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PREFACE
These lectures have never been published. Their limited distribution
at this time has been at the request of several mathematicians. It has been
prompted also by the relevancy of these lectures to diverse developments in
mathematics which have occurred since 1937 which indicate the central role

played in many disciplines by what may be termed the algebra and geometry of

recurrence,

The recent powerful attacks on problems of stability by such mathe-
maticians as Moser, Arnol'd, and others of the Russian School, have not yet
involved symbolic dynamics to any considerable degree. This is expected to
change as the global topological complexity of stability problems comes more
into play.

The author's first contribution to the field of symbolic dynamics
was made in 1917. In his thesis the author verified a conjecture of Poincaré
as presented by George Birkhoff in [l]. As finally formulated in terms of
Birkhoff's "minimal sets" of motions, the conjecture was that dynamical systems

of completely "discontinuous type'" occur very generally. A dynamical system

is said to be of discontinuous type if it possesses non-periodic recurrent sets
0 of motions, and if in phase space the only continua in a set {} are subarcs
of a motion. See page 35.

The Poincaré problem was approached by way of a new kind of symbolic
dynamics. 1In these lectures the methods used by the author [2] in verifying
the Poincaré conjecture are given a systematic treatment.

Shortly after these lectures were given in 1937 the author, while on

a visit to Germany, solved the problem of the existence of unending games of

chess (German rules). This result and algebraic extensions were published in [3].

As pointed out by R. P, Dilworth [3] the methods and the recurrent symbol used by
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ii.
Morse in 1917 make it possible to construct a nilpotent semi-group S generated

by three elements such that the square of every element in 5 1is zero.

The recurrent symbol, so useful for the above purposes, was apparently

discovered much earlier by Axel Thue [4]. Thue was not concerned with the above
problems of dynamics, chess or semi-groups. Essentially the same symbol was dis-
covered independently by a Russian in 1934 and used by Novikov [5] in his dis-
proof of what is sometimes called a Frobenious;Burnside conjecture in group
theory [5].

A fundamental characterization of this recurrent symbol has been
presented recently by Hedlund and Gottschalk in [6].

There are, hoewever, many types of recurrent sequences other than the
periodic or the one discovered by Thue, Morse and others. One of these, the so- !
called Sturmian, is related in a precise way to the separation and comparison
theorems that are attributed to Sturm. The Sturmian sequences, as introduced in
[7], characterize the interrelations of the sequences of zeres of a solution of
a second order linear differential equation with periodic coefficients.

In view of the extensive treatment of "ergodicity'" from the point of
view of measure theory, the related integral-valued ergodic function

r —>op(r) r =1,2,...
introduced in §8. to characterize a transitive symbol is of interest., See [8]
and {9].

The second half of these lectures concerns the symbolic representation
of geodesics on a compact Riemannian manifold ¥ of constant negative curvature -1,
and of genus p > 1. The covering manifold of % 1is represented (with Poincaré)
by a hyperbolic plane in which the straight lines are the circular arcs in the disc

(1.1) D= (x,y|x> + y2 < 1)

which are othogonal to the circle C bounding D.




iii,
The manifold I 1is represented first by a symmetric polygon P < D

with the origin as center. P 1is bounded by 4p circular arcs (arcs of hyperbolic
straight lines)., The disc D, regarded as covering manifold of ¥, is the
union+ of a countable number of images Q of P wunder hyperbolic transformations
of a complex variable 2z which leave C invariant. The resulting Fuchsian
group g has 2p generators

a.b ab

1712 """ pp

between which there is one relation,

The word problem. Let P0 be a polygon which is an image of P wunder
some element of g. The images Q of P under elements of g cover+ the disc
D a 1-1 way. A problem which is fundamental both for the symbolic dynamics of
hyperbolic lines and for group theory is to characterize a minimal sequence of
polygong Q which form a simple polygonal path leading from P to P ., This

o)

is a geometric form of the so-called word problem for g. It is solved by a

theory of convex regions, each the union of a set of polygons Q and leads to an
appropriate theory of recurrence and transitivity of hyperbolic lines regarded
as geodesics on I,

This symbolism, as developed for geodesics on a surface of constant
negative curvature, is appropriate for the characterization of unending minimizing
geodesics on an arbitrary compact differentiable manifold of genus p > 1. See
[10] for the case where the representation is biunique and [11] for the general
case,

Revised copies of these lectures will be placed in the Mathematics

Libraries of the Institute for Advanced Study and Princeton University.

January 1966

+With proper conventions as to the boundary of P.
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1. Introduction. The study of dynamics is the study of a system

dx.

i i .
35 =% (xl,...,xn),l =1,...,n

(1.1)
of ordinary differential equations where the Xi are suitably restricted single-
valued functions of the real variables XyyeoesX - The functions Xi will be,

in general, assumed to satisfy a Lipschitz condition. The system (1.1) may be
merely the local represen£ation of a system of ordinary differential equations
defined on a coordinate manifold R on which the x's are local coordinates. The
Xi are then contravariant tensors. In general R will be assumed complete. We

shall be concerned with functions X, = xi(t) which satisfy these equations.

The set X, = xi(t),i =1,...,n 1is said to be a solution, motion, or trajectory

satisfying (1.1).

In the field of dynamics there are two points of view: the well-known
geometrical, and the symbolic. The latter was introduced by Hadamard in 1898,
used by Morse in his doctoral dissertation, and studied by Birkhoff, Martin, Hed-
lund, Robbins, and others. The symbolic method reduces certain aspects of dynam-
ics to number theory and group theory.

For background the reader is referred to:

Hadamard, Les surfaces & courbures opposées et leur géodésiques, Journal Math.
Pures et Appl., series V, vol. 4 (1898), 27-73;

Birkhoff, Dynamical systems, pp. 198-225;

Morse, Representation of geodesics, American Journal of Mathematics, vol. 43 (1921),
pp. 33-51;

Morse, Recurrent geodesics on a surface of negative curvature, Transactions of the
American Mathematical Society, vol. 22 (1921), pp. 84-100.

A motion transitive with respect to R is one whose closure is R. We

shall consider some examples:



Example 1. Torus. The torus may be represented by parameters u, v
with the understanding that pairs (u', v') and (u, v) which are congruent under

transformations of the group

u u + 2,
(1.2) (m,n = ...,-1,0,1,...)
v! = v + 2mm,

represent the same point on the torus.

It is to be noted that the square D

AN

(0,2m)

(Fig. 1.1)

0 (r,0) 7u

with vertices (0,0), (2m,0), (0,2m), (27,2m) can be mapped topologically on a
torus if we identify opposite sides.

Let the differential equations be

du _ dv _
(1.3) iw=* = b,

vhere a,b # 0, Equations (1.3) have the solution
(1.4) u(t) = at + ¢, v(t) = bt +d
where ¢ and d are constants. The solution (l.4) is periodic if corresponding
to t there exists a value t' and integers m, n such that
u(t) + 2 = at' + c,

(1.5) (t' £ t)
v(t) + 2mm = bt' + d.

Combining (1.4) and (1.5), an elementary computation yields

a
5 -

=N |-



A motion (1.4) is thus periodic if and only if % is rational.

If a solution (1.4) for which % is irrational is represented on
the square D making use of the congruence relations (1.2), it can be shown
that the closure of the solution is the square. The motion is accordingly
transitive with respect to the torus.

Example 2. The equations of geodesics on a manifold can be written

in the well-known form

d2ui i, 1 n 1 n
(1.6) = £ (u,...,u; 07,...,0), i =1,...,n,
ds
where u ,...,un are local coordinates,
.1 du” .
W=y s L= l,...,n,
and s denotes arc length., Introducing new variables z' = ﬁl, the equations
(L.6) assume the form
dz i
ds = f (u,z),
du” 3 zi
ds ~— 7

involving first order differential equations. The notation (u,z) is used
1 n 1 n
for (u7,...,u,z7,...,2 ).

Let

2 i, ]
ds™ = gij(u)du du

by the element of arc on the given manifold, and suppose that

il
gij(u)u a” = 1.
The set (u,4) will then be said to be admissible.
A geodesic will be regarded as composed of its "elements" (u,d),.

In applying the terms transitive and recurrent to geodesic motion we refer to



the space of elements (u,4) and not the space of coordinates (u). Thus a

transitive geodesic is one whose set of elements (u,4) has for its closure

the set of all admissible elements (u,t). In geodesic motion on a sphere
great circles are not transitive. In fact, for a surface of genus 0, an
example of a transitive geodesic is not known. This is one of the great
unsolved problems of the theory.

It will be shown that there are transitive geodesics on surfaces of
negative curvature of certain types. We refer to surfaces with negative
Gaussian curvature at all except a finite number of points.

Let h, k be two curves on a given manifold. Set up a 1-1 sense-
preserving correspondence T between points of h and k. Let dT be the

maximum of the distances between corresponding points, The greates lower

bound of dT for all T 1is called the Fréchet distance between h and k.

Let e, L be given positive numbers. A curve h forms an (e,L)

approximation of a motion T, if corresponding to each arc k of T of

length L, there is a sub-arc k' of h such that

Fréchet distance kk' < e.

A motion T 1is recurrent if corresponding to each (e,L) there
exists a positive number H such that each arc of T of length H forms an
(e,L) approximation of T.

The classes of recurrent motions and transitive motions are not ident-
ical since simple examples of periodic motions (which are obviously recurrent)
can be given which are not transitive. An example of a non-periodic recurrent,
non-transitive motion of general type was first given by Morse in the Transac-

tions paper referred to above.
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5.

2, Surfaces of negative curvature. Let z = u(x,y) be a real single-

valued function of real variables x, y with continuous derivatives up to and in~

cluding those of second order., We shall use the notation

The Gaussian curvature K is given by the formula

re - 32
k= 2, 2.2
I+p +4q7)
. - 2 2 2
Suppose u 1is harmonic. Then r = -t and rt - s = -t~ - 5.

Evidently K < 0 wunless r =s =t = 0,

Lemma 2.1. If the Gaussian curvature of a function u(x,y) harmonic

in a region T is zero on a curve in T, then u = ax + by + ¢ for all points
in T.

"Let v be a harmonic conjugate of u. Write f(w) = u + iv, where
w=x+ iy, Since £"(w) = u + ivxx’ and u, v satisfy the Cauchy-Riemann
equations, K =0 on a curve in T only if f£"(w) = 0 on the curve. Since
f"(w) is amalytic in T, £f'(w) =0 in T, and f(w) = Aw + B, where A, B
are constants. Hence u = ax + by + c.

Since u 1is harmonic it follows that if K = 0 at some points of T,
either K =0 throughout T, or K = 0 on isolated points or on a curve of T,
Lemma 2.1 now implies the following:

Lemma 2.2, If wu(x,y) 4is harmonic in a region T and not of the form

ax + by + ¢, the Gaussian curvature of u is less than zero throughout T

except at isolated points in T.

That the curvature may be zero at isolated points follows from the

example u = 3x2y - y3 for which K = 0 at the origin.



We shall give some examples of surfaces of negative curvature.

Example 2.1. The surface =z = u(x,y) = log r, where

Z 2
\/(x-a) + (y-b)”~ , is a surface of negative curvature.

~
i}

Example 2.2. Since a sum of harmonic functions is harmonic,

Z

log r + log r' is a surface of negative curvature, where r 1is defined as

in Example 1, and

Vi -
r' = Vxmah® + (3-b)°
Example 2.3. Two finite curves joining the same two points on a

surface will be said to be of the same topological type if one can be contin-

uously deformed into the other, holding the end points fast. Two unending
curves on a given simply connected surface are said to be of the same topologi-
cal type if one can be deformed into the other, moving each point P a distance
less than some finite number N independent of P. A surface will be called a
funnel if it is a homeomorph of half of a circular cylinder cut from the
cylinder by a plane perpendicular to its axis.

The surface of Example 2.2 is a surface with 3 funnels Fl’ F2, F3,

as indicated in the following figure:

(a,b)

(Fig. 2.1)
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On the funnel F1 the cross-sections (simple closed curves) by horizontal planes
z = ¢ increase in length as ¢ —> + ®, On each of the funnels F,, F3 these
sections decrease in length as ¢ —> - ®, Hadamard replaced the funnels F, By
by funnels Fi, Fé respectively, whose horizontal cross-sections increase as
¢—> - ®. Let us denote the surface thus obtained by s. By taking plane
sections sufficiently remote from the xy-plane we obtain on each funnel F of

s a simply closed curve g such that there exists a geodesic of minimum length
in the class of geodesics on F of the same type as g. Cut s along the
minimum geodesic on each funnel, and remove from s the part of F., above the

1
minimum geodesic of Fl’ and the parts of Fé, Fé below the minimum geodesic on
each of these funnels. The surface s 1is now reduced to a surface S 1in a

finite region of space, whose total boundary has a projection on the xy-plane of

the form

(Fig. 2.2)

One can prove the following:
Theorem 2.1, (See books by Carathéodory and Bolza on the Calculus of

Variations.) Given any curve C joining two points o a compact surface Q

bounded by a finite number of non-intersecting closed geodesics. There exists

a geodesic on Q joining the same two points and of the type of C.

Theorem 2.2 (Gauss). Given any simply-connected geodesic polygon P

{closed polygon whose sides are geodesics and finite in number) on a surface Q.

n > 2, be the interior angles of P, and let do be an element




of the surface Q. If K<O0O on P
(2.1) - j’ﬁf Rdo = [(n-2)m - (aj + **» +a)] .

If there were a geodesic polygon of two sides on a surface of negative

curvature we would have a contradiction, since then
-a; - a, = - £§ Kde < 0.

Theorem 2.3. On a compact surface of negative curvature bounded by

closed geodesics there is exactly one geodesic of a given topological type

joining any two given points.

There exist infinitely many unending geodesics on the Hadamard non-
analytic surface 8 described above. The surface can be made simply connected

as follows. Let the 3 bounding geodesics of S be denoted by 81> 835 83

respectively as indicated in Fig. 3. Take an arbitrary simple curve ¢y joining

points P, and P2 on g, & respectively. By Theorems 1, 3 there is a

1

unique geodesic a joining P P2 of the type of e Take a simple curve ¢

1)

joining points P3, P4 on g,, 83 respectively and not intersecting a. Let

2

b denote the unique geodesic of the type of ¢y joining P3, P4. As is well-
known, two distinct geodesics of finite length intersect in at most a finite
nmumber of points. If b and a are tangent at a point they are coincident

by a well-known theorem of elementary differential equations theory. If b
intersects a, for topological reasons there is a sub-arc of b and a sub-arc
of a of the same type joining the same two points, contrary to Theorem 3.

The geodesics a and b do not, therefore, intersect. Cutting S along the

geodesics a, b yields a simply connected surface M,



We now construct a covering surface N of §. Let there be provided
an infinite set of copies of M. Let M1 be a first copy of M. To each bound-
ary edge of M we join a new copy of M, joining different copies to different

boundary edges obtaining thereby a surface M, consisting of M1 and four copies

2
of M adjoined to Ml' We apply this same procedure to M2 adjoining different
copies of M to different boundary edges of M2 obtaining thereby a surface M3.

Proceeding in this way we obtain a sequence

M, My, e

of simply connected surfaces each composed of a finite number of copies of M
joined as stated. Let N be the infinitely sheeted surface so constructed,

composed of copies of M, which contains each of the surfaces Mh and every
point of which is on one of the surfaces Mh. The surface N will be called

the universal covering surface of 8.

N 1is simply connected., Therefore on N two curves joining two fixed
points P and G are deformable into one another holding P and G  fast.

A portion D of a surface is geodesic-convex if there exists an ¢

such that any two points on the boundary of D, apart by a distance less than
¢, can be joined by a geodesic lying in D.

The surface S 1is geodesic-convex. Since we cut S to get Ml’ the
angles between bounding geodesics are less than 1, and M1 is geodesic convex.
Continuing, we find that Mn is geodesic convex for each n.

Let P, G be points on Mn' Since Mn is geodesic convex there is at

least one geodesic on M.n joining P to Q. By Theorem 2.2 it follows that

there is one and only one geodesic on N joining P to G. Moreover, this geo-
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desic minimizes the length among curves which join its end points.
We shall now prove the following:

Theorem 2.4. On the simply connected surface N, two unending

geodesics 81 and 8y of the same topological type are identical.

*

Case I. Assume first that 81> 8 intersect. By (2.1), g1 and 8y

can intersect in only one point A.

(Fig. 2.3)

Let P be a point on 81 which recedes indefinitely from A in one sense on 8-
Since 8, is of the topological type of 895 the distance of P from 8y is at '
most a finite constant KO independent of P. There exists a geodesic arc h
from P to 8y which gives the shortest path from P to 8ye The arc h 1is '
orthogonal to 8y at a point Q.

We shall show that Q recedes indefinitely from A on g, as P recedes
indefinitely from A on 81° If B 1is any point 6f N, 1let AB denote the

shortest distance from A to B on N. Then
AP < AQ + QP < AQ + KO B

so that AQ becomes infinite with AP,
We shall now prove that PQ tends to zero as P recedes from A.

Suppose first that -K >d >0 for some fixed d, where K 1is the curvature

of N. By (2.1) we have

(2.2) d[fao<- [frac<m-a -a,-a,<n
T T
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where the symbols are defined as in Fig. 2.3. Since by (2.2) the area of the
triangle T is bounded, PQ tends to zero as P, Q recedes indefinitely. A
similar argument holds if K = 0 at isolated points.

When P 1is arbitrarily near to Q, the geodesic angles of h and 81
at P must be arbitrarily near % (otherwise 81 and =9 would have to
intersect once more) so that by the Gauss formula the left member must tend to

"4y, which is impossible unless a, = 0; whence 81, 8 have a contact point

1
at A and are identical,

Case II. If 815 89 do not intersect, take any geodesic k joining
points of 81> 8 such that the sum of the angles e, & which k makes with
81, 8y on at least one side of k is not less than m. Take a second geodesic
h joining points P and Q as in Case I, such that h and k are sides of
a quadrilateral in which a,, a; are interior angles. Upon varying P and G
as in Case I, using the Gauss formula (2.1) for quadrilaterals, we obtain a

contradiction unless g and g, are identical.

Let geodesic crossings of a by 81 in the two senses be denoted by

a' and a

respectively. Relative to b 1let b' and b" be similarly

defined. A succession of symbols of the form

(2.3) ces C_1C0C] +ees

where the c's are taken&from the set a', a", b', b", and in which a' and
a" are never comsecutive, nor b' and b", will be termed a symbolic
trajectory. If g is an unending geodesic on N, and if the successive
crossings of the cuts a, b correspond to successive symbols in (2.3), they
"determine" a symbolic trajectory of the form (2.3). We shall show that a

second unendin eodesic g' which determines the same symbolic trajector
g 8 ym ] y

(2.3) is identical with g. For one sees that g and g' 1lie in the same

+Each ¢ represents a cut and a sensed crossing of the cut,

L~
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sequence of copies of M on N, so that g' and g are of the same topological
type. Hence g and g' are identical in accordance with the preceding theorem.

Lemma 2.3. (Corresponding to each symbolic trajectory T of the form

(2.3) there exists an unending geodesic on N with crossings prescribed by T

Corresponding to T there exists a sequence Z of copies of M on

N of the form

(2.4) Ve YL

in wvhich M~ is joined to Mlnl along edges corresponding to i1 and to
Ml+1 along edges corresponding to s but is otherwise disjoint from copies
of M belonging to Z. Each finite block

(2.5) VN Ve (n > 0)

of Z 1is geodesic convex, Let Pn be an arbitrary inner point of M'. The
domain (2.5) on Z being geodesic convex, P_n can be joined to Pn by a

geodesic g, on (2.5) and hence on Z. The geodesic &, will have the crossings
(2.6) c_ e C

all occurring at inner points of these cuts,

Let E_ be the element (x, y, z; x', y', z') on g, at its intersec-
tion with - The elements En will have a limit element E, and the geodesic
g bearing the element E will have the crossings (2.3) as required. For it
follows from the property of continuous variation of a segment of a geodesic
of bounded length with its initial element that g has the crossings (2.6) for
each n, and hence the crossings (2.3).

The proof of the lemma is complete.

We combine these results in the following theorem:
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Theorem 2.5. There is a 1-1 correspondence between symbolic tra-

jectories T of the form (2.3) and unending geodesics on N in which the cross-

ings of a geodesic g are given by the corresponding T of g. '

;

It is naturally understood that two symbolic trajectories are to be
regarded as equivalent if one is obtained from the other by an advance of the '
subscripts.,

We have given an example in which there are three boundaries and two
cuts. It is clear that there exist similar examples with m boundaries and
m-1 cuts, provided only that m > 2. 1If we had m = 2, the two boundary geo-
desics with the single cut would form a geodesic quadrilateral in which the
sum of the angles would be 2. This would make the Gauss integral of (2.1)
zero, which is impossible,

There is a sense in which the correspondence affirmed to exist in
the preceding theorem is continuous as we shall see later.

3. Symbolic sequences. Having seen the significance of symbolic

trajectories we shall now proceed to develop their theory on an independent
basis. Let there be given a finite set S of symbols, If a is a symbol

of the set S, sequences of the form

(3.1) cee@_g23030 ...
(.2) 182 00
] (3.3) a4l *** Cpan

will be termed indexed sequences or I-sequences. More particularly the I~- '

sequences of (3.1), (3.2), (3.3) respectively, will be termed I-trajectories,

I-rays, and I-blocks. !

The I-block (3.3) will be said to have the length n. Infinite

I-sequences will be said to be of infinite length.
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Two I-sequences A and B will be regarded as identical, i.e. A = B,
if the ranges of their indices are the same, and if symbols with the same
index represent the '"'same value" in the basic set S. Let Dr represent the
operation of adding r to the index of each symbol. The I-sequence obtained
from A by operating on A with Dr will be denoted by DrA' We call two
I-sequences A, B similar if there exists an r such that DrA = B, written
A~B. If r=0, DA=A Ingeneral, if r £0, D_A # A,

The class of I-sequences similar respectively to an I-trajectory,

I-ray, or I-block will be termed a trajectory, ray, or block, and will be repre-

sented by the sequences of values involved without indices. For example if S

consists of the integers 1 and 2, the unending sequence
el 1212,

is a trajectory, but not an I-trajectory.

Corresponding to an I-sequence A we may refer to sub-I-rays or sub-

I-blocks. We shall thereby mean subsets of consecutive symbols of A indexed

as in A with successive indices differing by unity. Thus, if A is of the form

a,a,a.a

1727374’

then a,a is a sub-I-block, but

283 is not a sub-I-block.

%1%3
Let (a) be an I-trajectory and a. a particular element of (a). The

pair (a) and a. will be termed an I-element of index r based on (a), and will

be denoted by E(r,a). If E(m,b) is a second I-element of index s based on an

I-trajectory (b), we shall regard E(r,a) and E(s,b) as identical, and write
E(r,a) = E(s,b)

if and only if (a) = (b), r = s. We shall say that E(r,a) is similar to

E(s,b), written E(r,a) ~ E(s,b), if

D__(a) =D__(b) .
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The infinite class of I-elements similar to a given I-element E(r,a) will be

termed an element E represented by E(r,a) based on (a).
Example. We suppose S composed of the numbers 1 and 2. We write
the values of the symbols directly above the symbols. Consider an I-trajectory

of the form

ces a2 , 8 . a
-2

Consider also the I-trajectory

e b_2 b_1 b0 bl e
Evidently, E(0,a) # E(0,b). However, E(0,a) ~E(l,b). It is to be observed
that for even r and s, E(r,a) ~ E(s,a). A similar relation holds when r
and s are odd. ' '

We shall assign a metric to the space of all elements E. In the

block

c css C ... C
r-m r r$m .

c. is said to be the middle symbol. Let E1 and E2 be given elements

represented by indexed elements E(r,a) and E(s,b) respectively. Let m be

the length of the longest I-blocks of (a) and (b) which are similar
("corresponding'" symbols have the same value) and in which a. and bS are

4 respectively the middle symbols. To E1 and E2 as well as to E(r,a) and

E(s,b) we assign a distance

1
E1E2 = E(r,a)E(s,b) = =

g

The number m may be zero or infinite, and the distances will then be taken as
+® and O respectively. It is clear that the distance E1E2 is independent

of the particular I-elements E(r,a) and E(s,b) chosen to represent El and

E2 respectively.

4LQ‘1-—._‘
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The distances so defined satisfy the usual metric axioms, namely the

conditions:

(3.4) ElEZ =0 if and only if El = E2 s
(3.5) ElEZ = E2E1 s

(3.6) E.E, <E.E, +E.E_ .

173 = 7172 273

Relation (3.6) follows from the stronger inequality

(3.7) EE; Smax. (EE,, E,E,)

To prove this let h, k, m denote the reciprocals of E E,E and E_E

1830 EqEps 2%3
respectively. Assume that k > m. Evidently h >m, whence h >min. (k, m).

The latter inequality yields § max. %, é), except in the cases where m =0

==

or ® in which cases (3.7) holds trivially.
We shall continue with a proof of the following

Theorem 3.1. The space M of all elements is compact.

A metric space is said to be compact if each infinite sequence of
points of M contains at least one subsequence which converges to a point of M
relative to the metric of M.

Suppose that the elemenfg En is represented by the I-element E(O,an)

where (an) is an I-trajectory

. aljaga) n=1,2,3,..
We shall define a matrix
T, Ty, Ty e
(3.8) Ta1 Tog Toz --
T3y T3p T35 -
I )

in which the elements are I-trajectories (a l) chosen as follows. Since S is

{Of an infinite sequence (En) of elements.

h-‘
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finite, for some value s of S there exists an infinite set of symbols agi
which represent s. Let the first row in (3.8) be a subsequence (anl)(anz) ces
in each trajectory ( ) of which the symbol of index zero has the value s. Again,
since S is finite, there is an infinite subsequence of the sequence Tll’T12""
such that the pairs a?i, a?i have the same values in each Tij chosen; take this

for the second row of (3.8). Proceeding inductively we suppose that the first k-1

rows of (3.8) have been determined. The k-th row shall then be a subsequence of

the (k-1)st row, composed of the T-trajectories Tkr written
r .r, T
. bl bgb] -,
such that the symbols
r T
3.9) b-k+1 cen bk-l

have the same values for all I-trajectories of the k-th row. The matrix (3.8)
is thereby determined.

Let (c) denote an I-trajectory in which C okl and 'cki_1
values of symbols with indices -k+l1 and k-1 respectively in the k-th row of

have the

(3.8). Then (c) has the symbols (3.9) in common with I-trajectories of the

k-th row.

Let F, F = Dbe the elements defined by E(0,c) and E(O,Tnn)

respectively. Then

1
FF-+n 5 2n-1

As n—*, FF —> 0, so that F_converges to F. Moreover (Fn) is a
subsequence of (En) so that the proof of the theorem is complete.
Let T be a trajectory represented by an I-trajectory (a). If there

exists a positive integer r such that

(3.10) an+r = ar

for all n 1in the set (...,-1,0,1,...), T will be said to have the period r.
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A trajectory of period r is determined by each of its blocks (period blocks) of
length r. There are accordingly at most a countable infinity of distinct

periodic trajectories.

An element E will be termed a limit element of a set of elements H

if there is an element of H distinct from E in every '"neighborhood" (neighbor-
hood taken relative to the metric defined above) of E. We understand that an
element E which is based on an I-trajectory (a) 1is "on'" the trajectory
defined by (a).

With this understood, let T be an arbitrary set of trajectories.

A trajectory T will be termed a limit trajectory of ¥ if the elements on

trajectories of ¥ include among their limit elements at least one element of
I. The set I can consist of a single trajectory, for example of the traject-
ory T given by
(3.11) «». (111)0(11)0 1 0(11)0(111) ...,
where the(barentheses are introduced to show the law of formation. The
trajectory
... 1111 ...

is a limit trajectory of the trajectory (3.11).

A periodic trajectory has no limit trajectory because it bears at
most a finite set of elements. Let T be a non-periodic trajectory and (a) an
I-trajectory representing T. No two I-elements E(r,a), E(n,a), n > r based

on (a) are similar, because a similarity relation
E(r,a) ~ E(n,a)
would imply that (a) had the period n-r, contrary to hypothesis. The elements

E(l,a) E(2,a) ...
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must have at least one limit element E. We term such elements positive limit

elements of T. Similarly, the elements
E(-1,a) E(-2,a) ...

must have at least one limit element and we term such elements negative limit

elements of T. Trajectories determined by positive or negative limit elements

of T will be termed positive or negative limit trajectories of T.

A trajectory can have several distinct limit trajectories. For
example, a trajectory of the form
ce. 2222111221221112222 ..

has

.o 111 ...
and

el 222 ..,
as limit trajectories. One can write down a trajectory which has each periodic

trajectory as a limit trajectory. Let

(3.12) AlAZ v ;

be a set of blocks which includes each finite block. Since there is at most a
. . r
countable number of finite blocks, such a sequence exists. Let A~ denote the

block A repeated r times. The trajectory

cee A3A2A1A2A3 cee ,

will have each periodic trajectory
as a limit trajectory; for corresponding to each positive integer r, the "o

block A" will appear in (3.12) in some place.
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(4.2)

positive integer.

20,

4. Minimal trajectories. Let s be a trajectory and n an arbitrary

Since the given set S of symbols is finite, the number of

different blocks of length n in s is finite. It will be denoted by

P_(n),

and termed the n-th permutation number for s. If t is a limit trajectory of

s we have

A trajectory

P_(n) > P, (n)

s such that

Ps(n) Pt(n)

for evexy n and every limit trajectory t of s will be termed minimal.

Periodic trajectories are minimal. They satisfy (4.2) vacuously

Theorem 4.1,

since they have no limit trajectories.

Among the positive (or negative) limit trajectories

f a non-periodic trajectory s there is at least one minimal trajectory.

the

= the

the

the

the

We shall give the proof for the case of positive limit trajectories,

The proof for the case of negative limit trajectories is similar.

We proceed to give an inductive definition of certain symbols.

set of limit trajectories of s,

minimum of Pr(l) for r in H._.

subset of H0 for which Pr(l) =P

minimum of Pr(n) for r in H

subset of H
n—

.

1

o
1
n-1°

for which Pr(n) =P,




The set Ho and hence Hn is not empty, and

l-{OZDHlDH2

Let r be a limit trajectory of the trajectory s, and let s in
turn be a limit trajectory of a trajectory t. It is readily seen that r 1is a
limit trajectory of t. It follows that Ho is closed (i.e., contains its

limit trajectories). Proceeding inductively we shall assume that Hn- is

1
closed and shall prove the statement:
(0) The set H is closed.

If the trajectories of Hn have no limit trajectory, Hn is closed,
Suppose the trajectories in Hn have a limit trajectory t. To show that t is

in Hn we first recall that Hn-l ) Hn’ so that t is a limit of trajectories

Since the n-th

in H .. Since H is assumed to be closed, t is in H
n-1 n-1 n-

1°

permutation numbers of trajectories in Hn-l are at least P
n) > .
P> p,

On the other hand, since t is a limit trajectory of trajectories of Hn whose

n-th permutation numbers are exactly p,, we have

P@ < p

It follows that

1

P _(n) 2

n
Thus t belongs to Hn, and Hn is closed, whence (o) is proved.
The sets Hn form a decreasing sequence of closed sets., As follows

from the compactness of the space of elements E, the intersection

of H,, H is non-void and closed.

0, 1,-0-

21.
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Let t be a trajectory in H, If t 1is periodic t is minimal. If
t 1is not periodic let r be any limit trajectory of t. Then r and ¢t are
both in Hn so that
P.(m) =p , P (@ =p_ .
Hence

Pt(n) = Pr(n)

for every n, and every limit trajectory r of t. Hence t is minimal, and
the proof is complete.

Theorem 4.2. The relation between a minimal and a limit trajectory

is reciprocal.

That is, if s is a minimal trajectory and t is a limit trajectory

of s, then t 4is minimal and s is a limit trajectory of t.

so that s is a limit trajectory of t. To show that t 1is minimal, let r be
one of its limit trajectories. Then r is also a limit trajectory of s, and
since s 1is minimal

Pr(n) = Ps(n) s Pt(n) = Ps(n) 5

whence Pt(n) = Pr(n), so that t 4is minimal.

The proof of the theorem is thus complete.

The set of limit trajectories of a trajectory s will be termed the
derived set of s. If s is a non-periodic minimal trajectory each member of its
derived set S has s as a limit trajectory and hence has the same derived set
That this property is characteristic of non-periodic minimal trajectories is

stated in the following theorem,

Theorem 4.3. A set S of trajectories which is the derived set of

each of its members is composed of non-periodic minimal trajectories.

For every block of length n in s is also in t since s is minimal,



If s and t are two trajectories of §
(4.3) P() > B ()

since t is a limit trajectory of s. But (4.3) also holds with s and t

interchanged, so that
Ps(n) = Pt(n)
Hence s and t are minimal.

5. Recurrent trajectories, A trajectory s will be termed

recurrent if corresponding to each positive integer n there exists a
positive integer m with the following property: each block of s of

length n has a copy in each block of s of length m.

If s 1is recurrent, corresponding to each positive integer n

there will be a smallest positive integer m = RS(n) for which the

preceding property holds. Rs(n) will be said to be the recurrency function
belonging to s.

An I-trajectory will be termed recurrent if it represents a
recurrent trajectory. If s 1is a periodic trajectory with minimum period

W, it is clear that s is recurrent and that

)

Rs(n) =n+W-1

L‘__

23,
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A recurrent non-periodic trajectory can be constructed as follows.

Let blocks 815 Sg5 +o- be given as follows:
§1 = 12 ,
8, = 1221 ,
S5 = 1221 2112 ,

Sl being obtained from s by replacing each 1 in s by 1 2 and each

2 in 5. by 2 1. Let

r
ag 2 -2 (h=2" - 1)
take the values given by S in the order written. Let
a_ 1 =2, (n=0,1,...)

The I-trajectory (a) can be shown to be recurrent and non-periodic.

Theorem 5.1. The relation between a recurrent trajectory s and

any limit trajectory ¢t f s 4is reciprocal.

That is, if s 1is a recurrent trajectory and t a limit trajectory
of s, then t 1is a recurrent trajectory and s 1is a limit trajectory of t.

To show that s is a limit trajectory of t, it is sufficient to
show that an arbitrary block u of s of length n has a copy in t.

Let Rs(n) be the recurrency function belonging to s. Each block of
t is found in s, since t is a limit trajectory of s. Hence each block of

t of length RS(n) will contain a copy of u s and t is a limit trajectory

of s,

R



To see that t is recurrent note that each block of length n or
Rs(n) in t is also in s so that t must be recurrent with s,

Having proved Theorem 5.1, we now turn to the following fundamental
theorem:

Theorem 5.2, A necessary and sufficient condition that a trajectory

s be recurrent is that it be minimal.

We shall first prove that s is recurrent if it is minimal. To that
end we assume that s is minimal but not recurrent, and we shall arrive at a
contradiction,

Let (a) be an I-trajectory representing s. If s is not recurrent
there exists a positive integer p with the following property. For each
positive integer q no matter how large there exists in (a) an I-block A.n of
length n greater than ¢ which fails to contain a sub-I-block similar to at
least one I-block of (a) of length p. Since there are at most a finite number
of dissimilar I-blocks of length p there must exist at least one, say u_ ,

together with an infinite sequence of I-blocks

A (n = nl,nz,...),

of length n, where n; <n, < ng < ..., such that up is similar to no
I-block in A .
n

Without loss of generality we may assume that n, is an odd

integer so that A.n has a middle symbol r,.
i

We continue with a division into two cases.

Case I. Infinitely many of the I-elements

(5.1) E(r,,a) (1=1,2,...)

are dissimilar,

25,
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Since the space of elements is compact, the elements (5.1) have a limit
element E. Let t be the trajectory on which E is based. Since t 1is a

limit trajectory of s and s 1is minimal, t and s contain the same blocks.

But as defined, t does not contain up. From this contradiction we infer that

8 1is recurrent,

Case. II. Only a finite gubset of the elements (5.1) are dissimilar.

An infinite number of the elements (5.1) are similar to one of these
elements, say E(rl,a). Since the blocks A, ~ with center r, do not contain
i
a block similar to U (a) contains no block similar to uP. From this contra-~
diction we again infer that s is recurrent.
We shall now show that s is minimal if it is recurrent. If s is

periodic it is minimal since it has no limit trajectories. Assume then that s

is not periodic. Let t be a limit trajectory of s. Then

(5.2) Ps(n) > Pt(n) .

By Theorem 5.1 s is a limit trajectory of t. Hence (5.2) holds with the
inequality reversed; whence
Ps(n) = Pt(n) 5
and s 1s minimal.
The proof of the theorem is now completg.
One important consequence of Theorem 5.2 is that we may replace the

word "minimal" by "recurrent" in Theorem 4.3,

6. Properties of the space M of elements. A metric space M is
termed totally discontinuous if its only continua are points. Cf. Hausdorff,

Mengenlehre, 1935, p. 152. We shall prove the following theorem:




e
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Theorem 6.1. The space M of all elements E is totally discontinuous.

We rely on the fact, cf, Hausdorff, p. 151, that on a continuum C
every distance is assumed which is less than pq where p and q are points of C.
In case the space is M the distances are of the form % , Where n takes on in-
tegral values only, so that M can contain no continuum with more than one point.
The derived set S' of a set S of elements of M is the set of all
limit elements of the elements of S. A set is perfect if it is identical with

its derived set.

Theorem 6.2, The space M of all elements E is perfect,

We know that M is compact. To prove that M is perfect it is
necessary only to show that in every neighborhood of an indexed element E(0,a)
there is an I-element E(O0,b) different from E(0,a). We can define (b) so that
it has a prescribed central block in common with (a) but with all larger control
blocks different from the corresponding blocks of (a).

Theorems 3.1, 6.1, 6.2 are summarized in the following statement.

Theorem 6.3. The space M of all elements E is compact, perfect, and i

totally discontinuous.

We shall now prove the following theorem:

Theorem 6.4. f S 1is the derived set of a recurrent non-periodic

trajectory, the elements based on trajectories of S form a compact, perfect,

totally discontinuous set N,

N is a subset of the set M of all elements, and N is closed in M.
Hence N 1is compact, being in a compact set M, Since M is totally discontinu-
ous, N is totally discontinuous.

To prove that N is perfect we need only show that in every neighborhood
of an element E of N there is an element E' of N distinct from E. Let it

E Dbe represented by the indexed element E(0,a). By Theorems 4.3 and 5.2 the
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I-trajectory (a) is recurrent. Consider a central block

(6.1) a ces @ ... 4

-m e} m
of (a) where m 1is any arbitrary positive integer. Now (a) is recurrent.

Hence there is a block

with r # 0 in (a) which is a copy of (6.1). Now E(0,a) and E(r,a) are
distinct since (a) is not periodic, and the distance between them is not
greater than

1
(6.2) Il

Since m 1is arbitrarily large, the fraction (6.2) is arbitrarily small, and
the theorem is proved.
From Hausdorff, p. 160, we have the following corollary:

Corollary. M and S are homeomorphs of the Cantor perfect nowhere-

dense linear set.

Theorem 6.5. The derived set S of a recurrent non-periodic trajectory

has the power of the continuum,

By the corollary above the set of different elements on the trajectories
in S has the power N of the continuum. On each trajectory in S there is a
denumerably infinite number N, of distinct elements. Let a be the cardinal
number of the set of distinct trajectories in S. Therefore

N0a=N.

Hence, according to a well-known theorem of the theory of sets, cf. Hausdorff,
pp. 30-31,

Noa = a .

Hence N = a.
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7. Geodesic elements. We suppose that we have given a two-dimensional

Riemannian manifold R with overlapping coordinate systems with a metric given

locally by
2 i, ] ..
ds = gij(x)dx dx (i, = 1,2)

We suppose that the coefficients gij(x) are of class 03. We assume that R is
compact as a point set, and that R 1is bounded by v non-intersecting closed
geodesics with v > 2. We suppose that R is of genus zero and orientable. Then

making v-1 simple cuts

joining the geodesic boundaries in some order yields a simply connected surface
§. Let XY be a universal covering surface belonging to R defined as earlier
with the aid of S.

Given an arbitrary point A on a geodesic g of R, we suppose that
there is no point B on g such that A and B are mutually conjugate in the
ordinary calculus of variations sense. It follows that any two points of A and
B on I can be joined by one and only one geodesic. That there is at least one
geodesic g joining A and B affording an absolute minimum to the distance on
R from A to B follows from the fact that R 1is geodesic convex. We shall
show that there can be at most one such geodesic.

Let angles at A with a suitable reference direction be denoted by .
?. Let Q?,s) denote the point P on the geodesic g issuing from A with
the direction p ata distance s from A, where s 1is measured along g.

The pair Q?,s) determines a point (u,v) with

u=scoscp,

<
Il

s sin ¢ ,
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in an auxiliary (u,v) plane. The relation between the points P on R and the
points (u,v) determined by the same pair (@,s) 1is locally one-to-one. Since
¥ 1is simply connected it follows from topological considerations (involving a
continuation process) that it is one-to-one in the large. Thus a point P is
determined by at most one pair (u,v) so that.there is at most one geodesic
from A to P.

We now make a new and independent hypothesis,

Hypothesis of unicity. There is at most one unending geodesic on R

of a given topological type (see p. 6).

We have seen that this hypothesis is satisfied if R 1is a surface of
negative curvature K. It is not satisfied merely because of the absence of
conjugate points. This may be seen by starting with a surface of negative
curvature bounded by closed geodesics, with one of these closed geodesics
approximately a circle at the end of a funnel. If the funnel is modified so as
to be a cylinder near its end, any two right sections of the cylinder will define

geodesics of the same topological type

Cylinder_.

Sufficient conditions less stringent than the condition that the surface have

negative curvature have been given by Morse in the paper cited below.

| -
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Instability and transitivity, Journal de Mathématiques, vol., 14 (1935),
pp. 49-71.
Let g Dbe a given geodesic and let K(s) be the curvature of R in
terms of the arc length s on g. We consider the so-called equation of variation

cl2
(7.1) ——Vz’ + K(s)w = O .
ds

A solution w(s) of (7.1) such that
w2(a) +w'l(a) = 1

will be said to be normalized at a. We shall say that g 1s of unstable type

if for every such normalized w(s)

(7.2) Lim {|w(a-x)| + |w(aty) [} = + = .
X, y+°

If K(s) =0 along g, g is not of unstable type because the solution w = 1 does

not satisfy (7.2). On the other hand if K < 0 (7.2) is satisfied. It can be
shown by examples that it is by no means necessary that K § 0. It is merely
necessary that K < 0 for sufficiently many points.

If the limit (7.2) exists uniformly with respect to all geodesics g on
R independent of the choice of a, the geodesics on R will be said to be uni-

formly unstable. Morse proved the following theorem in the reference cited above.

Theorem 7.1. 1If the geodesics which remain on R are uniformly unstable

the unicity hypothesis is fulfilled on R.

The problem of determining a set of necessary and sufficient conditions

for unicity is still unsolved.

By virtue of the conjugate point hypothesis we can suppose that the cuts
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are geodesics. We suppose moreover that these cuts have been so made as to have

] no intersections, With each cut ¢, We associate a positive crossing which we

denote by e A crossing of < in the opposite sense will be denoted by c!,

k
Let g be a geodesic which remains on R however continued. The successive
crossings of g will define a symbolic trajectory in which the symbols are in
C'

the classes (ck), (ci), but in which ¢ Cp are adjacent for no k. We term

such a symbolic trajectory admissible. As in the case of surfaces of negative

curvature each admissible trajectory gives the crossings of a geodesic g. That
g 1s uniquely determined by its crossings follows from the unicity hypothesis.
Symbolic elements based on admissible symbolic trajectories will be
termed admissible. Let E be such an element. Suppose E based on a
trajectory T in which ¢ is the preferred symbol. For E(r,a) the symbol
of the I-trajectory (a) with index r is the "preferred" symbol. Let g be
the geodesic determined by T. The line element H on g at the crossing
corresponding to c¢ will be regarded as an image of E. Two different symbolic
elements E determine different line elements H since a line element uniquely
determines a geodesic. Line elements H determined by admissible symbolic
elements will be termed admissible. The following lemma is obvious:

Lemma 7.1. The relation between admissible symbolic elements E and

admissible line elements H is one-to-one.

We define a distance HH' between two line elements H and H' as
follows. Let d1 be the distance on R between the points A and A' of H
and H' respectively. Let h be a sensed minimizing geodesic joining A to A'.
let ¢ and ¢' measure the angles which H and H' make with h at A and A'

respectively. Let d2 be the smallest of the angles

(7.3) [@' -+ 2nn| (n =0,1,...) .
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If there are several minimal geodesics h joining A to A' we take d2 as the
smallest of the angles obtained from all such arcs by the above construction. We
set

HH' = d1 + d2
We note that the space of admissible line elements is compact. This follows from
the property of the continuous variation of a geodesic segment of fixed length
with its initial element. The space of line elements will be termed the phase
space corresponding to R.

We continue with a proof of the following theorem.

Theorem 7.2. The correspondence between admissible line elements and

admissible symbolic elements is one-to-one and continuous.

That the correspondence is one-to-one has already been noted in Lemma
7.1. We have also seen that the space (H) of line elements is compact. That
the map of the space (H) onto the space (E) of admissible elements (E) is
continuous follows immediately from the continuous variation of geodesic segments
of fixed length with their initial elements, and the definition of distance in
the space (E). That the inverse map is continuous now follows from the compact-
ness of (H) and the one-to-one chatacter of the correspondence. See
Kerekjarto, Vorlesungen Uber Topologie, p. 34,

Recall that g 1is termed a limit geodesic of a set S of geodesics
if some line element of g 1is a limit element of line elements on geodesics of
§. Let g% be the symbolic trajectory determined by g, and S* the set of
symbolic trajectories determined by geodesics of §. If bg is a limit geodesic
of S, then in the symbolic sense g% will be a limit trajectory of the
symbolic trajectories S*, and conversely. Thus in our transition from symbolic
to geometrical dynamics admissible symbolic trajectories and elements correspond

to admissible geodesics and line elements in a one-to-one manner and limit relations
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are preserved. The proofs of the following theorems all depend upon this fact,
and the continuous variation of a finite geodesic arc with its initial line
segment.

A geodesic will be termed minimal if it is periodic or if it is a
member of a set M every geodesic of which has M as a derived set.

Theorem 7.3, A necessary and sufficient condition that a geodesic g

be minimal is that the corresponding symbolic trajectory be minimal.

This follows from the definition of a minimal geodesic and the theorem
that a minimal symbolic trajectory is either periodic or else a member of a set
D every trajectory of which has D as a derived set.

Theorem 7.4. A necessary and sufficient condition that a geodesic g

be minimal is that it be periodic or possess the following property. £f h is

an arbitrary limit geodesic of g each finite arc of g has an arbitrarily

small Fréchet distance e in phase space from some subarc of h dependent on e.

Theorem 7.4 is a consequence of Theorem 7.3 and the definition of a
symbolic minimal trajectory.
The following theorems are proved in a similar manner.

Theorem 7.5. A necessary and sufficient condition that a geodesic

be minimal is that it be recurrent in the sense of the definition of geometric

dynamics. (CEf£. p. 4.)

Theorem 7.6. The positive or negative limit geodesics of each non-

periodic geodesic includes at least one recurrent geodesic.

A ean
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A non-periodic recurrent geodesic and its limit geodesics are said
to form a minimal set.
Consider arcs of geodesics belonéing to a minimal set M. Represent
M in the corresponding phase space H. Let P be an arbitrary point on M in
H. Let N be a neighborhood of P and N* the intersection of the closure of
N with M. If for N sufficiently small the only continua on N¥ are

individual arcs of M, the minimal set M is said to be discontinuous at P.

A minimal set which is discontinuous at each point P is said to be of

discontinuous type.

In Section 1, Example 1, we have exhibited a differential system

(1.3) whose solution for a/b irrational forms a minimal set of motions on a

torus. The corresponding set of points includes all points on the torus. i

Clearly this minimal set is not of the discontinuous type. "
On the surfaces of negative curvature studied above, each minimal

set M is of the discontinuous type. To see this let P be an arbitrary

point on a geodesic g of M, and E the line element on g at P. The

elements on M sufficiently near E determine geodesics all of which cross

some one of the geodesic cuts on the covering surface. Let b denote this

geodesic cut. The elements on M with intersection points on b vary con-

tinuously with the elements on M near E, But the elements on M with

initial points on b form a totally disconnected set by Theorem 6.3. It

follows that M is of the discontinuous type.

8. Transitivity. We have seen that there exist rays

(8.1) a, a

which are transitive; that is, which contain copies of every possible block.

This is true even in the case where each symbol has an inverse and inverse

d.
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symbols are not permitted to be adjacent. 1In case (8.1) is a transitive ray
there is a least integer @(r) corresponding to each positive integer r such
that

a

1 °°° acp(r)

contains each block of length r. We term @(r) the ergodic function belonging

to the ray (8.1).
We propose the question: "Is there a ray with a best ergodic function

@(r); that is, one such that for every other ergodic function {(r)

VE) > o0@) 7

That the answer is negative at least in the absence of inverses may be seen
as follows.
Let there be n symbols in the given set from which our blocks are i
constructed. As we shall see later, for each positive integer r there exists
a block Hr of length n" +r - 1 which contains each r block once and only
once, If there are but two symbols 1 and 2, H, is 1 2 or 21, H, is

1 2
12211 or 21122

2

while a particular choice of H3 is

1122212111,
That Hr exists in general will appear later. We term Hr an r-covering,
In general there exists no r-covering which contains a j-covering in the left-
hand position for each j < r. In particular this is true if r = 3. For an
H, which started with an H, would start with 1 2 or 2 1, say with 1 2, '

3 1

The only H, which starts with 1 2 is

2

=12211,
)

To obtain an H3 containing this H2 in the left-hand position, we find that we
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must continue with 2 1 2 or 1 2 obtaining the blocks

12211212, 1221112,
and that further continuation to obtain a block H3 of length 10 containing
all blocks of length 3 is impossible. Thus an H3 of the required type does
not exist,

For a given r there exists a transitive ray which starts with an Hr'

The ergodic function @(r) for such a ray will be such that
(8.2) o(r) = nt +r-1

for the given r. Hence a best ergodic function ¢(n) would be one for which
(8.2) holds for all r. But we have just seen that no such ray exists with
o(l) =2, ©0(2) =5, @(3) =10.
Thus a "best'" ergodic function ¢(r) does not exist.
From this point on we shall continue with the case where the set of

admissible symbols
8.3) c

is even in number and the symbols in (8.3) can be grouped into % n distinct
pairs so that the symbols in the same pair are inverses. As above we shall term
a block Hr which contains each admissible block of length r an r-covering.
We shall prove the following theorem.

Theorem 8.1. There exists an r-covering corresponding to each

positive integer r.

To establish the theorem we shall form a block Hr in accordance with
the following rules first given by Martin for the case where the symbols (8.3)
possess no inverses. Cf. Monroe Martin, A problem in arrangements, Bulletin

of the American Mathematical Society, vol. 40 (1934), pp. 859-864,
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Rule 1. Start with r-1 symbols s forming a block ci_l of
length r-1,
Rule 2., Continue successively adjoining the symbol in (8.3) of

highest index such that no r-blocks are repeated.

Lemma. A necessary and sufficient condition that the application of

Rules 1 and 2 yield an r-covering is that c

and c, in (8.3) shall not be

1 2

inverses.,

Let Mi be the block obtained by applying Rules 1 and 2 as long as
possible, If A 1is any admissible block of length r-1, the following blocks

of length =~

(8.4) Ac_, ..., Ac)

appear if at all in M.r in the order written. One of the blocks (8.3) is in-
admissible since the last symbol of A cannot be followed by its inverse.- Note
that if Ac1 appears in ME all other admissible blocks in (8.4) must appear
in M} by Rule 2. If Acl is not admissible, Ac2 is admissible and appears

in Mr only if all of its predecessors in (8.4) appear in ME. We write

ci-l E. We shall continue with a proof of the following (a) and (b).

() The block M_ ends with E.
If the block Mr ended with a block A of length r-1 different
from E, A would not occupy the first position in ME by Rule 1. A could
then appear in Mr at most n-1 times; otherwise there would be an admissible
block of the form ch which would appear twice. Upon its (n-1)-st appearance
if Ac

A can be followed by ¢y Or ¢ 1 is not admissible, contrary to the

2

hypothesis that Mi ends with A,
(b) The block M.r ends with Ecl.
Suppose M ends with a block B # cE of length r. Set B =DbE in

accordance with (a). We suppose that b # - The block E appears n times
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in M} for otherwise Mr could be continued. Hence Ec1 appears in Mr but not

in the last position. But Ec1 cannot be continued since it is preceded by

each admissible block Ecj, and itself ends with E. From this contradiction
we infer the truth of (b).

We shall now make use of the assumption that 1 and ¢, are not

inverses and show that M 1is an r-covering.
We first observe that each admissible block Ecj appears in M%. Hence

Mi contains n copies of E. It follows that Mr contains each admissible block

(8.5) b, ... b

be an arbitrary admissible block of length r. We shall show that M% contains
(8.5).
Suppose that ME does not contain (8.5). Set

I b2 cee br = D.

Then D £ E by virtue of (a). Hence D appears at most n-2 times in M} 5

otherwise each admissible block ch would appear in Mi. Hence Dc1 does not

appear in M_ (or De, if Dc1 is not admissible).

We now apply the same reasoning to Dc (or Dcz) that we have

1
applied to (8.5), and infer that

(8.6) b3 ces brclc1 or b3 v brc2cl

does not appear in Mr' Continuing, we arrive at the conclusion that ci does
not appear in Mr contrary to (b),

The condition of the lemma is hence sufficient.

To prove that the condition is necessary we suppose that c¢. and c

1 2

, r R .
are inverses. If Mr were an r-covering, c, would appear in M%, but not in
‘s . T . .
the last position by virtue of (a). But sy cannot be continued in accordance

with Rule 2 since the blocks

'
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have already appeared. This completes the proof of the lemma,

A function {(r) will be said to be asymptotically at least a

positive function ¢(r) if

Lim Y (x)
r—> @ p(x) z 1

The expression "is asymptotically equal' will be indicated by the symbol ~,
There are n(n-l)r-l different admissible blocks of length r so

that an r-covering has a length at least
r-1
8.7) n(n-1) +r-1 .
Set

Ln-l)n(n-l)r-:L
(n-2)

A(n,r) =

Theorem 8.2. 1In the case where our symbols possess inverses, each

. ; . . r-1 .
ergodic function is asymototically at least n(n-1) , and there exists a

transitive ray whose ergodic function is asymptotically not greater than A(n,r).

Let Hr be an r-covering formed in accordance with the preceding rules

kg
and let Hr be the block obtained from Hr by omitting the first r-1 symbols

¢ The ray
K
(8.8) Hl H2 H3

KA
W

is clearly transitive since Hr is preceded by ci-_l in (8.8) for each r > 1,

Moreover (8.8) is admissible. For this ray the ergodic function @(r) is at

most the length of the block

% %
Hl H2 <o B
That is
. r -1
©(E) < £ n@DY .
T m=1
Hence



T
o (r) <n [%—E—%EE%%;] ~ A(n,r)

Upon referring to (8.7) we see that
p(r) > n(n-—l)r—l +r -1~ n(m-l)r-l

which completes the proof of the theorem.

40",
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That each ergodic function is asymptotically at least n*  follows
from (8.7), and the proof of the theorem is complete.

9. Hyperbolic geometry. We shall use the Poincaré representation of

2-dimensional hyperbolic geometry. The points will be the subset of points of
the ordinary Euclidean xy-plane for which y > 0. The group G of motions which
will preserve the metric of this geometry (this metric will be defined later)
will be the group of all fractional linear transformations of the complex vari-
able z = x + iy 1into w = u + iv such that the domain y > 0 of the xy-plane
corresponds to the domain v > 0 of the uv-plane.

Lemma 9.1. The group G consists of the set of transformations T

of the form
(9.1) W= ad - bc >0
inwhich a, b, c, d are real.

For transformations T

dw ad - bc

(9.2)
dz (cz+d)2

That each transformation T is in G follows from the fact that T
carries the real axis into the real axis, preserves sense on these axes since

d o ) . , .
E% is positive, and further by virtue of the direct conformality of T carries

the domain y > 0 into v > 0. Conversely, each transformation H of G can

be represented in the form (9.1). For H carries three distinct points x,, x

1)

1> Ups Uy oM the real

2)

X, on the real axis y = 0 into three distinct points u
axis v = 0 (one of these points may be *®), If 2z corresponds to w under

H, we have the following equality between the cross ratios
(9.3) CR(z, X1, Xy, x3) = CR(w, Up, Uy, u3)

The relation (9.3) between w and =z reduces at once to (9.1). Moreover,



42, |
ad - bc >0 if y >0 corresponds to v > 0.

Lemma 9.2, Under transformations T £f G

(9.4) =, v £0, yio:

where do and ds are corresponding differentials of arc length in the w- and

z-planes respectively and (x,y) corresponds 'to (u,v).

Note that under T

_az + b . cz + d azz + adz + bcz + bd

cz+d cz+d lcz + d|2

N1
il

y X = 1y,

from which we obtain

(ad - bc)
(9.5) v = —'EX
lcz + d|
while
dw do ad - bc
(9.6) [ — | = | -— | = ——,
dz ds |ez + d 2

Relation (9.4) follows from (9.5) and (9.6).

The length of a curve in our hyperbolic geometry will now be defined

1.2 2
Jﬁ - ‘I‘L_;.r_v'_ dt,

y

by the integral

y>0,

taken along this curve represented by the equations x = x(t), y = y(t). The
length of a curve is invariant under transformations of G regarded as trans-
forming our hyperbolic plane into itself, as follows from the preceding lemma.

Lemma 9.3. With length so defined, the shortest paths are open semi-

circles orthogonal to the axis of reals.

Any circle perpendicular to the axis of reals can be transformed into
any other such circle under a transformation of G, since it is necessary merely
to transform the end points of the circles into each other under a transforma-

tion of the form (9.3).

k——
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Moreover the straight lines perpendicular to the x-axis may be in-

cluded in this set of circles. TFor the transformation

is in G and carries the semicircle with end points at z = 0, z = 1 into the
half-line with end at w = 1 and perpendicular to v = 0. Transformations of
the form w = z + b carry this half-line into any other half-line perpendicular
to the real axis.

To prove the lemma it is accordingly sufficient to show that each
finite segment of the y-axis, on which y > 0, is a shortest path in our geome-
try. To that end let C : [x(t),y(t)] be an arbitrary rectifiable curve on
y >0 joining two points (O,yl), and (O,yz) with Yy < Yy- If x(t) and

y(t) are absolutely continuous

(AT, T,

Yo

dt j‘% ,
71

(V4
v

and the equality holds if and only if C is identical with the segment
¥ <y < v, of the y-axis.
The lemma follows directly.
The semicircles perpendicular to the axis of reals including the half-

lines will now be called hyperbolic straight lines, or more briefly H-lines.

The points on the axis of reals are not regarded as belonging to the H-lines,

We shall refer to such points as the ideal end points of the H-lines. Given

any two points P and Q in our H-plane, there exists one and only one connecting
H-line L. 1Its Euclidean center lies at the intersection of the x-axis with

the Euclidean line equidistant from P and Q.
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The H-length of L between P and Q will be termed the H-distance between P
and Q.

It is clear that these H-lines and H-distances satisfy all the axioms
of Euclidean geometry save the parallel axiom. We say now that two H-lines are
parallel if they have a common ideal end point, If L is a given H-line and P
a point not on L, there exist two H-lines through P parallel to L.

The parallels to L through P can be obtained as the limiting

position of H-lines drawn from P to points Q1 and Q2 on L as Q, and Q2

1

tend respectively to the ideal end points of L.

P

Q

The fixed points of the transformations T of G given by (9.1)
satisfy the relation
cz2 + (d-a)z ~ b = 0,
Since the coefficients are real, the fixed points are either real or conjugate
imaginary. T 1is thus one of the following three types.
I. 1If there are two real fixed points A and B, the circles through A and
B must be transformed into themselves since the x-axis is so transformed,
and the transformation is conformal. Such transformations of G are termed
hyperbolic.
II. 1If there is just one real fixed point A =B, the transformation is parabolic
and the family of invariant circles tangent at A must include the real axis.
III. If the fixed points A and B are conjugate imaginary, the circles C orthog-
onal to the circles through A and B include the axis of reals as an invariant
circle. Since the upper half plane is carried into itself the circles C

must be invariant and the transformation is elliptic.
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If L 1is an arbitrary H-line and P a point not on L, there is a

unique H-line M through P perpendicular to L. Since any H-line can be

brought by a transformation (9.1) into any other H-line, we can take L as a
semicircle C with center at the origin, and then by using a hyperbolic trans-
formation with fixed end points at the ideal end points of C carry P into a

point on the y-axis. Then M goes into a half-line perpendicular to L and

the x-axis. M

0
The statement is then obvious, the only H-line perpendicular to L through P

being the y-axis, 1In this position it is also clear that M affords the short-

est H-path from P to L. We employ the figure

P(O
) c C'( ’y2)
0,y,)
Q' (x',y') L

0]

where C' denotes the H-segment from P to L intersecting L at Q(O,yl),
and C 1is an arbitrary rectifiable curve on y >0 joining P to Q(x',y') on

L, where Q # Q'. Let C be represented by [x(t),y(t)], where =x(t) and

y(t) are absolutely continuous. Then

y y
pleta o o, f o
C 2 vy
But
e
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is the H-~length from P to Q measured along C'. Hence M affords the shortest
H-path from P to L, and this result is general by virtue of the invariance
of Hjlength.

The locus of points at a constant H-distance e from an H-line L is
represented by a Euclidean circular arc Ce with end points at the ideal end

points A and B of L,

A B

For the H-perpendiculars, e.g. Hl’ HZ’ from points of Ce to L can be carried
into each other by hyperbolic transformations with fixed points A and B and
so have the same H-lenéth.

Let M be an H-line parallel to L with A as a common ideal end

point of L and M. We shall show that the H-distance of M from L tends to

zero as A 1is approached. Without loss of generality we can take L and M as

in the following figure:

i 3
]

Let Ce be a straight line through A and intersecting M, and whose points are an
H-distance e from L. If a point P on M is sufficiently near A in the

Euclidean sense P will be between Ce and I and hence have an H-distance at
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most e from L. Thus the H-distance of M from L tends to zero as A is
approached.

It is clear that the upper half-plane as the space of our H-geometry
can be replaced by the interior of a unit circle. An explicit transformation

which carries the upper half-plane into the interior of the unit circle follows.
(9.7) w2z,

For z real =z-i and 2z+i are conjugate imaginary so that when =z 1is real
|w| = 1. Moreover, the point =z = i corresponds to w = 0 so that the upper
half-plane goes into the interior of the unit circle.

Lemma 9.4. If do and ds are corresponding differentials of arc

length in the w- and z-plames, and the point (x,y) corresponds to (u,v)

under (9.7), then

ds 2do
(9.8) ~ =2 32 5 y £ 0.
y l-u ~v

The inverse of (9.7) takes the form

_mi(wtD)
zZ = -1) .

If we indicate conjugates by the bars, we have

[ Ger1) gw}-l)] Twwtw-w-1] .[u2+v2-21v-1]
zZ = -1 =L = =1

W-l) (W‘l) - |W-1|2 lW-llz
Now
1-u2-v2
(9.9 y=" 3
- |w—1[
u
dz _ 21
dw (w-1)2
and
ds 2
(9.10) —_—n ———
0 412
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By (9.9) and (9.10)

from which (9.8) follows.

Representing our hyperbolic plane by the points u2 + v2 <1 1in the

(u,v)-plane, the H-differential ds of arc length has the form

2 .2
9.11) ds? - 4(du +dv )

(1-u2-v2)2

by (9.8). We shall show that the Gaussian curvature K of our H-plane is a

negative constant. To that end we make use of a formula [cf. Darboux, Lecons

sur la théorie générale des surfaces, vol., 2, p, 397] according to which

O /123C\ _ _o (124
(9.12) ACK = - 35 A Bu> ov (C Bv) ?
when d32 = A2du2 + Czdvz. By (9.11)
A=C= 2 2
(1-u"-v")
whence ”
oC _ 4u SA _ 4v
du 2 ov ~ 2 4
r T
where r =1 - u2 - vz. Formula (9.12) now takes the form
ﬂ__.a@.(@_)__a.(z_v)_:ﬁ
2 7 du\r ovir/ = 2
T T
Thus K = -1,

A particular consequence is that the sum of the interior angles of a

geodesic triangle A 1is less than 1. By Theorem 2.2 (Gauss)
lraa = o) +ay + oy -7,
A
vhere dA 1is the element of area, and Qs Gy, Qg are the interior angles of

That the sum of the interior angles of A may be arbitrarily small is seen from

the example of a geodesic triangle bounded by arcs of H-lines Cl’ CZ’ C3 whose

points of intersection A, B, C are arbitrarily close to the x-axis as indicated

A .
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in the following figure:

We shall need further details regarding the group G' of linear frac-
tional transformations of the disc u2 + v2 <1 into itself. Let G be the group
of linear fractional transformations leaving the upper half-plane y > 0 invari-
ant, and let T be a fractional linear transformation carrying the upper half-
plane into the disc u2 + v2 <1l. If A is a transformation of G the so-called
transform‘

TAT !

of A by T 1is hyperbolic, elliptic, or parabolic according to the character

of A. We shall make use of this fact in characterizing the transformations of G'.

Lemma 9.5. For a parabolic or elliptic transformation of G (or G')

the greatest lower bound of the H-distances between congruent points is zero.

This is obvious for elliptic transformations since there then exists
a fixed point on y > 0, and the distance from this fixed point to itself is zero.

To establish the fact for parabolic transformations we consider a para-
bolic transformation of this domain y > 0 into itself. If the fixed point is
at infinity this transformation must be of the form

w=12+b, z = x + iy, (b # 0)

where b 1is real. The point (a,c) 1is transformed into the point (at+b,c) and
the H-distance between these points is less than the integral J Q? taken along

the line y = ¢ joining these two points, that is less than

c - °

atb dx b
Cc

a

Now c¢ can be taken arbitrarily large so that b/c will be arbitrarily small.
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A hyperbolic transformation T of G has two fixed points A and B
on the unit circle. The transformation T moves points on the invariant circles
through A and B in one sense, say from A towards B. We term A and B

respectively the positive and negative fixed points of T. The sensed H-line

joining A to B is called the axis of T.

Lemma 9.6. If a subgroup H of G (or G') contains two hyperbolic

transformations with one and only one fixed point in common, H also contains a

parabolic transformation.

We again take the space y > 0 as representative of the hyperbolic plane.
Without loss of generality we can take the common fixed point as the point at in-
finity and the two given hyperbolic transformations in the form

T: w

az (a £ 0,1)

S: w - C

I

b(z-c) (b £ 0,1,c £0),
where a, b, and c¢ are real. We have chosen T so that the origin is the
other fixed point of T, and S so that (c,0) is its second fixed point, We
shall show that the product transformation
ststrl

applied starting with T-l, is parabolic. The inverse of S takes the form

S-]': VA :w'-c'l"C.

The transformations of our product applied successively [from right to left] to
a complex number z lead to the points

s Ei%E + c, E:%E + ac , z + c(b-1)(a-1) .

z
a
But w = z + c(b-1)(a-1) is parabolic, thus proving the lemma.

10. The group g. We shall now define a discontinuous subgroup g of

the group G. This group is called the Fuchsian group. See Morse, A fundamental

class of geodesics on any closed surface of genus greater than one, Transactions
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of the American Mathematical Society, vol. 26 (1924), pp. 25-60; Poincaré, Théorie

des groupes fuchsiens, Acta Mathematica, vol. 1 (1882), pp. 1-62, Let p be

: s . . ' 2
any positive integer greater than one. Let Cr represent the circle u2 + v = r2

with r > 1. On Cf we consider 4p equidistant points taking one of these

points as the point (r,0). With these points as centers draw &4p circles orthogo-

nal to the unit circle u2 + v2 = 1. Now let r and the common radius of the 4p

circles vary, the circles remaining orthogonal to the unit circle, and having
centers placed as above. As r becomes arbitrarily large, the 4p circles will
approach straight lines passing through the origin. The interiors of none of
these circles will include the origin. The origin will be in a circular polygon

Q of 4p sides (ciréﬁlar arcs) with interior angeles which tend to m - %g

as r becomes infinite.

If, however, r decreases to unity, for some value r > 1, these 4p

1

circles will be tangent to each other at their successive intersections with the

unit circle, That is, the interior angles of Q will diminish from -%%

to zero. But for p >1

_2n _Znm o, _ 21 _u
A 4p_4p[2p1]>4p—zp 2

so that for a properly chosen value of r, Q will have interior angles of magni-

tude equal to 3% . Denote the corresponding polygon by S. The sides of §

will be segments of H-lines. The sum of the interior angles will be 2rr.

Let Py and P, be successive vertices. Let Cl’ C,ys 03 be three suc-

cessive H-lines such that Cl’ C, intersect at Pl’ and 0203 in P,. Now Cl’
Cy do not intersect. Otherwise Cl’ C,y, C3 would define a geodesic triangle with
vertices PP, and R, where R is the intersection of C;» G, on u2 + v2 <1.

The interior angles of such a triangle would have the magnitudes

I

TT'ZP



52,

at Pl and P2 and therefore have a sum at least
- L+ (-0 >
P ( P) T,

which is impossible.
Let the boundary of S be assigned the counterclockwise sense as a posi-
tive sense. The 4p sensed sides of S, taken in counterclockwise order starting

with the vertex on the u-axis will be labeled

A,,B ,C,D,A,B,C,D, ...,A,B,C,D .

1) l) l) 1) 2} 2) 2) 2) p P P p

We now introduce the generators of the group g. We term Ak conjugate to Ck’

and Bk conjugate to Dk. We reflect the (u,v)-plane in the radical axis of
Ak and Ck’ and follow this by a reflection (in ordinary Euclidean sense) with
respect to Ck' Let Cél denote the arc Ck with sense changed. The product a,

of the above reflections is directly conformal and hence fractional linear. It
carries the unit circular disc into itself and hence belongs to G'. Finally

. . -1 . . ,
it carries Ak into Ck . It will carry S into a polygon S, exterior to

S, but incident with S along C Similarly there exists a transformation

e

bk of G which carries Bk into Di , carrying S into a polygon exterior to
S but incident with S along Dk' We use a s bk’ k =1,...,p to generate
the group g.
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Under transformations of g, H-distances are invariant, and S trans-
forms into an H-congruent polygon. If T is a transformation of g, the image

of a point set U under T will be denoted by T U and the image of T U under

a transformation Tl of g will be denoted by Tl T U, etc. In the product '1‘1 T,
the transformation T 1is thus to be applied first. With this understood we see
that the polygons
a, S, b S, a;l s, b;1 S
are indicdent with S along
%o Do Ao By

respectively. Suppose that U =T S., where T is contained in g, and that U
is incident with S along a side of S. Let Z be any transformation of g.
Z will carry U into a polygon
(10.1) U' =20 =2Ts
We shall use the principle exemplified by (10.1) to show that starting with S
and proceeding in clockwise direction the neighborhood of the initial point Pl
of A1 is covered by a sequence of polygons congruent to S under transformations
of g. Thus the transformation az carries S into the first polygon S1 follow-
ing S. Under ail, CIl is congruent to Al so that D1 transforms under ail to
an H-segment Di issuing. from Pl and adjacent to A1 on Sl' Since b1 S is
incident with S along Dl’ ai b1 carries S 1into a polygon S2 incident with
S1 along Di in accordance with the principle exemplified by (10.1).

Under ail bl’ Cl is congruent to an H-segment Ci issuing from Pl and

adjacent to Di on 8§

transformations

2° Proceeding in this way we see that the successive
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-1
al 5
-1
a; by,
-1
a; by a,
-1 -1
(10.2) a1 bl al b1 5
-1 -1

-1 -1 -1 -1
cen b a_b
L 2 P P P P
carry S into a sequence of polygons each incident with its predecessor along an
H-segment issuing from Pl' The lines of incidence are successively the images

under the preceding transformations of

(10.3) Aj D) Cp By ... A D C B4

with initial points at Pl. The last transformation is accordingly the identity,

that is,

The set of polygons incident as above with P

1

will be called the star El in-

cident with Pl' Let T be a transformation of g. If

P=TP > =T%Z

1’ 17’

L will be termed a star incident with 7P, The respective transformations (10.2)

carry each vertex of § into P1 as follows from the fact that the sides (10,3)

each have images with initial points at Pl' We hereby adopt the convention that
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§ shall include the inner points of the sides A By but not of the sides
G Dy

theorem:

and one vertex. With this understood we shall establish the following

Theorem 10.1. The images of S under the respective transformations

of g cover the H-plane once and only once.

We first note the following. If Q is an arbitréry point of S8 and
P a vertex on the boundary of S at a minimum H-distance from Q, Q will be at
least a positive H-distance d independent of Q from the boundary of the star

of polygons incident with P and containing S.

(a) The images of S wunder the transformations of é cover the plane

at least once.

Let O be the center of 8, and M an arbitrary point of the H-plane.
The points O and M can be connected by a curve C of finite H-length. Let s
be the H-length measured along C from O. We shall cover C by a process I
defined as follows. We start by taking the point set S, If all points of C
for which s < s, are thereby covered by inner points of S, and 0 is maximal,
ve assign S as a neighborhood to each such point. Suppose that we have covered

all points of G for which s < 815 and assigned these points neighborhoods

simply covered by polygons or stars of polygons. The point s lies on the,

1

closure of one of our polygons S1 already used and is at a minimum H-distance

from some vertex P on the boundary of Sl' We add the star T of polygons

incident with P and containing Sl' Suppose that the segment 84 <s < s, of

C is covered by inner points of % and Sy is maximal. We assign X as a

neighborhood to each point 81 <s < s, mnot already assigned a neighborhood.

1f 8, 1s not the last point of G, §, = 81 2 d, where d 1is the fixed constant

previously defined. The process || will thus lead after a finite number of
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steps to a covering of C, and (a) is proved.

(b) The process [ applied to each curve of finite length leading

from O, leads to a unique covering of the H-plane y > O,

The process [} can be regarded as a continuation process mapping
the H-plane K on a new H-plane K', in a possibly multiple manner. The new
plane K' is however simply connected, and the inverse mapping admits a locally
single-valued continuation along any curve. It follows from the monodromy law
that the inverse mapping is single-valued, and the proof of (b) and the theorem
is complete.

The H-line through fixed points A, B of a hyperbolic transformation
is called the axis A B of T,

Lemma 10.1. An axis A B of a hyperbolic transformation T of g is

carried into an axis of a hyperbolic transformation by a transformation U of g.

In fact the points U(A) and U(B) are fixed points of the transforma-

tion
vrul

By an H-rotation about a point A through an angle a is meant an elliptic
transformation in G in which the fixed points are A and its inverse B relative
to the unit circle, and in which the circles through A and B have their initial
directions at A rotated through the angle a in the counter-clockwise sense.
Let S' ©be a polygon obtained from S by a transformation T of g. Under T the
center O of S goes into a point A in S' which we shall term the center of §'.
The radial lines leading from O to the vertices of S are H-congruent to H-lines
leading from A to the corresponding vertices of the polygon S' containing A.

These radial lines pass through the inverse B of A where this inverse is taken

with respect to the unit circle. The vertices of §' are at constant H-distances
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from A. An H-rotation through an angle 1 about A will carry S' into a poly-
gon covering S', and the net N of all polygons obtained from S by transforma-
tions of g will be carried into a net N' covering N, polygon for polygon.
This follows from the fact that any one polygon X of N determines the net.

That is, given X, N can be constructed by the process of reflecting X in its
sides, and of further reflections on the sides of the resulting polygons.

Lemma 10,2, f an H-transformation T f G carries the polygon net N

into a net covering N, polygon for polygon, some power of T belongs to g.

Let Xm be the image of S under ", Let Um denote the transforma-
tion of g which carries Xm into a polygon covering §S. Then Ume(S) is a
polygon covering S. The transformation Ume advances the vertices of § an inte-

gral number 1t of times, possibly zero. But r can have only the values

0,1,...,4p-1, so that for some two values of m, say m, and m,, we must have
m m
U T oy 1? s
1 ™2
or
m,-m
U 1Um =T 21
2 ™

Thus a power of T 1is in g, whence the lemma is proved.

Theorem 10.2., The H-line joining any two centers P and Q of poly-

gons of the met N is the axis of a transformation of g.

Let L be the H-line through P and Q and A and B its ideal end
points, Let T be an H-rotation about P through 180°. T carries L into
itself interchanging A and B. Under T, the net N is carried into a covering
net, Let U be a similar rotation about Q. The product UT carries N into
a covering net. It leaves A and B fixed and is accordingly hyperbolic with
axis L. By virtue of the preceding lemma some power of UT 1is in the group g

and the proof is complete,
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Corollary. There exists a hyperbolic transformation with fixed

points arbitrarily close to two given points on the unit circle C.

The H-diameters of the polygons of N are constant so that their
Euclidean diameters tend to zero as their Euclidean distances from C tend to
zero., Each point of C is a cluster point of centers of polygons of N.
If A and B are points of C, the H-lines through centers sufficiently
near A and B respectively will tend to the H-line with ideal end points A
and B, and the ideal end points will tend to A and B. The proof is hence
complete.

Corresponding to an ordered pair of polygons X, Y of N incident
along a side, we introduce a generator of g or its inverse as follows. Under a

unique transformation of g, X goes into S, Then Y goes into a polygon
Y' = T(S)

adjacent to S. The transformation T 1is thus uniquely determined by X and Y. We
make XY correspond to T. Any pair X'Y' obtained from X, Y by a trans-

formation of g will determine the same transformation T. More generally,

let

(10.4) Xgy Ky wevs X

n)
be a sequence of polygons each of which, excepting XO is incident with its

predecessor along a side. If Xi Xi+l corresponds to T, we say that the

i+l

sequence (10.4) determines the sequence

(10.5) T, ... T

Regarded as a transformation of g, the product (10.5) is applied beginning

with Tn’ and proceeding to the left.
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Lemma 10.3. If the sequence of polygons (10.4) determines the

sequence of transformations (10.5) and begins with S, then

(10.6) X =T, ... T(5)

The lemma is true of n = 1 by wvirtue of the definition of Tl' We

assume therefore that

X =T o0 T__1(5),

and seek to prove (10.6). By virtue of the definition of Tn

-1 .
T Xn = Tn(S)

(T, ..o T__))

from which (10.6) follows.

11. Minimum polygon paths. A sequence of polygons of the form (10.4)

will be called a polygon path joining Xo to Xn' We understand that each poly-
gon except XO is incident with its predecessor along one side as noted in the
preceding section. The number n+l will be called the length of the path.
If for X, and X = fixed, the path has the minimum length, it will be called
an M-path.

If an M-path M1 belongs to a vertex star ¥ , 1its length L 1is at

most 2p + 1. If L <2p + 1, the polygons of M, are uniquely determined in

1
L , and follow one another in one of the circular orders of the polygons of ¥%.
If L =2p+ 1, the end polygons are H-diametrically opposite one another with

respect to the vertex, and admit two M-paths in ¥. We term these two paths

alternate vertex passes. They contain only their end polygons in common, and

the circular orders of their polygons are opposite in I. On the boundary

of a vertex pass there are two sides incident with the vertex P of the star.
They make an angle of 1 + E% interior to the pass. Such an interior angle
will be called a pass angle.
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Note that an H-line k, an arc h of which forms a side of a polygon,
is composed of a succession of arcs each of which constitutes sides of poly-
gons. This is true for arcs of k incident with a vertex P of h by virtue
of the H-symmetry of a vertex star with respect to its vertex, and is then seen
to be generally true, The H-line k thus divides the polygon net into two
subnets composed of polygons.

Theorem 10,3, A polygon path R belonging t

8 vertex star with

length L < 2p + 1 is an M-path and is unique except when L = 2p + 1. In case

L =2p+ 1 the end polygons admit no other joining M-path save the alternate

vertex passes.

Let P be the given vertex. The 4p polygon sides issuing from P, if ex-
tended divide the polygon net into 4p subnets. A polygon path joining the end poly-
gons of R must have polygons in L of these subnets. If such a path leaves
the vertex star it must leave on the same subnet and contain at least L + 1
polygons. The theorem follows at once.

Theorem 10.4. The boundary of an M-path M is a simple closed curve C.

Let P be a vertex on the boundary of M. By virtue of the preceding
lemma, M contains at most 2p + 1 of the polygons incident with P, and must
contain these in one of the circular orders around P. The point P accordingly
cannot be multiple on g and the theorem follows directly.

Let P be a vertex on the boundary B of an M-path. Suppose the sides
incident with B at P make an angle a interior to the path. The angle a

will be termed convex, straight, or concave, according as a 1is less than, equal

to, or greater than m. We shall refer to convex or concave angles as corners

of B.

Theorem 10.5. The corners on the boundary B of an M-path M are

either convex or pass angles. No two successive corners can be pass angles.

o —— -
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The first statement follows from Theorem 10.3,

Let P and Q be successive corners on the boundary of M. The
boundary of M between P and Q (in one of its senses) consists of an
arc h of an H-line k. The H-line k divides the polygon net into two nets
Nl and N2. If P and Q are pass corners, the given M-path contains as a

subpath M, all of the polygons incident with h in one of the two nets N

1
and N2, say Nl' Preceding MO, M contains a polygon A in N2 incident
with P and k, and following Mb, M contains a polygon B in N2 incident

with Q and k. But A and B can be joined by a shorter path consisting
of all polygons in N2 incident with h. Hence P and Q cannot both be pass

corners.
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12, Pseudo-convex regions. For present purposes it will be con-

venient to regard the polygons of outr net as closed. The point set sum of
a finite or infinite set of such polygons will be called a net region. An
M-path is in particular a net region. As we have seen, the boundary of an
M-path satisfies the two conditions:

(12.1) 1Its corners are either convex or pass corners.

(12.2) No two successive corners on a boundary are pass corners.

We shall say that a net region R 1is polygon connected if any two

polygons of R can be joined by a polygon path on R. A net region whose bound-
ary satisfies (12.1) and (12.2) and which is polygon connected, will be termed

pseudo-~convex.

Lemma 12.1. A pseudo-convex region R whose boundary is a simple

closed curve g consists of the polygons interior to g.

Let W be the region of polygons on the outside of g. Suppose that

W 1is pseudo-convex. The corners of g would then satisfy the conditions

(12.1) and (12.2) relative to W. Let a .,a_  be the angles at the corners
n

17
of g on the inner side of g. Let a = n/2p. By virtue of (12.1)

(12.3) ai=1-r+ma 3

where m = -1 at a pass corner and 0 <m < 2p at a convex corner. Now con-
dition (12.2) implies that there are at least as many corners at which m is

positive as negative so that
T a; > o > (n-2)m ,

contrary to Gauss's Theorem [Theorem 2.2] applied to the interior of g.

Lemma 12.2. The boundary g of a connected pseudo-convex net. region R

is composed of simple arcs possibly infinite in length.
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If g has any multiple points there exists a subarc h of g which is

a simple closed curve whose interior I is free from arcs of g, and which has
just one of the multiple points of g on it. Let this point be denoted by P.
Let o Dbe the interior angle at P, and let ayyeeea be the remaining
interior angles on h. Suppose that R is not within h. Again, let a = m/2p.
Then a; >m - a, and in fact a, >+ a at least at alternating angles a;.

Hence
La,>m-a |,
1 =

a+Z a, 2 om,

whereas by Gauss's Theorem -

o+ 2 a, < [(ntl) 2l = (- .
We infer that R is within h, and the lemma is proved,

Let R be a pseudo-convex region. By a boundary path B of R is

meant a polygon path either wholly exterior or wholly interior to R, consisting
of successive polygons incident with successive sides and vertices of one of
the boundary arcs b of R. It is understood that a mapping of the polygons
B onto the edges or vertices of b is thereby given in which each polygon cor-
responds to an incident side or vertex of b in such a manner that the order
of the polygons of ﬁ is the same as the order of the corresponding edges and
vertices of b. Suppose, in particular, that the end polygons X' and X" of
B correspond on b to sides b' and b" on b respectively, and that B is
within R. There will exist a second boundary path B* of R exterior to R
with polygons incident and corresponding to the same sides and vertices of b
as B, several polygons possibly going into the same vertex.

The length of B* is at least that of B except possibly in the case
where the arc h of b from b' to b" contains one more pass corner than

convex corner., In the latter case, and when there are just 2p-1 polygons at
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(12.4)
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LGB ) = L(B) - 2

where L(X) means the length of X . 1In this case

2.

L(X' B X") = L(B)

*
and the paths X' B X" and B will be termed conjugate.

A polygon path joining two polygons A and B will be termed minimizing

if its length is a minimum among lengths of polygon paths joining A to B,

Theorem 12.1.

If A and B are two polygons on a pseudo-convex region

R the minimizing polygon paths joining A to B include at least one path on R.

The case where

other case the boundary B

R

is the whole hyperbolic plane is trivial. 1In any

of R consists of a set of simple curves finite or

infinite, and non-intersecting. Let g be one of these curves. The curve g

divides the polygon net into two nets N and N'. If g is closed, one of

these nets, say N, 1is finite and includes R. 1In case g 1is not closed we

again suppose *that N

includes R.

Let H be the set of hyperbolic rays of the net of N' with first

end point on g, starting with a side of a polygon on N' not on N. That no

one of these rays meets

Theorem as follows.

g

a second time can be established by means of Gauss's

We assume that a ray R' issuing from g at a point P meets g

again at a second point Q.

the interior angles of

following figure:

Hl

Then g and R' form a geodesic polygon H'. Let

be labeled q, a a_, B as indicated in the

1) 4

n)

A
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The interior angles of H' are ordered in such a manner that as one traverses g

from P to Q one passes the vertices of the angles q, a FLIP B in this

1’
order. As in the proof of Lemma 12.2 we have
La >mm-a ,
where a = 11/2p, whence
(12.5) o+ B +Z a; z mr -a+qg-+8.

Since o >a, B >a we have ¢ + 8 > 2a, and (12.5) implies the following

inequality
a+B8+Z a; >+ a
By Gauss's Theorem
a+pB+X a, Som,

whence we have arrived at a contradiction.ﬂThese rays H may be given a
circular order consistent with the order of the vertices of g from which they
emanate, and when emanating from a common vertex P an order consistent with
their angular order about P. So ordered it is seen that consecutive rays do
not intersect, nor rays emanating from the same or comsecutive vertices except
possibly at the initial vertex. It follows that no two or these rays inter-
sect except at initial vertices., The rays of H thus divide N' 1into a set
of subnets Ni which follow one another in the order of the rays of H.

Let 2z be a path jaining a polygon A to a polygon B of N but not
lying wholly in N. There must exist a subpath x of =z which lies wholly in
N' except for end polygons X' and X". By virtue of the manner in which the
rays divide up N' into successive polygon nets Ni there must be a boundary
path B* of N' which contains one polygon in each net Ni which contains a

polygon of x. The path
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K

(12.6) X' B X"
is thus as short as x. But, as we have seen, the path (12.6) is longer than
a boundary path of N joining X' to X" wunless (12.6) is conjugate to this
boundary path in which event the two paths are of the same length.

Thus the minimum paths joining A to B include one in N. Since an
arbitrary minimum path joining A to B meets at most a finite number of the
bounding arcs of R, the theorem follows:

Theorem 12.2, The corner conditions (12.1) and (12.2) are necessary

and sufficient that a polygon path be a minimum path.

We have already seen in §ll that these conditions are necessary.

That they are sufficient follows from Theorem 12.1 by identifying this path
with R as a pseudo-convex net region.

A polygon path finite or infinite, every finite sub-path of which is
an M-path, will also be termed an M-path.

We shall say that a polygon connected net region R is r-convex,
0<r < 2p, if the number of consecutive polygons of R incident with a
boundary vertex is at most «r.

We follow with some examples of M-paths.

Example 1. Let g be an H-line which emanates from the origin and
bisects two opposite sides of the central polygon S. The H-line g will meet
no vertex of the net but will continue through successive centers of polygons
of the net. The polygons incident with g will form an M-path not only pseudo-
convex but 2-convex,

Example 2. If g is an arbitrary H-line of the net, the set of poly-
gons incident with g on one side will form an M-path. The second boundary

curve g' will be 2-convex, the whole M-path 2p-convex,.
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Example 3. Let 81 and 8, be two H-rays of the net emanating from
a point P and forming at P an angle m + m/2p. Let g be the curve com-
posed of 81 and 8y- The polygons of the net on an arbitrary side of g will
form an M-path. Those on the side of the pass angle will form a pseudo-convex
region, as well, of course, as those on the other.

Example 4. Let g be an infinite sequence of finite arcs of H-rays
of the net making angles on one sice which are alternatingly m + n/2p. The

polygons incident with g on either side will form an M-path.
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13. Combinatorially convex net regions. A boundary arc b of a

2p-convex net region will be termed convex at infinity if it possesses no

infinitely long geodesic subarcs. A net region whose boundary arcs are 2p-convex

and convex at infinity will be termed combinatorially convex, written co-convex.

A net region R with a property A will be termed a minimal region with property
A if no proper sub-net region of R possesses the property A.

Theorem 13.1. (Corresponding to a pseudo-convex net region S there

exists a minimal co-convex net region R containing 8.

The case where S contains every polygon is trivial. We begin with

the case where each boundary axrc b of S 4is of infinite H-length and contains

no infinite subarc without corners. Let
(13.1) ven P_1 PO Pl .

be the successive corners of S on b, Suppose that Pn is a pass corner and let

h and k be respectively the subarcs of b determined by the point pairs Pn-an
and PnPé;l' On the arc hk let x be the first net side and y the last net side.

n+l

Let X and Y be respectively polygons with sides x and y. Let B be
the interior boundary path of S which joins X to Y. As we have seen in §12,
there is a conjugate M-path of the same length joining X to Y of the form
*
(13.2) W=XB Y.

More specifically, if X7c and Y# are the polygons exterior to S with x and y as
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% % %
sides respectively B joins X to Y and contains all polygons not in §

incident with Pn.

* * *
We add B to S to form a new net region S . We say that § is

J.

®
derived from §, corresponding to the pass corner Pn' We term B the canonical
%
addition corresponding to Pn‘ S is infinite with 8.
* A %
We see that S is pseudo-convex., In fact the corners of S are

identical in position and character with those of S except for the new corners
* * % %*
of S on B, and corners at Pn-l and Pn+l' The new corners of S on B

are at most 2-convex. The vertices and Pn+ are at most (2p-1) convex

Pn-l 1

%
relative to S since Pn is a pass corner. Hence S is at most 2p-convex at

* %
Pn-l and Pn+1 so that 8§ is pseudo-convex. S retains the pass corners of

S excepting Pn. It is clear that any 2p-convex net region which contains §
must contain all polygons incident with Pn’ hence all polygons of B*, and
accordingly all polygons of S*.

We shall now construct a minimal co-convex net region R containing
S. TIf S possesses no pass corners we can take R to be S. Suppose then that
there are pass corners Pi on the boundary arc b, We order these pass corners
in the order of the absolute values of their subscripts taking a positive i before
a negative i. Corresponding to the first such pass corner Pr on b, let S1

be the derived net-region on which Pr is eliminated. Let b1 be the boundary

of S1 replacing b. Corresponding to the first pass-corner PS of S1 on bl

let 32 be the net-region derived from Sl so as to eliminate PS.
Proceeding inductively, let
S$S,S8, ...

be a sequence (finite or infinite) of pseudo-convex net regions of which Sn

is derived from Sn-l so as to eliminate the pass corner Pi of lowest order
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on the boundary of Sn-l' On the net region

S(b) =S + S1 + S2 + ...

the boundary b 1is replaced by a boundary with convex corners. Moreover,
any minimal 2p-convex net region containing S must contain S(b).

The sum R of the net regions S(b) corresponding to the different
boundary arcs b of S will be a minimal 2p-convex net region containing §S.

The case where 8 is bounded by a single closed arc b is similarly

treated. 1In the case where a pass corner Pn is preceded (or followed) by

an unending boundary geodesic h the canonical addition corresponding to Pn
shall include all polygons exterior to S and incident with h, and including a
set of polygons defined as before and incident with the geodesic boundary arc
k on the.other side of Pn in b.

There are also '"canonical" additions corresponding to a point or
points at infinity on a boundary arc b. These arise when b 1is a geodesic h

or contains a subarc h which is an infinite geodesic arc with a finite convex

terminal corner P. The net B* shall then consist of all polygons exterior to
S and incident with h including, however, only that one of the exterior poly-
gons incident with P (if P exists) which has an edge on h.

In the general case one constructs R as previously, concluding with
canonical additions corresponding to the points at infinity on the respective
boundary arcs so as to obtain an R which is "convex at infinity", Q.E.D,

The minimal co-convex net region R containing an unending M-path
M has the following properties.

(a) The interior boundary paths of R are M-paths (which may coincide).

(b) Each polygon of R is incident with M.

(c)

P

is the sum of its two interior boundary paths.

d) f M' is an arbitrary unending M-path on R, R is the minimal co-convex
—— 2 —

net region containing M',




71.
Proof of (a). We begin by showing that if B“ is a canonical addi-

% %*
tion to M corresponding to a finite pass corner Pn and if we set S =M+ B

as above, then the interior boundary path M# of S* which contains B* is an
M-path.

To that end we first note that W in (13.2) is pseudo-convex. In
particular W is (2p-1)-convex at P s and P is preceded and followed
respectively by two pass corners of W, namely the last vertex of x preceding
Pn and the first vertex of vy following‘ Pn. The case where x terminates at
Pn or y begins at Pn is exceptional but offers no difficulty. The remaining
corners on the boundary of W are at most 2-corners so that W is pseudo-convex
as stated,

We have seen in the preceding proof that S* is pseudo-convex. By
virtue of Theorem 12,1 the path M? is an M-path if each finite sub-path H

%

*
of M is minimizing relative to paths onm S . But H could be shortened on

s only if some sub-path of B~ failed to be an M-path, and this is impossible

since B* is pseudo-convex. Hence M% is an M-path.

The same conclusion can be drawn when M% is obtained from M by a
canonical addition corresponding to a point at infinity.

Given a boundary arc b of M the successive canonical additions
incident with b will yield successive boundary M-paths

% 3

(13.2) M1 5 M2 s ees (possibly finite in number)
as interior boundary paths. The minimal co-convex region R will have an
interior boundary path M#, each finite sub-path of which will be a sub-path of
each of the paths of (13.2) for r exceeding some integer ro. Hence M# will
be an M-path.

This completes the proof of (a).

Proof of (b). Each canonical addition is incident with one of the

two boundary arcs of M and hence with M.
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Proof of (c). R 1is the union of the polygons of M and of the
canonical additions. If each of these polygons has a vertex on the boundary
BR of R (c) is true.

A polygon of M has at least 8 vertices and at least 4 which are
l-convex on M. A l-convex vertex becomes at most a 3-convex because of the
canonical additions and so must be on BR.

A polygon A of a canonical addition B*, adjoined to a pseudo-

*

%
convex-region S to form S , has at least four l-convex vertices on S

which become at most 2-convex by virtue of subsequent additions and so are on

BA.

Hence (c) is true.

Proof of (d). Let R' be the minimal co-convex net region containing
M'. Since R' is minimal, R' < R. It remains to show that R c R',

Suppose then that R' 1is a proper sub-region of R. One of the in-
terior boundary paths N; of R must fail to be wholly contained in R'. Since

R' 1is co-convex and contains every finite M-path whose end polygons are in R',
an infinite subsequence H of polygons of M# must be exterior to R'.

Each polygon A of H is incident with one of the two boundary arcs
b of R' by virtue of property (c). Hence H is an exterior boundary path of
R'. But H is pseudo-convex and R' co-convex. Hence b can have at most one
corner incident with H. Thus b contains an infinite geodesic arc contrary
to the fact that R 1is convex at infinity. Thus M# < R' and (d) follows.

Note that property (d) depends definitely upon the conventions of
convexity at infinity without which (d) would be false,

A minimal co-convex net region containing an M-path will be called a
ribbon R. According to the preceding argument the ribbon R is uniquely

determined by each of its M-paths.
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14. Ribbons and geodesics. We shall prove the following theorem:

Theorem 14.1. There is a 1-1 correspondence between geodesics and

ribbons on the hyperbolic plane in which each geodesic corresponds to the

ribbon in which it is contained.

We begin by proving the following:

(i) Each ribbon R contains one and only one geodesic g.
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Let M be an M-path in R with successive polygons
. X_1 XO Xl ce

Let Pi be a point on Xi' Since R is 2p-convex, there exists a geodesic arc
on R joining P_n to Pn. Let En be the element on g, ata point on g,
nearest Xo. The elements En have at least one cluster element E, The
geodesic g determined by E will clearly be in R.

Moreover, if g' 1is a second geodesic in R, g' = g. For two H-lines
which remain at a finite distance from one another are identical.

The proof of (a) is complete.

We continue with a proof of the following:

(ii) Each geodesic lies in one and only one ribbon R.

Suppose that g 1is sensed. We refer to the two sides of g as posi-
tive and negative respectively. Corresponding to g we shall define a
"posit%yely related" M-path M which contains g.

The path M shall include each polygon whose interior is met by g,
and each polygon on the positive side of g whose boundary is met by g. These
polygons will be given an order consistent with their intersections with g.
In case g includes the side of a polygon, M will consist of all polygons in-
cident with g and on the positive side of g. M will then be an M-path and
its polygons will be correspondingly oédered. In case g passes through a vertex
but contains no side incident with P, the polygons of M incident with P will
be taken in M in their circular order about P, The polygons of M are then
simply ordered, and M is a path. We finish by proving the following:
(A) Ihe path M is an M-path.

We shall establish A by showing that M is pseudo-convex. To that
end recall that a polygon, and a vertex star of polygons, are both convex.

Let V be a vertex star into whose interior g enters. Each set of r consecu-

&n
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tive polygons of V 1is convex provided r § 2p. Hence when g does not pass
through the vertex O of the star V, g can intersect at most 2p+l polygons of
V. If g passes through O and is not a net geodesic, g meets at most two
polygons of V in points other than 0. In each case M contains at most 2p+l
polygons of V.

Two successive corners P and Q on the boundary of M cannot be pass
corners. To prove this let h be the geodesic arc joining P and Q and let
H be the sub-path of polygons of M incident with h., Let t be the geodesic
of which h 1is a sub-arc, The geodesic t divides the net into two subnets
in one of which, say N, the two end polygons A and B of H lie, and in the
other of which the remaining polygons of H lie (assuming that P and Q are

pass corners).

;NP h M

Now g cannot coincide with t since M has polygons on both sides of
t. It has points a and b on A and B respectively, of which at least one, say
a, 1is nmot on t, But A and B can be joined by a convex path X in N con-
taining the polygons incident with h and in N. The segment ab of g thus
meets the polygon of X which follows A in an inner point so that X must be
in M contrary to hypothesis.

We infer that no two successive corners of M are pass corners. The

path M is accordingly an M-path, and the proof of (A) is complete.
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The geodesic g thus lies in the ribbon R containing M. It cannot

be in any other ribbon R'. For g is necessarily interior to R', so that R'

would contain M. By virtue of (d), R' = R, and the proof of (ii) is complete.
Theorem 14.1 follows from (i) and (ii).

15. Right M-paths. An unending sensed simple curve b with ideal

end points A and C on the unit circle will divide the H-plane into two regionms.
Of these regions the one which contains the infinite neighborhood of an ideal

end point B such that A B C follow in counterclockwise order, will be termed
the right region, and the other region the left region. Suppose that the

two boundaries of an M-path M or ribbon R are consistently sensed. The

boundary b in whose left region R or M 1lie, will be termed the right boundary.

The left boundary is similarly defined.

Let M be an M-path on a ribbon R. Suppose the boundary arcs a and
b of R have been similarly sensed and lead from an ideal end point A to an
ideal end point B. M will be said to be similarly sensed if its polygons
are successively numbered so that these numbers become positively or negatively
infinite as A. and B respectively are approached. A ribbon whose boundaries
and M-paths have been similarly sensed will be said to be sensed.

A sensed M-path whose right boundary is co-convex will be termed a

right M-path. A left M-path is similarly defined. A sensed M-path may be
both a right and left M-path. We shall prove the following theorem:

Theorem 15.1. There is a 1-1 correspondence between sensed ribbons

R and right (or left) M-paths M in which M and R have the same right boundary.

Given a sensed ribbon R the inner boundary path which has the same
right boundary as R is a right M-path in R. Conversely, given a right M-
path M the usual construction of the ribbon R which contains M shows that M

and R have the same right boundary. Moreover, R uniquely determines M and
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M uniquely determines R.
We shall now give a symbolic characterization of right M-paths or
rather of the set of right M-paths congruent to a given right M-path. To
that end let X Y be an arbitrary pair of polygons with a common side. Re-

calling that S0 is our central polygon, let SOS be a pair congruent to X Y.

The transformation T such that H

S = T(SO)

will be used to represent the pair X Y and all pairs congruent to X Y. Observe

that § S0 is represented by T”1 since S S0 is carried by T-1 into the pair

-1
Sgs T (Sg) .

Y X 1is thus represented by T"1 .

More generally a path
(15.1) cen X_1 X0 X1 ces
containing a finite or infinite number of polygons, will be represented by the
sequence

(15.2) t ...

t-l to
of generators of the group g [see §10] and their inverses in which ti repre-
sents the pair Xi Xi+1 . In particular, the polygons incident with a vertex
taken in the clockwise circular order form a path for which the corresponding

transformations are in the circular order

1 -1 -1

(15.3) a b abvt .. a e
P PPP

1 "171°1
See (10.2). We term (15.1) the circular order C. Taken in the anti-clockwise
order the same polygons lead to the circular order C_l

, hnamely

b a-]‘b_1 +ee b a_lb-la
PP

(15.4) p %p 121 Py 8y

We shall have occasion to refer to paths composed of three polygons X Y Z,

of which X and Z are incident with Y along sides x and =z respectively
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which are separated on the boundary of Y by just one side y.

If x y=z appear on the boundary of Y in counterclockwise order, the trans-

formation representing X Y Z must be one of the pairs

| -1-1 L -1-1
(15.5) A PP A3, B by

where k 1is reduced mod p to one of the numbers 1,...,p. Cf. §12,
In case x, y, z appear in clockwise order on Y, (15.5) must be

replaced by the inverse pairs

-1 -1 -1.-1
e 3o P B 3 Prgby

Suppose that (15.1) is a right path and (15.2) the corresponding

(15.6)

group representation. A maximal sub-block of (15.2) in which the elements
appear in the circular order C (or C_l) will be called a C-block (or C-l-

block). Two successive C-blocks

(tr tS)(tS+1 tm)

in which (tsts+l) is one of the pairs (15.5) will be termed related. Related

C-l-blocks are similarly defined by using (15.6).

The conditions on (15.2) that it represent a right M-path are that

t.t, = I for no i, where I denotes identity, together with the following:

i i+l
(D C—l-blocks have lengths at most 2p.

(2) There exists no finite subsequence of successively related C-l-blocks in which

the initial and final C_l-blocks are 2p-blocks while the intermediate C-l-
blocks are (2p-l)-blocks (or absent).

(3) C-blocks have length at most 2p-1.

(4) There exists no infinite sequence of successively related C-blocks each of

which is a (2p-1)-block.

kit it iy i, it
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Conditions (1) and (2) insure that the left boundary of the M-path
be pseudo-convex, while conditions (3) and (4) insure that the right boundary
be co-convex.

16. Symbolic elements. Let H be a right path and (H) the class of

right paths which are congruent to H under operations of g. The class (H)
determines a symbolic trajeqgtory T whose indexed representations (t) have the

form

(16.1) t_1 tg t1

where ti is a generator of the group or its inverse. We admit only those
indexed trajectories which are determined by right paths. As in §3, an element
e on (t) is determined by (t) and a preferred symbol tr' We then write

e = e(t,r). The net sides separating the successive polygons of H can be
indexed so that the r-th side separates two polygons represented by tr'

We shall refer to this net side as the side tr. The element e(t,r) will be

represented by H and the preferred net side t_.
The elements e are assigned the metric used in §3.

Let R be a sensed ribbon determined by H. A net side tr of H
which reaches from boundary to boundary of R will be called a tramnsversal
of R. If t. does not reach the left boundary of R, it shall be extended
to the left boundary of R by a net side b. If several choices of b are
possible, we shall take that net side whose terminal point is furthest advanced
on the left boundary of R. The net side tr followed by b will also be
called a transversal of R. Other net sides tm may terminate in the same
end point as tr’ and will then be followed by b to make another transversal

of R.

o




79.

We shall have occasion to identify points which are congruent under

transformations of g. The hyperbolic plane M thereby reduces to a manifold

e
M of genus p. Corresponding to each geodesic h on M there will be a

% 3
geodesic h on M, and corresponding to each element E on M an element

* \J
E on Mx. In general the asterisk added to a symbol x will indicate the

%
correspondent of x on M .,

17. The geodesic element F(e). Let e be a symbolic element e(t,r)

based on (t) and let R be a sensed ribbon corresponding to (t) with a net
side tr corresponding to the operator tr. Let h be the geodesic on R, and
on h let E be the geodesic element at the intersection of h with the trans-

%
versal bearing tr' We term the geodesic element E the geodesic element

% .
corresponding to e and write E = F(e). Different symbolic elements e based

on (t) may determine transversals with common final net side and so may
determine the same geodesic element E*. The relation E* = F(e) 1is according1§
not one-to-one in general, See figure.

We shall prove the following:

(a) The geodesic element F(e) wvaries in a uniformly continuous manner with

the symbolic element e.

Let e = e(t,o) and e' = e(t',o) be two symbolic elements with

the symbolic trajectories (t) and (t') represented by ribbons R and R'
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respectively. Without loss of generality we can suppose that the net sides t,

and t; are the same. Let m be a positive integer. If the distance

1

' —_—
ee < 2m + 1

the net sides E ooty will be identical with the net sides t'

_m,...,t%.
Let D be the H-diameter of a polygon. The geodesics h and h' in R and
R' respectively will remain at an H-distance at most 2D from each other for
an arbitrarily large distance L from to = t; provided m is sufficiently
large. But if L is sufficiently large the distance F(e) F(e') between the
geodesic elements F(e) and F(e') will be less than a preassigned constant
n. Thus F(e) F(e') <1 provided e e' is sufficiently small, and the proof
of (a) is complete,

Recall that the distance between two elements e(t,r) and e(t',r')
is infinite unless the preferred symbols tr and t; are equal. With this

understood we state the following:

(b) For the subset ¥ of elements e t a finite distance from a given

element e, the relation E* = F(e) 1is one-to-one without exception.

Let e(t,o) and e'(t',0) represent any two symbolic elements in the
set ¥. Let R and R' be respectively ribbons determined by (t) and (t')
with common net side to = té. Let h and h' be the transversals determined
respectively by t, and té, and let E and E' be the elements with initial
points on h and h' determined respectively by e and e'. We wish to show
that' E and E' are congruent only when (t) = (t').

Suppose then that E and E' are congruent. If the initial points of
E and E' are on t, = t;, E =E' and (t) = (t'). But the transversal
extensions of to and té have no mutually congruent points save their end

o o
points, so that the initial points of E and E' in R and R' must be on

t = t'.
o} (o)

e e i

ko




81.

Statement (b) follows.

The function inverse to TF(e) 1is discontinuous at certain elements
E defined as follows. Let a right path H whose left boundary contains an
infinite geodesic arc be termed special. We apply the same term to any sym-
bolic trajectory (t) determined by H, to any symbolic element e on (t),
or to the geodesic element F(e). The function F(e) 1is discontinuous at
each special geodesic element E. This may be briefly explained as follows:
Let h be the geodesic determined by a special right path. Any finite
segment of h can be approximated arbitrarily closely by a geodesic k for
which the corresponding right path has arbitrarily long geodesic arcs. Elements
F(e) on k can accordingly be arbitrarily close to an element F(eo) on h
without e tending to e, This difficulty can be circumvented as follows.

A right path on whose right boundary there are at most m successive
2p-vertices will be said to be in the class m. The corresponding geodesic,
and symbolic trajectory t and elements e on t will also be said to be
in class m. It is clear that admissible elements e of class m form a
compact set. The map E* = F(e) 1is locally 1-1 and F(e) 1is continuous. We
accordingly have the following theorem.

%
Theorem 17.1l. The relation E = F(e) between symbolic elements e

%
of class m and their images E7 = F(e) is locally 1-1 and bicontinuous

This follows from the theorem that a 1-1 map of a compact set A into a
metric space B which maps A continuously on B also maps B continuously

on A. See Kerekjarto, Verlesungen Uber Topologie, p. 34.
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Theorem 17.2. A necessary and sufficient condition that a geodesic

*
h  be periodic is that the corresponding symbolic trajectory t be periodic.

Suppose t is represented by the indexed trajectory (t)
(17.1) et Eg Ey -ee

and by the right path

(17.2) cen S_1 S0 S1 cen
Suppose that C o = tr for a fixed n >0 and every r. The pairs SOS1 and
SnSn+1 are represented by t0 and tn respectively. But tg = tn $o that
these pairs are congruent under a transformation T. Thus
Sn = T(So), Sn+1 = T(Sl) .

Similarly, the pairs SISZ and Sn+lsn+2 are congruent. It follows that

Sn+2 = T(SZ)
Proceeding inductively we find that
(17.3) Sn+r = T(Sr) [r=...,-1,0,1,...].

Let R be the ribbon containing the path (17.2), and let h be the
geodesic in R. It follows from (17.3) that R = T(R). But the geodesic T(h)
lies in T(R), and hence in R. Hence h = T(h) and the condition is proved
sufficient.

Conversely, we suppose that h 1is a periodic geodesic contained in a
ribbon R; that is, the image of a closed geodesic h* on M#. There according-
ly exists a transfermation T such that h = T(h). The geodesic T(h) is in
T(R) and in R. Hence R = T(R). It follows that the symbolic trajectory t

determined by h is periodic, and the proof of the theorem is complete.




83.

Lemma 17.1. An admissible gymbolic trajectory t which is in no

finite class m has a periodic limit trajectory (a).

Let hl""’h2p be the periodic geodesics determined by the 2p

pairs of congruent sides of the central polygon S Let ™ be the left

0°
boundary path determined by hi’ and Ti the corresponding symbolic trajectory.
Let m be a right boundary path determined by t, Corresponding to each
positive integer m there exists a sequence of mtl net sides on the right
boundary of m with (2p)-vertices forming a geodesic arc congruent to a

subarc of one of the geodesics hi' The sub-block S of t representing

the inner net sides of ™ incident with these (2p)-vertices will be a
sub-block of Ti’ Since there are only 2p trajectories Ti there exists a

subsequence (Sé) of the blocks S and a trajectory T, such that each S; is

k

a sub-block of Tk. The symbolic trajectory Tk is then a limit trajectory

of t and the proof of the lemma is complete.

- Lemma 17.2. A geodesic h in no finite class m has a periodic

limit'geodesic.

By definition h 1is in no finite class m if the corresponding
symbolic trajectory t is in no finite class m. By virtue of the preceding
proof, t has a periodic limit trajectory represented by a left boundary
path ' whose right boundary arc is a periodic geodesic k. The ribbon R
containing h contains convex sub-paths congruent to arbitrarily long sub-paths
of #'. It follows that there are elements on h arbitrarily near elements
of k and the proof of the lemma is complete.

Theorem 17.3. A necessary and sufficient condition that a geodesic

% %
h  on M be minimal is that it determine a minimal symbolic trajectory t.
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Recall that a geodesic is termed minimal if it is periodic or if it
is a member of a set of geodesics M every geodesic of which has M as a derived
set. Similarly a symbolic trajectory is termed minimal if it is periodic or if
it is a member of a sét of symbolic trajectories M' every trajectory of which
has M' as a derived set. Cf. Theorem 4.3.

%
Case 1. f h 1is periodic, t 1is periodic, and conversely, by

virtue of Theorem 17.2.

*
Case 2. The non-periodic case. Suppose then that h is minimal

but not periodic. Let t be the corresponding symbolic trajectory. By virtue
of the preceding lemma, t is in some finite class m. Otherwise h* would
have a periodic limit geodesic. But the relation between symbolic elements e
of class m and their image elements F(e) is locally 1-1 and bicontinuous.
Inasmuch as their correspondence preserves limit relations and minimal symbolic
trajectories and minimal geodesics are similarly defined in terms of limit
relations, we conclude that t is minimal.

Similarly, we suppose t 1is minimal but not periodic. It is then
in a finite class m by virtue of Lemma 17.1, and as previously we infer that
the corresponding geodesic is minimal.

Theorem 17.4. A necessary and sufficient condition that a geodesic

%
h be recurrent is that its symbolic trajectory t be recurrent.

*
1. If h is periodic, t is periodic, and conversely.

[e]

as

[

w®
se 2. Here we are concerned with a geodesic h and a trajectory

N

t of a finite.class m as in the earlier proof. The theorem follows from the
definitions of recurrence and the locally one-to-one bicontinuous character of

%
the relation E = F(e).
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Theorem 3 and 4 have the

%

Corollary. A necessary and sufficient condition that a geodesic h

be recurrent is that it be minimal.

%
Theorem 17.5. The limit trajectories of each geodesic h° include

at least one recurrent trajectory.

Case I. 1If h’c is in no finite class m it follows from Lemma 17.2

3
that h  has a periodic limit geodesic, and the proof of the theorem is complete.
%
Gase II, Suppose that h is in a finite class m. Let t be the

corresponding symbolic trajectory. By virtue of Theorem 4.1 there exists a

sequence

e e

1’ "2

of symbolic elements based on t converging to a limit element e defining a
recurrent symbolic trajectory t'. Since the class m is compact, e is in
the class m, t' 1is admissible and defines a geodesic A. The geodesic A
is recurrent since t' is recurrent, in accordance with Theorem 17.4.

The proof of the theorem is complete,

Theorem 17.6. There exist non-periodic recurrent geodesics.

We néed only show that there exist non-periodic recurrent symbolic
trajectories which define right paths. A symbolic trajectory t will cer-

tainly be admissible if for no i, ti ti+1 =1, and if t contains no (2p-1)-

blocks in the orders ¢ and C-l. In particular a trajectory made up exclusively

of the generators a, bl will satisfy these conditions. Other pairs such as

a,a, blaél, etc. can obviously be used. We can then use the recurrent

trajectory defined on page 24, and substitute a; for 1, and b1 for 2,

obtaining thereby an admissible non-periodic recurrent trajectory.

s et o

e ——

——
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Theorem 17.7. A necessary and sufficient condition that a geodesic

%
be transitive is that the corresponding symbelic trajectory t be transitive.

%
If t is transitive, h is transitive. For corresponding to an

arbitrary symbolic element e there is a sequence of elements e based on t
*
which have e as a limit element. The geodesic elements F(en) on h will
then have F(e) as a limit element since F(e) 1is continuous without exception.
* ] .
Thus h is transitive,
* . I 3 *
Conversely, suppose that h is transitive. Since h is transitive
*
the set of elements on h of the form F(e) is everywhere dense in the set of
%
elements F(e). But the relation E = F(e) 1is locally 1l-1 and bicontinuous for
elements of class m. Moreover, the elements of finite class are everywhere
dense among the elements e of infinite class. For a symbolic element e(t,n)
of infinite class can be approximated arbitrarily closely by a symbolic element
of finite class by modifying the remote symbols of t. Hence symbolic elements
e based on t are everywhere dense in the set of all symbolic elements.
The proof of the theorem is complete.
In a sequence aeb of three generating symbols, e will be said to be

unrelated to a and b if

ae £ I, eb # I,

and neither ae nor eb are in the orders C or C-l.

Lemma 17.3. If a and b are arbitrary elements there exists an

element e unrelated to a and b.

The element e is to be chosen from the elements

a 8 , bo,...,b p>1

12003 1? p
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and their inverses, That is, from at least 8 elements. To be unrelated to
a and b, the generator e cannot equal a-l, nor b-l, nor the predecessors
or successers of a er b in C. There are then at least two choices of e.
With the aid of this lemma it is easy to prove the existence of
admissible transitive symbelic trajectories. Hence we have the following theorem.

Theorem 17.8. There exist transitive geodesics.
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