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, Preface
The purpose of these notes would have been better explained if we had
chosen another title, namely, '"Jacquet - Langlands' theory made easy";
it occurred to us at the last moment that a more pedestrian choice would
be more prudent, since after all the author is in a rather bad position
to judge...

These notes cover a very large part of §§2,3,5, 6, 9,10 and 11 of

Jacquet-Langlands' work, Automorphic Forms on GL(2) , VII + 548 pp,

1970, Springer (Lecture Notes in Mathematics, No. 114). Since the volume
of our notes is about one fifth of 548 pp., it is not to be ex;;ected that we
have been able here to explain everything. In fact we have entirely omitted
the explicit construction of discrete series from quadratic extensions or
quaéernion algebra (§4 of J. L.), the connection with zeta functions of
matrix algebras (§13), and the most interesting, or at any rate newest,
part of their work, namely, the relations between the ' spectra’ of a
quaternion algebra and a 2 X 2 matrix algebra. The reader who is
sufficiently interested by the present notes will of course have to go back
to Jacquet and Langlands anyway.

We have given full proofs in §l and nearly complete ones in §3,
but not in §2. For the bibliography, we refer the reader to Jacquet and
Langlands, where references will be found.

These notes have been written after lectures on the same subject

at The Institute for Advanced Study, where we found from September, 1969,

M- 2049
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to April, 1970, a very welcome atmosphere of quiet intellectual work. It is
for us a great pleasure to express here our deep gratitude not only for the
conveniénces we were provided with, but also for the fact that we were spared
the duty to thank the U. S. Air Force for its main contribution to Culture

and Civilization, namely, the highly palatable Napalm-and-Mathematics
cocktail that is the mark of the times in the most advanced country of the

world.

Princeton, March, 1970 \
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§1. Representations of the GLZ group of a 1} -adic field

In this section we denote by F a non-archimedean locally compact
*

field, by GF and EF = 'O'F the ring of integers and group of units of F,

and we choose once and for all a non-trivial character 7_ of the additive
group, which will be used to define Fourier transforms. The prime ideal of
F will be denoted by 1{, and a gdenera.tor of it by & . The largest ideal (;)n
which L is trivial will be tg, for a certa:in integer d (of course 15; is
the different of F if ‘TF is chosen as in Weil's Basic Number Theory, which
we may assume). There is an absolute value on F defined for instance by

the relation d(ax) = Ia|dx, where dx is an invariant measure on the additive
group of F. We shall assume dx chosen in such a way that Fourier inversion

formula can be written as

y) = [E607 Lley)dx => £(x) = [H(y)7 (xy)dy

for nice functions (e.g. for f ¢ 18 (F), the space of locally constant functions
* *
with _compact support on F). The invariant measure d x of F  will be

chosen in such a way that

* -1
so that d x = c|x| dx with a constant ¢ whose value is unimportant for the
time being.

We shall put

GF = GL(2, F), MF = GL(2, OF)

so that MF is a maximal compact (and open) subgroup of GF' The set of

locally constant functions with compact support on G_ will be denoted by

F

}JF; it is an algebra (the Hecke algebra of GF) under convolution product

frg(x) = [ flxy Dgly)d v
GF

* *
where d y denotes an invariant measure on GF such that [ 4 y = 1,

Mp



1.2

1. Admissible representations

Let 7 be a.linear representation of GF on a complex vector space
1/. For every (finite dimensional) irreducible continuous representation A
of the compact group MF’ let /(1) be the set of all £ e 2/ which trans-
form under W(MF) according to a finite multiple of 2% . The representation

7 will be called admissible if

(1) Y= YY) and dim V() <+ oo.

Equivalent conditions: every £ e '[f is fixed under some open subgroup M
of GF’ and the set of all £ ¢ I/ which are fixed under a given open subgroup
M is finite-dimensional. These conditions arise in a natural way from the
study of automorphic functions as well as from general representation theory.
For such a representation we can define, for every fe M P @ linear operator
m(f) on U by
(2) r©)E = [HT)E A x

GF
(the "integral'' of course reduces to a finite sum--look at the open stabilizer
of § in GF). Hence 7 extends to a representation of the group algebra 'NF’

with two properties which characterize, as can easily be proved, the repre-

sentations of j‘q‘F which can be obtained in that way: (i) for every e
there is an f ¢ “HF such that 7#(f)€ = §; (ii) every 7(f) maps }/F on a
finite -dimensional subspace of Y/ . Such representations of HF will still be
called admissible.

Let 7 be an admissible representation of GF on /. We may con-
sider the representation gt+—> tﬁ(g_l) on the dual space V* = ﬂ'[/('[?ﬂ)* .
The subspace of those §* € 7/* which are invariant under some open sub-

group of GF is evidently
v *
(3) V=6 V() ;

: -1 v s
we denote by %(g) the restriction of tw(g) to V. We thus get an admissible
v

representation of GF on V , which we call the contragredient of .
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If a subspace 'l/l of %/ is invariant under W(GF), i.e. under 7r(.7~/F),
R * \
then the subspace ’Vl of all £ e 1/ which are orthogonal to D\/l is invariant

4 . L4
under 7, and we have (’l/l) = V.. Thus we get a one-to-one correspondence

1
v
between invariant subspaces of U/ and of V. A representation with no non

trivial invariant subspaces will be called irreducible. The purpose of this section

is to classify these representations, and to associate to each irreducible admissible

representation a ''local zeta function'' which will more or less characterize it.
Note finally that the Schur lemma is valid for irreducible admissible
representations: if an operator T e f (V) commutes with 7, then it operates

in every ’[/(’[}‘), hence must have eigenvectors, so that T is a scalar.

2. The Kirillov model: preliminary construction

Our 'first goal (number 2 to 4) will be to show that every admissible irre-
ducible representation of GF .can be realized in a very concrete way on a space
of functions on F , the multiplicative group of non zero elements of F. For
finite dimensional representations the problem is not interesting--a finite
dimensional irreducible admissible representation’ 7w of GF is one dimensional,
and given by w(g) = x(det g) for some character* x of F*. In fact, the finite-
ness of dim %/ implies that the kernel of 7 is an open hence non trivial in-
variant subgroup of GF; but any non trivial invariant subgroup of GL(2, F)
contains SL(2, F); hence 7 is trivial on SL(2, F), the space of 7 1is one
dimensional by Schur's lemma, and we get the result by taking inte account the
fact that every g e GL(2, F) is the product of something in SL(2, F) and the
degg i)). We shall thus consider infinite-dimensional representations

only. For such representations the following theorem will be proved:

matrix (

Theorem 1. Let 7 be an irreducible admissible representation of GF on an

infinite dimensional vector space 7/. Then there exists one and only one space
*
9r' of complex valued functions on F , and one and only one representation

* h : *
By a character we mean a continuous homomorphism in © . Characters
such that |X(x)| = 1 will be called unitary.

o et et e e e



m' of GF on 7', satisfying the following two conditions: 7' is equivalent

to 7, and we have

a

> D)) = T (bx)E (ax) (a, x¢ F , beF)

(4) 7'

for every §' ¢ U'', where ’TF is a given non trivial additive character of F.

Furthermore each function in ?/' is locally constant, and vanishes outside

some compact subset of F; each locally constant function which vanishes out-

* *
side some compact subset of- F  belongs to /', and the space Y(F ) of

such functions has finite codimension in /',

Suppose for a moment we have constructed V' and 7', and let
£ +—> £' denote an isomorphism of VY on VU compatible with 7 and 7';
hence

a

(5) n= o DE = ni(x) = 7 (bx)E (ax).

Consider the linear form L on \/ given by L(£§) = £'(1); we evidently have
1 b
(6) L(n(, 1)) = T(b)L(§) forall §e V and beF,

and furthermore

(7) £1(x) = Lin(} f)g) forall £¢l and xe¢ F.

-~

From (6) it follows that
—— 1
(8) [ o Te0-L(

¢

for each n; if we consider in 1/ the subspace ‘1/0 of all vectors £ such that

X

HE)ax = L(E)] _ dx
)

n

_— 1 x
(9 ) n’rF(x)W(0 1)§dx— 0 for all large n,

then it is clear that (C Ker(L). The main step in the proof will be to show
o p

that
(10) dim(V/ ‘l/o) =1.

If we can prove (10), and then denote by I a non zero linear form vanishing
on °l/o, then we shall get the space Y ' by associating to every £ ¢ Y  the

function (7), and the existence and uniqueness of V' and 7 will easily follow
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as we shall see later.

For the time being we start with the subspace 7/0 defined by condition
(9) and denote by X the factor space V/ 1/0 and by L the canonical map

*
from V to X. For every £ e VY we consider the X-valued function (7) on F

. a2 b, . . Vrer .
Lemma 1. The relation n = 7T(O 1).‘; implies n'(t) = TF(bt)g (at) .

t O
We have to show that ‘I/O contains 7( 1)7] - '7'11‘,(bt)7r(a(’)'C ?)g i.e. that

0

1 x ta tb ta O
(11) If%-nTF(X)W(O 1)[7T(0 1)-7F(bt)7r(0 1)]€'dX=0

for large n, which is clear (take n large enough so that tb e %—n, and replace

the integration variable x by x - bt in the first term of the difference).

Lemma 2. Each function £' is locally constant, and vanishes outside a com-

pact subset of F.

* 0
For every ae¢ F  sufficiently close to 1 we have 71'(3 1)6, = £ and

hence £'(xa) = £'(x) for all x, from which the first assertion follows. Simi-
larly there is in F a non zero ideal ?7 such that w(t ?)g = ¢ forall be 7¢,

hence §'(x) = TF(bx)g‘(x), which of course implies the second property.

Lemma 3. The map §+—> £' is injective.

0
Assume §£' = 0 i.e. w(g l)g € ’Vo for all t# 0. We see at once
that for every t # 0 we have
(12) Gor(t X)e.dx = 0 for all 1
. f—nTF x)r(y  )6-dx = or all large n.

1
The first step is to prove that the function @(x) = 7r(0 f)g is constant. In

0
fact, there is a non zero ideal 17 C '% such that 'rr(lg l)g = ¢ for all
uel+ gr. Defining

(13) @ o = I%_HTF(tX)cf(X)dx
-1

we then see at once that q\)n(tu) = ﬂ(uo f)cpn(t) for all n, all t, and all u

in 1+ %7. Since any compact subset K of F is a finite union of cosets
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*
mod 14 97, it follows that (Pn(t) = 0 for all te K provided n is large
enough, because we assume (12). Butlet Y be a Schwartz-Bruhat function

on ¥, and suppose’its Fourier transform

(14) P(t) = [ T (B (x)dx
F
E 3
vanishes at t = 0, hence outside of a compact subset K of F . Since W

vanishes outside of ?—n for large n, we get, by making use of Fourier

inversion formula,

(15) (x)@(x)dx = (x)dx [ ((t)7_(tx)dt = [ o (t)P(t)dt = O
J;Fq} CP {]L—n? Kq} F Kq)n

for large n. Hence the function QD(X), which is translation invariant under
an open subgroup of F, is orthogonal to all Y ¢ §(F) which are orthogonal
to the function 1. It follows that cp(x) is constant, i.e. that

1

(16) (o

’i)g = ¢ forall xe F.

The second step in the proof of lemma 3 is to show that (16) implies

£ = 0. Let H be the subgroup of all ge G_ such that w(g)§ = ¢. It is open

F
1 =* .
and contains the subgroup U_, of all matrices of the form ( ). Since H

0 1
is open, it is not contained inFthe subgroup c¢ = 0 of G hence H intersects
the '"big cell" ¢ # 0, and since H contains UF, it follows that there is in
H a matrix with a = d =, 0 (Bruhat decomposition). But then H must contain
the subgroup generated by UF and such a matrix, namely SL(Z2, F). But the
set of all £ ¢ 9/ that are fixed under SL(2, F) is an invariant subspace of v
on which GL(2, F) operates as a commutative group. There can be no such
€40 if dim 77 >1, q.e.d.

Lemma 3 makes it possible to identify each vector £ ¢ 7 with the
corresponding function £', and from now on we shall write § and £(x) in-
stead of £' and £'(x), so that the elements of U/ will be certain X-valued
functions on F* on which GF operates through 7 in such a way that
”(a ;))‘g',(x) = TF(bX)g(ax). The canonical map L : Y —> X can now be

0
identified with £ +—> £(1). ’



*
Lemma 4. The space th(F ) of X-valued locally constant functions with

* - 1 b *
compact support on F  is contained in %/. Furthermore, 7r(0 1)& -£e DOX(F )

Ie
%,‘ for all be F and £e¢ 7.
!

¥

The last assertion is obvious since TF(bx) -1 vanishes in a neighborhood
of zero for every b e F. To show that joX(F*) = \‘f(F*) g X 1is contained in
' 2", it will be enough to prove that, for vectors c € X which generate X, all
functions x> (P(x)c, with @ ¢ Y (F* ), belong to 7. But the subspace JDC(F*)
of those Cp € :ja(F*)( s),uch that 9 contains the function Cp(x)c is of course stable
*

under the operators

n {x +—> Cp(x)} — {x+—> TF(bx)(P(ax)} (a € F* , be F).

e —————
ey T S

*
Hence it will be enough to prove that (i) the space j’ (F ) is irreducible under

*

P the above operators, and that (ii) one has tfc(F ) # 0 for enough vectors c e X,
%

To prove (i) let H be a subspace of f(F } invariant under the operators

. *
! (17). Since every £ ¢ j’ (F ) is invariant under a subgroup of finite index of the

group EF of units of F, it is clear that B} = ZM(x) where we denote, for
every character x of EF’ by A (x) the set of all § e MH such that £(xu) =
E(x)x (u). If we define

' x(x) if x e EF
(19) . X x(x) =

0 1fx§=’EF,

then bo(F*) is ‘generated by the functions x ,(ax) for all x and all a e F*.
To prove that H = 97(1?*) if H #0, itwill be enough to prove that x, €Jy
for every x.

But there is a X' # x such that X (x') # 0 [otherwise we would have
A (x) =X , which is not compatible with the behaviour of the additive characters
of F]. Choose sucha x'# X anda non zero §'ce 2 (x"). Clearly 24 (x)

contains, for all a #Z 0 and b, the function

*
( )The use of this notation springs from an attempt by the author to bridge the
_generation gap. We hope it will have a good reception.

s 2
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_ % -
(20) E(x) = [ 7o(bxu)f'(axu)x (u)d u = y(bx, X 'x)E'(ax)
E
F
with a Gaussian sum defined by
*
(21) y(x, A) = [ 7 (xu)Mu)d u
E F
F
for every character A of EF' But it is well known that if A is non trivial
then
(22) Yix, M) £ 02V, (x)= -d-fQ})

s

where f(\) is the exponent of "% in the conductor of \. Since x # x' in (20)
we can thus choose b # 0 in such a way that y(bx, x'x) # 0 <==> x‘eE We
can also choose a. such that £'(ax) # 0 if xe EF' Then (20) is evidently pro-
portional to x,; hence 9=/ = :jp (F*) and the irreducibility of bﬁ (F*) under
the operators (17).

The proof of property (11) is similar. To prove that \)OC(F*) £ 0 for
enough vectors c ¢ X we may of course limit ourselves to vectors ¢ for which
there is in 9/ a function &' such that £'(l) = ¢, and satisfying a relation
g'(xu) = £'(x)x'(u). Consider then such a §' and choose any character X £ X'
clearly U/ still contains the function v(bx, x'i)&'(ax) given by (20). If we
choose a = 1 and a suitable “b, we thus get in Y a non zero function propor-

*
tional to x ,(x)c, from w‘hich it follows that fC(F ) # 0.

3, The commutativity lemma

For every character ¥ of EF’ every te€ F and every a e X define

X(t-lx)a if x e tEF

(23) X, (%) =

0 if x,!tEF

* *
These functions generate the vector space UOX(F ) and every £ € Vi X(F )

can be written as a series (in fact, a finite sum)

(24) E= T Z X¢. a where a = g(xu);(_(_u_)du

/
tEF X EF
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if we assume the total mass of the Haar measure of E is '1l. Consider now

F
*
the action on .:fX(F )C V" of the operator 7(w), where
0 1
(25) w= (] o)
*

for every te€ F and every character yx of EF’ we define in X a linear
operator
(26) Jw(t’ x): ar—> r(w)y ¢, a.(l) = L[ﬂ(w)xt’ a] .

. -1 .
If we put X, = Xl, a then we evidently have Xt,a(X) = Xa(t x), hence

-1
(27) It x)a = Lirtnt’y )= LirC t?l)ﬁ(W)X ]
= o (COLLE Datwix 1= v (¢ mtwx (1),

ate

where W is the character of F  defined by
(28) | w (H)1 = 7(

(27) and lemma 2 show that each function J”(t, x }a 1is locally constant

and vanishes outside a compact subset of F; it is furthermore clear that

(29) T xu, x) = T Gk x)x ()
for every character x of EF' By making use of (24) we get
r(w)g(l) = = Z T (t, x)a= BT _(t %) [ E(tu)x(u)du
tEFX EF
hence
(30) r(WEW) = T [, (v, x)EE y
x F

*
for every £ ¢ DDX(F ) - a substitute for the more pleasant formula

(31) W)t = [T (EEy

which we cannot write at this point. If we now apply (30) to the function ﬂ(}(; 1)§

instead of §, we get at once

(32) mWIEE) = w (0B [T (xy, X)EWA Y
x F
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each integral converges in a trivial way, and the series is actually a finite

sum.

Lemma 5. The family of operators Jw(x, x) is commutative,

To prove this lemma we define uf(t) = (% I) for every te F and
h(t) = (1(:) 139 for every te F* and start from the relation
(33) Wu(t)w-l = u(-1/t)wh(t)u(-1/t), te B
We shall compute the function
(34) n, = ﬂ(wu(t)whl)g = w[u(-1/ tywh(t)u(-1/t)]¢

*
for a given £ e JDX(F ) by making use of lemma 1 and relation (32). Using

the right hand side of (33) we find at once

(35) ) = T/ e (0B 7, X)o_(1/8)7 _(~ty)&(t“y)d y
o/ 2 J3 Gy /25 0T

-1 *
(-t (x+y))E(y)d v .

F

To compute the same function from the left hand side of (33) we write

r(w)[r(a(t)r(w E - n(w E] + &
o_(-Dr(w)[r(a()r(w)E - r(w)E] + &

n, = w(wa(tw e
(36)

1L

~

and observe that #[u(t)]r(w)§ - 7(w)€ belongs to ‘;fX(F*) although w(w)§

may not. Using (32) twice we thus get

ES
£ + 0, () 23, (520 3 N plie) A (o002 X BT (o, X"Em y

11t(x)

t

E(x) + w”(—X)anxuffJ”(xz, X')Jﬂ(zy, x”)ﬁ(y)[TF(tz)-l]wﬁ(z)d*yd*z .

*

If we choose any two tl, t ¢ F and compute n, - M

> we thus get

)
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_ - - *
y 0 (-t) lffJ”(xy/t‘lz, X7t Gty eI y -
-1 : -1 R
(38) - w (-t) ffJﬂ(XY tyr XITL(-t (x+y))E(y)d y =
=z [[I (xz x').Jw(zy, X EWNTL(t 2) - TF(tZZ)]wﬂ(z)d*yd*z .
X"X”

!

be 2 -
Since the kernels Jﬂ(xy/t s X)'TF(t 1(x+y)) in the left hand side are symmetric
functions of x and y, the same must be true in the right hand side, i.e. we

must have

= fJﬂ(xz, X ')Jw(zy, X ")[TF(tlz) - TF(tZZ)]wn(z)d*z =

(39) X I,X” .
= XlZ)X”f J”(zy, x")Jﬂ_(xz, X')[TF(tlz) - 'rF(tzz)]wTr(z)d zZ .

R N P

Looking at the way both sides transform under x+—> xu or ‘y —> yu for

. u € EF’ we see that for any two characters x' and x'" of EF the function

(40) P(z) = w_(2)[J_(xz, x')_(yz, x") - J (yz, x")J_(xz, x']

*
(where x and y are arbitrary elements of F ) must satisfy condition

*
F

%
since GP(z)a., for every a e X, is a locally constant function on ¥  which

(41) f(?(z)['TF(tlZ) - TF(tZz)]d*z = 0 for all ty t, €

vanishes outside a compact subset of F, it follows at once from (41) that

T W ol R

® = 0, which concludes the proof of the lemma.

Lemma 6. The space X is one-dimensional.

We first prove that

(42) YV = 7/,; + 7(w)V, where ?/* = (F*).

X
In fact U is spanned by the subspaces ﬂ(g)”y* since it is irreducible; but
')/* is stable under the operators ﬂ(; :); Bruhat's decomposition thus
shows that 9 is sum of 7/* and the subspaces w(u(t)w)?/, . Since we know

that #(u(t)w)§ - 7(w)§ belongs to V* for every te¢ F and every £¢ 7/,

our assertion follows.



We now prove that if a linear operator A on X commutes with the

Jﬁ(x, x) then A is a s:alar. To see that we denote by TA the operator
(defined on functions F —> X) given by n(x) = A(&(x)) if 1 = TAg; we
shall prove first of all that 7?7 is invariant under TA and that TA induces
in 9 an operator which commutes with 7 (hence a scalar, from which it
will evidently follow that A itself is a scalar). In fact any £ ¢ ]/ can be

written, as we have just seen, as § = §' + 7(w)§" with two functions £' and

*
g'" in JDX(F ). We then have

H

T, m(WER) = Alr(w)g'(x) + v_(-1)§"(x)]

(43)

1

0 (R)A[Z [T_(xy, )EWIA y] + 0 (-DAE ),

and since A commutes with the Jﬁ(x, X ) we see (use the fact that the series

and integrals above are actually finite sums) that

(44) T, m(WEE) = 0 (9Z [T Gy, XAE Ny + o (-1AE )

* *
since the function xt+—> A(§(x)) is still in ,fX(F ) for every £ ¢ CfX(F )
: : - 1 - "n - :
this can be written as TAW(W)E, W(W)TAE + wﬂ( l)TAS, W(W)TAE,, which

concludes the second part of the proof.
Finally, the above argument shows that in particular all operators

Jw(x, X ) are scalars, hence.that every linear operator A on X commutes

with the JW_(X, X ), hence is a scalar. This implies dim(X) = 1, q.e.d.

+

4. The finiteness property

Since X is one dimensional we may identify it (in a non canonical way)
* *
with C, and replace :fX(F ) by F(F ). We thus get an identification of %~
*
with a space of complex~valued functions on F (in fact locally constant and

zero outside compact subsets of F) on which 7 operates in such a way that ’

a b
o e = T

*
prove that dim(’l//f (FF )) is finite. Because of (42) it would of course be

*
7 (bx)§(ax); and we know that f(F )C V. We are now going to

enough to prove that

(44) Am[V, /7w V, n V,]1<+ o
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%
if we denote by 7/*()() = f(F » X)» for every character yx of EF’ the subspace
of all £ e/ x such that &(xu) = £(x)x(u), then in order to prove (44) it will clearly

be enough to prove the following two lemmas:

Lemma 7. The space 7(w) 7/, NY,(x) has finite codimension in ’1/*()() for
|

every character yx of EF'

Lemma 8. The space 7(w) V* contains ’7/*()() for almost all characters x of

E

F

To prove lemma 7 we observe that it is actually enough to show that the
subspace N = 7(w) °[/* nv*(x) of 1_/*()() = f(F*, X ) is non zero. In fact every
linear form X\ on bo(F*, X ) is given by a formula
(45) ME) = ZA_E(@ )

neZ

where & is a generator of 401; s and where the )\n are arbitrary complex co-~
efficients. Since N is invariant under (multiplicative) translations, it is clear

that if A # O then all N\ orthogonal to N satisfy a non trivial recursive

relation
P

(46) Za. X . =0
1 in-i

But the space of solutions A of (46) is finite~dimensional, hence the lemma.

Before we start the proof of the fact that

(W)Y, nVe(x) # 0

we observe that
-1 -1
(47) rlu(tyw “J€ - w(w E - w[h(thu(-1/1)]E ¢ U, nw(w) V,
*
for all te F and £ e ’l/* . First of all it is clear that ’l/* contains
- -1
mlu(t)w 1]§ - m(w )& and 7[h(t)u(-1/t)]€, hence it remains to prove that the left
hand side belongs to w(w) U, = w(w-l)'l/*, i.e. that

(48) ﬂ[wu(t)w-l] - g - m[wh(t)u(-1/t)]€ ¢ °(/* ;

\
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but this follows from (33) since we can then write the above expression as
rlu(-1/t)Jn - n - £, with n = 7[wh(t)u(-1/ t)]€. Hence (47).
%
The value of (47) at xe¢ F is

(49) 0 (DT (8)Lr(w)E ) - w_(t )7 _(-tx)6 (%) 5

F
since w(w) ’V* N "[/* is invariant under the operators h(t), we conclude that for

%
all te F , £« 1/* and characters x of EF the space 7r(w)°l/* n V* (x) con-

tains the function

(50) X —> wTr(-l)f['rF(txu)—l]ﬂ(w)g(xu)o )_((u)d* u - wﬂ(t‘l)f TF(-txu)g(tzxu)s('(u)d* U

Choosing

x'(x) if xe EF
(51) E(x) = XL (x) = {
0 if x¢ EF
where x' is another character of EF’ we have
2 = !
(52) T(w)§(x) wﬂ(X)JW(X, x')

and thus see that w(w) °l/>'< N V*(x) contains the function

x>0 (-x)T_(x, x")f [TF(txu)-lij(u)W(u)d*u -
(53) - -
-0 (X3 (%0 7 (-t ' () d

i.e. the function

5o w (=x)TGe x vt wxx') - 8w _xx")] -

-0 (67 (Pxv(-tx, xx0)

with Gaussian sums. y given by (20), and the obvious meaning for the Dirac
symbol 8. We shall show that (if V* P4 °l/) it is always possible to choose
X' such that (54) does not identically vanish; this will prove lemma 7, as we

have seen. Hence the lemma will be proved if we can choose X, X'and t in

such a way that

(55) TG X E 0, yltx, wxx') - Sluxx ") A 0, 2v(t) + v(x) £ 0 .
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Now for every character x' of EF there is at least one integer n(x') such

that

1

(56) v(x) = n(x') => y(tx, wxx') - swxx') # 0

[and in fact exactly one if X' /A w)Z] The problem thus is to choose x, x'andt

such that
(57) 2v(t) + v(x) # 0, wv(t) + v(x) = n(x"'), Jﬂ(x, x')#£ 0.

But if we have v(t) + v(x) = h(x') and 2v(t) + v(x) = 0 then v(x) = 2n(x').

Hence the problem is to choose x' and x such that
(58) J (x, x") £ 0 and v(x)# 2n(x') .

If it is not possible then all functions Jn(x, X ') belong to bD(F*), and we evi-
dently have then =(w) V*C 7/* i.e. 1/* = v, which contradicts our assump-
tion [or provés the lemmal].

We still have to prove lemma 8. This is clear if #(w) ‘[/* N a{/*(x)

contains a function whose support reduces to one single class mod E To prove

P
that such is the case for almost every ¥, we consider the function (54) with

x' = id, and assume the conductors of wﬂ)_( and )-( are the same (which is true
as soon as the conductor of ¥ is large enough, hence for almost all x). Let

4} £ be this conductor. In the expression (54), which now reduces to
. - -1, 2 -

(59) 0 (-x)3_(x, id)y (b, 0 ) - 0 (¢ Yid, (%) («tx, X),

the second term is 0 except if

(60) 2v(ty + v(x) = 0, v(t)+v(x)=-d -1,

i, e. exéept if v(t) = d+£f and v(x) = -2(d+f). But J(x, id) = 0 if v(x) is
large negative. If f is large enough and if t is such that v(t) = d+f, we
thus see that (59) is non zero if and only if v(x) = -2(d+f); this concludes the
proof since there are finitely many x such that f< fo.

To conclude the proof of theorem 1 we still have to prove the uniqueness

N
of the space V' and of the representation 7' on V. If we use again
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.
temporarily the notation of theorem 1 then it is clear that all we need to prove
is that there is, up to a constant factor, at most one mapping £ +—> £' from V
*
to a space of complex valued functions on F  such that

a

(61) = 7(,

DE=> () = 7 (bx)!(ax) .

But consider, for such a mapping, the linear form L(£) = £'(1) on 2/; we

clearly have

(62) £x) = L0y )E],

as well as

63 Lirt Pyer= 1oL
(63) [7(, L)€l = T~ (PIL(E) .

By (62) the map £+ ¢&' is uniquely determined by L. Hence it is enough to
prove there is on 1/ (up to a constant factor) at most one linear form L
satisfying (63). But as we have seen after the statement of theorem 1 such a
linear form vanishes on the subspace vo' Since dim(?f/?/o) = 1, the result

follows.

5. Whittaker functions

Let 7 be an irreducible admissible representation of GF' If the space
%

U of 7 is made up of complex valued functions on F  on which 7 operates

in such a way that W(S ?)é(x) = TF(bx)g(ax), then 7 will be called a Kirillov

representation of GF (or the Kirillov model of the corresponding class of

irreducible representations), and the space |/ of 7 will be denoted by K ().
Each class of irreducible admissible representations of GF contains exactly
one Kirillov representation.

Let 7 be a Kirillov representation of G_.. For every £ e X (m) con-

F
sider the function

(64) Wg(g) = m(g)&(l) = Ln(g)€]

on GF; we get a bijection £ +—> Wg of X (r) on a space W (7) of functions

on GF satisfying



(65) Wi, el = TLxIW(E)

and locally constant; clearly 7 acts on /(7) through right translations. The

elements of U/(7) will be called the Whittaker functions of 7, and 1\ (7) will

be the Whittaker space of 7.

If 7# is an irreducible admissible representation on an"ahstract" vector
space V , then as we have seen there is on 7/ essentially one non zero linear

form L such that
(66) Lir(y Ng] = 76ILip)

for all xe F and (P € 77; and the choice of such an L defines an isomorphism

@r+—> ¢ of U onthe Kirillov space A (x) of 7, given by

¢

(67) £y ) - LS Vgl
The Whittaker function W§ = ch is then given by
(68) W(g) = W(g)écp(l) = Lr(glp] -

In particular, suppose 7/ is contained in the space of solutions of (65) and that
GF operates on 1/ through right translations. We may then choose for L

the linear form L(q)) = qa(e); it satisfies (66) because each Q ¢ U satisfies (65),
and it is not zero everywhere on 7~ because (P(g) = L[W(g)sp] since w(g) is
the right translation defined by g. We then have WSD =(, and thus V = Win.

In other words we get the following

Corollary of Theorem l. Let 7 be an irreducible admissible infinite dimensional

representation of G Then there is in the set of solutions of

T

(69) Wi, el = 7o(x)W(g)

one and only one right invariant subspace on which the right translations define

a representation isomorphic to 7, namely the Whittaker space W/ (7) of =.

This result will play a fundamental role in the applications to automorphic

forms.
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6. A theorem on the contragredient of a representation

Let 7 be an admissible representation of G_ on a vector space 1/,

¥
and suppose we have another admissible representation 7' on another vector
space /', as well as a non degenerate bilinear form <£, £'> on /X Y

such that

(70) <1(g)E, m(g)E'™> = <&, £ .

Then 7' is isomorphic to the contragredient 7 of 7 defined in no. 1. In fact
we get from (70) an homomorphism from /' into 7‘} by associating to every
£' ¢ 9/ ' the linear form Evr—> <&, &> on U/ ; and this homomorphism trans-
forms 7' into 7. Hence it remains to prove that it is bijective. But we have
V'=® Y '(1%) and ’77 =@ {/(U’\) as in no. 1, and the homomorphism of /!
into '1V/ evidently maps 7/ '(1%) into {/(1}1) for every {%. On the other hand,
since the canonical bilinear form on 9/ X '(} and the given form on UV X 17!
are invariant and non degenerate, it is clear that we can identify °(vj(19~) and

vV '(V) with the dual of the finite dimensional vector space ‘l/('@-‘), where vﬁ'

is the contragredient of U in the usual sense. Hence the homomorphism

v Q’g’ under consideration induces a bijection /'(1%) —> ‘2} (1) for every

U’, which shows that it is an isomorphism as was to be proved.

We shall now use these trivial remarks and theorem 1 to prove

-~

Theorem 2. Let 7 be an irreducible admissible representation of GF' Then
* -
(*) g —> wn(g) 17T(g), and the Kirillov

v -1
i i ith . th
space 2 (7) is the set of functions wﬂ(x) E(x) with £ ¢ K (7). Furthermore

v *
7 1s equivalent to the representation

the invariant duality between } (7) and _’)[ (7vr) is given by the bilinear form

<§, m> such that

(71) <t > = [ £ 6 n(-x)d x + [ £, (x)H(win(-x)d x

g = £ +m(wE, with B, £, ¢ F(F) and ne X (M),

* *
( )We put w(g) = w(det g) for every ge GF and every character w of F .
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To prove that T is equivalent to the representation
° -1
(72) m'{g) = w_(g) "7(g)

it is enough (since 7 is admissible and irreducible) to construct on X (7) a
non degenerate bilinear form <§, 'r]>~1r such that <7(g)g, 7r'(g)'r]>7r = <§, 11>7r.
The construction and study of this form will be cut into several steps. In what

*
follows we put 1/ = K,(r) and 7/* = 3’(F yC V' as in the proof of lemma 6.
Step 1. We define

-1 % _

(73) <6 = [EEIN(-xw_(x) d x i fe V., neV;
the integral converges in a trivial way. We first show that
(74) <a(w)g, = <E w(w) > if £ Uy nn(w)V, and ne V.

In fact we have by no. 3

(75) o aw) M)

ww(-l)W(W)n(X) =

*
wﬂ(-X)fI Jﬁ(xy, x)n(y)d y

*
since 7 € t'f(F ), and thus

<g, ﬁ(W)-ln>,”

JEGI0 0 0 (IEF T (s xm(y)d y

* %
(76) IJT_(=y x)E)(y)d xd y

il

[y () yw (NE]T_(xy, 0EEA x

[rE) Ay (1) y = <n(w)g, >

hence the result. Note that this kind of formal computation is justified as soon
as £, ne jo(F*), because the summation over the characters x of EF is
actually a finite sum.

Step 2. We now observe that UV = 7/* + 7(w) U* and define <§, 11>7r on the

whole of 1_/ X U by
-1
< > = < > >
(77) £, = <G W+ <E,, 7(w) >

if £=¢ + m(w)§, with N V,» and ne/. This definition makes
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sense because if gl + 7r(w)t§2 = 0 then {5,1 € U* N 7r(w)°U* , so that if we write

n=m 7T(W)1‘|2 with M M, € U* we get

<§l, 11>7r + <§2, 7 (w) n>7r =

-1
= > < > < > < >
<§l, n>_+ {51' 77*(W)n2 . 62. (W) .t §2, n,>

-1
> >
<§1, T]1>7T + <7T(W) gl’ n2>71' + <7T(W)gz’ nl T + <€2’ T]Z T

< > - < > <, > +<E ., N> =0;
S M7y~ by M7y - < >+ <y my> = 0
we have of course made use of step 1.

Step 3. We prove that

-

(79) <a(w)E, m> = <, w(w) n>
for all &, me . Infact if we write £ = gl + 7r(w)§‘2 and apply definition (77),
we get

<m(w)§, n>7r = <gl, w(w)“1n>7r + ww(—1)<§2, 11>7r
(80)

1 -1 -2
<&, m(w) = <§1, (W) w> ot <§2, (W) g

hence the result.

Step 4. Computation (76) shows that
(81 It m-xd_(x)7d x = [ ) mlw Inl-x)w_(x) a"

-1
for any two £, me U .. The right hand side is < ,» T{w) m>_ by (73), hence
y n * g -

<wr(w)§, n>7r by (77); hence formula (73) is still valid if £ € 7(w){/ provided

*

ne Y x» from which we conclude that we still have
-1 * _
(82) <g, n> = J é(x)n(-x)ww(x) d x if eV, ne V.

Step 5. We prove that
-1

. a O _ ) 0
(83) <7r(0 1)§, 'r]>7r = <&, 7'( 0 1)n>7T
forall & ne U, i.e. that
a o0 -1
= >
(84) | ) <7T(0 16 g wﬂ(a)<§, LA l)11 T
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R *

If §e U* we can use (73) to compute both sides and then the result is obtained
at once by replacing §(x) by £(ax) in (73) and then x by a-lx in the integral.

If £/ isnotin V* we are (with obvious notation) reduced to proving that

-1
(85) <@ Dmwie, = o @, 1y e i.
but
1 O
@@ Dmlwit,, W= <awinly )E, w = :
= <7r(t S)EZ. ”(W)-l’Pn by Step 3
-1 -
O G Tt
(86) = ww(a)-ww(a-1)<§2, w(g ?)w(w)-ln>ﬂ because gze Vs

<t )l n>

T

1 0
>
<7T(W)§Z, 7r(0 a)" W by Step 3

- u(@<a(w)t,, 1 O c.d
-wﬂaﬂw)z,ﬂ()lnw, g.e.d.
Step 6. We prove that
(87) <m(u)€, 1']>7r = <§, ﬂ(u)-ln>7r for all &, ne ¥V
1 b
if u-= (0 1). Since w(u)§(x) = TF(bx)g(x), this formula is clear if we can com-

pute the scalar products by means of (73), i.e. if § or n belongs to '7/*

(Step 4). It is thus clear that we are reduced to prove
. 1
= >
(88) <r(r(w)g,, mlwIn,> = <z(w)E,, wla) w(win,>

in case gz, n, ¢ ? " which by Step 3 reduces to

-1 -1 -l
- > .
(89) <m(w uw)gzs T]2>,n. <§23 (W uw) nz -
Now we have
T (L Q@ BHET ol T
weaw =1y, 7= 4% 1 Mo W 1

bl -2 i
(90) -G DG PO Dwlg )
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with obvious notations. Hence

-1
< > = < ! ' >
(W uW)§Z, n,> wﬁ(b) 7(u'hwu )éz, n,>.

-1
1 1 >
wﬂ(b)<7r(hwu )gz, m(u') n,> because n, € v

i

*

(91) <7r(vvu‘)€2, w(h)-lw(u')—1n2>7r by Step 5

fl

-1 -1 -1
<7r(u')§z, m(w) “w(h) “w(u') 'r]Z>7T by Step 3

I

<§2, 7T(u')-17r(w)-lw(h)-lﬂ(u')&ln2>7r because gze U*,

hence the result.

To conclude the proof of the theorem, we observe that we have proved

identity

(92) <T(e)t, W = <&, 7(g) > (&, ne V)

for matrices g which generate GF, so that it is valid for all ge GF' On
the other hand the bilinear form <&, n>7r on x(w) X X (r) is non degenerate,

because a function orthogonal to 1/, is zero by formula (81).

*
We have thus shown thus far that 7 is equivalent to 7#'. To conclude the
proof, we observe that we have

a b

(93) m(E DEE = (a) 7 (bx)E(ax)

for all § e %(w). To get the-Kirillov model of 7' or 7 we must get rid of
the factor ww(a) in the a’t‘>ove formula, which can be done at once by trans-~
forming X (7) and 7' under the mapping TW given by ng(x) 2 wﬂ(x)- £(x).

Since a given representation has only one Kirillov realization, it follows
that :}{(7\;) = Tﬂ(jf(w)) and that the Kirillov realization of 7 is given by
(94) Mg =T om(g)e T = u ()T omig)oT ).

T T T T T

Since the duality <§, m> between X (7) and KH(n') is given by <§¢, n> =

-1 .
<g, T7r n>7r, the proof of the theorem is now complete.

7. Supercuspidal representations

Let 7 be a given irreducible admissible representation of GF' We
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*
shall say that 7 1is supercuspidal if %(ﬁ) = Y(F ), i.e. if all functions £(x)

in the Kirillov model 9[('”) of 7 vanish around O.

It is easy to see that an equivalent property is the fact that for every

£ € X(m) we have

(95) f_nw(é f)g-d::: 0 for n large.

In fact it is clear in all cases that the left hand side of (95) is the function

(96) yr—> [ __Toxy)Ey)dx = E(y) [ | 7o(xy)dx;

if %-d is the largest ideal on which T is trivial, then

-d
(97) [ aTply)dx £ 0 <=>yen ey

i

for the expression (96) to be identically zero for n large, it is thus necessary
and sufficient that £(y) = 0 in some neighborhood of zero, hence the result.

*
If 7 is a supercuspidal representation then 9((7‘;) = ;f(F } since }((%) is ob-~

*
tained by multiplying all functions £e€¢ X (1) = J(F ) by the locally constant

function wﬂ(x). Hence 7 is also supercuspidal, and the invariant duality between
3} X (m) and 9{,(7\;) reduces here to the bilinear form

kot

v, %

v (98) <€ m> = [ E(x)In(-x)d x

' I

%
on f(F }, which thus satisfies

(99)  <n{g)t, Tg)m = <&, m>.

*
Let ZF‘ be the center of GF (of course ZF is isomorphic to F ). Then for

;
l ; any two £, ne X (m) the "coefficient" <w(g)§, m> of = is a locally constant

function on GF’ whose support is compact mod Z In fact we have

P
GF = MFHFMF where MF is compact and HF is t:.e ghagonal subgroup of
GF’ which is the product of ZF and the subgroup (0 1); but

t 0 *
(100) <n(y g 1= [ EEn(-x)d x

F

*
belongs to Y(F ) as a function on t; hence the result.

T T——p— i ——
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This property of Supercuspidal representations is a characteristic one.

In fact let 7 be an irreducible admissible representation on a vector space 1/

and assume the functlon <7(g)§, m> has compact support mod z for all £e¢ Y

and n € ‘1/ We may assume {/ = X (m) and ’U 7{
:f(F ); the function

and take € in

(101) <7r(g ?)g, n> = g(tx)n(-x)d*x

. . *
must then vanish outside 3 Compact subset of F for all £ ¢ N (F*) and all

v . . $
ne X (7). Evidently it follows from this condition that X = Y (F),
In short:

q.e.d,

Theorem 3.

Let 7 be an irreducible admissible representation of G

on a vector
P —=1=-00

space q/. Then the following conditions are equivalent;

. . , *
(i) 7 is supercuspidal, i.e. Ximy = F(F)
. 1 x
(ii) ,:;-nﬁ(o 1)§.dx = 0 for n large for every £ ¢ vV
(iii) the function <m(g)§,
v

ne Y.

m> has compact support mod ZF for all £e¢ 9/,

8. Introduction to the Principal series

As we shall see, all irreducible non supercuspidal representations of

GF can be explicitly described in a simple way. The first step is to define,

*
for any two characters Hes M, of F , a representation p“ of GF as
. 1’2
follows: the space A of p is the set of all locally constant functions
ul’“z “1:“’2 ——e

({) on GF such that

tl

(102) @l Sel= ul(t')uz(t”)lt'/t"ll/Zga(g),

and the group operates on 6
u]-’“
get admissible representations,

through right translations. We evidently
2

which we shall refrain from calling the

"principal series'' because not all of them are irreducible (see theorem 6 below),

The first basic fact is the following:

Theorem 4. If an irreducible admissible representation 7 of G_ is not




s>

supercuspidal, then it is a subrepresentation of p for some choice of Hps By

“1’ I""Z
* *

In fact consider the Kirillov space X (7) Dj’ (F ) of #. Then, Y(F )

*

0

*

*), so that they operate on the finite
*

dimensional space X (7)/ Y (F ); furthermore the matrices (

is invariant under the operators 7(

! *) operate
o 1’ P

Theorem 5. The contragredient of p

trivially there because ['rF(bx)—l]‘g(x) is always in SU(F* ). We conclude at
once that if &P(F*) #Z X(m) there is on X (7) a non zero linear form B and
characters ul, Mo of F* such that _
1/2

(103) Blr(5 €] = my (e e [e/en | “B(e) .

We then get an isomorphism of 7 into pul’uz by associating to every § e 9{(7r)
the function

(104) Qoé(g) = B[n(g)¢] ,

which evidently belongs to £ q.e.d.

?
IvllsIJZ

-1
(where =-p =u ).

is o, .
We need first of all some remarks on invariant measures on groups.
Let P be a closed subgroup of a locally compact unimodular group G. If P

is unimodular, there is an invariant measure on P\G. In the general case,

_ consider the character BP of P given by

- -1
(105) © 4p]) = 4 pp]) = Bolp A

where dzp is a left invariant measure on P. Let L(G, P) be the space of

continuous functions on G such that

(106) ¢(pg) = Bo(p)plg)

and whose support is compact mod P. Then there exists on L(G, P) ‘essen-
tially one positive linear form which is invariant under right translations. If
we denote it by

(107) 9 —¢  Qlg)dg ,
> P\G
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then we have a decomposition formula
(108) | ple)dg = §  dgf plpgldp
G P\G P

for every continuous function (P with compact support on G. Finally if M is a
closed subgroup of G such that P \M is compact and G = MP up to a set of
measure zero, then
(109) $ cp(g)d'g = [ cP(mx)drm for all xe¢ G and Pe L(G, P).

P\G M
The ""twisted' invariant measure (107) is useful in particular in the following
context. Let F and F' be two topological vector spaces in duality, and suppose
we are given two continuous representations u and u' of P on ‘F and F';
suppose they are contragredient to each other, i.e. that <u(plas; u'(p)a'™> = <a, a'>
forall pe P, ae F and a'e F'. Denote by L(G, P, 1) the vector space of
all continuous mappings @ : G—> F which satisfy

(110) olpg) = upBY *p)pte)

and have compact support mod P; define in a similar way the space L(G, P, H');
these spaces are stable under right translations by elements of G (and right
translations in L(G, P, u) more or less define the representation of G "induced"

by u). It is now clear that —~

(111) <@gl ¢'(pg)> = Bp(P)<p(e), @'(g)>

for all Q. € IL(G, P, u) and (P' € L(G, P, u'); hence we can define a duality
between these two vector spaces by
(112) <¢, ¢'> =6  <@lg), @'(g)>dg,

P\G
and this bilinear form is invariant under right translations; this means that the
representations of G ind:.lced by u and p' are more or less (i.e. depending
on your definition of ''contragredience'') contragredient to each other.

We now prove Theorem 5. If we consider the subgroup P = PF of all
t' x

triangular matrices p = (0 e

) in G, then we evidently have [3P(p) = Jt/t"].
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degenerate. But the restrictions to MF of the functions @ e 6“1’“2 are the
locally constant functions on MF such that

(115) gL m] = w(atu, (w)p(m)

for all u', u" ¢ E; and v e/ﬂ]}' and the restrictions of the e ﬁ_ul’ w,

are similarly' characterized, with Ml(u')-1 =u_l(u_') and uz(u”)- = uz(u“) instead.

]
|
|

We can thus define a pairing l
‘ i
|

(113) <¢, y>= ¢ olgly(g)ldg = [ ¢(m)p(m)dm |
: P\ G, M :

between the spaces 8“1’“2 and § "y '“2’ which satisfies :1
|

114 < , > = <@ > . “i
(114) p“1’” (g)ps p_ 1, _“Z(g)w ¢y i

To conclude the proof it remains to prove that the bilinear form <(f:, @> is non

Hence the restrictions to MF of the functions Y are the conjugate functions of
2
the restrictions of the @ - Thus (113) reduces to the L (MF) scalar product,

and the proof is now complete.

9. A lemma on Fourier transforms

We are now going to show that there exists a Kirillov fnodel for the

representation on the vector space B even though ma
P Pusu P TRATIN 8% Puu, Y
1’72 1"72 1’72
not be irreducible; this construction will furthermore lead to complete results

as to the decomposition of p

“1’“2.
Since the '"big cell" is everywhere dense in GF’ it is clear from (102)
that every ¢« B is uniquely determined by the function x> gc 1 ! X)]
Hishs 0 1
on the additive group F; in fact, the decomposition
-1

_a b, ¢ .detg * -11 d/c, .
(116) g—(C d)-( 0 C)W (0 1)JLfc;éO
shows that

a b 1/2 -1 -1 _
(117) Q. g = mldetg)det g[" “u(c)|c| TPpld/c) if c# 0,
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where we put g

(118) ol ™y =gt .

The function @(x) .is clearly locally constant (in fact it is translation invariant

under an open subgroup of F), and its behaviour at infinity is given by

(119) (P(X) = q,)(e)u -1(x)|x| - for le large enough.

-1 -1
-11 x 1 -x x 0 1 0
In fact we have w (0 1) = (0 ) ) 0 x)(-x'l 1) for x # 0, hence

"]. ]. "1 . - 1
(p[w (O i{)] = u(x) lxl l(P(_X_l f) . by (102); but since SD is locally constant
1
we have (P(_X_l (1)) = ¢(e) for |x| large, whence (119). Conversely it is easy

to see that every locally constant function ¢ on F such that u(x)|x|¢(x) is

constant for |x| large, is given by (118) with a function Qe )

Ml’l“‘z.
To get a Kirillov model for the representation pM i we shall associate
?
to every @ ¢ £ the function e
“1’“’2
_ /2 -1l oy —
(120) § o) = u )= Tfglw T, I Gay

which is nearly the Fourier transform of (118); it will be seen in a moment that

(*)

this Fourier transform does make sense if we consider ¢ as a distribution
and that this Fourier transform is actually a function on F* (not always on F).
Taking that for granted for the time being it is ""of course not difficult' to see first
'1.:h'at the mapping (P > §<P is injective, and second that if we look upon pui’l_‘2
as a representation of G‘F on the space of functions %120), then the fundamental
condition for Kirillov's models, namely

a

(121) : P (

D) = 7 (bx)E(ax)

is satisfied.

(*) '

-1, *
It even makes sense in the traditional way if J |/,t(y) |d y<+ oo i.e.
) BE
if [u(x)l = |x| with ¢ > 0. The case 0 <0 could be reduced to the previous

one by using theorems 2 and 3. Unfortunately the case o = 0 cannot be handled

in that simple way.
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To replace (120) by something more meaningful, we shall need the

following lemma:

%
Lemma 9. Let u be a character of F  and let 3# be the space of locally

constant functions ¢ on F such that ¢(x)u(x)|x| is constant for |x| large.

Define

(122) a\)(x) = ) gb(y)';F(xy)dy for xe€ F*
neZ v(y)=n
*

Then the above series converges uniformly on every compact subset of F , and

A -
the mapping ¢ > ¢ is injective except if u(x) = |x| 1, in which case its kernel

A

is the set of constant functions in 5"“. The image ,.?“ of 3‘:“ under ¢ l——>$
*

is the set of locally constant functions '¢/ on F  which vanish outside some com-

pact subset of F, and whose behaviour in some neighborhood of 0 is given

by the following formulas:

au(x) + b if u(x)#E1, le-
(123) V(x) ={av(x)+ b if pux)=1l
b if u(x) = |x|'1 ,

*
with arbitrary constants a and b.

It is clear that 3'“ is the direct sum of Y (F) and the one-dimensional

subspace spanned by the function
)

w e x) 7 it |x| >1
(124) g (0 =
H 0 if |x| <1.

The convergence of (122) and the behaviour of @ near 0 and oo are clear if
pe P(F), so that the main part of the proof will be for ¢“

The corresponding series (122) is clearly(up to an immaterial constant
factor due to the choice of Haar measures)

-1(

(125) [ Toleym nd'y;

n<0 v(y)=n

f
assume first u is ramified, and let «ée be its conductor. Then

AL R Smaal s ab

SR Bt ke 6 e 4
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(126) [ by )y £ 0= vix) = ~d £ -n;

v(y)=n
this makes obvious the fact that (125) converges uniformly on every compact
*
subset of F , is locally constant, and vanishes for lxl large. Furthermore

we have

(127) 43 (x) = ) ?F(xy)u'l(y)d*y = au(x) for v(x)> -4 -f
vixy)= -d-f

where

-1 *

(128) a= 'TF(z)u (z)d z £ 0,
v(z)= «d-f

hence (123) in this case for all ¢ 3“.

If now u(x) = ]x] ® for some s, then we have

I byl Ty = " F e xwan = ¢y - 7] -
(129) v(y)=n 14 T ¥

= g [h("x) - Ia[h(aan“x)]

where & is a uniformizing variable, q= N(#g), and
& 7

_ - _§l it v(x) > -d
(130) h(x) —0:[ 'rF(xu)du = {O if v(x) < -d .
The series (122) thus reduces to
(131) ¢ (x) = F_(x) - | & |Fs(ax)
where
(132) F(x)=  q h®"x) = p> qQ°;

n<0 ~d-v(x)<n<0
%

it is thus clear that (122) converges uniformly on compact subsets of F , is

*
locally constant on F , and vanishes if v(x) < -d -1, If qs 1 id.e. if pu

is non trivial, then we haye for v(x) > - d a relation Fs(x) = a' le S + b' with

1

a' # 0; hence a(x) = a.|x|s +b with a = a'(l - |® |s+ )# 0 if yu is not the
-1 -1

character xb—> [xl s and a = 0 if pu(x) = ix| I qs = 1 then Fs(x) =

v(x) +d +1 and au(x)z av(x)+ b with a =1 - |&| # 0, for vix) > - d.



We have now proved everything except for the determination of the kernel
%
of ¢ —> $ For every fe Y(F ) we have
[ fx)¢ax = T [ fx)ax [ 7T (xy)p(y)dy
(133) F n F v(y)=n

-5 | fyeway = [ iyginay ,
v(y)=n F

which means that the Fourier transform of the distribution ¢(x)dx induces on F*
the measure &(x)dx. If ;[5 = 0 we thus see that the Fourier transform of @(x)dx
must be proportional to the Dirac measure, which means that ¢ must be constant--
and this can happen if and only if u(x) = |x| -1. This concludes the proof.

It is still useful to observe that if |u (x) | = |x|cr with o > 0, then

45 (x) = fqb 'T (xy dy with an absolutely convergent integral. If ¢ > -1/2 then

2
¢ is square integrable on F, and qb is its Fourier transform in the L. sense.
Finally it is clear by (123) that the functions é\) are integrable on ¥ provided
o > -1, and that in this case we have ¢ (x) = fé(y)'TF(xy)dy for every ¢ « [7‘”

10, The principal series and the special representations

We can now go back to the representation p“ R It follows from (119)
'z
that the representation space ﬁu u is the same as 3"“ under the map
1’72 '
¢r—> ¢ given by (118). With the same meaning for ¢ as in lemma 9, let us
"associate to every ol & " the function & given by
1’72
, 1/24 1/2 -11 -
(134) g () = w0 x| P = p x| T @lwT iy DITp(xy)ay.
P v(y)=
A trivial computation then shows that
(135) sp @ De=t (m) = P08 (2x)
" Pupu,0 1 ¢ p'

arid since the functions §_ are locally constant and vanish outside compact
subsets of F, we see that the mapping ¢ — gq) yields a Kirillov model for

the representation p s
Moa M

172

one~to~one. This occurs if and only if u(x le ,» in which case the kernel

\ except for the fact that this mapping may not be
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of this mapping is generated by the function (P for which ¢(x) = 1, i.e. [use
(117)] by the function

(136) gao(g) = py(det g)| det g|1/2 .

Of course the one-dimensional subspace generated by (136) is invariant under

pu o and @ —> gcp then induces a bijection of the corresponding factor
l’
space on the space of functions § .
Note that the image of A under — can be de-

scribed from lemma 9; it is the space of locally constant functions on F  which
vanish for |x| large and whose behaviour near 0 is given by the following

formulas, which follow at once from (123) and (124):

|x) Y P e ) + b (30)) if o) A1, |x| 7
1 2

1/2

(137) E(x) = { |x] (au, (x)v(x) + bu,(x)) if u(x) =1,

-1

| x|

blx[l/zuz(x) if u(x)

*
This space contains always f_f(F ) as a subspace of codimension 2, except if
-1 *
¢ is the character xpb—> |x| in which case jD(F ) has codimension 1.

We shall now be able to decide whether p is irreducible or not:
Ml’yz
Theorem 6. The representation P, " is irreducible except if p(x) = |x| or
. 1’72
-1 -1

|x| I op(x) = lxl then BM " contains a one-dimensional invariant sub-
1’72
space, generated by the function grH—>pu

1/2
l(det g)|det gl / » and the representa~

tion on the factor space is irreducible. If u(x) = |x| then ﬁu " contains
1’72
an irreducible subspace of codimension one, namely the set of go such that
-1 1/2 .. -1.1 x
(138) $ ¢ (g, (det g)|det g| ™" “dg = [9[w (o l)]dx = 0.
PR\ Gp '

Since the kernel of @ > §_ is invariant in all cases, this mapping

P

transforms p into a representation of G on the image space 3{ .
Mas 4 F My M
172 1’72
and property (135) shows that if an invariant subspace of 3{” " contains a
1’72
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function ¢ then it also contains the function §(x) - TF(bx)g(x) for all b, and |
* |

thus contains (if it is not zero) non zero functions in Cf(F\’*),‘ But F(F ) is irreducible unde:iy

the operators (135) as we have already seen; hence every non zero invariant sub-

space of Jﬁ“‘ll’uz contains DD(F*), hence contains the function £(x) - 'rF(bx)g(x)
for all £ e %“18“2 and all b e F, and has furthermore codimension at most 2
in ){1“1’“2 (and at most 1 if u is the character xF— |x| -1).

If we apply this to the image under @+ g of a non zero invariant sub-

-1
space U/ of 5# p we see that unless p(x) = |x| and 2/ is the obvious one-

1’72

b
dimensional subspace then v will contain ¢ -P ( )<P for all @ e A

Mok, 01 Hyrky
and all b e F. That means that in the contragredient representation p I
' T2

X
on 8 — (Theorem 5) the subspace %/ orthogonal to 7" must contain only
e .
1
functions { invariant under the operators corresponding to matrices (0 1)). Such

a function must satisfy

th* 1

(139) W [(0 t")W(O :)] = ui'l(tl)#;l(tn)ltl/ tu|1/2

p(w)

and furthermore be continuous on GF. Since the big cell is dense in GF’ this
shows that codim(?Y) < 1, and it is furthermore not difficult to see that a con-
tinuous and non zero function satisfying (139) exists if and only if u(x) = |x| R

in which case we may choose Y(g) = ul_l(det g)ldet gll/ 2, which explains why

the only non trivial invariant subspace U of 6“ " is then defined by (138).
' 1’72 .
To conclude the proof we still have to look more closely in the case where u(x) =

f |x| -1--but by Theorem 5 the invariant subspaces of 8“ u are the orthogonal
1’72
supplements of the invariant subspaces of @§ o which shows that the situa-
12
-1
tion for u(x) = lx| follows at once from the situation for u(x) = |x| which

— e —

we have just cleared off, q.e.d.
Theorem 6 makes it possible to define an irreducible representation

* -
T of G_ for every couple of characters of F . If u(x) = p (x)u,(x) 1
ul’uz F - B 1 2

. . -1 .
is neither the character xF—> IxI nor xr—» |x| , we define 71“ u to
1’72
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be the representation p on the space @ ; we get in this way the so-

Moyl Mos i

1’2 1"72

called principal series of representations. Lemma 9 yields at once the Kirillov
model for it: if 7 = 7r“ L we denote by I (r) the space of functions £(x) on

1’72

%
F  which are locally constant, which vanish outside of a compact set in F, and

whose behaviour in some neighborhood of 0 is given by

/2
lx] / (au, (x) + bu . (x)) if u 1is not trivial
1 2
(140) E(x) = 1/2
[x| (auz(x)v(x) + buz(x)) if 4 1is trivial;
then the map ¢ —> g(P given by (56) is a bijection of BM y. on X (7), so that
’"2
we may assume that W,u u (g) is a linear operator on X (7), and since we then
1’72
have
(141) & D) = 7 (bx)t(ax)
m(y )Ex) = p(bx)E(ax
we have found in this way the Kirillov model for 7.
If ux)= le we denote by 7 (g) the restriction of p (g) to
[V Y My
1'72 1’72
the invariant hyperplane of § whose existence is asserted by Theorem 6.

MI’IJZ
T

To get the Kirillov model for 7 = we still use lemma 9 and formula (134)

Ml:IJZ

but we have to find a characterization of the functions £  for those P e & woait
1’72

which belong to the hyperplane under consideration, i.e. are such that
ch [w_l(](') i{)]dx = 0. Now we have q)[w—l(t i{)] = ¢P(x), see (118), and ¢ (x)
is proportional to u_l(x)lxl -1 i.e. to le -2 for large values of Ix‘ ,» hence
is integrable on F; consequently the far-flung Fourier transform qAb given by
lemma 9 is nothing in this case but the obvious one, and condition (138) means
that a(O) = 0; since a\)(x) = a.[x| + b for |x| small this means that b = 0.

In other words, and ta.king“ care of (137), we see that in this case the Kirillov

model is a representation on the space X (7) of functions £(x) on F* which

are locally constant, which vanish outside compact subsets of F, and which

behave near 0 according to formula
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(142) 600 = alx|™ By

. 1/2
in other words, X (7) is the space of functions lx| / ul(x)f(x) with fe Y(F).
Finally, if u(x) = |x| —l, there is in BIJ u a one-dimensional invariant |
1’72 |
subspace; we shall then define 7rM u to be the obvious representation on the
1’72
corresponding factor space. Since this one-dimensional subspace is the kernel

of the mapping ¢ —> {-;(P we see that this mapping will induce an isomorphism

between the representation space of 7 = 7 and the image 7{(71) of 4
. “’l’uz H19Iv‘2
under @ F—> E,(P, hence the Kirillov model for 7. In this case X (7) is therefore
*

the space of all functions £(x) on F  which are locally constant, which vanish

for |x| large, and which behave near the origin according to (137), i.e. as

i/ 2
(143) 66) = b|x|"/ by (x)
. . . /2 .
in other words, 9((71) is the set of functions |x| /J.Z(x)f(x) with f e Y (F).
The representations 7(“ " for u(x) = |x| or |x|-1 are the so-called
1’72

special representations. I follows from theorem 4 that.there are no other

irreducible admissible representations of GF than the one we have found: the
principal series, the special representations, and the cuspidal ones. Since the
argument above shows that the Kirillov space %(’/T) for an irreducible repre-

sentation « .satisfies

' 2 for the principal series
E 3
(144) dim[X, (7)/ F (F )] = {1 for the special representations

0 for the cuspidal representations,

we see that these three "series' of representations are mutually disjoint,
The following table describes the space X (7) for the various repre-

sentations in terms of "arbitrary' functions {1, fl’ fz in f(F).
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principal series 7
1/2 1/2
Hpke ™ Ty G ) + x|, (0, ()
with My # M,
principal series 7«
1/2 1/2
Hirks, |x| ul(x)fl(x) + |x| uz(x)v(x)fz(x)
with f,tl =M,
special representation 7
-1 Hyrkp |x|1/ Zul(x)f(x)
with uluz (x) = le
special representation 7
-1 .1 Mk |x|l/ 2;,Lz(x)f(x)
with ik (x) = |x|
supercuspidal representations f(x) with f e (F), f{(0) =0
p

11. The equivalence 7 ~ T

Theorems 2 and 5 can be used to give a very simple proof of the following

result:
Theorem 7. The representations = and 7 are equivalent if and only
— ALA, — Tu,u
1" 2 |
.1_:{.‘: (“l’ Mz) = ()\l’ )\'2) or '= (>\‘2! >\l)'

The necessity of the condition is clear if we look at the Kirillov models,

so that ';;ve only have to show that = But from the fact that

~ T .

:J = p _ we see at once that
Hpk, Hypr oM,

(145) T =1 ,

even for the special representations. By theorem 2 this can be written as

N(.O-1®7f

(146) e ) )
HyppHy T My oM,

where 7 = 7 ; but w—l(x) = u.M,(x), hence the theorem since the mapping
Hys T "2
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(147) {g — ¢(g)} == {g = pp, (det g)g(g)}
is an isomorphism of onto .
P B'IJ s M 8” s M
1 2 2’71
Another way of proving the theorem would consist in showing that
*
(148) T (w) =« (w) on Y(F ),
which would of course be enough to prove that the Kirillov realizationsof 7Tu i
1’72

and 7 are identical. To do that one can compute explicitly = (w);

one then easily gets

*
(149) Ty (B = (03, | GEIET
with
(150) ‘ J (x) = lel/zuz(x)-.lz [ TF(xz+z_1)u(z)d*z,

My n v(z)=n

an expression that is obviously symmetrical with respect to My and By Note

that (150) reduces to a finite sum on every compact subset of F*, and that (149)
*

is valid for £ ¢ ¥Y(F ) only. Similar formulas are to be found in a recent paper

by P. J. Sally, (Am. J. of Math., 1968, vol. 90, p.



12. The fundamental functional equation

Let 7 be an irreducible admissible representation of GF; we may
consider that 7 is obtained by letting GF act on the space U(ﬂ) of no, 5

through right translations. For every W e 'lt/(w) and every character x of
*
F , we define

0

-1y 28-1 %
(151) Lo (& % s)=fW[(}5 el (=) x| "Ta

Xy

at first formally. We shall now prove

Theorem 8. The integral (151) converges for Re(s) large, and can be analytically

continued to a meromorphic function with at most two poles. Furthermore there

exists a meromorphic function Yﬁ(x, x), which depends neither on W ¢ 2(/(7r)

noron ge¢ G and is such that

F)

(152) LW(Wg; w_ =X, 1l-s)= Y;T(x, S)LW(g; Xs S)
for all We 2/(7m) and g« GF. It satisfies

(153) Yﬂ(w7r - X, 1- S)Yﬂ(x, s) = wﬂ(-l) .

To prove the convergence and analytical continuation we may assume that
g = e (replace W by its right translate by g); we then have to study the inte-
gral

(154) M (x ) = [EGx ) %] 25 e x

where §£(x) = W(}g f) belongs to the space A/(w). If 7 is supercuspidal we

M .
have £ ¢ J(F ) and then (154) is clearly an entite function of s. If 7 is
not supercuspidal then we have the following possibilities:

| 218, Gl () + £ el ()]

|xl1/ Zul(X)[fl(X) + £, (x)v(x)]

1™ % (0, )

M2 ot ()

(155) £(x) =

| x
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where fl, fz ¢ F(F), as we have seen at the end of section 10. Hence (154)

is the sum of at most two integrals of the following kind:
* 2s %
(156) JE=)N(x |x| °d X, ff(x)K(x)v(x)'x! d x

*
with a character XN of ¥ , hence the results (more detailed information will
be found in no. 14).

It thus remains to prove the existence of a functional equation (152).

Here too we may assume g = e; since §£(x) = W(}S f) implies
x 0

(157) Wi, gl= 7(g)elx),

it is clear that (152) can still be written as

(158) MW(W)g(wW - X! l = S) = Yﬂ.(X’ S)Mg(X, S) .

We shall prove this in three steps.
Step 1. We prove (158) for all £{e f (FC & ()

It is clear from the definition that if (158) is true for a given § it is also
true for all its multiplicative translates. To get (158) for all £ ¢ ¥ (F‘ah) it is
thus enough to prove it when

N(x) if xe E

(159) T E(x) =
0 if x ¢ EF s
where N is a given charaqter of EF' Both sides of (158) then vanish unless A

is the restriction of y to EF. In this case we have w(w)§(x) = wﬂ(x)Jﬂ(x, X )

y (27), where we still denote by yx the restriction of x to E , and thus

1- Zs
(160) Mﬂ(w)g(wﬁ -X, l-s8)=] J_(x, X ) (x)] x| *
-1y 2s-1 %
(161) Mg(x, s) = f X (x)x (x) | x| dx=1
Ep
* *
if [ dx=L Wethus see that (158) is satisfied for all £ ¢ S (F ) if we choose
E
F

(162) Y6 8) = TG x ) |x| s




*
provided [ d x = 1.

E
F L4

* *
Step 2. We now prove (153) by choosing a function § e S (F )n 7(w) SF )

and applying (158) twice; we get

(163) - 0p MGG ) = Mg e 9 = Yalog =0 b SIMy o o
= Yﬂ(wﬂ - Xo 1- S)Yﬂ_(x, S)Mg(x, s),

from which (153) follows provided we can choose § in such a way that Mg(x, s)
is not identically 0. But we know by Lemma 7 that there are non-zero § in

f(F*)n ﬂ(w)f(F*) which satisfy &(xu) = £(x)x(u) for every ue E

F; for such
a § we have
® 1 25-1
(164) M, (xs ) = B @ (&) @7
-

(a finite sum), and this of course is not identically 0 if § # 0.

Step 3. We eventually prove (158) for an arbitrary £ € 7/ (7) by using the fact

*
that § = gl + 7r(w)§2 with gl, gz e (F ). If we use steps 1 and 2 of the proof
we get

Mﬂ(w)g(“’ﬂ -X, 1-38)= M”(W)gl(w” - X, l-s)+ wﬁ(-l)Mgz(wﬂ_X, 1-s)

(165)

v, (X S){Mg (x> s)+vy (0 -x,1- S)Mgz(w” -x, 1 -8)}

1

Yl 8 B 06 9) + My e (0 91

which concludes the proof.

13. Computation of yﬁ(x, s) for the principal series and the special repre-
sentations.
Before we start performing the computation announced in the title of

this section, we recall that if we define

(166) Lo(x, 8) = [ obax(x)|x|®d x
P P

%
for every P e F(F) and every character y of F , then we have the

- S

o
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following properties:

(i) the integral (166) converges for Re(s) large enough--in fact for
Re(s) > 0 if y 1is unitary;

(ii) the function (166) is meromorphic in the whole plane for every
P e F(F) [more about the poles later!];

(iii) there is a factor y(x, s) depending only on ¥ and s and such

that
(167) LCP('-X, 1 -s)=v(x, S)L¢(x, s)

for all ¢ e J(F).

We now propose to compute yﬂ(x, s) in terms of such factors when

T = 7T“ i belongs to the principal series or is a special representation.
1’72
To do it we choose a function
* *
(168) Ee P(F )n n(w)F(F )

such that Mg(x, s) is not identically zero (the existence of such a £ has been
proved in step 2 of the proof of Theorem 8) and we observe that there exists a

function <io € 6“ " such that
1’72

(169) plv 7 D= a3 e lx ™ 2600 e

in fact, the left hand side of (169) is clearly the Fourier transform of a function

*
in JD(F ), hence is in SF), hence in the space 9:” of Lemma 9, and thus

does extend to a function P 66“ u by making use of (117), p. 1.27. Com-
1’72
paring (169) and (134) we see by making use of Fourier's inversion formula
that
1/2 -11  y .- _
(170) E(x) = p,(x) [x| 7 fplw () (T Lxy)dy = AN

with no need here for the sophisticated Fourier transform of Lemma 9. But

%
since the mapping ¢ —> £ is one-to-one and compatible with the obvious

* -1

except if u(x) = |x{ as we have seen at bottom of p. 1. 31, but since 7ru u =
1’72

we may assume this is not the case.

T
uz,ul




1.43

actions of GF, we conclude from (170) that w(w)§ corresponds under this

*
mapping to the function g +r—> q)(gw). Since w(w)§ ¢ F(F ) by our assumption
(168), we can still use (169) with #(w)f and gr—> ¢ (gw) instead of ¢ and
gr—> ¢(g), and we thus get

-11 I I-I/Z

(17) olw () Nwl = fus e |x] Y Pnlw)E o) T (xy)ax
Since we have
11y 1o, 1 oyt o1yt
172) (o DW= =G T vl )
and since @ € 6“1’”2 we get [use (102) and u = My - “2]
-1
-11 vy -1 -1 1 -y
Plw (, {Iwl=aly Iy e wl )]
(173) 0 1 0 1 1

S0 (e Dy el D

making use of Fourier inversion formula in (171) we thus get

w3 2] A a0 = i =
(174) B

-1, - - - -
= w (-fuly )My 1ICP[W 1(; Yl )]'TF(XY)dY )

while (170) can also be written as
(175) w3l x| o0 = £100 = fplw TG DI Rty .

We can now start the computation of y (x, s). Making use of the defini-
p X g

tion (175) of &' we get

-1 -1 %
M, (x» 8) = [E(x)x (x) |x]"" "d x =

(175) -1 2s-5 ' )
= ff,'(X)IJZX (x)|x| d x = Lg'(“z -~ X, 28 --Z—)

where we use definition (166). But by (175) the function §' is the Fourier

<11 vy

E 3
transform of y+— @[w (0 l)]; using (167) we thus get

*
We put s' = 2s -1/2 in order to simplify the computation.

\

it 2 R s

o et
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ll v s' *
(176) Y, - X, sl)Mg X» 8) = [P[w ( 1)]X“z |y| dy .
Consider now
M elp ~ X 1= ) = fﬁ(w)g(x);.;lnlu;lx - x| 2%
(177) i-zs
- fﬂ X)“ X(X)|X| d x = L‘I’]'(X -“l’ 1 ~ sl);
by (174) and (167) we get in a similar way
Y{x -, s')M (W -x,1-38)=
1 7r(w)§ T 2 B .
(178) = w_(-fuly” )|Y ICP[ }{ )]ulx Wyl dy
- *
= w (- l)fcp[ Y )]u oy ® ey

11 - -g! *
-nfcp[w (O {’)unz Wyl "y

[

Comparing with (176), and since Mg(x, s) is not identically 0, we get at once

(179 Yalke o) = Mgl = X0 L= a)/Mlx, o)
= MX —1(-1)\((u‘2 - X, s"V/ylx - B l-sh).

But it is clear that by iterating functional equation (167) we get

(180) Y{X s S)v(-x,\l'- s) = x(-1) .
Hence
(181) Yﬂ(x, S)=v(u1-x, S')Y(uz-x, s') ,

and if we replace s' by 2s --12- we eventually get the result:

*
Theorem 9. For every character x of F and every function P e L (F), de-

fine

(182) (P (x, s)e= fﬁo )x (x) [xl d X

and let y(x, s) be the factor such that

(183) Lﬁo(-x, 1 -5s)=v(x, S)LC'F(X’ s)
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*
for all (P € f’(F). Then if Hy and p, are any. two characters of F and if

T=7 , then the factor y (X, s) is given by

Hl’ﬂz w
184 )= v 25 - Sy, - % 25 - %)
(184) Y, (X 8) = Yl =X 25 =SV, - % 28 -3).

14. The local factors Lﬂ(X, s).

Let's go back to Tate's Ph.D. for a while and consider the Mellin trans-

forms
(185) LCP()(, .8) = j’cp (x)x(x)|x| sd*x

of the functions CF € f(F). We evidently have

(186) L_(x, s) = 50(0) X.(x)|x| Sd*x + entire function,
' (P x[[_<_l

so that if we define

1 if x is ramified
(187) Lix, s) =
1 if x is non ramified
-s
1-x (4)N(«)

we see at once that (for given x and variable 79 ) this expression is the

highest common divisor of all functions ch(x, s), i.e. that the ratio

L_(x, s)/L{x, s) is always an entire function which furthermore is 1 for

a suitable choice of P - Strangely enough, the functions L(x, s) are the

local factors used to define global Hecke's I functions by means of Euler
products.
We shall now try to define in a similar way local factors L1~T(x y 8)

for every irreducible admissible representation 7 of GL(2, F). We put

Lﬂ_(x, s) = g.c.d. of all functions Mg(x, s)

‘188
( ) for all § e 7{(#),

and require in addition, to avoid ambiguities, that Lﬂ(x, s) should be a
finite product of Eulerian factors or, which is clearly the same, that

(189) L, 8) = Pla™

_d

At F et S
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where q = N('X) and P is a polynomial such that P(0) = 1. The computation
will be very easy to perform because of the characterization given on p. 1.36
of the various spaces Z/ (7).

The case of a supercuspidal 7. Then the functions

(190) M, (x> 8) = [ G () x| 2%

>k
are entire since &/(7) = S(F ), and there is a € ¢ Z(r) such that Mg(x, s) =1,

e.g. the function equal to y on EF and 0 elsewhere. Hence we define

(191) L (x: s)=1

in this case,

The case of a special 7. Assume

(192) T = with u(x) = |x|;

T

“’1’“2

then Z(m) is the set of all functions
1/2 .

(193) E(x) = x| u (x)p(x) with @ -« P(F);

for such a § we clearly have

(194) Mg(X, S) = L (ul = X 2s - 1/2):

?

since ¢ is arbitrary in S(F), we must therefore choose

(195) Lﬂ(x, ‘s) = L(u1 - X, 258 -1/2)

in this case. The case where u(x) = |x| is the same, with My instead of h
use Theorem 7.

The case of a generic member of the principal series. We now assume

T =17 with
“13 MZ
-1

(196) pix) # x|, |x| 7 1.

Then

197) 60) = x| [y (00 () + 11, (0P )]
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with arbitrary CPI’ ?2 € f(F), hence*

= - “g! - t
(198) Mg(x, s) Lﬁol(’“‘l X»"s') + Lq,z(u2 Xs 8') s
so that Lﬁ(x, s) must be the g.c.d. of the two functions I_J([.t1 - X, s') and
L(;.t.2 - %, s'). This g.c.d. is also their product. This is clear by (187)
unless My =X = N, and Mo = X = )\2 are unramified; but then

1

l- )\i(g’)N(g”)
and since )\l(g’) # )\2(?0) [because we assume H # o by (196)] our assertion

1

(199) L, - X, 8') =

Sl

follows. Thus we define in this case
(200) L (x, s) = L{ 25 - =)L 25 - =)
T X L S - IJ]. - X ? s 2 I“l'Z = X.’ 5 = 2 .

The existence of a £ € A/(7) such that Mg(x, s) = Lﬂ(x, s) follows from the
fact that, if )\l and )\2 are distinct unramified characters, there are constants

o and c2 such that

(201) L()\l, s)L(A,, s) = clL()\l, s) + cZL()\Z, s) .

2

There remains to study the case where

(202) T = with M= My

s
“1’/‘"2
Then 7{(7r) is the set of functions

(203) 660 = x|y 0P, 0 + @, (a)vio]
with arbitrary CFl’ CPZ € f(F). We thus have

(204) Mg(x’ s) = L_ (N, s") + chZ(X)V(?i))\(X)|xlS'd*x

1

where we set By =X = A. The second integral is an entire function if ?2(0) = 0.

Hence it will be enough to look at

s! *
(205) JvEINM=) x| d x;
|x[<1
* 1
We again set s' = 2s - =",

2

DT BT g i
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this is clearly 0 if X is ramified; if not, it is proportional to

Mef)NG) ™%
[1 - Mg)N(ep)™® ]

We thus see that in all cases we have

® n -ns' -s! "2
(206) iln?\(g) N(b") = 2 K(gf)N(g’) L(Xx, s') .

(207) Mg(x, s) = L(“l - X, s')2 X entire function,
which suggests formula
(208) L (x, s) = L( 25 - =)°

T X.’ - ”1 X’ S 2 ’

the same as for the generic members of the principal series. In fact it will be

justified if we prove the existence of a £ ¢ A{(r) such that
2
(209) Mg(x, s) = Ll - x, s},

which of course is clear if \ = My- X is ramified. If it is not then the com-

putation of (205) at any rate shows there is a ¢ such that
(210) M,(xs 8) = Liuy - x» 8" Neg) ™'
3 1 7

if we replace £(x) by cé(ax) with suitable constants a# 0 and ¢ we evidently
get the result.

We gather the various definitions of Lﬂ(x, s) in the following table:

T L,,(X» s)

principal series 7 ) 1 . 1

special representations 1
: - 25-—
T with u(x) = |x| L(Ml X» 28-7)
Bis by

special representation

1
- -y, 25-=
L with p(x) = |x| 1 Liuy-x. 2s 2

Ki2ksy

supercuspidal representations 1
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The meaning of these local factors is now expressed in the following

way: .

Theorem 10. For every irreducible representation 7 of G_. and every

F
*
character x of F , let Lﬂ(x, s) be the Euler factor defined as above.

Then the ratio

(211) L (8 X s)/L_(x, s)

is an entire function for every W € 2*7) and every g e GF’ and there is a

W ¢ %*(7) such that

(212) LW(e; X, 8) = LW(X" s) .

15. The factors sw(x, s).
The introduction of the factors Lﬂ(x, s) leads to a different way of

writing the functional equation (152) of Theorem 8; instead of

(213) LW(Wg; ww -x, 1 -58)= yw(x, s)LW(g; Xs S)

we can still write it as

Lw(wg; W= Xo 1 - s) Lw(g; X» S)
= eﬂ(x, s)

(214)

‘Lo -x,1-8) L {xs s)

with new factors s”(x, s) instead of \{ﬂ_(x, s); clearly

L‘”(w7r - X, 1l ~5s)
Lﬂ_(x, s)

(215) ' v, (X: 8) = ¢ (X, s)

Since we may assume Lw(g; X s s)/Lﬁ(x, s) = 1, it is clear that 5,”(X: s) is

an entire function of s; it never vanishes, because it follows from (215) and

A

(216) v (e X L- sy (X, 8) = w (-1)
that
(217) sﬁ(wﬂ' -Xs 1 - S)EW(X, s) = (07{(-1.) .

In fact, ew(x, s) is an exponential function, because the computations of this
N

PP

s

-
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number evidently show that all ratios Lw(g; X s s)/Lw_(x, s), hence also sﬂ(x, s),
are finite formal series in qZS

It is easy t}o compute ¢ W(X’ s) for the principal series and the special
representations.

The first thing to do is to replace Tate's functional equation
(218) Lol=xs 1 -s) = y(x, s)Lin (X, s)
P ¥
of local Mellin transforms, see (167), by something similar to (214), namely

L(P(-X, 1-35) i )LC’P(X’ s)
L{-x, 1 ~s) ~ (x> s I(x, s) ?’

(219)

the factors ¢(x, s) are easily computed, and well known, but we don't need now
their exact values. Going back to vy (x, s) we must distinguish two cases.
b

If m=nx belongs to the principal series, then L (x, s) =

L(ul - X, s')L(y2 - X, s') as we have seen, and we thus get by (215)
Ly -%» s')Lu, - x, s')
L(X _“2’ 1 -S')L(X "Iv‘l: 1 'S')

(220) EW(X, s) = Y(:ul"X: SI)Y(IJZ =X, s') X

whence
(221) (x> ) = 25 - 2)e( 25 - 1)
Ep\Xe 8) = el - x, S -2kl, - X, 25 - 7).
If on the other hand 7 = 7 is a special representation with M(x) = le ,

“1’“2

which we may assume since 7 ~ T s then we have
Moo M Moyl

1" 2 2’71
(222') LW(X’ s) = L(Ml - X, 8')

and thus

L(I"‘l = X’ s')

= - ! - ! ;
(223) ew(x, s) y(ul Xs 8 )Y(M2 X s s)><L(X “hy, T8

comparing with (220) we get

L(x 'Ml: 1-s')

(224) STr(X’ s) = s(ul - X, s')s(/-‘z - X, s') XL(/JZ - %, s')
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. -1 -1 .
Now put )\2 = B, =X then x - Hy s the character x+—> le >\2(x) since
-1
we assume that MM, (x) = |x|. Hence we get at once
(225) L(X =ppp 1 -8") = LiX -u,, =s'),

so that the fraction in (224) equals
L(X - uzﬁ -S')

(226) L(uz e y

This is one if x - Ho is ramified. In the opposite case, putting again By =X = )\2’
this equals

(227) - = Ng)

an exponential factor as we knew in advance since the left hand side of (224)
must be one in all cases.

To conclude these computations we recall the computation of the factors
Y{(X, s) and e(x, s) in the functional equation of local Mellin transforms. We

start from

(228) L,(-xs 1 = 58)=v(x, s)La(x, s)
¢ i ’
and assuming first that x is ramified we choose P such that
)((x)“1 if xe EF
AN
(229) P (x) =
, 0 if x¢ Ens
hence \
-1
(230) (P(x) = [ x(u) 'rF(xu)du .

E
F

%
Since m (E

F) = 1 we have LEP()(, s) = 1, hence

(231) v({x, s) = ffx(x)-lx (u)-lTF(xu)'xll-sd*xdu = m+(EF)fx(x)_1'rF(x)|x‘l-sd*x .

Since we assume that X is ramified, this reduces to

- pe s a ma e w ass
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+ (d+£)(1-s) -1 *

(232) Y{x, s) = m (E_)N(«) f X (x) T_(x)d x .

F 90 v(x)= -d-f F
If we put

1
+ 2 (d+) -1 * 1
(233) e(x) = m" (ELINW) [ x0T e0d x = vix,s ),
v(x)= -d-f

so that |e(x)

(234)

= 1 if x is unitary, then

(d+f)(lz-s)
VX, ) = e(x)Nly)

If now x is unramified, we choose cF such that

(235)

hence

(236)

We thus get

(237)

and

(238)

Hence

1 if XEzO"F
P (x) =
0 if xﬁ/,ﬂ‘F ,

m+(er) if xe Aaa'd
Plx) = -d
0 if x¢ ‘j .

La(x, s) = [ X(x)|x|sd*x= L(x, s)
¢ s

F

L(P(—X, 1l ~-38)= m-'i(o'F) / x(x)_l|x|1_sd*x

-d

l-s5 *

* () x|*%a %

m (0 )x () “Negg) 1

d(l-s)

"1 x
#F
m o ) i) I, 16

L('X: l's)
Ly, s)

t
=<
2
[oR
Z
3
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We thus get, in all cases, the following value for the factor €(y,s) in (219)

-

) (d+£) (13 - g
(240) e(x,s) = ¢ (X)NC;()

where € (x) is given by (223) in the ramified case, and by
- d
{241) =) = X)
,i—h the nonramified case. Formulas (221) and (224) then yield the values of

8 (x, s) in terms of the '"root numbers'" £ (y).
1T

. i6. The case of spherical representations.

5 We shall say that an irreducible admissible representation = of GF

8 ,sB' herical if its restriction to MF = GL(Z,,@]}) contains the identity representation

of MF' These representations have been well known since a long time (Mautner,

I Amer. J. Math., LXXX, 1958, with generalizations to semi-simple groups by Satake).

B

The results are as follows:

heorem 11: An infinite~dimensional irreducible admissible representation = of GF

éﬂ;gﬁherical if and only if there are unramified characters by and By of F  such

g ﬁi@éﬁ: r = .n.“ " and w is not a special representation, The identity representation
: :f.: 1’72
gf GL(Z,A%;_,) is then contained exactly once in 7. If U}, is the largest ideal on

w ) . 0 .
thigh T is trivial, then W (y) contains one and only one function W  invariant

i 3 0 _ ee s -
dnder GL(Z,:(%;) and such that W (e) =1; it is given by )

0 if xe/(j]:_‘

1

|xlz.Z p«l(Af) pz(é(j) if xe ,{91; .

‘ v+ =v,g (x)

»‘ % 4z 0/x 0} _
3 (a42) W (O 1) )

\
0

_fyy,_t'é then have

(242 bis) fW0<}g ;)) lxl 2s-1 d*x =L (id, s) .
T




1.54
AN
We first prove that’a supercuspidal representation 7 cannot contain the

identity representation of MF = GL(Z,A?];). Suppose a § e%(-n-) =90(F'P) is invariant

under MF ,

(243) (é }f),be/@;‘ ; (0 1),3.6/{9'

We already get 'rF(bx) Ex) = £(x), so that

hence under the matrices

(244) Ex) 0 => xe T

where{J{ is the largest ideal on which T is trivial. Furthermore €£(ax) = §(x) for

all a EU;‘ . Evidently w has to be unramified, and if we now write the functional
T
equation

(245) M'rr(W)g(w'rr-x » 1-8) = v _(X,8) M. (X , 1-8)

£

for Yy = id, we get, since rw(w)& = £,

-1 2s-1 *
JEE™) wn(X)IXI dx=vy_(X,s)

(246)

| 2s-1

= 1ds fg(xl d*x.

But y (id,s) =¢ (id,s) is an exponential function [see (217) and the argument
™ T
%
thereafter] of the form a- ans for some integer n. Choosing a ue F such that
Iul = q-n we thus get

2s8~1 lZS-].

(247) feeh o 60)]x| d'x = af & (ax)| x dx;

since £ (x) depend only on |x| we conclude that
(248) £(x

Comparing with (244) we conclude that

(249) £ (x) :{t 0 => x,x-1 e L.
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But we may choose L in such a way that{/{ =/?P for instance ; then conditions

x e JT and x-l € {/{ are not compatible with each other, and we get § = 0. [The above

a:rgu:rnent is essentially Jacquet and Langlands' proof ; see p. 118 of their paper].

If ¢ is spherical we thus have w = 7w , for some choice of My and

I"l’ l"‘ Z
the fact that Tru i contains the identity representation of MF if and only if
) A

and /JZ are unramified with 7 non special is clear (in the ''special'' case the

#2;

By

is that one-dimensional component of P we have

jidentity representation of M

discarded to define , so that it is not contained in ). It is no less clear

that the space (8 of then contains only essentially one vector invariant

under MF’ namely, the functions (;0 such that

. 1
(250) (_P[(B' ::')m:l = ul(tl) 'uZ(t”) lt'/t”lZCP(e) .

To compute the corresponding Whittaker function

(251) W) = n)ipW = fchw'IG) '{)g]?F (v) dy
? viy)=m

by (134), it is better to replace brute force computations by a recursion formula ex-

pressing that W is an eigenfunction of the Hecke operators, i.e., that W satisfies

conditions

@252) WK}, ;‘)g:} =76 W) w[(f) 2) g] = () W)

and, in addition,

(253) W*a=Na)W

for every o G%F left- and right-invariant under the compact group MF’ where ()
N

is determined by the fact that the function (250) satisfies the same condition as W.
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]
If « is the characteristic function of a coset MF h MF , we get

Nb) W) = [Wey ™) aly) dy = [ Wy dy

M_hM
(254) FOOF

= E W(xmhnl)

-1
MF/Mth MFh
@ o

If in particular we choose h = <0 1> where (0 is a uniformizing vari-

F;ifwe

able, we see at once that Mth-lMFh is the subgroup ¢ =0 mod/(/f of M
) in MF , then the

denote it by B, and by U the subgroup of matrices (é :
Bruhat decomposition for the GIL(2) group over the finite fieldx(?’/,éf shows that
(255) M = BU Ugpgw B

Hence (254) can be written as

(256) WE‘@‘I fﬂ +ZW|;<B ?) w(‘z-l fﬂ - AW )

ne,ﬁ/,y
: 7
It is of course enough to compute the numbers Wn =Wy 1] We then get at once

a -1 n
hWn - Wn-*lj- ww(@' ) E TF @) Wn+1 !
(257) neAT 4

-1 n
W.n-l + ww(@' ) W’n+1 Z TF (@)
’fle/@’/é/

It should first of all be observed that if we denote byléf -d the largest

ideal on which TF is trivial, then

#

AL
"~

These results, which are trivial for GL(2), can be extended to general reductive groups;
see N, Iwahori and H. Matsumoto (I. H. E.S., no. 25, 1965), or R. Steinberg s notes on

Chevalley Groups (Yale, Dept. of Mathl, 1968), or forthcoming papers by F. Bruhat and
J. Tits.
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(258) w_to ==>a‘7nesz'd ie., n> -d

because of the fact that, if m €47, we have

@™ o\[1 n] B n
(259) Wn'WKo 1)(0 1) sTp@m W

If n> -d, then (257) reduces to
-1
(260) qwﬁ@ ) Wn+1 - )\Wn + Wn__1 =0

where q = N(g) = Card (49/,130 ). The formal series

+o00 @n 0
(261) W (X) =Z W x® = Z W(O 1) x"
-d

thus satisfies

(262) [XZ - AX qw"@”l)] W (X) = qw"(@“l) w_ x4,
whence
-1 -d
n qw_W) W X
(263) E W(‘?,f) X% = n'd : -d —
' T e AX 4+
qu(g) X ]
The factor A is computed at once in terms of the characters ui(x) = | x| Yif we apply
(256) to the function (250) for x = e ; we get
s s
1/2, 1 2
264) n=ql 2 teq 2
while
s.+s_+1
-1 1 "2
265 =
(265) qu(lj/) q
hence
s, +s_+1
. U2y ) <-4
w X" = -
n s.+t1/ 2 s 41/ 2
X - 1 X - 2
(266) d d
0 )
- -d -i(s1ts) i ~j(82+3) J
X z q 2 X ; q 2 X
0 . 0
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Y ]
from which we conclude that
n ~d 1 1
G0 w(@ O Z -i(s145)-j (8 2+3)
(267) W(O 1) = W(O 1) q 2 2
. i+j=n+d
n d -d
& 0}  -—=, nl 2 @7 O|e—— i j
(268) W(o 1> =q 2 |& | W(o 1]~ @) u, @) .
i+j=n+d

This formula leads at once to the proof of Theorem 11, including (242 bis).

17. Unitary representations: results

Let = be an admissible representation of GF on a complex vector
space V. We shall say that 7 is pre-unitary if there exists on )" an invariant
positive-definite hermitian form (§,n). It is then clear that the operators w(g) can
be extended to unitary operators on the Hilbert space obtained from U by completion.
We get in this way a unitary represeﬁtation of GF in the classical sense ; we call it

the comBIetion of 1.

Lemma 10: Let w be a pre-unitary admissible representation of GF on a vector

space 7/~ Then the completion of w is topologically irreducible (no invariant closed

subspace) if and only if # is algebraically irreducible.
A /\

A
Denote the completion of ¢/ by ¢/ and the extension of w(g) to Y by

A
%\-(g). For every irreducible representation A of M , let W’(/}) jy(ﬁ) be the sub-

A
space of vectors ¢ GV which, under Q(MF) » transform according toA?. The sub-
A A
spaces U/ ({%) are mutually orthogonal ; since &/ is evidently the Hilbert direct sum

of the various /" (#9) we thus sée that
A

(269) V= Yu

N

in other words V is the set of 9_1_1 MF-finite vectors of ?/’ Since MF-finite vectors
A

are dense in every closed invariant subspace l/% of U/ (for trivial reasons MF is
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compact) we thus see that such a subspace is the closure of its intersection with &/,
I;Ience irreducibility of 7 implies irreducibility of 7. On the other hand let I/M be
an invariant subspace of V since U = 21\9 V/.?) and since U% = @1/‘( where
l/f/(w’ (/6{m VU we see that the closurem of M, which is invariant and given by
(/ﬂ— M([}) , is nontrivial 1ft/i’(/ is. This concludes the proof of the Lemma.
We shall now state the main result:

Theorem 12: The pre-unitary irreducible admissible representations of GF are the

following ones: .

(1) the supercuspidal representations w such that lw &)| =1;
ny

(2) the representations Trl«l u of the principal series for which By
1’72

and /.tz are unitary ;

(3) the representations LIV of the principal series for which
1’72
M) = My o and ux = |x|%, 0<o<1;
(4) the special representations r for which |w ®)| =1.
™

In these four cases, the invariant scalar product is furthermore given, on the Kirillov

e
4

model of 7, by (270) E,m = [§x) nk) d x . The theorem will be proved in several
steps.

18. Unitary representations: the supercuspidal case

Let 7 be a supercuspidal representation, and assume | w &)| =1. Let
T
?/' be the space of v and denote by <. , .2 the canonical duality between V and the
v v
space U of 7. Choose once and for all a nonzero vector &0 ¢ /' and consider, for

any two §,7m € U, the function

g <r@%t , 2;0><'n'(g)1’l , Z"O> ;
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it is invariant mod Z_, and, by Theorem 3, its support is compact mod Z We

F F’

thus get an invariant scalar product on U by defining

(271) (.m) = [<r@E, LP><rlg)n, {,> dg .
GF/ ZF

It is positive definite, because (§,§) = 0 implies that £ is orthogonal to dll \Tf-(g)éo,
hence vanishes since j is irreducible. Hence ¢ is pre-unitary, and this proveés
part (1) of Theorem 12.

It should be ovserved that if n is given as a Kirillov representation,
so that ?/g%(rr) = g(F*), then the scalar ptroduct on y(F*) has to be invariant under
the irreducible family of operators
(272) {xr E6)} = {xr 7 bx) Elax)} ;

this leaves no choice, and we get, up to a constant factor,

(273) €,m = [£x) N 4 x,
as asserted in Theorem 8.

19. Unitary representations in the principal series

Let m be a pre-unitary irreducible admissible representation on.a
t v

vector space U We can then define a semi-linear mapping J U~ U by
(274) (€,m) =<§, Jw ,
and the invariance of the scalar product means that J ¢ r(g) = ;(g) o J. If we consider
the conjugate 7 of 7 [defined by replacing the complex structure of U by the
conjugate one] it is clear that J will now define an isomorphism between T and 7.
Conversely such an isomorphism defines on Y an invariant nondegenerate hermitian

form

(275) J(E,n) =<&, In>
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which, however, may not be positive definite.

Now suppose that w = = ° . We know that ¥ = 7 It is clear
Hll H 2 -“1’ ",U 2
on the other hand that 7 = 71— — consider the mappin () from to
Bﬁ- —]. For ¢ tobe quasi-unitary we must thus have
1’
(276) T

~ T
-Hl! -uz ul, /-‘2

i.e., (Theorem 7) either (-pp,=i,) = (U}, H,) or (-p,-p,) = (/.72,171) :

The first case means that ,ul and ,uz are unitary. In this case there

actually is a positive definite invariant scalar product on (13“ u namely,
1’72

@ = o Q&) V) dg = ¢ (m) ¥ (m) dm
M

P /G -
1ol (s ) F ) =
= f §(P (x) d x

by Plancherel's formula [use (113) and (120)]. This proves the case (2) of

Theorem 12.

Suppose now that My T ;72 »omH, F ;71 i.e., that

(278) M) b, ) =1

56
If we assume we are not in the case already studied then we have

-2
|77 = ||

(279) ) =) p, )= lu, &)

with a real exponent o # 0, since otherwise My and My would be unitary. Since

A

~ we may even assume 0 2 0, and since the special representations

e

& o

e i A AL A A . . A & Aam e A
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are excluded for the time being we have o f: 1. This will allow us to construct an

"intertwining operator"

(280) A 'Bul,uZH Buz,ul S Pepy, ik,
given by
(281) AQ() = fcp[w(t i‘) g:l dx .

This integral converges since we have

oo 2) N it -

for |x| large, by (119) ; and the fact that A defines a mapping of @” u
1’72

[y

in

(B,u compatible with p .and p can be seen easily. Of course (¥)
2,

A %0,

It is now clear that if there is a positive definite invariant scalar

[we exclude the special representations for

product on the space (3 of w

the time being] it is given by
@y @y) = <A@ s P> =c § A le) - §,l) dg

PF/GF

'

cfA@l[“’d(l Xﬂ [ ( )] -

with a constant c. But for a ut
CF @IJ /42 P

(284) b ) = Pl w '1(1 . 9'e Aq)[w'l(l x)];

we have, by the definition of A,

(283)

(*) Use formula (285) below.
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o' =sg (3 %)="(s 11 - selly 6 3]

(285) - ICPC, 1+’;y> dy = fu'l(y)lvl'ICP(l-%‘y-\) dy by @7)

sk b _1
=[QE+y) uty)dy  where dy=ly|” dy.

Hence if we put

(286) CPJ_W-I(%J f)] = ¢, )

we get

(287) @y Py) = ef ), ) B 60 ax = cf [, bety) B, 60 |y]axdy

We thus see that Trl“‘l’ u, is unitary if and only if there is a constant c (o) + 0 sucI;
that

(288) c)f [Pecty) P ) |y|%axd’y > 0

for all Cb 67 (u) - cf. Lemma 9. Since this must be the case a%least for all d) 590 (F)

nn

o ¥ s R 5 .
we see that the measure c(O')IyI d y must be pos1t1ve-def1n1te|.'m‘l,f'conversely this
e

o
‘q-'_ ("‘ f‘
DERNTL

condition is satisfied, and if we consider, for any CP € S"/(u), th’g,-fo}os;:i;tive-definite
A
('ly o f
function - E%
, i
P &
(289) T(y) = [Plety) § &) dx , '

o K
then c(o)\If(y)lyl d y is a positive-definite measure with finite total mass, from which

it follows that [c(0) ly)|y|%d y> 0.

We thus see that the representation 7 under consideration is
- " “1, I"t 2
unitary if and only if lyl d y is proportional to a positive-definite measure, i.e.,

: . T ¥ . : ps
if the Fourier transform distribution of Iyl d y is proportional to a positive measure.

But it is clear that this Fourier transform induces on F a distribution proportional

g 4 \‘\”“

c((\'!" !

PO T B
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v
to lxll-cd*x. This cannot extend to a measure on F unless o <1.
If conversely we have 0< o<1 then by (167) there is a constant v (o)
such that
A o .® 1 l-g *
(290) [oWIyl"ay =57 Toex]""d =

for all (b € EP (F), which means that |y|admy is the Fourier transform of the measure

1( ) l-cd*x. We then get an invariant scalar product on (3 by putting
v (o 1’ uz
(('Fl’ (PZ) = y.(o)f f(l)l(x+y) 4)2 (x) |yl c dx d=.=y
(291)
=Y(©)f ICPl[W- (o X+Y>J sz{ -1(1 xﬂ ly|%axd’y
i.e.,

(292) @y @) = v(c)HCpl[ ( };ﬂ —QBZEW-I(E i’) |-y| 7 axay .

l‘)
This concludes the Pg,oof of assertion (3) of Theorem 12.

sy
Wé?i’mll’have to prove that (q)l’ qOZ is given by formula (270) in terms
Do
" |

of the images gCP §g‘;§1d ECPZ of (PI and CPZ in the Kirillov model of L upo i,
ENT)

But we have 8

@ @) = 10,60 ax - yEIf i)yl &y
(292)
A - -
= J'J‘(Pl(z) 'TF(XZ) ¢2(x)|z|1 o

A
since the Fourier transform of yr (Pl(x+y) is evidently z v+ (pl (z) Te (xz). Hence

(293) @ @) = f¢1 520 |2

,’””:

),"\/-




1. 65
and since we have in a general way
(294) ) = u, @zt 2 [w-l (g {)] Tplyz) dy
by (134), we get
(29) Qp @) = [ @, @ [y 2 sl ™ 2] "
P9,
which, since |/.tz(z)l -2 = lzlc in this case, eventually leads to the formula of
Theorem 12, namely
296) @, ) = [&o G0 5 60 d x
@ @) = I ¢,% %,

The convergence is clear from the table on p. 1.36.

20. Unitary representations : the special case

Let w“ u be a special representation ; we may assume that u (x) =
1’72
- v
lxl . If r is pre-unitary then w~/ w, which, as we have seen for the principal series,

implies that either My and M, are unitary, which is clearly impossible here, or

ul(x) uz(x) =1. We thus see that if 7 is to be unitary then we must have

' 1/2 -1/ 2
297) po ) = | x| / X)) . op, ) = | x| / X (x)
with a unitary character ¥X. ‘
0
The space of = is the hyperplane of defined

by the (invariant) condition

(298) f(pl:w-l(t ’;EI dx =0,

and the space of Tea is the quotient of @ — by the one~dimensional

Hp=He 1 K2
0 0
subspace orthogonal to@ . One should observe that since 03 is invariant
Ml’ Hz M “1’ u 2
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under P we have
/41: “2
.11 x -
(299) fo Lw (0 1> g] dx = 0
0 . . . .
for all CP € and g € GF’ which means that the intertwining operator
. 0 . .
g here vanishes on . We thus cannot use it to define a
0
nonzero invariant scalar product on@ g However, since we have here o =1
1’72

0 .
in the notation of the previous n , it would be natural to define the scalar product by

a limiting process, i.e., by

G @) = Lim ¥ °)”CP1[ ( ) (Pz o 1)] [xey1% axay

0=1-0
(300)
. A A l-o
= limy [9,@0,@ [=]" " da;
0
since the condition for a CP € ()B to be in@ means that the corresponding
Mys K Koy M
"2 | R

function

po-op 3

PN
satisfies Cp (0) = 0, we see that the limit under consideration does exist, and that

N — 3 — K
(302) @, @) =[O, ) P, 00 d x=fE, &) Ey &) d x
Gr @) = 19,5 B, H9,% %o,

To conclude the proof, we need only to check that the above scalar product is invariant

under LIV The invariance under triangular matrices being clear, we need only
1’72

to check the invariance under w. To do that we first compute, for a given CP 03 .y
1 2.

the number

(303) lim vy (o)fq)(x)lx-y\o-l dx = lim vy (cr)fCP(x+y)|xl o d*x .
o1



It can be seen at once [use (240) and (241)] that

(304) v (o) = lﬂ—lq where q = N%) .

Assuming y = 0 we thus have to compute

o ¥ o . %
(305) i LOEN " dx . [O) (x| -]x]) d x
o-1 o-1
l-q l-q
0
gince MJ (x) dx = 0 inﬂa TR Taking derivatives with respect to o (L'Hospital's
1’72

rule) and observing that ~
(306) %lec = |x|010g|x| = —Y(x)|x|olog q

we eventually see that

(307) lim y(g)fd) cty) | x| © d'x = q'd/

20-Yf pocty) v ax
o—+1-0 d

0 e e s ees
provided of course that 603 "o .; the derivation under the [ sign is justified because
1’72

of the fact that the integral f(p (x+v) “f(X) dx is absolutely convergent.

We now get

@ @) =1im Y ) [, 60 §, )| %y T ax ay
(308)

Y 2(1-%{)f 16,60, y) vieny) dx dy .

We can now prove the invariance under mw(w). We have [we neglect the constant

q-d/ 2(1- la) in the following computation]




1,68

(r W), » w#P,) = [ [P [ (1 xj Jcpzl: ( V) w

v (x~-y) dx dy

1 0

- HCPl (—x 1) CPZ (]S-’ (i) v {x~-y) dx dy
(309) = 11O, (-x"h] x| 20,y Iyl ™% viemy) ax dy
= [ 1D, 60 B, () v by ™ ax ay

= 1P 60 B, ) [vy be-y) = vey)] ax dy

so that it remains to check that

(310) [ I®,60 b, 7) viey) ax dy = 0.

But this is clear since we assume that fd)l(x) dx = f(PZ(y) dy = 0.
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§2. The archimedean case

In this section we assume the ground field F tobe R or €, and we
intend to show how the results of §l can be '""extended' to this case (a not too
surprising fact, since the archimedean case was studied twenty years before
the /b”-adic one..,). We still put GF = GL(2, F) and let MF denote the
obvious (i. e. orthogonal or unitary) maximal compact subgroup of GF.

We shall not here give full proofs of the results because of two reasons.
First of all we see no way of substantially improving Jacquet and Langlands'
account of these results (§§5 and 6 of their monster). Secondly, the theory of
unitary representations of SL(2, R) and SL(2, €) has been well known to
many people for quite some time now, and extending the results to (non

necessarily unitary) representations of GL(2, R) or GL(2, ©) is a com-

paratively routine matter,

1. Admissible representations

*
Let 7 be a representation of GF on a reasonable topological vector

space Ff; for each x ¢ GF we have a continuous automorphism 7(x) of
;ﬁ, and the mapping x> 7(x)§ is continuous for every § ¢ % We can
then define an operator #(f) on }f for every, continuous function (or even

measure) with compact support,.by means of formula

(1) m(£)§ = [ 7(x)§- f(x)dx,

and the mapping frH—> 7(f) transforms convolution products into products
of operators. For closed subspaces of 76, invariance under W(GF) is
equivalent to invariance under 7(f) for "sufficiently many'' functions f.

Let ~J be an irreducible finite-dimensional representation of MF;
define

(2) XNO (m) = dim(~J) Tr[+/(m)]

We shall assume that 7 is locally convex and that the closed convex envelope
of a compact subset of 74 is still compact. This makes it possible to integrate
continuous functions with values in 76 and compact support.



-i,l

forall me M so that * = . Considerin as a measure on

GF (with .support MF), we get on Zf a projection operator

(3) ’ E(dJ) = w&qj

on a closed subspace H(,J) of }£ --the space of vectors £ ¢ 4 which, under

) = [ 7(m)-X_; (m) dm

7r(MF), transform according to a finite multiple of .

The subspace

(4) #, = /@ ()

(the sum is direct) is dense in 2’6; it is the set of all M_ -finite vectors in %

F
[vectors the transforms of which under =(M_) generate a finite dimensional

subspace of ?é] Though 750 is stable undir W(MF), it is generally not stable
under ’IT(GF); this is the main technical difference between the archimedean
and the Af—adic cases. However 7{0 is stable under many operators m(f),
e.g. those for which the function or measure f is left MF—finite (i.e. such
that the left translates f(mx) generate a finite dimensional vector space), or
is such that the transforms f(rnxm-l) of f under the elements of MF stay
in a finite-dimensional space, etc.

We shall be interested mainly in those representations for which # (3)
is finite~dimensional; this is true (under mild assumptions of a topological

%
nature ) if 7 is irreducible (no invariant closed subspace) - in this case we

* *
always have dim Z(.)) < dim(/,})2 and even

—
These assumptions are automatically satisfied if 7 is unitary, or finite-
dimensional. See R. Godement, A Theory of Spherical Functions. I (Trans.

Am,. Math. Soc., 73 (1953).

* %
Formula (5) can be proved without looking at the classification of irre -

ducible representations by first checking it is satisfied for finite-dimensional
representations (which,if F = €, rests upon the Clebsch-Gordan formula
for decomposing the tensor product of two representations of SU(2, ©)), and
then making use of the general principle explained in the paper quoted in foot-
note (*), where a complete and direct proof of (5) will be found.




(5) dim #(+/) < dim A~/

which means that every irreducible re‘presenta.tion of MF occurs at most once

in every (reasonable, e.g. unitary) irreducible representation of C-F. In any

case, as soon as a representation 7 satisfies
(6) dim #(.F) < + o

for all »f, the vectors £ e %0 are "analytic', which means among other

things that the 'coefficient' <w(x)§, m> .is an 6rdinary analytic function on the

real Lie group GF for every continuous linear form m on #; and for every

£ € 75 and every distribution u with compact support on G there is in a
0 y P P F

vector w(u)§ such that

(7) <rw)§, W= [ <n(x)§, n>du(x)

for all mn.

There are two obvious cases where we have 7(u)§ ¢ Zéz) for all § e %O:

if pu is a Dirac measure at a point m of MF --then 7(u) = 7(m), evidently--
or if the transforms du(mxm-l) of 4 under the elements of MF generate a
finite dimensional vector space, e.g. if u.¢ Z{(,?), the algebra (under con-
volution product) of distributions with support reduced at e; it is well known
that f((,?’) is canonically isomorphic to the envoloping algebra of the complex
Lie algebra' g of the real Lie group GF; and its elements can be identified
with left invariant differential operators on GF: the operator defined by u

is fl—> f * ;j, where ;‘f(x) = u(x- ).

*
We can now define a '""Hecke algebra' WF as follows . We choose

(8) AHe = U if F=C

because, since G(CI is connected, there is a good chance that the map

(representation of GF —> representation of ,7) will be one-to-one. If F = R

we cannot entertain such hopes, and something must be added to ﬁ(@y) in

*
Jacquet and Langlands chhoose a much bigger one. Note also that Hecke never

developed a taste for Lie algebras...

B R 7 TS

e e st
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order to take care of the two connected components of GBR' We add to Z{(?}

-1
the Dirac measure ¢ at the point (O _3) of GHR' In other words we define

(9) : WF=Z<<7)@9£_*Z((¢;> if F=R,
the algebra (under convolution product) of distributions whose support is con-
tained in the subgroup (jé)l f) of GF.

If 7 is a representation of GF on a topological vector space % and is
such that dim 2{(4}) <+ oo for all »/, then we get in a natural way a repre-
sentation (still denoted by 7) of }/F
with every closed subspace of of ;g, invariant under T[‘(GF), the subspace
fo = of/) ]@0 of ?{0, we get in this way a bijection f > IO on the

set of subspaces of Zgo invariant under w( HF). For unitary representations

on the subspace %0; and if we associate

on Hilbert spaces the correspondence between representations of GF and

representations of %F is furthermore one-to-one.
These well-known facts explain the following definition of admissible

representations. ILet 7 be a representation of the algebra M. ona complex

F
vector space /. We shall say that 7 is admissible if the following conditions
are satisfied:

(i) the restriction of 7 to the Lie algebra of MF decomposes into

finite-dimensional irreducible representations, with finite

multiplicities;

(ii) for every £ ¢ % and every me V" (see below) there exists on

GF a function, which we denote by <7(x)£, w>, such that

(10) <m(u)g, n> = [<r(x)§, n>du(x)
for all ue %F

v
What we denote by 27 is of course the set of all linear forms on 7 which,
under the transposed of the operators =(u), transform according to a finite

dimensional representation of the Lie algebra of M If we denote, for a given

P
irreducible representation ~J of MF’ by ’V(nj) the set of all £ e 7" which

transform under a multiple of ~AJ (we consider ~J as a representation of the



obvious subalgebra of Q/F as well), then condition (i) insures that

(11) | VBV, - =0 VW) CV,

and its purpose is of course to avoid considering representations of ”F which
do not correspond to representations of GF (note that GF is not simply con-~
nected, even if F = €, and still less if F = R).

For an admissible representation 7 of %_. on a vector space v,

F
irreducibility will mean the usual and purely algebraic concept--no invariant
subspace whatsoever. Condition (ii) implies that 7 can then (in many different

ways) be realized on a space of functions on G More accurately-there is al-

F
ways an isomorphism §+H—> Cfg of UV ona space of functions on GF with the
following properties:

(a) the functions Cfg are analytic and right MF-finite;

(b) for every § e V" and pu e WF we have

te Prure = P ™ #-

Such an isomorphism can be obtained for instance by putting

(13) Py lx) = <r(x)E, 7>

v,
with a given non zero n€ ?/; in this case the functions Cpg are alsoleft

MF-finite. But as we shall see there are other ways of constructing irreducible
admissible representations by letting D/F operate through right convolutions

on function spaces.

2. The representations p
leuz

*
Let ul and “2 be two characters of F . As in §l we shall denote

by 6 the space of functions c?(g) satisfying
“1’“2
tl * - 11 1 1" 1/2
(14) P, .8l = pytm, e/t “ple)
and which are right M_ -finite. It is clear that /5] + A C [y ;
¥ Mk, P Bsky
hence a representation p of %F on @M given by

IJ]_:U-Z 1,u2

N




(15) u o ) =@ X

for any X ¢ . This representation is clearl admissible: the functions
y I p y ‘}0

are determined by their restrictions to MF’ which are '"trigenometric

polynomials' on MF. The first fundamental result is

Theorem 1. Every irreducible admissible representation of 9./F is contained

in a representation p .
Hls“z

*
This is in fact an already old result of Harish-Chandra's » valid with

minor modifications for all reductive real Lie groups. It means that the super-

cuspidal representations of §1 do not exist here--there are not many analytic
functions with compact support mod ZF’ either. ..
To get an elementary proof of Theorem 1, one first needs to select a

basis of 6# " adapted to the action of MF; we shall explain it in the case
1’72

where F = IR, the other case being similar.

We can write
si m,
(16) u(t) = [t| “sgn(t)

with m, = 0 or 1; the character M= pg - By then is given by

S m .
(17) ul(t) = lt| sgn(t) s=s - S, m = Iml - mzl
For every integer n= m (mod 2) there is in 6# " a function ?n such
that I'me
(18) cos ©® sin 6) _ eme

n-sin6 cos 6

* %

and only one since GF = PFMF where PF is the subgroup (O « ). The set

of functions is a basis of Now the complex Lie algebra =
Mz((CI) of GL(2, R) has a basis whose elements are the matrices

*
Harish-Chandra's theorem actually states that every irreducible admissible

representation of 2( ) can be realized on B'/B " where B' and B
are two invariant subspaces of a suitable /31-1 u.’ with @ "C B, But for
1’72

GL(2) it turns out that we can always choose A " = 0.



(19)

and it is easy to see that

20 p(U)p = ing . p(Z)p = (s + 5,09 0
VIR =(s+ltm)e o, pV)g =(s+1l-n)¢ .,
where we write p instead of pu o Furthermore the Dirac measure ¢ at
1’72 )
<1
(0 +1) operates as
™
(@) ple )@= (1) @_.

Since it is clear in advance that every irreducible admissible representation
of %F has a basis whose elements are eigenvectors of U, it is easy, by

making use of the classical computations of Bargman for the unitary repre-

sentations of SL(2, R), to see that every such representation can be imbedded

in some p

“1”"2'
3. Irreducible components of p (case F = R)
“1’”2
Assume F = IR. The relations above show that
. b ) ]
(22) p(V+) CIDn-— (s+l+n)...(s+2p 1+n)fpn_l_Zp
p e - -— -
(23) , p(V_) an =(s+1l-mn)...(s+2p -1 n)an_Zp.

It follows that p is irreducible if there is no integer n 2 m mod 2 such that

sz n+1mod 2; in other words p is irreducible unless
(24) szm+1lmod?2,
which means that

gn(t)" = tPsgn(t)

(25) uie) = |t 29

for some integer p [writing u(t) = |t|ssgn(t)m we then have s = p and

mz= p + 1 mod 2].
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If u(t) = tpsgn(t) for some integer p, sothat s = p and mz= p +1 mod 2,
we must distinguish-two cases depending on the sign of p.

In all cases we have, since s = p=m + 1 mod 2,

(26) p(V_)L;Dp+1 = p(V+)q>_p_1 =0,

and p(V__)cPn £ 0 for n# p+1, as well as p(V_i'_)f‘on;é 0 for n#£ -p -1. We

find at orice the non-trivial subspaces of U invariant by 2( (»g); there are
' 1’72

three of

p'>0

] [ .
) ._l -p-1 . I_p+1

|

L

| p<0
J

pt+l -p-1

them, namely the two subspaces below:
{c LI ) Cfﬁp"5’ ?_p_3’ ?_p_l} L]
Qo1 Ppest Ppusr -

and either. their intersection ¢if p < 0). or their sum (if p > 0). If we take into

(27)

account the operator p(e )}, which maps on + , then we see that
p ple _ P n —T-n

@“ " contains only one non trivial subspace invariant under p( 9-/F) if
v
p# 0, and none if p = 0. We eventually get the following result:

Theorem 2. The representation p of H is irreducible except if

(28) u(t) = t¥sgn(t)

for some integer p £ 0.

If p>0 then 6“ u contains exactly one invariant subspace
1’2
s
(29) & bk, o @ Ppr Pt Pprsr o)
. £ s e . .
and the quotient B =B /6 is finite dimensional.
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If p<O0 then the only invariant subspace of 6# u is
1’72

£ .
(30) Z Hioky - {CPp+l’ ?p+3’ B ?—p-3’ ¢ —p-l} ’

it is finite-dimensional, and the quotient

(31) - pc =B /8t

is infinite dimensional.
We shall denote by 7 the representation p if it is irreducible,
My Moy U
) 1"72

or, in case it is not, the obvious representation on the finite dimensional space
@Z R The representation on the infinite dimensional subspace or quotient

1’72

s will be denoted by © : it is defined only if u(t) = tpsgn(-t) with a

non zero integer p. With these notations we get a complete classification of
the representations:

(a) every. irreducible admissible representation is a 'ﬂu i or a
1’72

o H
uliuz

(b) we have the following equivalences between these representations:

(32) m ~ T
(33) (o] ~ T ~C L + ~C +
where n(t) = sgn(t);
(c) there are no other relations between the jrreducible representations
than the ones listed above.
The infinite dimensional 71“ u make up the principal series; the set of repre-
1’72
sentations ¢ will be called the discrete series.

IJ'l:IJ'Z
It should be observed that if u(t) = tpsgn(t) with an integer p < 0, then

the sub space




Y
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(34) @f ={P - P}
Kok p+l -p-1
6 . . . -1 P
of i can be described quite simply. In fact we have MM, (t) = t sgn(t),
r’v2
hence every ﬁo € @ satisfies
His M
1’72
tr X ' /2
- i 1 1 H
Plly el = w(tm, (e e/ ] 5 “e(e)
- 1411 an (B 1 1A 1/2
(35) = py(eree Tsgn(e) e/t 5 “p(g)
/2, -p-1
— r4-11 1411 "
= py(t't )| trt |R t P (g)-
Hence 6 - contains all functions
“19N2
a b 1/2
(36) () = u(det g)| det g|m f(c, d)

where f is an homogeneous polynomial of degree - p -1> 0. The set of these
f

functions is clearly B .
MISMZ

The equivalences (32) and (33) are easily explained. If we consider

the (not always irreducible) representation p” u. which is described by
| ]
formulas (20) and (21), then p“ u is obtained from these formulas by replacing
22771
- ' i i
s by -s and m, by m,. If we denote by ((Pn) and ((P n) the canonical basis for
48 and B , and if we assume first that u(t) is not tP sgn(t), then we
Hl’ u 2 M 2? ”1
get an “isomorphism T of @ on 3 , compatible with the action of
Mo M | )
1" 2 271
7‘( by
R
]."(-S +21 + n)
- 1]
(37) TCPn s+1+ncpn
rE et
[Observe that if either S“*'zﬁl_ or _'_§__‘|'_2_1_j_2 is a negative integer then s = m +1

mod 2 , which is impossible' if we are not in the discrete series ; hence T is defined

and bijective] ; (32) follows from this construction. To prove the ¢ ~ O
”1’ M 2 M 2’ IJl
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part of (33) we may assume that s = -p =m +1 (mod 2) with a positive integer p.

The number

(38) a_ = lim

@u given

is then defined for every n = m (mod 2) and the mapping T : = u
' 2’71

“1’ I“ 2
_ , . . . . .
by TCPn anq)n still commutes with the actions of }(R It is easily seen that

f
Ker(T) is the invariant subspace @ of (B , and that T induces an

s f s
isomorphism from (8 = @ /@ onto the subspace 03 of
03 , from which o ~ O follows.
”2! I»‘l ‘ ul.! IJZ “2, “1
Finally, to prove that o o we may assume that
y. P "Y' PRI L VPR Y

ut) = tP sgn(t) with p> 0. The representation OP u restricted to the subalgebra
) A
2(,((5) of }(]R. then decomposes into a direct sum of two invariant subspaces, namely,

{Cpp Y CPp L3 } and {..., (P -3 Cp_p_l} and we have a similar decomposition

. 1 ] ]
into {Qo'p+1’q7 P43 } and {,CP _p_3,Cp -p-l} for OM1+11, I«‘Z"‘Tl‘

We then get at once an intertwining operator T by requiring that
(P' n if n>0
(39) T(Pn - {-(P' if n<O0.
n

4, Irreducible components of p (case F =C). If F =C the situation is similar

N

#1’ “ 2
to what we have just seen except that there is no discrete series. The fundamental

result then is .

is irreducible except if

——

Theorem 3. The representation of

!1




2N
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(40) pt) =tP T2 with p,qe Z and pq> 0.
If pu) = tP T with p>q < 0 then [3’ contains one invariant subspace B £ ;
it is finite-dimensional and spanned by the functions
a b\ _ -1/ 2 -
(41) ({c d) = ul(det g) | det gl C @l(c, d)(pz(c, d) ,
where d}l and (DZ .are homogeneous polynomials of degree -p-l1 and -q-1
respectively. If u(t) = tP T with p-q > 0 then JSH i contains one invariant
|
s
subspace , namely the orthogonal supplement to
ubsp @u”u y g pPp-¢ —@-u,bu .
| R 1 2
If we denote by pn the ©-rational irreducible representation of
GL(2,C)[or }( C] on the space of homogeneous polynomials of degree n-1 in two
. _.p—q — f
variables, then for uft) =t t we see that the restriction of p to@
Moy M Mo M
172 1" 2
yields a representation = equivalent to
TRy
T2
(42) udetg) | detg | o/ 2p @B (@)
1 C -p -q

which is the most general irreducible finite-dimensional representation of the real

Lie group G In other words p fails to be irreducible if and only if either

P or its contragredient p

contains an irreducible finite dimensional
IJI, M 2 ul, ~u 2 I

representation of G(CI ; this result is actually valid for all fields F.

te

For every couple of characters Mp M, of © we shall now define an

irrediucible representation L as follows. We shall take
-2

(43) T =p if it is irreducible ;
Bk, Mooy

and if it is not then LIV will denote the finite dimensional representation contained
| R

(as a subspace or as a quotient space, depending on the situation) in p

#1;#

2




If uft) = tPT? one can also define a repré€sentation o on the infinite dimensional

His By

s s f
subspaceOB if pgq > 0, or quotient space@ = 3 / ’ if pq < 0.

Kby Ko by L) Kok,
However, it can be proved that
(44) o =mw

ik M1Y2
where Y1 and VZ are defined by
-374q =14

(45) v =t Tty o, Vo) =t ou,(t)

if uf(t) = t? T, Jacquet and Langlands! proof of (44) [bottom of p. 231l of their
q g

paper] rests upon a general theorem of Harish-Chandra for semi-simple groups,
and is not very illuminating. Somebody ought to improve it by explicitly constructing

an isomorphism between the representation spaces of o')J u and LI
172 1 2

We finally observe that the only nontrivial equivalences between

irreducible representations of G@ are obtained from

(46) T ~ T .

5. Kirillov model for an irreducible representation

We again let F denote R or ©, and we define

e 2mX if F

if F

R
C .

il

(47) T . (%) =

i

eZ'n-i (X + -}Z)

Theorem 6. Let 7 be an irreducible infinite dimensional admissible representation

of }(F on a vector space U‘ Then there exists an isomorphism £~ W§ of U’Pﬂi

é space &) ) of functions on GF with the following properties:
by \
?; (i) we have
1 x .
(48) | W, [(O ‘) g] = TR (AW, (@)
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for all xe F , ge(}F and E,EU/;

(ii) each W, is c® and

g_ —_

\"4
(49) Ww(X)g = Wg * X

for all £ ¢/ and Xe}{F;

(iii) for each £ e(* there is an integer N such that

(50) Wg(f) ?) :O(Ith) as |t| > + .

The space ZJ(n-) is unique, and the mapping £+ Wg is unique up to a constant factor.

The method of construction of %/ (y) which we are going to explain uses

heavily the classical '"integral formulas' for Whittaker functions; we could have used
it for the principal series over aj-adic field as well (as Jacquet and Langlands
actually do).

We may assume that r is contained in a representation pﬂ uo
| R

Since p ~p we may assume that |u(t)| = |t|cr with o> 0.
s M Ty’ F -
1772 2’71
. 2. 2 .. .
We now consider on the plane F  the space go (F7) of all MF-f1n1te functions ¢

2
in the Schwartz space _(f(F },*and for such a ¢ we consider the function

51 i) = u el ae sl 2 jp[a () Juw ot

the integral converges always at infinity, and it converges around t =0 as soon as

2
6> ~1. It is more or less obvious thatgb > QO maps yO(F )} onto Bu In fact,

1 H2 e
the map is surjective even if we replace yo (FZ) by the much smaller space of

s
58

functions of the form

)

In the following argument X,y,t,a,b should be assumed to be real if F = R.



(52) CP (:) = I By %)

where P is any polynomial in x, y,; and ; . To prove this, it is enough to compute
the function (52) on SO(2,R) or SU(2,C), and to show one gets in this way all

polynomial functions on these compact subgroups. But clearly if aa +bb =1 then
a b at” tt = = = =
(53) §0<_g -> ) f(l) - pity dt = e T P(at, bt, at, bt) u(t) dt
& bt
and the result follows at once.

The representatmn PIJ ,u is thus a quotient of the obvious representa-
1’2 '
. 2 . . .
tion of GF (or rather }{F) on yo F _or the subspace of it we have just described.
To construct 2(/'(11-), we put

(54) W<p<g)=f<p[w'1( )g] ) ax

for every (P e @IJ u Since we have, instead of relation (119) of §l, the less precise
rra
but equally useful estimate

(55) CP[W-IG)J;) 4u-1(x)|x|];.1 for |x|F large

(same proof as in §l1) the convergence of the above integral is clear at any rate if ¢ > 0.

Assuming for the time being 0> 0 and making use of (52) we get

(56) Wy (@) = i, (det g)| det g| 7/ foqug’l(’(; ,) w(f,ﬂ?F(xm(t')d:édf,
from which it follows by standlard computations that

-1 My M
(57) W (g) = u, et g)| aet g| 57 () ( ) sl n =Wyl P

where

0l - (T
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belongs, for every g ¢ GF’ "to the spaceSﬁ (Fz), so that the integral for WCP (g) makes
sense for all values of u since the function te (Dg( : ]) is rapidly decreasing at

0 and at .

Hos M
If 0> -1 then we can, for every (b yO(F ), define Wq) 2 and
Mo, U
the function (52); we shall see that although Wq)l may not be given by (54),

which makes sense only if ¢ > 0, we can, however, compute @ in terms of

W;l’ g by means of a Fourier transformation. In fact, we have, if o> -1,
59 cp(w)=j¢[w'1(g)] dt—fqﬁ() (t) dt
1 -
_f‘}’qb() dxdt~jf}’1<b( }u(t)ltl;dxdt
where
x| _ EAR _ X
(60) FO() =10 ()7eee) o= = 0,(3)
But
6 o= (5 1) = 0,8 - 1=l FOLY
so that
Mo by -1 )
R P EPCIEE A Gl PEIERE
(62)

It

0 w3 2 (%) ol

Comparing with (59) we thus get

S W)

P w) = [ Wy ('0 1) (-1 py, )
Bys M
W (1_[W¢)1 Z(X O) uﬂl x)|x\—1/2dx;

1]
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»

if we replace Qb by its transform under w-lg we get more generally

By
B} 2 [x 0\ -1 -1 /2
(64) Qi) =w (1)fw¢ [(o 1) wog|u, x)IxI dx ;
‘thig formula is valid for o > -1. It still leads at once to .

u
gl (50wt [F D) o] wtelxl i 2 rgten e

a result that would be equivalent to (52) if we could make use of Fourier's inversion
formula - but we cannot if -1< o< 0.
Hika
The above formula at any rate shows that CP 0 implies W¢ = 0.
We may thus define W(P by (65) ; in other words, we now denote by W(P the

function on GF such that

_ /x 0 -1 -1/ 2
(66) CP[ ( )Q IW'L@ Jﬂﬁ@ﬁﬂxg~ T (xy) dx
for all g and y. We shall denote by ZJIJ u the set of functions WCP for all
1’72
Cf’ e- @ul"“ , and by 21)—(11-) the subset of WcP for those elements CP of @“1’ u, which

belong to the space‘ of .
The space 2(](11-) satisfies the conditions of Theprem 4. If we replace

g by (t) 12) g we get y + b instead of y in the left hand side of (66), hence

(67) T BRIV |_(" 0) g]

instead of qu [( g—’ from which condition (48) follows (choose x =1). Condition
(49) can be verified at once by differentiating with respect to g. As to the growth

condition (50), it is enough to verify it for the function

(68) W(’g ?) =u2(><)l 1/ 21.3.1¢ (xt ) u(t)ltll; dt
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"

a
x - lxx + y—) ) - - ] . F . .
where ¢ y =e P(x,y,%,y) with a polynemial P. Then ¥ is given by
a similar formula, so that (68) is a sum of functions of the form

bt Ty tt) 2

(69) £60) =N, () J e WORR:

where xl and )\2 are characters of F , i.e., of functions

. 2 -2 -
+ 0t +t  xx) @ *

(70) A& [ e at.

-~ 2
But if we set xx =r with r> 0 then we have

% 2 22 -1.2
ot s - o/ te %
foe"( tt r)t"‘"clt:e‘2"1']‘(’)°e“'/tt NP
/2 <2 (t t'l)‘2 *
(71) = r¥ STy oe ™ t¥dt

00 -1.2 "
_<_ra/ Zemzﬂ'rf()e-w(t-t ) ta dt if ril ,

from which we get for each W ¢ &/ (y) a majoration at infinity of the following kind:

(72) I W (’; f)

, -1
iclxlg, e-Zn-(xx) .3

this is much better than (50)!

The above comi)utation proves the existence of a space of functions
Z(J—(-n-) satisfying the conditions of Theorem 4. We still have to prove Z(J—(n-) is unique;
we shall explain it for F = R, the complex case being similarly treated. Let &/ be a
space of functions on GR satisfying the conditions of Theorem 4. We then have a
basis Wn of W satisfying conditions (20) and (21) ; more accurately, if ¢ = 11-“1’“2
(principal series) with My ,u2 given by (16) then the index n runs over the set of all

integers n = m (mod 2), while if ¢ = GH u (discrete series) with u(t) = tpsgn(t)
1'"2
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B

and p> 0 then

73) ne {,..., -p-3, -p-1, ptl, p+3, ... }.

In all cases, formulas (20) can be written as

v v
W #U=inW, W *Z=(s, +s_ )W |,
n n n 1 2 n
(74)

v —
W #V = (s+l-n) W

v
W %V = (s+l+n) Wn+2. s N } no2

n +

we identify the elements of the Lie algebra of G_ to distributions at e. Now the trick

R
Vv
is to express Wn * U,etc... in terms of the functions
1/2
0 - 0
(75) Fog-w (It “sentt) o (172w [t ;
n n 0 ‘tl -1/ 2 T n 0 1

by expressing U, V+ and V in terms of the elements

' 1 O 01 00
(76) (0 -1)’ (O 0)’ (1 O)

(*)

of the Lie algebra, it is easily found that the Fn must satisfy the following relations: .

(s +1+ n) Fn+2(t) ZtFI"l(t) - (4xt - n) Fn(t) ,

(77)

(s +1-n)F (t) = 2tF' (t) + (4wt - n) F (t) ,
n n

n-2

from which one gets

)

The formulas on p. 188 of Jacquet-Langlands are wrong; the factor u in these

211"111: {: ue 21rut

formulas should be replaced by 2qu, because %— e Here we choose

u=1.



(78) Frt) +
n 4t

this second order equation evidently corresponds to the action of the Casimir operator
2
D=LV v -iU-H— of G.
2 - + 2
We already know that these equations have a set of solutions Fn which,

as |t| = + 0, tend to 0 exponentially. Let Gn be a set of solutions which, at

infinity, grow at most as a power of |t]. Because of (78) the functions
Fn(t) G;l(t) - F;l(t) Gn(t) are constant for t> 0 and for t< 0 ; but they must evidently
tend to 0 as ‘t| - 0. Hence, the Gr1 are proportional to the Fn, and this con-
cludes the proof of Theorem 4.

One cannot explicitly compute the Fn (they are classical Whittaker
functions) except in the case of the discrete series:; and we shall need the result a

little later. Then n belongs to the set (73), andif n =p +1 then (77) shows that

7 ! - - Dm = .
(79) 2tFp+1(t) (4wt ~ p-1) Fp+1(t) 0 ;
since Fp+1 must not blow up at infinity we get
' 1

> (p+1)

£ 4™ it t>0
(80) F @)=

ptl 0 if t<0

Using (77) we conclude at once that for every positive integer k we have

1
'E(p+1)

t Pk(t)e

0 if t<O0

-2
mt if t>0

(81) F p+1+2k(t) -

with a certain polynomial Pk of degree k. Finally formula (21) shows that



'(82) F () =+ F (-t),
-n — ' n

from which the other half of the picture follows. Taking care of (75) we thus see that

for

(83) ™= , u@) =tPsgnt) , p>0,

o
IJ].,MZ
t O

0 1) where WeW () are given by formula

the functions W (

1 1

5>  siptl)
wﬂ(\tlz)ltl2 PJr(t)e'Z"lt| if t>0
(84) W(t °> =
01
%‘ IE(P’H.) 2| t]
wﬂ_(|t| )|t P (e i if t<o0

with arbitrary polynomials P+ and P _.

6. The functions LW(g 5 X S).
We can now proceed as in the /a{/ - adic case and prove a result similar

to Theorem 8 of §l. Let Z(f(n-) be the Whittaker space of an irreducible infinite-dimen-

ate
bd

sional representation 7 of }(F’ and let ¥ be a character of F . For any W e ZJ(-;T)

define
_ x 0 -1 2s-1 *
(85) Lw(g,x,s)~J‘W[(o 1>g:[x(x) | x| dx,
at first formally, We may assume g is contained in a representation PIJ u with
)
I,y(t)l = lt|;‘ and o> 0 as in the previous section, so that
- 1

x 0 T2 2 xt-l *

(86) w (0 L) g| = Hyete)det gl pu,talxlpfp (T | rEde

for some ¢e§00 (FZ) ; this follows at once from (57).

If we define as in §l
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Yo
x 0
(87) E(X)=W(O 1) , Mg(x,S)=LW(e;x,S)
we then get formally
Xt-l -] s! ok
(88) M, (X, ) = ”‘grlcp o) mx T @l wtaxdt

with d x = lxl;;,ldx and s' = 2s - 15 . Defining

51 5, % %
(89) Lp (5o 2 ,s>—u<p() 6 |xl x|yl " ' dy

s
S

for every C/) € y (FZ) and any two characters )\1 and )\2 of F , the change of

variable xt tx in (88) leads at once to
(90) x,s) ulx (l)L (b(uz»x,s,ul Xs 8

Now it is clear that (89) converges as soon as Re(sl) and Re(sz) are large enough
(>0 if )\1 and )\2 are unitary) ; hence (88) is absolutely convergent for Ref(s)
large, and Lebesque-Fubini's theory then shows the same is true of (85). And
since we may assume ¢ , hence also ”}’I(p , is given by (52) it is clear that (89) ,
hence (85), is a meromorphic function ; we shall look more closely at its poles a
little later.

Now the functional equation! We want to prove there exists a mero-

morphic function y (¥,s) such that
T

(91) LW(wg;w"-x, 1-5s) =YW(X,S) LW(g;x,S)

for all ge GF and W eJ(r) ; we shall even prove it for all W e UH 0. As in §l
1’72
it will be enough to prove that

(92) Mw(w)é(ww =X, l-8)= yv(x,S) Mg(x,S)
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oAk

T

b

N ‘h '—Tﬁ”:

where £(x) = W :); f) and ww)E(x) = W L(g f)w:l .

First of all let us define

(93) LCP \,s) = J‘(P (%) N (%) ] xl;, d*x

for every qo ¢ Y (F). We then obviously have a functional equation

(94) Lq, (X, 1 = 8) = y(\,s) L@ (\, 8)

with a very simple meromorphic factor vy (\,s) that will be explicitly computed later.

Similarly the '""double' Mellin transforms (89) can be analytically continued [this is

especially clear for functions (52)], with two functional equations

L¢(-7_\1,1-sl,>\2,sz)=y()\1,sl)L ()\,s,)\,sz)

1’71 M2
(95) 710
L¢ 0‘1 s 8y -xz , 1 - sz) = y(xz , sz) L?Z(PQ\I, 8 xz,sz) ;
hence
(96)

L¢ (-xl 2 1 - Sl ? -kz ) 1 - sz) = Y(Kl » .sl,) Y(KZ J 82) L$(X1! sl’ xZ’Sz) .

Now we start from (90) ; this of course leads to

- -1 ' ry .
(97) Mg(ww-x,l-S) =HLX (-1) L71¢ (x-ul,l-s ,x-uz,l-s ) ;

we need to write (97) for w(w)§ instead of § ; but w(w)f is given by

(98) W)€ () = W K’; f)w] =W (’5 f)

and since W corresponds to ¢) by (86) the function W' corresponds to
(XY -1/x| _ -y

(99) ¢ (y) ¢|}v (Y)] cp(x)

To compute

- -1 ' '
(100) Mw(w)g(@"-x » 128) = pox (<1) L’ﬂd)' (X-pp1-8", X-p,,1-8")




we thus need to compute

.(101) ”}1431(’;) [0} <) (xz) dz = fd)( ) T (x2) dz
= [T bea) dz [F 0 (z) 7o (ay) du =§H}(§)

where

(102) Eﬁ(’;) = ffcp(:)?F (ux + vy) dudv

(This is not quite the same definition as used by Jacquet and Langlands). Comparing

with (100) we evidently get

(L03) M_n_(w)g(ww-x,l-s) = (=1) L/$ X-K 5 l-s', ¥~ My l-s') .

Comparing with (90) and using the general relation (96) with '?ICP instead of ¢

we get at once

(104) Mﬂ(w)g(w‘ﬂ'—x’l-S) = Yﬂ(x: S) Mg (Xﬁ S)
with
(LO5) Y“(X,S) = Y(ul-x,s') Y(MZ-X,S')

as in Theorem 9 of §l.

7. Factors L (y,s)
™

]

If QDe Y(F), the poles of
(106) Lso = @) \(x |x|
depend only on the Taylor expansion (sic) of ¢ around 0 =~ in fact, if M\ is unitary
then (106) is holomorphic in Re(s) > -n as soon as cp(x) = O(|x|rF1\) at the origin.
The poles of (106) are always simple, and are at most those of the g.c.d. L(X,s)
of these functions. It is easy to compute it. The results are as follows.

If F=R write \(x) = |x|;sgn(x)m with m =0 or 1. Then



i
L

2.25
L (s+r+m) 0 2 :
- + b3
107) L\, 8) = - r(i%r—n-> = fe™ ST T
. 0

The functional equation of Mellin transforms can then be written as

Lep(=\,1-8) LN, 8)
@ _ ¢
.(108) Li-n,1-8) °© ™, s) L(\, s)
with
109) e\, s) =i~

If F =C, write AN = Ix\;‘ xm;n where m and n are integers such
that inf (m,n) = 0. Then we may choose

(s+r+m+n)

(110) L\, 8) = 2(2w) T (s+r+m+n)

and we have (108) with

(111) e\, s) =it

— ———— S——— S —— W— "

We shall now define, for each irreducible representation n of GF

V3

and each character ¥ of F ,a g.c.d. L (y,s) for the functions LW(g;x, s)
™

e Gp, WelSm).

Assume first that 7 = L belongs to the principal series; hence
1’72
wT=P and the space of 7 is [a’ , so that 21f(17) is the space w of

all functions (57). In other words the functions £ are all the functions

1

. L 0
; 0 2 #
{112) 5(3 1) = ,uz(x)lx\F f'}'l@(i{z ) pit) dt,
if (86) , and by (90) we get all functions

(]-13) :!:-‘,g_—ald) (Mz'x » 8!, I—ll-x H S')

PR
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with all Q5 ey 0(FZ) - or, which is clearly the same with all functions Cl) of the form
(52). It is then rather clear that we can choose
(i14) Lw(x,S) = Lp-x » 8') Liu,-X, s')
as a g.c.d.for the functions LW(g ;X » 8) .

If % belongs to the discrete series (F = R) then 2(/'(“-) is strictly
contained in @”1’ “2 ; this may, and does, result in a different formula for the
g.c.d. The simplest thing to do is to observe that in this case we know explicitly

the space Z(f(n-) . it is the set of all functions (84). Hence the functions M§ (X,s)

are nothing but the Mellin transforms

+ 00 1 1
-2t E(p-'-l) E. =1 gl -5 %
(115) Mg(x,s)=fe P(t) t w“(t)x(t) t- 24t
0
with an arbitrary polynomial P(t). It is then clear that
1
+oo > 1 sk

- (116) L ,s) = fe ™ 20 Byttt dt

T 0 T
is a g.c.d. for the set of functions (115). If
(117) T=0O with ut) = |t‘p sgnft) , p>0

Hl’ u 2
and if
(118) x ) = |t| Tsgn®)™
we thus have 1
+e0 =(p+s,+s ) +s8'-r
L()(,s)=_|'e.2wtt2 12 dt
0
(119) r~s' -IE(p+sl+sz) 1
= (21) I (s! —r+‘z(p+sl+sz))

1l

em*™% %1 T +s -1)




since s, - s, = p.

These computations show that for every 7 and every y there is a

W e/m) suchthat Lo (e;x , s) =L (x.s) forall s.
8, Factors s“(x,s)

We can now, as we did in the y -adic case, write the functional equation
(91) in the form

Ly wg w =X 1-s) Lw(g i X s s)

(]-20) Lﬂ(wﬂ_"xs 1"8) = e“_(x:s) LW(X,S)

with new factors

a o’ L (w-y , l-8)
™o
If « =-n-u i belongs to the principal series, then formulas (105), (108) and (121) lead
1, 2 ..
at once to '
= - ! - 1
122) ew(x,s) el=x s s')elu,-x, s')
a8 in the non-archimedean case.
If F=R and r = UIJ u belongs to the discrete series, then by
1’72
our choice (I19) of the g.c.d. we have
r-s!' -s1
(21) T'(s! -r+sy)
= - ! - )
) z‘:‘rr(x’s) Y(Ml X>s') Y(HZ X» 8] sl+sz-r-1+s' -3
2 -g! ws_ =s5_+
(123) (21r) I'(le-s!'+r 5,75, sl)
2r=28' -s_ -s_+1 I(s' ~r+s.)
= (2m) 12 y(u =%, s') ylu,-x, s') :
1 4° 2 N I"(l-s' +r-sz)

If we write that
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m -1 S, =1 ni
(124) X6 = [x|Tsgn@™ . wx &) =lx] ¥ sgn(
with
(125) n, = (m,-m) i=12),

we get by (107), (L08) and (109) :

L(x-'ui s I-S')
Y(I-‘i-x’s') = s(ui-X:S ’L(“i'X ,» s')

RO T

-1_(1-5'+r..s,+n_) (1-s'+r-s.+n.\
2 i1 . i 71
i, . r

i “(sic)

2 / _

1]

(126)

1
-—(st +s,/~-r+n.) (sv +s_ -r+n, )
2 1 1 1 1
- rfe—at

2
n. s'ar+s -

(l-s' +r-si-ni>
i i r 2

-1 m s' +si-r+ni
r ———-—2 .

Hence -

- - - V- -
2r=2s8 sl sZ-l-l n1+n2 2s Zr+sl+s2 1

(X,S) = (ZTI')' i ™ X

les!' +ras +n\ l-s' +r=-s_+n \
11 2 2 .
P( 2 ]P( 2 /P(S'-T+S)

v

€
m

1

(127) X s!'+s er+n s'+s_~r4n
r L 1 T 2 2 (l-s!' +r-s
. 2 / 2 2)

<l-x1+pl> 1-x2+n2>
n1+n 2r=-2s8' <5, ~-s_+1 F(xl) T - . I"(xz) r —

2 1 72
- x1+n1 ) 1_‘<x2+n2)
2 2

=i 2

with




X, = g' =r+s y o X, = leg!+r-s

128) 1 1 2 2

By using classical formulas, namely

L
1, 2 _l-2x

t29) ]."(x)l"(x+*E) =q 2 T'(2x) , I'&)ITCQ-x) =x/sinw x

and the fact that n, = 0 or 1, it is easy to see that

l-x+n 1
P(X)F( 2 )_ 2 _x-1, . /x+1-n
(130) e =g 2 /sm(r >
(%)

if n=0 or 1. We thus get
n,+n., 2r-2s'-g =s_+1

e (X,s) =1 .?.2 1 72 %
™
= s'-rts -1 L -s8'tr-s
2 5 1 2 5 2
(131) x = 'er+s +l \:w ' +n_+2
s'~ris +l-np r-s' -s,+n,
sm|y———"— | sin{~ 5
N ) s -r+sz-n2>
. in1 n, sin(r ———5——
T - .
g s r+s1+1 n
in (7 3
Making use of the fact that
(132) sl-sz=p , nl-n25p+1(mod2)
we get at once
-L(p+1 n -n.) n +n
A U A B
133) Ew(x’s) = (-1) i

This result is not to be found in Jacquet-Langlands, where they compute ¢ (¥,s) from
T

the Weil construction of the discrete series. It is to be expected that their formula

(top of p. 195) agrees with (133).
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§3 - The global theory

1. Parabolic forms.

In this section we denote by k an arithmetic field (i.e., a number
field, or a field of algebra functions of one variable over a finite field),
and by A the ring of adeles of k ; we have a natural locally compact
topology on A, and k is imbedded in A as a discrete subgroup with
compact quotient, If,y is a (finite or archimedean) place of k we denote
by k,(j the corresponding completion of k, by |x|,f the absolute value on
kg , and by,{j,:y; the ring of integers of k,y if /y is non-archimedean.

In Weil' s Basic Number Theory and in Jacquet and Langlands they write

/7 instead ofy . We prefer our/gf 's ; they remind us of the Great
Dynasty - Gauss, Jacobi, Dirichlet, Riemann, Dedekind, Kronecker,
Hilbert, Minkowski, Hecke, Artin, Hasse, etc. . . . - Salvation through
Zahlentheorie,

We shall write

1) Gk=GL(Z,k) s GA=GL(2,A)

1

so that Crk is a discrete subgroup of GA. For every place/y let M/y

be the obvious maximal compact subgroup of G’jp = GL (Z,kj) ; then GA

contains the compact subgroup

(2) le;[M/g

and we have GA = UAHAM , where U is the subgroup of matrices

1 % .
(0 1)and H the diagonal subgroup ; we denote by U, HA’ Uk’ Hk the



. 1 x t 0 A * (1 m
subgroups of matrices (0 1), X € A,_<0 t")’ t, the A, 010 "¢ k

1 *®
and (go §(’)') , £', €" ¢ k . With the help of this ' Iwasawa decomposition'

of G-A we can construct a fundamental open set for Gk in GA , il.e., an

open set © C GA such that GA = Gkg and that yv@ intersects (& for

a finite number of y € G, only ; to do that we can choose @ = QU-QH-

k

Hc>o (c)- M, where QU and QH are suitably chosen open relatively compact
subsets of UA and HA’ and where Hoo(c) is, in the number-~field case,

tt 0

0 t"> € HA such that t/'g, = ty, =1 for all non-archi-

the set of matrices (

medean primes and

(3) ltv /tnl > c

&
for a given ¢ > 0 ; in the function field case one should choose once and for

all a place and require that t}, =tly =1 for all .
0 Yy -y 0

The absolute value in (3) is of course the global absolute value
of an idele of k.

Let dx be an invariant measure on GA. The group GA operates,

through right translations, on the Hilbert space L2 (Gk\G ) of measurable

A

functions (P such that

@) Phve) =Pl . [ gl <+ w.

Gk\ G A

als
b

" This section is written with the number field case in mind. The reader
will have to use it with care in the function field case.
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Let Z (resp. Zk) be the center of G

A (resp. Gk)’ i.e., the group of

A
t 0 * *

matrices (0 t> with te A (resp. te k ). The translations by elements

of ZA commute with the obvious representation of GA . We can thus,

/| Z

by means of a Fourier transform on Z decompose L2 (Gk| GA)

A k'’
into the ' continuous sums' of the spaces L2 (Gk\GA , W), where, for
any unitary character w of ZA/ Zk (i.e., of A /% ), we denote by

2
L (Gk\GA , w) the space of functions such that

2
(5) vgz) = Q) wz) , f lpE)] “dg < + o .
7! -¢ GA\G,/2Z, ¢

7 = . . . .
Of course Gk\ GA/ A ZAGk\ GA We still have a unitary representation

2, .\
g T (@) of G, on L (Gk\gA, w) .

For-ever € LZ(G G ., w) and almost every g e G,, the
Yy k' TA A

function xk CPLG) T) g] on A is square integrable and periodic, i.e.,
invariant under k. If we denote by 7 a nontrivial character of A/k
chosen once and for all, We thus have a Fourier series
©) [Z g] S gl T

Eek

with
(7) @) = [( ) T(Ex) dx ;
P =[] @ |

We assume of course [ dx =1. By making use of the invariance of CP

: o Al k
y

under g~ (0 g and of dx under x+ £x if §ﬂ|10, it is seen at once

that if £ ¥ 0 we have
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(€ 0O . 1 x\ |-
(8) (g8) = W ( )g where W., (g) = ) = ( )g Tx) dx
Pe@ = (5 1) @® =% A{kcf’[o i
Hence

(9) | Qe =Gole) + > W %f)g]
£+0

We say that CP is parabolic if
1 x
(10) = K > g:l dx = 0 almost everywhere .
@Po R AICE

It is easily seen that the set of parabolic q0 is a closed invariant sub-

2 2 ) . .
space LO(Gk\ GA, w) of L (Gk\ GA’ w). If f is a continuous function

with compact support on GA’ then the continuous operator

(11) Tw(f) = f Tw(X) f(x) dx ,

G

more explicitly given by

v
12) T, = [ @by £ly) dy =Q*E6)
G
A
maps into itself every closed invariant subspace of Lz(Gk\ GA, w) , for
trivial reasons (an integral is a limit of finite sums , . .). The first main
result is

Theorem 1. For every continuous function f with compact support on GA,

. 2
the operator Tw(f) is compact on LO(Gk\ GA, w) .

Proofs of this very simple but clever result are to be found almost

everywhere"‘, at any rate for SL(2), but the extension to GL(2) is easy.

Y

N\

‘
ale

" See for instance References 3, 1l and 13 in Jacquet and Langlands.
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The authors of the Jacquet and Langlands paper are not interested in
L2 theory, and they replace Theorem 1l by ''purely algebraic" results
(Prop. 10.5, p. 334’, for instance) which are more closely related to the
classical point of view.

2
The proof consists in writing (12) on L (Gk\ GA’ W) as

13) T O)QP& = [ ly) K.tz,y) dy
W CP U \G C‘P f
k A
where Uk is the subgroup (E %) , £ ¢ k, and where
14 Kbery) <> toclny) - [ £6hay) dus
Uk UA

if f is good enough this can be estimated by means of Poisson's summation

" ) 2
formula, and it is found that, for x = uhxm e S a,n.d @ e LO(Gk\GA, w),

we have estimates

1) |7 @ el < el s )] - @l

- -
for every N, with ) =t [/t if h = (B t”) ; a similar result (without

the | |CPl |2 term, and with a constant cN(cp) instead of cN) would be
obtained if the parabolic function C’D , instead of being assumed to be L ,
was assumed to be slowly increasing, i.e., dominated in G by some

power of |ﬁ(hx)| .

A corollary of Theorem 1 is that the unitary representation of GA

2

on LO(Gk\G ) is a (Hilbert) discrete direct sum of topologically

A Y

irreducible representations, each occurring with a finite multiplicity, i.e.,

we can write
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2 A
16) LG \G,, ) =8 7

where each an is a minimal closed invariant subspace of LS(Gk\ GA, w),
and with only finitely many p such that the representations on Hp and
‘%’n are equivalent. This corollary follows from a general and elementary
lemma in the 'theory of representations *. It will be proved (Theorem 3)
that here the multiplicities are one ; and that furthermore those irreducible
unitary representations of GA which do occur in Lg(Gk\ GA, w) can be
characterized by conditions concerning an infinite eulerian product (Theorem
5). These are = among many others to be found in Jacquet and Langlands'
work - the two results we shall prove in this section.

We shall need later another consequence of Theorem 1. Suppose a
function CP € Lg(Gk\GA, w) belongs to & n(U) for some n - we use (16) ~
and some irreducible representatibn/ty of M. Since dimffn W < + oo itis

immediately seen there are continuous functions f with compact support on

ote
<

Let xt+ T(x) be a unitary representation of a locally compact group G
on a Hilbert spaceﬁ, and assume the operator
T(€) = [T) f&x) dx

is compact and not zero for a given integrable function f. We may assume
T(f) = T (f)*, so that there is a Af0 such that the subspace U~ of vectors a
such that T(f)a = A\a is nonzero and finite dimensional. It is clear that U
is invariant under every operator commuting to the representation T. It
follows at once from this property that if we consider the closed inyariant
subspace fL ' of Jf generated by the orbit of a a ¢ , then & " N
% is an injective mapping of the set of closed invariant subspacesﬂ nC

' into the set of subspaces of U~-. Since U is finite dimensional, the
existence of minimal closed invariant subspaces follows.

G et s Sl ARt gt Bt e S G 3
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GA such that ’I‘w(f)q) =(P ; we may even assume f as nice as we want (e.g.,

c® with respect to the archimedean components). But then CP = Tw (f)CP =
v
@ f is itself very nice : its right translates under M remain in a finite

. . . 0 . .
dimensional space, and Cp is C with respect to the archimedean com-=-

ponents of G Furthermore (15) shows that () is rapidly decreasing in

A

G, i.e., satisfies for every N an inequality
\.Js (17) 6| < e @) B0 )] N w6,

The same properties apply to the functions in the dense subspace

as) ® f_w)

ol n)

B 2 .
,\" of LO(Gk\ GA, w) ; they will here be called cusp-forms.

2. Local decomposition of an irreducible component.

| For everyy let p// be an irreducible unitary representation of
S W’
‘ M G'y on a Hilbert space %’7 ; we shall assume that every wy is admissible,

i.e., that the multiplicity of any irreducible representation of My) in
p/j is finite; for such a representation /}Z{ we denote by Hﬁf] (49/3)) the
corresponding isotypical component of p/j, l M"f . Finally we assume that

ff (id) £ 0 for almost all ; we have then diinfﬁ (id) =1 ; we choose
vl q g

once and for all a unit vector ﬁ; in f{y (id) ; we denote by SO a finite
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set of places containing all places at infinity as well as those /j’ where

0
E,/;( is not defined.
For all finite sets S _) SO define p

19) g =‘;S1‘i€,f ;

this is a pre-Hilbert space, with the scalar product
@ ¢, » ® =T (g )
/j €S g y €S 'g) /90 €S g

For SC S' we have an isometric injection ff‘s - ﬁS' namely

s»w@a"

(21)
ges' -3

(20)

This enables us to define the pre-Hilbert space

22) lm¥ g

and by completion a Hilbert space
A
(23) # = ? %, .

Since we have a unitary representation p of G on 'ﬁf for ever ,
y rep 'j 5/ g. Yﬁ”

we get at once a unitary representation

(24) p=§p
s

of GA onﬂ ; if § =‘? gg, is a '""decomposable' element ofﬂ, with

f,'y = E,; for almost all,g’ , we have

25 = ®
(25) pg)E gwcw)%

for every g € GA. Sincg\a such vectors generate topologicallyﬂ , this is
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v
enough to define p.
Let A% be an irreducible representation of M. Since M is compact
L7 is finite-dimensional, and since M = T‘-My we have 4/ = ®/%;, )
with irreducible representationsx% of the various My ) and,(? = id for

almost all,;.f . Evidently

(26) Tﬁww?}?g(@),

and since dimf%(,(%}) =1 if /20 ¢S it is clear that fﬁ U? is finite dimen-
sional. It is furthermore a routine business to prove that if the p'ny are
(topologically) irreducible, so is p. An irreducible unitary representation
p of GA will be said admissible if dim ﬂ(&) <+ for ‘allﬂ) , and decom-=-
Eos'able if there are admissible irreducible unitary representations p/y

P,g, .

Theorem 2. Every admissible irreducible unitary representation p of

7\
of the Gy such that p = ®

GA is decomposable, and its irreducible factors e‘f are uniquely defined.

We first prove that for everyy the restriction of p to Gﬁ) is a
direct sum of mutually eguivalen’c ir'reducible representations, i.e.; can be
written as the (Hilbert) tensor product of an admissible irreducible
unitary representation p"f of Gy and a multiple of the identity represen-
tation of G .

g

Consider the compact subgroup

27) M9 =TT ™
wiry M

if A7 is an irreducible representation of M(ép), let }"Z(,{?) be the corresponding
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subspace ofﬂ . Of coursé Ff = 6}?(@) , and every ﬂ’(&) is stable under

P (G"f) . Every irreducible represen'ta.tion X}é; of M/;f occurs ir; ﬂ (78]
with finite multiplicity, because we assume p is admissible. Hence fﬁ %)
is a Hilbert direct sum of minimal closed subspaces invariant under G/go.
'i‘he same is therefore true for Jff . But on the other hand the restriction of
p to GAf is a '""factor representation' of Gy [i.e., every continuous

operator T on # which commutes with everything that commutes with

.p(G,j,) is a scalar-proof: T commutes with p(GA), and we assume p is

irreducible]. It follows at once that the irreducible components of p (G/f)
are mutually equivalent.

Let be the admissible irreducible unitary representation of

"y
G that can be imbedded intoFf . Let fé be the space of p

7 G

N
Ff'v ﬁ/f ® /' for some Hilbert space 7. This # ' can be canoenically

! d

defined as the space of all linear mappings u: # —+H that are continuous

bt

and compatible with the actions of G/f ; the scalar product of two such

, so that

mappings u and v is the number (u,v) such that
(28) @@E) , vin)) = (w,v)(€,n)
A
for any two §,n ¢ ﬁ/j ; and the isomorphism FZ/;V ® fﬁ,éo -~ F is the unique
isometry which, for any geﬂ’é/ and u E;ny[ , maps £ ® u onto uf(§).
Now it is clear that continuous operators T on ﬂ which commute
with p (fo) are in one-to-one correspondence with continuous operators

4

In particular p defines a representation onff' of G,U( for every A7 %,y ,

¢

T! oan ' , insuchawaythat T =1® T' if we identify ﬂ and Z"fo ®H' .
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which is of course the Hilbert tensor product of p _ and an identity rep-
resentation of G,U(‘ on a Hilbert space/% ! . We thus see that, for

\
every finite set S of places, we can write 7 = Flfs ®H'S, where

(29) ffsjgeé\’sf@.

"where fg's is the Hilbert space of continuous homomorphisms ﬂS ~# which

are compatibe with the actions of

(30) G = T Gy,
!
,g) €5
and where GS operates on ffs through the representations P/y , and on
f{'s in a trivial way.

To conclude the proof we first observe that p,;r contains the identity
representation of My for almost all ,g? , because the restriction of p to
G’j already satisfies this condition for almost all Xf [choose a represen-
tation & of M such that fg () ¥ 0, and consider those /y for which/\? = id].

- 0
For a.lly # SO, let us choose once and for all a unit vector ﬁy in
A
ffy invariant under M/g; ; we can then define a representation ®p/j of

-~

GA on ®f§/ , as we have seen at the beginning of this section. We want to

~ N\
show that ff is isomorphic to Qfég and p to ®e‘j ; this will conclude the
proof.
Fay
Since P and ®pg are irreducible it will be enough to construct
N\
a nonzero isometric linear map ®Ff/j A compatible with the actions of

GA. To do that we observe that, if S_) So , there are in J{f and hence in

fﬁé nonzero vectors invariant by all the M/,;( , 4f¢ S. Choose such a vector




§o for every S ) S.. On the other hand, if ¢ ¢ S and S' =5 -~ {{f}, we
s Y 0

AN op 0
t = 3 3
clearly have ”?S ﬂy@%s, . Since gg, is, up to a scalar, the oan
0 0 0

vector in ﬁy invariant under M/g; , we have gs =\ g}f ® gs,, with a
scalar N depending on S and,y . If we index by integers the set of
,(f ¢ S0 , we see at once that we can choose the vectors gg in such a way
that A =1 in all cases. Then for every S ) S0 we get an imbedding
E—~§® &,S of S into fff , with the obvious compatibility conditions
satisfied. The remaining proof then follows by standard arguments.

Theorem 2 of course applies to the irreducible components of the

representation of G, on a space 'Lg(Gk\ GA, W) .

A

3. Global Kirillov models.

A
Let p = @p'y be an admissible irreducible unitary representation
P
of GA on a Hilbert space ff =Q ff , Where is the space of p,, . For
7 Y A

each )f let ﬂ/; be the everywhere dense subspace of Mjp -finite vectors

in ’j ; then the subspace of M-finite vectors in fﬁ is of course

£ _ U 7t 0
. i S y?s 4 ngsﬂ‘f ’

0
where we denote by H‘f the (zero- or one-dimensional) subspace of vectors
fixed under M/f
Denote by }ﬁf the Hecke algebra of G"f for everyxf , as defined
in Sections 1 and 2. For every Af we then get a representation (which we
f f A . . .
shall denote by Pﬁf’) of %/gf on’ff - this is clear if ,(f is non-archimedean

4

since for every F ¢ %ﬂf the operator p

)

F) ={ p/y x)F (x) dx is defined
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and continuous on the whole of f%p , and mapsfg/} into itself because F is
left M, -finite. If Af is archimedean, in which case% consists of

7

. . . . . . 10 -1 0
distributions with support {e} if xf is complex, and (0 1> , (O 1>?
at most if /f is real, then we have to make use of the results quoted in
§2, No. 1, which rest upon the fact that, for every § efﬁlﬁff , the map
X > p/f x)& of G"f into Fg/tf is real-analytic.

The representation p;; of ]’[[/f onﬁﬂé is of course admissible

g
for every,g/ ; it is furthermore irreducible, and its class determines the

unitary representation "/f of G,y on }efxf up to Unitary equivalence. The
irreducibility is due to the fact that if a subspace W( ofﬂé is invariant
under )ﬁég) > then its closuret/;? in Fg/lf is invariant under G/y , and we
have J/{ =</;Zm ﬂyf because of the decomposition of M into mutually
orthogonal subspaces corresponding to the various representations of M/y
The fact that the representation of }éj determines that of fof is proved
as follows. The given scalar product (£,7n) on ;g/j defines canonically

- . f
a semi-linear isomorphism 7 1 between the representation p/y of

Hy

v
Tr’ff is defined on page 1. 2 for finite primes, and in the obvious way, see

v
v
onﬂ/; and the contragredient representation p{; onfﬁ/; (where

page 2.4, for archimedean places). This already shows there is onffé

only one positive definite scalar product compatible with the representation
. . % }ff f

of lf . Furthermore if we know the action of 7 on é{ then we know

the number

£ - £ -
(32) (, F)E,n) =<p, E)§,w = [<p, ®)E, PFx)dx = [ P (x)&,n)F (x)dx
y iy by B8 Ty



by

;
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i
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for any two §, 1 efgé and every F-e #y , from which it follows that we
know all the " coefficients" x+~ (py (x)€,m) for all £&,7 efﬁép ; but it is well
known that if two irreducible unitary representations have a common coefficient,
then they are unitarily equivalent.

We thus conclude that an admissible irreducible unitary representation
p of GA defines, for evéry,{f ; an irreducible admissible representation
pé of %/j; in the sense of Sections 1 and 2, and P is determined by the

knowledge of.the ij . Observe that Pé contains the unit representation

§

of M , for almost alllaﬂ .

These remarks lead us to define a global Hecke algebra %A as
follows. Choose a ulg) € le for each/j , with the condition that u/f is
t£1e characteristic function of Mép for almost every éf . Let Goo

(resp. Gf) be the subgroup of all x ¢ GA such that xér =1 for all non-
archimedean (resp. archimedean) places, so that GA = Goo X Gf . We

can define on G, a measure (even a function)

f
(33) uf =Q® u
/Jnon arcH.
and on Goo a distribution
(34) H o= ® u
et

0
/;f arch.

If we have on G =G°°XG

A a function CP(x) =(p(x°° , xf) which, in every

f

sufficiently small open subset of G,, is the product of a Coo function of

A

X and a constant functj.\on of Xes then we can define the number

(35) W@ = Pee, , x) duGe ) du ) .

[>.0]
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Denoting by C®(G,) the set of functions 90 just defined, we thus get a

A

linear form u on COO(GA) ; we write u = ® ug , and we define H/A as

the vector space generated in the dual of COO(G ) by these linear forms.

A
The structure of algebra of )ﬁi is clear - if u = ®”/f and V= ®175f, we
define
(36) uEV =0 u a*vy,
where the * is the convolution producl:{ (i.e., the product in H,y for
every,{f ).

Now if we are given, for every,y , an irreducible a;imissible

representation w,, of /y on a vector space 2{? » which for almost every

/gﬂ contains the identity representation of M/{f , and if we choose for every
0 2/" . .
such éﬁ a nonzero vector £, , ¢ ’;'f invariant under M/j , then we can

d

define a tensor product

(37) V=0, = Lizn U/

in the same way as we defined (22), and a representation 7 =& n/f of
%‘A on v/ in the obviogs way. It is easy to see that 7 is irreducible (no
invariant subspaces), and that all operators mw(u) , ue€ %A , have finite
rank.

In particular, let us go back to the situation in No. 1, and consider
a minimal closed invariant subspace of LO(Gk\ GA’ w) . The representa-

”\

tion p of GA on Ff satisfies the conditions of Theorem 2. Hence p = éi’p/y

N\
and % =Q® Ff/f with irreducible unitary representations p/f of the G,» on

Hilbert spaces ff . Define

¢l



oA et

)

(38) 7@,4{; o ., v

%’fﬁ

for ea,ch,g/ , and let ¢, = be the corresponding representation of

of
q 4 6
¥, on 76, ; it is irreducible and admissible. Denoting by g,j) the unit

vector in Fg we have chosen for almost every /y to define the iso-
7 ana @ y
morphism between and ® % , we can also use the E.Af to define the

4

representation 7 = ®1T/f = ®pf of NA on V=@ % . It is then clear that
(i) the isomorphism 8% = ﬂ induces an isomorphism between W’
and the spacefﬁf of M-finite vectors infg ;
(i1) all q)efﬁf are C% and rapidly decreasing in G ;
(iii) the irreducible representation n of ?:FA on V—*—%f is given
by
(39) TP = P
The assertion (ii) has been proved at the end of No, 1 of this section.
We thus conclude that from a (topologically) irreducible component p

2

of the unitary representation of G, on LO(Gk\ GA, W), we can get an

A
(a.lgebra.ica.lly~ irreducible) representation r of 35& on a space of c®

and M-finite functions (in fact, cusp-forms) on Gk\ G By making use

A

of the standard arguments of the theory of spherical functions it is seen
f

at once that every CP € fﬁ satisfies an elliptical differential equation on

Goo, hence that CP(g) is an a,naly_tical function of goo. This conclusion

applies more generally to all cusp~-forms since such a function belongs to

the sum of a finite set of irreducible subspaces of Lg (Gk\ GA, W),
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4. The multiplicity one theorem.

Suppose we are given for each /ff an admissible irreducible

representation 11-/(3’0 of }’lé/f on a space% in such a way that, for almost

every/f , there is in 7//5, a vector &/; £ 0 invariant under M{j’ Let
=8 Tr/{ be the corresponding representation of #A on y= @ V’ff , the

tensor product being defined by means of the vectors §'§ .

| Consider for each ,tf the Whittaker space ZJ(w ) of -n-,y 1 its

et

elements are functions W on G/y satisfying )

they are right M,  -finite, and COo (even analytical) if is archimedean ;
y g ,y Yy 'ff

,  H the representation is equivalent to the representation on M‘rr ) given
b P ,y q P é( g

. by
N v
| (41) g W) Wy = Wp % b
i and finally we have
x,; O 0 if Af is non~-archimedean
(42) ng, o0 1/ °

4

for lxﬂé" large enough, as well of course as

0 Qx. |-N) for all N if /sf is arcirximedean

pd 0

| (43) W/;f (0 %y ) gﬁ} = w"f (x'f) Wff (g,y;)
where w/;( = wn_

For almost ever there is in %/ (w,,) a function invariant under
d G

H3

We denote by T,, the restriction to k,, of the additive character 7
of A. 2l /f
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M"f . If the largest ideal on which, '7'y is trivial is/(}{j, which will be the
case for almost a.ll,y - then it follows from Theorem 11 of Section 1 that

0
w(n- ) contains a unique function W/f such that

¥

(44) Wé(;(g)=1 if ge My .

0
If we use the spaces Mw ) instead of 2/¢ , and the W/j instead of go ,

y 4 ¥

then the tensor product g= ®"K(f can be considered as a representation on

the function space Mn) generated (as a vector space) by the functions

)

(45) wig) =[] W/&f (gy)

0
on G,, where W,, ¢ ((/(r ) for each , and where W,, = W,, for almost
A y < Vg 7 4

ally . Evidently we have
1
(46) Wilo };) g] = T(x) W(g)

for all xe A, ge G the W EZJ(") are ‘right M-finite and c® with

A >

respect to the archimedean components of GA ; we have
[x O
47 =
@7) w[(% )& 0 0 we
sk
for all x¢ A and g ¢ GA’ with

(48) w_x) = Il w,;f "‘y ) ;

and finally we have

(49) W(ij f) = O(|x| -N> for all N

if xe A goes to infinity in @‘ (i.e., if |x| = + w). These properties

/
characterize the space Z(f(-n-) . In fact, let Z(// be a space of functions on

GA ; assume its elements satisfy the above condtions from (46) on ; assume

/ /
finally that Wk }(A = 26[ » and that the obvious representation 7 " of

/ /
}/A on 2{// is equivalent to . We want to prove that ZJ = Mﬂ'). We shall
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of course use the uniqueness theorem of Whittaker models in the local case.-
(Section 1, No. 5 and Section 2, Theorem 4).
Denote by "W W an isomorphism of Wir) on W compatible
i . ) ) i W 0
with %A Chgos_e a place /j and, for every/7T #Af a function /U{#

0
in ZJ(Tr,U() , with W,U'( = W,U{ almost everywhere. For every W e?(f(v )

7 %

consider the function

(50) Wig) =

). W &
"y )it n

in ?/f(n-) , and its image W' inl’ . If we give fixed values to the for

S

each/U'( f/ij then W' reduces to a function W/;'f on G{f ; it is more or less

clear (rather more than less) that le = W! is a nonzero homomorphism

!

between two Whittaker models of -n-g/ . Hence Wé is proportional to

W,y «~ in other words we have

(51) Wi =W, (g

4y

where c(g) depends only on the W,U( .and 8oy for A 1*,7 .

) clg)

A similar argument [or induction on Card (S)}] shows more generally
0
the following. Let S be a finite set of places such that Wg, is defined
for all ,y ¢ S. For every

(52) Wee ® % )
S ,gfeS ’f

consider in 7%/(x) the function

0
53) W) = Wslg) - [T Wy &)

rAN

(obvious definition for gs) and its image W' in%"' . Then we have




L T L

54) W' g) = Wylgg) cgle)

where cs(g) depends only on the gﬂ( R ,(/(# S. 1f s =sU{u} with

/U(+ S we must of course have
0
(55) Wy leg) o @) = Wgleg) Wy ) o, @)

for all W_ e ® e ), hence

S /geS 'f

Y

0

(56) cqlg) = W/U( (gM) cg, @) -
We conclude of course that
0
(57) cal®) =c T W)
s€ 7 s M

with a constant c¢ that depends only upon the isomorphism W - W', Hence
(58) W' (g) = c W(g)
for all g andall W eZ(f(n-), which concludes the proof of the uniqueness of

Wiw) .

Theorem 3. The multiplicity of an irreducible component of the representa-

2 .
on Lo(Gk\GA,w) is one.

tion 9_f_ G

A

2
Let ﬂ be a minimal closed invariant subspace of LO(Gk\ G, ,w);

A
o . i .
let be the space of M-finite vectors indb , and consider the representa~

tion 7w of #A onfﬁ f, which we define at the end of No. 3. The functions

CPe}eéf being parabolic and nice, they have Fourier series expansions

(59) q;[(}) ’i)g}%w@ : f)g] 7 (6x)

with functions WCP which are M-finite, COO with respect to the archimedean
\

variables, satisfy



i v
: }! } a

bl

}’ (60) W,

and finally are rapidly decreasing at infinity - see (49) - because every

"'f_- CP efﬁf satisfies ((17). If ue %A then

v \4
. :ana(u) > = ES =2 W = W, % .
Hence the mapping (_P e WCP transforms Fﬁ f into a , i.e., into the,

B Whittaker space of w, which means that}fﬁ £ is the space of all functions
i . (61) (g) = W _g 0 where W e W (r)

5 e E 01/8 L

' £+0

Since equivalent irreducible components of the unitary representation
A

of }DFA » it is clear that the proof of Theorem 3 is now complete.

;
2
Tw of G, on LO(Gk\ GA,w ) define equivalent irreducible representations
|
i Exercise. Prove directly that if two continuous operators on
1

. 2

‘ I LO(Gk\GA, W ) commute with the representation of GA, then they commute
‘
l

2
with each other. One might even try to prove it for L (Gk\ GA, w) as well,

since the remaining part of the spectrum (continuous spectrum and the

“obvious one~dimensional representation) is known to be simple.

5. Euler product attached to an irreducible component,

Assume we are given for each /?V an irreducible admissible repre-

sentation 11-/3 of %’% ,» with the usual condition that -n-/y contains the
identity representation of M/g) for almost all/ff Let X be a character of

A /k ; denote by ¥  its restriction to kg (which is unramified for almost




all /y’ ). We set, at least formally,

-

(62) '[TL ,8)
gy

where the factors LTI' (x ,s) have been defined in Sections 1 and 2.

Let S0 be a finite set of places containing all archimedean primes
and such that, for every,{o.{ # SO’ the following conditions are satisfied: 11-,2’,
contains the identity representation of Mép , the largest ideal of k/ff on

which 7, is trivial is/u‘% ,.and is unramified.” By Theorem 1l of

X
4 s
Section 1 there are for every/y * S0 two characters ”/f and Vé’ of

!,

ot
b

-1 ' -1
k, , with u, v being neither xbF |x nor xbk |x » and such that
; <l =1,

¥ 4
'rr/j ='rr'u v
[see page 1. 48]

) a member of the principal series for Gy . We thus have

L (y,s)=L{u, -y ,s" )L{

™Y A A
[ y X Af)N(g) ] 1[14@ x;@pmg)'j'l

by formula (187) of Section 1. If we assume every m,, is pre-unitary then
y /f P y

-X ,sl)
(63) /

we know by Theorem 12 of Section 1 that

/2

c, / -c
64 lu, bl =19y, (x)|=|xlljff with 0<o <1

¥

so that

-0 /2 / 2
(65) - [, el = nig) Ty @l N
Hence the product (62) converges at least like

-s+g, /2 -1

(66) m 1‘-x;;<gmog) N :



5,‘

e
b3

i.e., for Re(s) large enough.

We also observe that, under the above assumptions, we have

(67) 1 for all Af% S, -

e (x ,s)=
Ty Y
/bp 0

In fact, let W; be the Whittaker function of n-/y such that W/y. m) =1

on M,,. We know by Theorem 11 of Section 1 that

¥

(68) L1T X .8)=L ,le;x ,s).

b
) Wﬁj
Hence

L w,w, -x ,1-8)
WA? 7

=€

", - -8 T (X
B R

69) ,8) ,

0
where W, 1is given by = <B )zw t) 1. Of course w/f-xy is unramified.

¥ 4\t

But (68) is valid for all unramified characters. We also have in a trivial

way

(70) L (w;w/j ‘-x/f ,1=8) = LL (e;w

0
because W/f is right invariant under M,y ; this of course proves (67).

We may thus define the finite product

(71) sw(x,S) = )

£ ¥ ,s
g Ty
for every character Y of Ak .

We now go back to the irreducible components of the unitary

" The as sumption that the m, are unitary can of course be weakened. See
Jacquet - Langlands, Section 1l.



representation Tw of G, on L(z)(qk\GA,w) . Let 7 be such a component,

A
so that m corresponds to a minimal closed invariant subspace % of
Lg(Gk\ GA, w) . For the sake of simplicity (and confusion) we shall now
denote by -n-/jl, the corresponding irreducible admissible representation of
}f/y instead of the corresponding irreducible unitary representation of
G/‘f , as we did before. Since the Tr"f are obviously pre-unitary, the
Euler product L"(x, s) is defined for Re(s) large if ¥ is any character

of Aq?/ k.

Theorem 4. Let 7 be an irreducible component of the representation

2 % b
of GA on LO(Gk\ GA,w) . Then for every character x of A /k the

function L (x,s) is entire, bounded in every vertical strip, and satisfies
—_— e r = n

(72) L (X,S) =€ (X:S) L (w"x’l"s)
™ m ™

The proof is simple enough. Choose inmn ) , for eachtf , a
: b

0
function fo , and assume W‘f = W/f almost everywhere. The function

(73) W (g) :}waf (gb”)

then belongs to the Whittaker space of the representation ® "/f of the
global Hecke algebra %LA , as we have seen in No. 4., Hence there is

in ﬂ a M-~-finite function QD such that

(r4) P @) Z;wa; f) J’
£%0 )

see (6l), Consider the integral

W7

kK \A"

e Ty

m,ﬂ,




ol

a
([x 0
Since we know that CPL(? 1) gjl is rapidly decreasing as |x[ -+ o0,

the part |x| 2 1 of the integral converges for all values of s. But
(x7 o) =11 0
)l )
-1 -1 0 -1 0
W) g{)[w (’5 1) wg] = W{x) CP[:(}; 1) wg] .

HenceCP,:(o 1) g:] is rapidly decreasing as |x| = 0 as well. Hence (75)

¢

(76)

It

is an entire function, bounded in every vertical strip for trivial reasons.

From (74) we get

(77) LCP(g;X’ 8) = f_"Wl:<>(§ f) g—l X (x)"].'xl Zs-ldzkx ,
A..‘ |

0
provided the right-hand side is convergent. We know that W|:(O 1) g:]

is rapidly decreasing as |x| = + w . On the other hand CP » being a

cusp-form (see end of No. 1), is bounded in @, hence on G, , and since

A

W is a Fourier coefficient of QD the same is true for W. It follows tHat

(77) is justified for Re(s) large enough. Writing that
(78) A =T /f TT = U ag

we have

Zs-l

(79) = lim [T ;w L

i ng s
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If S is large enough we have

ey

for all xe,{};}= and /(f S . Thus

»8) ,

(81) L, (gX,s) =lim [] L ;
CP /feS ng"f’y

where we use the notation (151) of Section 1. But we know by (68) that,

for a given g,
(82) L, (X »8) = (x

for almost a.ll,y . Since the infinite product of the L (¥ ,8) converges for
™

¢l

for Re(s) large, we conclude that

(83) L. (@x,8) =] Ly (g iX, 5
? y gy

if Re(s) is large enough. In particular we may choose the W/g such that
L (esx ,8)=L (¢ ,s) for all then L(e;x,s) = L (x,s) for
W/‘j' Xé’ - X/y /f ) X X
Re(s) large, which already shows that L (x,s) is entire and bounded
™

in every vertical strip.

In all cases we have

L (g:X,s) iXyp 1+ 8)
84)" i = =TT+ W'Q (A
‘ LX) %, 5
| 3 %

a finite product. Using the local functional equations we thus get
ch(v}g;u*x,l-S) ch(g;x,S)

(85) =€ (X,8) ——F—
Ln_(w-x,lms) T L“_(X,S)




3,,

But since (P(wg) = CP(g) we have
' 0 -1 l-2s *
LCP(wg;w—x,Ls) =] Cpl:(’g l)wg]w x ) [x| " Ca %

k. \A
(86)

* xnl - %
- fCP[G) g)g]w"lx ba) | x| 120" x = ICP[(O f) g}x o) | x| 17280 x = Ly @X. )

and this concludes the proof.

6. The converse of Theorem 4.

We now assume we are given, for every/y , an irreducible unitary
representation n, £ of G/Y and hence an irreducible admissible representation

(we still denote it by ) of }fy) . The problem is to state sufficient

Ki
conditions for

(87) T=O ¢

2 .
to be contained in the representation Tw of GA on LO (Gk\GA, w). We assume

of course that

(88) w/;f (f) ?:) =‘w/g ©1  forang ,

E '
where w/j is the restriction of w to k'y, and that 1 contains the

¢

identity representation of M/f for almost all/ff - we could not even define

(87) otherwise.

. . . 2 . . :
Theorem 5. 1y is contained in LO (Gk\ GA, w) if and only if the following

conditions are satisfied for every character ¥ of A /%

(i) the Euler product L (y,s) extends to an entire function bounded
r sxiencs o an

in every vertical strip ;




L

..
T

(2) Lt. satisfies

(89) Lw(x,S) = sw(x,S) Lﬂ(w-x,l-S) .

We shall denote by U the Whittaker space of the representation

® w}{f of %A » which was defined in No. 4 and is spanned by the functions
(45).

Step 1. We first prove that in the series

(90) Pyw® => —% f) g] |
£+0

3

the summation over k canbe replaced by a summation over an ideal of

k.
If we write the Iwasawa decomposition g = uhm of g, then
o9 ]+ 969 -]
(91)
=7(u) W [(% 10) hm:l
and since |'r({_5,u)| =1 we may as well assume that u = e. The .right

translates of W under the elements of M evidently stay in a finite

dimensional subspace of 2(/— Hence we may assume m = e, i.e,, g = h.
0

We may even assume that g = (’5 1) since the behavior of W under

the center of GA is known in advance.

Assume that W(g) = TT WAf (g,;) - we may of course restrict ourselves

"

to such functions. Denote by S a finite set of places such that, for every

0
,{{ * S, we have Wg, = Wg, and the largest ideal on which 7'? is trivial

is £ . We know that for every non-archimedean /y the function
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X 0
W,(j (0 1 vanishes outside an ideal /Uzlf of k'y (Section 1, Lemma 2),
and that (], =

¢l

ideal of k w1th/y -adic complet1onﬂ/(/y for every finite prime /f/ , and

’(f if A;f# S (Section 1, Theorem 11). If we denote by A/ the

by x 1/0( (for 'x € A ") the ideal of k such that (X—l lff x/y/zjfly for

every such,{j » then it is clear that
(92) W(gx °>$0—~>§ex/u(.

We thus have, formally at least,

(93) CPW(}S ](.)) :Z W(gox f)
gexﬂaq

£0
Step 2.~ To prove that (93) and hence (90) converges absolutely,

we need an estimate for. W (&Sc f) .

If w, = /;, we know (Section 1, Theorem 11) that ¢ = Trl—l v

belongs to the principal series, and that

0 1/2 i j

(94) W (’g 1),- u, W v, )
1 ZPO 4oy

itj = {/(x)

Since 1,, is unitary we have relations of the form (64), hence there is a

7

number 0>0 independent from ,{f such that

(95) IW/j, (’(‘; f>| < IX‘A}/Z Z N(/q) (i+j)o _ 6)+1] | x |,§/ 2.0
1,j20
it+j = VK; (x)

with furthermore W/'f <x 0) =0 if X%M’{f . Since v, x) +1< lx‘/;,l we get

01 /g’



(96) Yy (’5 f)l < |xlé,""1

If /(f is another prime, and if/g{7 is non-archimedean, then the

table, page l.36, shows that

(97) lw//(" YIE M | %

for a suitable choice of M/{j, and o,'g . If /(f is archimedean the integral

representation of Whittaker functions shows at once we have an estimate

(97) near x = 0; but we also know, by equation (72) of Section 2, that

(98) W/(f(}g f)( exp c{f(x;)/z) as |x|,y—>+oo.

Hence there are constants M/(f , 0'4! , C,Y > 0 such that

(99) [y (’g f)

for all xe klg; . By modifying o and the (finitely many) 0'/y we may

|xle Lexp (- <x;>“ 2)

assume that 06( = o for _9_1_}_# . Then we get

-~ 1/ 2
=c,, (% xy)
(100) |W(’g f) <M |x| I . 44 f
xfarch.

If'we consider the real vector space (or algebra)

(Lo1) =TT x
,{f arch. A{

and denote by X (for an x ¢ A) the vector with coordinates x/y in k ,

we thus get for W a majoration

102) IW(’S f)] < M- |x| -o-1

\

exp (-c| |x°°| |) for all xce A* ,



4 ‘
a
where Il || is an Euclidean norm on koo, and where M, o0, ¢ are constants,
0
with ¢c>0, Since W(}g 1) vanishes, as we have seen, unless x,ge/l/?{f

for all finite/f » we conclude from (102) that there is on A a Schwartz-

Bruhat function f such that
103) IW(0 )I < 1% g

for all xe¢ A . Since |x€| = |x|, the absolute convergence of the series

(p W is now clear, and we get

104) Py 0] <[] ‘1Z £(Ex) ;

gek

but if fe SV(A) it is clear that :>: f(€x) is rapidly decreasing as-

|x| = + 0, and (use Poisson's summation formula) is dominated by a
power of |x| as |x| = 0. We thus get for QDW(x) estimates of the

following ‘kind :

(105) @yt =0(x| ™) forall N as [x| > + oo,

(LO6) CPW(X) =O(|x|-9) for some q as |x| - 0.

[y

Step 3. We consider now, for every W eZlf, the Mellin transform
23 1
Ly @ix.s) = f W[ ]X( ) x

(107)

sk EJ
where ¥ 1is a character of A /k . Both integrals converge and are

equal for Re(s) large because of the estimates (103), (105) and ' (106).




J, We shall prove that L_. can be analytically continued to the whole plane

w

-

and that
(108) LW(wg;w=x,1-s) = LW(g;x, s) .
In fact, if we assume, as we may do, that W is a product W(g) = TT (g';/),

then the arguments we explained in the previous section show that we have

(109) Ly@X,s) /;I'Llfj /f'?

for Re(s) large, with a convergent infinite product since the local rep-

resentations n-/g, are unitary, But then

@, X, »8)
(110) Ly @x.8) =L_tx,s) T W” e

/fL , 8)
" 4/

with a finite products of entire functions. Since L (X,s) is assumed to
——— _— ™
be entire, the same is true for Lw(g;x, s) .

If we compare (110) with

W%!(Wg/y:wéo"Xy )
Tl',y (W -x{l ,1=8)

and if we take care of the local functional equations and the global functional

(L11) wwg s ©=x,1-8) = L_(w-,1- 8) [T

equation for L (¥, s) which we assume is satisfied, then we get at once
m
(L08) by a trivial computation.

Step 4. For a given W e Zlf and a given g e G,, consider the functions

w2) P ) =y (5 1) 8]
(13) F'' (x) =6p“;[w(’g f) g} w ) cpw[(’g-l 2) wg]

A
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on A* / 1<>‘< . We have formally
-1 2s=-1 _*
(114) [Fre)x 6 x| “®™ d x = Ly X 8)
(115) JF" (x) x(x)-llxl 28-1 &y = Ly (wgiw-x,1-s) .

Hence the Mellin transforms of F' and F'" are identical - but for the fact
that the Mellin transform of F' is defined for Re _(s) large positive ,
while that of F'" is defined for Re(s) large negative. However, we know
that the Mellin transforms of F' and F'" extend to the same entire

function (Step 3 of the proof) ; we shall now prove that this entire function

is bounded in every vertical strip.

We start from (110) and observe that we already assumed that

L (x,s) is bounded in vertical strips. For a finite/g , the ratio
T

2s

2 -
L ,8)/ L »8) is evidently a polynomial in q ® and q
™

g, X (x
vy Gy Py S T Yy
where q = N(gi) » hence is bounded in every vertical strip. If /gﬂ is
archimedean, the situation is a little more complicated, but can be
handled by making use of the formulas of Section 2.

In fact, we know (Section 2, Theorem 1) there are characters ,u#
*
and v/y of k/;f such that ﬂ/f is contained in puy’.vé"’ . We then have
[cf. Section 2, e.g., (90)]

116 L H ’ =+ L =X 's -X,s'),
(116) Wﬁf(g‘f x,f 8) =+ dDg (v{fxs #yxs)
t]

where

(117) b, (;‘) = 1f< d)[gf;}—’l(;ﬂ;‘f (xz) dz
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for some function Cb 6_5()0(k/y X ky). Since @g« € 50 (kﬂf X klg,) it is clear

that LW (gl/ ; x:jf , s8) is bounded by a power of s in every vertical

strip. On the other hand we know that L (¥, » s) is, up to an exponent-
K

ial function, the product of at most two functions of the form I'(as + b)

with a> 0 and complex b. Since

m
(118) rosit) ~ emt 2120 Ze ? |l

in a<o<b as \t|->+oo, we see that
L. (g,X, 9
\J
Wy
L (XY’S)

4

at infinity in every vertical strip. We thus get the same kind of estimate

(119) 2| m(s)| ¢ e | (s)]

for LW(g';X ,s8). Furthermore we know that if that strip is far away on
the right or on the left, then LW(g;x ,s) is bounded in this strip because
of the integral representation (107) and the functional equation (108).

An entire function satisfying these properties is bounded in every vertical

strip, by a '"well known result!" of the Phragmen-Lindele type.

Step 5. We now prove that CPW is left-invariant under Gk for
every W ¢S, The invariance under the triangular group is more or

less clear, so that we still have to check the invariance under w, i.e.,

. *
that F' = F'" if we use notations (112) and (113). Consider on A any

Schwartz-Bruhat function F with compact support, and consider the

b

Mellin transforms of F * F! and F * F'" (convolution products on A ).



Denoting by

- - 3
) llxIZS ].d %

(120) g‘(x,s) =[F&x)yx &
the Mellin transform of F, which for a given ¥ is an entire function
rapidly decreasing in every vertical strip, it is clear that the Mellin trans -
forms of F ¥ F' and F * F'"" are /F\‘(x,s) LW(g;x,s) and

/F\‘(x s S) LW(wg; w-X, lvs); they are entire and, by Step 4, rapidly decreasing

in every vertical strip. The inversion formulas

a21) F* F =5-1-—Z F(x,8) Ly @, o) 72°
x)

1 ’\ 1-2s
(122) F * F" (x) = =—— F(X,s) L (wg;w-x,1l~s)|x| ds
em (ZRe(s) “l-o w

are valid if o is large enough (the summation over X 1is over all unitary
characters, with X' and X" considered as identical if X'-x" is
of the form x— |x|a). But since we integrate entire functions which
decrease fast enough at infinity we can shift the integration to o =1/ 2,
£
We thus get F * F! =F % F" for all F 650 (A') with compact support,
which proves that F' = F",
2

Step 6. By (90), (105) and Step 5 we have CPW € LO(Gk\GA , W)

v
for all W EZ(f; furthermore it is more or less obvious that if W' = Wau
for some ¢ % then = I ote that is C® because

M A eCPW'—(PW/J,ne a(PWIS
the series (90) which defines CPW remains convergent if we apply an

invariant differential operator to its terms; the standard argument using

"\
elliptical operators then even shows that every (PW is actually analytic



with respect to GOO.

Now lét }‘3@ be the closure in Lg(Gk\GA,w) of the space 7/v
of CPW' Thenﬂ is invariant under the represent‘ation g Tw(g) of
G, on L(G,\G,. 0.

This can be proved in about the same way as similax prop-
erties of irreducible representations of Lie groups; see reference * on
page 2.2. The idea is always the same: to express that the closure of a
subspace 7/‘ is invariant under GA’ we must express that if a ¥ e Lg(Gk\GA,w)
is orthogonal to V then (Tw(g)cp,x//) = 0 for all (Pev and g € GA' But :
since CP is analytical the same is true of (Tw(g)@,(p), which satisfies
the same elliptical equations as Q) : thus it is enough to express that the
derivatives at the origin'' of (Tw(g)(P,t/J) vanish, i.e., that ((P*/.\z/,w) =0
for all u € #A ; but this is clear if%?NA :V/

This argument more generally shows ‘that the closed sub-
spaces of Fﬁ i_nvariant under GA are the closures of the subspaces of
/UJinvariant under %A' Since W CPW is compatible with the actions of !
}Q, it is clear tha't the representation of GA on% is irreducible. To

conclude the proof we should still prove that this representation is

A
equivalent to ® w,, , which is more or less obvious since the representation

of %A on%f=2/' is ®1r7.

4481 TO, 3778

b-1-88 31263 MC




	Godement_R_1970_NotesOnJacquet-Langlands'Theory_Part1
	Godement_R_1970_NotesOnJacquet-Langlands'Theory_Part2

