these are consistent we take

L), (7= 70) ] =0

lg 7,71+ Z%,%]g W =0

or
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This is satisfied identically, because of the minug sign in the commutation
rule for WD and /70 These conc{itions cut out two degrees of freedom, so
that it turns out that L,U mey depend in an arbitrary way only on the twod
transverse components of /)/44.' ‘
In further development of the theory those quéui‘bum-mechanical equa-
tions that have for classical analogue equabtioBs requiring the use of

div A + AO = 0, will appear only as supplementary conditions.

E3grn -~ = Jf'“---
Let H = curl A; g = - D{_q' « grad Ao. gl T e

’t .
These give div H = 0 and M = = ourl 7
ot

without the use of Eg. (*). On the other hand, div E = 0 and

?__é - curl H = O can be derived only with the help of (*). Thus, we will
ot

have

(aiv £ Y)Y =0 and ((%_«E - curl H) = 0.

ld
We will regard as observables only operators léaving the space of all
L)V 's satisfying the supplementary condition invariant. For this it is suffi-
cient that the observable cormutes with div A + A, For, suppose
’ » & f
8 (div A + Ao) = (div A + Ae) B 3 then, if (div A + Ao) L/) = 0,
' ¢
. , - : \ _
(dirA+ A, ) BY= BldwArAy) P =0

Teking again a component wave along x~axis, H and é will contain only

’7% ) 7/3 )’779)77}/ 7/,("770 .’../77X ;7}{) end these all commute
with 77,( - 770 and 7)( - 770 Only those gquontities are observable

which are gauge invariant, end theso all will leave the space of L)/'s satisfy-
ing the supplementary condition invariant.
For the Homiltonian the component we considered contributes /
) 6 T Y 5.1 §7?"§; fj ) We goneralize this by adding
+ /b ﬁq ;)2( i_)f; - ;fo_)‘/" ()/ o é/ = constant which is re-

guired to make 77? vary properly with the time. If we oxpress the new Ham-

o
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iltonian in terms of the potentials, we obtain

7

2 2 S a )= pA x4 Z A

which is dlf'ferent from the old. Hamiltonian

/__’_".

L 5% H)dx

The new Hp is an observable., Further, a/ can be chosen in such a way that

Ha neww = HF,old LP Thus, let (}/ = 50 o - 5) D = const. Then

But —

Hp pow ™ BF o1a = Sx 3x— 305 '

‘;x‘“ ?a{o: «:ZL (;fx‘f‘%;f ”?Di“ﬁ{i)
= 2 (T Gt T Rt ToTo )
Thus : = % é 83 1'3'0)(\5,( o) +(fx"'§-o§g° 3‘0)}!
(HF'neW-HF old)w ) (f - fO?D)LP -

e

W e

-3 (8 5 50U 14 (FerFo) (oo W

= 0

for all k}j satisfying the supplementary conditions.

Now

and similarly

/ NS W X
LA(),HF]‘(;%— ZA”/(D]?U)JWC—%

2o H, | = VA
[ 2he Hr =V

When particles are present, we assume that the commutation rules, for

eny one instant of time, are independent of the presence of particles.

by the theory of relativity, they are the same for any two instonts outside of

light cone.

served.

Further, the equivalence of waves and particles should be pre-

Hence,
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Here it. is svpropriate to review the method of double quantization.
We assume that we have a number of similar particles (photons ) acted upon by a
perturber (cme or more chorges;. Let Hp = Hamiltonian for the perturber hav-
ing observables /ﬁ For one photon ‘
LAY = Hpr D)V -~ U
where ?

() = epergy of particle (photon) + interaction (if-any).

Ad gt p0) - 4/(/J/%///”)<Z°‘/”/) B
+ 27 w‘p/v/g/s")cg/f/)

b /3”

* For many particles

(R A e o +Z 4
and we can write

PR LW . .
H = 71/;0 ‘/‘2/ %8 QU&;b(%@H}@-L%

Here, however, l ) b is no longer qust a number. It is an opergtor with re-

spect to the variables of the perturber, hav1ng matrix elements

(B VUL = (461 U 9%8")
H 7L7/p '/'4-1 §¢ Ubfb

ts commute with H o, Thus we would get on equation of motion for 's
P g

Also

different in form from the egquation (1) for a single particle. We card perform,

however, o transformotion that removes this difficulty.

Let (./;/*:__ eu Hp‘t‘/# L}//
then (1) becomes . IR,

Y ), T P/ x
%W?‘:——/?}P@ /L/P/%L/J L/LP/{ZW -((_//
A .
- Q‘HP{/’XU e - Hlf[/x\y* = W Lot (2)
U= &i Lot /% vl é,c Kpt) 3
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H is constant operator, because we are dealing with Schr8dinger's representa-

tion. Using the same transformation on fs 's, one can obtain

" ke
L * ﬂlﬁfa, = Z [Clb g;
at b :
which is analogous to (2).

Modification is reguired when number of photons'i:s not fixeds This is

done by assuming a zero state for light quanta, in which they ere not observed.

Infinite number of light quanta may be assumed to exist in this state. Now

H = 7‘/p+ 25 Z b?b B
= foUab«b 4—‘,,f Utm{b ‘~J [ ZD+[/‘:°? ‘o

“{b
The lest term has no physical -significance, .for it does not lead to enything

observable. e make. -U;O £ 0. Ve assume 5:) Z]l-)b = Ub and

r __" e e
‘{"&-D 59 = to be finite. Then

H = HP“’" fa. Ubg‘);'f“/, Sa, a_‘f‘ ZE_KLUQ,

he last two terms will lead to emission and absorptlon of radla‘clon. The

next problem is to determine the form of TJ;_ U;L and Ua,

While the previous theory seems to be on a fairly sure footing, the

following is not certain, .and seems to be essentially wrong. No satisfactory

theory existé. The same difficulties that erise in the following unsatisfac-

tory theory are also to be .found in the classical theory. Botl. cases will be

considered,

For simplicity we toke the case of one dimension. . Here, the field

will be described byV(’L)‘t ) such that

~ .171/ UV = »
7™ DX

From cTassical point of view, the action prlnclple is of the type

SJL#—*—D

E -
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for fixed end canditions. 5( = Lagrangian density, L = [()fdx Then
5 jfdu— =0
. where d/{)' - s d,%‘ 27
we L= 47 (G35
which can be verified as follows: e

. J V_oVsay
Sf-:i%—z”%gﬂ I

gﬁfﬁ/x M= //6'5/1772?{ ” );g)ﬁfa/x%

+ a surface integral which vanishes for fixed end conditions. This gives

Y
-—//C7'>htv’:+ébﬂl O

as required.

-3 nX - e V(X

Let us introduce the Lagrangian of a particle by Lparb

Assume for the total L the sum pf the two

S? S(ﬁpo{fd-}(fd,xz[éi’:o
blp= mXIX -ed[ V(X))
SIVE) 1= TV x +2Y) 2%

[4
The variation principle then gives - :X-
f{-vﬂX<‘~e[“’sz (7_\/\; ‘_zfdt
_
LR B U5V wdt =0
e ’WLX + D Q%_)_}/ _X =D (Eqe of motion (1))

and

Il 33#%15{4Su—Xy}SVMAt.—. D

or

““l Dl\f ) - @ 5(7( .X] (Eqe of motion (2)).
cr Pt IX™ e
To find a solution in static case, Aé‘__“\/ = 0, and the particle fixed at ‘X

It

i
(@]
.
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i
4

o
2
pie QN©

ﬁ«o-r L £ O

Voo, ﬁm’ L0

R
Vs Le vl

This gives a‘b’cracéon between particles of like sign. Only admitting oscilla-

i et Gl o -

tions 3Fnegative mass would chenge this. In the 3-dimensional case it is the

oscillations of terms corresponding to 'P that gives this. Equation +

'mX = etc. gives undetermined 2 V ) (force) which is unsatisfactory. ‘
R o Of’ l

In quantum mechenics it is better to use H = Z )Dn. %h* =

o

= Z 2 LZ‘N‘ L In our case the Homiltonian density S = C-ngjyc—)ﬁf'-‘—'

For the particle

~

Total energy = - ‘.\ - 2 (’)’YLXL./.QV) +§"_ 5 é ‘CLL()%&C/)L'*(%&Y)Lfo
-~ and L % )___\_*_))-

We will solve this equation for the case when just two particles are present.

\
T
.E

Ve must express V in terms of Fourier's components.

¢ 1 +X ' ¢ v (T "%/Q)
pr{aﬂ- RILHE) L e 4 !
P 1

This leads to

P |
H. = fv"(awd-wbbwb-w)d*’
The commubation relatigns are then i
[av,a, ] = X Scv+v')
[by, byt ] =cCd(¥V+V)
v
fav, br7= 0
When two porticles are present
ST Ll 2 -
{L%Z +i_., 2_-1.4‘.%.:-——- )2' -—@,-\/Zy/)t)—elwyufgujZO
ot 2m, 3% 2 M1, 2)(;'
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where H was eliminated by the transformation
Jro oA Y

and subsequently dropping the star.
Assume that
/ P ) ’
= Ui+ LH 1 q’l + o

in powers of e. Then

Ko + AT L hE )t T
é /ﬁ 277, JVL +2777L_/;)—)? :

S !
S A S A

% corresponding to two particles moving with definite momenta

we take UJO___ eﬁ(ybl/.;/) )QLh/f/z‘;

no

i

(9]

fe,Vint) v e Vuthy,
¢

‘/V\)

U

-~

g})o specifies that there are no quanta , gm“ (O unless n = 0),

Then oD § ¢ _)g . N '
W < ef @g_:f ‘) L by
Lo W Ry lp W) bt | )
¢ 2, 2My
*}-Gl( % ! ] . ;

-

. , PR
\VL is guadratic in ay ond b Y,
light quanta or no light quanta.

be andayV orb_\/b‘)

Ay R-v fv(}ﬂrd%)qo—t%)

There will be terms corresponding to 2
The latter have the faetors a,a_, or

For V > 0, o is like p 4-iq; a_,"v p-iq.

=

I

—

A.pay (}o,h%)()o+d%) =E + ?«»gﬂ:«w-

Since, for n = 0, E = O,

apa-y V=0
a-ya, Y=

/LJ/ with one quant,

e
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Thus we only need to consider terms with &. 8 and b—V by Then we will

2 .
and e, . The term with e,e is ir M <<l

2
L]y,

e - et

= {Ne,ez}l,-f\b,,] r kY,

K is infinite, but contains no x.

. 2
have terms 1in el, 185> ez 1°

A1l together

= {qmee, 1b-Yal + KW

Such result would be obtairied if we wers to solve for the 1lst order

correction the equation

é#) A2 P '}5 2° 47re,€1/%,-%1,1+/<'}q):0

7”% ;20¢7)‘))L1' ijMﬂ1_B¥L

I e
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Chapter I, Theory ihen Charges Present

We now consider the theory when charged particles are present in the
case of a four-dimensional space, instead of the two-dimensional space of the
previous example.

e sssume that the field is described by the dynamical variables in
the seme way as if no charges were present and that at one instant of time the
seme commutation rules hold as when no particles are present. This is analogous
to the situation in quantum mechanics where it is assumed that the same commuta-
tion rules hold for the dynamical varinbles of a system whether it is intoracting
with another system or not. Tt is natural to toke the Hamiltonian H of the form

H=Hy+ 3 H, (1)
where HF is the Homiltonian of the field anZ‘Hr is that of the p'th particle in
interaction with the field. HF is of the samo form in terms of the variables
A//) AAA/ , as whon no charged particles aro prosent. Hr is of the type
occurf%ié in the relativistic wave equation for the eclcetron, this being the only

satisfactory relativistic equation that wo now have. (Protons are not to be

troated ot prosent sincc the equation which thoy satisfy is not yet knovm. )

Ho= obop - ( o<r’ Pp - crAr) - O(mrmr (2)
t

where the subscript r indicatos a function of the coordinatos of the r' h parti-
clo.
It is roadily verificd that the Hamiltonian H loads to the correct cqua-

tions of motion for tho particles:
o
Yn = — An
Fﬁ- = — €@n ?_A_Or"‘enz——-( 0(!\..) An) (%)
DY n M ’
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The equations of motion for the field are

éz_,?,, [ AnHT = [ A Hel = 48 S

since

| A.t), Aptr’) ]

%(%..é/’) [_%ZA/), H]: [%é\M)HF]#-%'[%éJ,)#/A]
7h,+ [ e, en Aont o, (n, AW

Furthermore

Al

Al

and making use of the commutation relations
[ DAL Aom”)j - T St~ %)
DE

[ AN, AU ] o dex=1)
P

one finds
4 ()

()

These equations are of the samo form as in the classical theoory in view of equa-

=/
it
<
~
>
~L
A
=
BN
D
S
N
I
N
el

1]
w<l
v
\h:,.
NN
M
r\;
N
=
>
Q)
Ia
=<
>
=

~

tion (3).

Tle cannot derive from theso equations the relation
divE=4iT€

since for that it is necessary to have
)Au -

which we do not have as yet It will be considered later.
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Tn order to obtain equations of relativistic form it seems necessary

to go to the Schr8dinger picture. Tle then have e wave function for the system

satisfying the Schrbdinger equation
Lf%&: HW—:(?‘/F*’;H/L)QL{

This is still not relativistic since one coordinate, the time t, iS preferred and

w
is common to the ‘hole system. To remedy this we ¢an introducé many t's, one
for esch particle. First, however, we must remove HF from the Hamiltonien.by

the contact transformation

ﬁa“: e"L/Ft/';l'/g e""//Ft/ﬁ
LV*'-‘- ec /‘/Ftyﬁ W (6)
where /67 is any dynemiocal variable. ’ We then have

(. ﬁ Zlbt(//* ——-}/F W* #FZ/};(HF'#ZA/J/L)L//)
L//FZ‘/Z(Z/JA) e W* (7) -
Z Ha V¥

Now we can introduce theé many t's.

|

We replace this single. equation

2, by the set of equatlons < _
? AR llf Haltr) L (8) A4

and teke them as the ﬁmdamen‘bal equations for the system. If we add the eque-

tions together end put all the t's equal to t, since :

2LV (2 5 St

2
we see that Y, for all the t's equal to t, setisfies the same equation (7) es “//

e A e . o s NP

N O




2-4

To see the relativistic invariance we note that, since HF commutes
with P andX | * /)*
= e,LAo;\,'- (o(a) )Olwen /z)"O(fmm’m’L

where ’
# LHFi/#A - HEUR
A..= € pr €
AW
Weo have elready found in the discussion of the field in the absence
of charges that we can write

1 (= —L('é)i) Lé.é,% e
) %{ ik © + St )Z i

R

where the ‘SD'S are dynemical variables (the last factor being used because we

write a sum instead of an integral). Or we can write

o— 120 e AR )T _L'rzm/,zt—(/a,mf -t
Ay = %{/Mﬂ“ ¢ + ke e
where
~2J]C Vgt

In going from the Heisenberg to the SchrB8dinger picture the 5;2;&, must become
constant operators satisfying, however, the seme cammutetion rules as before.
We have then

* L S -((RE) *  RyX) -1/

o (¥ >

where ¥ L/¥F7éé§° R // iy/;b
Sjﬁc fk,_e g

involves the time explicitly. By direct differentiation

e ke .
G dSE . e e ‘ﬁ e‘”‘”ﬁ; e"'”;j/ﬁ

=
(9)

Me

;; ———HF/Uk+f //F

r©

%Ek [”SQ/(/HF]

e

or




Since we have (from previous lectures)

/—//: = /é”qi/kl\i& 5& + terms commuting with _}j@

['Sj/&) HF] = - ?./7‘(.' ))/e ‘ik
and hence -

. b —_ x
C 8t W] - ek S

From (9) and (10) we see that

X - 27C V/ef'
5///\’ = € “gj//f. ’

then

Ve
that is, the dependence of ps/‘:/& on t in the Sehr8dinger picture is the sahe
as that of ;/U/{ in the Heisenberg picture in the absence of charges, TWe

then get
JaTvg t -8 %)

l?// t- (fé &) }
/ j‘/ﬂb % {5 % * i,e 54<
and we see that A,(/N and hence Ha aro of relativistic form in x, and t.
~ To go over to many t's 1.8.. justifiable if the two forms of equations
correspond, that is, if (1) the erbh ‘all t's put cqual to t satisfies the
seme oquation (7) as "’4/ (¢), ond (2) -evory solution \/J (t) can be genoeralized
to a /@ We have already vorif)ied that (1) holds end shall thorefore investi-
gate (2). We have the set of cquations (8) and try to find a ’\_? which is
equal to L}J* when oll the t's are put equal to t and which satisfies (8) also
for the t's not equal. This is possible only 'if
2 () 2 ( )
Tm( E i ZZTS E
for all valuos of r end s. But (if r and s are different)

Ry A ¥ T ) A "*:
c%“%:fj'zsyf ,Lz“)%l%,{( () yr-/{szl'zaﬁf WHT

since Hg (ts) does not contain t,. Honce tho intogrability condition is that
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ﬁz\ and H:e commute. The only possibility of their not commuting lies in the
field variables. Tt is necessery to consider the expressions
[: pyy (t.), ’//5 (£ );] These are the same as in the Heisenberg picture in
the absence of particles since the A's are expresscd in terms of the 77 ts in
the same way as the Aak's in terms of the -S:'s. Henco we have thatb
[A‘/ﬂ, (t ), A.::5 (tg 2} = 0 except when (ty - ts)z - (xr - xs)z = 0.
Consequently there does not exist a general solution of the equations. We mus?t
restrict (tlt eoe xlxz...) to the domain for which (t - tg ) < (xr - xs)z.
Tn this domain we cen get & solution corresponding to eny k#)ek in the case of
the t's equal.

This restriction has physical justification. Suppose we have o Wave
function i%?\(xl, Yys %1 £ ves §], Sg eee D7, 02, 13 ...) where sy, Sg ese OIS
the spin variables, end where for convenionec the field is described by the num-
ber of quenta in the various enoréy stotes, Ny, Do, oo - By generalizing the
usual interpretation of HV LF/ as o probability, it is natural to take §5'§?~
(where Qi’ is the conjugate imaginary to ﬁ;k and the * denotes multiplication
with summation over the spin variables) as the probability of tho r'th particle
boing within a unit volumo A xcm about the point X. ot the time .., ete., and
the field being in the specificd stato. However, it is not to be expectod that
it is possible to measurec tho positions of all tho particles unless the condi-
tions (xr - xs)z > (tr - ts)z aroc fulfilled; otherwise the measurement of one
particle disturbs the obsorvation of thc others. If these incqualitics arc
satisfiod the disturbance comnot roach the other particles fast onough. The
intorpretation of §> 'Ti?- as tho probability of tho various particles being
at specificd placos ot specificd timos with tho field in o given stoto, is anal-
ogous to thc problem of scattering in quantum mechanics where ono interprets

]q/(x y, 2, &, J))z as tho probability of tho scattered particlo boing at
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(x, y, z) at the time t end the scatterer being in a state of quantum number J.
-
If we are to interpret QP' \_‘_J~ as the probability mentioned, we
must verify that it leads to a conservation law for the particles. Now, in the

elementary case of a single particle in an unquantized field, the conservation

low is derived as follows:

The wave equotions for o particle of charge e can be written

[W-er+(O(,p-eA)4~O(nlxn]\{-/ =0
¢LYY-6AO+(ﬂ,p-eA3+ o(mm] =0
where ‘
P - -1 ‘K grad, W= i—g )D’t‘ when' operating to the right,
p=1h graa, W= -i"ﬁ)%: " " now et
Defining ,

~
we can write the equations

[0(//”0,«/“ eAy) +dom m]W=0
CPY.O(//(/’,U ”eA,u) Fo, ] =0

We multiply the first from the left by C}l) ?, and the second from the right by

"\l’ (* denoting olso summation over the components) snd subtract.  Since
Poopn W= Dok Y

. Cb“o(/,/A,ux}/ = C}D ko Aﬂ'w

we are left with

Doty b W- b dwpa¥ =0

ond from the definition of /O/u thik _éives

%((P"(/W) =0

This is the roquircd conservation oguation.
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“le consider how the corresponding argument con be corried out in the

present case. We see that it is applicable to each electron:

Po[dhpo - € Apltlista) F olp m 1T = 0
@ [O(/)Ug” - QA (Ea,ta) +0S/m.m_) }}_f 0

But A)J is now an operator. Tt is necessary that the terms involving it con-
cele This will happen if we sum over all the variables n of the ficld (since

then the terms involving A/U will diffor from the symbolic products only in

that the labtor involve, in addition, integration over X but since 0\’/, A/u
commutes with x,. the terms will eancel without this integration). Wo therefore
define @ ¢ +to involve summotion over tho n's; thon we have again

Z ( QE‘ Ky V)

g Xp 7

e can give a physical interproctation to é' y\ when not summod
over n; but we cannot expoct conscrvation sinco the fields aro changing. VWhen
summecd, @ L ’jl,? is tho totanl probability, i.e. for all ficlds.

One might ask for a probability including also thc probability of the
ficld-variables having spccified wvaluos at cortain points (and time). One
would noed a ropresontation in which tho ficld quantities are diasgonal.  This
is not convenicnt horc bocauso onc wents o moximum sot of commuting variables,
ond since in this casc there arc variablos for cvery point of space their number
is infinity of thc order of tho number of points on o lino; and this is too
large.

Now, for a variable f having an cigonvaluo £

Yy |t 2 W) 20E- SV
This is convenicnt herc. ‘PTho probability of a ficld quantity having a specifiod
value and the cloetrons being at spocificd points is theroforc given by

@‘X(f - f')Y (summed over spin and tho n's of the ficld) whorce f is a

ficld quentity at somc point (x, v, z, t) satisfying tho incquality



(x - %)

for all valuos of re Ono con show that

% tion lew. Thus, proceeding as be

$ Sck-%)
) é[dp(}ﬂﬂ—é Av)

For & conservation theor
@ 5('& ‘S‘ ’O(yA ’}1’
This is fulfilled in the present case,

mute wit

In the case of several field

for-the probability is of the form

f : @Qg(f-f')g(g-g)y

servation theorem holds in th

the inequality (11). ,

= We consider next the

wave function,.

|

3

1 ‘ condition
|

¢ At present we have too general

£o thise

g supplementary ‘condition.

7{’
2ho v
Dt

However, thi

e
’ s

tions which ’Y satisfies, namely

(Lt Di -~ //

where by the consistency of two o

2y (¢ - tp)°

em to hold, one mast have

however, since the field W

h one another in virtue of the inequel

;s oase provided all the points conside

question of the supplementery conditi

In the classical theory the potent

We say that only those wave functions are

s 4is not satisfactory for it is no

perator equations A'\‘K

2-9
(11)

this oxprossion satigfies a oconserva-

fore, one finds

[ Ao (po-e A) +dun m | ¥=0

Lol M ] 5(4 4yT=D

& dy A SGHAIY

ariablds com-

quantities, the corresponding expression

The con=-

red satisfy

ions on the

jals were made to satisfy the

}A" + div A = O.

9. theory end must impos® 2 restriction

analogous

allowed which sebtisfy e

| it] For this condition we try teking

(12)

F)T -

t oonsistent with the set of equa-

(13)

) =0

=0,B"E = 0, we mean

=
R T

Aot
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thet as a consequence of these equations or without imposing further conditions

on ’lV , the equation [A! B]’Y_/‘ = 0 is satisfied. In the present case, if we
consider a typical part of the expression in (13), ((_ ﬁﬁ ~€, Ao{,_ )"}3‘)
.
’4 ) * . b % * »w
-0, A -
[ %é:o pdicA) CR)-eAy )= —e, [2_&» A (fzﬂ,tm)]
= . —04..3 [ Ao ) Ao ("L&("’)]
= e, .b, Dexxy,t-R)]
>k

where (since the A 's have the same coxmnutatlon riles ‘as the previous A's)

z'S[(x -x)? - (& - tr)zfg t < &y,
=0, t = b, (14)

-2 %E(x - xr)‘z - (t - tl.')zg’ > by,

D(x - x,, t - ty)

[

so that "
¥
?AD + div A - e D(x t-t)lﬁD -e.?t]=0
de v Pt n phor
One cen readily verify that the first member in the brackets camutes also with
L4

the other terms in (13). Hence we take as the supplementary condition:

o
[)Ag +divA - Z’erD(x - Xp, b = tr)}Y= 0 (15)

This equetion really represents a large number of conditions on 'if s

one for each point of space time.. All these conditions for different values

of x and t are however consistent with one another. This had been shown in ear-

1ier lectures for the case in which no perticles are present. The additional

term in the present case involving D commutes with all the operators in the sup-

plementary conditions. Henoce the consistency continues to hold in the presence

of particles.

" There is a final supplementory condition to be considered. If several

electrons are present 1: mist be antisymtetrid in their coordinates, times aond

spin variables.

eEEFEETN L

sirE e e

Pk s e sk o 102

b
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If we differentiate (15) with respect to t and then put all the t's ’

equal to t since

VR0 4 D L A= VA, - d der A== dis €
2t Dt

., *
B [2 D(X-Yq,t—tm)]' = - 4TS (X-Z4)
f 2 ta=t

oo mam e apems

N we got '

[dr €~ 4T Send-t)J¥ =0 (16) :
corresponding to one of the equations of the Maxwell theory.
) To get the other Maxwell equations, one first puts all the t's equal
::‘ to t in the supplementary condition (16). Tt then becomes, in virtue of (1), g
| zlfiogﬁk-éibé’jq\* ) ﬂ#)a¥:: O

bt _
If the A 's are replaced by their expressions (6) in term of the A's and one
notes that HF is independent ¢f x and t and in the Schr8dinger pioture the A's
3:9 independent of t, one gets
| [% (Hpho - Aollp) + div A]'\//= 0,
w which, by (4), becomes . EJ
!

I
. (Q_Ao + aiv M)V = o. (17) L
X3 1

‘ If we now go over ‘to the Heisenberg picture we have (5) for the equations of mo- |
L
tion of the A's; and these together with (17) lead to all the Maxwell equations. 3

However, this procedure destroys the relativistic invariance (in spite of the H
fact that the classical equations are relativistically invarient) since in quan~
tum mechanics t is treated differently from x, y, z. For example, in the equa- I it

f_“ tion of motion ]
3 2240 YA, 0TS endix-Ta) 50
= Tt o i

3 ‘W the x , are operatérs whereas the t is not.

r

We consider one morc tronsformation to simplify the equations anhd make

them more convenient. This consists in eliminating the longitudinal cémponents

+
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of the field from the equations. Thus for a Fourier component correspohding to
e wave moving in the direction of the x-axis and having components SQDH §)y,
§ 7 S‘o’ the Sox and _5:;0 are the longitudinal components end can be elimin-
sted by making use of the supplementary conditions. This destroys the relativ-
istically invariant form of the equations. The main idea of the transformation
is as follows: We take a representation in which the g: 's are diagonal so that
our wave function is i? (~§9 , Sp ) where the SD , represent the longitudinal
components and fra the remaining components. The supplementary conditions
then tell us that

VS, Sw-af xS
where f is completely determined and X is arbitrary. Introducing this expres-

sion into the equations for Tfﬁ , we get
[ch2 -7 CI1HE) LS =

If we now bring f to the left of the operator, obtaining additional terms in the

latter, and then cancel f, we obtain a set of equations for X:

[ B - Hi- TUEL)

etn

This was first done by Fermi for the case of all the times equal. It can be
done more gemerally for all t's. By different choices Of‘SZ different forms
may be obtained which are equivalent although not obviously so.

Consider on¢ Fourier component of the field moving slong the x-axis,

so that 57)0 and :gb are the longitudinal components. Let

.a-

\)D’m—-J ;\"/’Cl/u
f—>x = X—L/L/

where )- and /J arc both real or Hermitian operators. One can readily verify
thot )\ and /L) commute with each other., For this Fourier componont the sup-

plementary condition gives two equations

x
y
!
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N2 Ve —1’4}] A

= - Z INIEIF'
- "Z - S‘:_ 6_2/; " /z)’]«\z}____o

3
where s™# is introduced because the Fourier components are considered here as

discrete instead of continuous. If we ndd snd subtrect these equations we get

(l-a)V=o o = 3, Cu ew2lTV(taTa)
Moy >

(/}' b)/}k\: 0 }9 = 2{ €A J_—S»(M 2rrl)(éfl"sz)

TS IR A

Let us take as representation one in which )\ and /4/ are diagonal.

Since ,
I

[ S+ 5. ,)Sf—s‘;]: Py
[{ +§ f ,S‘; ] = 0
it follows that Z-’
Leid)
- - 44 ¢
f 7 __f; FEP ( >\ o
‘SZ + f); - "—__L— ._)__._—- A
NESY I A Py
We now have to solve the supplementary condltlon.

. SN-w dtp-b) LS, )

/} and and of the repre-

The solution is obviously

This solution is simple because of the choice of

The general solution might involve ;\ and/u in /Z_; but, since
S(h-a) = 8 01-a) Hay

Hence in X the longitudinal compon-

sentation.

we caon replace /\ and A/ by o and b.

ents have disaoppeared.

g out this proccdure for overy Fourier componenb, we can now

By carryin
write equation (8) for Y in the form
(ch r _ M )ﬂ'ﬁm—a)i(/}— )&
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il ’
. where sndicates the product dud to a1l Fourier components. Sincebﬁf& - Hr)

ta

commutes with the supplementalry condition and hence with its Fourier com-

The equations become

n)L=0

ponents it commutes with S ( A - a).

T Bia-c) dlp-b) (F 2 -

The Fourier component of H, 1is

oo

. = — o, amc Ptk w It 1
e[S+l &)]e MRV 5%
and the part due to the longitudinal components iB e
= < t 7.‘.1 XA -Te L% 1) ".L
er L5+ 48718 ) [ SrdnSi]e fs 3

If we note that

s [_, (€. )+ (5 SO K
L[ Se- S, T
since )[, does not contaln. ), or ﬁ/ , then the part of the Fourier component of
H. due to the longitudinal components of the field ocan be written

ol mdan) [ A Lo 2T Pt Ta) 4 S 2TV LT -] s

We can substitute a for )xand b for /pJ pecausé of the factor

S(h-a (e

1 e~
) Z_/ /6/}4))7'

We then get

o L) - (XK )
en LI~ dn (Laa'zln)[(fn. s) (¥ x):( S

Integrating over the Fourler components, wo finally hove

Z —€Zé(f1ts 'ZXO(AJ
IL 3 Jlﬁ,,, YJI n < /SY,L_)(SI ( $J )

We therefore get for the equations

{Lt 2+ (da, FA-QA_(YA,*&))\—%LW
y - = (18)
-—ZQ"ES + ;_@,zﬁé_...”a%n"(w)zlno

5" 2/ K ¥s) JLa Y

Putting the t's équal and summing over T,

) _Q..-L . N
ZL_FZZ‘,' Z@&

-2 Cx

2—/¥&. ZAJ

nES {Va. YS\

L maeeg e, Tt
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The first new term is the Coulomb interaction. The last term is in=

Pinite and corresponds to the self-energy of the olectron., This is the first

theory is incorrect. Actually this is not gorious since the infinity involved

is independent of the dynemiecal variables. One cen remove it by taking

')L - 7{ 1d ot const t
new )

However, even when the infinite constant is dropped other infinities come in due

|
|
1
I
1
4
, |
appearance of infinity in the equations of the present theory and shows thet the ﬁ ]
W

to relativity. This corresponds to the old non-relativistie theory of radia-

tion in which one dropped the scelar potential snd the longitudinal component of iﬁ |
the electromagnetic field and used the Coulomb interaction between particles. ‘;
ﬁ

This thoory has the seme- Hamiltonien as in the present caseo and 1s a consequence.
1

The infinite part of the sonstent arisos from the high frequencies (in

the Fourier integrals) and it is therefore hoped that tho theory is esorrect for
Id
low frequencioss. In problems of absorption or omission the infinity shows 1t-

sclf in that the curvos obtainecd arc of the type shown in the diagrem. Onoc gen-

[ N i

erally cuts off such curves (beyond the maximum ) r

b
ond tokes intograls ovor the finite rogion. For ’,L ¥
this to bo justifiod the meximum must occur for \ /'/ ‘

. ¢
not too largc a froquenocy, 1.Ce tho wavo length // '\\//// !
must be long comperod to tho classical cloctron radius. "17’ 3 i

|

Onc may ask whother quantum ploctrodyneamics is of any value. If one
takes the theory with the usual unguentized field as perturbation one gots re-

sults without the infinite part. Tt thus appears that this theory is better

i um memas  oTeem

than the quantum electrodynamics theory. However, this theory would not deal |
correctly with the problem of several photons in the seme state. Hen7 it does 1
not give correct results for processes involving radiation falling orf en atom, 1

in particular for spontaneous emission. Processes with stimuleted transitions

E.
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are treated correctly, Quentum electrodynsmics does treat sporteaneous emission
properly.

Another epplication of quantum electrodynemics is to give the inter~-
action between two electrons. By means of it one cen derive:

(1) Breit's formula, .for velocities not too great, |

(2) Moller's formula, for a1l velocities but to the order of e%.

Boyond these gquentum olectrodynamics cannot go. Thus quantum elec‘trodynamic.s
has never as yet given any result not previously obtained otherwise.

Tt is interesting to investigate the connection between guantum elso-
trodynemics and the 0ld radietion theory -- how 1t is that the two agree for el~
ementary problems and not for advanced problems. Syppose we have an gtomlc sys-
tem with Coulomb forces and we consider the emission, absorption and scatbering
of radiastion. In the olementary thebry we have the systeém absorbing a quoantum
and emitting a different quantum in o different direction. Suppose the inci-

dent field consists of two beans which we denote schematically by
a ei\) (b=x) , 7 -1 V(ﬁ-x)’

b i PY) 4§ omh YY),
whore x ond y refer to directions arbitrarily related. Solving by tho perturba-
tion method we get as wave function for the systom
A Wy +aVa AVr 4 bV #b Vi
+aa Wz + v 4-&2"%2*""
For the present the important terms are those incroasing with time. These cor-
respond to conservation of energy end momerntuma Considerf‘/\,l/ b This cor-
rosponds to the energy and momentum of the system being increased by one quantum
of the first beem ond docreased by one quentum of the gecond beam. The transie
tion probability for this is given by

a® o« coeffe)? A I, I

S TR

Bl P T o T IR T
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where I is the intensity of the first besam. Weo thus have e transition probe-

bility proportional to I, and L. 1f we ere interested in the case of no in-

igram TR L Bt eEaca *
Frsmorghty L. LT S ITE AR TE ol

dicent radiation in the second beem, W9 £ind that the transition probebility is

zero according to this elementary celculation. On the other hand if we use
BEinstein's laws of radiation we f£ind that the tronsition probaf'bility is propor-

tional to

3
1 (5, + AV,

3 2
Hence to get spontaneous redistion we should replace I by ,ﬁi This can be
C

gz

applied to all frequencies and gives o definite answer. In this way the Klein-
Nishino formulas is calculated (although probably incorrect for high frequencies). |

Now let us suppose that the above emplitudes are operators and that
they satisfy the following commupation relations:

an=-0a8a= =1, K

Al

bT -F b= -1, : ‘ﬁ

o snd o commute with b and b. “

We con solve the equations in the some way as before, but must be careful about “%'31“

the order of a and o, ete. Let us take a representation in which e o is diagon~-
al and equal to n, and in whj.ch b b is diasgonol ond equal to n,D where ha and n,

have the eigenbalues O, 1, 2, ees » Then all motrix elements of a and -_E vanish

oo e AL ST

excopt
3
(ag | & ]ng - 1)~ 0 i
1 4
, o— - !1
(ny - 1‘b,nb) rno my®, 5
— i !
or (nbj,, b \nb + 1) (ny + 1)=.

If in the expression a b s coeff. 2 we" introduce the matrix element of o for n,

A e s -,

chonging from n, to n, - 1 and that of :b: for oy changing from n, to Ny, + 1, we
get ‘

‘ eb - coef‘f:.‘z A/ n (o, + 1), ‘{f
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which means
\a.f . c:oe:ﬁ‘f.‘2 N Ia(lb + %3 )e

Hence we obtain mmerisal agreement with the ron-guentum theory provided the lat-
ter makes use of Einstein's law.

This progedure, however, is nob quite quantum elecktrodynamics. In
the latter we have perturbation not only due to the two fields sbove, but also
due to a field with all directions, frequencies and amplitudes at a time.
Hence in '\-V there will be extre terms not present before. Thus there will be
higher order terms corresponding to the seme gstate as before, ©«g.
abecec 0B’ where o is the omplitude of an arbitrary plane monochromatic
weve. All such terms ought to be jncluded and these will make a difference.
For although in our representation

(o {c e}o) =0,

we have (,o)'é'c‘o);(o.
The terms will be small in many problems becouse of their higher order (in powers
of e which ie in the coefficient, isce ___Q_}m O ). This is valid only if the
frequency 1is not {00 high.‘ This shows Whyc the two theories are in agreement for

low perturbation orders. Actually the approximation is not justified however,

pecause the process of caleulating successive orders is here divergent.

o emn e mmaas e

-

o o

— e e s e

-

i
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Chapter Il. Work of Wentzel

e

We now consider briefly some recent work of Wentzel. It is interest- t

ing but one finds it difficult to give 6 it a physical mesning. In the Schr8- i

dinger picture we had memy times but we had to go to one time in order to g0 “ .
over to the Heisenberg picture. The role of the .Heisenbarg. picture is to give |
equations comperable to the classical equations. This the Schr8dinger picture
does not do, The present work gives & Heisenberg picture with many times.

Hence it allows ono to go over to the tlassioal theory with meny times.

Suppose an arbitrary atomic system with Hemiltonian H. Then for any 1
dynamical variable ‘§ )
Je = [ 5 H]
é 7/

Let us arbitrarily split up H into. two parts not involving the time expliocitly

and not necessarily commuting with gach other,

, HeHy T
and let us introduce two times 'bl and to for the two corresponding parts of the *
system,  Assumo that ‘ ‘““Z‘:i

. S HT

i5 _ 77 H
4717, /

These must be gonsistent, or

]_)Z-DD?

}5«?‘5":_

PR,

2t 7‘2} ) 5:2” 2L ..

gt Sl XL

g
d-
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and, beceuse of an jdentity existing for Poisson brackets, the difference be-

Z?’, [ Hz]j

Hence the procedure is not satisfectory.

tween the two expressions is

In general this does not wvanish.
We modify the procedure by introduecing
1H1(t1-’c2)/h Hye ~iH, (69~ -t,)/h (19)

H, = o

and we assume

A5 . [ 5 H] o
9. L[5 A

We now get dt- * 3 *
28 =205 zJ-zaf»*/».H€;g;]
S')Z 5o )nf, 17 Hrd = Z M

so that for cons1stency we must have +
o= -L5 LUt AT]+ Z%,;ﬁ—/;]

By (19) we find, however, tha'b
LY/ 47 47
so that the equatlons (20) are consistent.
We now apply this to the Homiltonien we have used before,
= Hp + 2 H,
A

end set up the equations of mobtion

- L5 A

At
* 21
15 L5 4] @
AL
where *
5 - eiHF(t-tr)/h Hre-iHF(t—tr)/h (22)

The first equation of motion is consistent with the others by the previous proof.




For the remaining equations to be consistent with one snother, since

M%; ﬂzr;ﬁ] J [sHel H]

¥
(H does not depend on t ) we must heve

[, H }
As
34 >
Hy = eer(xr) + (o(r) - pp * orh () = mrr
the only source of non-commutation is that the potentials may not commute, 80
that the commubtator vanlshes everywhere except on the light oone,
ZHT B 5= co 0y (1 - (A g A ) D (e = Tas br = o)
Consequently, if 3, is @ function only of the field variables snd of the coordin-
ates of the olectrons but not of the spins or momenta of the electrons, the equa~-
tions are consistente These are generalizations of the Heisenberg equations of

motion. The ’\If on which the opera‘bors aot must be made to agreo with that of

the latter when we put all the £'s equale For if we put all the t's equal to T

<if+zdf> J 5, H]

Note that the restriction %, { xXp = Xg is not required here and is mean-

ingloss in fact since the x's are opera‘bors.

Wontzel takes g as function only of field variables, e § = A(x,%).

Then d ; [{ Hr] 0 except for (x-xr) - ('l:--'l?r)2 = 0. At these points
; hes sudden discontinuities.  Thus A(x, t) for en elect T

N
tron at (%ps t,) chenges discontinuously when ty is ~aried 1

until it crosses the light-cone. Wentzel finds that the

change in A(x, t) is given by tho classioal formula for the

A(X)t) 1/[)1-1-

e
7

rotarded potential, but now with operators. Similerly, if _—

t,. erosses the other part of the light-cone one gets advenced potentialss

’

==
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Consider the classicel solutions of Maxwell's equatbion:
B A = charge, curreént.
! The solutions are of two types:

A = incoming waves * retarded potential solution
or altermatively .

A= outgoi‘ng woves + advanced potential solutions t @iwkl\' ,
Hence in the present case We shall have for the /‘\ /\':'\ N 'C\}
various positions of (%p, tp) With rospect 40 ¥.L
the light-cone through x, b shown in 4he dia-
geom, ERe

u)

(1) A is incoming Weves, - * 7

() * " " " + retarded Eotentiai solutiong

(3) A is outgoing waves.

Tn (1) and (3) the retarded and adva;ced potentials -ere cenceled by the discon-
tinuoug changes on the 1ight~cone.

Wentzel tries to overcome the infinite energy of £he electron by say-
ing ‘that the Lorentz force is to be derived from the meen of the jneoming end
outgoing potentials jnstéad of in the usual way. His célculgtions appear to be
not entirely corregt however.

A criticism that cen be raised agninst the theory is thot the equa-
tions for two t's are not really consistent since the vector potential A deptnds

on the spin veriables of the electrons

d/ A,{ - A'x Hf] = 0(/\7( QAD(.X‘XM'(:-C.B,
%‘ 1: / 3

For one electron there 1s no difficulty; Ffor more than one eleotron there ise
Tt is to be noted also thet the light-cone 45 defined by operators; hence its

meening is not clears

i,
.‘E‘A
‘l
&
.
&
F
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Chapter III. Quantization of Electron-waves

In applying the theory to electrons or ppotons in cases vihere there
are meny particles of the same kind, it is necessary to introduce the further
assumpbion that the wave function is antisymmetriec in a1l the particles of the
seme nature. Tt is then possible to jntroduce & new kind of procedure which is
formally similar to the second quantization that hes been discussed before.
Mathematically it is equivalent to the ordinary treatment with an antisymmetfio
wave function. It can be applied to any number of particles (even infinity)
and hence it will turn out later to be useful in the treatment of positions.

Suppose we have & system of n similar particles (eege electrons) with
wave function

(a3 9 5 *++ Il )
where qj represents the set of dynemital variables for the k'th particle and the
wave function is antisymmetric in the q's. We now pass to & new representation
where the number of perticles in each of the various states is diagonal. Let
. all the q's be denoted by q, and suppose that q has tho eigenvalues

D (@) L. ) L

and introduce

Ny Ny eee Ty wee
where 1) is the number of variables having the eigenvalue q(k). Here n, can be
only O ar 1 becsuse of the antisymmetry of the wave function. In the new repre-
sentetion the wave function is (ny ny eee ) where in a’practical case the num=
ber of n's is infinite oven when the number of g's is finite. (The advantage
of the method shows up whon the number of g's is also infinite.) The trans-
formotion hore is not o general contact tronsformabion, but is en extended point

tronsformation since the n's aro functions of the g's (and not of the p's)e
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Hence apart from the normalizing factor we can take

(ql’ qzl eaey qn‘) =.t(nl, nz, o‘.,l )

end the normalization factor here is not necessary (in the previous second quan-

]
tization it was — m, ). The t sign however is needed because
’n,', "'I‘_‘. e e et :

if the n's are given we do not know which q's have the given values and the sign

is affected by the order of the g's. To fix the sign we choose arbitrarily an
order for thc set of eigenvalues, which we call the standard order, and take the
+ or - sign according to whether the actual order of the q's is an oven or odd
permutation of the standard order (with gaps omitted).
Consider the dynamical variable
U o= %; 1jﬂ

wherc 1} , is & function of q. only. All dynomical variables must be symmetri-
cal between all the particles to be physical observables. This U is tho sim-

,

plest such variable. Let us write

< Y
U o = @[ Uy {afP).
Suppose we have the relation

Y= U™

In the g-recpresentation this con be written

(q Qg +++ Gyl 2) = 7 (qp | Up} ah)(ay @p oee ap fOr au eee Gpl 1).
For convenience Wo separato ou tnc diegonal olements on tho right~-hond side:
{Z(quU | ar }(ql Qg ses Gp | 1) ¥ Z Z/ (a]U|ap) (a1ag---ap for a ooy 1)

At
We write it now in the n—roprcscntatlon 5 %4'

(nq n, veu | 2)==zzgna1]aa}(n1n eeell) + ;25 Cfab(nlnz...n -l...nb+l...| 1),

(b) atb

&
where we have taken g, = q(a){ q = 4 and (nl Ny «..{1l) = 0 unloss the n's

aro O or 1. The + sign will occur whonevor the two functions

(qy Qg e»- gnl) = ¥ (my np ...‘ )
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and ‘

(qq ag »eo Q& for 4 veo] ) = & (ny mg eve Bgp= 1 oeee gt 1 oo d])
heve the seme sign. This will be the case if the number of q's hetween qp and
q). is even. This is

51 Me ,
(q(c_) between g, end q, (not inclusive))
We now introduce varisbles conjugate to the n's. Since the n's haye
the eigenvalues O and 1, they no longer correspond to the harmonic osoilla’c'or
but more nearly to the spin variables, having the representation.
o |/ 0 -L / O
0}:(10) (fgz(,; o) 9 = o—l) (25)

4
f
!

which satisfy the relations

U)"L = 0-,1L = 0}2 = i
' (24)
I Y AR 22
Wo can bake :
0’zas= 1=~ 2n, (25)

ond also the corresponding 0 xas U—yo. end the variasbles for difforent o com-
mute. In this cas¢ O—xa and D‘yo, play the part of angle variables. We have,

in the present representation,

Lmeetg) = (5o)

s+ = (o)

(o)t ()

it follows thet when 5( 0 4, = io—ya) oporates on (n,|) one obtains {n, - 1}).

(28)

Since

Similerly -15(0_ <t i U—ya) opérating on (nal) results in (n, * 1} ).

e

e cgme S WG T
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We cen now write our eguation

Y = 2 W, + 518 Upep & (D e G} 5 Ui U8 )Y,
o a+b

whence

e e e+ Tho st L0t
: |
a

To eliminete the L sigh we introduce new operators
Bo = T e oo e(mww
(27)
S, = L(Barife) G G
where the numbering is as in the standerd sequence and all the factors commute,

From the properties of the {0 ts we see that
7, { = L{0y.-LY% 6-3:‘1 0_3)4*"“'0_
7;(, b 7 Xb gl«.

3,61 o
L (Gupti0y3)
Déb 0—3)})}/ et 5, , e -
where the upper line in the braces 1s ‘for the case a before b, the lower line for

s after b. Since

}b(ﬁ—’)ﬁé'f‘c%b) Lﬁ%b b

we can omit the fagtors 0’ g,k and [) above. The expression in the braces

L

can be written

(1 - 2ng41) (L - 2;1a+2) ees (1 = 2ny_9)

1 - an.,_l)(l = 2fp40) e (1 - 2n,_4)
For n = O each factor ig 13 forn =1 it is ~l. Hence in each line the number
of (=1)'s is equa;l to the number of n's which do not vanish, i.es. the number of

o

q's lying between q(a) and q(b). Hence { o ?b has the properties we require

and we con now write

U = Z”&Uaa + 3 fafb Uns (27s.)

atb




Tt is easily verified that

}' ?b-*{ { e #b,
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so that

fa Sut Ty T =0 (28)
and similarly

T 8pt =0 (#)
also

ufs * Tofa = 0 2
whereas

T %a = ;'}-(D”mt LD"}@XD_M«"'L%M (31)
and 2 , 3<

oo =L(14850) = 1= Ta (52)
so that finally

3’a, fcﬂ“ 3154,? l (33)

We can combine equations (30) and (33) into

Sva.?a‘f' i;@:

If by equation (31) we substitute ;Fa Efa for n in equation «(272)

we gpt

U Z'S%Uabfb

which is of the same form~as in the Binstein-Bose case previously discussed.
If we suppose that 1)- is the Hamiltonian of the system, so that there

is no interaction between the particles,

o isvemrali - crp
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L { ZIQ: {A,U'Uga.
5‘ :Zl fé (}Lg gb - ;Z} -;b glb

b)

iaz fc_—UCb}’b Q § -UC_ f (se)

b,

Z,EMU £,
Zu-wb ;b

We see that as in the Elnsteln-Bose case we obtain for { an equation which is

(il
~

it

(>

({

similar to the Schr8dinger equation for one particle
A FE) - 2 Ui (§°1)

This is the process of second quantization.
We now extend the theory to ,the case of a system consisting of two
parts, the inside or perturbed system and the outside or perturbing system. We

teke as Hamiltonian

I <~/
::Hp+ ZUT+ évr
n
where HP is the Hamiltonian for the perturber, t)—r is the energy of each par-
ticle of the inside system in the absence of the perturber, and V., is the energy

of each particle due to the perturbation. Denoting the dynamical variables of

the inside system by q's and those of the outside system by 0('3

H- HP+aZ,,Z§Uabrb Zéfa, b 5y (35)

(dtg)l%b O(Uu> :( @) «,;tv—[ (5) dﬁ))

We consider the outside system as composed of similar particles so that

Hp = 7?3 Tr
A Ty Tk

where
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where Ty 18 the energy of one particle and the '7 ts play the same role for the

outside particles as the { ts do for the inside ones.
We assume that there is an interaction coupling between each particle
of one. kind and each of the other kind, Hence '
V=2 Via
and because of the symmetry of the operators, (qra? 4(?) l V. ! q(b)o( (h)) is
independent of r and k and will be denoted by vag,bh’ Hence Va’b is an ope'rator

on the o *'s and we can write
= 3\ My Vag,bh
Va—,b 5)4\’7}? a—g) ,))'k
Finally, since the {'s and 's commute,

H = 2 % U 4‘4”‘}'?‘” Tt Z‘ (‘L %:bkﬂ?b (36)

We can now calculate the eguations of motlon

LR 5a,'= S H-Hée = ZUbfb*Z/ 77 3,5}\77;;{5
LR g =gl Z ik +2L F Vag,hh T3 74,

(37)

These are of the seme form as the Hartree equations of ond particlé of one system
snteracting with one particle of the other system. In this caseé we haye & wave

function L-V (q, A ) satisfying a SchrBdinger equation. Hartree's procedure

is to assume

Wia, & ) = £(a) F(&X)

and to determine what are the beat possible functions f and F. It turns out
that f must satisfy the equation
b ' b — ok b)
4 f0g5) = 2T dlg) » 2 F(a®) Vogh P 5 (4
hs b b, A
where q* is a particular value of Q. The essential difference between this
cese and ours is that here one has ordinary functions whereas in our case we are

dealing with operators.

e e

Py




2-30

We see then that in the case of one set of similar particles we obtain
the equations for the system by qﬁantizing the Schrddinger equation for one par-
ticle; in the case of two sets of similar particles we get the equations by
quantizing the Hartree equations for two particles.

We next comsider the problem of olectrons interacting with radiabion.
It turns out that the treatment to be presented involving second quantization is
mathematically equivalent to the previgus one with many times. Continuing the

notetion of the preceding example, we have

¢ - - _ -
H = QZ)’L,% Té’\»”)k *%:b T Ues %o ";‘zz;’L fﬁ?)g Vij);)\,fb’)]{,
Tt is necessary to decide what to take for thé basic states of the systems. We
take for 77 the states of the photons, -one state for each momentum and polari-
zation; for fn we teke one state for each position x and spin k. We have
then for the commutation rules (thoseffor photons having been derived some time
before)

%m- Ny Na = Sab
P -z — !
Tn the second commutation relation the passage o continuous variables was mede

by replacing the delta by the delta~function.

Since the number of photons is not conserved, the Hamiltonian must be

altered accordingly. There will be additional terms which are linear (instead

—

of bilinear) in the 77 's or ‘7 'S, ©e8e

>, A Vag,bfﬁz N ANYRTVWES
Al a.bh
the first térm corresponding to processes in which one light quantum is absorbed

and the second to & light quentum émitted.

We now substitute for the metrix elements the elementery expressions

e e e s T———— p——
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for the interactions, Neglecting the spin for the present, we can write (since

the electron charge is -e)

H: /L/F "“',t. | /d'jé Z_; [ﬁ ,40(\91-(d)—(€_§$eA[X))+dﬂmjfﬂ

and it will be recalled that the A's sre linedr functions of the 7 ts and 7/ 's.

Taking spin ‘into account, we heve for the corresponding expression
< - -¢77L ) W, ,

In this case there are no terms in the interaction between particles and radie-
tion which are bilinear in 7 's end 7—7—-’3.
The equations of motion for the ; 's are
C-}M Geb= g’th" Hfl&)
- - é Ie Au(yjjkkl 4 (A4t ¢ Z}c+ 9)4(}’))4—0{%&&4 XA’

with corresponding equations for thé f ts. To get the equations of motion for
the variables of the field we must use the cammubation rules for the A's pre-

viously found. We get

d/} - ‘ = F = d’4
4h - [AH] JAHe]= 44
4ho. Jddo 1T = VAo~ 47eF Fa bt o
b [4H] 7 "

LA - vihe aTeZ D San Sk
Gk £ 4

We also need the supplementary condition
dho o dr A) V= 0
0 = (41)
| % .

where @ is a constant vector in the Heisenberg piéture. There is one such
condition for- each point of space-time.
Now it is necessary to show (1) that the commutation rules thet are be-

ing used are invariant under a Lorentz transformation, and (2) that the supple-
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mentary conditions are consistent, both with one another for various points and
slso with the other equations, |

For (1) we consider an infinitesimal rotation through an angle £ in

the plene of xy ond t. We have then for a variable /6 {x)
2 — % 6{ K
—— Wi ( }

The commubation rules for the A's sre the same as for the case of & vacuum since

the new terms in the equations of motion commute with the A's. The -proper com-
. 5 7 %/

mutation rules for [ ? { ]follow since the f tg ere linear functions

of the ; ts. Hence we must consider

- x
o Tw , f’”fx%f any +£14§’M X Cov )t
_ B(x 1”>§k | i 4 f'x (J (Kl,él f k'+ ﬁ(”/?" J/{z/")

y
+ gx (\A{’x"k f}4,+ A d};"é”)
Using the expression for é’z_tg in (39) this becames

d(v-1") 5 ey ”ﬂm [e%l(x”)g,#, (0(4"/?"' L@%,’LM(W o("?’ﬂ*"’]ézg'w

‘(.

+ f% ZCA,UL )gﬁ,.%, f("(km*) ¢ % _Q_ je Al) ) o~ %\lzn%: ] A;gu,gm‘g(K/'l")
L .x ,km

g(% %")gk ' i € ’Jl, (0(,/?»«& )2. g(’)c 1'9) )‘-f.X(o(!zu}zl (X’ "))I

By use of the relation
(,%/*/Z//) S ’( X/ - x/l) - 5(1/‘_ X_")
this can be reduced to

.—* Ll
{x«'i‘;”i” g;/,/(” x/,£/=£gél‘kn - {o(/t/,él) 5( 2‘;(,) (4:2)

We must now bake into account the spin transformation. - The procedure up to

this point would have sufficed if the ( ts were scalars. As they are spinors
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they undergo the further transfoma‘clon
~§+ -L Edl f >

é’#h Lo
where { "' is the final function in the transformed coordinate sys’cem. Since &

is an infinitesimal this can be written
t *
f‘kn = { " 2 L €0< &' f'é"'

Tar = Jon - tz jed e fé"'

Combining (42) end (43) leads to

{X:Q’ {/lyé// {X”i” Z{’ - g b'n g('x %/I)

which shows that the commutation rules are Anvariant under a Lorentz transforme-

(43)

tion.

We next consider (2) the quéstion of the consistency of the supplemen-
tary conditions. We assume thet at one instant of time but for all x'§ the sup-
plementary conditions are

? A . du- A}\If - (a8)
and also , '

%t{-d °+MA{W:D (45)
which by the use of the equations of motion (40) cen be put into the form

<€= "VAD")A )
{dw £ + 47e %’ﬂ ﬂ.}?{r:O (46)

The last condition is consistent with the preceding one since ‘the terms in F;‘
commute with the A's and the case for e vecuum has already been proved. One
must investigate however whether the equations (48) for different points of space
are consistent with one enother. The only possibility of non-commuting lies in

the ; ts. But

e i
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Fo fot o b = R & S"wg“"?")]ﬁ’
- -, G TS 1R T 00K
= Txly T Ty + Txix 200E)
=+ S (5, T,-0x-1)) iy # 5, 5 So-X )

= 3. Q’ify"'(“ i' Sz +f?‘§7">g(‘x‘?) .

- bg x! f:(/.y; §:¢
so thet the conditions for different points commute.

We now show that the supplementary conditions for all time follow from

the above supplementary conditions in virtue of the eguations of motion. Thus

P o cdic A]D = 7 (Lo aird) T

div Uk ZE - N =

el 3 ASerdar (-2 5w 80 [V

On the right hand side the first term ;anishes because of the original supple-
mentary condition being valid for all space, and in the second term the operator
itself venishes as a consequence of the equations of motion for the 's and
asserts the conservetion of charge.  Similarly the higher derivatives of (44)
with respect to t can be shown to vanish, and hence (44) holds for all values of
t.

A gauge-invariant quantity /é? is defined by the fact that /gfyy sat-
isfies the supplementary conditions if /9 does. This will be true if /4? com~
mutes with the operators of the supplementary conditions. Thus if the supple-
mentary condition is denoted by

AV= 0
then
AV )=£4V=0

Among the gauge-invariant quantities are Zf and Jﬁé (since the supplementary




2 = SO TR TR T e T A T T MR A R R TN T TSR, R e o T T e T T e ST A
m : et — : :-T_."' ‘25
%
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conditions differ from those for a vacuum at most by terms which commute with
these) and the charge-current vestor. To show that the charge-current is
gauge-invariant we take the time in the suoplementary conditions the same as
for the charge-current vector and note that the only possibility of non-commu-
tation is in the case of gpxk‘ ka" in the charge with ))7 L d )fx'gr in the

second supplementary condition. Consider

Sxw S Soer $xe

Y (‘" ?x’g' Sxk"+ Cpryp B(X'X')]ﬁ(,e,,
= —;7('2’ fx’&" ?X’Q"f)( kq-}-— {Xklfxle// g/}"él S(’l~xl}

= -‘;’xl‘ll (f’x'ﬁ” 5‘; é, — S/P'QMS'('X‘Y’)}ﬁﬂ,’# /"
= fX'(' fxl)éu ;TX }l'jxlz” + (;;Al leé'l 50,,[— ji/_plgyﬁl,(a:eu)S

If we put ,@‘ = Q" and sum over all values of ﬂx, the last term vanishes and we

il

have ’

—

Sow Towr 2 S o= Z) fow e e 340

Hence the charge and current vector ( e fo Y ka / J - €/ Jfri'q/}z'k"fx A

is gauge~invariant.

+ ’D 5 where

In the elementary theory if A/J is changed to A/u 5%
A
2
25 L viS=0
2t "

-e S
then ,\71/ is changed to € /17. V and nothing is essentially altered
thereby. We consider the corresponding change in the present theory.
s [ At Ay
In the elementary theory the expression ex
(where the integral is taken along any curve from the given point to infinity) is
invariant under the above transformation. In the present theory we must prove

, /0;} 4
that _ 5_’2
Ig(//f(: ch Jx ” f’l’./&
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is invariant.
To prove this we specialize for convenience by taeking the integral in
]‘7 to lie in the plane t=const. Hence the integral does not involve Ao and
)_, commutes with the first supplementary condition. For treating the second
supplementary condition we first integrate the latter over a small three-dimen-
sional volume and change the first term to a surface integral, obtaining

f(f;[/g)_mefi?xdw:O

where we are dropping the spin indices since they are not important here. Ve

now have
- , - /
[ narg= - [GLsiet |
- h ffz fx Fx’d"[l"’ IX(X-Z/) Friau
= ijfx’f:l&f’— S"X ,  vhen x lies in volume (Case I)
- ‘{XJ g:x' ? , QU ~  when x does not lie in volume (Case II)
Hence —_ — - ,
f};'f}"d’y‘,/—;* /'xffx’?‘xd/k:‘/_; (Case I)
= O (Case II)

Now we consider the case in which the point lies in the volume end the

curve along which the integral is taken cuts the bounding surface only once.

[ {1 a5, Jha)] = = [ J@QEAD, J(has)]

= <7 j S-Sl ) & (1;-1") b Bduds’

Then

= 4T
where 19 is the angle between the vectors A" and A' and the commutation rules

- h
for %ﬂ and A' have been used. Hence
t

[ (g, R ] = el
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and it follows that I/‘ x cormutes with the operator of the second supplementary
condition.

In the ocase tha‘b the point lies outside of the volume !

"
ﬁg 45“ g(/ﬂ\ A”( vanishes and [-1 is again gauge-invariant.

Tf the curve crosses the bounding surfaces several times there is a

contribution of & ‘f_’LE_,Q [Z( for each crossing and the sum is the same as
b d Yy
above.,
/ ,,1144
Similarly one can show that fy is gauge-
invariant.

Chapter IV. Theory of the Positron

In the formalism we have developed there 1s a mathematical symmetry
between the concepts of "full" and fempty". Thus we have
0y = 1= 27
and the theory could be expressed entirely in terms of U’z with complete sym-
metry of t values. Thus
T,

0z = =1, n=1, full.

n

1, n= 0, empty,

In the theory up to the present it has been implied that most of the states are
empty. Now we consider that most of the negative-energy states are full and
most of the positive-energy states are empty.

The difficulty in this case 45 that the operators %j‘ ?x and
; 0( { become infinite, i.e. when they operate on \,V they give en infinite
result. We must modify the Hamiltonien H to remove these infinities. Thus we

have

) ) — | —. —t
5 %kﬂ 77&”“’*55Q%%+4f3 £ Vegs 50 7
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This involves a dissymmetry between full and empty because in each term the
barred variables come before the unbarred. Suppose (although this is not
strictly true) that we could distinguish the positive-energy states from those
of negative energy, ond let us use subscripts of the type a' for the former and

o for the latter. Suppose we take

H = k“a‘T‘@m}h r z.J { U f j 32/ o8 S "+ ] ng;é

C‘l a’ bu E" }JI

j"‘ ,,Tb” -,bnfu +2 fa_ vg M')glb’z'f—”" - _/_/_/ ﬁ"% "y[’vg’f
a'%b g, b, 4 &
= 7
It is to be noted that 3, ot and f " enti-commute; this removes the apparent
dissymmetry due to the - sign.

Consider
U'Ci.'ﬁ' fﬁl g;" = -Ua,’dl ,)74.1
e $ar B = U U= ")
We see that the occupied positive-encrgy state is treated symmetrically to the
unoccupied negative-cnergy state.,
The change in H (old H - new H) is .
Z ({Q” L b '/J" /}cb" 2"y ?Q”) fz” j;’ /; V A”fb/' Z 5 ’
a’ b ”J;
= Z’ , j ot 2 "a"byb
"ﬁ’ —} ’__[ 7g 4/ d' +

a’ a’
This change involves the 77 's but not the f s, Hence the equations of motion
of the g‘ s are unchanged but those of the ? 's are altered.
In the above Hemiltonian we have

fxu $¢ = Z/ f‘:;, Latx’) (7(,“3) Y _
1nwhlch we are replaclng; g' ?bby {a‘gb" ; ";b” fu' ?n,

- ib" { ot Hence we have here
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o o3 20 Fu (A1 XV 1B) G- 5 Y. (a5 -5 g, M/X)(x'/b");’
a)b a’ b Q”' A"

———

= S G 2 (Kla)@lx)

all
Strictly speaking, it is not possAible to make a hard and fast distinoc-
tion between the positive and negative energy states, which is relativistically
and gauge invariant. One can use this theory, however, as a hint for the ac-

curate theory. It is convenient to proceed in two steps:

1, We replace fx" ;x’ by -}g( fx" );‘x* - }‘x' jx"") which is more symmetrical

2. We then see what other changes tre needed. The elementary theory says to

add to this ’ ) .
"‘Z(%/ﬁ”)(({” X./’)f' (f”z‘x"}‘}‘,{ X!’ )': S(I 1)5(’(/4')[4/2!)
all
=1 s (1 a)(a) x") j(w’/a")(a"/x”)

la.

2 ()a'Yair ) - 2(%/&")44 )¢
a’L

corresponding to occupied positive-energy states and unoccupied negative-energy
states. Using the expressions for a free electron (solutions of the relativig-

tic equation) one finds for this correction

(ot
-—-I-_Z (O(I L 1) + terms with weaker singularities for x' = x" (diagonal)(47)
7 |2/~ 2"/4

For the more correct theory we must have symmetry in the time and co-

ordinates. We go out from
# (BT ST )

and subtract something to remove all the &ingularities ffom the diagonal x' = x",

tt = t", Now this expression satisfiés the following equation

{ 7;‘2 1 eAs(et’)r{d, ~»L7§3 e A1 )4 dt zf—.. ;"fx{ﬁw,{ff?u
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since g’x't‘ satisfies this equation snd the operators do not act on j’xntn.
Similarly it satisfies a second differential equation in x", t".  Let

x = x' - x",

t o= t' - ",

it

The expression must be of the form

(i"y' Sagt ~Sre fx"t"f Ui e xi/)z £ )u*“fé"“ LA (a8

in order that for t = O we get the previous expression (47). Here the u's rep-
resent functions which are regular in the neighborhood of the diagonal.  The
expression (48) is not quite unique since we can replace u, by uy *+ (t—(oﬁ x))f
and Ug by u, - £ where f is a regular function since
FOtE) (E+bx) )+
(tL%i)L A

Similerly we can replace u, by u, *+ (tz - xz)g and Uy by u, - g- There is

further & numerical factor at our disposal, but we choose it so that the worst
singularity has the seme coefficient as in (47).
The gauge and relativistic invariance are not sufficient to specify

the u's completely. Ve take the mathematically simplest u's. These u's are

functions only of the field variables (Ats and their derivatives) except uy
which contains the electron coordinates.

Finally we can write
? ( Zgn S Saer Fogn )= (X'2') ﬂjx”z‘”)vl U g

and this R~ is to be subtracted from the operator ﬁ( . . .
a x't x't! x't! ‘t“

Hence in the Hamiltonian we must replace ‘?‘Xn j’x, by uy. Thus we

have only v, left which satisfies an inhomogeneous equation

[ Q= JEETRITE) < .

;‘J‘_—‘_ﬁé
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4

This means that-matter can be created end annihilated.

In the equations of motion for the field variables, the A's, the quan-

——

tities }’ T are to be replaced by (u

xt ) xt 4)x'=5c"'

In this way we remove some of the infinities. The previous infinities

due to the self-energy of the electrons remain. There is also infinite self-
energy for the photon (pointed out by Heisenberg) analogous to that of the elec-
tron. This is due to the faot that some singularities still remain in u, (ale
though the worst ones have been removed). Just as the self-energy of the elec~-
tron can be regarded as due to many nascent light quante surrounding it, so the
theory gives around each photon many nascent electrons and positrons which give
it a self-enorgy; i.c. the Homiltonien contains terms corresponding to such
transitions as cause the creation of electrons and positrons. The procedure
for calculating this is as follows. cPnsider the matrix element

® (one photon\ H }arbitrary).

Among the non-vanishing components thore will be somo with the right-hand side

having one new photon, one electron and one positron. In a stationery state

such terms will give a change in energy (by the porturbation method)

;:z? J(one photon| H\ &Pb-)}z

W

one photon arb,

arbitrary states

and this turns out to be infinite.




