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TOWARDS A MAXIMAL COMPLETION OF A PERIOD MAP

MARK GREEN, PHILLIP GRIFFITHS, AND COLLEEN ROBLES

Abstract. The motivation behind this work is to construct a “Hodge theoretically max-
imal” completion of a period map. This is done up to finite data (we work with the Stein
factorization of the period map). The image of the extension is a Moishezon variety that
compactifies a finite cover of the image of the period map.

1. Introduction

The motivation behind this work is to construct completions of period mappings, and to
apply those completions to study moduli. Here we are interested in a “Hodge theoretically
maximal” completion. A “minimal” completion is introduced in [GGLR20]. That work
raised a number of questions about the global asymptotic structure of a period mapping. We
distinguish this from both global properties of the period mapping and the local asymptotic
structure. The first concerns properties of a variation of Hodge structures over a quasi-
projective base. (For example, one may assume without loss of generality that the period
map is proper.) This is a classical and much studied subject beginning with [Gri70], and with
recent developments including [BKT18, BBT18, BBKT, BBT20]. The second concerns local
properties of degenerations of period mappings beginning with the nilpotent and SL(2) orbit
theorems [Sch73, CKS86], and with significant applications including the Iitaka conjecture
[Vie83a, Vie83b, Kol87] and the arithmeticity of Hodge loci [CDK95]. The orbit theorems
describe the period mapping over a local coordinate chart at infinity. The period map will
not (in general) be proper when restricted to this local coordinate chart; very roughly, what
is meant by the “global asymptotic structure” is that: (i) we consider certain extensions
of the period map across infinity, and (ii) properties over larger neighborhoods at infinity
where the extensions (not only the period map) are proper. (The two extensions we are most
concerned with are (2.24) below.) The purpose of this paper is to define these extensions,
and investigate their “global properties at infinity.” (Other approaches to the global study
of extended variations of Hodge structure over a complete base include [Moc09, Sai17] and
the references in those works.) The structural results obtained here are used to construct a
finite cover of the desired maximal completion (Theorem 1.3).

We consider triples (B,Z; Φ) consisting of a smooth projective variety B and a reduced
normal crossing divisor Z whose complement

B = B\Z
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has a variation of (pure) polarized Hodge structure

(1.1a)
Fp V B̃ ×π1(B) V

B

⊂

inducing a period map

(1.1b) Φ : B → Γ\D .

Here D is a period domain parameterizing pure, weight n, Q–polarized Hodge structures
on the vector space V , and π1(B) ։ Γ ⊂ Aut(V,Q) is the monodromy representation.

Without loss of generality, Φ : B → Γ\D is proper [Gri70, §9]. Let

℘ = Φ(B)

denote the image, and let

(1.2) B ℘̂ ℘
Φ̂

Φ

be the Stein factorization of the period map (1.1b); the fibres of Φ̂ are connected, the fibres
of ℘̂ → ℘ are finite, and ℘̂ is a normal complex analytic space.

Theorem 1.3. Assume that Γ is neat. The complex analytic variety ℘̂ is Zariski open in
a Moishezon variety ℘̂T, and the map Φ̂ : B → ℘̂ extends to a morphism Φ̂T : B → ℘̂T of
algebraic spaces.

Outline of proof. The set

Γ(Φ̂) = {(b1, b2) ∈ B ×B | Φ̂(b1) = Φ̂(b2)}

defines an equivalence relation on B with the property that Φ̂ : B → ℘̂ is the quotient
map. It follows from [CDK95] that there exists a projective subvariety X̂ ⊂ B × B with
the property that

Γ(Φ̂) = X̂ ∩ (B ×B) .

Suppose that X̂ defines a proper, holomorphic equivalence relation on B. Then [Gra83, §3,
Theorem 2] asserts that the quotient ℘̂T is a compact, complex analytic variety, and the
quotient map

Φ̂T : B → ℘̂T

is a proper holomorphic completion of Φ̂. Since B is projective (and therefore Moishezon) it
follows that ℘̂T is Moishezon [AT82, §5, Corollary 11]. As Moishezon spaces are algebraic,

Serre’s GAGA implies Φ̂T is a morphism, [Art70, §7].

So the essential problem is to show that X̂ is defines a proper, holomorphic equivalence
relation. For this, it suffices to show that every point b ∈ B admits a neighborhood O

1 ⊂ B
with the properties:

(i) The restriction Φ|
O1 , with O

1 = B ∩ O
1, is proper (Corollary 2.32).

(ii) There exists a proper holomorphic map f̂ : O1 → Ô
1 whose fibres coincide over O

1

with those of Φ̂
∣∣
O1 .
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The period map over O
1 can be represented by a period matrix. It is a consequence of

the infinitesimal period relation (and the properness of Φ|
O1) that the full period matrix is

determined (up to constants of integration) by a subset of the matrix coefficients, that we
call the horizontal coefficients. The horizontal coefficients (εµ, εν) are of two types: the εµ
are well-defined; while the εν are multivalued, but τν = exp 2πiεν is well-defined. The map

(1.4) f = (εµ, τν) : O
1 → Cm

is proper, and f̂ is the Stein factorization (§5.2). The theorem then follows from Proposition
5.13. �

Remark 1.5. What one would really like to show is that Γ(Φ) is a proper holomorphic
equivalence relation. Then the argument above would yield a proper morphism ΦT : B → ℘T

completing the period map Φ itself (rather than a finite cover), and factoring through Φ̂T.

Remark 1.6. It follows from the infinitesimal period relation that the the map (1.4) encodes
the full period matrix up to constants of integration. This is the sense in which ℘T is a
maximal Hodge theoretic compactification of ℘ = Φ(B). (And there is a natural surjection
℘T

։ ℘0 onto the minimal Hodge theoretic compactification studied in [GGLR20].) It also
indicates that points of ℘T parameterize equivalence classes of limiting mixed Hodge struc-
tures, and so gives ℘T the interpretation of a relative analog of the Kato–Usui construction
[KU09]; that is, ℘̂T is intuitively (a finite cover of) the sort of object one would expect to
obtain if one had a Kato–Usui horizontal completion (Γ\D)Σ of Γ\D, and took the closure
of ℘ in this space. For more on the relationship to toroidal constructions see §1.4.

Remark 1.7. The fact that the period map Φ|
O1 can be represented by a period matrix

is closely related to the fact that the lift of Φ|
O1 takes value in a Schubert cell of the

compact dual (§1.3). In the classical case that D is Hermitian this is immediate: there
exist many Schubert cells containing the period domain; these give the so-called “bounded”
and “unbounded” realizations of D, and play a key role in the construction of the Satake–
Baily–Borel compactification of an arithmetic quotient [BB66]. In contrast, non-Hermitian
period domains generally contain compact subvarieties, and this means that D will not be
contained in any Schubert cell (an affine space). One of the main technical results of the
paper is the existence of neighborhoods O1 with the properties that Φ|

O1 is proper and the
lift takes value in a Schubert cell (§1.3).

Remark 1.8. Theorem 1.3 does not assert that ℘̂T is an algebraic variety. We conjecture
that ℘̂T does indeed admit an ample line bundle.

Remark 1.9. For the purposes of studying moduli and their compactifications, the hypoth-
esis in Theorem 1.3 that Γ is neat should be removed; and indeed we expect that it can be
dropped. Here it is a convenience allowing us avoid technical thickets that might otherwise
obscure the main ideas of the paper. For more on where and how it is used see Remark 3.9.

We do not assume that Γ is arithmetic – the group may be thin.

Acknowledgements. We have benefited from conversations and correspondence with sev-
eral colleagues, special thanks are due to Gregory Pearlstein who shared with the third
author the observation that showing Γ(Φ) is an equivalence relation was one approach to
the problem of compactifying the image; and to Daniel Greb for the observation that the
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compact, complex analytic variety ℘̂T constructed in Theorem 1.3 is Moishezon (and by
essentially the same argument as that establishing [GSTW20, Corollary 1.3]).

1.1. Motivation and context. Write

Z = Z1 ∪ Z2 ∪ · · · ∪ Zν ,

with smooth irreducible components Zi. We denote by

ZI =
⋂

i∈I

Zi

the closed strata, and Z∗
I ⊂ ZI the Zariski open smooth locus. As we approach a point

b ∈ Z∗
I the period map Φ degenerates to a limiting mixed Hodge structure (W,F ) that is

polarized by nilpotent operators in the local monodromy cone σI . The Hodge filtration
F ∈ Ď will vary along Z∗

I , and is well-defined only up to the action of exp(CσI) on the

compact dual Ď. This induces a map

(1.10a) ΦI : Z
∗
I → (exp(CσI)ΓI)\DI ,

cf. B.2. Nonetheless, because N(Wa) ⊂ Wa−2 for all N ∈ σI , the induced Hodge filtration
F p(GrWa ) on the graded quotient GrWa = Wa/Wa−1 is well-defined. In this way we obtain a
period map

(1.10b) Φ0
I : Z

∗
I → ΓI\D

0
I

factoring through ΦI .

Remark 1.11. Recalling the notation of Remark 1.5, the restriction ΦT
∣∣
Z∗
I

factors through

ΦI , and the fibres of ΦI(Z
∗
I ) ։ ΦT(Z∗

I ) are finite.

A recent attempt [GGLR20] to generalize the Satake–Bailey–Borel compactification to
arbitrary period maps raised two questions.

Question 1.12. What is the global geometry of a fibre A∗
I of (1.10b)?

The maps (1.10b) can be patched together to define a proper extension Φ0 : B → ℘0 of
Φ : B → ℘, cf. §§2.3-2.4. The fibre A∗

I is quasi-projective and Zariski open in a Φ0–fibre.
Let A0 be a connected component of the fibre.

Question 1.13. Does A0 admit a neighborhood O
0 ⊂ B with the following properties?

(i) The restriction of Φ0 to O
0 is proper.

(ii) The holomorphic functions on O separate the fibres of Φ0
∣∣
O0 .

As will be discussed in §1.3, the condition (ii) is closely related to:

(iii) Can Φ|B∩O0 be represented by a period matrix?

Remark 1.14. Questions 1.12 and 1.13 concern the global study of period mappings at infin-
ity.
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1.2. Global geometry of A∗. Returning to Question 1.12, the variation of limiting mixed
Hodge structures over Z∗

I defines a map Φ1 : A∗
I → JI , with JI an abelian variety. This

map encodes the level one extension data in the variation of limiting mixed Hodge structure
along A∗

I . It extends to the Zariski closure,

(1.15) Φ1 : AI → JI .

The abelian variety admits a family {LM} of ample “theta” line bundles. Let A0
I be a

connected component of AI . Then, given any one of these bundles, there exist integers
κi = κi(M) so that

(1.16) (Φ1
∣∣
A0

I

)∗(LM ) =
∑

κi[Zi]|A0
I

=
∑

κi NZi/B

∣∣∣
A0

I

;

see (4.5) for the precise statement. This expression relates the geometry along A to the
geometry normal to Z ⊂ B. Moreover, this is the central geometric information that arises
when considering the variation of limiting mixed Hodge structure along A∗

I (Proposition
5.1).

Example 1.17. Consider a weight n = 1 variation of Hodge structure with Hodge numbers
h = (2, 2). Suppose that dimB = 2, and fix local coordinates (t, w) ∈ ∆2 = U on B
centered at a point b ∈ Z so that Z = {t = 0} locally. (Here ∆ ⊂ C is the unit disc.)
Suppose the local nilpotent logarithm of monodromy about t = 0 has rank one. (This is the
mildest possible non-trivial degeneration. Imagine a 2-parameter family of smooth genus
two curves acquiring a node.) Then the restriction of Φ to ∆∗×∆ = U may be represented
by the period matrix

(1.18) Φ̃(t, w) =




1 0
0 1

α(t, w) λ(t, w)
ν̂(t, w) α(t, w)


 ,

with α(t, w), λ(t, w), ν(t, w) = ν̂(t, w)− log(t)/2πi holomorphic functions on ∆2.
We can choose the neighborhood O so that the monodromy over O takes the form

γ =




1 0 0 0
a 1 0 0
b 0 1 0
c b −a 1


 ,

with a, b, c ∈ Z. Then the period matrix Φ̃(t, w) transforms as

γ · Φ̃(t, w) =




1 0
0 1

α(t, w) + b− aλ(t, w) λ(t, w)
ν̂(t, w) + c− ab+ 2aα(t, w) + a

2λ(t, w) α(t, w) + b− aλ(t, w)




Under this action, ν(t, w) transforms as

ν(t, w) 7→ ν(t, w) + c− ab+ 2aα(t, w) + a
2λ(t, w) ,

so that
τ(t, w) = exp(2πi ν̂(t, w)) = t exp(2πi ν(t, w))
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transforms as

τ(t, w) 7→ t exp 2πi (ε(t, w) + a
2λ(t, w) − 2aα(t, w))

= τ(t, w) exp 2πi (a2λ(t, w) − 2aα(t, w)) .

This is the functional equation for the classical theta function. We may normalize our choice
of coordinates (t, w) so that ν(t, w) = 0. Then, this computation implies that t · ϑ, with ϑ
a section of the dual to the theta line bundle, is globally well-defined along A0

I .

1.3. Period matrices and Schubert cells. The fact that period maps are locally liftable
implies that they can always be locally represented by period matrices. Schmid’s nilpotent
orbit theorem implies that this property also holds at infinity: points b ∈ Z admit local
coordinates U ⊂ B so that the restriction of Φ to U = B∩U can be represented by a period
matrix. The expression (1.18) is an example of one such representation. The caveat is that
the entries/coefficients of the period matrix may not be multi-valued: they may involve
logarithms (as in Example 1.17).

Period matrix representations are closely related to Schubert cells (§B.4). The compact
dual Ď ⊃ D can be covered by Zariski open Schubert cells. Each such cell is biholomorphic
to Cm, with m = dimD. (These are local coordinate charts on Ď.) In each of the cases
discussed above, the local lift of the period map takes value in a Schubert cell S. And the
entries/coefficients of the period matrix are the pullbacks of the coordinates S → Cm. In
general, to say that the period map Φ can be represented by a period matrix over an open
set O ⊂ B is equivalent to the following two conditions:

(i) The lift Φ̃ : Õ → D of Φ to the universal cover of O takes value in a Schubert cell
S ⊂ Ď.

(ii) In general the monodromy ΓO ⊂ Γ of the variation over O acts on Ď. This action must
preserve the Schubert cell S (or at least D ∩ S).

Under these conditions, the pullback of the coordinates on S → Cm yields the period matrix
representation of Φ|

O
. If ΓO is nontrivial, then the entries of the period matrix may be multi-

valued (cf. the logarithm in Example 1.17). Nonetheless, we may think of this as giving us
a (possibly multi-valued) coordinate representation of Φ|

O
.

Given a connected component A0 of a Φ0–fibre, one of the main technical results of
this paper is the existence of a neighborhood O

0 ⊂ B of A0 with the properties: (i) the
restriction of Φ0 to O

0 is proper, and (ii) the restriction of Φ to O
0 = B∩O

0 admits a period
matrix representation, cf. §3.1.

The monodromy ΓA0 over O
0 is too complicated to extract the map (1.4) from this

matrix representation. However, the map (1.15) is the restriction of a proper extension
Φ1 : B → ℘1 of Φ through which Φ0 factors, cf. §§2.3–2.4. And a connected component
A1 of a Φ1–fibre admits a neighborhood O

1 ⊂ O
0 with the properties: the restriction of Φ1

to O
1 is proper, and (ii) the monodromy ΓA1 over O

1 is very simple (almost as simple as
Schmid’s local monodromy at infinity, cf. Proposition 5.1). The map (1.4) is constructed
from this second period matrix representation in §5.2. In Example 1.17, the local expression
for f is (α, λ, eν̂) : ∆2 → C3.

1.4. Relationship to toroidal constructions. It follows from Remark 1.6 that f =
(εµ, τν) encodes the full variation of mixed Hodge structure (1.10a) over Z∗

I ∩ O
1 (up to
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constants of integration). In particular, ℘T parameterizes equivalence classes of limiting
mixed Hodge structures. In the classical case that D is Hermitian symmetric and Γ is
arithmetic the toroidal compactifications Γ\DT of [AMRT75] are also known to parameterize
equivalence classes of limiting mixed Hodge structures [CCK80]. This naturally raises the

question: what is the relationship between ℘T and the closure of ℘ in Γ\DT? This is an
interesting question, but not one we will undertake to address here, beyond the following
remarks.

While it seems reasonable to expect a relationship between the two constructions, the
precise nature of that relationship is not obvious because the approaches are quite different:
℘̂T is realized by the compact quotient of a proper holomorphic equivalence relation, while
the toroidal construction involves attaching “boundary components” to Γ\D by a subtle
“glueing” process involving fans (which do not arise in the construction of ℘̂T. Instead
our “boundary structure” comes from (1.10) and the period matrix representation of §1.3).
Nonetheless there are some suggestive similarities (which motivate our use of superscript
T).

The first is that the functions τν of (1.4) seem to play a role analogous to that of
the monomials defining the toric structure in [Mum75]. The second is that the glueing
procedure in [Mum75] involves a factorization

D → Γ0\D → Γ1\D → Γ\D

of D → Γ\D. Our “fibre monodromies” ΓA1 ⊂ ΓA0 in §1.3 are related to Mumford’s groups
Γ0 ⊂ Γ1 by

ΓA1 ⊂ Γ0 ⊂ ΓA0 ⊂ Γ1 .

Remark 1.19. The existence of an extension Φ : B → Γ\DT is a subtle question, and

one need not exist [FS86, CMGHL17]. So it is striking that we have the extension Φ̂T in
Theorem 1.3.

1.5. Organization of the paper. Section 2 develops the constructions and preliminary
results that will be used to study the period map in a neighborhood of the fibre A∗

I . In §3

we show that A0 admits a neighborhood O
0 ⊂ B with the property that Φ is proper and

can be represented by a period matrix over B∩O
0. We show that the extended line bundles

det(Fp
e ) → B are trivial over O0 when Γ is neat (Theorem 3.12). And we construct explicit

sections sM of line bundles over O1 that will be used to establish (1.16).
In §4 we study the level one extension data map (1.15) along A0, and the “theta” line

bundles LM over the Jacobian variety JI . In §5 we show that, modulo the nilpotent orbit,
the higher level extension data is locally constant on fibres of (1.15). This yields a period
matrix representation over punctured neighborhood B∩O

1 of A1 from which we can extract
the functions (1.4).

We need to set notation and review the local behavior of period maps at infinity.
Because this material is classical, we streamline the presentation by placing this this review
(which also includes the proofs of a few technical lemmas) in Appendices B and C; we refer
to this material as convenient.
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2. Period maps at infinity

2.1. A tower of maps: extension data. As a first step towards answering Question
1.12, we note that what varies along the fibre A∗

I ⊂ Z∗
I of Φ0

I is the extension data of the
mixed Hodge structure (W,F ). This invites the study of the geometry of the extension
data associated to the collection of limiting mixed Hodge structures with fixed associated
graded. This is done by realizing (1.10) as the extremal maps in a tower

(2.1)

Z∗
I (exp(CσI)ΓI)\DI

(exp(CσI)ΓI)\D
a
I

(exp(CσI)ΓI)\D
2
I

ΓI\D
1
I

ΓI\D
0
I

ΦI

Φa
I

Φ2
I

Φ1
I

Φ0
I

that is defined as follows.

2.1.1. Mixed Hodge structures. Given a MHS (W,F0), define Hodge numbers fp
ℓ := dimF p

0 (GrWℓ ),
and set

DW = {F ∈ Ď | (W,F ) is a MHS, dimF p(GrWℓ ) = fp
ℓ } .

Set

G = Aut(V,Q) ,

and let PW ⊂ G be the Q–algebraic group stabilizing the weight filtration. (See §B.1.1 for
further discussion of group notation.) Given any g ∈ PW , there is an induced action on the
quotients Wℓ/Wℓ−a. The normal subgroups

P−a
W = {g ∈ PW | g acts trivially on Wℓ/Wℓ−a ∀ ℓ}
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define a filtration PW = P 0
W ⊃ P−1

W ⊃ · · · . The group

(2.2) GW = (PW,R/P
−1
W,R)⋉ P−1

W,C

acts transitively DW , [KP16]. (See §B.1.1 for a review of the group notation.) Let

Da
W = P−a−1

W,C \DW

be the quotient. This yields a tower of fibre bundles

DW ։ Da
W ։ D0

W .

Set

(2.3) ΓW = Γ ∩ P−1
W,Q .

Definition 2.4 (Extension data of MHS). If δW = δW,F ⊂ DW is the fibre of the surjection
DW → D0

W , then ΓW\δW,F is the extension data of the MHS (W,F ). The image δaW = δaW,F

of δW under the projection DW → Da
W is also a fibre of Da

W ։ D0
W , and we say that

ΓW\δaW,F is the extension data of level ≤ a.

Remark 2.5. Our treatment of extension data will focus on its Lie theoretic properties as a
locally homogeneous space. For a geometric perspective see [Car87].

2.1.2. Limiting mixed Hodge structures. Now suppose that the MHS (W,F0) is polarized
by a nilpotent cone

σI = spanR>0
{Ni | i ∈ I} ⊂ End(VR, Q)

of commuting logarithms of monodromy. (Here exp(Ni) is a local monodromy operator
about Z∗

i .) Define

DI = {F ∈ DW | (W,F ) is polarized by σI} .

Then W = W (σI) implies that the Q–algebraic group CI ⊂ Aut(V,Q) centralizing the cone
σI is a subgroup of PW . Note that this centralizer also admits a filtration CI = C0

I ⊃ C−1
I ⊃

· · · by normal subgroups

C−a
I = CI ∩ P−a

W .

The group

GI = (CI,R/C
−1
I,R)⋉C−1

I,C

acts transitively DI , [KP16]. Let

ΓI = Γ ∩ CI,Q .

2.1.3. Definition of the tower. The variation of limiting mixed Hodge structures along Z∗
I

in §1.1 induces the map ΦI of (2.1), cf. §B.2.4. The maps Φa
I are defined by passing to the

quotient spaces Da
I = C−a−1

I,C \DI . Define

℘a
I = Φa

I (Z
∗
I ) .

We have natural surjections ℘a+1
I ։ ℘a

I . Proposition 5.1(c) implies

Theorem 2.6. The maps ℘a+1
I ։ ℘a

I are finite to one for all a ≥ 2.
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Remark 2.7. Theorem 2.6 asserts that the level two extension data map Φ2
I determines the

full extension data map ΦI up to constants of integration. Additionally the level 2 extension
data is discrete. (The data not given by constants of integration is given by sections of line
bundles with fixed divisor, Proposition 5.1(c) and Remark 5.2.) So it is then not surprising
that we will see that the answer to Question 1.12 is to be found in studying the restriction
of Φ1 to A∗

I . This restriction takes value in some ΓI\δ
1
I,F . The spaces ΓI\δ

1
I,F and Γ\δ1W,F

of level one extension data carry rich geometric structure. As observed by Carlson, these
spaces are tori, and ΓI\δ

1
I,F is an abelian subvariety when F p(GrW−1) defines a level one

Hodge structure [Car87]. To this we add Theorem 4.3, and the corollary (4.5) that encodes
the central geometric information that arises when considering the VLMHS along A∗.

We say that the quotient Da
I has automorphism group Ga

I = GI/C
−a−1
I,C to indicate

that GI acts on Da
I , with the normal subgroup C−a−1

I acting trivially. The base space D0
I

is a Mumford–Tate domain with Mumford–Tate group G0
I . Again we have a tower of fibre

bundles

DI ։ Da
I ։ D0

I .

Definition 2.8 (Extension data of LMHS). If δI = δI,F = δW,F ∩ DI is the fibre of the
surjection DI → D0

I , then ΓI\δI,F is the (polarized) extension data of the limiting mixed
Hodge structure (W,F ). The image δaI = δaW,I of δI under the projection DI → Da

I is also

a fibre of Da
I ։ D0

I , and we say that ΓI\δ
a
I,F is the (polarized) extension data of level ≤ a.

2.2. Reduced limit period map. The purpose of this section is to describe an important
relationship between the period map Φ0

I : Z∗
I → ΓI\D

0
I and the topological boundary ∂D

of the period domain in the compact dual Ď. In general, the limit Hodge filtration F
associated with a point b ∈ Z∗

I (as in §B.2.4) will not lie in the boundary. However, there
is a “näıve”, or reduced limit F∞(b), that does lie in ∂D (§2.2.1). Each of these limits takes
value in a GR–orbit OI ⊂ ∂D, and there is an induced map

(2.9) Φ∞
I : Z∗

I → ΓI\OI .

Let

℘∞
I = Φ∞

I (Z∗
I ) ⊂ ΓI\OI

denote the image.

Proposition 2.10. The period map Φ0
I factors through the reduced limit period map Φ∞

I .
Moreover, the map Φ∞

I is locally constant on Φ0
I–fibres. In particular, the map πI : ℘

∞
I → ℘I

is finite.

Remark 2.11. The proposition (proved in §§2.2.2–2.2.4) has the important Corollary 2.16.
The later imposes an additional constraint on the monodromy over a neighborhood O

0 of
a A0

I (Lemma 3.3). This constraint makes it possible for us to show that Φ|
O0 admits a

period matrix representation (Corollary 3.6).

2.2.1. Definition. Fix a local lift Φ̃(t, w), and let (W,F, σ) be the associated limiting mixed
Hodge structure (§B.2.4). The reduced limit period

F∞(w) = lim
y→∞

Φ̃(z, w) = lim
y→∞

exp(iyN)ξ(0, w) · F ∈ D
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is independent of our choice of N ∈ σ, [GGK13, KP14, GGR17]. (The limit is understood
to be taken with x bounded.) The two filtrations F and F∞(0) are related by the Deligne
splitting (§B.3)

F p =
⊕

a≥p

V a,b
W,F and F p

∞(0) =
⊕

b≤n−p

V a,b
W,F .

In particular, the Lie algebra f∞ of the stabilizer StabGC
(F∞(0)) is

f∞ =
⊕

q≤0

g
p,q
W,F .

Recalling that the map ξ(0, w) takes value in CI,C (§B.2.4), we see that

(2.12) F∞(w) = ξ(0, w) · F∞(0) .

In particular, the map F∞ : {0}×∆r → Ď is holomorphic, and takes value in the CI,C–orbit
of F∞(0). What is less obvious is that: (i) The holomorphic F∞(0, w) takes value in the
real orbit

OI = CI,R · F∞(0) ⊂ Ď .

(ii) The real orbit OI is open in the (complex) orbit CI,C · F∞(0), and so is a complex

submanifold of Ď.

The reduced limit F∞ is independent of the local coordinates (t, w) expressing Φ̃. So
the reduced period limit induces a well-defined holomorphic map (2.9).

2.2.2. Proof: period map factors through reduced limit. Observe that there is a natural
identification

D0
I ≃ C−1

I,R\OI .

This identification induces

(2.13) πI : ΓI\OI → ΓI\D
0
I .

We have

(2.14) Φ0
I = πI ◦ Φ

∞
I .

In particular, πI : ℘
∞
I ։ ℘I .

Remark 2.15. When D is Hermitian the map (2.13) is an isomorphism and Φ0
I = Φ∞

I .

Let C−1
I,∞,C denote the stabilizer in C−1

I,C of the filtration F∞(0) ∈ Ď.

Corollary 2.16. The map Φ0
A0,I : A

0 ∩ ZI → δI takes value in

C−1
σ,∞,C · F ⊂ C−1

I,C · F = δI .
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2.2.3. Proof of finiteness: formulation of the argument. It is enough to show that F∞(w) is
constant along the Φ0–fibres in {0} ×∆r. This is a consequence of the infinitesimal period
relation. The essential point is that the map

(2.17) w 7→ ξ(0, w) · F is horizontal.

Recall that ξ(t, w) takes value in exp(f⊥), and ξ(0, w) takes value in exp(cI,C), cf. §B.3
and §B.2.4. We have

f⊥ ∩ cI,C =
⊕

p < 0
p + q ≤ 0

c
p,q
I,F .

Note that

f⊥ ∩ cI,C ∩ f∞ =
⊕

p < 0
q ≤ 0

c
p,q
I,F ,

and consider the decomposition

f⊥ ∩ cI,C = d ⊕ e ⊕ (f⊥ ∩ cI,C ∩ f∞)

defined by

d =
⊕

p < 0
p + q = 0

c
p,q
I,F and e =

⊕

p < 0 < q
p + q < 0

c
p,q
I,F .

Each of these three summands is a Lie subalgebra of f⊥ ∩ cI,C.

Since f⊥ ∩ cI,C is nilpotent, the function ξ(0, w) may be uniquely decomposed as

ξ(0, w) = e(w)f(w)s(w)

with f(w) ∈ exp(d), e(w) ∈ exp(e) and s(w) ∈ exp(f⊥ ∩ cI,C ∩ f∞). Since ξ(0, w) =
e(w) f(w)s(w)f(w)−1 f(w), and both e(w) and f(w)s(w)f(w)−1 take value in the unipotent
radical C−1

I,C, we may

identify Φ0
I(0, w) with f(w).

Furthermore, since f∞ is the stabilizer of F∞(0) in f, (2.12) implies we may

identify F∞(w) with e(w)f(w).

So to prove the lemma, it suffices to show that

e(w) is locally constant along f–fibres.

So we assume

(2.18a) df = 0 ,

and will show that de = 0; equivalently,

(2.18b) e−1de = 0 .
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2.2.4. Proof of finiteness: horizontality. Horizontality is the condition

(2.19) (ξ−1dξ)p,q = 0 , ∀ p ≤ −2 ,

with (ξ−1dξ)p,q the component of the f⊥–valued ξ−1dξ taking value in g
p,q
W,F , cf. §B.4 and

§B.6. At (0, w) we have

ξ−1dξ = (efs)−1d(efs)

= Ad−1
fs (e

−1de) + Ad−1
s (f−1df) + s−1ds(2.20)

(2.18a)
= Ad−1

fs (e
−1de) + s−1ds .

Note that e−1de and s−1ds take value in e and f∞, respectively. Furthermore, (B.6d) and
fs ∈ exp(f⊥ ∩ cI,C) imply that

e−1de = 0 if and only if
(
Ad−1

fs (e
−1de)

)p,q
= 0

for all q > 0 and p+ q < 0. At the same time (B.6d), (2.19) and (2.20) imply that

0 = (ξ−1dξ)p,q =
(
Ad−1

fs (e
−1de)

)p,q

for all q > 0 and p + q < 0. The desired (2.18b) now follows, completing the proof of
Proposition 2.10.

2.3. Extension to proper maps. Along each strata Z∗
I there is a well-defined Γ–congruence

class [W I ] of weight filtrations. Let

ZW =
⋃

[W I ]=[W ]

Z∗
I

be the union of those strata with the same “weight class.” The intersection ZI ∩ZW is the
weight-closure of Z∗

I . There is a subset IW ⊃ I with the property that

ZI ∩ ZW =
⋃

I⊂J⊂IW

Z∗
J

(Corollary C.10). The maps Φ0
I and Φ1

I in the tower (2.1) extend to the weight-closure
(Lemma C.14); in particular, we have a commutative diagram

Z∗
I ZI ∩ ZW ΓI\D

1
I ΓI\D

0
I .Φ1

I

Φ0
I

These two extensions to ZI ∩ ZW are the restrictions of well-defined proper maps on ZW

that are defined as follows.
The inclusions DI →֒ DW and ΓI ⊂ ΓW induce

ΓI\D
a
I → ΓW \Da

W .
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The maps Φ0
W and Φ1

W defined by the diagram

(2.21)

Z∗
I ZW

ΓI\D
1
I ΓW\D1

W

ΓI\D
0
I ΓW\D0

W

Φ1
I

Φ0
I

Φ1
W

Φ0
W

are proper and analytic (Lemma C.1). The proper mapping theorem implies that the images

℘0
W = Φ0

W (ZW ) and ℘1
W = Φ1

W (ZW )

are complex analytic spaces.

Remark 2.22. The fibres A of Φ0
W are compact analytic subvarieties of B. And given

Z∗
I ⊂ ZW , the intersection A ∩ Z∗

I is the fibre A∗ of Question 1.12.

Remark 2.23. In general, the maps Φa
I do not extend when a ≥ 3. (The case a = 2 is subtle,

cf. §C.4.1).

2.4. Two topological completions. Set

℘0 =
⋃

W

℘0
W and ℘1 =

⋃

W

℘1
W

(with the finite unions taken over a single representative W ∈ [W ]). Define maps

(2.24) B ℘1 ℘0

Φ1

Φ0

by specifying Φ0
∣∣
ZW

= Φ0
W and Φ1

∣∣
ZW

= Φ1
W .

Let α = 1, 2. Fix a Riemannian metric on on B. Since the fibres of Φα are compact,
there is an induced metric on ℘α. Endow ℘α with the metric topology.

Proposition 2.25. The topology on ℘α is Hausdorff. The induced subspace topology on
℘α
W = Φα

W (ZW ) ⊂ ℘α coincides with the natural topology on ℘W as a complex analytic

space. The map Φα : B → ℘α is continuous and proper.

Remark 2.26. The completion Φ0 : B → ℘0 was introduced in [GGLR20]. It encodes the
variations of limiting mixed Hodge structures modulo extension data along the strata. This
is the sense in which ℘0 is a minimal Hodge theoretic compactification. In the classical case
that D is Hermitian and Γ is arithmetic, ℘0 is the closure of ℘ in the Satake-Baily-Borel
compactification of Γ\D.

Proof. It is clear that that the induced subspace topology coincides with the natural topol-
ogy on ℘α

W . The topology on ℘α is Hausdorff if an only if the map Φα is continuous. In
this case, the map is necessarily proper. So if suffices to establish the continuity of Φα.

Suppose that bi ∈ B is a sequence of points converging to b∞ ∈ B. Let Ai and A∞

be the fibres of Φα through bi and b∞, respectively. Now let b′i ∈ Ai. Since B is compact,
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{b′i} contains a convergent subsequence; abusing notation, let {b′i} denote that convergent
subsequence with limit b′∞. The essential point is to prove that

(2.27) b′∞ = lim
i→∞

b′i ∈ A∞ .

Informally this says

lim
i→∞

Ai ⊂ A∞ .

The local analog of this assertion is Lemma C.4. The “globalization” will follow from a
certain finiteness result for Siegel domains.

First assume that both sequences {bi} and {b′i} are contained in B. Fix two coordinate

charts U and U
′
centered at b∞ and b′∞ respectively, and local lifts Φ̃(t, w) and Φ̃′(t, w).

Without loss of generality, bi ∈ U and b′i ∈ U
′. Since bi, b

′
i ∈ Ai, there exists γi ∈ Γ so that

Φ̃′(b′i) = γi · Φ̃(bi). Shrinking U if necessary, there exists a finite union D ⊂ D of Siegel sets

so that Φ̃(Ũ) ⊂ D. (In the case of one-variable degenerations this is a corollary of Schmid’s
SL(2) orbit theorem [Sch73, (5.26)]. In the general case, this is [BKT18, Theorem 1.5], and
is key to the Bakker–Klingler–Tsimerman result that period maps are Ran,exp–definable.)

Likewise, we have a finite union D′ ⊂ D of Siegel sets so that Φ̃′(Ũ′) ⊂ D′. It follows that
there are only finitely many distinct γi. Restricting to a subsequence with all γi = γ equal,

we have Φ̃′(b′i) = γ · Φ̃(bi). Since we may replace the local lift Φ̃′ with γ−1Φ̃′, this forces b∞
and b′∞ to lie in the same Φα–fibre. This establishes the desired (2.27) in the case that {bi}
and {b′i} are contained in B.

For the general case, we may assume without loss of generality that {bi} ⊂ Z∗
I and

{b′i} ⊂ Z∗
I′ with W I = W I′ . We leave it an exercise for the reader to verify that Lemma

C.4 allows us to modify the argument above to treat the general case. �

Remark 2.28. Recently Bakker–Brunebarbe–Tsimerman have applied the o-minimal struc-
tures of model theory to prove the long standing conjecture that the image ℘ = Φ(B) of
the period map is quasi-projective [BBT18]. In particular, they show that the (augmented)
Hodge line bundle

Λ = det(Fn)⊗ det(Fn−1)⊗ · · · ⊗ det(F⌈(n+1)/2⌉)

is free over B, and that ℘ = Proj
(
⊕dH

0(B, dΛ)
)
. Note however that this result does

not suffice to establish the existence of a completion of the period map: if ℘BBT is the
projective closure, it does not a priori follow that there is an extension B → ℘BBT of Φ.
(And one wants extensions in order to apply Hodge theory to study moduli spaces and
their compactifications [GGR21b].) What is missing is to show that the extended Hodge
line bundle is free over B. This is conjectured to be the case in [GGLR20], and proven for
dim℘ = 1, 2.

Remark 2.29. In contrast, the topological space ℘1 will not admit a compatible complex
analytic structure: the fibre dimensions of ℘1 → ℘0 may drop on proper subvarieties. For
example, if the variation of limiting mixed Hodge structures is Hodge–Tate over Z∗

I , then
it is Hodge–Tate over ZI and the fibres of ℘1 → ℘0 over Φ0(ZI) are finite.
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2.5. A “Stein factorization” of Φα. Let

(2.30) ZW ℘̂α
W ℘α

W

Φα
W

Φ̂α
W

be the Stein factorization of Φα
W ; the fibres of Φ̂α

W are connected, the fibres of ℘̂α
W → ℘α

W
are finite, and ℘̂α

W is normal. Set

℘̂α =
⋃

℘̂α
I ,

and define maps

(2.31) B ℘̂α ℘α

Φα

Φ̂α

by specifying that the restriction of (2.31) to ZW coincides with (2.30).

Corollary 2.32. Let Â ⊂ B be a fibre of Φ̂α. (Equivalently, Â is a connected component

of a Φα–fibre.) Fix a neighborhood Ô ⊂ ℘̂α of Φ̂α(Â) ∈ ℘̂. Then O = (Φ̂)−1(Ô) ⊂ B is a

neighborhood of Â with the property that Φ|B∩O is proper.

3. Neighborhood of a compact fibre

3.1. Monodromy about the fibre. Now take the case Φα = Φ0. Let A0 be the fibre Â
of Corollary 2.32. The restriction V|

O0 = Õ
0 ×π1(O0) V of the VHS over B to O

0 = O
0 ∩B

induces a period map

(3.1) ΦA0 : O0 → ΓA0\D

with monodromy ΓA0 ⊂ Γ.
Let (W,F, σI) be any LMHS arising along A0 (as in §B.2.4). Let

I(A0) = {i | A0 ∩ Z∗
i 6= ∅} .

By definition of Φ0, W = W I is independent of I. Then Corollary C.10 implies that

I ⊂ I(A0) ⊂ IW

and W = W I(A0). We have CI(A0) ⊂ PW , and GI(A0) = Aut(D0
I(A0)) = CI(A0)/C

−1
I(A0)

(§2.1).

Lemma 3.2. We may choose the neighborhood O
0 of Corollary 2.32 so that

ΓA0 ⊂ GI(A0),Q ⋉ P−1
W,Q ,

and the image of ΓA0 under the quotient GI(A0) ⋉ P−1
W ։ GI(A0) is finite and stabilizes

F (GrW ).

Proof. The weight filtration W is independent of our choice of LMHS (W,F, σI ) along A0.
So we may choose the neighborhood O

0 so that ΓA0 ⊂ PW,Q. Likewise, the Hodge structure

F (GrW ) ∈ D0
W is independent of the choice of LMHS. So we may further assume that ΓA0

fixes F (GrW ); equivalently, the discrete quotient ΓA0/(ΓA0 ∩ P−1
W ) stabilizes F (GrW ).
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Given N ∈ σI(A0), Lemma C.24 asserts that Qn+k = Q(·, Nk·) polarizes the Hodge

structure F (PrimN
n+k) ⊂ F (GrWn+k). So we may also choose the neighborhood O

0 so that

PrimN
k+k and Qn+k are invariant under ΓA0 . This implies ΓA0/(ΓA0 ∩ P−1

W ) ⊂ GI(A0). And

since ΓA0 stabilizes the Hodge filtration F (GrWn+k), this forces the discrete ΓA0/(ΓA0 ∩P−1
W )

to be finite. �

Lemma 3.2 can be further strengthened. Without loss of generality I = {1, . . . , k}.
Let StabGC

(F∞) denote the stabilizer in GC of the reduced period limit filtration F∞ ∈ Ď
defined by

F∞ = lim
y→∞

exp(iyN) · F .

This filtration is independent of the choice of N ∈ σIW , and is related to the Deligne splitting
(§B.3) by

F q
∞ =

⊕

b≤n−q

V a,b
W,F .

Lemma 3.3. We may choose the neighborhood O
0 so that ΓA0 ⊂ PW,Q ∩ StabGC

(F∞).

Proof. The IPR forces a very close relationship between Φ0 and the reduced period limit
map (Proposition 2.10): the reduced period limit is locally constant on Φ0–fibres. On

strata A0 ∩ Z∗
I ∩U this implies Corollary 2.16. Over A0 ∩U this implies that the map Φ̃W

of (C.22) takes value in exp(CσIW )\(StabGC
(F∞) ∩ P−1

W,C) · F ⊂ exp(CσIW )\δW . (We have

exp(CσIW ) ⊂ StabGC
(F∞) ∩ P−1

W,C.) �

Lemma 3.3 has some strong consequences for ΦA0 . Consider the Schubert cell (§B.4)

(3.4) S = exp(f⊥) · F =
{
F̃ ∈ Ď | dim (F̃ a ∩ F b

∞) = dim (F a ∩ F b
∞) , ∀ a, b

}
.

Lemma 3.5. The action of ΓA0 on Ď preserves the cell S ⊂ Ď.

Corollary 3.6. Every local lift of ΦA0 over a chart U centered at a point b ∈ A0 takes

value in S. In particular, the lift of ΦA0 to the universal cover Õ
0 → O

0 takes value in the
Schubert cell:

Õ
0

S ∩D

O
0 ΓA0\D .

Φ̃A0

ΦA0

First proof of Lemma 3.5. Since ΓA0 is both real and stabilizes F∞, it follows that ΓA0

stabilizes F∞; that is,

(3.7) ΓA0 ⊂ StabGC
(F∞, F∞) = StabGC

(F∞) ∩ StabGC
(F∞) .

Since S is by definition those filtrations F̃ ∈ Ď intersecting F∞ generically, it follows that
S is preserved by ΓA0 . �

It is instructive to consider a second proof.
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Second proof of Lemma 3.5. The essential point is to note that the Lie algebra of StabGC
(F∞, F∞)

is

(3.8) m =
⊕

p,q≤0

g
p,q
W,F .

It follows from (B.6d) that f⊥ + m is a nilpotent subalgebra of gC, and f⊥ is an ideal of
f⊥ +m. This implies that the action of StabGC

(F∞, F∞) on Ď preserves S. �

Remark 3.9 (Assume unipotent monodromy about A0). It will be convenient at times to
assume that the action of ΓA0 on GrW is trivial; equivalently, the monodromy group

(3.10) ΓA0 ⊂ P−1
W,Q

is unipotent. This is equivalent to the hypothesis that ΓA0 is neat; in particular, (3.10)
holds whenever Γ is neat. When (3.10) holds, the fact that P−1

W,C is unipotent implies that

there is a well-defined logarithm

(3.11) log ΓA0 ⊂ m−1 =
⊕

p, q ≤ 0
(p, q) 6= (0, 0)

g
p,q
W,F ,

and the map ΓA0 → log ΓA0 is a bijection.

3.2. Trivializations about the fibre. Recall that Deligne’s extension Fp
e ⊂ Ve → B of

the Hodge vector bundle (1.1a) is trivial over U [Del97]. Together (3.11) and Corollary 3.6
make it possible to trivialize det(Fp

e ) in the neighborhood O
0 of the fibre.

Theorem 3.12. If (3.10) holds, then the bundles det(Fp
e ) are trivial over O

0.

Corollary 3.13. If (3.10) holds, then extended Hodge line bundle

Λe = det(Fn
e )⊗ det(Fn−1

e )⊗ · · · ⊗ det(F⌈(n+1)/2⌉
e ) .

is trivial over O
0.

Theorem 3.14. Assume (3.10) holds. Let ZW be the weight strata containing A0. The
induced Hodge bundles F p(GrWa ) on the associated graded GrWa = Wa/Wa−1 are trivial over
O
0 ∩ ZW .

The theorems are proved in §§3.2.1–3.2.4.

3.2.1. Preliminaries. The obvious map exp(f⊥) → exp(f⊥) ·F = S is a biholomorphism. So
Corollary 3.6 implies that there is a uniquely determined holomorphic

g : Õ0 → exp(f⊥)

so that

Φ̃(ζ) = g(ζ) · F .

We have

Φ̃(ζ · γ) = γ−1 · Φ̃(ζ) ;

equivalently,

g(ζ · γ) · F = γ−1g(ζ) · F .
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Remark 3.15. Were it the case that ΓA0 ⊂ exp(f⊥), then we would have g(ζ · γ) = γ−1g(ζ).

This would imply that the function Õ
0 → V sending ζ 7→ g(ζ)v defines a section of V → O

0,
and we would have a framing of Fp

e over O0.

However, while γ−1 preserves the Schubert cell S, it need not be an element of exp(f⊥).
So we can not assert that g(ζ · γ) = γ−1g(ζ). In order to determine g(ζ · γ) we must first
factor the monodromy.

3.2.2. Factorization of monodromy. In order to explicitly describe the action of γ ∈ ΓA0 on
δW ⊂ S we first need to factor the monodromy group. Any element γ ∈ StabGC

(F∞, F∞)
may be uniquely factored as

γ = αβ , with

β ∈ StabGC
(F∞, F∞, F ) and

α ∈ exp(m ∩ f⊥) = exp(f⊥) ∩ StabGC
(F∞, F∞) .

(The proof of [ČS09, Theorem 3.1.3] applies here.) Then the action of γ on ξ · F ∈ S is
given by

(3.16) γξ · F = αβξ · F = αβξβ−1 β · F = α (βξβ−1) · F .

Note that m∩f⊥ = m−1∩f⊥. The fact that m−1 is nilpotent implies that the exponential
map m−1 → exp(m−1) is a biholomorphism. So there exists a unique a ∈ m ∩ f⊥ such that

α = ea .

Likewise β admits a unique factorization as

β = β0 e
b ,

with the adjoint action of β0 ∈ GC on gC preserving each g
p,q
W,F and b ∈ m−1 ∩ f (again by

[ČS09, Theorem 3.1.3]).
We have γ ∈ P−1

W,C if and only if β0 = 1 is the identity; equivalently β is unipotent. In

this case there exists a unique c ∈ m−1 so that γ = ec.

3.2.3. Proof of Theorem 3.12. While we do not expect to have a framing of Fp
e over O

0

(Remark 3.15), we do have a framing of det(Fp
e ) over O

0 when (3.10) holds. This is a
consequence of the factorization in §3.2.2. We have

γ−1 = αβ ,

with α ∈ exp(f⊥) and β unipotent and stabilizing F , and

β exp(f⊥)β−1 = exp(f⊥) .

This implies that

g(ζ · γ) = αβg(ζ)β−1 .

Since β stabilizes F , it preserves the line det(F p) ⊂
∧dkV , dp = dimF p. Since β is unipotent

(§3.2.2) it acts trivially on the line. Fix a nonzero µ ∈ det(F p). Then β · µ = µ. So the
function

f : Õ0 → U , f(ζ) = g(ζ) · λ
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satisfies

f(ζ · γ) = g(ζ · γ)λ = αβg(ζ)β−1 · λ

= αβg(ζ) · λ = γ−1 · f(ζ) ,

and so defines a section of det(Fp) → O
0. Now this section locally extends across infinity

(essentially by the same arguments as in [Del97]), and so extends to a framing of det(Fp
e )

over O0. �

3.2.4. Proof of Theorem 3.14. The fact that ΓA0 ⊂ P−1
W,C (Remark 3.9) implies that ΓA0 acts

trivially on GrWa . Arguing as in §3.2.3, we conclude that Fp
e (GrWa ) is trivial over O0 ∩ZW .

�

3.3. Divisors at infinity. The purpose of this section is to use Lemma 3.5 and Corollary
3.6 to construct explicit sections sM ∈ H0(O0, LM ) of certain line bundles LM → O

0. We
will see that the sections have divisor

(3.17a) (sM ) =
∑

κ(M,Ni) (Zi ∩ O
0)

for some integers κ(M,Ni). In particular,

(3.17b) LM =
∑

κ(M,Ni) [Zi]|O0 .

3.3.1. Line bundles over ΓA0\S. Recall the Schubert cell S of (3.4) and Lemma 3.5. We
will construct line bundles over ΓA0\S from the data:

• The left-action of ΓA0 on S induces a right-action on the functions f : S → C by the
prescription (f · γ)(ξ) = f(γ · ξ).

• Let

f1 = F 1(gC) =
⊕

p≥1

g
p,q
W,F

be the nilpotent radical of the Lie algebra f stabilizing F . The relation (B.6c) implies
that the bilinear pairing

κ : f1 × f⊥ → C

is nondegenerate.

Recall the biholomorphism X : S
≃

−→ f⊥ of (B.9). Given M ∈ f1, define

fM : S → C by fM = exp 2πiκ(M,X) .

Given γ ∈ ΓA0 , define a holomorphic function eMγ : S → C∗ by

(3.18) eMγ =
fM · γ

fM
=

exp 2πiκ(M,X · γ)

exp 2πiκ(M,X)
.

Then

eMγ1γ2(ξ) = eMγ1 (γ2 · ξ) e
M
γ2 (ξ) .

so that

γ · (z, ξ) = (zeMγ (ξ), γ · ξ)
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defines a left action of ΓA0 on C× S. Let

LM (C× S)/ ∼

ΓA0\S

be the associated line bundle over the quotient. Then fM induces a section sM

LM

ΓA0\S .

sM

3.3.2. Line bundles over O0. Pull the line bundle LM back to the (punctured) neighborhood
O
0

(ΦA0)∗LM LM

O
0 ΓA0\S .

Φ
A0

Φ∗

A0 (sM )
sM

The local expression for the pulled-back section Φ∗
A0(sM ) is

(3.19) τM (t, w) = fM ◦ Φ̃A0(t, w) = exp 2πiκ(M,X ◦ Φ̃A0(t, w)) .

If M ∈ g
1,•
W,F and κ(M,Ni) ∈ Z for all i ∈ IW , then (B.10) implies

(3.20) τM (t, w) = exp 2πiκ(M, X̃(t, w))
∏

t
κ(M,Ni)
i

is a well-defined holomorphic function on U. If in addition 0 ≤ κ(M,Ni) ∈ Z for all i ∈ IW ,
then τM(t, w) is holomorphic on U. Additionally, τM(t, w) vanishes along Z∗

I ∩U if and only
if κ(M,Ni) > 0 for some i ∈ I.

3.3.3. Extension to O
0. Define

(3.21) N∗ = {M ∈ g
1,≤1
W,F | κ(M,Ni) ∈ Z , ∀ i ∈ IW } .

Lemma 3.22. If M ∈ N∗, then the line bundle (ΦA0)∗LM is the restriction to O
0 of a

holomorphic vector bundle LM → O
0. And (ΦA0)∗sM extends to a section of LM (which,

in a minor abuse of notation, we also denote sM ).

LM (ΦA0)∗LM LM

O
0

Õ
0 ΓA0\S .

sM

ΦA0

(ΦA0 )∗sM sM

The desired (3.17) now follows from (3.19) and (3.20).
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Proof. Set

X̃γ(t, w) = (X · γ) ◦ Φ̃A0(t, w) −
∑

ℓ(ti)Ni

Again, the key point is that it follows from (B.6d), (B.10), Lemma 3.2, (3.7), (3.8) and

§3.2.2 that the component X̃−1,q
γ (t, w) taking value in g

−1,q
W,F is a well-defined holomorphic

function on U, so long as q ≥ −1. So κ(M, X̃γ(t, w)) is a holomorphic function on U, so
long as M ∈ N∗. Then

(Φ̃A0)∗(fM · γ)(t, w) = (fM · γ) ◦ Φ̃(t, w)

= exp 2πiκ(M, X̃γ (t, w))
∏

t
κ(M,Ni)
i ,

and

(Φ̃A0)∗(eMγ )(t, w) =
(Φ̃A0)∗(fM · γ)(t, w)

(Φ̃A0)∗(fM )(t, w)
(3.23)

=
exp 2πiκ(M, X̃γ(t, w))

exp 2πiκ(M, X̃(t, w))

is a well-defined holomorphic function on U. �

4. Level one extension data

In this section we restrict to the punctured neighborhood O
0 = B ∩ O

0 of A0 ⊂ ZW ,
and work with the period map ΦA0 : O0 → ΓA0\D of (3.1). Fix a limiting mixed Hodge
structure (W,F, σI) of the period map along A0 ∩ ZW . To this MHS we have associated
two sets

ΓA0,I\δI and ΓA0\δW

of extension data (§2.1). The goal of this section is to study the level one extension data
(Definitions 2.4 and 2.8) and the resulting implications for the fibre A0.

The level one extension data of the MHS (W,F ) is ΓA0\δ1W (Definition 2.4). The σI–
polarized level one extension data is ΓA0,I\δ

1
I (Definition 2.8). The diagram (2.21) induces

level one extension data maps

(4.1)

A0 ∩ ZI ΓA0,I\δI

A0 ΓA0\δW .

Φ1
I

Φ1
W

Note that both δI ⊂ δW are subsets of the Schubert cell S of (3.4). It follows that the
quotients ΓA0,I\δI and ΓA0\δW inherit the line bundles LM of Lemma 3.22,

(4.2)
LM LM

ΓA0,I\δI ΓA0\δW .

Theorem 4.3. Set W = WA, and suppose Z∗
I ⊂ ZW . Assume that the monodromy ΓA0 ⊂

P−1
W,Q is unipotent (Remark 3.9).
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(a) The bundle π1
W : ΓA0\D1

W ։ D0
W admits a subbundle

TW TW ΓW \D1
W

ΓW\D0
W

⊂

π1
W

that is fibered by compact tori TW . The restriction Φ1
∣∣
A0 takes value in TW .

(b) The bundle π1
I : ΓA0,I\D

1
I ։ D0

I admits a subbundle

JI JI ΓI\D
1
I

ΓI\D
0
I

⊂

π1
I

that is fibered by abelian varieties JI . The restriction Φ1
∣∣
A0∩ZI

takes value in JI .

(c) If M ∈ g
1,1
W,F , then the line bundles (4.2) descend

LM LM

ΓA0,I\δ
1
I ΓA0\δ1W

to both ΓA0,I\δ
1
I and ΓA0\δ1W . In the case that M ∈ N∗ ∩ g

1,1
W,F , we have

(4.4) LM |A0 = (Φ1
∣∣
A0)

∗(LM ) and LM |A0∩ZI
= (Φ1

∣∣
A0∩ZI

)∗(LM ) .

(d) There is a nonempty subset Nsl2
I ⊂ N∗ ∩ g

1,1
W,F with the property that the abelian variety

JI is polarized by the L
∗
M with M ∈ Nsl2

I .

(e) The set Nsl2,+
I = {M ∈ Nsl2

I | κ(M,Ni) > 0 , ∀ i ∈ I} is nonempty. Indeed the
dimension of the real span is dimσI .

Theorem 4.3 and (3.17) yield

(4.5) (Φ1
∣∣
A0)

∗(LM ) =
∑

κ(M,Ni)[Zi]|A0 =
∑

κ(M,Ni) NZi/B

∣∣∣
A0

.

(The sum is over all i such that Z∗
i ∩ A0 6= ∅, which is necessarily a subset of IW .) It

follows from Proposition 5.1 that this is the central geometric information that arises when
considering the variation of limiting mixed Hodge structure along A0.

Example 4.6. Suppose that A0 ⊂ Z∗
i and Ni 6= 0. Taking I = {i}, we may choose M ∈

Nsl2,+
i , so that L

∗
M → Ji is ample and κ(M,Ni) > 0. Then N ∗

Zi/B

∣∣∣
A0

is ample if the

differential of Φ1
∣∣
A0 is injective.

More generally, we have

Corollary 4.7. Suppose the differential of Φ1
∣∣
A0∩ZI

is injective and M ∈ Nsl2
I . Then the

line bundle
∑

κ(M,Ni)N
∗
Zi/B

∣∣
A0∩ZI

is ample.
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Remark 4.8. The sum in Corollary 4.7 is over those j with Zj∩(A
0∩ZI) nonempty. Theorem

4.3(e) asserts that we may choose M so that the integers κ(M,Nj) are positive when j ∈ I;
we are not able to say the same when j 6∈ I.

The remainder of §4 is occupied with the proof of Theorem 4.3. In outline, the argument
is as follows:

• To begin, we review the structure of ΓA0\δ1W and ΓA0,I\δ
1
I in §4.1. The compact torus

JI ⊂ ΓA0,I\δ
1
I is identified in §4.3.

• The action of ΓA0 on δW ⊂ S was analyzed in §3.2.2. This action preserves δW , and
the restricted action is further analyzed in §4.4.

• The line bundle LM → ΓA0\δW descends to ΓA0\δ1W if and only if the functions eMγ
of (3.18) are constant on the fibres of δW ։ δ1W . In §4.5 it is shown that the bundles

parameterized by M ∈ g
1,1
W,F have this property. If, in addition, M ∈ N∗ ∩ g

1,1
W,F then

we also have LM |A0 (Lemma 3.22). In order to see that (4.4) holds, we must show that
the associated systems of multipliers coincide.

• We then restrict to a subset N1 ⊂ g
1,1
W,F ∩N∗ (which may be thought as imposing an

integrality condition on M) and compute the Chern forms ωM in §4.6.

• We restrict to a final subset Nsl2
I ⊂ N1 (which may be thought of as a positivity

condition) and confirm that −ωM is positive on JI . It then follows that the line bundle
L
∗
M → JI is ample and JI is an abelian variety.

4.1. Lie theoretic description. The level one extension data has the following structure.
First note that P−1

W,C/P
−2
W,C is an abelian group. Since the exponential map exp : pW,C →

PW,C is a biholomorphism, and

p−a
W,C =

⊕

p+q≤−a

g
p,q
W,F ,

we see that there is a canonical identification

P−1
W,C/P

−2
W,C ≃

⊕

p+q=−1

g
p,q
W,F .

Setting

L =
⊕

p + q = −1
p < 0

g
p,q
W,F ,

we have

P−1
W,C/P

−2
W,C ≃ L ⊕ L .

Additionally p−a
W,C = (f ∩ p−a

W,C) ⊕ (f⊥ ∩ p−a
W,C), and the map f ∩ p−1

W,C → δW given by x 7→

exp(x) · F is a biholomorphism. It follows that we have a canonical identification

P−2
W,C\(P

−1
W,C · F ) = L .

Taking Λ to be the discrete image of ΓA0 under the projection P−1
W,C → L, we obtain

(4.9a) ΓA0\δ1W = Λ\L
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In particular,

(4.9b) ΓA0\δ1W = Cd1 × (C∗)d2 × TW

is biholomorphic to the product of an affine space Cd1 with a complex torus (C∗)d2 × TW

having compact factor TW .
Setting

LI =
⊕

p + q = −1
p < 0

c
p,q
I,F

and letting ΛI be the discrete image of ΓA0,I under the projection C−1
σI

→ LI , we have

(4.10) ΓA0,I\δ
1
I = ΛI\LI = CdI,1 × (C∗)dI,2 × JI ,

with (C∗)dI,2 × JI a complex torus having compact factor JI . Note the obvious map

ΛI →֒ Λ .

4.2. The IPR along fibres. Consider the restriction FI,A : A0 ∩ Z∗
I ∩ U → δI of (B.3).

Let

ξI,β = ξ|A0∩Z∗
I∩U

= ξI |A0∩Z∗
I∩U

.

The infinitesimal period relation (B.13) and the discussion of §B.5 imply that the Maurer-
Cartan form

(4.11) ξ−1
I,β dξI,β takes value in

⊕

q≤0

c
−1,q
σ,F .

We have a well-defined logarithm

log ξI,β : A0 ∩ U → c−1
σ,C ∩ f⊥ .

Let (log ξaI,φ)
p,q denote the component taking value in c

p,q
σ,F . Then (4.11) implies

(4.12) (log ξI,β)
p,q is locally constant for all p+ q = −1 , p ≤ −2 .

4.3. Compact torus: Proof of Theorem 4.3(a). It follows from (3.8) that

Λ ⊂ g
−1,0
W,F ⊂ L and ΛI ⊂ c

−1,0
σ,F ⊂ LI .

In particular, the torus factor (C∗)d2 × T d3 of ΓA0\δ1W of (4.9) is contained in the image of

g
−1,0
W,F → Λ\L; likewise, the torus factor (C∗)dI,2 × JI of ΓA0\δ1I is contained in the image of

c
−1,0
I,F → ΛI\LI . It follows from the IPR (4.12) and the compactness of A0 that the image

of Φ1
A0,W : A0 → ΓA0\δ1W is contained in the compact torus T d3 of (4.9b). Likewise, the

image of Φ1 : A0 ∩ ZI → ΓA0\δ1I is contained in the compact torus JI of (4.10). We will
show that JI is abelian by exhibiting ample Lie bundles LM → JI .
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4.4. Action on LMHS of the fibre. When restricted to δW ⊂ S, the map X : S → f⊥ of
§3.3.1 takes value in

X : δW → p−1
W,C ∩ f⊥ .

Set ξ = exp(X), so that X = ξ ·F = exp(X) ·F . In anticipation of the arguments to follow,
it will be helpful to work out some formula. To begin, recall the Deligne splitting (§B.3) of
gC. Given any x ∈ gC, there are unique xp,q ∈ g

p,q
W,F so that

x =
∑

xp,q .

Recall the notation and observations of §3.2.2. Given γ = αβ ∈ ΓA0 ⊂ P−1
W,Q, one may

verify that the logarithms satisfy

c−1,0 = a−1,0

c0,−1 = b0,−1

c−1,−1 = a−1,−1 + 1
2 [a

−1,0, b0,−1] .

The action of γ on ξ = exp(X) · F ∈ δW satisfies

(log αβξβ−1)−1,0 = X−1,0 + a−1,0(4.13a)

(log αβξβ−1)−1,−1 = X−1,−1 + a−1,−1 + [b0,−1,X−1,0] .(4.13b)

The containment (3.11) implies

(4.13c) (logαβξβ−1)p,q = Xp,q , ∀ p+ q = −1 > p .

Under the identifications of §4.1 we have

λ = a−1,0 and λ = b0,−1 ,

and (Xp,−1−p)p≤−1 = X−1,0 +X−2,1 +X−3,2 + · · · parameterizes a point in L. So (4.13) is
describing the action of Λ on L.

Consider γi = αiβi ∈ ΓA0 , with γi = eci , αi = eai and βi = ebi , as above. Suppose that
γ = γ1 γ2. Then one may verify that

a−1,0 = a−1,0
1 + a−1,0

2

b0,−1 = b0,−1
1 + b0,−1

2

c−1,−1 = c−1,−1
1 + c−1,−1

2 + 1
2 [a

−1,0
1 , b0,−1

2 ] + 1
2 [b

0,−1
1 , a−1,0

2 ]

a−1,−1 = a−1,−1
1 + a−1,−1

2 + [b0,−1
1 , a−1,0

2 ] .

4.5. Proof of Theorem 4.3(c). The line bundle LM → ΓA0\δW descends to ΓA0\δ1W if

and only if the functions eMγ of (3.18) are constant on the fibres of δW ։ δ1W . If M ∈ g
1,1
W,F ,

then (B.6c), (3.16), (3.18), and (4.13) yield

(4.14) eMγ (X) = exp 2πiκ(M,a−1,−1 + [b0,−1,X−1,0])
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on δW . These functions are constant on the fibres of δW ։ δ1W , and so descend to well-
defined on functions on δ1W . There they induce line bundles (also denoted)

LM LM

ΓA0,I\δ
1
I ΓA0\δ1W

over the level one extension data.
Additionally, if M ∈ N∗ ∩ g

1,1
W,F , then (3.23), (4.13) and (4.14) yield

(Φ̃A0)∗(eMγ )
∣∣∣
A0

= (Φ1
A0,W )∗eMγ (X) ;

establishing (4.4).

4.6. Chern classes. We now wish to compute the first Chern class c1(LM ) of LM →

ΓA0\δ1W = Λ\L for M ∈ g
1,1
W,F . We have

H1(Λ\L,C) = (L⊕ L)∗ ≃
⊕

p+q=−1

g
p,q
W,F ,

and

H2(Λ\L,C) =
∧2H1(Λ\L,C) =

∧2(L⊕ L)∗ ,

H1,1(Λ\L) = L∗ ⊗ L∗ .

We have a map

ω : g1,1W,F →֒ L∗ ⊗ L∗ ≃ H1,1(Λ\L) ,

defined by sending M ∈ g
1,1
W,F to the form ωM ∈ H1,1(Λ\L) defined by

ωM (u, v̄) := κ(M, [u, v̄]) = −κ(u, adM (v̄))

with u, v ∈ L.
Recall the definition of N∗ in (3.21) and consider the subset

N1 =

{
M ∈ g

1,1
W,F

∣∣∣∣
κ(M , [a−1,0, b0,−1]) ∈ Z , ∀ γ ∈ ΓA0 ;
κ(M,Ni) ∈ Z , ∀ i ∈ IW

}
.

Remark 4.15. (i) When γ = exp(Ni), we have a−1,−1 = N and a−1,0, b0,−1 = 0.
(ii) The fact that κ is defined over Q implies that N1 is non-empty; in fact, N1 spans

g
1,1
W,F .

Lemma 4.16. If M ∈ N1, then the form ωM represents the Chern class c1(LM ).

Proof. Define a smooth function hM : L → R by

hM (z) := exp 2πiκ (M, [z, z̄]) .

With the formulæ of §§4.4–4.5, is straightforward to confirm

hM (z + λ) = |eMγ (z)|−2 hM (z) .
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So hM defines a metric on LM → Λ\L with curvature form −∂∂̄ log hM , cf. [GH94, p. 310–
311]. It follows that the Chern form of LM is

c1(LM ) = −
i

2π
∂∂̄ log hM = ∂∂̄κ (M, [z, z̄]) = κ (M, [dz,dz̄]) = ωM .

�

4.7. sl2–triples. The ample line bundlesLM → JI are constructed from sl2–triples {M,Y,N}
constructed from the data of a LMHS (W,F,N), N ∈ σI . Here we briefly review this well-
known construction (see, for example, [CM93] or [Sch73]), and discuss those properties that
we will use later.

Define Y ∈ End(gC) by specifying that Y acts on g
p,q
W,F by the eigenvalue (p+ q). Then

Y ∈ g
0,0
W,F ∩ gR, and

adY (N) = [Y,N ] = −2N .

Notice that Y depends only on (W,F ); in particular Y is independent of N . The pair
{Y,N} may be uniquely completed to a triple {M,Y,N} ⊂ gR with the properties that

(4.17) [M,N ] = Y and [Y,M ] = 2M ;

In particular, {M,Y,N} spans a subalgebra of gR that is isomorphic to sl2R. We have

M ∈ g
1,1
W,F ∩ gR .

From [M,N ] = Y and κ(Y, Y ) > 0 it follows that

(4.18) 0 < κ(Y, Y ) = κ([M,N ], Y ) = κ(M, [N,Y ]) = 2κ(M,N) .

We regard (W,F ), and hence Y , as fixed. And consider M = M(N) as a function of
N ∈ σI .

Remark 4.19. The mapN 7→ M(N) is the restriction to σI of a diffeomorphismM : N → M

from an open cone N ⊂ g
−1,−1
W,F onto an open cone M ⊂ g

1,1
W,F . This is a well-known and

classical result in the theory of nilpotent elements of semisimple Lie algebras, cf. [CM93]
and the references therein, and is discussed in the context of Hodge theory and polarized
mixed Hodge structures in [BPR17, §3.2]. In general the map is not linear; in particular,
while the image M(σI) is a cone, it need not be convex.

Notice that the first equation of (4.17) implies that

(4.20) M(λN) = 1
λM(N) ,

for all λ > 0. We claim that

(4.21) ad2N (dM) = 2dN .

To see this note that the fact that Y = [M,N ] is constant implies

[N,dM ] = [M,dN ] .

Since elements of the vector subspace spanR σI ⊂ g
−1,−1
W,F ∩ gR commute, we also have

(4.22) [N,dN ] = 0 .

Thus
ad2N (dM) = [N , [M dN ]] = [dN , [M,N ]] = 2dN .
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In particular, the differential dM of N 7→ M(N) is injective.
Notice that (4.21) and (4.22) imply that

ad3N (dM) = 0 .

Since N ∈ σI polarizes the MHS (W,F ) on (g,−κ), we have

(4.23) 0 ≤ −1
2κ(dM, ad2N (dM)) = −κ(dM,dN) ,

with equality if and only if dN = 0.

Lemma 4.24. Fix 0 6= N ′ ∈ spanR σI . The set

σ′
0 = {N ∈ σI | κ(M(N), N ′) = 0}

is contained in the closure of

σ′
+ = {N ∈ σI | κ(M(N), N ′) > 0} .

Proof. Suppose that N ∈ σ′
0. Fix a smooth curve ν(t) in σI with the property that ν(0) = N

and ν ′(0) = −N ′. Set µ(t) = M(ν(t)). Then (4.23) implies

0 < κ(µ′(0), N ′) .

In particular, ν(t) ∈ σ′
+ for small t > 0. �

4.8. Ample line bundles. Define

Nsl2
I = {M ∈ N1 | M = M(N) for some N ∈ σI} .

The fact that both σI and κ are defined over Q implies that Nsl2
I is nonempty.

We have NMu = u for all u ∈ c
p,q
I,F with p + q = −1. The fact that that N ∈ σI

polarizes the MHS (W,F ) on (g,−κ) implies that

−iωM(u, ū) = −iκ(M, [u, ū]) = iκ(u, adM ū)

= iκ(adNadMu , adM ū) = −iκ(adMu , adNadM ū) < 0

for all 0 6= u ∈ c
−1,0
I,F ⊂ LI . It follows that the line bundle L

∗
M → ΓA0,I\δ

1
I has positive

Chern form −ωM for every M ∈ Nsl2
I (Lemma 4.16). Thus L∗

M → JI is ample.

4.9. Positivity. It remains to establish Theorem 4.3(e); this is a consequence of Remark
4.19 and Lemma 4.25.

Lemma 4.25. The cone

σ+
I = {N ∈ σI | κ(M(N), Ni) > 0 , ∀ i ∈ I}

is open and nonempty.

Proof. In the case that dimσI = 1, (4.20) and (4.26) yield σ+
I = σI .

For the general case dimσI ≥ 1, with I = {1, . . . , k}, set

Rk
+ = {y = (y1, . . . , yk) ∈ Rk | yi > 0}

so that

σI = {N(y) = yiNi | y ∈ Rk
+} .
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Set M(y) = M(N(y)) and κi(y) = κ(M(y), Ni). Then it suffices to show that the cone

S+ = {y = (y1, . . . , yk) ∈ Rk
+ | κi(y) > 0}

is open. From (4.17) and (4.18) we see that

(4.26) 0 < κ(M(y), N(y)) = yi κi(y) .

Since the yi are all positive, this forces some κi(y) to be positive (with i depending on y).
Decompose

Rk
+ = S ∩ S′ ∩ S′′

with

S1 =
{
y ∈ Rk

+

∣∣∣ κ1(y) ≥ 0 ,
∑k

i=2 y
iκi(y) ≥ 0

}

S′
1 =

{
y ∈ Rk

+ | κ1(y) < 0
}

S′′
1 =

{
y ∈ Rk

+

∣∣∣
∑k

i=2 y
iκi(y) < 0

}
.

The inequality (4.26) forces the open sets S′
1 and S′′

1 to be disjoint. Since Rk
+ is open and

connected, this in turn forces S to be nonempty. Then Lemma 4.24 implies that the cone

S+
1 =

{
y ∈ Rk

+

∣∣∣ κ1(y) > 0 ,
∑k

i=2 y
iκi(y) > 0

}
⊂ S

is nonempty and open in Rk
+. This proves Theorem 4.3(e) in the case that |I| ≤ 2.

For the general case |I| = k we induct. Assume that the cone

S+
a =

{
y ∈ Rk

+

∣∣∣ κi(y) > 0 , 1 ≤ i ≤ a ;
∑k

i=a+1 y
iκi(y) > 0

}

is nonempty (and therefore open) for some 1 ≤ a ≤ k − 1. Define a decomposition

S+
a = Sa+1 ∪ S′

a+1 ∪ S′′
a+1

by

Sa+1 =
{
y ∈ S+

a

∣∣∣ κa+1(y) ≥ 0 ,
∑k

i=a+2 y
iκi(y) ≥ 0

}

S′
a+1 =

{
y ∈ S+

a | κa+1(y) < 0
}

S′′
a+1 =

{
y ∈ S+

a

∣∣∣
∑k

i=a+2 y
iκi(y) < 0

}
.

The definition of S+
a forces the open sets S′

a+1 and S′′
a+1 to be disjoint. Since S+

a is open, ev-
ery connected component of S+

a must have nonempty intersection with Sa+1. Then Lemma
4.24 implies that the cone S+

a+1 is nonempty and open in Rk
+. This completes the inductive

step. �
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5. Higher level extension data

The goal here is to study the higher level extension data along a connected component

A1 ⊂ A0

of a Φ1
A0,W–fibre. We will see that the monodromy around A1 takes value in exp(CσI(A1))∩

PW,Q (Proposition 5.1). This is the essential structural result that will be used to prove
Theorem 1.3 (§5.2).

5.1. Extension data along Φ1–fibres. Set

I(A1) = {i | Z∗
i ∩A1 6= ∅} .

Consider the period map
ΦA1 : O1 → ΓA1\D

induced by V|
O1 . Set W = W I(A1), so that

A1 ⊂ A0 ⊂ ZW .

Given Z∗
I ⊂ ZW , let

ΦA1,I : Z
∗
I ∩ O

1 → (exp(CσI)ΓA1)\DI

be the map induced by ΦA1 (as ΦI in (2.1) is induced by Φ). While ΦI does not in general
extend to the weight closure ZI ∩ ZW (§C.4.1), the map ΦA1,I does admit an extension if
we replace the quotient of exp(CσI) with the quotient by the larger exp(CσI(A1)).

Proposition 5.1. (a) The neighborhood A1 ⊂ O
1 ⊂ B of Corollary 2.32 may be chosen

so that the restriction of V to O
1 = O

1 ∩B has monodromy ΓA1 ⊂ ΓA0 with unipotent
radical ΓA1 ∩ P−1

W ⊂ exp(CσI(A1)) ⊂ P−2
W . In particular,

ΓA1 ⊂ GI(A0) ⋉ exp(CσI(A1)) ⊂ CI(A0) .

(b) There is a well-defined holomorphic map

Φ′
A1,W : ZW ∩ O

1 → (exp(CσI(A1))ΓA1)\DW ,

and commutative diagram

Z∗
I ∩ O

1 (exp(CσI)ΓA1)\DI

ZW ∩ O
1 (exp(CσI(A1))ΓA1)\DW .

Φ
A1,I

Φ′

A1,I

(c) The map Φ′
A1,W is locally constant on the fibres of Φ1.

Remark 5.2. The information contained in exp(CσI(A1)) is level two extension data. So
the content of Proposition 5.1(c) is that the full extension data is determined by the level
≤ 2 extension data, up to constants of integration.1 The level 2 extension data contained
in exp(CσI(A1)) is not truly lost; it is encoded in the sections sM ∈ H0(O0, LM ), with

1In the case that D is Hermitian, all extension data is level ≤ 2; that is, DW = D
2
W . So here we find here

another example of the ansatz that horizontality (the IPR) forces period maps and their images to behave
“as if they were Hermitian”.
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M ∈ g
1,1
W,F , of (3.17). These sections are essentially discrete data as their restriction to the

Φ0–fibres is determined up to a constant factor.

As discussed in Remark 3.9, ΓA1 is neat if and only if it is unipotent; equivalently,
ΓA1 ⊂ exp(CσI(A1)).

Corollary 5.3. Assume that the monodromy ΓA1 neat. Then the Hodge filtrations Fp
e are

trivial over O
1.

Proof of Corollary 5.3. Let W = WA be the weight filtration of A0 ⊃ A1. Since σI(A1) ⊂

g
−1,−1
W,F ⊂ f⊥, the proposition implies ΓA1 ⊂ exp(f⊥). The theorem now follows from Remark

3.15. �

5.1.1. Outline of the proof of Proposition 5.1. The proposition is proved by an inductive
analysis of the higher level extension data along A1. We begin with the level ≤ 2 extension
data. Applying the discussion of §C.4.1 to the period map ΦA0 yields a commutative
diagram

Z∗
I ∩ O

0 (exp(CσI)ΓA0,I)\D
2
I

ZW ∩ O
0 (exp(CσI(A0))ΓA0)\D2

W

ΓA0\D1
W .

Φ2
A0,I

Φ2
A0,W

Φ1
A0,W

Lemma 5.4. The map Φ2
A0,W is locally constant on Φ1

A0,W–fibres.

A straightforward modification of the proof of Lemma 3.2 establishes

Corollary 5.5. There is a neighborhood O
1 of A1 in B with the property that the restriction

of V to O
1 = O

1∩B has monodromy ΓA1 ⊂ ΓA0 taking value in GI(A0)⋉(exp(CσI(A1))P
−3
W ).

It then follows that the action of exp(CσI(A1)) on D3
W does descend to ΓA1\D3

W (§C.4.1),
yielding a well-defined map

Φ3
A1,W : ZW ∩ O

1 → (exp(CσI(A1))ΓA1)\D3
W .

The inductive step for a ≥ 3 is

Lemma 5.6. If the monodromy ΓA1 about A1 takes value in GI(A0) ⋉ (exp(CσI(A1))P
−a
W ),

then the action exp(CσI(A1)) on Da
W does descend to the ΓA1\Da

W , yielding a well-defined
map

Φa
A1,W : ZW ∩ O

1 → (exp(CσI(A1))ΓA1)\δaW .

This map is constant on A1, implying ΓA1 ⊂ GI(A0) ⋉ (exp(CσI(A1))P
−a−1
W ).

Note that Proposition 5.1 follows directly from Lemma 5.6. The remainder of §5 is occupied
with the proof of Lemma 5.6 (which subsumes Lemma 5.4 and Corollary 5.5).
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5.1.2. Lie theoretic description. Fix a ≥ 2. The fibres of ΓA1\δaW ։ ΓA1\δa−1
W are the level

a extension data (Definition 2.4). We begin by observing that these fibres are biholomorphic
to the quotient Λa\La of a vector space La by a discrete subgroup Λa ⊂ La. To see this,
first note that the fibre is

P−a
W,C · F

(ΓA1 ∩ P−a
W,C) · P

−a−1
W,C

ΓA1\δaW

ΓA1\δa−1
W .

We have

P−a−1
W,C \P−a

W,C ≃
⊕

p+q=−a

g
p,q
W,F

P−a−1
W,C \(P−a

W,C · F ) ≃
⊕

p + q = −a
p < 0

g
p,q
W,F = La .

The latter is an abelian group, with discrete subgroup

Λa =
P−a
W,C ∩ ΓA1

P−a−1
W,C ∩ ΓA1

.

We now see that the level a extension data of (W,F ) is biholomorphic to the product

(5.7) Λa\La ≃ Cd1 × (C∗)d2 × Td3

of an affine space Cd1 with a complex torus (C∗)d2 × Td3 having compact factor Td3 . (The
dimensions di depend on a.)

Since σI(A1) ⊂ g
−1,−1
W,F , it then follows that the fibres of

(exp(CσI(A1))ΓA1)\δaW ։ (exp(CσI(A1))ΓA1)\δa−1
W

are, for a = 2:

(Λ2 · σI(A1))\L
2 (exp(CσI(A1))ΓA1)\δ2W

ΓA1\δ1W ,

and, for a ≥ 3:

Λa\La (exp(CσI(A1))ΓA1)\δaW

(exp(CσI(A1))ΓA1)\δa−1
W .

Note that (Λ2 · σI(A1))\L
2 inherits (5.7) in the sense that it is also biholomorphic to the

product

(5.8) (Λ2 · σI(A1))\L
2 ≃ Cd1 × (C∗)d2 × Td3

of an affine space Cd1 with a complex torus (C∗)d2 × Td3 having compact factor Td3 . (We
abuse notation by continuing to denote the dimensions by di.)
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5.1.3. The IPR along fibres. The local version of Φa
A1,W is the map

Φ̃a
W : ZW ∩ U → exp(CσI(A1))\D

a
W

defined by (C.22). If the level ≤ a extension data map Φa
A0,W is constant along A1, then

the restriction

ξaA1 = ξ|A1∩U

takes value in the affine space

δaW = P−a−1
W,C · F ≃ exp(p−a−1

W,C ∩ f⊥) ≃ p−a−1
W,C ∩ f⊥ =

⊕

b≥a

Lb+1 .

Recall the discussion of the IPR in §4.2, and note that (4.11) implies

(5.9) (ξaA1)
−1 dξaA1 takes value in

⊕

b≥a

g
−1,−b
W,F ⊂

⊕

b≥a

Lb+1 .

Additionally, we have well-defined logs

log ξaA1 : A1 ∩ U → p−a−1
W,C ∩ f⊥ .

Let (log ξaA1)
p,q denote the component taking value in g

p,q
W,F . Then (5.9) implies

(5.10) (log ξaA1)
p,q is locally constant for all p+ q = −a− 1 , p ≤ −2 .

5.1.4. Proof of Lemma 5.6. The argument is inductive. Assume that a ≥ 1 and that we
have a well-defined

Φa+1
A1,W

: ZW ∩ U → (exp(CσI(A1))ΓA1)\Da
W .

We will show that Φa+1
A0,W

is constant along A1.

Recalling (5.9), let ηa be the component of the Maurer-Cartan form (ξaA1)
−1 dξaA1 taking

value in

(5.11) g
−1,−a
W,F →֒ La+1 ≃ P−a−2

W \
(
P−a−1
W,C · F

)
.

Then fixing a point z0 ∈ A1 we may define a holomorphic map

(5.12a) A1 →

{
(Λ2 · σIW )\L2 , a = 1 ,
Λa+1\La+1 , a ≥ 2 ,

by integration

(5.12b) z 7→

∫ z

z0

ηa

along a curve δ : [0, 1] → A1 joining z0 = δ(0) and z = δ(1).
The key point is that when b ≥ 2, the complex conjugate

g
−1,−b
W,F = g

−b,−1
W,F
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is contained in p−b−1
W,C ∩ f⊥ and has trivial intersection with g

−1,−b
W,F . This implies that the

image of g−1,−b
W,F under the composition of (5.11) with the projection

La+1
։

{
(Λ2 · σIW )\L2 , a = 1 ,
Λa+1\La+1 , a ≥ 2 ,

lies in the noncompact factors Cd1 × (C∗)d2 of (5.7) and (5.8). Since ηa takes value in g
−1,a
W,F ,

it follows that (5.12) defines a holomorphic map A1 → Cd2 × (C∗)d3 . Since A1 is compact,
this map must be locally constant. This forces ηa = 0. Equivalently, the Maurer–Cartan
form (ξaA1)

−1 dξaA1 takes value in p−a−2
W,C along A1. This is precisely the statement that Φa+1

A0,W

is locally constant along A1. �

5.2. Proof of Theorem 1.3. It suffices to prove

Proposition 5.13. There exists a proper holomorphic map f : O1 → Cd with the following
properties:

(a) The map f |
O1 is constant on the fibres of Φ|

O1 .

(b) Conversely, Φ|
O1 is locally constant on the fibres of f |

O1 .

The proposition is proved in §§5.2.1–5.2.3. Assume for the moment that Proposition 5.13
holds. Let

O
1

Ô
1 Cm

f

f̂

be the Stein factorization. This completes the proof of Theorem 1.3 as outlined in the
Introduction (§1).

5.2.1. Preliminaries. Consider the lift

(5.14)
Õ
1

S ∩D

O
1 ΓA1\D .

Φ̃A1

ΦA1

Recall notations of §B.4. Let W index the weight strata ZW containing A1, so that

f⊥ =
⊕

p<0

g
p,q
W,F ,

and set
I(A1) = {i | A1 ∩ Z∗

i 6= ∅} = ∪{I | A1 ∩ Z∗
I 6= ∅} ⊂ IW .

5.2.2. Horizontal entries of the period matrix. Fix a basis {Mµ} of g
1,•
W,F = ⊕q g

1,q
W,F . Keeping

(B.6c) in mind, the

(5.15) εµ = κ(X ◦ Φ̃A1 ,Mµ) : Õ
1 → C

are the horizontal coefficients of the period matrix. We may choose the basis {Mµ} so that

for each I ⊂ I(A1) there is a disjoint union {Mµ} = N∗
I ∪N⊥

I so that

spanC{Mµ ∈ N⊥
I } = Ann(σI) ⊂ g

1,•
W,F .
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It follows that

εµ ∈ O(O1) , ∀ Mµ ∈ N⊥
I(A1) .

We think of the εµ indexed by Mµ ∈ N⊥
I(A1) as the smooth horizontal coefficients of the

period matrix.
We may additionally suppose the basis {Mµ} is chosen so that

(5.16) 0 ≤ κ(Ni,Mµ) ∈ Z , ∀ i ∈ I(A1) .

Then, for the Mµ ∈ N∗
I(A1) ⊃ N∗

I , we have

τµ = exp(2πi εµ) ∈ O(O1) .

We think of the εµ indexed by Mµ ∈ N∗
I(A1) as the logarithmic horizontal coefficients of the

period matrix.

5.2.3. Proof of Proposition 5.13. Let f : O1 → Cm be the holomorphic map defined by the
{εµ}Mµ∈N⊥

I(A1)
and {τµ}Mµ∈N∗

I(A1)
. The IPR implies f has the desired properties.

5.2.4. Zero locus of the τµ. Note that (3.20) is the local expression for τµ. In particular,

AI = ZI ∩ O
1 ⊂ {τµ = 0} if and only if Mµ ∈ N∗

I .

Reciprocally, τµ is nowhere vanishing on A∗
I = Z∗

I ∩ O
1 if and only if Mµ ∈ N⊥

I . More

generally, the function τµ is nowhere vanishing on the weight strata ZW ∩ O
1 if and only if

Mµ ∈ N⊥
IW

.

Suppose that j 6∈ IW , and set J = IW ∪{j}. Then W 6= W J (Corollary C.10). So there
exists Mµj

∈ N⊥
IW

such that κ(Mµj
, Nj) > 0. The associated τµj

is nowhere vanishing on

ZW ∩ O
1, but vanishes along Zj ∩ O

1. Whence

τW =
∏

j 6∈IW

τµj
.

is nowhere vanishing on ZW ∩O
1, but vanishes on every j 6∈ IW . In particular, τW vanishes

along every ZJ ∩ O
1 with J 6⊂ IW .

In the case that I = ∅ (the weight filtration W ∅ is trivial and), we have

Z ∩ O
1 = {τW ∅ = 0} .

5.3. Logarithmic differentials and a local Torelli condition. In [GGR21a] we will
discuss a map Ψ : TB(− logZ) → F−1End(Ee) that is induced by the Gauss–Manin con-
nection on V → B. In anticipation of that discussion it is convenient to close §5.2 with a
discussion of the algebra Ω•

O1(Z ∩ O
1) of logarithmic differentials on (O1, Z ∩ O

1).
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5.3.1. Logarithmic differentials on (O1, Z ∩O
1). It is evident from the discussions of §5.2.2

and §5.2.4 that

(5.17) dεµ ∈ Ω1
O1(logZ ∩ O

1) ,

and

{dεµ | Mµ ∈ N⊥
I(A1)} ⊂ Ω1

O1 .

The differentials define a map

(5.18) Ψ1 : TO1(− logZ ∩ O
1) → O

1 × Cm

by mapping v ∈ T
O1(− logZ ∩ O

1) to (dεµ(v)) ∈ Cm. (Here we suppress the base point

b ∈ O
1 of v.)

5.3.2. Local Torelli condition for (O1, Z ∩ O
1; ΦA1). Since the coordinates of Ψ1|O1 are the

horizontal period matrix entries of Φ̃A1 , we see that the differential of Φ|
O1 is injective if

and only if the differential of Ψ1|O1 is injective. More generally, we have

Lemma 5.19. The sheaf map Ψ1 is injective at points b ∈ O
1 ∩ Z∗

I if and only if

(i) The differential dΦ1
A1,I : T (Z

∗
I ∩ O

1) → T (ΓA1,I\D
1
I ) is injective.

(ii) The {Ni | i ∈ I} are linearly independent.

Proof. It will be convenient to write

Ψ1 = (Ψhol
1 ,Ψlog

1 )

with

Ψhol
1 (v) = (dεµ(v))Mµ∈N⊥

I(A1)

given by the holomorphic differentials, and

Ψlog
1 (v) = (dεµ(v))Mµ∈N∗

I(A1)

given by the log differentials. It follows from the IPR and Remark 5.2 that the following
are equivalent:

(a) The restriction of Ψhol
1 to Tb(Z

∗
I ∩ O

1) is injective.

(b) The restriction of dΦ1
A1,I to Tb(Z

∗
I ∩ O

1) is injective.

Fix a coordinate chart (t, w) ∈ U ⊂ O
1 centered at a point b ∈ Z∗

I ∩ O
1, as in §B.2.2.

Then

{d log ti , dwa}

is a local framing of Ω1
B
(logZ) over U,

{ti∂ti , ∂wa}

is a local framing of TB(− logZ) over U, and {∂wa} is a local framing of T (Z∗
I ∩ O

1) over

U ∩ Z∗
I = {t = 0}. We have

Ψhol
1 (ti∂ti)

∣∣∣
ti=0

= 0 .
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Following the notation of (3.20), the logarithmic differentials are

dεµ =
dτµ
2πiτµ

= κ(Mµ,dX̃(t, w)) +
∑ κ(Mµ, Ni)dti

2πi ti
, Mµ ∈ N∗

I(A1) .

Recalling that X̃(t, w) is holomorphic on U, we see that

(5.20) dεµ (ti∂ti)|t=0 =
κ(Mµ, Ni)

2πi
.

�

Informally we express (5.20) as

Ψlog
1

(
ti∂ti |t=0

)
= 2πiNi .

Appendix A. Summary of notation

• period domain D parameterizing pure, Q–polarized HS on V of weight n

• compact dual Ď

• algebraic automorphism group G = Aut(V,Q), with Lie algebra g = End(V,Q)

• smooth projective B with reduced normal crossing divisor Z ⊂ B

• polarized variation of Hodge structure V = B̃×π1(B)V over B = B\Z with monodromy
representation π1(B) ։ Γ ⊂ G

• the induced period map Φ : B → Γ\D

• Hodge filtration Fp ⊂ V and Hodge line bundle

Λ = det(Fn)⊗ det(Fn−1)⊗ · · · ⊗ det(F⌈(n+1)/2⌉)

• extensions Fp
e ⊂ Ve and Λe to B

• graded quotients Ep
e = Fp

e /F
p+1
e = GrpFe

, and Ee = ⊕Ep
e

• bundle map Ψ : TB(− logZ) → Gr−1
Fe

(End(Ee)) induced by flat connection

• algebraic subgroup PW ⊂ G stabilizing weight filtration W , filtered by normal sub-
groups

P−a
W := {g ∈ PW | g acts trivially on Wℓ/Wℓ−a ∀ ℓ} ,

a ≥ 0, PW = P 0
W

• algebraic subgroup CI ⊂ PW centralizing cone σI ⊂ g, with W = W I = W (σI), filtered
by normal subgroups

C−a
I := CI ∩ P−a

W .

• reference filtration F •
0 ∈ Ď, Hodge numbers fp

ℓ := dimF p
0 (GrWℓ )

• DW := {F ∈ Ď | (W,F ) is a MHS, dimF p(GrWℓ ) = fp
ℓ } .

• ΓW = Γ ∩ P−1
W,Q

• GW := (PW,R/P
−1
W,R)⋉ P−1

W,C acts transitively on DW

• Da
W := P−a−1

I,C \WI with automorphism group Ga
W := GW /P−a−1

W,C . 2

• projections DW ։ Da
W ։ D0

W and GW ։ Ga
W ։ G0

W

2We think of this as indicating that GW acts on D
a
W , with the normal subgroup P

−a−1
W,C acting trivially.
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• DI := {F ∈ DW | (W,F ) is polarized by σI}

• GI := (CI,R/C
−1
I,R)⋉ C−1

I,C acts transitively on DI

• Da
I := C−a−1

I,C \DI with automorphism group Ga
I := GI/C

−a−1
I,C . 3

• projections DI ։ Da
I ։ D0

I and GI ։ Ga
I ։ G0

I

• D0
I is a Mumford–Tate domain with Mumford–Tate group G0

I = CI/C
−1
I . 4

• ΓI = Γ ∩ CI,Q

• period map to various quotients of LMHS

Z∗
I (exp(CσI)ΓI)\DI

(exp(CσI)ΓI)\D
a
I

(exp(CσI)ΓI)\D
2
I

ΓI\D
1
I

ΓI\D
0
I

ΦI

Φa
I

Φ2
I

Φ1
I

Φ0
I

• Da
I →֒ Da

W and ΓI ⊂ ΓW induce ΓI\D
a
I → ΓW\Da

W

• weight-strata ZW =
⋃

W I=W

Z∗
I

• ZI ∩ ZW is the weight-closure of Z∗
I

• unique maximal IW such that W IW = W

• if Z∗
J ⊂ ZI ∩ ZW , then DJ →֒ DI and ΓJ ⊂ ΓI induce ΓJ\D → ΓI\DI

• Φ0
I and Φ1

I extend to proper holomorphic maps on the weight-closure, and the extensions
are compatible with Φa

J on Z∗
J ⊂ ZI ∩ ZW

Z∗
J ZI ∩ ZW

ΓJ\D
1
J ΓI\D

1
I

ΓJ\D
0
J ΓI\D

0
I

Φ1
J

Φ0
J

Φ1
I

Φ0
I

3We think of this as indicating that GI acts on D
a
I , with the normal subgroup C

−a−1
I,C acting trivially.

4One may define analogous spaces D
a
W for MHS. In the absence of the polarization, these spaces have

less structure. For example, the analog D
0
W of D0

I is a flag domain in Wolf’s sense [FHW06, Wol69], but
not a Mumford–Tate domain – the isotropy group is not compact.
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• ΦW ∈ {Φ0
W ,Φ1

W } defined by

Z∗
I ZW

ΓI\D
1
I ΓW\D1

W

ΓI\D
0
I ΓW\D0

W

Φ1
I

Φ0
I

Φ1
W

Φ0
W

• ℘0
W = Φ0

W (ZW ) ⊂ ΓW \D0
W and ℘1

W = Φ1
W (ZW ) ⊂ ΓW \D1

W ,

℘0 =
⋃

℘0
W and ℘1 =

⋃
℘1
W ,

• two proper topological extensions of Φ : B → Γ\D defined strata-wise

B ℘1 ℘0

Φ1

Φ0

• A ⊂ ZW compact Φ0–fibre

• A0 ⊂ A (compact) connected component of A

• A1 ⊂ A0 (compact) connected component of Φ1–fibre

• δW ⊂ DW is the preimage of Φ0(A0) ∈ ΓW \D0
W under the projection DW ։ ΓW\D0

W ;

these are pairs (W,F ) with the same F (GrW )

• δI ⊂ DI is the preimage of Φ0(A0 ∩ ZI) ∈ ΓI\D
0
I under the projection DI ։ ΓI\D

0
I ;

these are pairs (W,F ) that are polarized by σI and with the same F (GrW ).

• neighborhood A0 ⊂ O
0 ⊂ B, Schubert cell S ⊂ Ď, period map

ΦA0 : B ∩ O
0 → ΓA0\(D ∩ S)

• ΓA0 ⊂ Γ ∩ PW monodromy about A0, Γ−1
A0 = ΓA0 ∩ PW monodromy acting trivially on

GrW , finite quotient ΓA0/Γ−1
A0 acting on GrW is contained in GI(A0) = C0

I(A0)/C
−1
I(A0)

,

I(A0) = {i | A0 ∩ Z∗
i 6= 0}

• A1 ⊂ A0 (compact) connected component of Φ1–fibre, neighborhood A1 ⊂ O
1 ⊂ O

0 ⊂
B, period map

ΦA1 : B ∩ O
1 → ΓA1\(D ∩ S)

• ΓA1 ⊂ Γ∩PW monodromy about A0, Γ−1
A0 = ΓA0 ∩P−1

W monodromy acting trivially on

GrW , finite quotient ΓA0/Γ−1
A0 acting on GrW

Appendix B. Asymptotics of period maps: review of local properties

Here we set notation and review well-known properties of period maps and their local
behavior at infinity. Good references for this material include [CMSP17, CKS86, GGK12,
GS69, PS08, Sch73].

B.1. Notation.
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B.1.1. Groups. Given a Q–algebraic group G, the Lie groups of real and complex points
will be denoted by GR and GC, respectively. The associated Lie algebras are denoted gR
and gC, respectively.

Let V = VZ ⊗Z Q is a rational vector space, with underlying lattice VZ. Let End(V ) =
V ⊗ V ∗ denote the Lie algebra of linear maps V → V , and let Aut(V ) ⊂ End(V ) denote
the Q–algebraic group of invertible linear maps.

Fix n ∈ Z, and suppose that , and Q : V ×V → Q is a nondegenerate (skew-)symmetric
bilinear form satisfying

Q(u, v) = (−1)nQ(v, u) , for all u, v ∈ V .

From this point on, G will denote the Q–algebraic group

G = Aut(V,Q) = {g ∈ Aut(V ) | Q(gu, gv) = Q(u, v) , ∀ u, v ∈ V } .

with Lie algebra

g = End(V,Q) = {X ∈ End(V ) | 0 = Q(Xu, v) +Q(u,Xv) , ∀ u, v ∈ V } .

B.1.2. Period domains. Let D = GR/K
0 be the period domain parameterizing effective

weight n > 0, Q–polarized Hodge structures on V with Hodge numbers h = (hn,0, . . . , h0,n).
Given ϕ ∈ D, let

VC =
⊕

p+q=n

V p,q
ϕ

be the Hodge decomposition; let

Fn
ϕ ⊂ Fn−1

ϕ ⊂ · · · ⊂ F 1
ϕ ⊂ F 0

ϕ = VC

be the Hodge filtration. The weight zero Hodge decomposition

(B.1) gC = ⊕ gp,−p
ϕ

induced by ϕ, is polarized by −κ, where κ ∈ Sym2g∗C is the Killing form. The isotropy
group K0 = StabG(ϕ) stabilizing ϕ ∈ D is compact, with complexified Lie algebra

k0C = k0R ⊗ C = g0,0ϕ .

Let Ď = GC/Pϕ denote the compact dual of D. Here Pϕ is the complex parabolic

stabilizer of the Hodge filtration Fϕ, and has Lie algebra pϕ = ⊕p≥0 g
p,−p
ϕ .

B.2. Period maps at infinity.

B.2.1. Unit disc

∆ = {t ∈ C | |t| < 1}

and punctured unit disc

∆∗ = {t ∈ C | 0 < |t| < 1} .

Upper half plane

H = {z ∈ C | Im z > 0}

and covering map

H → ∆∗ sending z 7→ t = e2πiz .
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Multivalued inverse

ℓ(t) =
log t

2πi
,

and (well-defined) differential dℓ =
dt

2πi t
.

B.2.2. Fix a point b ∈ Z∗
I ⊂ B. Choose a coordinate chart

(t, w) : U ⊂ B
≃

−→ ∆k+r

centered at a point b with

(t, w) : U = B ∩ U
≃
−→ (∆∗)k ×∆r .

Reindexing the Zi if necessary, we may assume that

U ∩ Zi = {ti = 0} , for all 1 ≤ i ≤ k ,

and U ∩ Zµ = ∅ for all k + 1 ≤ µ ≤ ν. (We are assuming, as we may by shrining U if

necessary, that U ∩ ZI = U ∩ Z∗
I .)

B.2.3. The counter-clockwise generator αi ∈ π1(∆
∗) →֒ π1((∆

∗)k) = π1(U) induces a quasi-
unipotent monodromy operator γi ∈ Aut(V,Q), 1 ≤ i ≤ k [Sch73]. Passing to a finite cover
of B if necessary, we may assume without loss of generality that γi is unipotent; let

Ni = log γi ∈ g

be the nilpotent logarithm of monodromy, and

σI = spanR>0
{N1, . . . , Nk} ⊂ gR = Aut(VR, Q) ,

the monodromy cone (for the coordinate chart centered at b).

B.2.4. The universal cover of U is

Ũ = H
k × ∆r .

The local lift
Φ̃ : Ũ → D

of Φ|
U
is of the form

(B.2) Φ̃(t, w) = exp(
∑

ℓ(ti)Ni)ξ(t, w) · F .

Here, F ∈ Ď,
ξ : U → GC

is a holomorphic map, and we abuse notation by regarding the multi-valued ℓ(ti) as giving
coordinates on H. Additionally, if F (w) = ξ(0, w) · F , then (W,F (w)), is a mixed Hodge
structure (MHS) polarized by the local monodromy cone σI . We say (W,F, σI ) is a limiting
mixed Hodge structure (LMHS).

The infinitesimal period relation implies that the restriction ξI = ξ|
U∩Z∗

I
takes value in

the centralizer
CI,C = {g ∈ GC | AdgN = N , ∀ N ∈ σI}

of the nilpotent cone σI . The map

(B.3) FI : Z∗
I ∩U → DI , w 7→ FI(w) = ξ(0, w) · F
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defines a variation of limiting mixed Hodge structure (W,FI (w), σI) over Z
∗
I ∩U. The map

(B.3) is not well-defined; it depends on our choice of coordinates. What is well-defined is
the composition

(B.4) Z∗
I ∩ U DI exp(CσI)\DI .

FI

(That is, it is the nilpotent orbit that is well-defined.) This yields the map ΦI of §1.1 and
(2.1).

The fact that exp(CσI) ⊂ P−2
W,C implies that (exp(CσI)ΓI)\D

α
I = ΓI\D

α
I for α = 0, 1.

So (B.3) does induce well-defined maps

(B.5) Fα
I : Z∗

I ∩U → Dα
I .

The maps (B.5) are local lifts of the maps Φα
I of (2.1).

B.3. Deligne bigrading. Given a mixed Hodge structure (W,F ) on (V,Q), we have a
Deligne splitting

VC = ⊕V p,q
W,F

satisfying

Wℓ =
⊕

p+q≤ℓ

V p,q
W,F and F k =

⊕

p≥k

V p,q
W,F .

The induced splitting

(B.6a) gC = ⊕ g
p,q
W,F ,

of the Lie algebra gC is defined by

(B.6b) g
p,q
W,F = {x ∈ gC | x(V r,s

W,F ) ⊂ V p+r,q+s
W,F , ∀ r, s} ,

satisfies

(B.6c) κ(gp,qW,F , gr,sW,F ) = 0 if (p, q) + (r, s) 6= (0, 0) ,

and is compatible with the Lie bracket in the sense that

(B.6d) [gp,qW,F , gr,sW,F ] ⊂ g
p+r,q+s
W,F .

It follows that gC = f⊕ f⊥ with
f = ⊕p≥0 g

p,q
W,F

the parabolic Lie algebra of the stabilizer StabGC
(F ) of F , and

(B.7) f⊥ = ⊕p<0 g
p,q
W,F

a nilpotent subalgebra of gC. The holomorphic ξ : U → GC is determined by the property

ξ(t, w) ∈ exp(f⊥) .

Remark B.8. Without loss of generality, we may assume that (W,F ) is R–split

V p,q
W,F = V q,p

W,F ,

which implies

g
p,q
W,F = g

q,p
W,F .

Then ξ(0, 0) ∈ P−2
W,C.



44 GREEN, GRIFFITHS, AND ROBLES

B.4. Period matrices and Schubert cells. Since the period matrix

exp(
∑

ℓ(ti)Ni)ξ(t, w)

of the local lift (B.2) takes value in exp(f⊥) ·F , the local lift Φ̃(t, w) takes value in the open
Schubert cell S

S = exp(f⊥) · F =
{
E ∈ Ď | dim (Ea ∩ F b

∞) = dim (F a ∩ F b
∞) , ∀ a, b

}
,

defined by

F b
∞ =

⊕

c≤n−b

V c,a
W,F .

The map f⊥ → S sending X 7→ exp(X) · F is a biholomorphism. Let

(B.9) X : S
≃

−→ f⊥ .

denote the inverse. The obvious analogs of (B.6) hold with End(VC) in place of gC. Given
X ∈ End(VC), let Xp,q denote the component taking value in End(VC)

p,q
W,F . Recalling the

notation of §B.4, we have

(log ξ(t, w))−1,q = ξ(t, w)−1,q ,

and

(X ◦ Φ̃A0)(t, w)−1,−1 =
∑k

i=1ℓ(ti)Ni + ξ(t, w)−1,−1

(X ◦ Φ̃A0)(t, w)−1,q = ξ(t, w)−1,q , q 6= −1 .

We say

(X ◦ Φ̃A0)−1,• =
∑

(X ◦ Φ̃A0)−1,q

is the horizontal component of the (logarithm of the) period matrix.

In general, the function X̃ : Ũ → f⊥ defined by

X̃(t, w) = X ◦ Φ̃A0(t, w) −
∑

ℓ(ti)Ni

is well-defined on Ũ, but multi-valued over U. But the discussion above implies

(B.10) X̃−1,•(t, w) ∈ O(U) .

B.5. Extension data. The fibre δI = δI,F of DI ։ D0
I through F ∈ DI is the set of

F̃ ∈ DI inducing the same pure, weight ℓ Hodge filtrations on the Hn−a(−a) as F . It is
a complex affine space. To see this, first note that δ1I,F = C−1

I,C · F . As a unipotent group

C−1
I,C = exp(c−1

I,C) is biholomorphic to its Lie algebra c−1
I,C. The Lie algebra of C−a

I,C is

(B.11) c−a
I,C =

⊕

p+q≤−a

c
p,q
I,F .

Since

c−1
I,C =

(
c−1
I,C ∩ f

)
⊕

(
c−1
I,C ∩ f⊥

)

with
c−1
I,C ∩ f =

⊕

p ≥ 0
p + q ≤ −1

c
p,q
I,F .
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the stabilizer F in c−1
I,C and

c−1
I,C ∩ f⊥ =

⊕

p < 0
p + q ≤ −1

c
p,q
I,F ,

we see that

δ1I,F = exp(c−1
σ,C ∩ f⊥) · F ,

and the map c−1
σ,C ∩ f⊥ → δ1I,F is a biholomorphism.

Likewise, CσI ⊂ g
−1,−1
W,F is an abelian ideal of the nilpotent algebra c−1

I,C ∩ f⊥, and we
have a well-defined induced biholomorphism

c−1
I,C ∩ f⊥

CσI

≃
−→ exp(CσI)\δI,F .

An identical argument establishes analogous statements for the fibre δW = δW,F of
DW ։ D0

W through F ∈ DW .

B.6. Infinitesimal period relation. Finally we note that the infinitesimal period relation
implies that the map (B.3) satisfies

dF p
I ⊂ F p−1

I ⊗Ω1(Z∗
I ∩ U) .

Equivalently, the pull-back ξ−1
I dξI of the Maurer-Cartan form on exp(cI,C ∩ f⊥) under the

map

(B.12) ξI = ξ|Z∗
I∩U

sending w 7→ ξI(w) = ξ(0, w)

takes value in cI,C ∩ (⊕p g
−1,q
W,F ). Since the centralizer inherits the Deligne splitting

cI,C =
⊕

p+q≤0

c
p,q
I,F , with c

p,q
I,F = cσI ,C ∩ g

p,q
W,F ,

we may write this as

(B.13) ξ−1
I dξI ∈ Ω1(Z∗

I ∩ U , c−1,•
I,F ) .

Appendix C. Compatibility of weight closures

The purpose of this section is to review compatibility properties between the weight
filtrations W I = W (σI), and discuss some of the implications for local lifts of period maps.
These local results will have global consequences, including the following corollary of Lemma
C.21.

Lemma C.1. The maps Φ0
W and Φ1

W defined by (2.21) are proper and holomorphic.
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C.1. The commuting sl(2)’s. Our constructions are defined over the open strata Z∗
I .

We will need to see that these strata-wise constructions satisfying certain compatibility
conditions in order to obtain the properties asserted in the lemmas above. The key technical
result here is the SL(2) orbit theorem [CKS86]. We briefly review the theorem, and then
discuss consequences.

Suppose that ZJ ⊂ ZI ; equivalently, I ⊂ J . To begin we assume that we have a local
coordinate chart centered at b ∈ Z∗

J with local monodromy cone σ = σJ generated by
N1, . . . , Nk as in §B.2. Given I ⊂ J = {1, . . . , k}, let σI be the face of σJ generated by the
Ni, with i ∈ I. Define

NI =
∑

i∈I

Ni and NJ =
∑

j∈J

Nj .

Given this data, the SL(2) orbit theorem [CKS86] produces “commuting sl2–pairs

NI , YI ; N̂J , ŶJ ∈ gR .

These pairs have following properties: NI and YI commute with N̂J and ŶJ ; and there is a
(YI , ŶJ)–eigenspace decomposition gC = ⊕ ga,b,

ga,b = {ξ ∈ gC | [YI , ξ] = aξ , [ŶJ , ξ] = bξ} ,

with integer eigenvalues a, b that splits the weight filtrations

(C.2) W I
ℓ (gC) =

⊕

a≤ℓ

ga,b and W J
ℓ (gC) =

⊕

a+b≤ℓ

ga,b .

We have

NI ∈ g−2,0

and

NJ ∈
⊕

a≤0

ga,−a−2 .

If we write

(C.3a) NJ =
∑

a≤0

NJ,a ,

with NJ,a ∈ ga,−a−2, then

(C.3b) NJ,0 = N̂J .

C.2. Consequences local lifts of Φα. Recall the two maps Fα
I : Z∗

I ∩ U → Dα
I of (B.5).

Since I ⊂ J , we have Z∗
J ⊂ ZI . Fix a coordinate neighborhood (t, w) ∈ U ⊂ B so that

Z∗
J ∩ U = {t = 0}.

Lemma C.4. Suppose that (tm, wm) and (t′m, w′
m) are two sequences in Z∗

I ∩U converging

to points (0, w∞) and (0, w′
∞) ∈ Z∗

J ∩ U, respectively. If Fα
I (tm, wm) = Fα

I (t
′
m, w′

m) for all
m, then Fα

J (0, w) = Fα
J (0, w

′).

This lemma is the analog of Proposition 2.25 for the “local lift” of Φα, and implies that this
lift is continuous.
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Proof. Given (t, w) ∈ Z∗
I ∩U, recall that Fα

I (t, w) is the composition of FI(t, w) = ξ(t, w) ·F
with the projection DI ։ Dα

I = C−α−1
I,C \DI (§B.2.4). Moreover, ξ(t, w) is holomorphic (and

therefore continuous) on ∆k+r, and takes value in CI,C when restricted to Z∗
I ∩ U. So to

prove the lemma, it suffices to show that

(C.5) W I
ℓ (cJ ) ⊂ W J

ℓ (cJ) .

It is a general fact that the centralizers satisfy

cJ ⊂ W J
0 (gC) and cJ ⊂ cI ⊂ W I

0 (gC) .

So (C.2) implies

(C.6) cJ ⊂
⊕

a ≤ 0
a + b ≤ 0

ga,b .

Note that (C.6) implies the desired (C.5) for ℓ ≥ 0.
Suppose that X ∈ W I

ℓ (cJ ) for some ℓ < 0. Then (C.2) and (C.6) imply that there exists
unique Xa,b ∈ gC so that

X =
∑

a ≤ ℓ
a + b ≤ 0

Xa,b .

In order to establish (C.5), we need to show

(C.7) Xa,b = 0 for all a+ b > ℓ .

From NJ(X) = 0 and (C.3) we see that N̂J(Xℓ,b) = 0. Since {N̂J , ŶJ} is an sl2–pair, the

centralizer c(N̂J ) of N̂J satisfies

(C.8) c(N̂J ) ⊂
⊕

b≤0

ga,b .

This forces Xℓ,b = 0 for all b > 0, and yields the desired (C.7) for a = ℓ.
Working inductively, fix m < ℓ < 0 and assume that (C.7) holds for all m < a ≤ ℓ.

Again, NJ(X) = 0 and (C.3) implies N̂J(Xm,b) = 0 for all m+ b > ℓ. Since, b > ℓ−m > 0,
(C.8) implies Xm,b = 0 for all m+ b > ℓ. This establishes the desired (C.7) for a = m and
completes the induction. �

C.3. When weight filtrations coincide. The properties (C.2) and (C.3b) yield

Lemma C.9. Suppose that I ⊂ J . The following are equivalent:

(i) The weight filtrations coincide W I = W J .

(ii) We have ŶJ = 0.

(iii) We have N̂J = 0.

(iv) The cone σJ ⊂ c−1
I .

Corollary C.10. (a) If I ⊂ I ′ ⊂ J and W I = W J , then W I = W I′ = W J .

(b) If W I1 = W I2, then W Ii = W I1∪I2.
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(c) The union

IW =
⋃

W I=W

I

is the unique maximal set IW such that W = W IW .

If W I = W J , then ga,• = ga,0 implies

(C.11a) c−a
J ⊂ c−a

I ,

and

(C.11b)
c−a
J

c−a−1
J

→֒
c−a
I

c−a−1
I

.

In the case a = 1, the inclusion (C.11a) yields the striking implication (known to the
experts)

Lemma C.12. If σJ ⊂ c−1
I , then σJ ⊂ c−2

I .

Corollary C.13. We have exp(CσIW ) ⊂ C−2
I,C.

C.4. Consequences for LMHS. Note that Z∗
J ⊂ ZI if and only if I ⊂ J . In this case,

ΓJ ⊂ ΓI . We will also see that DJ ⊂ DI , cf. (C.20). In particular, we have an induced
ΓJ\DJ → ΓI\DI . When W I = W J (equivalently, Z∗

J ⊂ ZI ∩ ZW ), then this map descends
to ΓJ\D

a
J → ΓI\D

a
I .

Lemma C.14. The maps Φ0
I and Φ1

I of (2.1) extend to proper holomorphic maps on ZI ∩
ZW . These extensions are compatible with the Φ0

J and Φ1
J on Z∗

J ⊂ ZI ∩ ZW in the sense
that the we have a commutative diagram

(C.15)

Z∗
J ZI ∩ ZW

ΓJ\D
1
J ΓI\D

1
I

ΓJ\D
0
J ΓI\D

0
I .

Φ1
J

Φ0
J

Φ1
I

Φ0
I

Lemma C.14 is a corollary of Lemma C.17.
Recall (§B.2.4) that the local lift of ΦI : ZI → (ΓI exp(CσI))\DI is

(C.16) νI ◦ FI : Z∗
I ∩ U → exp(CσI)\DI .

Lemma C.17. There is a well-defined holomorphic map

(C.18) Φ̃I : ZI ∩ ZW ∩ U → exp(CσIW )\DI

that, when restricted to Z∗
J ⊂ ZI ∩ ZW , coincides with the composition νIW ◦ FJ .

Proof of Lemma C.14. Given a = 0, 1, Corollary C.13 implies that

(exp(CσIW )C−a−1
I,C )\DI = C−a−1

I,C \DI = Da
I .
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So the composition

ZI ∩ ZW ∩ U exp(CσIW )\DI (exp(CσIW )C−a−1
I,C )\DI = Da

I
Φ̃I

is the local coordinate expression for the extension Φa
I : ZI ∩ZW → ΓI\D

a
I of (C.15). Thus

Lemma C.14 follows directly from Lemma C.17. �

Proof of Lemma C.17. Suppose that I ⊂ J and W I = W J . Consider a local lift Φ̃(t, w)
over a chart U centered at b ∈ Z∗

J (as in §B.2). Along

ZJ ∩ U = {tj = 0 ∀ j ∈ J} = {0} ×∆r ∋ (0, w)

we have the map FJ : Z∗
J ∩ U → DJ of (B.3)

(C.19a) FJ(w) = ξ(0, w) · F .

Along Z∗
I ∩ U = {ti = 0 iff i ∈ I} we may choose a well-defined branch of ℓ(tj) for all

j ∈ J\I. Then the map FI : Z∗
I ∩ U → DI is given by

(C.19b) FI(t, w) = exp

( ∑

j∈J\I

ℓ(tj)Nj

)
ξ(t, w) · F .

Comparing the expressions (C.19) for FJ and FI , and keeping CJ ⊂ CI and (C.11a) in
mind, we see that

(C.20) F ∈ DJ ⊂ DI

and FJ takes value in DI . (Note that the containment F ∈ DI is nontrivial, as F arises
from the LMHS along Z∗

J .) It follows from (C.19) and (C.20) that

νJ ◦ FJ : Z∗
J ∩ U → exp(CσJ)\DI

also takes value in (a quotient of) DI . The lemma now follows from (C.19). �

If follows from Corollary C.10(c) and (C.20) that the orbit

DW = PW,C · F ⊃ DI

is independent of our choice of DI and F ∈ DI so long as W I = W . It is straightforward
to verify

Lemma C.21. There is a well-defined holomorphic map

(C.22) Φ̃W : ZW ∩ U → exp(CσIW )\DW

that, when restricted to Z∗
I , coincides with νIW ◦ FI .

Proof of Lemma C.1. By essentially the same argument as given for Φa
I in the proof of

Lemma C.14, the composition

ZW ∩ U exp(CσIW )\DW Da
W

Φ̃I

is the local coordinate expression for Φa
W . So it follows immediately that Φa

W is holomorphic.
To see that Φ1

W is proper, it suffices to show that Φ0
W is proper. And to see that Φ0

W

is proper, it suffices to show that the extension Φ0
I : ZI ∩ZW → ΓI\D

0 of (C.15) is proper.
The latter is due to [Gri70, §9]. �
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C.4.1. Remark on the extension question. Given Lemmas C.14 and C.17, it is natural to
ask if the extension (C.18) is global; that is, does there exist an extension of ΦI : Z∗

I →
(ΓI exp(CσI))\DI to the weight closure ZI ∩ZW ? The answer in general is no, because the
action of exp(CσIW ) on DI does not descend to a well-defined action on ΓI\DI . (Likewise,
while the quotient exp(CIW )\DI is well-defined, the action of ΓI on DI does not descend to
the quotient.) In general, to obtain such an extension, one would need at the very least for
ΓI exp(CσIW ) ⊂ GI to be a subgroup. (In general it is not. The product ΓI exp(CσI) is a
subgroup because ΓI ⊂ CI centralizes σI .) The ideal circumstance here would be for ΓI to
centralize the larger cone σIW . If it is the case that the image of ΓI exp(CσIW ) under the
projection GI ։ Ga

I is a subgroup, then one does obtain an extension of Φa
I . For example,

since exp(CσIW ) ⊂ C−2
I,C, and the C−a

I are normal subgroups of CI , the image is always a
subgroup when a = 0, 1, 2. In particular, in the case a = 2, we have

Z∗
I (exp(CσI)ΓI)\D

2
I

ZI ∩ ZW (exp(CσIW )ΓI)\D
2
I

ZW (exp(CσIW )ΓW )\D2
W .

Φ2
I

Φ2
W

C.5. Implications for polarizations. We close §C with two results on polarizations.
These are consequences of: (i) the fact that W (N) is independent of our choice of N ∈ σIW
[CK82], and (ii) the classification of Ad(GR)–orbits of nilpotent N ∈ gR [CM93] (not the
SL(2) orbit theorem).

Lemma C.23. Suppose that (W,F ) is a MHS and W = W I = W J = W I∪J . If (W,F )
is polarized by both σI and σJ , then the MHS is also polarized by σI∪J . In particular,
DI ∩DJ ⊂ DI∪J .

Proof. Let

σW
I∪J =

⋃

W = WK

K ⊂ I ∪ J

σK

denote the “weight-closure” of σI∪J ; note that each of the σI , σJ and σI∪J is contained in
σW
I∪J . Suppose that N ∈ σI∪J . The definition of W = W (N) implies that Nk : GrWn+k →

GrWn−k is an isomorphism. Standard sl(2)–representation theory implies that

QN
n+k = Q(·, Nk·)

defines a nondegenerate, (−1)n+k–symmetric bilinear form on GrWn+k, and that the restric-
tion of this bilinear form to

PrimN
n+k = ker{Nk+1 : GrWn+k → GrWn−k−2}

is also nondegenerate. The mixed Hodge structure (W,F ) is polarized by N if and only if
the Hodge–Riemann bilinear relations are satisfied by the Hodge filtration F (PrimN

n+k) and

QN
n+k. The first Hodge–Riemann bilinear relation follows directly from σW

I∪J ⊂ g
−1,−1
W,F and

the fact that Q(V p,q
W,F , V r,s

W,F ) = 0 unless (p + q) + (r + s) = 2n and p− q = s− r.
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Consider the adjoint action of G on g, and let G0,0
R ⊂ GR be the subgroup preserving

the Deligne splitting gC = ⊕ g
p,q
W,F . The weight-closure σW

I∪J ⊂ g
−1,−1
W,F is contained in

a G0,0
R –orbit [BPR17, Lemma 3.5]. The second Hodge–Riemann bilinear relation is then

a consequence of the representation theoretic classification [CM93] of Ad(GR)–orbits of
nilpotent N ∈ gR and the discussion of [BPR17, §2.5]. �

Lemma C.24. Suppose that (W,F1) and (W,F2) are MHS polarized by σI1 and σI2 , re-
spectively, and that F1(GrW ) = F2(GrW ). Set J = I1 ∪ I2. Given N ∈ σJ , the bilinear
form QN

n+k is nondegenerate on GrWn+k, and the restriction to PrimN
n+k polarizes the Hodge

structure defined by F1(Prim
N
n+k) = F2(Prim

N
n+k).

Remark C.25. Note that the lemma does not assert that σJ polarizes the MHS (W,Fa),

a = 1, 2: a priori, it need not be the case that N(F p
a ) ⊂ F p−1

a . So, given the hypothesis of
Lemma C.24, it would be interesting to know if there exists a MHS (W,F ) that is polarized
by σJ and such that F (GrW ) = Fa(GrW ), a = 1, 2? Equivalently, are the Fa(GrW ) ∈ D0

J?

Proof. Corollary C.10 asserts that W = W J . As in the proof of Lemma C.23, the fact
that W (N) is independent of the choice of N ∈ σW

J implies that σW
J is contained in an

Ad(GR)–orbit. Additionally, σIa ⊂ g
−1,−1
W,Fa

⊂ W−2(gC) and F1(GrW ) = F2(GrW ) imply that

σJ ⊂ g
−1,−1
W,Fa

modulo W−3(gC) , a = 1, 2 .

The lemma then follows from the representation theoretic classification [CM93] of Ad(GR)–
orbits of nilpotent N ∈ gR and the discussion of [BPR17, §2.5]. �
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d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979. 77–105, 1980.

[CDK95] Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan. On the locus of Hodge classes. J. Amer.
Math. Soc., 8(2):483–506, 1995.

[CK82] Eduardo Cattani and Aroldo Kaplan. Polarized mixed Hodge structures and the local mon-
odromy of a variation of Hodge structure. Invent. Math., 67(1):101–115, 1982.

[CKS86] Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid. Degeneration of Hodge structures.
Ann. of Math. (2), 123(3):457–535, 1986.

[CM93] David H. Collingwood and William M. McGovern. Nilpotent orbits in semisimple Lie algebras.
Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.

[CMGHL17] Sebastian Casalaina-Martin, Samuel Grushevsky, Klaus Hulek, and Radu Laza. Extending the
Prym map to toroidal compactifications of the moduli space of abelian varieties. J. Eur. Math.
Soc. (JEMS), 19(3):659–723, 2017.

[CMSP17] James Carlson, Stefan Müller-Stach, and Chris Peters. Period mappings and period domains,
volume 168 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2017.
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