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DEVELOPMENTS IN THE THEORY OF THE ELECTRON

I. Classical Theory. II. Relativity Theory, (a) Abraham- versus Lorentz
electron, (b) Self-energy and self-stress, (¢) Approaches to a consistent rela-
tivistic theory. III. Non-relativistic Quantum Theory, (a) Zero point energy
.and quantum self-energy, (b) The correspondence argument in quantum field
theory. IV. Relativistic Quantum Theory, (a) General features, the renunci-
ation of the one-body- concept, (b) The subtraction problem, general considera-
tions, (c) The subtraction problem, special cases, (d) The self-energy problem
in relativistic quantum theory, (e) Approaches lo a consistent relativistic
quantum theory. V. Concluding Remarks.

This survey aims at reviewing how the theory of the electron, from its

. original classical form, developed through the advents of the relativity and
quantum theories to the present stage.! In particular it stresses how this
development, like many others, is characterized by two main trends: on the
‘one‘hand every new phase comprises its predecessor as a limiting case in the
description ‘of many phenomena in which electrons are involved (aspeet of

§ correspondence); but on the other hand each new step brings novel features

with it which force us to a re-evaluation of our picture of the electron itself

j (aspect of disparity). For example, relativ‘ity generally goes over into

clagsical theory in the limit of small velocities. But while in classical
theory the electromagnetic -mass of the electron can unambiguously be
defined (I) this is no longer possible in relativity theory even -in the low

b velocity limit (IIa). In this connection the concepts of self-energy and

self-gtress are discussed (ITb). These quantities bécome infinite if a point
model for the electron is used. Various attempts have been made to
. eliminate these infinities so as to attain a consistent classical relativistic
theory of a point electron. These attempts are briefly surveyed in sec-
¥ tion Ilc.
¥ Such modifications may of course suggest further lines of progress.
However, it must be emphasized that a classical singularity-free theory
cannot be considered necessarily to correspond to a similarly consistent
¥ quantum theory. For the quantum theory of systems of charged particles

! This review of developments in the theory of the electron was originally intended

. to be an introductory survey to a number of papers on positon theory, already pub-
g lished elsewhere, to be reproduced and compiled in book form. Due to the very recent
rapid developments in this field, such a book would not now seem timely. The present

8 survey was closed off in December 1947 and is meant to serve as an orientation of the
i main trends in electron theory up to that time. I would like to express my deep grati-

¥ tude to all those whose kind advice has been invaluable in preparing this survey. The

b numbers in square brackets refer to the bibliography.
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and fields again exhibits features of disparity along with an intimate corre-
spondence in its relation to classical theory. This is discussed in section III,
where the quantum aspects of the electromagnetic field in interaction w1th
the electron are reviewed from a non-relativistic point of view as far as the
electron is concerned. Thus it is recalled in sec¢tion IIla how the very
process of subjecting a divergence-free theory to.quantization leads to the
introduction of new divergences due to unavoidable quantum electro-
dymamic fluctuation phenomena. Therefore the correspondence principle
does not provide a guide in the self-energy problems. On the other hand
these same electromagnetic fluctuations play an important role in the
analysis on correspondence lines of the problems of observability involving
electromagnetic fields. This has been shown by Bohr and Rosenfeld (I1Ib);
their work hence establishes the logical link between quantum elect;fo—
dynamics and classical theory.

- We have finally to make the last step (as things stand today), the transi-
tion to relativistic quantum theory. And again, as we have already noted
twice, we must distinguish between a domain of correspondence and of
disparity, this time with the non-relativistic and non-quantum limiting
cases. As a sequel to their previously mentioned paper, Bohr and Rosenfeld
analyse the correspondence problem in relativistic quantum theory. Specifi-
cally they discuss the influence of the charge-density fluctuations, due to
pair formation, on the observability of the electric charge on a body. This
work has not yet been published, but an abstract of it is included at the
end of this paper.

With regard to the non-correspondence features, it is well known how
relativistic quantum theory forces us to renounce the one body picture of
an ¢lementary particle (IVa). As a result of this renunciation the. self- |
energy problems appear in an entirely new light (IVd), not only for electrons
which satisfy the exclusion principle, but also for particles which satisfy
the Bose-Einstein statistics.

Insofar as the various steps in the transition from classical to relativistic
quantum theory can be considered irrevocable, it would seem that attempts
at further progress which do not admit the concepts of relativistic quantum
theory from the outset are highly academic, in view of the typical non-
correspondence development in our notions of the elementary particles.
This holds in particular for the various tentative schemes, outlined'in Ilo,
“Yor a consistent theory -within the classical relativistic framework. The
transcription of these ideas into relativistic quantum- theory has either
failed or not yet been fully developed (IVe).

I. CrassicaL THEORY

Tt is hardly necessary to recall here the great successes of the classwa.l
theory of the electron 1n1t1ated by the pioneer work of H. A. Lorentz (i}
In this pre-relativistic version Lorentz considered the electron to be a small
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rigid sphere, the stability of which, rather than being accounted for by the
theory, is assumed ad hoc. Consecuently a detailed analysis of the intrinsic
properties of the elcctron lies beyond the scope of these considerations. Yet
there is one feature of that problem which is already inherent in the classical
picture, viz. that of the electromagnetic mass. Indeed, closcly analogous
to the case of a rigid body moving through an incompressible fluid,? an
electron with mechanical mass m, and in uniform motion will appear to
have a momentum (m, 4 ui)v and a kinetic cnergy (m, + pa)(92/2). Here
it is supposed that v is small comparcd with the light velocit y ¢ and
62
pa = 0o

also e is the charge of the electron, a its radius, 6 a numerical constant
depending on what assumptions are made for its (spherical) charge distribu-
tion (e.g. for a spherical shell model § == 24). Thus, on the classical picture,
it would seem that it is the quantity m, + pg which is observed experi-
mentally, while m, merely plays the role of a mathematical parameter
occurring in the equation which expresses the equality of an inertial force m,
times acceleration and the Lorents force due to the total clectromagnetic
field which is present.  We will thercfore, but only for the moment, identify
Mo + pa with the “experimental mass” m of the clectron.

The rccdgnition of the existence of a contribution w. to the electron
mass due to the presence of the clectromagnetic field raises the question
whether it is possible to formulate the theory of the electron in a “structure
independent’” way, i.e. to bring it into a form such that all its inferences
can be expressed by using e and m rather than e and m, as electron attributes.
Thus for example the Lorentz equation of motion for the electron as well as
the electromagnetic ficld equations can in the non-relativistic case be
derived from the Hamiltonian

2 () 28, (02
§ = g — PRl AT, U+§;/(Eﬁ+H2)dv @
Here p is the (mechanical) electron momentum, A,° the transverse (i.e.
divergence-free) vector potential at the position of the electron, E, and H
the transverse electrie and the magnetic field respectively, while U is the
potential encrgy of the system (including all Coulomb energies?). 9 now
depends on ¢ and m, and the question is whether we can (at least forv/c < 1)
bring $ into a form depending on ¢ and m only. Moreover we shall require

2Tt was by using this hydrodynamical analog that J. J. Thomson was led to the
introduction of the concept of electromagnetic mass many years before the discovery of
the electron [2].

3Hence U contains also the clectrosiatic cnergy of the electron itself, ie., a term
30¢1/4a; this term is obviously structure dependent, but can be discarded from a non-
relativistic point of view; it is identical with prac? defined by (6).
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that the transformation achieving this is a canonical one, this especially
in view of the transition to quantum theory.

Especially Kramers [3] has stressed that a closer analysis of the question
of structure elimination may lead to a deeper insight into the nature of the
paradoxes we are faced with at present. In fact, the remarkable situation
presents itself that for example the (non-relativistic) quantum theory of a
system of electrons in interaction with each other and with radiation fields },
[4] starts from an expression (2) with the tacit assumption that m, and m are
identical. It is well known that this theory has to a certain extent led to a
satisfactory description of processes like emission and absorption of radiation
by atomic systems and of dispersion phenomena. However it might be
deemed that the inconsistencies of this same theory might at least partially
find their source in the logically unjustified identification of m, and m. If
we first transform away the electromagnetic mass in the way indicated
above and then quantize the new Hamiltonian scheme thus obtained, can we
not attain a formalism which is free of the occurrence of the well-known |
divergences of the customary “structure deperident” theory based on (2)?
The answer to this question is negative, as we shall see in discussing below in
somewhat more detail the typical quantum features of the interaction of
charged particles and electromagnetic fields. Before coming to the intro-
duction of the quantum of action, however, we will first examine how the
inclusion of the basic ideas of relativity theory affects the situation. It will
appear that the very concept of electromagnetic mass (and thus of experi-
mental mass) in the way we have used it thus far loses its unambiguous
meaning in a relativistic theory, even in the limit of very low velocities.
Thus relativity theory severely limits the scope of a theory which is structure
independent in the sense used hitherto.

II. RevaTiviTY THEORY P o

- (a) Abraham- versus Lorentz electron; ambiguity of the electromagnetic mass
concept X

Let us first consider, for arbitrary velocities, the electromagnetic energy
and momentum E,;, and pam of our rigid electron—which in fact is just the
so-called Abraham electron [5]. To fix ideas we take a shell model.* Then |

(with B = 2) : ]

_ e 1+8 L 2.0 .. |.
E"l"’—2a(ﬁln1—ﬂ 1) 2 T2 (3ac)v + 4
_ e (14p 148\ _ 2 -
p"'"'—2acﬂ< % BT—p 1) 3"t t

4 All conclusions un the properties of the Abraham relative to the Lorentz electron |i,

are independent of the kind of spherical distribution. In particular all expressions for
Ean and pan for the shell models should be multiplied by $4 to get the results for a [
homogeneous charge distribution. 1
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the second term in the development of E.i. representing the electromagnetic
kinetic energy Eea.*™ for small velocities. Hence for small »

olm? 2e?
Eontin = %; Ha = 3= 3

as it should be if we wish to consider p.: to be a part of the experimental
electron mass.

Considering now the Lorentz shell electron we have (for later purposes
we write down the result for the case that there is a mechanical mass m,):

_ moc? RraC? g = e?
E-i=s " Vi-F (1 " 3)' ST
_m, + % Hrel
P= ‘\/lTﬁz Y, (4b)
and for v/c K1

E i = %(%#"1)02, Pelm = ?ﬁl‘nlv

and therefore, even for small velocitics, the notion of electromagnetic mass
becomes ambiguous, since it is not possible to fulfill (3). It would therefore
seem that in analyzing the problem of electromagnetic mass the considera-
tion of the limiting case of classical theory does not provide an adequate
basis, since experiment has taught us that we should discard the Abraham
electron in favor of the Lorentz model.®

(b) Sclf-energy and self-stress

The expressions given for Fa. and pan are special applications of the
following general formulae for the energy and momentum of a particle which
is the source of certain fields: Let the energy-momentum tensor of the total
system of particle (with mechanical mass m,) and fields be .  The energy
of the system then is given by® [ %udv (dv = dr dy dz) the momentum by

- - [ Tyadv (for a particle moving in the z-direction). Now denoting the
Ti in the rest system of the particle by Ti(0) we have (as T,4(0) =

Tu0) =0; dv =dv. V1 — BY)

- [ - ARG

5Tt may be reealled that in the well known e/m determinations as a function of the
veloeity it is only the electromagnetic momentum which enters into the interpretation
of the measurementy  Ag thig quantity is, for small velocities, the same for the Abraham
and the Lorentz electron, it was necessary to go to higher veloeities in order to decide
experimentally in favor of cither model. (It is furthermorc interesting to reeall that
in the numeriral interpretation of these experiments it was assumed that the mass is
entirelv of eleetromagnetic origin.}

® This bolds for suitable normalization of the energy; z1 = 2, 29 = y, 23 = 2, 2, = ict.
As regards the mechanical part of T.x only the 44-component differs from zero in the
rest sy stem,
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i RSN oy o ;;7: /ﬁ:ud | fE“(O)dva ;_fil;(o)dvo (5b)
‘ We now introduce the self—energy.—yrg;c by ~
i (Mo + mra)é? = JZui(0)do, . ®)
n In the electromagnetic case the relation between pa and pyq is )

" Reel = %#cl
‘ and for the Lorentz electron we find (4) from (5).7
! The formulae (5) demonstrate that even for a relativistic electron madel
" with finite self-energy—Ilike the Lorentz electron with a %.0—we still do
" not have a consistent picture of the electron, as (4) does not give the right
relatlon between energy and momentum of a freely moving particle, how-
A ever we define'the experimental mass. A glance-at<5) shows that the cause
. of the trouble lies in the circumstance that JZ11(0)dv,, the “self-stress,” is |
1 unequal to zero. In physical terms, the electromagnetic forces tend to :
1 explode the electron. Whereas it was possible'in classical considerations to {
{‘ sxmply postulate the compensatlon of the electromagnetic forces acting on [
the electron so as to have a stable particle, this is no longer admissible when
relativity is taken into account. Thus we have as two necessary conditions
in relativistic electron theory: (a) that the self—energy be finite, (b) that the
1 self-stress be zero.®
- In a sense the second condition is more essential than the first. Fot if the
5 stresses were zero, one would be able to discard in a covariant way the self-

energy of a free particle by stating that m, + p,a shall represent the experi-

mental mass of the electron, whether or not p. is finite. Thus non-zero
. stresses prohibit the unambiguous formulation of a structure mdependent
o theory. These requirements obviously hold mulatis mutandis for-any par-

ticle coupled with a field. -

- That the conditions (a) and (b) are in prmclple independent of each other

! can be seen from the example of the so-called Poincaré-electron [6): The first
| equation (4) can be written as follows:

| Vw\(mlx + %ﬂrel)cz .Q (7)

pro

.

VT T
; with \ - L
g _ prac?® _ 4wa® — -
1 P-fi VoHVITS
§
i

7 The electromagnetic terms are readily found by noting that the trace of the electro-
magnetic tensor is zero and that in the rest system [Tndy = [Tody = [Tsady, as in that
system the charge distribution is spherically symmetrical.

8 Cf. M. Laue [7]; formulae like (4) and (5).can also be considered to apply in.an }.
asymptotic sense to the case of & point eléctron, (a = 0), in as far as the latter is defined |
i 8. the limiting case of a Lorentz model of finite extension. It should also be noted that
1 the vanishing of the divergence of T is, in the presence of smgula.ntles, generally. not i ‘
sufficient to make the self-stress zero. 1
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Thus V is the volume of the eleetron; P has the dimensions of a pressure.  If
we could eliminate the —PV term, the relations between ¥, p and » would
become correctly relativistic. Poincaré’s suggestion now amounts to
adding the tensor

Pgap(x)
o(x) =1 inside the electron
=0 outside the cleciron

to the electromagnetic tensor. This indeed cancels (in all systems of refer-
ence) the —PV term in E and does not give a contribution to p. Thus for
a # 0 both conditions would be fulfilled. Delining a point electron as the
limiting case a — 0 we sce however that the self-stress would stay zero in
the limit, but the self-energy would beecome infinite.  Thus for every model a
separate discussion for sclf-energy and sclf-stress is neccssary. Moreover
the Poinecaré model ¢ # 0 is instructive in showing that our two conditions
are not sufficient. It was indeed shown by Lorentz [8] that the equilibrium
one obtains by introducing the Poincaré tensor is not a stable one with
respect to any deformations: Poincaré’s cohesion pressure compensates
the explosive electromagnetic forces for a given value of the electron radius,
but it does not stabilize the electron. ‘The conditions of finite self-energy
and zero self-stress are thus closely linked with a relativistic compensation
of the electromagnetie forces, to be sure, but the actual stabilization problem
would seem 10 involve more and deeper lying features which might be con-
neeted with such open questions as the very existence of an elementary
quanium of charge.

(c) Approaches to u consisient relativistic theory

With regard to self-energy and sclf-stress, the various attempts® to
formulate a classical relativistic theory of the electron can be tabulated as

follows (0 = finite radius, - == point model):

Theory Model Self-energy | Self-stress
Lorentz.......... ...... e 0 finite finite, = 0
Lorentz..... oo i . 0 ®
Poinearé. ... ..ot s 0 finite 0
Poincaré.. ...t e . % 0
Mlimiting process.... . ... ool . 0 0
Action at a distance.................... - : 0 0
Two-field theories. ................. .. ... - . finite 0
Born (non-lincar theories).................... . finite 0

* This short survey of modifications of the classical Lorentz theory makes no pretense
of completeness. 1t rather aims at indicating along what general lines such modifica-
tions have been attempted.

[l
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‘theory, action at a distance). The stati¢ interaction between two electrons

-by definition (action at a distance). p

“electron is assumed to correspond to the limit where this vector is zero. g

‘of the electron.

7 \k.‘-—r—-—v—w

In each of the theories, briefly discussed below, we find represented one of the
following lines of thought: .

(a) One uses the circumstance. that the tustomary Lorentz formulation
dees not mathematically exhaust the solutions of the Maxwell equations in
the presence of point electrons. Thus the definition of a charged point is
not unique (A-process). Moreover, the use of combinations of retarded and
advanced potentials leaves some scope for modification (Dirac’s classical

is given by Coulomb’s law. But the force of an electron on itself is zero,
either as a result of suitable limiting processes (A\-process, Dirac’s theory) or §

(b) One assumes that there are non-electromagnetic forces acting on the ¢
eléctron, described half-phenomenologically (Poincaré) or causally in terms
of differential equations;"linking these forces with the field concept (two-
field theories). While t‘!‘}e Maxwell-Lorentz field equations- themselves
remain unchanged, there is thus a resulting force (differing from Coulomb’s
law) between electrons such that this total force is zero at the position of the
electron.

(¢) One assumes that the Maxwell-Lorentz equations themselves are {:
changed in the sense that they only represent the state of affairs for sveak
fields or, equivalently, at large distances from the electron and that they 2
become non-linear at small distances (Born). [

e

We will now give a short characterization of these classical relativistic
theories and will come back to the application of these ideas to quantum f
theory in section IVe, where we will see that the very approach to these §
problems from a nonquantum mechanical basis would seem inadequate
(cf. also p. 2).

A-limiting process. This procedure may easily be contrasted with the
Lorentz theory. There the point €lectron is defined as the limitipg case in-§
which a space-like vector, the electron radius, tends to zero. Here a time- §
like-vector is introduced and the actual situation on the world line of the

For example, the electric field E(x,, ¢ ) at the position x, of the electron §
at the time ¢, is defined as E(X,, t,) = lim;_o,-0 E(X, + £, t. + 7) where

the transition to the limit is made so that always |g|'< er. As first pointed
out by Wentzel [9], one obtains in this way a zero electromagnetic energy and |
momentum for-a freely moving electron. The formalism gives the -same §
results as the Lorentz theory for the situation at any point off the world line

The limiting process proposed by M. Riesz, using a method of analytic}
continuation of the solutions-of the inhomogeneous electromagnetic wave 3
equations in the complex plane, has been shown by Ma [10] to be equivalent §
in results with the A-process. Also Dirac’s classical electron theory [11]§
is intimately connected to the M-process: a ‘“proper’’ and an ‘“external”
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field are defined as half the sum and half the difference respectively of the
retarded and advanced field, and Dirac’s method amounts to subtracting the
proper field from the total field to obtain the force on the electron. To
perform this subtraction within the framework of a Hamiltonian scheme it is
essential to use again the M-process [12].

The equation of motion of the electron in Lorentz’s theory involves
terms proportional to positive powers of the electron radius. Such terms
are always neglected and the ensuing equation has therefore in principle an
approximate character, albeit this approximation is a good one as long as
only wavelengths >> a come into play. Dirac’s equation, on the other
hand, is a rigorous one. It can be obtained from the Lorentz equation'0
by inserting into the latter a negative mechanical mass so as to make the
total mass equal to the observed mass and then letting the electron radius
tend to zero. The occurrence of this sink of mechanical energy is closely
connected with the appearance of the ‘“non-physical solutions” of the equa-

%ion of motion of the electron, i.e. solutions corresponding to accelerated

motions even in the absence of external fields. The existence of these
anomalies was pointed out by Dirac. TIlowever, in classical theory these
solutions can simply be discarded [13].1!

Action at a distance.’ TFrom the point of view of self-cnergy and self-
stress this theory, recently worked out in detail by Wheeler and Feynman
(5], is closely related to Dirac’s classical theory [11] in that the fields are
again invariantly divided into proper and external fields and the assumption
is introduced that the proper field of a given electron shall not act on the
particle by which it is produced. As a result of this postulate, the con-
cepts of self-energy and self-stress do not appear. The theory is distinet
from Dirac’s theory in that a formalism is developed, mathematically alter-
native to Dirac’s field theory, in which the electromagnetic field quantities
no longer appear explicitly. In this scheme the electromagnetic field thus
plays an entirely subordinate role with no degrees of freedom of its own. In
particular Wheeler and Feynman show that this theory also allows one to
account for the radiative reaction when one considers a universe containing
sufficiently many charged particles to absorb completely all the radiation
proceeding out of the source. Radiative reaction appears from this point
of view as a consequence of statistical mechanies rather than a feature of
pure electrodynamics. The elementary interaction between particles is
half advanced and half retarded, that is, symmetric in time. Schoenberg

1* This was pointed out by McManus and kindly communicated to me by Professor
Peierls.

11 Tt was shown by Eliezer [14] that there are no physical solutions for the system of
an electron bound to a proton, i.e. no solution deseribing in this case an electron spiralling
inwards around the proton. This interesting result has in itself of course no further

physical implications as a classical system of this kind does not correspond to anything
existing in nature.

2] am indebted to Professor Wheeler for discussions on this subject.
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has considered a formulation [16] in which one has—in addition to suck
half-advanced half-retarded forces deseribable purely in terms of actionf;
at a distance—also 4 field with degrees of freedom of its own.

Two-field theories. By assuming that the electron is the point source no
only of the electromagnetic field, but furthermore, of a second field—whic]
necéssarily has to ‘have a short range of influence—one tries to obtai
relativistic compensation of the electromagnetic forces by the forces due tq
this new field. This balancing can be.achieved by assuming the short rangg.
field to be of the scalar type [17). Another possibility is to take this field t(
be of the vector type provided one subtracts rather than adds the correspond,
ing energy momentum tensor from the electromagnetic one [18], thus running
into well-known difficulties of non positive definiteness. ‘]

Non-linear eleciromagnetic theories. In this approach, initiated by;
Born [19], one starts from a relativistic and gauge inyariant action function :
of such a form that the field equations derived from it are no longer linear
The action function is of course so chosen that in the limit of weak fields t
Maxwell-Lorentz theory shall hold. From an investigation of the sphe
cally symmetric electrostatic problem of a point source it can be shown th
for a point electron both conditions of finite self-energy and zero self-stress,
can be satisfied. The latter conditions combined with those of invarianc
are not sufficient to determine uniquely the action function, several forms o}
which have been investigated [20). For more.complicated systems the sol
tion of the field equations becomes exceedingly difficult. Even for the casiy
of two point charges at rest no exact solution is known, although it has beer,
shown that for an arbitrary number of point charges present the fields arf}
uniquely determined by the charges [21]. For the case of one magnetif,
dipole it can be shown that no solution with finite energy exists [22], at leas¢
when one uses Born’s original ‘“‘square root Lagrangian.” e

Born links up the non-linear theory with a unitary program, by whicl,
here is meant that m, shall be zero, .. that energy and momentum of th
electron shall be entirely of electromagnetic origin.’* From the point oy
view of the requirement -of relativistic compensation, the unitarity is o
course not a necessary condition.

13 This is a weaker concept of unitarity than that of the program of Mie. Mie trie
to develop a covariant (but not gauge invariant) formalism in which not only jhe electrd
magnetic energy and momentum are finite but also the fields are regular everywherg:
with the ultimate aim to derive the equations of motion of the electron from the fiel:-
equations aloné [23]. In the case of an electric point charge the D-field of Born is sti{E
singular. It was kindly pointed out to me by Professor Pauli that such field singulariti¢{]
occur in every gauge invariant non-linear electromagnetic field theory, in contrast &
Mie’s theory with absolute potentials, and that the fact that the place of the poig;
charge is still an exception of the law of nature div D = 0, which has to be replaced b; Z
div D = —4w,3(x — Xo), makes it impossible to derive the law of motion for the charge
particles from the field equations alone.

10
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E 14 I111I. NoN-rELATIVISTIC QUANTUM THEORY

(a) Zero point energy and quantum self-energy

While from the foregoing it has become apparent that a classical ap-
proach cannot fully bring out the nature of the fundamental problems of
elementary particle physics since they are essentially of a relativistic char-
acter, equal caution is needed in judging the scope of attempts in which
the quantum of action has not been taken into aceount from the outset.
This inadequacy of the correspondence principle approach will become
especially clear in considering relativistic quantum theory. As a first
orientation it may be useful, however, to consider in a non-relativistic
approximation the new features of a quantum treatment of elementary par-
ticle problems as compared to the clagsicalsituation. Thus we startfrom the
Hamiltonian (2), as Dirac did in his first formulation of a quantum theory of
dispersion [4b], quantizing the electromagnetic ficld in the now well-known

&aay. The non-relativistic aspects of the theory in this form refer only to
the treatment of the electrons, not to that of the fields.

Let us now consider a system consisting solely of one electron with
momentum zero. Thus in particular all occupation numbers of the (trans-
verse) photon states are zero. The energy of this system contains in
the first place the electrostatic energy u,.c? as comprised in U (ef. footnote
3). But this is not all: indeed following the usual approximation procedure
we consider the coupling terms between electron and radiation field (second
and third term in (2)) as a perturbation and first solve the eigenvalue prob-
lem without these couplings. For the state in question, this procedure yields
prac® + ¥4 Zhy for the energy, the second term being the zero point energy
of the radiation field. A simple calculation (neglecting the recoil of the
electron) then shows that up to the second order in e, there is a contribution
arising from the A°; 2-term which, considering only those Fourier components
of the radiation field whose wavelengths are > a, is e?h/rm.,ca®. Hence to
the approximation indicated the energy of the system is

eh 1 1
prac? + W + 3 2 hy = pquVEc? + 5 E h,
eth
Tmecia’

®)

- #quNR = Ut +

Here pqM® is the electromagnetic self-energy on non-relativistic quantum
theory if we define the self-energy as the difference in energy of the states
“vacuum plus one electron” and ‘“ vacuum,’” as a consequence of which the
zero point energy of the field drops out. Quite apart from the meaning one
wishes to attach to the possibility of formally transforming away the zero
point energy of the radiation field in a relativistically invariant way [24, 25],
11
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this would not affect the self-energy in as far as it is the zero point amplituch
rather than the zero point energy of the electromagetic field, which causes’
the quantum contribution to [PLE

Thus the revision of the vacuum concept in quantum as- compared
to classical theory introduces new features in the electron problem which
lie beyond the grasp of arguments of correspondence with classical physies.™
In this connection it may be noted that, owing to the occurrence of the quan-
tum terms in (8), the notion of the so-called ““classical electron radius’:
¢2/mc? would seem to lose its original meaning in so far as it is linked up with
an identification of ug or pri With the experimental mass m. That such an
identification cannot even have an approximate meaning follows from the;
circumstance that the second term in (8) cannot be considered as a correc-
tion to the first one. In fact, the former is ~hc/e? times the latter (cf. (4a)).
We will see later that in the relativistic quantum theory the situation differs
considerably from that in the present non-relativistic version, but it does1
remain true also n the relativistic theories that no connection exists between
m and quantities like pra (cf. p. 28). More generally we may conclude that
it has little meaning to define the structure of the electron in a classicall
way; the problem of the intrinsic properties of the electron is fundamentally;
of a quantum nature. u‘

Of course the second term in (8) does not constitute the entire quantu
contribution to the self-energy, as there will also occur terms ~ e, ef . .
if the higher approximations are taken into account. In this connectio
it may be recalled that the use of the approximation procedure of a powen?
series development in e?/kc, as applied to the interaction of electric particle
and radiation fields in the low energy region, is often justified by a corre
spondence reasoning. The argument is that from classical theory we ar
allowed to conclude that the reaction of radiation on the system by whic
it is emitted is relatively small if low frequencies only are involved. As ha
been pointed out above, however, correspondence would precisely seem tq
fail as regards the self-energy, where in fact no clear cut distinction can bg
made between ponderomotive force and radiation reaction. Thus in thet
present stage the power series development has not been proved to be an
adequate mathematical tool for the approach of questions of the self

energy type.'®

14 This is for example clearly demonstrated in the treatment by Pauli and Fierz [26}
of what is sometimes misleadingly called the infra-red catastrophe. Starting from g
formalism in which the “classical structure” is eliminated, these authors find an expres
gion for the cross section of the radiative scattering of an electron in the region of sma
energy loss which nonetheless still depends on the electron radius a. This reappearancy|
of a is quite analogous to the fact that if one eliminates ura one will still have accordin,
1o (8) a self-energy involving a due to the quantization of the electromagnetic, field
Tor & further discuss’on of the problem of radiative scattering cf. pp. 34 and 35.

15 In this connection an instructive result was obtained by Kramers [27], who byl
taking into account radiation reaction in a semi-classical way obtains an expressio;
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(b) The correspondence argument in quantum field theory [28]

_Thus the synthesis of the field concept and quantum theoretical con-
siderations in as far as elementary particle problems are concerned has
yielded results which have no counterpart in the classical domain. On
the other hand one can deal strictly on correspondence lines with the appli-
cation of the quantum electrodynamical fofmalism to the problems of
observability of electromagnetic field quantities, under the important
restriction that one may look apart from the atomic structure of the meas-
uring instruments. This has been shown in a penetrating analysis by Bohr
and Rosenfeld [28], starting from the following considerations.

The components of electric and magnetic field strengths do not always
commute, depending on what pair of components is chosen and on the
relative position of the space-time points to which these components refer.
Such non-commutativity generally gives rise to a complementary inde-
terndinateness of the space-time point functions concerned. However, the
only observables in the true sense are space-time averages of field compo-
nents, for in observing field strengths one makes use of test bodies of finite
extension-and the actual measurement takes a finite time interval (e.g. in
measuring an electric field one observes the momentum of a testbody at the
beginning and the end of such interval). It is then shown that the two
space averages of field components of the same kind (i.e. both electric or
both magnetic) always commute if the time intervals coincide, while'the
time averages of two components of different kind always commute if the
space.domains coincide. From this result it follows in particular that all
averages of components over the same space-time domains are independently
observable with arbitrary sharpness. If the space time intervals do not

overlap, there occur complementary uncertainties in these mean values.

Then the analysis of idealized measurements leads to reciprocal limitations
which are exactly those derived from the commutation relations.

In considering how a given measurement actually can be made with
given latitude, e.g. how the complementary indeterminacy of position and
momentum of the testbody itself affects the situation, it is important to
specify the nature of this body. Thus Bohr and Rosenfeld show that if the
test body is taken to be adequately heavy and homogeneously charged with
adequately large charge density, quantum electrodynamics does not impose
limitations additional to those of classical theory on the definability and
observability of the mean values of field quantities over any finite space

v

hc

2 . .
t for the quantum self-energy. For example, developing the tan™® as a

2¢
3m
power series for a > p) gives as a first term the quantum term given in (8) and pro-
vides a simple mstance of fallacious conclusions which may be drawn from illegitimate
expansions. ’
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time region. In particular it turns out that the radiative properties of
accelerated charged test bodies do not (as was sometimes belicved [29])
affect the uncertainty relations involving the momentum and position of
that body.

IV. RevaTivisTic QUANTUM THEORY
(a) General fealures; the renuncialion of the one-body concept

Thus far we have endeavored to penetrate into the elementary particle
problems cither along the lines of relativistic considerations, leaving out
all quantum phenomena, or the other way round. DProceeding along
either direction features presented themselves which had no counterpart
in the classical picture {from which we started. Now we shall have to
examine the situation from a point of view in which both relativity and
quantum theory are taken into account. As we shall see, this synthesis has
not yet been achieved in a satisfactory way, but already at the present
stage of development it brings into evidence new features of the elementary
particle problems which, again, have no correspondence with the notions
we have developed so far.

One of the main features of relativistic quantum theory is indeed that
the very concept of “one” elementary particle loses its original meaning.
Thus in the first attempt at constructing a relativistic invariant wave
equation, the Schrédinger-Gordon-Klein equation, difficulties were encoun-
tered in trying to define suitably a probability density satisfying the require-
ments of positive definiteness, normalizability and relativistic invariance
[30]. Some time later Pauli and Weisskopf [31] showed: (a) that starting
from this equation a theory of spinless charged particles could be developed
(on the lines of Bose-Einstein field quantization) provided one gives up the
notion of probability density in configuration space as used in non-rela-
tivistic quantum theory, (b) that due to the coupling of these particles
with the electromagnetic field the total number of such particles is no
longer an observable due to creation and annihilation processes.

One is led to a similar renunciation of unambiguously defining a one
particle problem by considering a different approach to the relativistic
quantum problem which was developed in the meantime; in 1928 Dirac
published his famous wave equation.

(ela - B) + Bmact)y = it 5 ©)

surely one of the most basic equations in our present picture of the physical

world. « is the velocity vector matrix whose components a., o, a. anti-

commute with each other and with 8 while a,? = o2 = «,2 = 82 = 1 [33].

The equation (9), obtained by a linearization of the relativistic quadratic

relation between energy, momentum, and mechanical mass m, of a particle,
14
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is itself properly covariant. Moreover a probability.density can be defined
}in accordance with the requirements enunciated above. It is well known
how the existence of the electron spin follows from (9). Furthermore the
analysis of the electromagnetic interactions gives the correct value for
‘the magnetic moment of the-electron while also a satisfactory theory of the
atomic fine structure could be given along these lines.!®* The application
of the Dirac theory to Compton scattering leads to the well known Klein-
Nishina formula [34] which has been checked thus far up to photon ehergies
~ 10MeV and at least in this domain is in fair agreement with experiment.
Likewise the treatment of deceleration radiation [34] has confirmed the basic
ideas of the Dirac theory.
These consequences of the theory are to a great extent independent of a
fundamental novelty, viz. the occurrence of negative energy eigenvalues
of (9) which cannot generally be discarded in quantum theory, as was
possible classically in the equation E = +c+/p%*+ m,2¢%. In order to
prevent all electrons in the world from falling eventually into the ‘‘sea”
.of negative energy states, Dirac later introduced what amounts to a redefini-
tion of the vacuum [35]. In the absence of external agents all negative
energy state§ are assumed to be filled up in accordance with the Pauli
exclusion principle. The density of energy, momentum, and charge of
this state is taken to be zero. Hence, roughly speaking, one has to define
the energy (or any other observable) of any given dynamical system as the
difference of the energy of the ‘‘vacuum -+ our system’ and the vacuum
energy itself. The precise procedure and meaning of such subtractions is
the subject of various papers to be briefly discussed below. This new
interpretation does not affect the successful conclusions of the Dirac theory
mentioned above.? However, the notion of probability density in the one
body problem, while making sense in the primitive form of the Dirac theory
(in the following referred to as ‘‘one particle theory”), dagain—as in the
case of spinless particles mentioned before—loses its meaning in the rein-
terpreted theory. This feature is intimately connected with the possibility
of pair creation: a ‘““hole” in the sea of negative energy electrons has to be
interpreted as an anti-particle, i.e. a particle with charge, energy, and
momentum of sign opposite to that of the missing electron. On this picture
the -transition of a* negative energy electron to a positive energy state'is
equivalent to the creation of a pair of oppositely charged particles.
Originally Dirac believed that the anti-particle was the proton. How-
‘ever, it was pointed out soon afterwards by Oppenheimer [37] and by

16 We will see later (cf. p. 33) that both the interpretation of the magnetic interaction
as well as the fine strycture needs further refinement.

17 With regard to the Klein-Nishina formula and the deceleration radiation cross
gection, this holds strictly speaking only for the first non-vanishing approximation. in
which they are usually computed [36]. Also the refinements in the treatment of the
fine structure and the magnetic moment depend on whether one uses hole theory or
one-particle theory (cf. p. 33).
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Tamm' [38] that this interpretation would lead to a two-quanta annihilation
of hydrogen atoms at a rate which is inconsistent with the known stability
properties of matter. Oppenheimer remarked [37] moreover that this}
difficulty vanishes if one gives up the particle-anti-particle relation betweenf
electron and proton, but rather considers them to bé independent. The
necessity of this view was also stressed by Weyl [39] who on symmetry]
arguments came to the conclusion that particle and anti-particle shoul
have the same mass. Following these suggestions Dirac then stated [40]
“a hole, if there were one, would be a new kind of particle, unknown tq
experimental physics, having the same mass and opposite- charge to an .
electron.” Two years later Anderson [41] announced the discovery of the :
positon,® found in Wilson chamber pictures of cosmic radiation, a finding |
soon confirmed by Blackett and Occhialini [42] from similar experiments]
Thus Dirac’s ingenious idea of the theory of holes found its experimental ¢
support.!? (
It should be noted that it often makes a good deal of difference whether
we consider the positon as the anti-particle of the negaton or as an indeq?
pendent elementary particle whose behavior is described by the Diragt
equation. Thus it was pointed out by Bhabha [60] that the cross section ¢
for a collision between a negaton and a positon is very sensitive to exchangd
effects. It turns out, in fact, that if the positon is considered as an unocéu
pied negaton state of negative energy, one obtains a result essentiall
different from that we should get if we were to consider the positon as af e
independent positively charged particle in a state of positive emergy]v
Experiments by Mrs. Ho-Zah-Wei [61] seem to give preliminary suppor{s
to the theoretical result obtained by Bhabha on the hole theory. picture. {r
Hole theory thus gives us not only qualitative predictions of suci f
exchange effects and other new features like pair formation and annihilation|d
81

12 In the following we will understand by negaton what was up till now called electron
i.e. the negatively charged particle (charge ¢), by positon the corresponding anti-particleil
Henceforward- “electron” will be used as a collective word for negaton and posito
This convention is in accordance with the “Resolution on names for elementary particles T
adopted by the Cosmic Ray Commission of the International Union of Physics in i ]
meeting at Cracow on October 9, 1947. From this resolution we quote: “The . . €
Commission . . . recognizes the generaluse of the term electron to denote both positivi W
and negative particles of electronic mass . . . looks with favor upon the terms posito
and negaion as means to distinguish between the two signs of charge.” fc

1% In order to avoid the conceptual difficulties connected with the introduction o 4;
infinite seas, alternafive treatinents have been given in which negaton and positon oce ] th
in a more obviously symmetric way. Such a formulation was first proposed by Fock [4%&
Heisenberg [52] uses a similar formalism. The connection between charge symmet
and the representations of the Dirac matrices is discussed by Majorana [44], Racah (45t fr
and Kramers [46] and surveyed in an article by Pauli [47]. Of course in such formahsmslfp
too, one has to introduce subtraction prescriptions. Incidentally it may be remarkeg? di
that Heisenberg’s treatment [48] of not completely filled shells of atomic electrons pr
vides an instructive example for the use of (a ﬁmte number of) “holes’” as endowed wit]
particle properties.
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ut moreover we can make qualitative inferences as to the cross section for
‘such phenomenar by following the prescription of considering only the
contribution to the relevant transition prgbabilities in the lowest non-

' vanishing order of approximation in powers 'of e*/hc. We find hy this

prescription predictions which within the present experimental accuracy
agree with experience, just as we did for the effects approximately describable
by the one particle theory (deceleration.radiation, etc.). It need hardly be
recalled here that in the present stage the -justification for the mode of
calculation just mentioned lies in the fact that ‘it works’’ rather than in its
logic. Indeed all higher order contributions to the matrix elements involved
are infinite, and it will be one of the important requirements of future
theories to elucidate how it is possible that our present formalism, while
clearly inconsistent, yet allows us to codify such a considerable number of
experimental data by using computational methods which at present we can
only consider as arbitrary. In this connection it should be ngted that in
relativistic quantum theory also we meet the same still arbitrary rule that
m, in (9) shall represent (at least to a good approximation) the experimental
mass of the electron (cf. also pp. 28-31 below). In fact our present
quantum theoretical picture is of a thoroughly dualistic nature.

(b) The subtraction problem: general considerations [49, 50, 61, 652, 64, 55]

Let us now consider in more detail the problems of subtraction_which are
encountered in hole thieory. Suppose we have in space, apart from the
vacuum electrons, a system of electrically charged particles, generally con-
sisting of electrons and. particles of other kind. Thé total charge and cur-
rent distributions in space-time are assumed to generate the electromagnetic
field in accordance with equations, such as div E = 4#p, etc. (p = charge
density, E = electric field). We now wish to subtract from. p an amount p,
such that p — p, 1s finite and is linked up with the electric field by

div E = 4x(p — po(F)) = dmpess. (10)

The amount p, to be subtracted will in general depend on the external
tlectromagnetic field itself, as symbolically indicated by writing p,(F), and
we have more precisely as first requirement:

(a) p — po(F) and s — s,(F), the effective current density, shall be finite
for any F and'such that if F = 0, p — po(F) = 0, s — s,(F) = 0. It may be
directly noted here that in all treatments of the subtraction problem given
thus far one’defines the external field such that it also comprises the electro-
magnetic field produced by the sea distribution itself, i.e. one always starts
from-a zeroth approximation in which these electrons are considered as
free. Equations like (10) imply of course the polarizability of the vacuum
'distribution, and it is quite essential that this polarizability be field depend-
ent. It was in fact investigated by Peierls [49] whether finite effective
densities could be obtained by assuming that p,, s, were simply the densities
. 17
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_ corresponding to the field free situation; and this turned out not td b
the case.

Of course the prescription' (a) does not uniquely determine p,s7 and Sef
as the subtraction of one infinity from another is quite an ambiguous affairy;
Thus Peierls [49] showed that in a semi-classical picture (describing th¢
vacuum distribution as a Thomas-Fermi gas) it is even possible to get n
polarizability at all; but, as he pointed- out, this. conclusion by no meang
precludes _ polarizations due to quantum effects. Another possibilit
amounts to first deterrriining the contribution to p and s due to electron}.
moving with a certain momentum and then subtracting the singular part ¢
that contribution. This procedure was considered by Peierls anrd by Furry
and Oppenheimer [50] and was recognized by these authors to be in gener
inadmissible, as it is not gauge invariant. This particular difficulty can b
overcome, as was done by Peierls, by replacing the momentum in thif

procedure by p — %A where A is the vector potential. Whatever the difﬁi‘

culties in detail, it is clear in principle that invariance arguments provide {
guide in how to subtract. Thus: - .‘
(b) The subtraction shall be gauge invaraint; i.e. p,, S, must satisfy {
conservation law. :
(¢) The subtraction shall be covariant, i.e. p — po, 8 — S¢ must form {
four vector. Hence p,, S, must form a four vector. .
Nevertheless, these three conditions do not lead to a unique solution. If
the last analysis arguments of simplicity have béen used in making a choic;
of expressions for charge and current. Nor is any exact method of tacklint
the problem known which due to its great intricacy has been treated onlf
by approximation methods.*! |
The method first proposed by Dirac [51] is that of the Hartree approxims;
tion. Here it is supposed that each electron has its own individual wa\;E
function and that it moves in_a definite electromagnetic field vhich is th
same for each particle. A density matrix (¥/, t’lRlx’ ', ¥') is defined suc}
that (always within the Hartree approximation) our p(x, t) mentioned abo
is equal t0 € liffy ayry = (X, ¢|R|x”, ¢""). Dirac considered first the field fre
case where R can be computed exactly and is free of singularities for x’ #Xx]
t' 5 ¢, but contains certain terms which become singular on the light con
Then the case of the presence of fields is considered ; it is assumed that B hq
the same types of singularities as in the field free case with coefficien{
depending on the external field parameters, These singularities-shall th
constitute the subtractive terms; by performing all calculations with
- non-zero “off-diagonal distance’’? one can give a precise meaning to ever]
term, and by introducing the prescription that the off-diagonal distand

2 Loc. cit., equation (7').
21 This holds for the treatments in [49, 50] as well as those to be discussed below.
22 This quantity is defined as 4/(x" — x")? — ¢*(t’ — ")* -
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hall tend to zero only after the subtractions have been performed, one

‘obtains an unambiguous subtraction preseription. Dirac gives the €qua~

" fions which the coefficients of the singularities must satisfy and discusses the
general aspects of their solutions. ]

-This treatment is applied by Heisénberg [62] to the case in which one
admits in the coefficients in question only terms quadratic in ‘the field
strengths and linear in their first derivatives.?® This author also shows that
this subtraction is consistent with the Iaw of a conservation law of electric
charge. Furthermore the covariance of the scheme is discusgsed.?

Heisenberg also treats the same problems by using the Jordan-Wigneft
representation [53) of quantized electron amplitudes. This method is also
used by Furry and Oppenheimer [50]. It may be noted that the use of this
so-called.second quantization dogs not imply any new physical assumptions.
One might indeed just as well use many electron wave functions in configura~
tion space, provided they are properly anti-symmetrized. However, such a
procedure is very cumbersome, especially for the discussion of effects of
higher order than the second in e. The great practical advantage of the
second quantization method is precisely that it takes account of the ex-
clusion principle in a simple and elegant manner.

Having performed the subtractions in the density matrix, one can find
not’ only the expressions for the effective charge and current density, but
also the effective energy-momentum tensor density, cf. loc. cit. [62] equ. (16).

The 44-component of the latter is then the new Hamiltonian: After sub-
4

traction, Heisenberg’s Hamiltonian has the form 2 H™, where H™ ~ ¢n;

—p T

- n=0

ef. loc. cit. equ. (67)-(61). In as far as H® and H(%are concerned, Heisen-

" berg’s results are identical with those of Fock [43], Peierls [49], and Furry and
Oppenheimer [50].

It has been shown by Weisskopf [64] that the mathématical methods of

Dirac and Heisenberg are from a more directly physical point of view con-

sistent with the following prescriptions, although not thereby uniquely fixed:

s 1. The vacuum energy in field free space shall be omitted.

2. The tharge and current density in field free space shall be omitted.

3. There shall be no correction terms in the energy density which are
of the second order in the field strengths, i.e. there shall be no con-
stant field independent electric and magnetic polarizability of .the
vacuum, -

+ In the treatments of the subtraction problems»disc_ussed thus far, the

, P This assumption, made for reasons of simplicity, is of caurse not the most general
one.

, " The existence of conservation laws fér energy and niomentum is only proved,
’ tﬁough for that part of the energy momentum tensor corresponding with H® and H®
j defined below.

4
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electromagnetic field quantities are essentially considered to be c-numbers.[E
Wherever use is made of quantum electrodynamics (as e.g. in Heisenberg’spe
treatment [52] of the'self-energy of a photon) it is assumed without proof tHat
the customary commutation relations for the electromagnetic field may bef
used. It has to be verified however whether these commutation relationg
and the stbtractions which have .been performed are consistent with eack-
other. And this brings us to a new source of difficulties.

We have indeed to inquire whether we have found in (a), (b), and (c) al}:
the conditions which must be fulfilled to perform in a consistent way th¢
subtractions discussed hitherto. Now, especially in view of a transition td
quantum-electrodynamics, it is to be required that the Hamiltonian systeng. '
from which we started shall still be Hamiltonian after the subtractions havd
been performed:

(d) The subtraction must be a canonical transformation.

Heisenberg’s formalism does not satisfy (d), as has been pointed out by
Serber [66]. Let us call the initial Hamiltonian H, and the quantity intg"
which it is transformed by the subtractions Hy;. Thus Hyr is Heisenberg’§.
Hamiltonian. Now by means of H; we can define the canonically conjugate
variables and quantlze the electromagnetlc ﬁeld in the usual way. 4

the question is whether this consistency still holds after subtraction. Fof
example, the values of the commutators may not change With time; bu

tive of the commutator of the vector potential A and the electric field E &
not only different from zero, but even singular. It may be shown that th
inconsistency would disappear if we would consider the electromagnetif
quantities occurring in the terms H®, H® and H@ of Hu as c-numbersg
Bt the meaning of such an “a,pprox1mate quantization” is obstute sincf®
there is no domain (of frequencies, say) in which the terms H®», H®, H® i ]
H i may be neglected in comparison with H® and H®. In fact, as we shak:
see in discussing the scattering of light hy light (p. 24) we would be i¥
trouble already in the long wave length region if we would make the arb 3
trary cut in the formalism of taking seriously the terms H® and H®, byg
not- the others. As pointed out by Serber, no unambigous meaning ca 4
‘under these circumstances be attached to Heisenberg’s computation [64
of the self-energy of a photon—a particular challenge to any theory, as thg
photon should, on our present picture,'have no inertia.?® 4
While thus Heisenberg’s formalism satisfies the conditions (a), (b), (8
but not (d), one can-also conceive a scheme which is in accordance with (af
(d) but not (b), (¢), i.e. in which one has a canonical but not an invariang

% This self-energy is not only due to the virtual creation and annihilation of pai |
of electrons but also to virtual formation of other particles which can actually be createg
in pairs by electromagnetic radiation.
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theory. Such a'scheme appears to be possible [65] by giving the off diagonal
distance a fixed but arbitrary value different from zero. -

Serber [656] also investigates an alternative possibility of interpretation:
one can consider H; as a kind of pre-Hamiltonian and H,, as the true
Hamiltonian from which the real equations of motion and the actual com-
mutation relations should be derived. However, in perfofming the transi-
tion from H; to Hu one makes, for example, use of the relation E = — A while
the use of Hy as Hamiltonian would yield E = —A + additional terms,
incompatible with the previous equation; moreover the additional terms are
singular. Thus it seems that when one eliminates the infinities at one place,
they turn up again somewhere else. No sclution of the subtraction problem
satisfying (a) to (d) has thus far been given, nor has its existence been proved.
It should furthermore be pointed out that the difficulties just discussed
are in principle independent of-the self-energy difficulties, although a
remedy for the one set, of problems may of course shed new light on the other.

Added in proof. Recent work by Schwinger has brought important
progress in formulating positon theory in accordance with the conditions
(a)—(dy: In Schwinger’s canonical formalism the covariance and gauge
invariance is exhibited at every stage. . .

(¢) The subtraction problem: special cases [61, b2, b4, b7, b8, 59, 64, 65, 65a,
66, 70, 71, 72]

It is with these limitations in mind that one must examine those conse-
quences of the subtractions which give rise to in principle observable
deviations from classical electromagnetic theory. These deviations ean con~
veniently be grouped into two classes.

First, for fields which are weak, but vary in space or time or both, the ,

field equations are no longer the customary second order differeritial equa-
tions but contain higher order space-time derivatives. The modified
equations are still linear, howeyer. The second class comprises the effects
due to the non-linear aspects of the theory, defined more precisely below.
In dealing with either group one is often interested in steady state problems
in which the fields are sufficiently weak and weakly varying to prohibit the
actual creation of pairs, i.e. fields for which the potentials vary less than mc?
over' distances of the order of %/mc [56]. In terms of field strengths thi

means a limitation to values less than E,,; where -

m?c? y
Ecrit ~ Te (1 1)

We will start with- a survey of the linear modifications in Maxwell’s

"equations. An interesting case here is that of the steady electrostatic field.

(It was in fact in connection with an analysis of this problem by Dirac [51]

that the subtraction problem was for the first time raised in its entirety).

The treatment is relatively -simple when the electric charges creating the
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electrostatic disturbance are themselves not electrons. For then one may §.
look apart from phenomena of exchange between external agent and vacuum
distribution and may approximate as follows: Consider ‘the acddemic situa-
tion of a static charge distribution p..(x) in space in the absence of the k
vacuum distribution. The corresponding electrostatic potential ®.. is then g
given by the equation

ADeyy = —4Tpext

The problem now is to find how this equation is modified due to the presence.}
of the vacuum negatons. We then shall have an equation of the form

AP = —4r(pex + p')

where we have to perform subtractions to make p’ finite. Of- course p'f.
depends on p,s itself, as p..: will polarize the sea. In order that this problemg:
shall be truly electrostatic, it is necessary that ®... shall not be too strongly F
varying in space, as otherwise pairs might be formed, and that ®..: shall bef:
brought adiabatically to its actual value. Thus the field strengths are}.
limited by (11). -

This “problem of the polarization of the vacuum has been treated by§
several authors. The essential points were first given by Dirac in hisk
Solvay report [61]. A more detailed treatment is given by Heisenberg [62]/F
who also briefly- discusses the case of fields varying with time. A, moref
complete treatment of varying fields is given by Serber [57], while a simpli-g,
fied mathematical derivation of Serber’s results has been given by Pauli¥
and Rose [68]. In all these papers the Hartree approximation method is}
used and the induced charge and (for varying fields) current distributionsp
are computed up to the order 2. To this same order the polarization hask
also been derived by Weisskopf [64] by using the representation of g¢-numberg
electron wave functions and then applying ordinary perturbation, calculus.f&
This procedure leads to the same results as the prev1ously mentionedf
method. For the purely static case one obtains for p’ in this approxima-: £

tion [64]: 3
fe o 4 & T () e (12a)k
PP ke Lynao " \mi%? o .

Here 5 is the charge density of the vacuum electrons in field free spacef§
which is of course infinite and is subtracted, (Weisskopf’s condition 2, sed
“above). In the series development the A, are numerical constants; Ao is
infinte, but the term with n = 0 must also be subtracted, according to :
“Weisskopf’s condition 3. As this term is directly proportional-to pes,
may be considered with some optimism as renormalizing pe: itself [54]%
The \, with n > 1 are finite. These terms correspond to effects which,§§
according to hole theory, should in principle be observable consequences of[
the presence of the vacuum electrons.
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(9) can now alternatively be written as:

e2, ® h2 "
A@ezt - }l—C- zn;l )\,,, (W A) Aq)mt = -—47rpe,t (12b)

From this form it is mamifest that, as pointed out by Furry and Oppen-
heimer [50], hole theory leads to a deviation from Coulomb’s law. The
deviation from Coulomb’s law and its influence on the Rutherford scaftering
and the displacement of atomic spectral lines has been discussed by Uehling
[69] who shows that the correction to the Coulomb energy has the same
sign as the Coulomb energy itself. For large distances between the charges
the correction é¢an be neglected; for too small distances (12b) loses its
validity due to the limitations imposed on E.. mentioned above. The
nS-levels in a hydrogen-like atom are shifted-downwards by an amount

n-3Z2* Rydbergs (Z = nucléar charge number, a« = Y{37). P,Ds - + »
levels: are much less affected. Thus in particular the doublet separation
-would increase. 'The small deviation which has to be expected, for proton-
proton scattering can in principle hardly be disentangled from the scattering:
anomalies due to the nuclear forces.

It'should be noted that in Uehling’s work no account is taken of exchange.
effects. These calculations therefore hold only if neither of the twoelectric
charges whose interaction is considered are electrons. Thus the evaluation
of the deviation from Coulomb’s law in the hydrogen atom, as performed
by Uehling, needs refinement, for here one of the particles involved is an,
electron. Also the proton-proton interaction would have to be recon-
sidered in view of exchange effects, if we assume the existence of a sea of
negative energy protons.

Thus far we have mainly considered such modifications of the Maxwelk
equations which give rise to effects ~ ¢? leading to equations of the type.
(12) which are still linear. If effects of higher order in e are taken into
account, this linearity is no longer conserved. This implies that the super-
position principle, characteristic of the classical electromagnetic theory- as,
well as of non-relativistic quantum theory, no longer holds. Thus it is a
consequende of positon theory that two beams of light interact with
each other. As a first example of this interaction we have the possibility
of pair creation by two photons of sufficient energy. The cross section of
this effect was derived by Breit and Wheeler [62]. The computation of
this effect as well as of its inverse, the two-quanta annihilation of a frée.
negaton positon pair, amounts to a second order perturbation calculus in
which the term Hof the Heisenberg Hamiltonian (cf. p. 19) occurs as
the -perturbation operator. In the discussion of these effects the terms
H®, H® and H® of Heisenberg do not come into play, since they do not.
depend on the occupation numbers of the electron states. A different,
situation is met, however, when we consider the scattering of light by
,hght [63]. There again the interaction term H® gives a contribution in a,
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fourth order perturbation calculation, due to the virtual formation and
annihilation of pairs. If this term only were taken into account, we ‘would
find the paradoxical result of a non-vanishing cross section for zero fre-
quency. However, it was pointed out by Euler and Kockel [64] and §
Euler [65] fthat, whereas the terms H® and H® do not contrlbute, the
inclusion of H™® reduces the cross section to a value which goes to zero for §
small frequenc1es This result shows that the h1gher order terms of the
Heisenberg Hamiltonian play a vital role in the present form of hole theory, E
as already remarked on p. 20. In the region of large wave lengths one §
obtains [64, 6b]2¢ for the scattering cross section

2\ 7/ n\*1 .
UN(h_c) (?n—c> X _(low frequencies)

For high energies of the photons the cross section has been computed by E
Achieser [65a] who again uses the combined effect of H® ,and H*® and §
obtains

2 4
o~ (%E) -A? ° (high frequencies)
Evidently the cross section will have a maximal value; ¢ ~ (e2/hi¢)* - (h/mc)?,
for A ~ h/mc. Moreover, the cross section for pair production by photon’
pairs is also small compared to (A/mc)? viz. [62]

e2\' (Y [me?) Fieo
) ~ ch)(?n—c '(H)'lgm—cz’ © =

The smallness of both cross seétions in comparison with A? means that the
deviations from the superposition principle are very small indeed over the
entire domain of wave lengths. This result would seem quite appealing in
justifying the Very approximation procedure by which it has been obtaified.
However it should not be forgotten that it follows from a theory which, as
we have seen, is not consistent. Thus we meet again (cf. p. 17) with an

>»io

“ example of an acceptable inference from a formalism which as it stapds is

not, consistent.

In computing such consequences of the non-linearity of hole theory one
can start from the linear field equations and push the customary perturba-
tion theory up to adequately high order. One can also follow an alternative
method, the idea of which can be understood by the following analogy [65]:
the van der Waals forces between two atoms arisé from virtual transitions
of the atomic electrons to higher energy states. From a computation on
these lines one can derive an effective potential energy which represents the |
action of these forces. Similarly one can proceed in the case of the scattering

28 The expressions for « refer to a system in which the photon momenta are equial ¢
and opposite.

-
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of light by light and related problems, i.e. one can derive the results from
an effective energy of the fourth order in the field quantities. However,
the treatment of the van der Waals forces by means of a potential is only
adequate as long as the kinetic energy is insufficient to provoke real elec-
tronic transitions. Likewise the elimination of the pair field via the intro-
duction of effective energy terms is possible only as long as no actual pairs
are created, i.e. as long as the field strengths are smaller than E,...

To find these fourth (or higher) order effective energies one has-argu-
ments of relativistic and gauge invariance as a guide. Indeed to, the effec-
tive terms in the energy for which we are looking, there must correspond
similar terms in the Lagrangian £. But we know that £ must be a gauge
invariant scalar density. Thus one may start by adding to the customary
expression for £ terms of the fourth, sixth, . . . order in the field strengths
with as yet arbitrary coefficients (which depend on such constants as e, A
and the mass of the electron), but such that these terms satisfy the invariance
requirements. ¥rom this pseudo-Lagrangian we then find the energy den-
sity in the standard way. In the absence of negatons with positive energy
and of-positons, the terms additional to the ordinary Maxwellian energy
density are then due to the vacuum negatons. The contribution- of the
latter to the energy density is given by (cf. loc. cit. [64] equ. (6))

D W — eV (13)

where the summation goes over all states 7 of negative energy, characterized
by their eigenfunction y; and energy W, - V is the potential of the external
electrostatic field, if -any. Now the whole problem .consists of course in
fixing the unknown coefficients mentioned above. Invariance arguments
require that the coefficients be independent of the particular form of the
external fields. Consequently one chooses for the fields simple cases in
which the computation of (13) is not too complicated. Of course (13) is
again infinite; subtractions are performed, and the coefficients are fixed by
identification of the remaining finite part of (13) with the additional terms
in the energy density written in terms of external field strengths.?” This .
procedure was followed by Euler and Kockel [64] and Euler [65] to fimmd the
fourth order term describing the scattering of light by light. In the treat-
ment by these authors the additional effective energy terms are taken to be
a power series in e. In a later paper by Heisenberg and Euler [66] no such
series development is used, and the problem of the additional effective
terms in the region limited by (11) is solved exactly.

A more simplified and systematic treatment of the effective terms has
+ been given by Weisskopf [64], who also discusses the same problem for the

¥ It should be noted that the linear modifications occurring in (12b) involve deriva-
tives of the field strengths. These therefore lie beyond the procedure sketched above

- where it is assumed that the fields are so slowly varying that in the correction terms on
the energy density all dependence on derivatives'of field strengths may be neglected.
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various effects which are discussed in this section all have their counterpart

case of spinless charged particles. It should in fact not Be forgotten that the

in the theory of Bose-Einstein particles. Thus there is an infinite polariza~
tion of the vacuum, as was pointed out by Pauli and Weisskopf [31].
Furthermore two interacting beams of light of sufficiently high frequency
can create pairs of Boge-Einstein particles. Also there will be’a contribu-
tion to the scattering of light by light due to virtual pair formation of such
particles, ete. (cf. also Heisenberg [80]).

Another characteristic effect of the non-linear type is the coherent 1
scattering of light by electrostatic fields [68, 69]. The actual calculation
of this effect is very intricate and has as yet been performed only partially
[70, 71].

Prescription 2 (see p. 19) implies that when we ask for the expectation

value &g of the operator ep = ¢ / ¥ T vdv for the total charge in a field

free box with volume @, the answer ig gg = (N_ — Ny)e, where N_ and N,
are the number of actually occupied positive energy negaton states and ¥
positon states respectively. Thus the charge per unit volume is on the ‘
average éo/Q. The discussion of the fluctuations around this mean value
requires special care. In fact, if we consider a “sharp” box, i.e. a box
whose boundary represents an infinitely high potential wall for the enclosed
electrons, and_then ask for the fluctuations around the mean value of the
charge density, the resulf is infinite. This is of course riothing but a special
case of the Klein paradox: pairs will be created due to the potential jump
at the boundary. We have therefore to do-with a surface effect. In a
“smooth” box, i.e. a region in space whose boundary is a smooth potential
for the enclosed electrons, the fluctuations can be made arbitrarily small 1 :
by adequately smoothing out these potential curves [72].

These related topics are dealt with in detail in a paper by Bohr and
Rosenfeld which is in course of preparation. The main aim of thispaper is
to establish the domain of correspondence of relativistic quantum-theory
with classical theory, similar to the correspondence argument for the non- 1
relativistic quantum case (cf. section IIIb). A preliminary abstract.of this
work is included at the end .of this paper. ’ oo

(d) The self-energy problem in relativistic quantum theory [T8]

The fluctuation phenomenon can also be formulated by saying that
ea? # &2 This effect is of particular interest for the discussion of the self-
energy of the electron, for the électrostatic self-energy is the expectation
value of an operator closely connected with ee®. Evidently the exchange
effects of hole theory introduce new aspects of the self-energy problem. In ¥
order to see clearly the contrast with non-relativistic quantum theory, it is
advantageous first to consider briefly the academic case of the one particle
theory.
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In this case the Hamiltonian of the system cons1st1ng of one electron and
its electromagnetic field is given by?

H = /wT(ca-p+ﬁmoc”’)¢dv+ V+81_arf(E2+H2)d'-’
+ / o(div E — 4xp)dy

V = / (op — s-A)dv (14)
withp = ey T ¢, s = e e ; ¢ and A are the scalar and vector potential
respecti"rely. The computation of that part W of the self-energy which is
proportional to e? is performed by considering V as a perturbation and using
the well known formula for the second order contribution to the energy:

(0, 0|V]5, k) (¢, k;| V[0, 0)
W= E B, — Bi— hw; (15)

Here (0, OlVli, k;) is the matrix element for a transition from the initial

-state in which an electron with momentum p,, energy E, and no quanta are

present to an intermediate state in which the electron has a momenturm p;

and energy E; and one quantum with momentum #k and state of polariza-’

tion 7 is present.?® On account of momentum conservation p, = p; + hkj,
whence the intermediate states may be characterized by p;, spin and sign of
energy of the electron, and state of polarization of the quantum. The com-
putation of W has been discussed by Oppenheimer [75] (contribution of the
term — [sA dv for electrons bound in an atom), Waller [76], (same for free
electron), and Weisskopf [77, 78]. For p, = 0, E, = m.c? the result is, cut-

ting off provisionally in momentum space at a large P = g:
(16)

which is identical with the non-relativistic result (8). Of course, the use of
a.non zero a in relativistic theory has no actual meaning any more, as rela-

28 The last integral on the right hand side has the value zero. The occurrence of
this term is connected with the special role of the relation div E = 4rpin the Hamiltonian
scheme.

29 It should be noted that also as regards the electrostatic self-energy—which is the
expectation value of f(p¢ — sAn)dv where Ay, is the longitudinial (curl free) part of the
vector potential—we use (14) for convenience instead of following the more customary
procedure of separating first the Coulomb energy operator by means of a canonical
transformation. This means that j takes the values 0, 1, 2, 3, wherej = 2, 3 denotes the
usual transverse photons, j = 0, 1 the “ghost quanta” corresponding to the quantization

of ¢ and of A Tespectively. In (15)e; = +1forj = 1, 2, 3; ¢, = —1 for j
= 0. For details of this mode of quantizing the electromagnetic field see ref. [73].
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tivistic quantum theory in its current form is based on the concept of the
point electron [79]. Equation (16) therefore serves only to indicate that W
involves a quadratic and a linear infinity (as gy ~ a=1).

Turning now from one particle theory to hole theory, one defines the
self-energy proportional to e? of one negaton (of positive energy) as the dif-
ference in energy of the system “vacuum + one negaton”: Wog.y1, and the
energy of the vacuum: Wo,.. Describing the self-energy, as in (15), by means
of virtual emission and absorption of quanta, one sees that the difference of
W aacr1 and W, is due 1o the fact that in computing Wq.., the clectrons in
the sea may (as a consequence of the exclusion principle) not jump into the
one actually occupied positive energy state. On the other hand in W g, all
transitions of our one negaton to other positive energy states appear which
transitions are not present in ,,.. Thus it follows immediately that, in the
notation of (15), we now have3®?

Wi, = Wosers — Won, = z ©, 0| Vi, k;)(is, K VI0, 0)
4]

E, — E., — hy;
. (i_, OIVIOv kf (07 kiIIVIi—-' 0)
. z,_J & E;_ = Eo - hV,' (17)

Here 4, denotes an electron state with momentum p;, specified spin and
energy E;, = ¢ +/p + m,%?; momentum conservation yields:

Po = Di, + ik; = p;. — hk/

Wiots . was first computed by Weisskopf [78]. The result is,3! again for
p.=0

3e? L my2ctat
Wholeth. = l-"c2 = §7rﬁh_c‘mac2 In mod (1 + ,\/1 + - -c_“>

0

2
—_——— s L. 2
I he ™ (18)
In view of the fact that, as pointed out previously, relativistic quantum
theory gives to a certain extent reasonable results if one puts m, equal (or
practically equal) to the experimental mass of the clectron, it is suggestive

30 (15) and (17), with appropriate V, are general formulae for the self-energy of any
Dirac particle coupled with Bose-Einstein fields [74].
31 Weisskopf uses an alternative form for V:

V=C'——/SA_Ldu; C—lfp(x)p(x)ddv

In loc. cit. [78] the expectation value of C is called electrostatic self-cnergy, that of
—JfsA dv the eclectrodynamic self-energy which is subdivided in the “spin” and
“fluctuation’ energy; it is of course only the sum of all these parts which enters in the
final results. Taking for m, the nuclear mass, as we would have to do in computing the
electromagnetic self-energy of the proton, it is remarkable that the “finite term’ in (18)
is of the order of magnitude of the proton-neutron mass difference.
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that, whereas ug"® > m, for a ~ e*/mc?, u <K m, for this same a. Indeed
one possibility of understanding the still unjustified identification (or
approximate identification) of m, with.the experimental mass would be that
a consistent theory would give a field contribution to the mass which is < m,.

A comparison of (18) and (16) clearly demonstrates the profound differ-
ence between hole theory and non-relativistic (or one particle) theory: just
as there is no correspondence between non-relativistic quantum theory and
classical theory as far as problems like that of the self-energy are concerned,
there is, with respect to such problems, again no correspondence between
relativistic and non-relativistic quantum theory.

It is noteworthy that the existence of the logarithmic divergence in (18)
can be understood solely from the fact that the self-energy for a negaton and
a positon with same momentum should be equal; using such general argu-
ments it can be shown that the higher order contributions to the self-
energy also diverge at most logarithmically [78, 74]. Such arguments can
moreover be extended to the coupling between Dirac particles and other
fields ‘of the Bose-Einstein type [74],%2 where again the symmetry of the
theory between particle and anti-particle is a guiding principle. It may be
remarked here incidentally that symmetry considerations are quite generally
of great help in hole theory in simplifying calculations and in order of magni-
tude estimates. In particular a theorem due to Furry [87] may be men-
tioned; this states that in the calculation of electromagnetic interaction
effects, in which one follows the usual perturbation procedure by starting
from the free particle picture as a zeroth approximation and in which nega-
tons and positons appear only virtually, the odd order contributions vanish
identically.

A result like (18) recalls the great caution which is needed in judging-
any approach to the problems of elementary particle physics in which the
many-body character of the problem is-not taken into account from the
outset. But it is clear that considerations based on only the first approxima-
tion hardly constitute a trustworthy basis for a complete assessment of what
precisely the divergence difficulties are. In fact Racah has suggested [82]
that taking into account the higher order approximations of the self-energy
might ameliorate rather than worsen the situation and that, on hoie theory,
the self-energy even might become finite if a certain condition is imposed on
e?/hc.®® It should not be forgotten, however, that the legitimacy of the

32 Non-linear terms in the Hamiltonian due to such -couplings are discussed by
Heisenberg [80].

3 Racah has partly computed the second order self-energy (~¢%). In the present.
notation his calculations amount to computing the fourth order contribution due to
f(po — sAy)dv. There is of course also a-cross term of that operator and — [s4 ;dy
and a fourth order term of the latter qperator. Qualitative discussions of the higher
order approximations have also been given by Mercier [83] which, inasfar as his con-
clusions on the types of divergences occurring in higher order are concerned, are not.
correct however.
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procedure of computing the self-energy by a power series development in §
e*/hc still awaits proof or disproof (cf: p. 12). "
It is interesting to compare the self-energy problem in hole- theory g:
with the same problem for charged Bose-Einstein particles. Calling their !
mechanical mass M,, the electromagnetic self-energy is infirst approximation ]
~ e*h/M ca?, irrespective of whether these particles are of the (pseudo)
scalar or (pseudo) vector type [78,.84].3¢ As in the case of the electron, the
1/a infinity, occurring in classical and non-relativistic quantum theory,
again disappears from the scene. As pointed out by Bohr [85], it is note-
worthy that the electromagnetic self-energy is again << M,c? if: (a) the
mechanical mass M, is roughly of the order of 100 times the electron mass,
a value which is suggested from evidence on the meson, and (b) one intro-{
duces as an orientation a cut-off distance a ~ ¢2/mc? as for the electron.
Also in the Bose-Einstein case the quantum description of the interaction}-
of charged particles and the electromagnetic field presents some basic dif-}
ficulties. Indeed it is characteristic for charge-bearing Bose-Einstein ﬁeldsij
that upon quantization there occurs in the commutation relations for these§
fields the time component of the electromagnetic’ four vector potential.f.
In the case of the self-energy this will be the electrostatic proper field poten-§
tial. If the approximation procedure is followed one can look apart from}
this electrostatic potential in the commutation relations when one goes tof
the order e? in the self-energy. But this can no longer be done in higherf
approximations. Now ‘the proper field potential is highly singular, and it}
follows from the work of Schiff, Snyder, and Weinberg [86], who investigated§
some simple cases of external electrostatic potentials, that under such
circumstances a consistent quantization of the formalism meets with basic
difficulties. Thus it is questionable whether in the present stage we are}
able to formulate the self-energy problem in a consistent way. ‘
"~ But let us get back to the electron. Thus far we have only considered J
the self-energy for an electron with momentum zero, and the quéstion now
arises what the quantum mechanical analogs are to the ¢lassical transforma-§
tion relations (4) for an electron in uniform motion. This question must¥
be put somewhat differently in quantum as compated to classical theory: in
the latter case we ask for the energy and momentum of an electron withf
prescribed (constant) velocity »; in quantum theory on the other hana (a
least in the customary representation which we have used here) the momen-$
tum is prescribed in zeroth approximation. Thus we have to ask for thel
energy, the velocity, and the correction to the momentum corresponding td]
a given zero order momentum p. On the lines of the discussion followed]
hitherto we will view this question again in the light of the approximation§
procedure, and thus we have to ask in the first place what the self-energy ink
the e? approximation shall be for an electron with momentum p. Now b

3 For contributions to the self-energy of such particles due to couplings with other}
than the electromagnetic fields, see [84]. :
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applying an adiabatic transformation’it can be seen?¥ that W is given by
' (2)

¥ (p¢ — sA)dv ~ (19)

where the symbol —(2)— means that that part of the expectation value of
the operator should be taken which is ~ ¢2 The integrand in (12) is a
scalar®® which {as we are considering expectation values) does not explicitly
depend on time. Thus the transformation properties of W are determined
by those of the volume element for which dv = dv, /1 — g% According
to the foregoing reasoning this has to be translated into momentum language,
while to the approximation considered we may put for v the ‘“unperturbed”
velocity cp/+/p? + m,%ct. Hence the energy E of the electron with momen-
tum p is

2 2.2 ____’i"i__ ’
’ = VP! + mJtct + Y/ (42/)
It can be shown that an equation of the type (4a’) also holds for the coupling
of Dirac-particles with other than the electromagnetic fields [74] and for the
self-energy of Bose-Einstein particles [84].

Equation (4a’) looks entirely different from (4a) but yet is intimagely
connected with it. In fact all corresponding quantities. occurring in both
formulae have the same structural definition from a covariance point of
view. Thus the self-energy is, classically as well as quantum mechanically,
defined as the spatial integral over the 44-component of a tensor density,
whatever the basic differences of quantum mechanical origin between u and
pra are. The only further difference between these two quantitiesds that
the former is—whereas the latter is not—computed by using an approxi-
mation procedure. This implies that the perturbation energy shoild be:
small:compared with the unperturbed energy, that is—an over-optimistic
assumption—in the present stage

I
P <1 (20)

With this in mind we can from (5) immediately derive (4a’): express v
in p by using (5b) and neglect terms of higher than the first order in u/m,.
Substitute the expression thus obtained for v in (5a) and go again to the
first order in u/m,. This gives (4a’).

38 Cf. loc. cit. [77] p. 30, Ipc. cit. [78] p. 80.

3 The approximation procedure rests on the development with respect to the rela-
tivistically invariant parameter e2/hc. Hence in discussing ¢ovariance properties it is:
allowed to consider separately the contributions to the self-energy in a given approxi-
mation. Moreover the subtractions performed on hole theory do on account of their-
very invariance not affect the present argument so that one can deal with W and Wiaot. .
at the same time.
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It should be pointed out that the compulation of W as an integral over
momentum space involves an ambiguity, as there are different ways in
which one can take together the contributions from the various parts of
this space. (This statement of course has a meaning only when one confines
oneself to a finite part of momentum space, as is for example useful in com-
paring two different self-energies.) A natural way of procedure in the case
of zero electron momentum is to take first the contribution of a spherical
shell with center at the origin and then take the sum over all shells. [f
one then performs the explicit caleulation for a moving electron one should,
in order to obtain (7a/), take the sum of the contributions of the Lorentz
transforms of these shells. In computatlions of the self-energy for p £ (
one often takes a sum over spherical shells {70, 77]. The latter procedure
is related to the former in a manner similar to the relation of the classical
Abraham to the classical Lorentz electron. Moreover, as has been pointed
out in [74], p. 45, caution is also needed in computing the self-energy for a
moving electron from a formalism to which one previously has applied
a contact transformation to separate off the electrostatic self-energy. As
this transformation itself is not invariant the connection between domains
in momentum space referring to the electron at rest on the one hand, and

" in motion on the other, is no longer given by a Lorentz transformation.

The p occurring in (4a’) is still the zero order momentum. On account
of the coupling of the electron with the electromagnetic field there wil
however be an electromagnetic contribution not only to the energy, but alse
to the momentum. The electromagnetic momentum has been discussed by
Kemmer [87].37 Ilis results can not directly be correlated with the expres
sion (4a’) for the self-energy. The reason for this is that Kemmer uses the
method of integrating over spheres also in the moving system so that the
covariance properties do not come into evidence. Finally, there is also an
“clectromagnetic velocity,” defined as the contribution ~ e? to the expecta-
tion value of the velocity operator «. Between these three quantities
electromagnetic energy, momentum, and velocity there exist relations whick
are determined by the tensor transformation laws (5). We hope to come
back elsewhere to this problem, and will merely state here that in relativistic
quantum theory the problem of the self-stress will again occur along with
the self-energy question. One will have finite self-energy and zero self-stress
as requirements for a consistent relativistic quantum theory, quite similar
to the situation in classical relativity theory.

Thus far we have mainly discussed the self-energy of free electrons,
the effect of binding, say in a Coulomb field, has as yet not been touched
upon. This latter problem is of considerable interest especially in view of
recent experiments which show that one of the most important consequences
of the Dirac theory needs refinement: it was found by Lamb and Retherford

37 The electromagnetic momentum is the quantity P® of Kemmer; cf. loc. cil. p. 69

for the one electron theory and p. 703 for the positon theory.
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~ [88] that the 2814 level of the hydrogen atom which should, according” to
 Dirac theory, be degenerate with the 2P14-lével, actually lies higher by an
~ amount of about 1000 me/sec. (= 0.033 cm.~!). Moreover it turns out
{ that. there is a similar shift for the deuterium atom [89] which within the

limits of accuracy of the experiment is equal to that of the hydrogen case.

The interpretation of these phenomena would therefore seem to involve

features which are intimately linked up with, or are uniquely accompanying, >
 electromagnetic phenomena.” While the deviation from Coulomb’s law due
| to the polarization of the vaduum would not seem to give an account of
| these experimental results.?® this effect may, apart from other possible
" non-Coulombic interactions between electron and proton, be linked up with
a difference in self-energy of the electron in the 2814 and 2Pl4 state.’®
Recent calculations by Bethe [90] and Kramers [91] seem to disclose the
possibility of interpreting this shift along these lines. The question is at
present not quite settled, since the above mentioned calculations are made
with'the help of a one particle picture. The detailed investigation of a-
relativistic quantum ‘treatment is under investigation by various physicists.
The underlying idea of the relativistic treatment may briefly be indicated
beloi. 0 )

When one computes the self-energy of an electron bound in a hydrogen
atom, the result is a logarithmically divergent integral. The singular part
of this integral is identical with that occurring in the expression for the )
self-energy of a packet of free electron waves with the same momentum
distribution as in the corresponding bound state. Now one decomposes
‘the self-energy of the bound electron into two parts; the first is the self-
energy of the free wave packet. This part is discarded as it can be con-
sidered to renormalize the mass of free electrons from its value m,, occurring
in (9), from which we started in a zeroth approximation (mechanical mass)
to its true value (experimental mass). It is only this part which is singular.

The remaining part is finite and is identified with an observable level shift.

. The procedure thus followed can be described as an attempt to formulate
a structure independent theory®! on relativistic quantum lines. It is quite
important for this procedure that the sel-energy transforms in the way
indicated in (4a’). For (4a’) can in the approximation e? be written
¢ V/p? + (m + p)ic?, and this would at first sight seem to make possible an

32 The exchange polarization has as yet not been discussed completely, cf. p. 23.

3 Discussion remarks by Oppenheimer, Weisskopf, and Schwinger during the Con-
ference on the Foundations of Quantum Mechanies at Shelter Island, sponsored by the
National Academy of Sciences.

40 The results mentioned in the following paragraph refer to independent investiga-
' tions by Professors Lamb, Schwinger and Weisskopf. Witheut kind communications
[ of their preliminary results the writirig of this paragraph would not have been possible.
I am also greatly indebted to Professor J. R. Oppenheimer for clarifying discussions on
~ the subject. ’

41 See p. 3 for the notion of structure independence. . R
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unambiguous identification of the self-energy p-with a mass. It should not
be forgotten, however, that the concept of electromagnetic mass is ambiguous ;
in a relativistic theory. This we have seen in classical relativity. (Note %
that (4b) “looks ¢ovariant,” but that (4a) spoils the covariance.) The
corresponding situation in quantum theory can only be understood by study-
ing the behavior not only of the electromagnetic self-energy, but also of the '
_electromagnetic velocity and momentum under Lorentz transformations. &
In particular the investigation of the self-stress will be of importance for an |
analysis of the ambiguities in the subtractions discussed in the previous
paragraph (cf. p. 6). .

However this may be, it is clear that great progress can be expected+ r
from the developments outlined above. On the one hand we will be better- - L
able to judge whether a more refined definition of observable quantities
may help us out of many difficulties. On the other hand it will be a severe
test to any proposed modification of the theory of the electron whether it %
will be in agreement with such phenomena as the line shift in the hydrogen |
atom. Also new evidence may be obtained for the degree of reliability of”
the power series developments in e2/kec.

A more refined investigation of.the singularity occurring in the radiative L
correction for scattering of an electron in an electrostatic field of force®
(cf. the footnote on p. 12 and also p. 35)- has shown that this singularity
too is identical with that of the electromagnetic mass. Hence the same: §
“renormalization of the mass’” mentioned above will remove the infinite §
part of the radiative correction [109]. It is also clear that the infinities in
the line shift calculation and in that of the radiative correction are inti-
mately related to each other. The only difference is that in the one case
we have to do with the self-energy correction to a bound state, in the other
with a corresponding correction to a continuum state.

Recent measurements of the hyperfine structure of the bydrogen and
deuterium atomic ground state [92] seem to reveal that, there too, deviations |
from the theoretically expected values exist. It seems possible to account §
for this effect on similar lines, as in the case of the fine structure mentioned }
previously [92a], that is, one can evaluate the self-energy of a bound electron
in an external magnetic field and compare it with the self-energy for the
same state in the absence of that field. The difference is then interpreted §
as an observable level shift.

(e) Approaches to a consistent relativistic quantum theory

Finally we will briefly survey how the various attempts to attain a
relativistic theory of the electron (discussed in section ITc) have developed &
in relativistic quantum theory. The foregoing discussion has shown that a s
consistent classical relativistic theory does not give any guarantees for' j§
its quantum %QJ}nj;gr( part. Moreover, in so far as the following considera- §i
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tlons deal with a one particle picture, no coficlusions can be derived there-
from concerning a quantum theoretical destription which is truly relativistie.

Theory of Poincaré. Since a model with non-zero radius is essential
here, and no déscription of the cohesive forces in terms of field equations is
given, it is difficult to see how Poincaré’s idea can be incorporated in a
quantum theoretical description. No attempts in this direction have been
made.

N-Limiting process; theory of Dirac. (a) One particle theory. As already
pointed out by Wentzel [9], the A-process enables us also in quantum
theory to eliminate the 1/a electrostatic infinity in (8). The theory was

brought into Hamiltonian form, suitable for quantization, by Dirac [11, 12]. .

In order to eliminate the 1/a? (or ﬂ)w kdk) infinity in (8), Dirac introduces
[93] what amounts to photons of negative energy, as aTesult of which inte-
grals of the type ‘A * kdk are replaced by f _+: kdk = 0. Higher order quan-

tum contribubions have been considered by Eliezer [94]. While this recipe
enables one to eliminate certain divergences at the high frequency end, it
brings new trouble in the domain of low frequencies. A naive treatment of
the scattering probability of electrons in an electrostatic field under the
emission of quanta of large wave length gives a divergent result, due to.a
singularity at the infrared end. A more refined procedure shows that
this singularity is due only to an inadequate mathematical handling of the
problem on the one hand, but brings in a new singularity at the ultraviolet
end on the other, thus reducing whatever inconsistencies there are in this
problem to the ultraviolet catastrophe, ([26], see also p. 12 and p. 34).
This step means a definite advance because an infrared catastrophe would
imply a failure of the correspondence principle in a domain where its
validity is unquestionable. Thenegative photon device now eliminates also
in this problem the ultraviolet, but brings in agajn the infrared catastrophe
[95].

A similar situation is met in the theory of Heiiler [96) where, in aiming at a
descrlptlon of radiation damping.in quantum theory, an algorlthm is devel-
oped in which all those virtual transitions (*round-about transmissions’’)
leading to infinite self-energies and to infinite contributions to transition
probabilities are discarded. Again, no ultraviolet catastrophe, but instead
an infrared catastrophe [97].

(b) Hole theory. Here a basic reformulation is needed [93] if one intro-
duces negative energy photons for if these were coupled to negative energy
electrons, the electron sea would evaporate. However, as observed by
Pauli [98], to whose beautiful review article we refer for a detailed exposition
of Dirac’s ideas, the combined application of negative energy photons and
\-process does not enable us to eliminate divergences of the type (18); cf.
loc. cit., p. 204. The same is true in the equivalent procedure of combining
negative energy photons with Riesz’s method [99].
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In a later paper Dirac has suggested a program [100] in which also the
A-process and negative energy photons. are employed, but in which power
series developments in e2/kc are no longer necessary. This interpretation is
in a too early stage to judge to what extent it may meet the difficulties out-
lined above. b

Action at a distance. While a detailed investigation of the self-energy
problem on quantum theory has not beén carried out so far, an interesting
result has been obtained by Plass [101], who treated the black body radiation
from this point of view. It turns out that one can find a transcription of the
degrees of freedom of the electromagnetic field, as treated by Rayleigh and
Jeans,In the “corporate” degrees of freedom. These degrees of freedom-are
due to the existence of couplings, requiring a finite time for their propaga-
tion, between the particles in the wall of the black body cavity. . They
appear superposed 'on the three intrinsic degrees of freedom attributed by
classical mechanics to each particle. The corporate degrees of freedom (of
which there are infinitely many) occur only if the distance between the
particles is less than a eritical amount which increases indefinitely with the
strength and number of interactions between the particles; for two'electrons
the critical distance is the classical electron radius.

Two-field theories. These have been investigated in [74]. The general
idea is first to quantize the theory and then to determine the singular parts
in the electromagnetic self-energy on the one hand and in the self-energy
due to the short range field (“f-field”’) on the other. One then examines
whether compensation is possible such that the total self-energy becomes
finite. As ffields the various types proposed by Kemmer [102] were
investigated. On a one particle theory no compensation is feasible. On
hole theory, relativistic compensation can, at least in first approximation,
be achieved by assuming the f-field to be of the scalar or pseudovector type,
but not if it is of the vector or pseudoscalar type. (In the latter cases one’
can eliminate the singularities by taking subtractive fields (ef. p. 10) but
the non-positive definiteness is, especially on hole theory, a serious difficulty.)
In view of (20) it is interesting to note that the self-energy is << mc? if the
range of the field is ~ 103 cm. A general feature of theories of this type is
that the quanta of the f-field have a very short life (~ 102 sec.) for décay,
into a negaton-positon pair. The theory has no direct correspondence to
the classical two-field theories (cf. p. 10) as a result of the reversal of the
order in which the elimination of the divergences on the one hand and the
quantisation on the other hand is performed.

Also i‘nvestigated were the consequences of assuming the inseparability
of the electromagnetic and the f-field, so that for example the proton also is
the source of such a field. On these lines a reasonable theoretical value for,
the proton-neutron mass difference could be obtainéd. The value of the
J-field range which is needed for this purpose (a few times e?/me? would, due
to a corresponding deviation from Coulomb’s law, yield a contribution to the

36




e

line shift in the hydrogen spectrum ‘of the order observed by Lamb and
Retherford [88, 89]. . However, such a value for the range would seem to be
incompatible with our present notions of symmetry properties of ‘atomic
nuclei [103]. But if one restricts the application of the f-field to the electron
only the formalism is consistent.

Non-linear theories. In so far as it is required that the theory be unitary
in the restricted sense (see p. 10), the non-linear theories have failed. Con-
sidering the electron to be a point particle (in a suitable representation)
the coordinates of which are taken-as quantum variables, Pryce [104] has
shown that the commutation relations between position and momentum
variables of the electron are incompatible with those of the field variables
if one defines the electron momentum as the spatial integral of the field
momentum density. Thus on the present scheme momentum and energy
cannot be entirely of electromagnetic origin.42 Moreover, it is not possible
as was sometimes believed to deduce the spin of the electron froni-ts electro-
magnetic properties, as one might be tempted to try on a unitary program.
Finally, it is impossible to derive electromagnetically the existence of
states of matter having negative energy [104], so that the theory would not
involve a mechanism for the production of pairs similar to that of the Dirac
theory. 'Indeed the negative energy states are of course intimately related
to the occurrence of a term fm in the wave equation for the electron, and
the situation is, so to say, that on unitary theory one can construct the
factor m, but not the factor 8. Thus in equation (9) neither « nor g can
be reduced to electromagnetic entities, which emphasizes once more the deep
dualism of the present theory of the electron.

Another possibility is to abandon the idea of unitarity but stick to that of
non-linearity, thus retaining the gm, term in the Dirac equation but making
the electromagnetic field term in the Lagrangian non-linear [105].

V. CoNcLUDING REMARKS

Along with the development and progress of our description of physical
phenomena, the fundamental problems concerning the electron as an
elementary particle thus appear to require new points of view for their
solution. It may be hoped that further experimental data, especially on
high energy phenomena, will further deepen our insight into the questions
pertaining to the electron as well as other elementary particles and especially
to the question what one really has to mean by the concept of elementarity
itself. The lack of our undqrstanding of the relative properties of the grow-
ing number of fundamental particles is indeed in a sense as unsatisfactory as
chemistry would be without & periodic table. Moreover, the recognition of
fundamental connections between the particles might well clarify apparent
inconsistencies of our present picture. As observed by Bohr [85], a sug-

© Quite apart from the divergence difficulties, similar inconsistencies would also
arise in attempting to attain a unitary theory within the framework of a linear formalism.
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gestive éxample of such a situation is found in the neutralization of the
electron sea by the proton seas and in the possibility of compensating the

negative energy densities in space due to seas of Fermi-Dirac particles by the

gero point field energies of Bose-Einstein assemblies.

In discussing the'synthesis of relativity and quantum ideas we have con-
fined ourselves to special-relativity. General relativity has thus far found
its main application in phenomena concerning matter in bulk. But we will
sooner or later be confronted with ‘thga problem of the role of gravitational
effects in elementary particle phenomena. Considering the limitations
inherent in the present special relativistic quantum’ theory, it would seem,
from well-known order of magnitude considerations, that we have not yet
been able to-probe deep enough into the phenomena in which small distances
are involved to be able to judge this question at its full value.

In conclusion, we have to see in the very occurrence of the infinities a
starting point for new developments. The future will tell whether further
progress will reveal the necessity of a further renunciation of the unambigu-
ous use of some of our physical concepts in the region of high energies and
correspondingly small distances [108].

December 1947.
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FIELD AND CHARGE MEASUREMENTS IN
QUANTUM THEORY

BY N. BOIIR AND L. ROSENFELD

The manuscript of this paper, which will shortly appear in the Mat.-Fys. Med. of
the Kgl. Danske Videnskabernes Selskab, was wrilten already in 1939, but its publication
has been delayed due to the events of later years. We are indebted to Professor Bohr
and Professor Rosenfeld for the opportunity of reading the manuseript and making an
abstract of it which is here included with their consent.—John A. Wheeler.

THIs paper analyzes the question how far measurements of clectromagnetic
field quantities and electric charges are limited by typical quantum mechani-
cal fluctuation phenomena. The first half considers the consequences of
the field fluctuations of quantum electrodynamics, and the second deals
with the charge fluctuations of pair theory. The purpose of the analysis is
to clarify the logical aspects of the definition and use of coneepts compatible
with the mathematical formalism, and thus to bring out some aspects of
this formalism which might otherwise have escaped attention, and which
are fundamental features of its logical consistency.

The paper begins with a review of the earlier communication of Bohr
and Rosenfeld (see p. 13) on the question of measurability of electro-
magnetic fields. It is emphasized again that suiltably constructed test
bodies—to the extent that one can look apart in the measurements from
their atomic constitution—permit one in idealized experiments to determine
field quantitics with just the precision claimed by quantum electrodynamic
theory. In particular, the average value of a field quantity over a finite
space-time interval can be found with arbitrary accuracy. The same is true
of determinations of values of two different field quantities over the same
space-time interval. However, reciprocal uncertainty relations in genera!
exist between the values of field quantities averaged over two different
space-time intervals. About this complementary character of the two

quantities in question the analysis of the idealized experiments yields the *

same conclusions as does the formalism of electrodynamics.

The earlier considerations of simple space-time averages of field quanti-
ties are extended. In particular the mcasurability of the electric charge is
considered. For this purpose one considers the case where (1) the test
bodies employed envelop a certain closed volume, (2) the thickness b of the
test bodies tends Lo an infinitesimally small value, and (3) the partial test
bodies are connected by way of suitable levers with a single external device
for the measurement of force or momentum. The connections are made in
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such a way that one obtains the value of the normal Jomponent of the
electric field integrated over the surface in question. It is shown that this
integral can in principle be determined with an arbitrary accuracy so far
as concerns any possible limitations imposed upon the measurement by the
quantum theory of fields. It is therefore concluded that the determination
via the theorem of Gauss of the elegtric charge enclosed within the surface
offers no difficulty so long as one disregards the consequences of the phe-
nomenon of pair creation for the measurement. -

That the measurement of the charge contained within a region of space
tahnot be made with arbitrary accuracy is, however, the conclusion reached
by Heisenberg (Sdchs. Akad., 86, 317 (1934)) through an analysis in the
light of pair theory of the fluctuations to be expected in such a region.
From his paper.it furthermore follows that the fluctuation of charge depends
not only upon the magnitude of the volume itself but also upon the sharp-
ness b with which the boundaries of this volume are defined. In the case
‘Where the product of the velocity of light and the interval T during which
‘the mean value of the charge is taken is smaller than both the quantity b
and the distance /mc, the mean square deviation (Ae)? of the gharge from
its expectatior value is given by the expression:

1! ey = (electronic charge)? X (surface of enclosure) )
‘ ~ {thickness b of test bodies) < (velocity of light times
! which define enclosure time of measurement

lie remainder of the paper of Bohr and Rosenfeld is devoted to a discussion
fof the physical significance of the charge fluctuations implied by this formula
and a derivation of the formula directly from an analysis of the measuring
rocess itself. It is thus shown that the possibilities of measurement con-
liaimred within the framework of the theory of fields and pairs in principle
ermif a determination of the charge contained within an enclosure ‘with just
Rhe accuracy specified by the equation in question, again subject to the
ondition that one may look apart from the atomic constitution of the
sneasuring devices.

§ On the question of the origin of the charge fluctuations, attention is
firawn to the earlier view expressed by Oppenheimer (Phys. Rev., 47, 144
£(1935)), that these charge fluctuations are not only inseparable from but in
gact due to the zero-point fluctuations in the electromagnetic field itself.
fThe contrary conclusion is reached by Bohr and Rosenfeld. They show®
$hat the charge fluctuations-arise entirely from the pair field. The absence
®f any ‘contribution to the chafge fluctuation from the zero-point fluctua-
gions of the electromagnetic field is indeed already evident from their
$heorem about, the exact measurability—within the framework of pure
fquantum electrodynamies—of the surface integral of the normal component
bf the electric field. -

d . The uncertainty- in- the value of the Gaussian integral—and therefore
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in the value of the included charge—is found to be due to the effect of
pairs unavoidably created by the measuring device itself. This phenomenon
shows up when one considers in detail a device composed as mentioned above
of a large number of small charged test bodies arranged to surround com-
pletely the volume under study. Specifically, Bohr and Rosenfeld point
out:

a. That the typical charged test body receives a normal displacement
in the course of the measurement;

b. That the displacenient of charge creates a supplementary electric
field within the region occupied by the test body itself;

c. That this electric field will in general disturb the infinite distribution
of negative energy electrons and bring into existence pairs of positive
and negative electrons;

d. That the charge of these pairs will be so distributed as to produce an
additional electric polarization;

e. That this clectric polarization will produce a supplementary force
on the test body which will disturb the result of the measurement;

f. That this disturbance i, however, proportional in a certain approxi-
mation to the magnitude of the displacement of the test object;

g. That the perturbation can therefore be compensated by suitable
elastic devices;

h. That the perturbation consequently will not in itself impair the
possibility of measuring with arbitrary accuracy the charge con-
tained within the given volume element;

i. That the supplementary force created in this way, for example by
N pairs of positive and negative electrons, will be subject however
to unpredictable statistical fluctuations about its normal average
value proportional to N*.

j. That there will be on this account an unavoidable fluctuation in the
value of the surface integral of the normal component of the electric
force; and

k. That this fluctuation, when calculated, is found to correspond to an
uncertainty in the charge contained within the given volume just
equal to the figure of ITeisenberg quoted above.

Although there is no direct connection between these charge fluctuations
and the field fluctuations discussed in the earlier half of their paper, Bohr
and Rosenfeld nevertheless point out the close analogy between the two
kinds of fluctuations. In both cases the displacement of the measuring
device produces a back reaction on this test object itself, in the one case
by way of the radiation field which it creates, in the other case by way of
the positive and negatlive electrons which it generates. In both cases, the
average value of the reaction so developed is directly proportional to the
magnitude of the displacement and can therefore either be compensated
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! by a suitable elastic device or otherwise be taken into account in a pre-
dictable way. However, there are necessarily quantum fluctuations about
this average value because the reaction is transmitted by a finite number

ilof photons in the one case or a finite number of pairs in the other. It is
these fluctuations which set a limit to the accuracy which can be obtained
n certain field and charge measurements.

l!‘ From their analysis of the measuring process Bohr and Rosenfeld con-
rlude that existing theory—when used within its proper domain of appli-

y hation and thus in particular employed in a way which does not depend
Txpon the atomic character of instruments of measurement—gives a logically

; Lgelf-consistent account of the possibilities of determining charges and electro-

« pagnetic field quantities.
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