IV. What is the Hodge conjecture, and why hasn't it been proved?

Short answer

- the HC proposes necessary and sufficient conditions that a homology class be represented by an algebraic cycle (a linear combination of the fundamental classes of algebraic subvarieties)
- in codimension 1 the result is the Lefschetz $(1,1)$ theorem - for codimension $\geqq 2$ there are new Hodge-theoretic invariants of algebraic cycles of an arithmetic character and these are not understood.
- it is known that the HC has implications for these arithmetic invariants, but it is not understood what, if any, direct implications they have for the HC
- the issue boils down to constructing something under assumptions that have both a geometric and an arithmetic aspect.

There is basically one case of a variant of the HC beyond the codimension 1 case that is understood - this can be analyzed using classical complex analysis plus some arithmetic and will be the main topic of today's lecture

Outline

A. The Hodge conjecture (HC)
B. Relative Chow groups for $\left(\mathbb{P}^{1},\{0, \infty\}\right)$ and $\left(\mathbb{P}^{2}, T\right)$.

A: The HC

- $X=$ smooth n-dimensional complete algebraic variety (thus it is a compact $2 n$-real dimensional manifold)
- $H^{r}(X, \mathbb{C}) \cong H_{\mathrm{DR}}^{r}(X)$ where the RHS is

$$
H_{\mathrm{DR}}^{r}(X)=\left\{\frac{Z^{r}(X)}{d A^{r-1}(X)}\right\}=\frac{\left\{\begin{array}{c}
\text { closed } r \text {-forms; i.e., } \\
\text { those } \omega \text { with } d \omega=0
\end{array}\right\}}{\left\{\begin{array}{c}
\text { exact } r \text {-forms } \\
\omega=d \psi
\end{array}\right\}}
$$

- for $X=$ complex manifold with local holomorphic coordinates z_{1}, \ldots, z_{r}
- $A^{r}(X)=\underset{p+q=r}{\oplus} A^{p, q}(X)$
- $A^{p, q}(X)=\left\{\Psi=\sum_{\substack{| ||=p\\| J \mid=q}} \Psi_{I \bar{J}} d z^{\prime} \wedge d \bar{z}^{J}\right\}$
$=\overline{A^{q, p}(X)}$
(decomposition into (p, q) types)
- for X a smooth complete algebraic variety this (p, q) decomposition descends to cohomology

$$
H^{r}(X, \mathbb{C}) \cong \underbrace{\underset{\substack{\oplus+q=r}}{\oplus} H^{p, q}(X), \quad H^{p, q}(X)=\overline{H^{q, p}(X)}}_{\text {Hodge decomposition on cohomology }}
$$

Thus $H^{r}(X, \mathbb{C})$ has a Hodge structure of weight r

- For X any algebraic variety $H^{r}(X)$ has a mixed Hodge structure where

$$
x<\begin{aligned}
& \text { complete } \Longrightarrow \text { weights are } 0 \leqq w \leqq r \\
& \text { smooth but open } \Longrightarrow r \leqq w \leqq 2 r
\end{aligned}
$$

- There is also a mixed Hodge structure for the cohomology of relative algebraic varieties; we will implicitly be using this later.
- $H_{2 n-r}(X) \cong H^{r}(X) \quad$ (Poincaré duality)
- $Y \subset X$ an $(n-r)$-dimensional subvariety $\rightsquigarrow[Y] \in H_{2(n-r)}(X) \cong H^{2 r}(X)$ (recall that $\left.\operatorname{dim}_{\mathbb{R}} Y=2(n-r)\right)$
- $[Y] \in H^{r, r}(X)$
(Y locally given by $z_{1}=\cdots=z_{r}=0$)
- Hodge classes

$$
\operatorname{Hg}^{r}(X)=H^{2 r}(X, \mathbb{Q}) \cap H^{r, r}(X) .
$$

Example: $X=$ algebraic surface
$H^{2}(X, \mathbb{C})=H^{2,0}(X) \oplus H^{1,1}(X) \oplus H^{0,2}(X)$

- $H^{2,0}(X)=\underline{\text { regular 2-forms }}$
- $H^{0,2}(X)=\overline{H^{2,0}(X)}$
- $\left\{\begin{array}{l}H^{1,1}(X) \text { is there to represent } \\ \text { the fundamental classes of } \\ \text { the algebraic curves on } X\end{array}\right\}$
- Hodge conjecture: $\operatorname{Hg}^{r}(X)$ is generated by fundamental classes of codimension- r subvarieties on X
- due to Lefschetz when $r=1$ - essentially no other known cases - there are a few examples - it is non-trivially consistent with known consequences.

Issue: Have to construct something - it is an existence result - for $r \geqq 2$ there is an arithmetic aspect and thus far existing methods of complex analysis/PDE/differential geometry fall short.

B: $\left(\mathbb{P}^{1},\{0, \infty\}\right)$ and $\left(\mathbb{P}^{2}, T\right)$

- $\left[x_{0}, x_{1}\right]$
- $\left\{\begin{array}{c}0 \leftrightarrow x_{1}=0 \\ \infty \leftrightarrow x_{0}=0\end{array}\right.$
- $z=x_{1} / x_{0}$
- $\left[x_{0}, x_{1}, x_{2}\right]$

- $\left\{\begin{array}{l}x=x_{1} / x_{0} \\ y=x_{2} / x_{0}\end{array}\right.$
- Line at infinity is $x_{0}=0$, and then $\left[0, x_{1}, x_{2}\right]$ gives the direction in \mathbb{C}^{2} to go to that point on the line at infinity.
- 0 -cycles are $D=\sum_{i} n_{i} p_{i}, n_{i} \in \mathbb{Z}$ and

$$
p_{i} \in\left\{\begin{array}{l}
\mathbb{P}^{1} \backslash\{0, \infty\} \\
\mathbb{P}^{2} \backslash T
\end{array}\right.
$$

- set $D_{+}=\sum n_{i} p_{i}, n_{i}>0$ and $D_{-}=\sum n_{i} p_{i}, n_{i}<0$
- for $\left(\mathbb{P}^{1} ;\{0, \infty\}\right)$ we want to construct a rational function $w(z)$ such that
(i) $(w)=D$
(ii) $w=$ const. on $\{0, \infty\}$ (i.e., $w(0)=w(\infty)$)
- note that if w, w^{\prime} have $(w)=D,\left(w^{\prime}\right)=D^{\prime}$ and w, w^{\prime} are constant on $\{0, \infty\}$, then $\left(w w^{\prime}\right)=D+D^{\prime}$, $\left(w / w^{\prime}\right)=D-D^{\prime}$ and w / w^{\prime} is constant on $\{0, \infty\}$
- for $\left(\mathbb{P}^{2}, T\right)$ we want to construct a pair (C, w) where - C is an algebraic curve with $C^{*}=C \backslash C \cap T$ (C may not be irreducible)

- $p_{i} \in C^{*}$
- a rational function $w=\left.\frac{p(x, y)}{q(x, y)}\right|_{C}$ such that
(i) $(w)=D$
(ii) $w=$ const. on T

Writing

$$
D=D_{+}-D_{-}
$$

in both cases we have a rational family $D_{t}=w^{-1}(t)$ of 0 -cycles where $D_{0}=D_{+}, D_{\infty}=D_{-}$(this is called a rational equivalence, written $D \sim 0$). In the (\mathbb{P}^{2}, T) case as t varies over \mathbb{P}^{1} the D_{t} will lie on a curve C.

- Again if $D \sim 0, D^{\prime} \sim 0$, then $D \pm D^{\prime} \sim 0$.

The group of 0 -cycles D modulo rational equivalence is the Chow group $\mathrm{CH}_{0}\left(\mathbb{P}^{2}, T\right)$.
In this example the curves C we need will not be mysterious; they will be configurations of lines.

Interlude: Recall Abel's theorem:

$$
\sum_{i} \int_{\left(x_{0}, y_{0}\right)}^{\left(x_{i}(t), y_{i}(t)\right)} \omega=\mathrm{constant}
$$

where $\omega=r(x, y(x)) d x$ is a regular 1-form on the algebraic curve $f(x, y)=0$ (regular means that $\int \omega<\infty$), and

$$
D_{t} \stackrel{\text { defn }}{=} \sum_{i}\left(x_{i}(t), y_{i}(t)\right)=\{g(x, y, t) \cap f(x, y)\}
$$

are the intersection points of C with a family of algebraic curves $g(x, y, t)=0$ depending rationally on a parameter.

- Converse to Abel's theorem:

Given $D=\sum^{d} p_{i}, D^{\prime}=\sum^{d^{\prime}} p_{i}^{\prime}$ with $\operatorname{deg} D=\operatorname{deg} D^{\prime}$ and $\mathrm{AJ}\left(D-D^{\prime}\right)=0$ in $J(C)$, there exists a rationally parametrized family D_{t} with $D=D_{0}, D^{\prime}=D_{\infty}$.

In fact there exists a meromorphic function $w: C \rightarrow \mathbb{P}^{1}$ with $w^{-1}(0)=D, w^{-1}(\infty)=D^{\prime}$. Thus $\mathrm{CH}_{0}(C)=J(C)$.
In general as noted above the Chow group of an algebraic variety is generated by the group of 0-cycles $Z=\sum_{i} n_{i} p_{i}$ modulo the relation $Z \sim Z^{\prime}$ generated by moving Z to Z^{\prime} by a rational parameter.

Summarizing the story for algebraic curves we have

$$
0 \rightarrow J(\mathrm{C}) \rightarrow \mathrm{CH}_{0}(\mathrm{C}) \stackrel{\text { deg }}{\longrightarrow} H_{0}(\mathrm{C}, \mathbb{Z}) \rightarrow 0^{1}
$$

For algebraic surfaces there will be three Hodge-theoretic invariants corresponding to integrating 0 -forms, 1 -forms and 2-forms, and
the third one will be arithmetically defined

It is the relation between the integrals of algebraic functions and arithmetic that is a (the?) missing piece.

$$
{ }^{1} \operatorname{deg} D=\int_{D} 1
$$

Interlude:

- Suppose $f(x, y) \in \mathbb{Q}[x, y]$ has rational coefficients (or they could be in $k=$ finite extension of \mathbb{Q} such as $\mathbb{Q}(\sqrt{a})$ etc.)
- $\omega=r(x, y(x)) d x$ where $r(x, y) \in \mathbb{Q}[x, y]$
- $\left(x_{0}, y_{0}\right) \in C$ is a rational point

- $\left(x_{1}, y_{1}\right) \in C$ close to $\left(x_{0}, y_{0}\right)$ another rational point.

Theorem: (many people including Siegel). Assume $\int \omega$ is not an algebraic function of the upper limit. Then

$$
I\left(x_{1}, y_{1}\right)=\int_{\left(x_{0}, y_{0}\right)}^{\left(x_{1}, y_{1}\right)} \omega \text { is not an algebraic number. } .^{2}
$$

- Variant: Only finitely many relations

$$
\sum_{i} a_{i} l\left(x_{i}, y_{i}\right)=0, \quad a_{i} \in \mathbb{Q} .
$$

- Conjecture: Relations come from geometry.
- This gives a conjecturally deep geometric relation between periods and arithmetic.

[^0]Recall

$$
\mathbb{C} / \Lambda \xrightarrow{\left(p(u), p^{\prime}(u)\right.} C \subset \mathbb{P}^{2} .
$$

Theorem has the
Corollary: $p(u)$ algebraic $\Longrightarrow u$ transcendental. ${ }^{3}$
Example (continued)

$$
C=\text { cubic }
$$

${ }^{3}$ This is the tip of the iceberg of a deep story about the arithmetic properties of periods and the values of transcendental functions that are solutions of algebraic PE's defined $/ \overline{\mathbb{Q}}\left(\left(p^{\prime}\right)^{2}=p^{3}+a p+b\right.$ in this case - Picard-Fuchs equations in general).

Abel: $\sum_{i=1}^{3} \int^{p_{i}} \omega=0$.
Chow group of $\left(\mathbb{P}^{1} ;\{0, \infty\}\right)$

- for $w(z)=\prod\left(z-z_{i}\right)^{n_{i}}$ write $D=\sum n_{i} z_{i}$ and set $\operatorname{deg} D=\sum_{i} n_{i}$
- in the picture in the complex plane

$$
\begin{aligned}
0=\frac{1}{2 \pi i} \oint \frac{d w(z)}{w(z)} & =\sum_{i} \operatorname{Res}\left(\frac{d w}{w}\right) \\
& =\sum_{i} n_{i}
\end{aligned}
$$

- $\Longrightarrow \mathrm{AJ}_{0}(D)=\operatorname{deg} D=0$ (\# zeroes $=\#$ poles)
- for same figure now choose a single-valued branch of $\log z$ and set

$$
\psi=\log z \frac{d w(z)}{w(z)}
$$

- $0=\frac{1}{2 \pi i} \oint \psi=\sum n_{i} \log z_{i}$

$$
\Longrightarrow \mathrm{AJ}_{1}(D)=\prod_{i} z_{i}^{n_{i}}=1
$$

- the mixed Hodge structure for $H^{1}\left(\mathbb{P}^{1} ;\{0, \infty\}\right)$ is generated by $\omega=d z / z$, and then in general $\mathrm{AJ}_{1}(D)$ $=\sum n_{i} \int_{z_{0}}^{z_{i}} \omega \bmod 2 \pi i$; thus $\mathrm{AJ}_{1}(D)=0 \Longleftrightarrow \prod z_{i}^{n_{i}}=1$.

Thus both "deg" and "AJ" have Hodge-theoretic meaning. The above result is expressed by

$$
\begin{aligned}
& 1 \rightarrow \mathbb{C}^{*} \rightarrow \mathrm{CH}_{0}\left(\mathbb{P}^{1} ;\{0, \infty\}\right) \rightarrow \mathbb{Z} \rightarrow 0 \\
& \quad \| \\
& J\left(\left(\mathbb{P}^{1} ;\{0, \infty\}\right)\right)
\end{aligned}
$$

- the simplest 0 -cycles in $\operatorname{ker}(\operatorname{deg}) \cap \operatorname{ker}\left(\mathrm{AJ}_{1}\right)$ are the

$$
\begin{aligned}
D & =a+b-1-a b \\
& =(a-1)+(b-1)-(a b-1) \\
& =D_{a}+D_{b}-D_{a b},
\end{aligned}
$$

then

$$
w(z)=\frac{(z-a)(z-b)}{(z-1)(z-a b)}
$$

has $(w)=D$ as above.

Chow group for $\left(\mathbb{P}^{2}, T\right)$

- set $p_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*}$

- the particular type of curve C will enter the story later; for now we just consider a rational function $w(x, y)=\frac{p(x, y)}{q(x, y)}$ restricted to any C and with divisor $D=\sum n_{i} p_{i}$
- as usual the residue theorem on C for $d w / w$ gives

$$
\sum_{i} n_{i}=0
$$

- next the residue theorem for $\log x \frac{d w}{w}$ and $\log y \frac{d w}{w}$ gives 4

$$
\prod x_{i}^{n_{i}}=1, \quad \prod y_{i}^{n_{i}}=1
$$

- At this point the issue becomes rather subtle. Set
- $\operatorname{Div}_{0}\left(\mathbb{P}^{2}, T\right)=0$-cycles of degree 0
- $\operatorname{Div}_{0}\left(\mathbb{P}^{2}, T\right) \xrightarrow{\mathrm{AJ}_{1}} \mathbb{C}^{*} \times \mathbb{C}^{*}$
Ψ
U

$$
D \longrightarrow\left(\prod x_{i}^{n_{i}}, \prod y_{i}^{n_{i}}\right)
$$

- The D_{a} 's above are

$$
D_{a, b}=(a, b)-(a, 1)-(1, b)+(1,1)
$$

They generate a subgroup

$$
\operatorname{ker}\left(\mathrm{AJ}_{0}\right) \cap \operatorname{ker}\left(\mathrm{AJ}_{1}\right)
$$

of $\operatorname{Div}_{0}\left(\mathbb{P}^{2}, T\right)$, where we set $A J_{0}=$ deg.
${ }^{4}$ Below we will interpret this in terms of the differentials $d x / x$ and $d y / y$ that give the mixed Hodge structure on H^{1}.

- We consider the rational function

$$
\frac{\left(x-a_{1}\right)\left(x-a_{2}\right)}{(x-1)\left(x-a_{1} a_{2}\right)}
$$

on the curve $C=\{y=b\}$

This gives

$$
\begin{gathered}
D_{a_{1}, b}+D_{a_{2}, b} \sim D_{a_{1} a_{2}, b} \\
D_{a^{2}, b} \sim D_{a, b}+D_{a, b} \sim D_{a, b^{2}}
\end{gathered}
$$

Conclusion: The map

$$
\operatorname{Div}_{0}\left(\mathbb{P}^{2}, T\right) / \sim \rightarrow \mathbb{C}^{*} \otimes_{\mathbb{Z}} \mathbb{C}^{*}
$$

is well defined.

- It would have been simpler if the story had ended here. But essentially we have only used the lines through the vertices of the triangle T. Consider now

For

$$
w=\left.\prod\left(x-a_{i}\right)^{n_{i}}\right|_{x+y=1}
$$

where $\sum n_{i}=0, \prod a_{i}^{n_{i}}=1=\prod\left(1-a_{i}\right)^{n_{i}}$ we get

$$
\sum_{i} D_{a_{i}, 1-a_{i}} \sim 0
$$

This intertwines x, y in a subtle way.
Definition: $K_{2}(\mathbb{C})=\mathbb{C}^{*} \otimes_{\mathbb{Z}} \mathbb{C}^{*} /\{a \otimes(1-a)\}$ where $a \neq 0,1, \infty$ (i.e., $a \in \mathbb{C}^{*} \backslash\{1\}$).

The relations $a \otimes(1-a) \sim 1$ are the Steinberg relations.
Theorem: $\mathrm{AJ}_{2}: \mathrm{CH}\left(\mathbb{P}^{2}, T\right) \xrightarrow{\sim} K_{2}(\mathbb{C})$

- Conjecturally AJ_{2} can also be defined Hodge-theoretically (see below).
- The group $K_{2}(\mathbb{C})$ is a subtle arithmetic object. Setting $\{a, b\}=$ image of $a \otimes b$ in $K_{2}(\mathbb{C})$ one has
- $\{a, 1\}=1=\{1, b\}$
$(*) \bullet\{a, b\}=1$ if $a, b \in \overline{\mathbb{Q}}$.
To prove the first relation and illustrate why the second relation might hold, on $x=y$

$$
\begin{gathered}
(a b, a b)-(a, a)-(b, b)+(1,1) \sim 0 \\
\Longrightarrow D_{a, b}+D_{b, a} \sim 0^{5} \\
\Longrightarrow\{a, b\}=\{b, a\}^{-1} \\
=\{1 / b, a\}
\end{gathered}
$$

Then

$$
\begin{aligned}
\{a, 1\} & =\{a, 1-a\}\{a, 1 / 1-a\} \\
& =\{a, 1-a\}^{-1} \\
& =1
\end{aligned}
$$

For $\lambda^{n}=1$

$$
\begin{aligned}
& 1=\{a, 1\}=\{a, \lambda\}^{n} \\
\Longrightarrow & \{a, \lambda\} \text { is torsion. }
\end{aligned}
$$

This is a step towards showing (*).
Corollary: Given $x_{i}, y_{i} \in \overline{\mathbb{Q}}, n_{i} \in \mathbb{Z}$ such that $\sum_{i} n_{i}=0$, $\prod_{i} x_{i}^{n_{i}}=\prod_{i} y_{y_{i}}^{n_{i}}=1$, there exists a curve C, and on C a rational function w such that $(w)=\sum n_{i}\left(x_{i}, y_{i}\right)$.

This is not the case without the assumption $x_{i}, y_{i} \in \overline{\mathbb{Q}}$ - we now discuss a Hodge-theoretic construction that proves that for general $D=\sum_{i} n_{i}\left(x_{i}, y_{i}\right)$ where the x_{i}, y_{i} are not algebraic, we do not have $D \sim 0$.

Hodge-theoretic interpretation in terms of periods

- For

$$
D=\sum_{i} n_{i} p_{i}=\sum_{i} n_{i}\left(x_{i}, y_{i}\right)
$$

we first have that the two classical Hodge-theoretic assumptions

- $\mathrm{AJ}_{0}(D)=\operatorname{deg} D=\int_{D} 1=\sum_{i} n_{i}=0$ where $1 \in H^{0}\left(\Omega_{X^{*}}^{0}\right)$
- $\mathrm{AJ}_{1}(D)=\left(\int_{\gamma} \frac{d x}{x}, \int_{\gamma} \frac{d y}{y}\right) \equiv 0\left\{\begin{array}{c}\bmod \\ \text { periods }\end{array}\right\}$ where

$$
\frac{d x}{x}, \frac{d y}{y} \in H^{0}\left(\Omega_{X^{*}}^{1}\right) \text { and } \partial \gamma=D
$$

are necessary to have $D \sim 0$, but by the theorem above they are not sufficient unless the $x_{i}, y_{i} \in \overline{\mathbb{Q}}$.

- The remaining part of the Hodge theory of $\left(\mathbb{P}^{2}, T\right)$ is given by

$$
\omega=\frac{d x}{x} \wedge \frac{d y}{y} \in H^{0}\left(\Omega_{X^{*}}^{2}\right)
$$

This raises the question: Is there an "Abel-Jacobi" map involving ω that gives the remaining necessary and sufficient conditions to have $D \sim 0$?

The answer to this is only conjecturally known. The issue is to construct something that is both geometric and arithmetic (more precisely, to construct something geometric / \mathbb{C} and arithmetic $/ \mathbb{Q}$).
Spreads: Given $D=\sum n_{i}\left(x_{i}, y_{i}\right)$ as above the x_{i}, y_{i} generate a subfield $k \subset \mathbb{C}$. This field has finite transcendence degree; thus

$$
k \cong \mathbb{Q}[\underbrace{\alpha_{1}, \ldots, \alpha_{n}}_{\begin{array}{c}
\text { independent } \\
\text { transcendentals }
\end{array}} ; \underbrace{\beta_{1}, \ldots, \beta_{\ell}}_{\begin{array}{c}
\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{n}\right]
\end{array}}]
$$

where $\operatorname{Tr} \operatorname{deg}(k / \mathbb{Q})=n$.

Using the equations that define the β_{i} over $\alpha_{1}, \ldots, \alpha_{n}$ there exists an n-dimensional smooth projective algebraic variety S, defined $/ \mathbb{Q}$ up to birational equivalence, with function field

$$
\mathbb{Q}(S) \cong k
$$

- We may think of $X^{*}=\mathbb{P}^{2} \backslash T$ and D as algebro-geometric objects defined respectively over \mathbb{Q} and over the extension field k of \mathbb{Q} - then S may be thought of as geometric realizations of the different embeddings $k \hookrightarrow \mathbb{C}$.
- For each $s \in S$ we have $x_{i}(s), y_{i}(s)$ and

$$
D_{s}=\sum_{i} n_{i}\left(x_{i}(s), y_{i}(s)\right)
$$

satisfies

- $\operatorname{deg} D_{s}=0$
- $\prod_{i} x_{i}(s)^{n_{i}}=\prod y_{i}(s)^{n_{i}}=1$.

The second equation above is because any algebraic relation $/ \mathbb{Q}$ satisfied by the original x_{i}, y_{i} is still satisfied for the $x_{i}(s), y_{i}(s)$.
We want to define

$$
\mathrm{AJ}_{2}(D)
$$

using $\omega=\frac{d x}{x} \wedge \frac{d y}{y}$. For this we need something real 2-dimensional to integrate ω over. For $\gamma \in H_{1}(S, \mathbb{Z})$ each point $s \in \gamma$ gives

- $D_{s}=\sum n_{i}\left(x_{i}(s), y_{i}(s)\right)=\Sigma$
- 1-chain λ_{s} with $\partial \lambda_{s}=D_{s}$.

The locus

$$
\Gamma=\bigcup_{s \in \gamma} \lambda_{s}
$$

is then of 2 real dimensions, and we set

$$
\mathrm{AJ}_{2}(D)=\int_{\Gamma} \omega \quad\left\{\begin{array}{c}
\text { modulo } \\
\text { ambiguities }
\end{array}\right\}
$$

Using the assumption $\mathrm{AJ}_{1}\left(D_{s}\right)=0$ the ambiguities can be made sense of.
One should think of $\mathrm{AJ}_{2}(D)$ as involving one integration in a geometric direction and one integration in an arithmetic direction. This is the new, additional ingredient that appears in Hodge theory when studying algebraic cycles of codimension $\geqq 2$.

What so far as I know has not been done is to show that

$$
D \sim 0 \Longleftrightarrow \operatorname{AJ}_{i}(D)=0 \text { for } i=0,1,2
$$

The implication \Longrightarrow is $\mathrm{OK} ;{ }^{6}$ missing is an interpretation

$$
\mathrm{AJ}_{2}(D) \in K_{2}(\mathbb{C})
$$

and an argument that

$$
\operatorname{AJ}_{2}(D)=0 \Longrightarrow D \sim 0 \quad(\bmod \text { torsion })
$$

This would be the full converse to Abel's theorem for this example.
${ }^{6}$ That is, $D \sim 0 \Longrightarrow \mathrm{AJ}_{2}(D) \equiv 0 \bmod \{$ periods + ambiguities $\}$.

Conclusion: The HC is formulated for smooth complex algebraic varieties. A proof requires that we construct algebraic subvarieties starting from a homology class that satisfies Hodge-theoretic conditions. However there are Hodge-theoretic invariants of an algebraic cycle that arise arithmetically, and a deeper understanding of these may be necessary for HC . Basically we have to relate the arithmetic and geometric properties of periods.

[^0]: ${ }^{2}$ We may view $I\left(x_{1}, y_{1}\right)$ as a period for the relative curve $\left(C,\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right\}\right)$.

