
Moduli and Hodge Theory ∗

Phillip Griffiths

∗Talk at the “Geometry at the Frontier” conference, Pucón, Chile
(November 12, 2018), and based in part on joint work in progress with
Mark Green, Radu Laza and Colleen Robles. Selected references to works
quoted in or related to this talk are given at the end.
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Outline

I. Introduction

Background and statement of the two main results

II. Hodge theory

Basic definitions; limiting mixed Hodge structures

III. Moduli and period mappings

The canonical minimal completion of the image of a
period mapping

IV. Use of Hodge theory to analyze the moduli space of
I -surfaces

Illustration of how Hodge theory guides the
determination of the boundary structure of moduli of
regular, general type surfaces X with pg (X ) = 2,
K 2
X = 1.†

†Based in significant part on the work of Marco Franciosi, Rita Pardini
and Sönke Rollenske (FPR); cf. the references at the end.
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I. Introduction

I The construction and study of moduli spaces is of central
interest in algebraic geometry.

I Algebraic varieties are built out of three basic types:
I rationally connected (κ(X ) = −∞; for curves g = 0)
I Calabi-Yau’s, abelian varieties, . . . (κ(X ) = 0; for curves

g = 1)
I general type (κ(X ) = dimX ; for curves g = 2).

Here
dimH0(mKX ) ∼ mκ(X ) + · · ·

measures the growth of the dimension of the space of
global differential forms f (z)(dz1 ∧ · · · ∧ dzn)m.
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I The moduli spaces (if they exist) behave quite differently
in the three cases — for X of general type and with a

fixed Hilbert polynomial
m
⊕(χ(mKX )

Kollár-Shepherd-Barron- Alexeev (KSBA) proved the
existence of M with a canonical projective completion M

— for surfaces we need only specify q(X ) = h1,0,
pg (X ) = h2,0(X ) and K 2

X = c2
1 (X ). For q(X ) = 0,

pg (X ) = 2 and K 2
X = 1 we have an I -surface with moduli

space MI .
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I For dimX = n = 1 we have Mg with an essentially
smooth Mg having a canonical stratification of
∂Mg = Mg\Mg — Mg is much studied and very
beautiful — the analysis of the classical period matrix of
degenerating curves

-

provided an early guide to understanding ∂Mg .
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I The picture of M2 is

(∗)

This gives the stratification of M2 together with the
incidence (degeneration) relations among the strata.
(The solid and dotted arrows will be explained later.)
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I For n = 2 aside from the work of FPR I know of no
example where a significant part of the structure of ∂M
has been analyzed.

I Associated to a stable curve X as in (∗) is a Hodge
structure (period matrix) in the case when X is smooth
and a limiting mixed Hodge structure (LMHS) in the
general case. There is a stratification on the space of
Gr(LMHS)’s, and this stratification determines the one
pictured in (∗). The objective of our work is to be able to
use Hodge theory in a similar way to study the moduli
space M for general type surfaces.
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I The space of (equivalence classes of) LMHS’s of a given
type may be described using Lie theory. What is needed is

(i) to connect M to this space via an extended period
mapping

(ii) to then apply this to some interesting examples to
determine M.

Following a discussion in Part II of some definitions and
properties from Hodge theory, carrying out (i) will be
explained in Part III of this talk, and in Part IV we will
apply this to the I -surface described above. The results
will be

I the picture (∗) seems to carry over very closely as in the
curve case‡

I there is the added benefit that whereas Mg is smooth,
MI is highly singular along the boundary and the proof
of (i) suggests how one might desingularize it.

‡Some of this, together with an extension to H-surfaces
(q = 0, pg = 2,K 2

X = 2), is work in progress with GLR and FPR.
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II. Hodge theory
I Associated to a smooth projective variety X is the Hodge

structure (HS) of weight m

Hm(X ,C) = ⊕
p+q=m

Hp,q, H
p,q

= Hq,p

on its cohomology. Here

Hm,0(X ) = H0(Ωm
X ).

Example: For m = n = 1 the HS is determined by the period
matrix

Ω =

∥∥∥∥ˆ
γi

ωα

∥∥∥∥ ��
ωα ∈ H0(Ω1

X ) (dim = g)

HH γi ∈ H1(X ,Z) (∼= Z2g )
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Example: For m = n = 2 it is determined by a similar period
matrix where

dimH0(Ω2
X ) = pg (X ), H2(X ,Z)/torsion ∼= Zb2(X ).

I A polarized Hodge structure of weight m (PHS) is
(V ,Q,F )

I Q : V ⊗ V → Q, Q(u, v) = (−1)mQ(v , u)

I

{
Fm ⊂ Fm−1 ⊂ · · · ⊂ F 0 = VC (Hodge filtration)

F p ⊕ F
m−p+1 ∼−→ VC.

For V p,q = F p ∩ F
q

the second condition is the same asVC = ⊕V p,q, V
p,q

= V q,p

F p = ⊕
p′=p

V p′,q

I

{
Q(F p,Fm−p+1) = 0 (HR I)

ip−qQ(V p,q,V
p,q

) > 0 (HR II)
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I Hm(X ) = ⊕ PHS’s — in the examples above Q is the
intersection form and (HR I) and (HR II) result from{´

X
ω ∧ ω′ = 0 (because ω ∧ ω′ = 0)

cn
´
X
ω ∧ ω > 0 (because cn ω ∧ ω > 0)

where ω, ω′ ∈ H0(Ωn
X ), dimX = n, and cn is a constant.

I Mixed Hodge structure (MHS) is (V ,W•,F
•)

I (0) ⊂W0 ⊂ · · · ⊂W` = V (weight filtration)
I Fm ⊂ Fm−1 ⊂ · · · ⊂ F 0 = VC (Hodge filtration)

where
I F • induces a HS of weight k on

GrWk V = Wk/Wk−1.
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Example: Hm(X ) where X = complete algebraic variety of
dimension m and the weight filtration is W0 ⊂ · · · ⊂ Wm.

W0 W1

6
A
AK

�

6

I Limiting mixed Hodge structure (LMHS)
I N : V → V with Nm+1 = 0

 
W0(N) ⊂ · · · ⊂W2m(N) (monodromy weight filtration)

with N : W`(N)→W`−2(N) and

Nk : Gr
W (N)
m+k

∼−→ Gr
W (N)
m−k .
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I

{
(V ,W (N),F •lim) is a MHS with

N : F p
lim → F p−1

lim .

I There will also be a Q in the picture.

I Gr(LMHS)∼=
2m
⊕
`=0

H` where H` is a HS of weight ` —

picture is a Hodge diamond. Here m = 2 and N is the
vertical arrows — the dots are the Hp,q’s

(2,2)

(2,1)

(2,0) (0,2)

I we set hp,q = dimension of the (p, q) dot.
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Example:

X∗

��

⊂ X

��
∆∗ ⊂ ∆

Xt
X0

-

t o

I monodromy T : Hm(Xt)→ Hm(Xt){
T = TsTu (Jordan decomposition)

T k
s = I , Tu = eN with Nm+1 = 0

thus (i) eigenvalues are roots of unity, and (ii) length of
Jordan blocks is 5 m.

I the solid lines in the diagram in the introduction represent
degenerations with N 6= 0.
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Theorem (Schmid)
Given X→ ∆ as above

lim
t→0

Hm(Xt) = LMHS.

Proof is a combination of

I Lie theory

I complex analysis

I differential geometry

Example:

I
topological picture-

I
y 2 = x(x − 1)(x − t)

algebraic picture
-
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I X = C/Λ, Λ = {1, λ}

λ

1

analytic picture

λ determined up to λ→ aλ+b
cλ+d

where ( a b
c d ) ∈ SL2(Z)

I M1
∼= SL(2,Z)\H, H = {λ : Imλ > 0}

I in above example λt = log t
2πi

λt
6

∞


space of PHS’s is H⊂P1, V = ( ∗∗ ) , Q =( 0 1

−1 0 ) , T =( 1 1
0 1 )

F 1 = [ λ1 ] ∈ P1, HR II ⇐⇒ Imλ > 0

as λ→ i∞ we have F 1 → [ 1
0 ] = F 1

lim.
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How does Lie theory enter?

I Period domain
D = {F • = flag in VC : (V ,Q,F •) = PHS} where a
flag is {Fm ⊂ · · · ⊂ F 0 = VC}

I compact dual
Ď = {F • is a flag with Q(F p,Fm−p+1) = 0}

I G = Aut(V ,Q) = Q-algebraic group

I GR acts transitively on D so that

D = GR/H with H compact

∩

Ď = GC/P with P parabolic
( ∗ ∗ ∗ ∗
◦ ∗ ∗ ∗
◦ ◦ ∗ ∗
◦ ◦ ◦ ∗

)
Then D = open GR-orbit in Ď.
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Example:
m=1: D =Sp(2g ,R)/U(g)=Hg where g =h1,0

m=2: D =SO(2k , `)/U(k)× SO(`) where k =h2,0, `=h1,1

I Classical case:

D = Hermitian symmetric domain (HSD)

=

GR/K , K = maximal compact.
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Two classical cases are

m = 1 (curves, abelian varieties)

m = 2 is HSD⇐⇒ k = 1 (K3’s)

thus h2,0 = 2 is non-classical

I


TF•Ď ⊂

p
⊕Hom(F p,VC/F

p)

∈

ξ −→
p
⊕ ξ · F p/F p

(think of F p
t → dF p

t /dt
∣∣
t=0

modF p
0 )

I Infinitesimal period relation (IPR)

{ξ : ξ · F p ⊆ F p−1} = I ⊂ TĎ

I = TĎ ⇐⇒ D is HSD (classical case)
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Example: m = 2, D = SO(2k , `)/U(k)× SO(`) — first
non-classical case when k = 2

I dimD = 2`+ 1
I I = contact structure

I Period domains have sub-domains corresponding to
PHS’s with additional structure; e.g.,

D ′ ⊂ D

={
reducible PHS’s

that are ⊕’s

}
This is what the dotted lines represent in the diagram in
the introduction for M2.

I In general the D’s are Mumford-Tate domains defined to
be those PHS’s with a given algebra of Hodge tensors.
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I period mapping (next topic) will arise from holomorphic
mappings {

Φ : M → D

Φ∗ : TM → I ⊂ TD

the differential constraint given by I is the primary feature
of the non-classical case

I differential geometry enters via holomorphic vector
bundles

Fp → M

which have canonical Hermitian metrics due to HR II —
these then have curvatures which turn out to have signs.
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III. Moduli and period mappings

I Variety Y has canonical singularities if for any

desingularization Ỹ
f−→ Y we have

f ∗KY = KỸ .

Equivalently, if Y is normal, then for Y ∗ = Y \Ysing any
ω ∈ H0(KY ∗) has

ˆ
Y ∗
ω ∧ ω <∞.

I M = moduli space for varieties that are smooth or have
canonical singularities.
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Question: What varieties X do we add to obtain M?

I Use valuative criterion: Given X∗ → ∆∗ what X do we
use to uniquely fill in over the origin to have

X∗

��

⊂ X

��
∆∗ ⊂ ∆

I Answer (KSBA): There are two equivalent criterion:
I X should

(a) have semi-log-canonical (slc) singularities (local)
(b) KX should be ample (global)

I X should

(a′) have canonical singularities (local)
(b′) ωX/∆ should be relatively ample (global)
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For curves{
(a) = (a′) ⇐⇒ X is nodal

(a) + (b) = (a′) + (b′) ⇐⇒ X is stable.

For surfaces there is a list of slc singularities
I normal singularities (the Gorenstein ones are simple

elliptic and cusps)
I non-normal (double curve with pinch points and nodes

satisfying conditions with respect to the involution)

I Let B = smooth quasi-projective variety with a smooth,
projective completion B with B = B\Z where Z =

⋃
Zi

is a reduced normal crossing divisor

B

Z
��*

-
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I Period mapping is

Φ : B → Γ\D, Γ ⊂ Aut(VZ,Q)

that satisfies
I Φ locally liftable and holomorphic
I Φ∗ : TB → I ⊂ T (Γ\D) (Ḟ p

b ⊂ F p−1
b )

Then local monodromies around Zi are quasi-unipotent.

I Example: X
π−→ B projective family with π−1(b) = Xb

smooth gives a period mapping where
I Φ(b) = PHS on Hm(Xb)
I Φ∗ : π1(B)→ Γ ⊂ Aut(Xb) is global monodromy.

I Hodge line bundle Λ = detFn when m = n.

Example: For X
f−→ B

Λ = det(f∗ωX/B)
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I may extend Φ across Zi where Ni = 0 and

Φ : B → H ⊂ Γ\D proper, holomorphic mapping.

Theorem A1: There exists a canonical minimal completion
H of H to which the augmented Hodge line bundle extends as
an ample line bundle Λe → H.§ Moreover there is an
extension of the period mapping to

Φe : B → H.

I What is the boundary ∂H = H\H? For b0 ∈ Z

Φe(b0) = Gr

{
lim
b→b0

Hm(Xb)

}
.

§The augmented Hodge line bundle is
[m+1/2]
⊗
p=0

detFp. We shall mainly

be concerned with the cases m = 1, 2.
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Example:

Xb = curve =⇒ Φe(b0) =
{
H0(Xb0),H1(X̃b0)

}
where X̃b0 = normalization of Xb0 .

Example: I -surface example to be discussed below.

I Regarding the of proof of Theorem A1: Line bundle
L→ Y over a compact analytic variety is free¶ if some
Lm → Y is globally generated

m{
ϕ : Y → PN ,

ϕ∗OPN (1) = Lm

=⇒ Proj L exists as a projective variety (use Spec of
⊕H0(Lk)).

¶Also called semi-ample.
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(∗∗) Theorem: Λe → B is free.

Definition: H = ProjΛe

(depends only on H and not on B ,B)

I Proof of (∗∗) uses pretty much what is known about
VHS’s together with some new aspects involving the
geometry of extension data.

I Definition: H is the Satake-Baily-Borel (SBB)
completion of H.

I Challenge to algebraic geometers: Given a family X
f−→ B

where a general Xb = f −1(b) is smooth and ωX/B is
Cartier, Theorem (∗∗) implies that det(f∗ωX/B) is free. I
do not know of an algebraic proof of this result.

We note that this is a relative construction; it depends on
Φ : B → Γ\D, in contrast to the classical case where there is

a Γ\D
SBB

where Φ extends to Φe : B → Γ\D
SBB

and H is the
image.

28 / 48



I M = KSBA moduli space, B = M is a desingularization.

Theorem A2:‖ There is a factorization

B

��

⊂ B

��

Φe

%%JJ
JJJ

H

M ⊂ M

99ttt

Briefly this says

I the period mapping M→ H ⊂ Γ\D extends to
Φe : M→ H; i.e., to a surface corresponding to a
boundary point of M we can uniquely associate the
associated graded to the LMHS;

I the extended Hodge line bundle on B descends to M and
there it is free.

‖The detailed statement and proof of this result are a work in progress.
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IV. Use of Hodge theory to analyze the moduli

space of I -surfaces
A. I -surfaces and their period mappings
I Murphy’s law (Vakil) — whatever nasty property a

scheme can have already occurs for the moduli spaces of
general type surfaces — thus unlike curves should select
“particular” surfaces to study — in geometry extremal
cases are frequently interesting — Noether’s inequality

pg (X ) 5
K 2

X

2
+ 2

suggests studying surfaces close to extremal — the 1st

case is

Definition: An I -surface X is a regular (q(X ) = 0) general
type surface that satisfies

pg (X ) = 2,K 2
X = 1.
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I One studies general type surfaces via their pluri-canonical
maps

(∗∗∗) ϕmKX
: X 99K PH0(mKX )∗ ∼= PPm−1

and pluricanonical rings R(X ) = ⊕H0(mKX ).
I Instead of (∗∗∗) frequently better to use weighted

projective spaces corresponding to when we add new
generators to R(X ) — from

Pm(X ) = m(m − 1)/2 + 3, m = 2

and Kodaira-Kawamata-Viehweg vanishing one has for
the I -surface

ϕKX
: X 99K P1, |KX | = pencil of hyperelliptic curves

ϕ2KX
: X → P(1, 1, 2) ↪→ P3

ϕ5KX
: X ↪→ P(1, 1, 2, 5) ↪→ P12.
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I Picture/equations

I


P

V

P(1, 1, 2) ↪→ P3given by

(t0, t1) ↪→ [t2
0 , t0t1, t

2
1 , y ]

X = 2:1 map branched over P and V ∈ |OP3(5)|
I z2 = F5(t0, t1, y)z + F10(t0, t1, y) (weighted complete

intersection) in P(1, 1, 2, 5)

I MI is smooth and
I dimMI = h1(TX ) = 28
I dimDI = 57 = 2 dimMX + 1

I Φ = MI → ΓI\DI has Φ∗ injective (local Torelli)

⇓
Φ(MI ) = contact submanifold H ↪→ ΓI\DI
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I ΓI is arithmetic — not known are{
ΓI = GZ

global Torelli
?

B. Stratification of the space of Gr(LMHS)’s
I For curves with Γ = Sp(2g ,Z) we have for LMHS’s

I0OO

��

I1OO

��

___ I2OO

��

· · · IgOO

��
Hg Hg−1 Hg−2 H0

I note that Ig−m corresponds to [N] with N2 = 0, rank
N = m.

t t
?t
t

g −m

m

33 / 48



For each boundary component we have the stratification

H1 = ⊕H1
i .

The composite of these induces a stratification of Mg by

{# nodes, # components}.

Of course this is just the beginning of the story of Mg .

I For surfaces with pg = 2 the classification of
Gr(LMHS)’s/Q is
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I

0 2

2

1

1

1

1

1

2

N = 0

2
N  = 0,

rank N = 2

2
N  = 0, 

rank N = 4
N = 0,

rank N = 1
II III

IV
N  = 0, rank N=3 and

rank N  = 1

2

2

V

2
N  = 0,

rank N  = 2
2
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I



For the refined Hodge-theoretic stratification of

Gr(LHHS/Z)’s we use Ts → {conjugacy class [Ts ]

of Ts in Γ}. Within each of these strata we use

Mumford-Tate sub-domains appearing

in Gr(LMHS)’s in MI .

I We begin by considering the Gorenstein part M
Gor

I ⊂MI

— one reason for this is the result
if Xt → X is a KSBA degeneration of a surface
where all the singularities of X are
non-Gorenstein, then N = 0.

Hence only Gorenstein singularities can non-trivially
contribute to the LMHS/Q.

The following results from coupling the classification in FPR
with the analysis of the LMHS’s in the various cases.
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Theorem B
The Hodge theoretic stratification of M given by the above

diagram uniquely determines the stratification of M
Gor

I .

I Rather than display the whole table the following is just
the part for simple elliptic singularities (types Ik and IIIk)
— they have N2 = 0 since for the semi-stable-reduction
(SSR) of a degeneration only double curves (and no triple
points) occur — all of the other types occur if we include
cusp singularities.
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I In the following
I X is irreducible (since K 2

X = 1 and any component of X
will have positive K 2)

I di = degree of elliptic singularity
I k = # elliptic singularities — by Hodge theory one

shows in general that k 5 pg + 1
I X̃ = minimal desingularization of X — in a SSR given

by X̃→ ∆ the surface X̃ will appear as one component
of the fibre over the origin.

In the following table, in the 1st column subscripts denote
[Ts ]’s — will explain the

∑
(9− di) column below.
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stratum dimension minimal
resolution X̃

k∑
i=1

(9− di ) k codim

in MI

I0 28 canonical singularities 0 0 0

I2 20 blow up of
a K3-surface

7 1 8

I1 19
minimal elliptic surface

with χ(X̃ )=2
8 1 9

III2,2 12 rational surface 14 2 16

III1,2 11 rational surface 15 2 17

III1,1,R 10 rational surface 16 2 18

III1,1,E 10 blow up of an
Enriques surface 16 2 18

III1,1,2 2
ruled surface with

χ(X̃ )=0 23 3 26

III1,1,1 1
ruled surface with

χ(X̃ )=0 24 3 27
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Example: For I2 the picture is

(X̃ , C̃ )

~~~~
~~
~~
~~

��;
;;

;;
;;

(Xmin,C ) (X , p)

Here, p = isolated normal singular point on X , C̃ = curve on
X̃ that contracts to p — from Hodge theory

2 = pg (X̃ ) + g(C̃ ) and pg (X̃ ) = 1

we see that g(C̃ ) = 1 (simple elliptic singularity)

I Gr(LMHS)/Z suggests that Hg1(X̃ ) has a Z2 with
intersection form (

−2 2

2 −1

)
for heuristic reasoning assume basis classes are effective.
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I Hodge theory now suggests the picture

C̃
X̃ C̃ 2 = −2, E 2 = −1

C

E

X

p

{
Xmin = K3

C 2 = 2

=⇒ Xmin
2:1−→ P2 branched over D

D
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I

Gr2
∼= H2(Xmin)prim

LMHS has
Gr3
∼= H1(C̃ )(−1)

���

PPP

I # of PHS’s of type Gr3⊕Gr2 = 19 + 1 = 20 which
suggests

I codim = 8

I How to get this number? First approximation to fibre
over origin in a SSR is blowing up p in X to have

X̃ ∪C̃ P2

where C̃ ∈ |OP2(3)|
I Now have to blow up 9− (−C̃ 2) = 7 points on C̃ to

obtain triviality of the infinitesimal normal bundle as a
necessary condition for smoothability. Thus
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Fibre over origin in ∆2 is given by blowing up seven points on
C̃ — this is a del Pezzo.

I Hodge theory suggests where to look and following FPR
we can go back and prove things algebraically as follows:

I X has one elliptic singularity P of degree 2
I given in P(1, 1, 2, 5) = P by{

z2 = f10(x1, x2, y)

f ∈ (x4
2 , x

3
2y , . . . , y

4) = (x2, y)4 is generic

I X
2:1−−→ Q0 P branched over P + V where

V ∈ |OQ0(5)| has ordinary quadruple point giving p.
I smoothing z2 = f + εg

I dim I2 = 20 = dim
{

g∈H0(OP(10))
(x2,y)4+(x1fx2 +x2

1 fy )

}
43 / 48



I the
∑k

i=1(9− di) column translates into: To desingularize
MI near the normal locus you do SSR using

X̃ ∪
(⋃

i

Yi

)
∪
( 9−di⋃
α=1

Zαi
)
.

I Finally, what about the non-Gorenstein singularities?
From the list of normal slc singularities of surfaces these
typically are quotient singularities. For those for which
the local monodromy is a non-trivial quotient of the finite
group that gives the singularity, one might say that they
are detected Hodge-theoretically.
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However there is one notable exception to this, namely
the Wahl singularity (T = Id). If

X̃ //

��

X

��
∆m // ∆

is the minimal SSR, then for I -surfaces it turns out to be
the case that

I the period mapping gives Φ : ∆→ D (there is no need
to quotient by a Γ);

I the point Φ(o) ∈ D is a PHS with an extra Hodge class
arising from Hg1(X̃ ), where X̃ → X is the minimal
desingularization of X .

(Some details remain to be checked here.)
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Conclusion

The SBB completion H of the image of moduli under the
period mapping gives an invariant that has a rich structure
and that provides an important and possibly complete guide to
the boundary structure of the moduli space.

Thank you
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