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Using Hodge theory to detect the

structure of a compactified moduli space∗

Phillip Griffiths

Talk given on November 27, 2019 at the IMSA conference
held at IMATE at UNAM, Mexico City

This talk is based on joint work in progress with Mark Green, Radu
Laza and Colleen Robles. The example is drawn from the work of Marco
Franciosi, Rita Pardini and Sönke Rollenske and on discussions that we
have had with them.
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Abstract

For a moduli space M of smooth general type varieties

X with a given Hilbert polynomial
m
⊕χ(mKX ),

Kollár-Shepherd-Barron-Alexev proved the existence of a
canonical completion M. For curves the structure
(stratification) of M is well known and may be described
Hodge theoretically. For algebraic surfaces the picture is
quite different. We will discuss (i) some general results
about how Hodge theory may be used to study moduli
of surfaces, and (ii) how these results go some distance
towards determining the structure of M for one very
beautiful surface. One new ingredient is the definition
and use of a cohomological expression for derivative of
the period mapping at a singular surface.
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Outline

I. I. Statement of the problem

II. Background and general results

III. I -surfaces
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I. Statement of the problem
The cohomology groups Hn(X ) of a smooth general type
algebraic variety carry polarized Hodge structures. Denoting
by D the period domain of all PHS’s (V ,Q,F ) of this type
there is a period mapping

Φ : M→ Γ\D

where G = Aut(V ,Q) and Γ ∈ G is a discrete group of
automorphisms of D that contains the monodromy group
associated to the family of varieties paramterized by M. The
first general result, not restricted to the case of surfaces, is
that there is a canonical extension of the period mapping to

(1) Φe : M→ P

where P is a compact Hausdorff space that has a
Hodge-theoretically constructed stratification by complex
analytic subvarieties.
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It is conjectured, and proved in special cases, that P has an
analytic structure and that the Hodge line bundle Λe → P is
ample.† The stratification of P is known by Lie theory, and
one would like to use that together with the extended period
mapping (1) to provide information about M. Specifically we
have the

Problem: To what extent does the stratification of P
determine that of M?

†cf. [GGLR] and especially [BBT] for a very interesting approach and
results about this issue.
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The stratification of M is by deformation type. The singular
surfaces X parametrized by the boundary of M admit
desingularizations X̃ and one wants to know which X̃ ’s occur
in the general classification of algebraic surfaces and how is X
obtained from X̃? One also wants to understand the
dimensions and incidence relations among the strata; i.e.,
which degenerations X → X ′ occur? For the particular
I -surface discussed later in this talk there is the work in [FPR]
which gives the most complete analysis of this question that I
am aware of in a particular example.
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On the Hodge theory side there are two basic types of
subvarieties of P and then there is the amalgam of these. The
first type is the stratification associated to the boundary
components given by limiting mixed Hodge structures
(V ,Q,W (N),Flim) that occur when polarized Hodge
structures degenerate. Roughly speaking one thinks of going
in P to the boundary of Γ\D. In classical terms the period
matrices are polynomials in log t with analytic coefficients, and
we let t → 0. Lie theory provides a classification of how this
may happen.
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The other type of subvarieties of P is that given by the
Mumford-Tate sub-domains D ′ ⊂ D. Associated to a polarized
Hodge structure (V ,Q,F ) is the algebra T (F ) of Hodge

tensors in
k,`
⊕(⊗kV )⊗ (⊗`V ∗), and D ′ is the orbit in D of

T (F ) under the Lie group associated to the subgroup G ′ ⊂ G
preserving that algebra. Geometrically, for algebraic surfaces in
first approximation one thinks of those X ’s having additional
Hodge classes in H2(X ).
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Example: For algebraic curves the structure of Mg is a much
studied and very beautiful subject. For the first case g = 2 the
picture of the stratification is

Here the solid lines reflect degenerations of the first type
(infinite order monodromy), while the dotted lines reflect those
of the second type (finite order monodromy).
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The results we shall discuss about algebraic surfaces are of the
following two types.

1. General results valid for any KSBA moduli space of
general type surfaces.

2. For I surfaces, defined to be smooth surfaces X with
q(X ) = 0, pg (X ) = 2 and KX ample. Informally stated
we shall see there are three results about the completed
moduli space MI :

(a) for the part M
G
I of Gorenstein degenerations there is an

analogous picture to the solid line part of the one above

for g = 2 curves; the stratification of M
G

is faithfully
captured by the extended period mapping

Φe : M
G → P;

(b) in a phenomenon not present in the curve case, Hodge
theory provides a guide as to how to desingularize a

general point of the boundary M
G
I \MI ;
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(c) for the part M
NG
I of normal, non-Gorenstein

degenerations corresponding to the dotted lines in the
g = 2 example there are partial results, a very
interesting example, and a question/conjecture about
what part of the general story might be.

Parts (a) and (b) above have been the subject of a number of
previous talks for which [G1] and [G2] contain slides and text.
These results are based in large part on the work of [FPR] and
on discussions we have had with them.
In this talk we will focus more on part (c) as the geometric
issues involved necessitate considerations not present in the
curve case including the cohomological analysis of the
derivative of a period mapping at a singular variety.
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II. Background and general results
This section is divided into three subsections:

A. Background from moduli theory

B. Background from Hodge theory

C. Some general results.

A. Moduli theory. We will give an informal account of
what we will use from moduli theory, restricting here to the
cases of curves and surfaces. The two main points are these:

(i) Given a family X∗
f−→ ∆∗ of minimal smooth varieties

Xt = f −1(t) of general type, one wants to define a unique
limit X0.‡

‡Here it is understood that the total space X∗ is smooth. This is not
the most general formulation of the issue. One wants to also allow the Xt

to have canonical singularities. For curves the Xt should be smooth but
for surfaces they could have −2 curves; i.e., smooth rational curves
C ⊂ Xt with C 2 = −2. By adjunction this implies that KXt · C = 0 so
that these C ’s are contracted by the pluricanonical mappings.
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The result is that after possibly allowing a base change
there is a unique completion of X∗ → ∆∗ to a family

X
f−→ ∆

such that X has canonical singularities and the dualizing
sheaf ωX/∆ is relatively ample.

Operationally this means that X0 should be reduced and the
Weil canonical sheaf KX0 should have the properties

I mKX0 is a line bundle for some m > 0; and
I KX0 is ample.

For curves the condition that the surface X have canonical
singularities implies that X0 has only nodes and the first
condition is vacuous. In general an X0 satisfying these
conditions is said to be stable. The main result is (again here
informally stated)

A moduli space M has a unique completion M where
all varieties corresponding to points of M are stable.
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There are a number of quite non-trivial technical issues
required to properly formulate much less prove this result. For
a discussion of these we refer to [K] and the references cited
there.

(ii) The second point is that for curves and surfaces the
singularities of a stable X0 have been classified.

For simplicity of notation we shall simply use X instead of X0.
For curves as mentioned above, the singularities of X consist
of nodes. For surfaces a rough organization of the singularity
type is given by the table

X normal singularities non-normal singularities

KX G NG

where G stands for Gorenstein and NG stands for
non-Gorenstein.
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In the KX -NG spot, by definition there is smallest integer, the
index m = 2 of X , such that mKX is a line bundle.§ The first
row means that the singularities of X could be isolated (i.e.,
points), or could occur along curves. In the KX -G spot,
KX = ωX is the dualizing sheaf and is a line bundle.
In this talk we shall be especially interested in the case when
X has normal singularities; we shall denote by (X , p) the pair
given by a stable surface X and a normal (and hence isolated)
unique singular point p. Then the classification breaks into
2-types.

§A significant issue is to give a good bound on the index. Here we
refer to [RU] for very interesting recent work.
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KX-G: These are the canonical singularities, concerning which
there is a rich and vast literature (e.g., Chapter 4 in [R]). They
are also referred to as Du Val or ADE singularities and are
locally analytically equivalent to isolated hypersurface
singularities f (x1, x2, x3) = 0 in U ⊂ C3. For example, An is
given by

x2
1 + x2

2 + xn+1
3 = 0.

For n = 1 there is the standard resolution (X̃ ,C )→ (X , p)
where C ∼= P1 is a −2 curve (i.e., C 2 = −2). In general the C
is a configuration of −2 rational curves corresponding to the
nodes in a Dynkin diagram.
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For the next type we shall use the singularity theorists’
notation

1

n
(1, r), gcd (n, r) = 1

for the quotient C2/
(
ζ 0
0 ζr

)
where ζ = e2πi/n is a primitive nth

root of unity.

KX-NG: These are required to be Q-Gorenstein smoothable,
meaning that there should be a local smoothing whose relative
dualizing sheaf is Q-Cartier. Then there are two types of such
singularities:
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(i) the 1
dn2 (1, dna− 1) singularities; for d = 1 these are called

Wahl singularities. Again for these there is an extensive
literature (cf. [H1] and the references cited therein);

(ii) the Z2-quotients of simple elliptic or cusp singularities
(cf. (3.24)(c) in [K]).

The non-isolated KSBA singularities are given by pairs (X ,C )
where C is a (possibly reducible) double curve having isolated
pinch points and nodes. Typically there is a resolution

(X̃ , C̃ )→ (X ,C )

where X̃ is smooth, C̃ ⊂ X̃ is a possibly reducible nodal curve
with an involution

τ : C̃ → C̃ ,

and (X ,C ) is the quotient of (X̃ , C̃ ) by the involution τ where
we identify p ∈ C with τ(p) ∈ C . References for and examples
of these are [K], [FPR] and the various lecture notes in [G1]
and [G2].
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B. Hodge theory:
We shall not give an extensive discussion here but refer to
[GGLR], [GG], and the sets of notes [G1] and [G2] for the
definitions and statements of the results from Hodge theory
that will be used in this talk. Here we shall review the
terminology and establish notations.
The main objects of Hodge theory are

I Polarized Hodge structure (PHS) of weight n is given by
the data (V ,Q,F ) where

I F = {F p} is a decreasing Hodge filtration on VC

satisfying F p ⊕ F
n−p+1 ∼−→ VC;

I for V p,q = F p ∩ F
q

this is equivalent to a Hodge

decomposition VC =
p+q=n
⊕ V p,q, V

p,q
= V q,p;

I Q : V ⊗ V → Q is non-degenerate with
Q(u, v) = (−1)nQ(v , u) and which satisfies the
Hodge-Riemann I, II bilinear relations.
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Example: Hn(X ,Q) where X is a smooth projective variety.
Without the polarization condition we have a Hodge structure
of weight n. In practice we usually have a lattice VZ ⊂ V .

I Mixed Hodge structure (MHS) is given by the data
(V ,W ,F ) where W = {Wk} is an increasing filtration on
V such that the filtration induced by {F p} on
GrWk V = Wk/Wk−1 is a Hodge structure of weight k .

Example: Hn(X ,Q) where X is a complete algebraic variety
and the weight filtration is W0 ⊂ · · · ⊂ Wn = V .

Given a nilpotent endomorphism N ∈ End(V ,Q), Nm+1 = 0
there is a unique filtration W (N) with

I W0(N) ⊂ · · · ⊂ W2m(N) = V ;

I N : Wk(N)→ Wk−2(N);

I Nk : Gr
W (N)
m+k V

∼−→ Gr
W (N)
m−k (V ).
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I Limiting mixed Hodge structure (LMHS) (V ,W (N),F ) is
given by a MHS with weight filtration W (N) where the
condition

N : F p → F p−1

is satisfied.

One frequently writes Flim for F . Below we will give an
example of a LMHS.

I Period domain D is given by the set of PHS’s (V ,Q,F )
with given Hodge numbers hp,q = dimV p,q.

It is a homogeneous complex manifold GR/H where GR is the
real Lie group asssociated to the Q-algebraic group
G := Aut(V ,Q). The isotropy group H is compact. The
classical case is when D is a Hermitian symmetric domain;
equivalently H = K is the maximal compact subgroup of GR.
Otherwise we are in the non-classical case.
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Example: When n = 1 and h1,0 = g ,

D = Sp(2g ,R)/U(g) = Hg .

When n = 2 and h2,0 = a, h1,1 = b,

D = 0(2a, b)/U(a)× O(b).

D is non-classical if, and only if, a = 2.

I The compact dual Ď is the set of filtrations F satisfying
HRI. It is a rational homogeneous variety

Ď = GC/P

where P is a parabolic subgroup of GC. The period omain
is an open GR-orbit D ⊂ Ď.

Example: D = H and Ď = P1.
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We recall that there is a canonical GC-invariant inclusion

TĎ ⊂ ⊕Hom(F p,VC/F
p).

I The infinitesimal period relation (IPR) is the GC-invariant
sub-bundle I ⊂ TĎ defined by

I = {θ ∈ TĎ ⊂ ⊕Hom(F p,VC/F
p) : θ(F p) ⊂ F p−1}.

I A variation of Hodge structure (VHS) is given by

Φ : B → Γ\D

where B is a complex manifold, Φ is a locally liftable
holomorphic mapping satisfying

Φ∗ : TB → I ,

and where Γ ⊂ GZ is a discrete group containing the
image of

Φ∗ : π1(B)→ GZ.
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We frequently refer to Γ as the monodromy group associated
to the VHS.

Example: Let X
π−→ B be a smooth family of projective

algebraic varieties Xb = f −1(b). Setting V = Hn(Xb0) for
some base point b0 ∈ B , a VHS is given by

Φ(b) = PHS on Hn(Xb), b ∈ B .

Here the Hn(Xb) are a monodromy invariant direct sum of
PHS’s.

I An infinitesimal variation of Hodge structure (IVHS)
(V ,Q,F ,T , θ) is given by a point F ∈ D, a vector space
T and a map

θ : T → IF ⊂ ⊕Hom(F p,F p−1/F p)

which satisfies
θ ∧ θ = 0.
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Example: Given a VHS as above, for a point b ∈ B , T = Tb

and θ = Φ∗ define an IVHS.
Given an IVHS as above we set

GrF VC = ⊕F p/F p+1.

Then there is an induced map

θ ∈ Hom−1(GrF VC) = ⊕Hom(F p/F p+1,F p−1/F p).

The integrability condition θ ∧ θ = 0 then gives

GrF VC is an ST-module.

Here ST = ⊕ Symk T is the symmetric algebra on T .
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Let B = ∆∗ be the unit disc {t ∈ C : 0 < |t| < 1} and

Φ : ∆∗ → ΓT\D

a VHS over ∆∗. We denote by T ∈ Aut(VZ,Q) the canonical
generator of Φ∗(π1(∆∗)), and by ΓT = {T k : k ∈ Z} the
subgroup of GZ generated by T . Letting T = TsTu denote
the Jordan decomposition of T into semi-simple and unipotent
factors, the monodromy theorem gives

I T `
s = I for some `;

I Tu = eN where Nm+1 = 0 for some m 5 n.
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Example: Associated to the above VHS over ∆∗ there is a
LMHS Hn

lim; in the precise sense given by [S] one has

lim
t→0

Φ(t) = Hn
lim

which by suggestive abuse of notation is sometimes written as

lim
t→0

Hn(Xt) = Hn
lim.

Given the data

I A complex manifold B , a reduced normal crossing divisor
Z ⊂ B with complement B = B\Z and a VHS

Φ : B → Γ\D

with image P = Φ(B), one seeks to complete P to a P by
adding some of the information in the LMHS’s that arise
from the limits limb→Z Φ(b). In this talk we will be
mainly concerned with the case B = ∆ and B = ∆∗.
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I There are basically two types of information in the
LMHS’s. One is the associated graded to the LMHS’s.
This leads to Satake-Baily-Borel (SBB) type completions,
which may be thought of as minimal ones; these are the
main ones used in the construction of P. The other is the
full LMHS’s, which may be thought of as adding the
extension data to the information in the SBB completion
(cf. [KU] for the general theory here). As will be
illustrated below, these toroidal type objects may be used
as a guide to desingularizing moduli spaces of surfaces.
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I Very roughly speaking there are two types of boundary
components; viz. over Q and over Z. There is yet to be a
formal definition of the latter, which in this talk this will
be taken to be the conjugacy class of Ts (which is closely
related to the spectrum in the case of isolated
hypersurface singularities). For the former we use the
conjugacy class of N . For n = 1 since N2 = 0 this is
determined by rank N . For n = 2 one has the
classification

I N2 = 0; then we have rank N.
I N2 6= 0; then we have rank N and rank N2.

One may picture the Q-boundary structure by a diagram
in which the conjugacy classes and possible degenerations
are represented. For n = 1 and h1,0 = g the diagram is

I0 I1 · · · Ig .
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For n = 2 and h2,0 = 2 the diagram is

III

I0 I

xxxxxxx

FF
FF

FF
F IV

IIIIIII

uu
uu
uu
u

V

II

FFFFFFF
uuuuuuu

References to these diagrams are given in the talks [G1],
[G2].

I The final Hodge theoretic part of the story for this talk is
to describe a cohomological expression for the derivative
of the period mapping at a singular variety. We will
formulate the general question and then give the answer
in the very special case to be used in the examples below.
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Let
X∗ → ∆∗

be a family of smooth projective varieties giving a period
mapping

Φ : ∆∗ → ΓT\D.
We assume that the monodromy T = Ts is of finite order.
Then Φ extends across the origin and one wants a
cohomological expression for the derivative of Φ at t = 0.
The first issue is to define the derivative. For this we note that
Φ(0) ∈ ΓT\D is an orbifold singularity of the analytic variety
ΓT\D, and we make a base change t̃ = tm to have a diagram

∆̃ Φ̃ //

��

D

��
∆ Φ // ΓT\D.

Then we define the derivative to be Φ̃∗ at t̃ = 0.
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To give a cohomological expression for the differential the
general procedure is to do semi-stable reduction (SSR) to
obtain

X̃

f̃
��

// X

f

��
∆̃ // ∆

where X̃ is smooth and the fibre X̃0 = f̃ −1(0) is a reduced
normal crossing divisor. There is then a recipe for computing
limt̃→0 H

n(X̃t). Here with our applications in mind we change
notation and assume given a family of surfaces

X
f−→ ∆

when X is smooth, which is a smooth fibration over ∆∗ and
where

(2) X0 = X1 ∪C X2

with X1,X2 being smooth surfaces glued along a smooth
rational curve C in each Xi to give X0. 32 / 72
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This implies that the monodromy T = Id; then we have

Φ : ∆→ D.

We want a cohomological expression for

Φ∗(d/dt)
∣∣
t=0

:= d/dt.

What could d/dt be? First

H2
lim = (V ,Q,Flim)

is a pure Hodge structure of weight 2 associated to the X0

above. The obvious weight 2 Hodge structures are

H2(X1), H2(X2), H0(C )(−1).
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Secondly, by the IPR

d/dt ∈ Hom(F 2
lim,F

1
lim/F

2
lim).

The condition on normal bundles

(3) NC/X1
∼= N∗C/X2

should enter reflecting the 1st order information that X→ ∆
should give a smoothing deformation. The result is the

Theorem
There is a natural map of direct sums

H0(Ω2
X1

)⊕ H0(Ω2
X2

)→
(
H1(Ω1

X2
)/[C ]

)
⊕
(
H1(Ω1

X1
)/[C ]

)
that gives d/dt at t = 0.¶

¶The important point is the intertwining of X1 and X2 which will be
seen to be a reflection of (3).
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We will not prove this but will show where the natural maps
come from. There are two exact sequences that intertwine the
roles of X1,X2 and whose cohomology sequences lead to the
map. They are

0 // Ω2
X1

(−C ) // Ω2
X1

// Ω1
C ⊗ N∗C/X1

// 0

∼ =

Ω1
C ⊗ NC/X2

.

(4)

Here the last term in the top sequence uses adjunction
KC
∼= KX1 ⊗OC

NC/X1
; the vertical isomorphism uses (3) above

and is the key step. The next sequence is
(5)

0 // Ω1
X2

(logC ) // Ω1
X2

(C ) // Ω1
C ⊗ NC/X2

// 0.
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Here the right-hand term uses OC (C ) ∼= NC/X2
. The final

sequence is

(6) 0 // Ω1
X2

// Ω1
X2

(logC ) Res // OC
// 0,

where the last map is the usual Poincaré residue map. Putting
together the cohomology sequences arising from (4), (5), (6)
gives

H0(OC )(−1)

��
0 // H0(KX1 (−C )) // H0(KX1 ) // H0(KC ⊗ N∗C/X1

) H1(Ω1
X2

)

��
∼ =

H0(KC ⊗ NC/X2
)

::u
u

u
u

u
u

u
u

// H1(Ω1
X2

(logC ))

��
H1(OC )(−1).
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Since C is rational, we have H1(OC )(−1) = 0, so that there is
a factorization as indicated by the dotted arrow. This then
defines the map

Φ∗(d/dt) : H0(KX1)→ H1(Ω1
X2

)

in the theorem. The [C ] comes from the image of the Gysin
map H0(OC )(−1)→ H1(Ω1

X2
).
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C. General results
(i) Let M be a KSBA moduli space for a class of surfaces of
general type and with canonical completion M. Our first
general result concerns mappings of M and M. It is known
that the structure of M may be arbitrarily nasty and we have
not worked out the exact technical conditions under which the
following results will hold. We do assume that each
component of M is generically reduced and that a general
point corresponds to a smooth surface. Then there is a
holomorphic period mapping

Φ : M→ P ⊂ Γ\D

whose image P is a locally closed analytic subvariety.
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From [BBT] it follows that the closure of P in Γ\D is a
quasi-projective algebraic variety over which the Hodge line
bundle is ample.‖

The first main “result” is that the above period mapping
extends to

(7) Φe : M→ P

and that over the extended Hodge line bundle is ample. This
“result” has been established only in special cases. What is
known [GGLR] is that P exists as a compact Hausdorff space
with a stratification by complex analytic subvarieties and that
Φe is defined and is a continuous mapping.

‖The interesting work [BBT] uses o-minimal structures (arising
initially from model theory) to put an algebraic structure on P. The
techniques introduced there and in the references to that work seem
certain to have further applications to Hodge theory.
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As a set P consists of the associated graded PHS’s to the
equivalence classes of LMHS’s obtained from families
X∗ → ∆∗ of smooth surfaces parametrized by discs
g : ∆∗ →M. The essential geometric content of the
statement is that

Gr
(

lim
t→0

H2(Xt)
)

depends only on the limit surface Xo and not on the disc
g : ∆→M extending g above with g(0) corresponding to X0.
Informally stated, one does not have to blow up M along ∂M
to extend the period mapping. In the examples of I -surfaces
discussed below one may see this directly.
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(ii) For the next general result we denote by

Mf ⊂M

the subvariety of M parametrizing singular surfaces X such
that there exists a smoothing X→ ∆ of X = X0 with finite
monodromy; using the above notation T = Ts and N = 0. A
general result is

The period mapping extends to Φ : Mf → Γ\D,

and in the situation at hand we have

(8) M
NG ⊂Mf .

Here, M
NG

denotes the subvariety of M parametrizing normal
surfaces X having non-Gorenstein singularities. Informally
stated, to a normal and smoothable surface X having
non-Gorenstein semi-log-canonical singularities (slc) one may
associate a polarized Hodge structure H2

lim(X ).
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This result is really more of an observation than a theorem: it
is a consequence of the statements

I normal surfaces with rational singularities are
parametrized by a subvariety of Mf (i.e., they have finite
monodromy); and

I normal, non-Gorenstein slc singularities are rational.

Canonical singularities are also rational so they are again
parametrized by a subvariety in Mf . For I -surfaces thus far
there is no example other than the above of singular surfaces
with finite monodromy.
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(iii) The normal surfaces X with infinite monodromy are
those with either simple elliptic singularities or cusps. To state
the following result for simplicity we shall assume that a
general smooth surface is regular and that the singular surface
has either e simple elliptic singularities or c cusps but does not
have some of each.∗∗ The result is then

(9)

{
rankN 5 e 5 pg + 1

rankN2 5 c 5 pg + 1.

∗∗There is a general result without these assumptions, but it is more
complicated to formulate and the special case given here captures the
essential geometric content of the result.

43 / 72



44/72

(iv) Finally we will explain a general result one would like to
hold and that can be established in a couple of cases. It deals
with the question posed in the title of this talk. Recall the
notation Mf ⊂M for the subvariety of a complete KSBA
moduli space parametrizing smoothable surfaces X around
which the local monodromy of a smoothing deformation is
finite.†† The period mapping then extends from M to give

Φ : Mf → Γ\D.

One may show that the image B is a closed analytic
subvariety. As noted above it follows from the results in [BBT]
that P is quasi-projective; indeed, the Hodge line bundle
Λ→ P is ample.

††For I -surfaces discussed below, it seems to be the case that all such
surfaces X are normal; i.e., if X is not normal, then any smoothing
deformation has infinite order monodromy. We do not know how general
one might expect this phenomenon to be.
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Let M ⊂Mf be an irreducible component of Mf . One would
like to show that

There exists a Γ-invariant Mumford-Tate subdomain
D ′ ⊂ D with Γ′ the discrete group of automorphisms
of D ′ induced by Γ such that

M = Φ−1(P ∩
(
Γ′\D ′)

)
.

Informally this means that these components of moduli can be
detected Hodge theoretically.
How might one prove this, at least in special cases such as the
two discussed below? For those M such that the surfaces X
parametrized by M are normal with either canonical or
non-Gorenstein singularities, such singularities are rational and
the resolution

(X̃ ,D)→ (X , p)

of a particular one has for D a configuration of P1’s.
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Recalling that X gives a PHS denoted here by Φ(X ) ∈ D, the
P1’s give Hodge classes not present on a general point in D,
and then D ′ could be the Mumford-Tate domain defined by
PHS’s having these additional Hodge classes. One might then
use a variational argument to show that in T Def X the
condition to retain these Hodge classes defines the tangent
space to M ⊂M. As an illustration this argument will be
carried out in the two cases

I an A1-singularity that is not a base point of |KX |;
I the 1

4
(1, 1)-singularity on the general I -surface having

that type of singularity.

Both arguments will use the differential of the period mapping
at a singular surface that was discussed above.
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III. I -surfaces

This section is divided into three sub-sections:

A. Generalities on I -surfaces

B. Hodge theory and moduli: the non-Gorenstein case

C. Hodge theory and moduli: the Gorenstein case

A. Generalities on I -surfaces

Definition: An I -surface is a connected, reduced surface X
that is of general type and that satisfies

I K 2
X = 1

I χ(OX ) = 3

I h1(OX ) = 0.
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We note that if X is Gorenstein, i.e., the Weil divisor KX is a
line bundle, then K 2

X = 1 implies that X is irreducible. There
is essentially one known example of a reducible I -surface
([FPR]). Henceforth we will assume that X is irreducible.
If X is Gorenstein, then the pluricanonical ring

R(X ) =
m
⊕H0(mKX )

has the postulated form; i.e., generators and relations are
added only when they are forced to by the formulas

h0(KX ) = 2

h0(mKX ) =
m(m − 1)

2
+ 2, m = 2.
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It follows that
I the canonical map ϕKX

: X 99K P1 has one base point
and the reduced fibres are curves C with arithmetic genus
pa(C ) = 2;

I the bi-canonical map gives a morphism

ϕ2KX
: X → P(1, 1, 2),

which is a 2:1 covering branched over a quintic
V ∈ |OP(1,1,2)(5)| not passing through the singular point
P = (0, 0, 1) of P(1, 1, 2).

Remark: P(1, 1, 2) is realized as a singular quadric

P

in P3; the curves C ∈ |KX | are branched over P and the
remaining 5 points of the intersection of V with the rulings of
that quadric.

49 / 72



50/72

I the 5-canonical map

ϕ5KX
: X ↪→ P(1, 1, 2, 5)

is an embedding that realizes X by an equation

z2 = a0y
5 + a1y

4 + · · ·+ a5

where ai(x0, x1) is homogeneous of degree 2i and a0 6= 0;
I the local Torelli property (LT), i.e., that the differential of

the period mapping is 1-1, holds for any smooth X (cf.
[PZ], [CT] and [G1], [G2]);

I it is suspected that generic global Torelli holds in the
sense that the period mapping

Φ : M→ P ⊂ Γ\D
has degree 1, where Γ = Φ∗(π1(M) is the global
monodromy group;

I Γ is an arithmetic group (it is plausible that Γ = GZ, but
this has not been proved).
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Remark: For generic global Torelli there are two heuristic
arguments using known generic global properties for the
surfaces parametrized by boundary components of MI ; one of
these will be discussed below.

I the period domain has dimension 57 and the IPR is a
contact system; thus P is a contact submanifold of Γ\D.

Finally we note that there are three known divisors in MI

I that given by the Hodge line bundle Λe →MI ;

I the locus Mn of I -surfaces X having a node
(A1-singularity); and

I the locus MW of I -surfaces having a Wahl 1
4
(1, 1)

singularity.

An interesting question is whether or not we have

Pic(MI )⊗Q has Λe ,Mn,MW as a basis.
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B. Hodge theory and moduli; the non-Gorenstein

case

One may formulate a desired result, putting in precise terms
the statement

In a KSBA moduli space the locus of normal surfaces
having finite monodromy may be detected Hodge
theoretically. This locus consists of exactly surfaces
with canonical singularities and non-Gorenstein
isolated singularities.

There are two cases where this result is known and we shall
discuss those here.

A1-singularities: Let (X , p) be a surface with an ordinary

double point p and (X̃ ,C )→ (X , p) the standard
desingularization. Locally analytically the picture is
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I the singularity is analytically equivalent to the origin in
the surface x2 + y 2 + z2 = 0;

I we desingularize by blowing up the origin which then gives
a C ∼= P1 with C 2 = −2;

I we take a smooth quadric Q ⊂ P3 with hyperplane
section isomorphic to C ;

I taking X1 = X̃ and X2 = Q, the surface

X1 ∪C X2

satisfies the condition (3) above.
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The map

d/dt : H0(KX̃ )→ H1(Ω1
Q)/[C ] ∼= H2(Q)prim

is non-zero if, and only if, there is an ω̃ ∈ H0(KX̃ ) with
ω̃
∣∣
C
6= 0. We note that

KX̃

∣∣
C
∼= KC ⊗ N∗

C/X̃
∼= OC .

Using H0(KX̃ ) ∼= H0(KX ), with ω ∈ H0(KX ) corresponding to
ω̃ the above condition is

ω(p) 6= 0;

i.e., p is not a base point of the canonical series.
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This gives the following result, which is of interest not for the
statement but for the method of proof.

If |KX | is base-point-free, then the condition to have
a node is a smooth divisor in moduli.

Note: At the risk of being pedantic the precise formulation is
this: Let (X , p) be a surface that is smooth except for one
A1-singularity p that is not a base point of |KX |. Assume that
the local deformation space Def X is irreducible and contains a
smoothing deformation. Then

I the derivative of the period mapping Def X → ΓT\D is
non-zero in the smoothing direction;

I the locus in Def X of nodal surfaces is a reduced divisor.
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The proof of the second statement requires two steps:

(i) the locus in Def X̃ where the line bundle L = [C ] deforms
is a reduced divisor;

(ii) if L deforms with X̃ , then the section C ∈ H0(X̃ , L)

deforms with (X̃ , L); and

(iii) if C deforms with (X̃ , L), then the deformed curve may
be contracted to a node.

These can be checked for the A1-singularity; in fact, (iii)
follows automatically from (ii). In the next example this will
no longer be the case.
Using the simultaneous resolution of ADE singularities [A], it
seems likely that the above can be extended to general such
surfaces; this is a work in progress.
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Wahl singularity on an I -surface
The only known non-Gorenstein singularity on a normal
I -surface X is the 1

4
(1, 1) singularity described in [FPR] and

[H2]. We shall give a geometric description of the surface,
referring to [H2] for the equations of X and of its
Q-Gorenstein smoothing. We recall that the bi-canonical
model of a smooth I -surface Y gives a 2-sheeted crossing

Y → P(1, 1, 2)

branched over a quintic VY ∈ |OP(1,1,2)(5)| not passing
through the vertex P of the singular quadric P(1, 1, 2) ↪→ P3.
The I -surface X with a Wahl 1

4
(1, 1) singularity arises by

allowing VY to pass through P but otherwise be general. To
desingularize X we first consider the desingularization
F2 → P(1, 1, 2) where F2 = P(OP1 ⊕ OP1(−2)) has a section
E with E 2 = −2 and that contracts to P .
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The blow up Ỹ of Y at the base point of |KY | then gives a

morphism Ỹ → P1 whose fibres are the pa = 2 curves in |KX |,
and a 2:1 morphism Ỹ → F2 with branch curve E + VY . The
curve E defines a section of Ỹ → P1 that meets a general
fibre in a Weierstrass point of that fibre.
In the limit as VY tends to VX the surface Ỹ tends to the
desingularization X̃ of X . The picture of the limit of general
fibres of |KY | and |KX | is

-

?

p
general number

of |KY |
general number
of |KX |

general fibre
of X̃ → P1
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It follows that X̃ → P1 is a regular elliptic surface with
pg (X̃ ) = 2 and having a bi-section C̃ with C̃ 2 = −4. This
section contracts to p ∈ X .
Recalling that dimMI = 28 one may show that

# moduli X̃ = 32

# moduli (X̃ , L) = 30 (thus pg (X̃ ) imposes independent

conditions to deforming L along with X̃ )

# moduli (X̃ , L, C̃ ) = 27 (thus there is one condition that

C̃ deform along with (X̃ , C̃ )).

The computation of d/dt is then used to show that

I -surfaces (X , p) with a Wahl 1
4
(1, 1) singularity form

a reduced divisor in MI that may be detected
Hodge-theoretically.
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C. Hodge theory and moduli; the Gorenstein case
The result here is

The irreducible components of M
G

I , together with
the incidence relations (degenerations) among them,
map 1-1 to the Hodge-theoretically defined strata in
P.

The proof is done using the classification of the strata in M
G

I

from [FPR] together with an analysis of the LMHS’s in the
various cases.

I Rather than display the whole table the following is just
the part for simple elliptic singularities (types Ik and IIIk
in the earlier diagram of types of LMHS’s). These
degenerations have N2 = 0 since for the
semi-stable-reduction (SSR) only double curves (and no
triple points) occur. All of the other types occur if we
include cusp singularities.
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In the following

I k = # elliptic singularities; in general, as previously noted
using Hodge theory one may show that k 5 pg + 1.

I di = degree of elliptic singularity.

I X̃ = minimal desingularization of X . In a SSR given by
X̃→ ∆̃ the surface X̃ will appear as one component of
the fibre over the origin.

In the following table, in the 1st column subscripts denote the
degrees of the elliptic singularities, which are uniquely
determined by the [Ts ]’s; we will explain the

∑
(9− di)

column below.
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stratum dimension minimal
resolution X̃

k∑
i=1

(9− di ) k codim
in MI

I0 28 canonical singularities 0 0 0

I2 20 blow up of
a K3-surface

7 1 8

I1 19
minimal elliptic surface

with χ(X̃ )=2
8 1 9

III2,2 12 rational surface 14 2 16

III1,2 11 rational surface 15 2 17

III1,1,R 10 rational surface 16 2 18

III1,1,E 10 blow up of an
Enriques surface 16 2 18

III1,1,2 2
ruled surface with

χ(X̃ )=0 23 3 26

III1,1,1 1
ruled surface with

χ(X̃ )=0 24 3 27

Note that the last column is the sum of the two columns
preceding it.
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Example: For I2 the picture is

(X̃ , C̃ )

~~~~
~~
~~
~~

��;
;;

;;
;;

(Xmin,C ) (X , p)

Here, p = isolated normal singular point on X , C̃ = curve on
X̃ with C̃ 2 = −2 and that contracts to p. From Hodge theory

2 = pg (X̃ ) + g(C̃ ) and pg (X̃ ) = 1

we see that g(C̃ ) = 1 (simple elliptic singularity)
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I It may be shown that Hg1(X̃ ) has a Z2 summand with
intersection form (

−2 2

2 −1

)
;

and that the basis classes are effective.
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I Hodge theory then suggests the picture

C̃
X̃ C̃ 2 = −2, E 2 = −1

C

E

X

p

{
Xmin = K3

C 2 = 2

=⇒ Xmin
2:1−→ P2 branched over D

D
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I

Gr2
∼= H2(Xmin)prim

LMHS has
Gr3
∼= H1(C̃ )(−1)

���

PPP

I # of PHS’s of type Gr3⊕Gr2 = 19 + 1 = 20 which
suggests that for the boundary component of MI we have
codim = 8.

I How to get this number? First approximation to the fibre
over the origin in a SSR is blowing up p in X to have

X̃ ∪C̃ (mP2)

where C̃ ∈ |OP2(3)| and m is the multiplicity of p. Next
one does base change and normalization to arrive at a
SSR. Rather than proceed this way we just take X̃ ∪C̃ P2

and ask what we need to do to smooth this surface.
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For this have to blow up 9− (−C̃ 2) = 7 points on C̃ to
obtain triviality of the infinitesimal normal bundle as a
necessary condition for smoothability. This suggests that

I The extension data for the LMHS contains a factor

Ext1
MHS(Hg1(P̃2),H1(C̃ )(−1)) ∼= ⊕J(C̃ )

in which the seven points appear.‡‡

Fibre over origin in a several parameter SSR is given by
blowing up seven points on C̃ ; this is a del Pezzo surface.

I Hodge theory suggests where to look — the seven
parameters arise from the possible extension data for
GR(LMHS) — and following FPR one may go back and
prove things algebraically.

‡‡Considerations of this type first appear in [F].
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