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is actually positive for a pair-generating field, This follows, for example,
from the vanishing of the magnetic field in the special coordinate system
where kﬂ has only a temporal component, An alternative version of (9)

is obtained by replacing the field with the current required to generate this

field, according to the Moxwell equations

ey Fyy (k) = =3, (k)

k)‘ Fva(k) +k, F,\r(k) + k;\r/‘w (k) = 0,
Now

K} Fy(=k)E, (k) = 2k F, ROTEINCD

= 2Jﬂ(k)JF(-k)

so that

e
LW = =, {k2> ﬁzJF(-k)JP(k) x
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We must now consider the connection, within the frame work of this
special problem, between the proper time method and that of "invariant regulari-
zation" devised by Pauli and Villars, The vacuunm polarization addition to the

action integral has the general structure
g 2
L fdkA,‘ (-k)KFv(k,m )A, (k)

The proper time technique yields the coefficient Kﬂv(k,mz) in the form

2
KFu(k,mz) e f: as -8 8 K, ()

where KP,(k,s) is a finite gauge invariant quantity. Infinities appear only
in the final stage of integrating s to the origin, In effect, this method sub-
stitutes a lower limit 5, in the proper time integration, and reserves the limit

so——eo to the end of the caloulation. If, on the contrary, the proper time
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technique is not explicitly introduced, ,mz) will be represented by

K[W(k
divergent integrals, leading in general to non-gauge-invariant results.

The regulator technique avoids this difficulty by introducing a suitably
weighted integration with respect to the square of the proper mass, thus

substituting for R;'v(k,ma) the quantity
2 @
Bylkon)p =/ dk p(K)K,, (i, k).
The "regulator" f(k) must, in an appropriate limit, reduce to (S- (k—mz) s and
will produce gauge invariant results in this problem if the integrel conditions
Lo pl)ak =0

o0
fa % pk)dk =0
arc satisfieds Expressed in terms of the Fourier transformed quantities
o a
R(s) =/ plk)e ™ a
iks

Kw,(k,s) = %F[: dk e va(k,k),
we have
Ky (o )y = /o) R(s) K, (8)ds (20)
while the conditions on r(k) cppear as
..mz '
R(0) = R'(0) = 0, R{a) =20 O ,

Now observe that the proper time method yields K Mv(k,mZ) in the

form (10), with va(k,a) =0, s<0 and

2

R(s) = e 8> 8,

= 8 =< Bo
This R(s) and 21l its derivatives vanish at the origin, thus satisfying the
regulator conditions as s W 0. It appears, then, that regularization is a
procedure for inserting, into a calculation that does not employ it, enough

of the structure provided by the proper time representation to ensure gauge in=-
variant results,
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The Lagrange function for a zero spin neutral meson field in scalar

interaction with the proton-antiproton field is given by

: .
L=- 3 (—?%‘) + u2 421490219 ,91.

To find an zpproximate expression for the resulting coupling between the
neutral mesons and the electromagnetic field we replace %[¢ ,W] by its

vacuum expectation value calculated in the presence of a known electromagnetic
field, In using the latter to represent the photons emitted in the spontancous
neutral meson decay, we are introducing an approximation which neglects terms

in the square of the meson-nucleon mass ratio, ( P /M), Now

%-< [F(x),¥(x)1> =4 tr 6(x,%)
= - M/'wda a-ﬂ'u":!a tr (x| oiH8 Jx)
0

9
.
according to the formulae of page (6 ). Keeping only the first term in the

power series expansion of Ll we find

%’<[‘P(x),‘+’(x)]>'~‘=' _6.:_:.2.“[0 s e—lzs g

R4
Therefore the effective coupling term between neutral meson and electromagnetic
field is
g9, ¥1> = L3P - D)
which describes the decay of the meson into two photons with parallel polariza-

tions at the rate

- % o
=% 4 (@2 pc
m"3 ‘hc('ﬁ) /%- -

e d o
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A pscudoscalar interaction between the spin-zero neutral meson

field and the proton field is described by the temm

3‘?%[17,*{5%

in the Laprange function. For our purpose, %‘-( [‘V:YSLVD is to be replaced by

%([‘;(x):ng\}(x)]> =1 tI'YSG(X,X)

0 2 >
_ Mfo ds g " 8 trYs(x\ o i8s X)e
Inserting the transformation function (4) and reolacing s by -is, this becomes
F< VG, Y Y 1>
: 3 sin eFs 1
- . j‘m ds e-Mas e- z ¥ loe s tr(Y e-zeﬁ'FS).
16n% © & >
The cigenvalues of o°F, rclated to'YS by
1 81
(3P = 2(T+Y,0)
give
% cOFs e
tr(Ysc ) == U4 In cosh es \IZ(:T + iG),
while it was proved before that
Il sin eFs ~ .
- = tr log g
e © P = (es)zG/Im cosh es J2(7+iG).
Therefore without any further approximation
32 Sy s
§<{W(x):Y5*(x) > = -3 fo ds ¢ G

Therefore the effective coupling term between pseudoscalar neutral mesons and

the electromagnetic field is
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9P (Y Y =% §¢ e,

n

which describes the decay of the meson into two photons perpendicularly polari-

zed at the rate
2

2 -4
: A0 2
P o e (A4
The oscudovector coupling termm
g ek "
i E}‘ H[V’YSYP\V] (12)

is formally equivalent to thc pseudoscalar interaction for the problem under
discussion, in the approximation to which it is being trecated. This is de-
monstrated by an integration by parts, combined with the use of the Dirac
equation. Yet it has been found difficult to verify this equivalence in the
actual results of calculations. However, this apparent ambiguity is not an
indication of a fundamental defect in the theory. We shall demonstate that
it is caused by insufficient attention to the limiting process implicit in

the formaliem. On introducing the vacuum expectation value of the proton field,

9 3%
5 a-i;—x-ltrYSY}‘G(x,x)

- % %?(f)trY5Yf“(x)} M=Y b.f: ds e"ma’ i iHs| x);

(12) bccones

The integration by parts replaces (12) with

-glcp(x)trYs(xH 'y, (M- Yw)f: ds e""iMZB ] iHSH x)

= % ef(x)t.rYs(xi l-l/:da e-:mzs i 1H8, x)

2 .
o - S
=3 %q)(x)trys(x \fo ds e - Tz a'iHsl x)e
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A formal verification of the equivalence theorem is now obtained on integrating

by parts with respect to s, This gives for (12)

~9®(u / ds ~til's trY g(x|e™ " x)

=00 ,
+1i %?(x) [c-mzs t.r‘{s(x)|o-inslx) ]: o ‘ (13)

The integrated term vanishes for s—o0in virtue of the convergence factor .
implicit in the integral representation, and vanishes for s = 0 since tr YSFO.

This exhibits the identity of the pseudo-scalar and pseudo-vector couplings,

However, we could also evaluate (12) by writing it as

P, 2
3 -%(P(x)foda e g ?Ts tr\‘s(x l s Ix)

and use the already calculated value

2

B EET-T (1b)

tr]s(x |a
This is independent of s and therefore yields zero for (12), The same result
would be obtained from (13) since (1L) does not vanish as s—0,

It is thc second method that is at fault, of course., The error
lies in overlooking the fact that the divergent matrix element (xle’iHa\x) is
actually the limit of (x'\ c'iHs|x”) o8 x! and x'! approach x, As long as
(xt - x“)2 is finite, though arbitrarily small, (14) will be dependent on s
and so the basis of the second, null, result is invalidated. On rcfeorring to

(3) we sec that i(x'-x")2

trYS(xilciHs\x”)=-ih—ezGe s .
"

The additional factor is effectively field-independent since, with (x!'-x!?)
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arbitrarily small, only its form for correspondingly small s is of significance,

We now evaluate (12) as

2 g9 o o 5 3 (®=n)°
N W‘?(x) " X!, x"— x fods'égo -

Ln
N (xl_xll)z .
' s
—,-M Pe 1= [L1-32 e l.

xt,x!t— x
With the limits taken in this order the result is just

2
e 9

G
U T

as given by the pseudo-scalar coupling, Reversing the order of the limits
would give the spurious result zero,



