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The invitation that I received from the Institute for advanced
Study of Princeton to come Rere a5 a Member was deeply appreciated and
I considered it a great and important engagement for me owing to the high
tradition that the Imstitute has won in these fiftesn years since its
foundations Therefore I thank the Director Prof, Oppenheimer and the
permanent members of the Institute and especially Profs larston Morse
for their very kind invitation,

I, as a visiting member, wish also to express, to the permsment;
members and the organization my enjoyment of the charming and refined
atmosphere of the Institute,

I divided the general subject that I have to develop into four
parts: I, Surfaces and areay IJe Plane transformations; III, Geometri-
cal properties of surfaces; IVe Representation of surfaces,

But,first of all, that is, before passing to this general picture
that cannot be complete, I wish explicitly to emphasize the great inm=-
portance of the work of Prof. fibor Radd; which is illustrated by the
basic book "Length and area" which Rado recently published, It is with
great pleasure that I notice that this book was written right here in

this Institute a few years ago,
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de Surfaces and area,

Concept of surface

What is a surface? We say stmetimes that the set of eguations:
(1) St xax(rv), y=yluv) zez(uv), {uv)ei,
maps a surface S of the three space E3 upon the Jordan domain A in the
plane u vy Here x(u,v), y(u,v);. &(u,v) are continucus functions in As
This is true, but with this sentence we have not yet defined the notion
of surface, because a surface admits more than & map, always an infinite
number of mapse Therefore we have t0 -explain when another set of similar
equations
(2) Bt: x = x'(uv)y y=y'(uv), z&:z2t(n;v), (n,v) €SB,
maps the same surface § and in this case we shall say that the sets of
equations '(l) and (2) are twa different representations of the same sure
face or that the surface S and S' coincide or are identicals TWe ghall
say/also ‘that the sets of equations (1) end (2) are equivalent, ‘When we
have defined the meaning of this equivalence and it {s recognized that
this relation of equivalence is- symmetric, reflexive and transitive,

then 4t will be posgible to divide all the pogsible sets of equationsd

~ -like (1) into.classemy. putting into one class all sets of equatiths

that are equivalent to one, another and putting in different classes sets
of equations that are not equivalents Each class will give all the pos-
sible maps of one surface and 8o the poncept of surface will be defined
through the class off al) its possible maps uponr Jorden domminss

One ropresentation-of a surface is; in such u way, an element of
the class of all representations of the same surfaces It is in this way

that the statement "g set of equations like (1) defines a surface” is to
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be understoods

The equations (1) meke eorrespond, to each point (u,v) of the
Jordan domain A, one well determined point (x,y,z) of the, space E3 that
we call the image of the point (u,v)s The equations (1) make correspond
to the (closed) Jordan domain A a set S(A) of Eyy that we shall call the
set of points occupied by the surface S, but it may happen very well that

the same point (x,y,z) in the space E, corresponds to two or more points

3
of Ae

Of course we cannot say that two surfaces coincide only because
the sets S(A) and S'(B) occupied by them are identical, For instance it
is evident that a right cylinder of a given height, and the same cylinder
twice covered as by a flexible veil, are quite different surfaces, but
they ocBupy the same set in the space E3-

Let us observe only that not every set can be occupied by a con-
tinuoys surface Se It must have certain properties due to the continuity
of the functions x,y,2 These properties have been found first by Hahn
and Mezurchieiwwicz and they can be expressed by saying that such a set
S(4) 1s bounded, connected end locally connected, These properties are
elso characteristic in the sense that each set of the space ES having
these properties is the set of points cccupied by a continuous surface,
but always by many different continuous surfaces,

The congept of equivalence after Frécliet, - MoShane

The definition, to day definite, of equivalence of iwo represente
ations (1) and (2) of a surface is due to Fréchet with the modification
of MeShaney

We 8hall say, after Fréchet, that the two representations (1)



and (2) are equivalent, that is the surfaces .S amd S' are idemtical, if
for each € > 0 there is a homeomorphic transformation T, between A end B
such that to the boundary of £ corresponds the boundary of B and such
thaty; if P of A and Q of B are corresponding points under the transforw
mation T& s the images S(P) and S'(Q) of P and Q have a distance not

greater than £ i

S(P) , S*'q)} S&. A B
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In order to understand such a definition we need to think first
of all of the special case in which there exists a homeomorphic transfor-
mation To between A and B such that corresponding points under To have
the same image in the space E3; In this specinl case it is evident that
the surfaces S and S' are identical,

But the necessity of the more general definition of Frichet is
showvh by the simple example illustrated by the Fig.ls Let A be a cirvle
end let us éivide A into two parts by the dlameter parallel to the veaxis
let us separate one of the semicircles from the other by a translation
parallel to the u~axis. ¥We have a Jordan domain Bs To each segment pae-

rellel to the u~axis of the rectangle that remains between the two semi=

P



circles let us make correspond upon the surface S the same point that
already corresponds to the eridpoints of ite A néw map of the surface
S has been obtained upon the domain Bs Ve can éay that the map is sta-
tionary upon each of such segmentse It is evident that we have mmde no
modification of the surface Se. We have only made a modification of its
map, The first map is given upon the circle A, the new map is given upon
the elementary figure B, we can suppose that the given map upon A is never
stationary, the new map is stationary upon all these segments. In this
change of representation of the surface S there is no homeomorphic trans-
formation between A end B with the properties that corresponding points
have the same image, It would be necessary that to each of such segments.
of B there corresponds only one point of A and therefore the transforma-
tion would not be homeomorphic. But the general definition of Fréchet
holds in this case, Indeed it is sufficient to consider in A a strip,
thimr ‘enough, with sides paralle) to the ve-axis and to make correspond
through obvious elementary transformations to the opposite circular seg-
ments of A the two semicircles of B and to the central strip of A the
central rectangle of B

The modification of McShane of the definition of Fréchet consists
in asking tha$ the homeomorphic transformation I, transform not only
the boundary of A into the boundary of B, but also the positive sense
(counterclockwise) of the boundary of A into the positive sense of the
boundary of Be This ohservation of McShane is very important and we have
to convince ourselves of the meaning of it l?y means of the example of a

square that we can think of with one or the other orientation (Fige2)s
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MeShane has observed that there are surface integrals that, cal-
culated upon such squares, with one or the other orientation, have dif-

ferent valuese For instance the simplest surface integral
X,
Jo= JISE + 15551 sudr
J (W, 0) D (w.v)
has the value 2 upon the square S and the value O upon the square St
This lgas to convince us that a square Wi‘bh one and the same square with

the other orientation are two different surfacese

The Fréchet-lcShane distancee

F

1

]

f

E In e very similar way the notion of Fréchet-MocShene distence

E é ={ls, sl between two surfaces can be introducede If (1) and (2)

: are any representations of two surfaces S and S' we say that B - 0 is

the distance of the surfaces S and St if é is the greatest lower bound

of the real numbers & > 0 with the following propertys: there is a homeo-
) morphic transformation TE between A and B which transforms the boundary

of A into the boundary of B, the positive sense of the boundary of A into

the positive sense of the boundary of B and such that for each couple of

y points .P in A and @ in B corresponding under the treansformetion T& the




images S(P) and S'(Q) have a distance not greater than § ¢
{s;), s} Se.

Upper semi~continuous collectiong of continua

The previous examples and considerations have pointed out that
in the domain A that we use for the map of a surface, there may exist
certain continua whose points have the same image in the space, We have
to consider the maximal continua g of A with respect to the property
that: the functions x,y,z are constent upon ge In addition we will con-
sider as continua also the single poinmts of A,

In this way we get the collection (5 of all maximal continua
(points and proper continua) on which ull three fumctions X,¥s2 are
constent eand this collection has the property ‘that each point of A be-
longs to one and only one continuum of the collection (5 ,

This collection (O has another important property that we call

upper semicontinuity which means that if we consider any sequence of

continua g of the collection (3 it happens that all limit points of the
sequence form a unique continuum, then this continuum must belong entire~
ly to one continuum of the collection C’) e This collection G is impor-
tant in defining the topological type of the surface, Tt is a point of
departure of important and very refined studies upon the topological
properties of the surfaces and I note here the studies of R.L.Moore,
CeBs Morrey, ReL.Wilder and G.T.Whyburne

If we have two rapi*esentations of the same surfacé, we also have
two different upper semicontinuous collectiona of continua, It is evie
dent that there is a one to one correspondence between them, such that

corresponding gontinua have the same image in the space. But this fact



is only a nsetessary and not sufficient condition Far the identity of

the two surfaces, as J,T,W.Youngs has shown quite recentlys A nectessary
and sufficient condition has been found by Youngs in connection with the
concepts of Moore and korrgy and the contept of order of combinatorial
topologye .

Surface Arsas

Very many different definitionty of atea of & surface were proposed
in the lagt century, but if we deémand that the area of a surface can be
considered as & functional upon 8 surface performing in the classical

Calculus of Variation for surfe:cea) es woll ms in the Horse-theory, a ser=

vice similar to what lLienger calls a comparison functional ({S), we must
insist that the definition of area satigfy the fundamental principle of

lower semicontinuityes This is t6 be mnderstood as followsy If 8, S

< 1lim
“neewm ‘flsn)'

At this moment it is Very interesting to notice that: all definitions

R}
fed
n = 1y2,eve) are surfaces and || 5y S || == 0y then - ().

of areay till now proposed and completely studied, which satisfy the prin-
ciple of lower semjcontinuity, coincide with the Lebeggue arsas This fact
holds, first of all, for the Gemeze area reintroduced by licShaye through
the notion of topological index of a plame curve and utilized by licShans,
C.B.liorrey and myselfs T, Radd utilized & new notion of ares thelower
area" and the identification of this ares with the- Lebesgue aree hasibsan
proved by the theories of Radd and myselfs The seme statement, after
recent papers of T. Rado, holds for the notions of aerea of Cauchy and
Favard obtained by Radd by modifying preceding definitions of these
authors in guch & way as to make them lower semicontinuoys »

All thig s to be Telh ted with the conjecture that Radd expressed



in 1928; each lower semicontinuous functional that coincides with the
elementary area upon polyhedrag must coincide alBo with the Lebesgue area
upon each surface, at least with very natural and weak conditions. To
this problem Fréchet, Kempisty, Scorza, Zwirner, Stampacchia contributed
in particular casess

The  Lebesgue definition of area,

We call Lebesgue area L(S) of the surface S the inferior 1limit of
the elementary areas A(E) of the polyhedral surfaces & approaching S,
that is

L(S) = lim A(E)
when
&, sl| = .
If we consider that for each lower semicontinuous functional Y (S) that
coincides with the elementary area for all polyhedral surfaces we have
() Slim 9 (D) = Un A = L(5)

4(s) 5 1(s) | ,
therefore the Lebesgue area is the largest lowsr semicontinuous functio=
nal upon surfaces that coincide with the elementary area upon polyhedral
surfaces,

I recall here that just by means of Lebesgue area the question of
the area of surfaces in none~parametric form has been settled by Tonelli
in 19265 I recell also that by means of the Lebesgue area T.Radd and
Le Tonelli have proved the known isoperimetric property of e sphere in
the space E3 .

The first problem that is to be resolved in connection with the

Lebesgue area is the following one :"If we have a surface with any repre=
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sentation like (1) upon a Jordan domain .4, to give a-cﬁéracte;i;ation
of the functions x,y,z in order that the Lebesgue area of the surface
be finite"s The way to such a charaterization has been indicated by
Benach and Vitali in 1924, but their regearches are in connection with
a concept of area quite different from the Lebesgus area; Banach obe
ser&ed that a necessary and sufficient conditiod ought to have been
sought in an opportune property not of the functions x;y:z alone, but

of the couples of functions:

[ 3
- [ ]

Cb ¥y = y(u,v) Cb z = z(u,v) ¢ {x = x(u,v)
1t ' 2 * 3
& = 2(u,v) x = x(u,v) y = y(u,v)
These are plane transformations of the plane u v in the planes

Y 2, 8%, Xxye These are also the projections of the surface S upon the

-

three coordinate planes and therefore these are "flat surfaces".

We will now introduce the notion of plane transformation of

bounded variation,



1o

IIs Plane transformations

Total variation of a function of one variable

— -

First we must consider a simple continuous function f(x),a Sx3S b,
that 1s, a continuous transformation y = £(x) of the interval (a,b) of the
x-axis into an interval (o,d) of the y-axis. The definition of total vari-

ation of Jordan is well known

v(f) = 1.u.b.§_| f(xi) - f(xi_l)

where a = Xy <X, < eee <X = be Geometrically speaking we can say that

we divide the l-cell (a,b) in l-cells

(xo’xl)’ (xl, xz)' seoy (Xn'l, Xn) .

The boundaries of these l-cells are the couples of points here writtes,

to which correspond upon the y-axis the couples of points
[£Gxg)s £0e) 1o (£0x))s £(x,)]s wuey [20x_y)s £(x)] o

The expression

f(xi) - f(xi-l)

gives the measure of the set of points of the y~axis that separate the
points of the couple [f(xi__l), f(xi)]. Therefore V(f) is the l.u.b. of
the sum of all these measures.

Another very interesting definition for us is the followings:
For each number ¥ (=~ < ¥ < 4+ ) we call L}/(S;) the last upper bound of
the number n of disjoint l-cells of (a,b)

(23073) o (A /By)s eens(®p0 /)

for which,either

B(A ) <F<£(A8,) s or £(d)>F>2(4,)
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This definition is & little different from that of Banach and Vitali,
but, according to their papers, it is possible to prove that qJ(y) is a
Baire function., Let us put '

+80
W)= [ i) .
“00
According to the papers of Banach and Vitali, it is possible tolprpve that
V(£) = W(L) »

Geometrically speek ing LP(&)‘is the least upper boﬁnd of the number n
of disjoint l-cells of the x-axis such that the points of the y-axis oor=~
responding to their endpoints are separated by & « The total variation
W(f) is the Lebesgue integral of the function QV(Y)-

A third viewpoint is the following ones We consider the curve | 1

y = £(x) which makes one or more, even an infinite number of oscillations
and its oscillations can be more or less large. The total variation of
the function £(x) mpst give a measure of such oscillations, it must be,
that is, a number depending upon the oscillations made by f—'and upon the
largeness of each of them, A sponteneous idea in order to keep this mea-
sure is the following: Let us consider the projection upon the y-axis
of the curve y = f(x) [the curve ABCD of the figure 3]s We get a broken
liney folded on itself,with straight sides [A'B'C'D! of the figure 5],of
1%/, ~ which we consider the length L(f).
dfD >
Now

L(£) = V(£) = W(f) »

0 g

We have then three different interpreta-

- tions of the concept of total variation

Fige 3e of a continuous function,
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These definitions valuable for continuous correspondences betwegn
spaces of one dimension, must be now extended to correspondences between
spaces of two dimensions,

Total variation of a plane transformation,

Let x(u,v), y(u,v) be continuous functions on the closed square

As(0=u1,0 Sv 1) and let @) be the continuous plane transformation
d) ¢ x = x(u,v), y¥=y(uv), (u,v)EA .

To each point P of A, (I) makes correspond one (and only one) point
QE (x,y) = ép(rﬁ of the plane xy, which we call the image of the point P,
We call B the set of the points of the plane xy, which are the image of
all points of A. The set B is bounded and closed, .o call X a square,
with sides parallel to the axes x and y, containing in its interior the
set By Let a} be an oriented closed Jordan curve of A, To Y corresponds,

v,

) A
4 R .
a continuous oriented closed

" B
- /
o d
O ( @ curve C not necessarily simple
)

A
? KK owing to the transformation ﬁ) ,

7

ey >, of the plane xy, which we call

Figo 4, the ime.ge of Y (figo4o)o

Let 0(x,y;C) be the topological index of the point (x,y) with re~
spect to the curve Cs As is well knowm, if P & (x,y) is a point not be~-
longing to the curve C, then O(x,y;C) is the number of complete revolu-
tions of the vector, néver zero, ﬁ?, when I describes the curve C in its
positive senses Let us put O(x,y;C) = O for each point(x,y) upon Co We
have now a function O(x,y;C) which is zero outside of B and which is a

Baire function. e can say that O(x,y;C) is zero or not zero at a point

(x,y) if the curve C links or not the point :(x,y).
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{
Let r be a Jordan domain of A and r* the continuous simple closed
curve forming the boundary of re Let C be the image of r upon the plane

xys For each point (x,y) we put

. 1 if o(x,y;¢) # 0,
o (x,y3 C) =

0 if O(X:YSC) = 0.
the function o(x,y;C) is a Baire function, zero outside of B and bounded.

Let us put
g(r) = /{l 0(x,y;C) l dx dy ,

LR (.

E t(r) = l JK( O(x,ysC) dx dy' )

wheré we must put t(r) = g(r) = +o if 0(x,y;C) is not L-integrable,
h Let [r;, i = 1,2,4.4,n] be & subdivision of.A into disjoint Jordan
domaing, Let Ci be the continuous closed curve image of the boundary r; of
-

ri, 1= 1,2,..., Ne Let us pu‘b

n
(D) = Lube > glr,)

i=1

n
i=1

B
l.uebe ; t(ri) p

and, for each point Q = (x,y) of K,

n
q:) (x,7, @) = leuyb, ?-—:I ] O(x,y; Ci) I B
Py P) = Leuds Zn—-— o{x,¥3:C,) «

i=]

[
—
—OH
~
n

3
—~
HOH
~r
I}

mwidently o S 0(P) Te(d)y o T2(d) Ta(d), 0 T pmysd) T Pxyys b)e

The functions \}J and are lower semicontinuous on K and therefore measurable.
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Therefore the integrals

W o) = );f Yy d) aay,  w(d) = If(f uwx.y;\@{)) dx dy

exist finite or infinite,

Tt is evident that the functions G(@ ), U(@), () give different
but similar extensions of the variation V(f) of Jordan and the functions W(@)
and w(@)) give different but similar extensions of the variation W(f) of
Banach and Vitali, In order to see this let us consider that we have divided
the 2-cell A in 2-cells o whose boundaries are continuous simple and closed
curvesy, To these correspond, under éb s the closed curves Ci of the plane
xy and the functions g(ri),u(ri), t(ri) give in three different ways a mea-
sure of the set of the points that are linked by these curves.

The functions 6((), U(D), T(Q) give the L,usbs of the sum of such
measures for all the possible subdivisions of A in 2-cells, These functions
give different extensions of the total variation V(f) of Jordan.

Analogously for each point Q = (xo,yo) the functions L}’(xo;yogé§)
and %)(xo,yo;di) give, in two different ways, the lyu.b. of the number n
of disjoint 2-cells whose boundaries have images linking Q s Finally -
N(CI)) and w((P) are the Lebesgue integrals of the functions U_e(x,y;@)
and (%,¥3 (1)). Therefore W((I)) and w(@) are extensions of the total vari-
ation W(f) of Banach and Vitali,

If we now consider the plane transformation db as a “flat" surface,
we shall call L(éS) its Lebesgue area, This is the extension of the third
way of introducing the concept of total variations

I proved the following:



THEOREl: For each plane transformation (b we have .

(3) () = v() =W(P) = w(d) = L(Prr(d)

-+ The last equality has been proved only if L(é) < 40,

The essential total variation R((‘{)), introduced in the theory of
T, Rado in quite a different way, is equal to the preceding numbers. It
seems therefore very natural to assume now anyone of these numbers as a
definition of the total variation of the plane transformation g) s We say
that the plane transformation (b is of bounded variation if anyone of these
numbers is finite,

Geometric considerationse

The proof of the equalities of the chain (3) is quite 'deep. First
of all let us see its geometric moaning,

MWe have already npticed that for each Jordan domain r we have
0s u(r) s g(r) and ghe sign < can hold as 4in the case indicated by the

figire 5. Anyway we always have U(@:)) = 6(Q )¢ In other words, when we

0 C divide A in 2-cells small enough it happens that
1
1 @/ o "statistically” the parts "linked" more than once
Q

FigeHe ‘by each curve ci can be neglected,

Ol r——

We have already noticed that for each Jordan domain r we have

o= t(r) = g(r) and the sign < can hold as in the case indicated by the

o
figure 6+ Anyway it is always T(Q)) = G(cb e
0 2 0
0 In other words when we divide A in 2-cells small
Fige6e enough it happens’ that "statistically" the parts

"linked" by each curve C, in a different sense than the remaining parts can

i

be neglected,
"

We have already seen that (x,v3 c}) s \P(x.ygé) and it may happen
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that Y < kP in some point of Be But the sign < holda here at most in a
countable set of points and therefore we must have W(@) = W( @ )e If we say

that the points in which Yy < LP are branch-points of the transformation @ s

it is sure that these branch=points are at most a countable set,

The equality between G(Cf)), U(@D), T( @) on one side and w(ﬁ)) and’
W(@) on the other, corresponds perfectly to the equality V(f) = W(f) for
the case of the functions of one variables All of these equalities are
very hiddens

The demonstrations of the equalities G(@) = U(@) = T(C@) are based
on geometric considerations and on the well knovn theorems:

1) almost all points of a set are points of density

(in a weak mem ing) of the same set;

2) 1In almost all points the value of a measurable func-

tion is the average (in a weak ‘meé.ning) of the values
of the sume function in the neighborhood of the point,

I will give here in a more precise way 'bhe' outline of the proof of
the equality W(P) = L( ).

First it is evident that all these functions G, T, U, W, w, L are
equal to each other for each polyhedral surfaces The same functions are
also all lower semicontinuous, and, if we remember that the Lebesgue area
is the greatest lower semicontinuous functional upon surfaces that coincide
with the elementary area upon polyhedral surfaces, we have W(@) s L(d)).

Let us divide the square K in the plane xy into square cells rj of
side ae e are able to prove that it is possible to choose in each cell a

point Qj = (xj,yj), j = 125400y ¥ , such that
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——
Y
Y

&
>

a <
A kP(xj.yj;(i)) - [f L'}"‘(X.y';(l)) dx dy
B
and, as & gonsequence, _
~ ) P
A e d )& . j .
oo Pl 2 [F Cop ) udy = Jf Tl @)l -W(G),
rf i K
Let us perform now in the fundamental square A e subdivision .
[ri, i=ly2,e.e,n] into polygonal 2-cellse Each 2-cell ry has a boundery
whose image is a curve Ci’ 1=1,2,ee050ts It is possible to choose this sube
division, also in connection with a more precisé choice of the points Qj’
i such a way that: &) no curve Ci passes throdgh any of the points Qj;
b) the- diameter of the curves C, are lega than the
minimum distance between the points Q 5 Each point Q’j will be linked a

number of times fji to the curve ci and

fji = | O(xj,yj; Ci) I.

We have
n n .

It is evident that each curve Ci links at most one point Qj' Let us con=

tinuously deform now the set of the curves C., 1=1,2,.4s,n,upon the plane

i’
xy in such a way as to take it upon the sides of the cells f_g. This may
be obtained in the simplest way by projecting from each point Qj all points

of the curves Ci that are c¢ontained in the cell 1—3 upon the sides of the
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same cell, as indicated in the figure 8,

\ -
~, v

N, A
//‘. ez
.
N\
75 \A‘ﬁ
w /l//

Fig.e. = Y

With further continuous deformations, we can show that the continnous

curve Ci become polygonal curves formed by sides of the cells m But we

3
obtain also the following situation: the curves Ci that did not link points
Qj are deformed into polygonal curves that are the boundaries of polyhedral
surfacea of zero area; the curves C, that linked points Q;j and therefore

one and only one point Q 4 are deformed in polygonal curves consisting of
the boundary of one cell " j counted & certain number of times, namely fj 1
and such curves are the boundaries of elementary polyhedral surfaces of area
f}iaz. All together all of these elementary polyhedrals surfaces give a
unique polyhedral surface Z whose ares is

| 2 N
MZ) = ; gazfjifg o] P egoyss §) | =w(d).

In this whole construction, a , the side of the squares in the plane xy, is

arbitrary and therefore, putting a = l/N, N=1,2,+00, wo get a sequence of
A
polyhedral surfaces ZN’ N=1,2,¢4s, and it is easy to prove thad‘Z_N, (I) ”-> Oa
e have now
1($) < Lim A(Z) Sw(d)
=5 N '
=00

that is L((ﬁ) N W((ir)) and since we alrcady know that W(@) s L(C‘l)), we have

proved that

wd) = (P
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Nétes e have outlined here the eneral proof of the statement
W(P) = 1(P)

with the simplifications which resuls if a) ths curve C, the image

of the boundary of A, hag megsure zerss b) the flut surface d_:) is

open and non-dagenerate. (see part IV)e
* ]

-
*
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On a metric approximation theorem,

ife have seen before the geometrical interpretation of the equality
G=U=+Te A type of statement that gives in a more precise form, the same
geometrical interpretation is the following theorem that I proved:

THEOREM: Let Q) be & plane transformation of bounded variations

For each. £ > O there exists a set of simple disjoint plane polygons ’ﬂ'i:

i=1,2,.00, ¥ , interior to A, such that , if O, are the oriented curves

corresponding to the boundary 'ﬂ': of 'ﬁ'i under the transformation @ PG

have

a) the diameter of each curve C, is less than & 3

"

b) the total measure of all the curves Ci is less than & ;
o) 2 g(m)>a$)-¢,

T (T > 0P - g

ye(m) >n(d)-€ .

Abselutely continuous plane transformations.

In a similar way we can now introduce the notion of an absolutely
continuous plane transformation.

t/e shall say that the transformation @ is absolutely continuous

if the two following properties are satisfied:
a) for each & > 0 there exists a number tg > 0 such that,
'T s Tos veey Tv are disjoint polygons of A andE"'T ‘ < g,
then we have Zg( ’lTi) < €3
b) if 1 is a polygon of A and we divideT into a finite number of

polygons I,

i i=l,2,...,\)\7 , we have

G.T) = 2_ G( T, )s
i=1 l
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I proved that these two conditions are independent, In quite a different
way Te Radd introduced the concept of essentially ebsolutely continuous plane

_ transformations, The concept of Ts Rado and the previous one are completely
equivalent, as ?,Radd has proved recentlye.

Generalized Jacobians

Let (1) be any plane transformation and P(u,v) an interior point of Ae
For each square q contained in A and containing P, we consider the following

ratios

G(q)

TaT

between the function G(q) calculated relative to the square q and the area
[al of g

T @ is of bounded variation it is possible to prove that, for almost
all points P 8 (u,v) of A there exist limits:

’:}(u,v) =§ lim G(Q)

For each plane transformation of bounded variation the function
M(u,v) is also defined a.e. in A and it is possible to prove that this funce
tion is 'L-integr;able. In addition we can say that, if the functions x,y

have first partial. derivatives a.e. in A, then we have, a.e. in A,

Youm) = | xgrm gy, | = | S&m |,

The proof of the existence ‘and L-integrability of the function Q (v,v)

comes from the general theory of Banach, while on the contrary the proof of

the above equality is very deeps
The following theorem holdss

45 is a plane transformation of bounded variation, we have

Iw>w@ﬁﬂ3mﬂww
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ardvitn this relutioh & the equality holds if and only if the plane transformation

<b is abgolutely continuous,

Relative generalized Jacobian,

/e have observed that a surface is an oriented manifold and this holds

’

also for a flat surface, that is a plane transformation 4) e The above gene-

Felized. Jacobian ©) (u,v) (or absolute generalized Jacobian), does not de-

pend upon the orientation of the flat surface @ « Fopr se’s;eral applications
(transformation of double integrals, geonetrical properties* of surfaces,
integrals upon a surface) it is necessary to introduce -the .notion» of re=
lative generalized Jacobian,

Let P & (u,v) be an interior point of A, q a square contained in A
and containing P as an interior point, S <(§(q) the diameter of qe Let
“Ti' i=1,2,e44,n) be a set of disjoint simple polygons interior to g, C

the continuous cloged curves, images under 5f of the boundaries ’ﬂ‘i* of TTi.
0= oG rty, Lm-fefn) |- ol
m= !‘Zi el =TG- = ).

i1

Let us put

.lo have m = O,/‘tv2 0 and the dbove metric approximation theorem assures us
that there exist sets of polygons [‘rri, i=1,2,¢454n] for which m and/é
are as small as we like, N
Let us consider now the x/;\atio
%}— Z4 (L) .
Je call relative generalized Jacobian the following limit,. if it exists:

m
2_T(M) .

0 1 t=1

H(u,v) = Jsim

. /“'
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I proved the following theorem:

THEOREM: If the plame transformation (P is of bounded variation,

H(u,v) exists a.e, in A and we haveé, a.e, in 4,
H(u,v) = * 'H(u,v).

If the functions x(u,v), y(u,v) have first partial derivatives a.e. in A, we

have 2.6+ in A,

'a(x3Y)

B(u,v) = xuyy AT e u,v
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1II, Geometrical properties of surfaces.

Analytical characterization of surfaces of finite Lebesgue area,

Let S be any continuous surface and
(1) st x =x(yv), v = y(u,v), 2= z(w,v), (uv)e 4 & (0,1,0,1)
any representation of § upon the fundamental square As

Let us consider the three plane transformations:

= y(u,v) z ="2(u,v) x = x(u,v)
5. [ g, | by

z = z(u,v) x = x(u,v) y = ylu,v)
I have proved the following:

THEOREM: The surface S has finite Lebesgue area if and only if the

three plane transformations @l, @z, (}3 are of bounded variation.

This statement is contained in the following relation

(&) WPy Tus) Tudy) + Wd,) su((g) st = La2iBs

- The first part is evident because the Lebesgue area L(S) is Z the area

. . > ,
L((bt) of each plane projection of the surface, and we know that L(d)t).*' W(@ :l:;
which depends only upon the lower sémicontinuity of W((I) t)” Therefore
> >
ws) Zud,) Tw(dy) s b= 125
The second part of the above relatlon (4) is the essential parte The
question is to prove that, if the three transfornations C@l’ qhz, Cﬁs are
of bounded variation, it is possible to construct & sequence of polyhedral
surfaces Zn’ n=1,2,se., such that “ Zn’ S H —3 O and
<

AT ) (@) + Wdy) « WPy

We know that L(S) s 1lim A(Zn) and therefore from such construction and the
n->co

last relation, we have the proof of the sccond part of the relation (4).

‘Tt is evident that we have-to -perform a procedure quite similar to

+
L MR i, e
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that which we have performed for the praof of the relation L(@) SH(D)e
And really the procedure is quite similar in one caseé and, that is, when

the set of the points of the surfave § is & get S(A) in the space Eg of

measure Zeros

If K is & cube in the space Xyz with edges parallel to the axes,
containing in its interior the whole surface S, let us divide the cube K
into cubic 3-cells Pijh’ let us choose in rijh a point Qijh’ but we must
now choose these points in such a way that they are disposed upon three well

determined systems r 13 ?i'h’ r 3h of straight lines parallel to the axes and

in each cube F‘i ih pass three perpendicular straight 1lines that have the
point Qijh as a common pointe If S(4) has measure zero in the space Es,
it is possible to choose the 1ines in such & way that none of their common
points lie upon the surface Se low let us divide the square A in 2~gells,
TYB, 8 - 1,2,3,e00,ne To the boundary of each cell 'T;\'s corresponds upon the

~ z
A /surface a curve Cs end it

><

A / is possible to choosé the

14
subdivision fr)'s s 831,2,000,n

/‘; also in connection with a

more precise cholce of the

Fige 9 Y)lines r, in such a way that:

a) no curve Ci passes through any of the straight lines rij’ oy rjh and

therefore also through any of the points Qi jh’ b) the diameter of the curves

Cs are less than the minimum distance between the points Qi jh and the sur-
face S¢ Now it is evident that if e curve Cg 1inks a straight line 2, such

a curve links one and only one of these straight lines,

Introducing a convenient system of deformatiors similar to the previous
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one in the plane we now obtain deformed curves that are composed only of
parts of the edges of the cells rqijh' e have two types of defarmed
curves Cgt These that do not link any straight line and they are boundary
of elementary polyﬁedral surfaces of area zeroj the other that link one of
the straight 1line r and these are boundatries éf elementar y polyhedral sur=
faces of a well determined aresns All these surfaces give a unique polyhe~
dral surface Z_ of area less than w(@l) + W@bz)* W@ﬁs).

But we know that the surface S may occupy & set S(A) of positive
measures e can think of a Peano curve considered as a surface, but quite
recently Besicovitch constructed é surface that is a homeomorphic transfore
mation of & square which has finite Lebesgue area and positive measwre in
the space Es.

In the general case we are obliged to choose the points Qijh upon the
surface, This éompels us to choose points Qijh and polygons ?Ts in a very
refined manter. In this way it is still possible to obtain that the curves
cs, that must be utilized for the'construction 6f elementary polyhedral sur-
faces of positive area, link still one and only one of the straight lines
rij' rih' rjh and the procedure -cen be repeated. DBut the remaining curve
Cs can be arbitrarily near the point Qijh‘ They link no straight line r but
this is not sufficient to prove that they are boundaries of surfaces with-
out common points with such straight lines, that is, nulhomotop in the space

‘

E3 outside of the straight lines pe - But it is possible %o subatitute for
the three straight lines r & oonvenient collection of straight lines pa-
rallel to the lines r and not linked by the curves Cse We are in condition

to utilize the following linkage theorem:
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TﬁﬁOREMz If x,y,z are three coordinate axes; if Bys Bpr By g4.are,

Catgcasra—

four straigh{: lines €9 €a //;c, 8y // Y g4 //z. no two of which have common

points and suoch fhut B and By intersect the strip formed by the two parallel

lines 8 and By i if C is a continuous cloged curve whose distance from the

X,V,2 axes 1is greater then the distance of By» B Bgs 8y from the akxes, then .,

C is nulhomotop with respect to the set E » (x+y+z) if end only if C is nul-

homotop with respect to E-(g,*g,*E;*5,)e

24“,,\. A¥ ,QL_ ‘
s (<
_ AN )
/. — b
/an

Of this theorem I gave elementary proof and now S. Eilenberg gave a

b8

Fig. 10.

quite short proof with the methods of combinatorial topologye

Through the use of this theorem it is possible to complete the proof,
that we have outlined, of the relation (4), and therefore to obtain the de-
sired analytioal characterization of surfaces of finite Lebesgua areas

The classical integral for surface areas

Let S be a surface of finite Lebesgue area and let (1) ve my repre-
sentation of Se Then the'plane transformation §>1, é@ 07 é@s are of bounded
variation, the three generalized Jacobians Jl(u,v), Jz(u,v), Js(u,v) exist
and are L~integrable functions. Therefore the classical integral for the

area exists and T.Redo and I have proved that always

L(s) E.£7 x/slz(u,v) ¢ Jzz(u,v) + Jsz(u,v) du dv,
A
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In addition we héve proved that in this relation the sign = 'holds, that
{s the Lebesgue area is given by the classical integral, if and only if the
three plane transformations @ 1° @2, q&:s are absolutely continuous.

The Geocze area.

.Let 8 be mny continuous surface and
(1) S x=x(uv)e ¥oy(uv), zeayy), (Lv) € AT (01,01),
any representation of Se Let @1, @2,' @3 be the three relative plane transe-
formationse If r is any Jordan domain of A and r* the oriented Jordan ourve
formed by the boundary of r, then to r* corresponds upon the surface S a cer-
tain oriented continuous closed curve Ce- Let Cyo Cos Cg be the plene ¢tontinu-

ous closed curves projections of C upon the coordinate planes, and O(y,z;cl),

s

0(z,x;ca), o(x,¥; 03) be their topological indices. e can put

g,(r) ={{f| O(ﬁ’,y;ﬂg‘dxdy ,

LI

£

s
P uB(r) ={{ O(x,y;CS) dxdy , 8=1,2,3
s

s 0y =1 otxyic)) axeyl,

Ke

vhere K ig a cube whose edges are parallel to the axes x,y,2z containing in
¥ts interior the whole surface S and Ks, §=1,2,3, the projections of K upon
the coordinate planes, Vie put now

.2, 2, 2% 2,2 2.2 0 2. .2 .2.5.
g(r) = [gy * 8, * &5 1% ulr) =[ug #u; +ug 35 t(r) =[] + 5, + £, 1%

We have O = u(r) s g(r), O = %(r) s g(r).
I [ri, i=1,2,4¢0, n] is any subdivision of the fundamental square A
into disjoint Jordan domains r 3 then we can put
G(s) = 1.u.b.Z g(ry)
U(5) = laugbe 2 ulr,)
T(s) = lauebs 7 t(r,)
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it is possible to prove the following:

THEOREMs For each surface S we have

(5) U(s) = 6(8) = L(8) = T(8) »

It is ta be noticed that G(S) is the so-called Geocze area of the
surface 8 and so we have the result: i‘or each surface S the Geocze area and
the Lebesgue area are a.\lways equal to each others The functionels U(S) and

T(S) are notious of area of the type of the Geocze ones All of these‘func-
tionals are lower semicontinuous and equal to each other,

The chain (5) of equalities has a geometrical interpretation that is
similar to thut for the plane transformations and that we can new outline
saying that emch surface is "in the small" and "statistically speaking"®
almost plane,

A metric approximation theorem,

Another type of statement that gives us the same geometrical intere
pretation is the following one that we call "a metric approximation theorenm",
which is similar to that for plane transformationst

Let § be a surface of finite Lebesgue area and (1) any representation

of Ss For cach mumber & > O there exists a set of simple disjoint plane

polygons ’ﬂ’i, i=1,2,440,V, interior to A4, such that if Ci are the oriented

curveg corresponding to the boundary of Tr‘i upon S, if cig, §=1,2,3, are

the projections of Ci upon the ooordinate planes, then

a)} the diameter of each curve C, is loss than & ;

»

b) the total measure_vgf‘g%ll the curves Cygt i=1,2,000, Y,

is leas thea & (8=1,2,3),
N

c) Z_l t(my) >0(s) g
i=

¢ w(My>us) -§

i=1

S e(T) »a(s) =g .

i=1
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Tangential properties of surfaces,

a) We have recalled that a surface of finite Lebesgue area may be
without tangent planes at any point, Nevertheless certain properties hold
that we oall tangent'ial properties of surfaces,

Let S be a continuous surface of finite Lebesgue area, let Oxye;
OS"IB two sets of similarly oriented orthogonal carthesian axes, let
(1) s: x = x(u,v), y = y(u,v), z = 2(u,v), (u,v) ¢ A= (051,0,1),
be .any representation of S relutive to the xyz axes, and
(6) 5: % =3(uv), m=n(uv), §=X(w,v), (u,v)e 43 (0,2,0,1),
the representation of S relative to the 3%3 -axes, which we obtein with
the elementary formulas:

S nxcosxs +ycosy3 + Z cos zj
(7) M = X cO8 XM + y cos ym + z cos zm

3=xoosx3 +ycosy3 + 2z cos zS
We know that the Lebesgue area L(S) is independent of the nxes, ile have now
three plane transformations 431’ (I)z, ¢3 relative to the representation
(1) and three plane transformations @ll, 4),2, @’3 relative to the represen-
tation (6) and all the transformations are of bounded variations In addition
there exist a,e, in A, the absolute and relative generalized Jacobians Jr'
Hr.‘ r=1,2,3, and Jrl ’ H; s r=1,2,3, and we have a.e, in A, Hr = & Jr’
g = Jls r=1,2,3. The following theorem holds:

r

THEOREM: If S is & surface of finite Lebesgue ared, then we have

6.0, in A,
Hgm(u,v) = cos xs . Hyz(u,v)+ cos ys . Hzx(u’v)"“s:'xS' ny(u,v) -
Hng(u,v) = cos xS P Hyz(u,v)-O- cos ys . Hzx(u,v)-l-cos yg. ny(u,v),

Hﬁ(u,v) = co8 XM e Hyz(u,v)+ cos yn. Hzx(u,v)+cos 2, ny(u,v)
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and therefore

2 2 2 2
H &Hz 3§ ny"'Hyz"Hzx )

where we have written Hyz H ey H,u, Hgs, ng instead of Hy» Hos
HS’ Hl’ Hz, Hso

b) Let S be a surface of finite Lebesgue area and (1) any represen=
tation of S; let P ¥ (u,v) be an intirior point of A, q & square contained.
in A and containing P as an interior;poiht, Let us consider the ratio
¢(q)/lq] « We call D(u,v) the limit,if it exists,

o) = hie Ty

We know that all the following definjtions are equivalent:

D{u,v) émqo 19| ‘\?‘qi]-.o 5#310 1q] Sm-ao_l%T *

I proved the following:

THEOREM: If S is a surface of finite Lebesgue area, then the limit

D(u,v) exists asee in A and we haye, a.0. in A,

1
*Jg 12 = [H

2 2 2
D(u,v) = [J1 +J 1t

2
c) Let S be a surface of finite Lebesgue area and (1) any repre-

sentation of S; let P‘ be an interior point of A and Q ¥ (x,y,z)the image

of P upon the surface S; let Q 5"\"’5&& set of ortogonal cartesian axes,
oriented 1like Oxyz and having their origin at point Q; Let (6) be the re-
presentation that we obtain from (1) through the elementary relations like
(7)s How let <I>1, (ba, ®3’ Q)II, (blz, CI)'5 be the plene transformations re-
lative to the xyz axes and ‘S /QS axes, let G,J,H be the known functions

relative to the xyz~axes and Gi J; H be the ones relative to the Sﬂls-axes;
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I proved the following:

THEOREM: -Let-S be a surfacé of finite Lebesgue area and (1) any

st —————

representation of Ss For almost each point P'% (u,v) interior to A, there

exists a system of orthogonal axes @ SM‘S » whose origih is the point -

Q = S(P), the image of the point P upon the surface and such that

o 1 2 2 2
Hs,vf(uvv)» i JS”L(u’v) = \/ny + Jyz +J,. = D(yv)

Héx (u,¥) = "&3 (wv)'= 0, H (uv)=d (uv) =0

s 73

For these properties of these special directions S '"L'S » we call the plane

Qg/q, an almost tangent plane at the point Q end the oriented directiong

an almost normal direction at.the point Q for the general surfacé S,
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IVa Representation of surfaces.

The problem of representation

t/e know that each continuous rectifiable curve has at least one re-
presentation for which the length is equal to the classieal integral and
such a representation is to be obtained, for instence, in the simplest way,
if we choose as a parameter,, the length of the arc from a fixed point to
any point of the curve. /e know also that for non-rectifieble curves the
problem of a gpecial map has been resolved, in the general case, by Marston
Morsos

Now let S be a continuous surface of finite Lebesgue area and
(1) S: x = x(u,v)y ¥y =y(u,v), z=3z(uv), (u,v)eas(01,0,1),
any representation of S upon the fundamental square A. e know that the
classical integral calculated with genoraljzed Jacobians exists and we have

; S
(8) L(sy 2 {[ (0% v 32+ 297 quav

e

AN

The problem arises of determining whethgr each surface S of finite Lebesgue
v

area admits at least one representation (1) upon the fundsmental square A

for which the = sign holds in the relation (8), that is, the area is given

by the classical integral.

Open non degeggraté su;faces.

In order to study this problem we must study, first, a particular
type of purface, We have observed that the representation (1) of the sur-
face S defines on A the collection G of maxiﬁal continua g upon which all
three functions X,Yy% are constant, This collection characterizes the sure

face S and we say that the surface S is open non degenerate if it has the

following property:
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each continuum g of the collection G separates neither the plane

uv, nor the square A.

This condition excludes the possibility that the surface S can have narrowings o
any kind, but the surface can very well have multiple linesy It is pos-
sible to prove that such surfaces have a representation upon a.square which
is never stationary. With the terminology used also by Radd, we can say
that such surfaces have a "light" representation upon a squares
C.BMorrey proved that each open non degenerate surface admits a ree
presentation upon a squareé for which the area is given by the classical
integral, The representation obtained by lorrey is very remarkable because
it is"almost conformal™, We shall say here that a map (1) of the surface

S upon A is "almost conformal® if

(i) the functioms x,y,z have first partial derivatives a.e. in Q;

2
(11) the first partial derivatives X » Xgs sesp T Bre L=integrable

functions in A;

(ii1) at almost all points of A the classical equalities of conformal

maps are satisfied:

(9) E=G, F=0

where
Opmg—————

2 2 2 2 2 2
E = xu + yu + zu » G = xv-l- yv+ zv, F = xuxv-l- yuyv+ zuzv.

The theorem of liorrey says that each epen non degenerate surface

whose Lebesgue area is finite, admits an almost conformal map upon the fune

damental s quare (or -upon a circle) for which

a) the functions x,y,2 are absolutely continuous in the sense of Tonelli;

b) the first partial derivatives X pevesl  BTO Lz-integrable in A;

o) the Lebesgue area is given by the c¢lussical integral,




k

34

The theorem of Morrey leads us to two well known theorems of the
theory of conformal representation, One is the theorem of ifeierstrass:
any Jordan domain edmits & conformal map upon a circlé, The other is the

theorem of Schwarz: any polyhedral surface, of the topologival type of a

k'z-,-cell, admits a map upon & circle which is conformal evérywhere except at

the vertices. i

The theorem of Morrey is a great extension of the theorem of Schwarz
to any surface {open non degenerate and of finite Lebesgye area)s It is quite
natural that now the exceptional points are no longer finite in number but
a quite general set of measure zero.

We have already recalled that licShane proved that there are surfaces,
of this topological type, of:' finite Lebesgue area without a tangent plane
at any point, Anyway, according to the theorem of liorrey, they have an
almost conformal map upon & circle,

- It is important to notice that the nlmost donformal representations
of an open non degenerate surface satisfying the conditions a) and bB) of

the theorem of lorrey correspond to a minimum principle:

each almost conformal map (1) of an open non degenerate surface S,

satisfying the conditions a) and b), is minimal for the integral

2 2 2 2 2 2
I=3 {[ (xu+yu+ ot Bt vt zv) dudv = % _{[ (E + G) dudv ;

conversely, each minimal map, with the properties a) and b), is almost

conformal, The minimum is the value of the Lebesgue area L(S)e

- I succeded in proving this and in finding therefore again in a simple
way the theorem of liorrey, making use of the direot method of the calculus
of variations, It is the question of a problem that i§ rather similar to

the problems of Dirichlet and Plaseau,
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Surfaces of zero Lebesgue area,
— ——

The notion of surface that results from the definition of Fréchete
MeShane is of .reat generalitys Let us see the main types of gyrfaces. We
begin by observing that a surface can be reduced to a curve, F;r instance
this is the case if the functions x,y,z are comstant upon each segment pa-
rallel to the v-axis or upon the boundary of each square concentric end ho=
mothetic with A (figell)e The upper semicontinuous collection is, in the
first case, the set of all segments of A parallel to the v-axis, in the

second case, the set of the boundaries of all such squares,

A

AN A
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Fige 11 0 J° ~
In both cases the surface is reduced to a curve PQe This curve core
responds also to & side of the square A in the first case, to a semidiagonal
in the gecond cages Even if the curve §a is the same, these two kind of
surfaces are quite differentes And this corredponds also to the intuitions
They are indeed two different limit cases of the common intujtive concept

of surfaces 1In the first case we must think of a strip getting narrower and

narrower that reduces itself to the curve ﬁﬁ; in the second case we must
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think of a kind of cone having for axis the curve Iqa, vertex in P, and closed
in Q; whose opening gets narrower and narrower and that reduces itself to
the aiis 5&.

In both cases we shall say that the surface is a threads It is evident
that its Lebesgue area is zero if we think that suc¢h surfaces can be ap-
proached as closely as we like, by a polygonal path of elementary area zero,
or by pblyhedral surfaces with elementary area as .small as we like. It is
therefore evident that a thread has lebesgue area zero but this is a very
strong result if we think that there are threads that £ill a square or a cu%ge.

A surface can reduce itself not only to a thread but to a ramified
sot of threads, as we can see in the figs 12 in which we have indicated also
& possible map of them upon a square, Such a.set of threads may be also
composed of a countable number of threads, but,naturally,the conditions of
Hahn and Mazurklewicz are always to be satisfied which requires that for
ea/ch positive & > O there is only a finite number of threads whose diameter ,

is greater than & , Uie shall say that the surface is a tree, or better, a

tree of threads, These figures are only an outling because each curve may

be such a complicated curve as we have pointed out before and they can cover
the same set several times, Rado has proved that these surfaces give the
most general type of surface of Lebesgue area .zero,

An observation of J.T.Youngs gives the pos;zibilitx of having an ale
most conformal map for each surface of zero Lebesgue erea,s If we consider
the familiar Camtor ternary function £{ &) in the imterval 0 = & s 1, then
(&) is continuous, non decreasing in (0,1), £(0) = 0, £(1) = 1, and £{X)

is constant upon a set of subintervals, whose total measure is one,
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Then the equations

(10)  §'5 81 x=xf(A)f(4)], ¥ = yIE(AL)E(A)]) & = 2lE( )2 4)],

(k,4) €B=[05 51,05 5511,
give still a represéntation of the surface 8, but x,ysz are How functions of
A and//g that are constent upon a set of rectangles in B whose total measure
is oney Therefore the functions x,y,z have first partia} derivatives zero
almost everywhere in B, and we havey a.es in B,
E«GaP=0,
In addition

L(S) = 0, {f \[EG - F° dudv & 0

In such a way we hatve pkoved that sach surface of zeYo Lebesgue area

has an almogt conformal map for which the area is given by the ¢lassical

integral,

Surfaces of the "type A" or "basé surfaces",
==

We proceed to & more general type of surface, that of type A or,
according to a nomenclature introduced by ilarrey, “base surfaces We say
that the surface S is bf the "type A" oFf a "base surfoce" 4f it has the

following propertyt

each continuum g of the collection G may separate th»sguarq_Aﬁ»but

not the plane,

For instance the 8surfaces composed of pleces, that are open non dge
generaég, joined through points of their boundary directly or by means of
threads are base surfacess In fige 13 thére are outlined some of the¢ simplest
cases and there is also indicated one of their possible maps upon e square,
The junction points and the points of the threads are the images of continua

that must saparate the square A, but these do not separate the plans uv,
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The open non degenerate pieces that belong to this kind of surface may also
be ; countable set, but for each positive g& there is only & finite set of
pieces that have a diameter larger than & . .

The example of fige 14 is very important, It is compoégd of a cloged
set of points of a curve 5&. For each complementary interval of this c¢leged
set we substitute an open non degenerate surface, two of whose boundary |
points are endpoints of such intervals. lle can call such a surface a "fhread
of Ieaves".

The most general surface of this kind (base surface) is composed of
a tree of curves as the previous 5@. The fig. 14 gives the outline of such
& surface and the case, that some'threads are without open surfaces, is not
excluded, /e could call these surfaces "trees of threads of leaves",

These leaves are open non degenerate surfaces §, and if L(Si) is

‘their Lebesgue area, C,B.iorrey has proved that

P L(s) =?i__ L(s,) «

Bxceptional and proper sets.

We must find a representation for such surfaces for which the area
is equal to the classical integral,.

Let us first give some definitions:
We say & point of A is exceptional for the map (1) of a surface S if there
exists a neighborhood U of P upon which the map (1) defines a surface of
Lebesgue area 2zero,
Ve say a subset of A is exceptional for the map (1) if it is open and con-
aists only of exceptional points.
We say a subset of A is proper for the map (1) if its complementary set is

exceptional, Each proper set is closed.
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We say the map (1) s almost conformal upon a measurable set M of A ifs
1) the functions x;¥,z have first partiel derivatives almost
everywhere in M;
ii) the first partial derivatives x N P are Lgintegrable
in M;
§41) almost everywhere in Mwe have E = G, F = 0.

Representation of surfaces of type Ae

Let us consider now the simplest of the base surfaces that we have
illustré\tad, the first of the fige 13+ The two parts A4 end ,3 forming
it are open non-degenerate surfaces and therefore each of them has an almost
conformal representation upon the circles a and b inside the large circle Ce
The boundary of ¢t is mapped upon the boundary of e, the boundary of /s
upon the boundary of bs We can always suppose that the point P ggmes from
the points Ql of a and Qz of be We define the functions x,y,2 upoh the
cross-shape continuum p giving to them anywhere the same constant value that
they have already upon Ql and Qz. Than to the whole continuum p corresponds
upon the surface the same point P and upon the other lines joining a point
of the boundary of & and b with the boundary of C, let us give to the fufice
tions x,y,z the same constant value, they have already at their starting
point upon & and b, In this way the whole surface S has a map upen C for
which the proper set is formed by the two circles & and b , the e;zceptional
set is the complementary set C - a =~ be The representation is almost con=-
formal upon the proper set and the Lebesgue area is given by the classical
integral, calculated with crdinary Jacobiars upon the proper set, with ge-
neralized Jacobians upon the exceptional set, which are everywhere geros.

In & similar way the other surfaces of the figure 13 must be dealt with,

e e o T ST BRI & | .
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A 1little more difficult is the case of a surface like that of figure 14
where theré are infinite open non.degenerate partss Here.the closure set
of the infinite circles such as 813 az,‘&3,31;; may caontain points other
than those of the circles themselves, that is points that are neither ine
terior,nor of the boundary, of the circles, It is possible to place these
circles in the interior of € but nearer and nearer the boundary of C¢ In
such & way only pointa of this boundary may be 1imit poirts of the circles
and the boundary of C is a set of measure zero,

Therefore we obtain the statement: each base surface admits a re-
presermtat ion which -is almost conformal upon the proper set and for which
the Lebesgue area is given by the classical integral, calculated with ordinary
Jacobians upon the proper set, with generaligzed Jacobians, everywhere z6re,
upon, the exceptional sets

It is evidént though that in the points of the exceptional set it is
pot possible to assure the existence of partial derivatives, but only of the
generalized Jacobians that are certainly zerce Now it is possible to modify
the map obtained of the surface S, only upon the open exceptional sét*in
such a way that the functions x,y,z have first partial derivatives almost
everywhere zero and therefore the map is almost conformal also in the
exceptional set, for E = G =F = 0.

e got in such & way the following:

THEOREM: -Each surface of the"type A"(base surfacs) of finite Lebesgue

area, admits an almost conformal map upon a square (or circle), the Lebesgue

erep being equal to the classical integrai,

*) see appendix,

w6
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Closed non degenerate surfaces

We shallscall closed non degenerate surfaces, or surfaces of the topologi~-

cal type of a 2-sphere, those surfaces that have a never stationary map,
that is, a light map, upon & spheres These surfuces have the following -

propertys in any map of them upon a square A, the proper continua on which

the functions x,y,2z are constant, separate neither the plane uv, nor the

domsin A, with exception of ohe continwum that contains the whole boundary

of Ae

In such a map to the boundary p of A corresponds & unique well de-
termined point P of the surfaces The functions i;y,z are constant upon the
boundary of A

Let us cut the surface S along a curve ¢ = 5@. It can be shown that
under the conditions mentioned it is always possible to make a cut along a
continuous curve ¢ which is rectifiable or at least whose three projections
upon the coordinate planes have measure zeros .e get a new surface, or "cut
surface" and we will call it S e The surface Sc'may be "open non degenerate"
or o "bage surface®s In order to simplify matters let us suppose here that
S° is an open non degenerate surfaces Then the cut surface S has a map ale
most conformal upon a circle (the interior circle in the figel5) and now we
must build a map for the given closed surface Se

ile can separate upon the boundary of this interior circle(fig.15)
two arcs having for image the two lips of the cut: ¢ and c"1 o Let us join
through continua (fig.15) the points of the two arcs that have the same
image upon the two lips of the cut, thc continua £illing the annular region
between the considered circle and another bigger and concentric circle(fig.15)s

. In such a way we have upon this new circle a representation of the
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given closed surface Se¢ The closed interior circle is the proper set,
the annular domain is the exceptional set. .As & consequence of the proe
perties of the ¢losed curve c along which we made the cut, the Lebesgue
area of the ¢losed surface is equal to the Lebesgue area of the cut surface
Sc and now it is evident that in such a way we have a representation of the
closed surface that is almost conformal upon a proper set and for which the
Lebesgue area L(S) = L(Sc) is given by the classical integral,

A modification of the map obtained upon the exceptional set, simihar

to that we used for the base surfaces, gives. now the following statement:

Each closed non degenerate surface of finite Lebesgue area admits

en almost conformal map upon a circle (or a square) for which the Lebesgue

area is given by the classical integrals

Surfaces of general kind,

Let us pass to the most general type of surfuces Illow the continua
g of the collection G may separate the squa¥e A and the plﬁne uvs The
fipures 16, 17, 18 give some simple examples of them: one open surface with
one thread that has its point of departure P in any point of the open sur=-
face; one open surface with one thread and one sphere, one thread with two
spheres; one base surface with three threads; one open surface with one
thread and one sphere and, from here, two threads of which one has another
sphere and another threads In the figures 16,17,18 there is also outlined
& possible map of such surfaces upon a square,

The closed non degenerate parts that belong to this kind of surface
may be also a countable set, but for each positive £ there is only a finite

got of parts thet have a diameter larger than & o The example of the

figure 19 is very importante It is composed of & closed set of points of
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a curve fa. For each complementary interval of this clogsed set we sub=
stitute a closed non degenerate surface two of whose points are the end
points of such intervals. 1In fige 19 the curve is & simple elementary

arc and the closed set is the Cantor "ternary" set., ile shall say that such
e surface is a'thread of pearls",

One more general kind of surfuce is composed of a tree of threads 1like
such a thread 56} The fige. 20 (first part) gives the outline of such a sur=
face and it may happen that some threads are without closed surfaces. We
call this a "tree of threads of‘pearls".

:nd now the most general kind of surface (fige20, second part):

A base surface and & countable set of trees of threads of pearls which

have their point of departure at any point of the base-surfaces Neturally ,
owing to the continuity of the functions x,y,z of the map, the following
property is satisfied: for each positive & there is only a finite set

6f such trees of threads of pearls that have a diameter larger than & .

We have emphazised with the previous considerations the topological
structure of a general surface, This structure has been studied especially by
Moore,Morrey nnd Youngs and I think this .is-a very fine reswlt of-geseatrch in
set-topology, It is showm thut each surface contains a countable number
of open or closed non degenerate surfacés Si and liorrey has demonstrated
that the Lebesgue area of the whole surface S is exactly the sum of) the

Lebesgue areas of all these non degenerate surfaces

L(s) = Z;_L(si) .

Representation of surfaces of general kind

We must find now an almost conformal map for such a general kind of

surface,
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vle must begi;z from the simplest of themy those of figure 164 The
open non degenerate part of the first admits an almost conformal map upon a
squares There is a point that has for its image the point P, starting point
of the thread lga. Let us cut the square along two gtraight lines parallel
to the u,v axes and let us separate the four rectangles 80 Bps Bgy @) from
one another parallel to the u,v ax®se Let us define the fumctions x,y,2
upon the four arms of the cross to be constent upon each segment parallel
to the u or v axis, Upon the boundary of the central square the functions
x,y,% are constant, their values being the coordinates of the point Pe It
is easy to map the thread I’DE; upon the central s quare (fige16)s The map of
the whole surface S that we have got upon the square A is almost conformal
upon the proper set M = a.l*az+a.3+o. 4 formed by the four corner rectangless
The cross is the open exceptional sete It is clear that the classical inte-
.gral calculated upon the proper set and also upon the whole square is equal
to the Lebesgue area of the whole surfaces

gimilar considerations lead to a representation of the second case
of the figs 16 in which there is also indicated an outline of a map that is
almost conformal in a proper set, the Lebesgue area being equal to ‘che‘
classical integrala

As a second example let us consider a surface like the gne of fige 17
and let us begin to map separately the closed surfaces A and /3 s we have
already said, almost coni‘ormg.lly upon certain closed proper sets H1 and Hz
of given sguares, Let us fix the points I,‘1 and Mz whose images are the
points Ql and Qz. Let us enlerge the map through strips parallel to the

axes, &s befores Finally combining the two maps we can get a umique map

of the whole surface as is outlined in the same figel7s Here the proper
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set is the closed set formed of the ;pbsets of Hy and Hy th&; are contaired
in some of the rectangles 15 Bo» Bse 8y Bl‘ bz, bS' b4 + The exteptional
sot of the nap is the complementary set and, ap is evident, #his exceptional
gset ig required in order to map the threads of the surface ahd the cuts that
we have made upon the surface,

Analogously for the oases of the fige 18 .

Here ulso we can pass to the general case but the difficulties are
much greaters Lét us consider for instance the case of a su;fgce S formed
by one. part So open non. degenerate and by an infinite number of threads
whose starting points are everywhere dense upon Sov 0f course, owing to
the continuity of the map, for each positive & there 1s only a finite set
of threads whose diameter is larger than £ & In this case an almost cohe
formal map upon & préper set may still be obtained, but this proper set is
the perfect set that we get by taking away from a square a cowntable and
everywhere dense set of sirips pagallel to the u and v axessy The proper
gset is therefore a completely dibconnected closed sete

/e can apply the same procedure that we used for the case of fige 17
in the mapping of e thread of infinite pearls, like the one of the fige 19,
but in this cas; we have an infinite number of squares one in the interior
of the othere It is evident that tle infinite closed proper sqts may now
have new limit points, which are upon the diagonals of the exte;iorlsquare.
The proper set of the vhole map is therefore formed by all the proper sets
relative to the different peorls and the four semidiagonals. In.such a way
we obtain for the whole surface a map on the square A, which is almost con=
formnal upon a proper set,

In the same way it is possible also to yet a map on a square which is

¥
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almost conformal upon a closed proper set for & surface of the most general
type as outlined in fige 20 It is very difficult to prove that the limit
points of the infinite proper set of the different non degenerate parts, that
do not belong to one of these, form a set of measure zero.

We have already recalled that, in these general cases , the proper
set may be completely disconnected. lere also with one modification of the
map only upon the open exceptional set, it is possible to get representations
which have first partial derivatives zero a.e. upon the exceptional sete
But now every point of the proper set is a limit point of points of the ex=
ceptional set and therefore if we perform a modification in the exceptional
set we may have as a consequonce that we are no longer sure that there gre
ordinary first derivatives at almost all points of the proper set, but only
asymptotic derivatives., However, in a recent paper, I succeeded in showing
that it is possible to define the modification described in a manner so re-
fined that the functions x,y,z still have ordinary first derivatives at al- .
most all points of the proper set (see Appendix)e

We have, therefore, the following 3

-

THROREM: Every surface of finite Lebesque area admits en almost con-

formal map upon a circle, the Lebesgue area being given by the classical

integral.
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fle say that a continuous plane trunsformation
dru=ulh,p) veavla,4) (4,0) €4,
is monotone if for each point Q = (u,v), the set QD (Q) of all points
P& (d, f) of Awhoss image is Q, if it is not empty, is a continuum
(or a single point)of A.
I proved the following theorem, which gives an extension of the
familiar Cantor ternary function to the plane transformations:

THEOREM: A transformation é oxisty which transforms a square g

into itself, which is continuous upon g, monotone, the identity upon the

boundary g* of g and constant upon a countable set of disjoint squires of g,

whose total measure is equal to the measurs of g,

This theorem is utilized in the yr oof of the prev'ious general theorem

for the representation of surfaces,
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We add the follcwing foot-rote at page 13, line 16:
!
We indicete G(() also with G(A)o ‘e can define G(r) for each
Jordan domain r of A in an analogous waye

Likewise for U(@J) and T(é).



